|
|
|||||||||||||||||||||||||||||
|
Мультиагентные технологииИсточник: technology
Мультиагентные технологии - новый способ решения сложных задач, использующий принципы самоорганизации и эволюции, присущие живым системам.Суть мультиагентных технологий заключается в принципиально новом методе решения сложных задач, которые не решаются или трудно решаются классическими математическими методами. В отличие от классического способа решения задачи, когда проводится комбинаторный поиск вариантов решения по чётко определенному (детерминированному) алгоритму, позволяющего найти наилучшее решение проблемы, в мультиагентных технологиях решение задачи получается в ходе самоорганизации множества программных агентов, способных к конкуренции и кооперации, и имеющих собственные критерии, предпочтения и ограничения. Решение считается найденным, когда в ходе своих недетерминированных взаимодействий агенты достигают неулучшаемого консенсуса (временного равновесия или баланса интересов), который и принимается за решение задачи. Решение задачи в такого рода системах всегда рассматривается как временное "равновесие" (неустойчивое равновесие или устойчивое неравновесие), получаемое как динамический останов системы в случае, когда ни один из агентов более не может улучшить свое состояние, что и свидетельствует о достижении разумного компромисса, баланса интересов или согласия (гармонии) всех участников в решении проблемной ситуации, даже если часть агентов остается не полностью удовлетворена (у них просто нет других лучших вариантов). Агенты могут действовать как от лица и по поручению человека, так и любых физических и абстрактных сущностей, как это планируется в Интернете вещей, чтобы учесть действие и находить баланс как можно большего числа факторов. Существует много определений понятия агента, но основные признаки программного агента следующие:
В нашем понимании основные отличия мультиагентных технологий могут быть показаны на схеме ниже:
В мультиагентной модели каждой сущности реального мира ставится в соответствие программный агент, который представляет интересы данной сущности и может согласовывать свои решения с другими агентами. Преимущества мультиагентных технологий, позволяющих строить самоорганизующиеся системы, в особенности проявляются в условиях априорной неопределенности и высокой динамики окружающего мира, позволяя строить адаптивные системы, перестраивающие свои планы по событиям в реальном времени. Так, в классических методах планирования и оптимизации считается, что все заказы и ресурсы заданы наперед и не меняются в ходе решения задачи, а размерность задачи существенно ограничена во избежание комбинаторного взрыва и экспоненциально быстрого замедления решения задачи. В предлагаемых нами моделях, методах и алгоритмах изначально применяется распределенный подход к решению задачи (Distributed Problem Solving), когда сложная задача разбивается на много малых, а потом путем самоорганизации решаются конфликты между получаемыми решениями. При этом система не ищет единственное глобальное решение, а за счет множества параллельных и асинхронных взаимодействий, быстро находит допустимое рациональное решение, несмотря на наличие множества самых различных и часто противоречивых критериев, причем в задачах любой размерности. Шаг к искусственному интеллекту: интеллект роя и эмерджентный интеллектМы привыкли к тому, что компьютер всегда действует строго по заложенной в него программе, имеющей мало общего с интеллектом человека. На наш взгляд, интеллект человека строится совершенно по другим принципам, как самоорганизующаяся неравновесная термодинамическая система, что и дает возможность ориентироваться в сложной обстановке, иметь дело с нечетко поставленными задачам, адаптироваться к меняющимся условиям и т.д. В этом контексте, мультиагентные технологии предлагают новые модели, методы и средства для создания действительно интеллектуальных систем, способных самостоятельно решать сложные задачи в условиях неопределенности и высокой динамики изменений. Для решения сложных задач управления ресурсами мы предлагаем набор специальных агентов потребностей и возможностей, которые взаимодействуют на виртуальном рынке системы и образуют между собой связи, формируя сеть потребностей и возможностей (ПВ-сеть), которые максимизируют их собственные функции удовлетворенности при заданных функциях бонусов и штрафов. Построенная так система демонстрирует функции интеллектуального резонатора, позволяющего при определенных условиях даже в случае относительно простых агентов и небольших изменений на входе получать на выходе довольно сложные решения, образующиеся в ходе длинных цепных автокаталитических реакций пересмотров ранее принятых решений. В этом случае можно говорить о наблюдении феномена "интеллекта роя" (Swarm Intelligence) - как важной альтернативе принятому ныне в искусственном интеллекте (ИИ) классическому пониманию интеллектуальной системы, механически собираемой из таких компонент, как блок индукции и дедукции и т.