(495) 925-0049, ITShop интернет-магазин 229-0436, Учебный Центр 925-0049
  Главная страница Карта сайта Контакты
Поиск
Вход
Регистрация
Рассылки сайта
 
 
 
 
 

Тектонический процесс: как цифровизация изменит нефтяную отрасль

Источник: popmech

Нейронные сети, цифровые двойники, искусственный интеллект. Технологии "Индустрии 4.0" изменят нефтяную отрасль до неузнаваемости

Архитекторы цифровой эпохи

Обычно самыми технологичными принято считать сферы информационных технологий и биомедицины. К компаниям традиционных отраслей, занимающимся, например, металлопрокатом или добычей и переработкой нефти, отношение совсем другое. На первый взгляд они кажутся консервативными, но именно их многие эксперты называют главными архитекторами новой цифровой эпохи.

Автоматизировать производственные процессы индустриальные гиганты начали еще в середине 30-х годов прошлого века. На протяжении многих десятилетий комплексы аппаратных и программных средств непрерывно совершенствовались и усложнялись. Автоматизация производственных процессов - например, в нефтепереработке - продвинулась далеко вперед. Работу современного нефтеперерабатывающего завода контролируют сотни тысяч датчиков и приборов, а поставки топлива в режиме реального времени отслеживаются системами спутниковой навигации. Каждый день средний российский НПЗ производит более 50 000 терабайт информации. Для сравнения, 3 миллиона книг, которые хранятся в цифровом хранилище Российской государственной библиотеки, занимают в сотни раз меньше - "всего" 162 терабайта.

Это и есть те самые "большие данные", или Big Data, - поток, сравнимый с информационной загрузкой самых крупных сайтов и социальных сетей. Скопившийся массив данных представляет собой уникальный ресурс, который может быть использован в управлении бизнесом. Но традиционные методы анализа информации для этого уже не подходят. По‑настоящему эффективно работать с таким объемом данных возможно лишь с помощью технологий Индустрии 4.0. В условиях меняющейся экономической парадигмы богатый производственный "исторический опыт" - серьезное преимущество. Большие данные лежат в основе искусственного интеллекта. Его способность обучаться, понимать реальность и прогнозировать процессы напрямую зависит от объема загруженных знаний. При этом промышленные компании обладают мощной инженерной школой, активно занимаются внедрением и совершенствованием новых технологии. Это еще одно обстоятельство, которое делает их ключевыми игроками "новой экономики".

Наконец, отечественные промышленники знают цену эффективности бизнеса. Россия - страна больших расстояний. Нередко производственные активы находятся на большом удалении от потребителей. В этих условиях очень непросто быстро реагировать на колебания рынка. Традиционные технологии позволяют экономить не больше десятой доли процента. А между тем, цифровые решения уже сегодня позволяют сокращать издержки до 10−15% в месяц. Факт очевиден: в эпоху четвертой промышленной революции конкурентоспособным будет тот, кто научится наиболее эффективно применять новые технологии в разрезе накопленного опыта. Петр Казначеев, директор Центра сырьевой экономики РАНХиГС: "В качестве первого шага в сторону "интегральной" системы искусственного интеллекта в нефтегазе можно было бы рассмотреть "умное" управление и корпоративное планирование. В данном случае речь могла бы идти о создании алгоритма оцифровки всей ключевой информации о деятельности компании - от месторождения до бензоколонки. Эта информация могла бы поступать в единый автоматизированный центр. На основе данной информации с помощью методов искусственного интеллекта могли бы делаться прогнозы и рекомендации по оптимизации работы компании".

Лидер цифровой трансформации

Осознавая эту тенденцию, индустриальные лидеры России и мира перестраивают бизнес-процессы, складывавшиеся десятилетиями, внедряют в производство технологии Индустрии 4.0 на основе промышленного интернета вещей, искусственного интеллекта и Big Data. Наиболее интенсивно трансформация происходит в нефтегазовой индустрии: отрасль динамично "цифровизируется", инвестируя в проекты, которые еще вчера казались фантастикой. Заводы, управляемые искусственным интеллектом и способные прогнозировать ситуации, установки, подсказывающие оператору оптимальный режим работы - все это уже сегодня становится реальностью.

При этом задача-максимум заключается в том, чтобы создать систему управления добычей, логистикой, производством и сбытом, которая объединила бы "умные" скважины, заводы и автозаправки в единую экосистему. В идеальной цифровой модели, в тот момент, когда потребитель нажимает на рычаг заправочного пистолета, аналитики компании в оперативном центре мгновенно получают информацию о том, какая марка бензина заправляется в бак, сколько нефти нужно добыть, поставить на завод и переработать, чтобы удовлетворить спрос в конкретном регионе. Пока что никому из российских и зарубежных компаний не удавалось построить такую модель. Однако дальше всех в решении этой задачи продвинулась "Газпром нефть". Ее специалисты сегодня реализуют ряд проектов, которые в итоге должны стать основой для создания единой платформы управления переработкой, логистикой и сбытом. Платформы, которой пока нет еще ни у кого в мире.

Цифровые двойники

На сегодняшний день НПЗ "Газпром нефти" являются одними из самых современных в отрасли. Однако четвертая промышленная революция открывает качественно новые возможности, одновременно предъявляя и новые требования к автоматизации. Точнее, речь идет не столько об автоматизации, сколько о практически полной оцифровке производства.