д. Действительно ведь умственные возможности одного муравья или пчелы может быть и относительно малы, но действуя вместе, как единый организм, рой пчел или колония муравьев представляют собой мощную силу с высокой степенью интеллекта, позволяющий защищать гнездо от непредвиденных нашествий, постоянно осваивать новые территории, находить пропитание в незнакомой местности и решать многие другие критически важные жизненные задачи в условиях постоянно изменяющихся условий в среде. Развивать "интеллект роя" можно создавая модели все более сложных командных взаимодействий, включая новые классы агентов и протоколов их переговоров для достижения уступок, обучение из опыта и т.д. Чем выше интеллект каждого агента и чем богаче возможности такой коммуникации между агентами - тем более сложное и творческое поведение может демонстрировать система. Такого рода системам, по определению, присуща совершенно другая феноменология, связанная с недетерминированным поведением, явлениями порядка и хаоса, бифуркаций, катастроф и многими другими нелинейностями. Различного рода классы таких моделей ИИ нового поколения мы будем называть "Эмерджентным интеллектом" (ЭИ), отражая присущую ему природу самоорганизации. В сравнении с ИИ в ЭИ нет никакого главного блока управления, отвечающего за интеллект системы - напротив, ЭИ рассматривается как временно возникающее свойство самоорганизующейся системы. Для наблюдателя ЭИ может проявляться как автокаталитическая реакция или цепочка согласованных изменений в системе решений агентами, которая возникает спонтанно, в заранее не известный момент времени, и распространяется в системе как волна согласований (как пожар в лесу или молния в грозу), после чего также неожиданно исчезает, но в момент своего существования определяет работу своих элементов. В результате ЭИ возникает как бы ниоткуда "из воздуха" - на самом деле за счет потенциальной энергии принятых ранее решений, отражающих накопившиеся неудовлетворенности или неравновесия - но в процессе своего существования определяющим образом "правит" работой всей системы также, как пробка на дороге управляет водителями. Этот феномен "двойной спирали" в принятии решений известен в теории самоорганизации, где локальные взаимодействия агентов формируют глобальные структуры, которые в свою очередь влияют на поведение образовавших их локальных агентов (принцип Кауфмана). В развитие данного направления большой вклад внесли Александр Богданов (теория организации), Илья Пригожин (самоорганизация в физических системах), Марвин Минский (психология и теория мышления), Артур Кестлер (биология) и ярд других ученых. В настоящее время мультиагентные технологии - одно из наиболее динамично развивающихся и перспективных направлений в области информационных технологий, успешно дополняющее такие передовые направления как семантический интернет и онтологии, сетецентрические системы, Интернет вещей и другие. По оценкам всемирно известной компании Gartner рынка информационных технологий к 2020 году мультиагентные технологии будут служить основой для более чем 40% всех мобильных приложений. Перспективные области применения мультиагентных технологий:В настоящее время выделяются следующие перспективные области применения мультиагентных технологий:
В этих областях могут решаться следующие сложные задачи:
Важные перспективы технологии связываются с развитием Интернета вещей и повсеместных вычислений. Результаты применения мультиагентных технологий:Разработка интеллектуальных систем на основе мультиагентных технологий позволяет добиваться результатов:
В результате, мультиагентные технологии позволяют строить интеллектуальные системы нового поколения, отличающиеся высокой открытостью, гибкостью и эффективностью, производительностью, масштабируемостью, надежностью и живучестью.
|
|