Основой нового этапа станут так называемые "цифровые двойники" - виртуальные копии установок НПЗ. В 3D-моделях достоверно описаны все процессы и взаимосвязи, происходящие в реальных прототипах. В их основе лежит работа искусственного интеллекта на базе нейронных сетей. "Цифровой двойник" может предлагать оптимальные режимы работы оборудования, прогнозировать его отказы, рекомендовать сроки ремонта. Среди других его плюсов - способность постоянно обучаться. Нейросеть сама находит ошибки, исправляет и запоминает их, улучшая тем самым свою работу и точность прогноза.

Базой для обучения "цифрового двойника" служит массив исторической информации. Современные установки нефтепереработки также сложны, как и организм человека. Сотни тысяч деталей, десятки тысяч датчиков. Техническая документация для каждой установки занимает помещение размером с актовый зал. Чтобы создать "цифрового двойника", всю эту информацию необходимо для начала загрузить в нейронную сеть. Затем начинается самый сложный этап - этап обучения искусственного интеллекта понимать установку. В него входят показания датчиков и контрольно-измерительных приборов, собранные за последние несколько лет работы установки. Оператор моделирует различные ситуации, заставляет нейронную сеть отвечать на вопрос "что будет, если поменять один из параметров работы?" - например, заменить один из компонентов сырья или увеличить энергоснабжение установки. Нейросеть анализирует опыт прошлых лет и методом вычисления исключает из алгоритма неоптимальные режимы, и учится прогнозировать будущую работу установки.

"Газпром нефть" уже полностью "оцифровала" два промышленных комплекса, задействованных в производстве автомобильного топлива - установку гидроочистки бензинов каталитического крекинга на Московском нефтеперерабатывающем заводе и установку, работающую на нефтеперерабатывающем заводе компании в Омске. Испытания показали, что искусственный интеллект способен одновременно учитывать огромное количество параметров их "цифровых двойников", принимать решения и оповещать о возможных отклонениях в работе еще до того момента, когда неприятность грозит перерасти в серьезную проблему.

Одновременно с этим "Газпром нефть" тестирует комплексные решения, которые позволят минимизировать влияние человеческого фактора в масштабах целого производства. Подобные проекты сейчас реализуются на битумных заводах компании в Рязани и Казахстане. Удачные решения, найденные опытным путем, впоследствии можно будет масштабировать до уровня больших НПЗ, что в итоге позволит создать эффективную цифровую платформу управления производством.

Николай Легкодимов, руководитель Группы консультирования по перспективным технологиям КПМГ в России и СНГ: "Решения, которые моделируют различные узлы, агрегаты и системы известны и применяются достаточно давно, в том числе и в нефтегазовой индустрии. О качественном скачке можно говорить лишь тогда, когда достигнута достаточная широта охвата этих моделей. Если удастся сочетать эти модели друг с другом, объединить их в целую сложную цепочку, то это, действительно, позволит решать задачи на совершенно новом уровне - в частности, моделировать поведение системы в критических, невыгодных и просто опасных условиях работы. Для тех сфер, где переоснащение и модернизация оборудования обходятся очень дорого, это позволит предварительно апробировать новые компоненты".

Управление эффективностью

В перспективе вся цепочка добавленной стоимости в блоке логистики, переработки и сбыта "Газпром нефти" будет объединена единой технологической платформой на базе искусственного интеллекта. "Мозгом" этого организма станет Центр управления эффективностью, созданный год назад в Санкт-Петербурге. Именно сюда будет стекаться информация от "цифровых двойников", здесь она будет анализироваться и здесь же, на основе полученных данных, будут приниматься управленческие решения.

Уже сегодня, в режиме реального времени более 250 тыс. датчиков и десятки систем транслируют информацию в Центр со всех активов компании, входящих в периметр блока логистики, переработки и сбыта "Газпром нефти". Каждую секунду сюда поступают 180 тыс. сигналов. Человеку только на просмотр этой информации потребовалось бы около недели. Цифровой мозг Центра делает это моментально: в режиме реального времени отслеживает качество продукции и количество нефтепродуктов по всей цепочке - от выхода с НПЗ до конечного потребителя.

Стратегическая же цель Центра в том, чтобы, используя технологии и возможности Индустрии 4.0, радикально повысить эффективность сегмента downstream. То есть не просто управлять процессами - это можно делать и в рамках традиционных систем, а сделать эти процессы наиболее эффективными: за счет прогнозной аналитики и искусственного интеллекта на каждом этапе бизнеса сокращать потери, оптимизировать процессы и предотвращать убытки.

В ближайшее время Центр должен научиться решать несколько ключевых задач, влияющих на эффективность управления бизнесом. В том числе прогнозировать будущее на 60 дней вперед: как поведет себя рынок через два месяца, сколько нефти нужно будет переработать, чтобы удовлетворить спрос на бензин в актуальный момент времени, в каком состоянии будет оборудование, смогут ли установки справиться с предстоящей нагрузкой и нужен ли им ремонт. При этом в ближайшие два года Центр должен выйти на 50%-ную мощность и начать отслеживать, анализировать и прогнозировать количество запасов нефтепродуктов на всех нефтебазах и ТЗК компании; в автоматическом режиме мониторить более 90% параметров производства; анализировать надежность более 40% технологического оборудования и разрабатывать мероприятия, предупреждающие потери нефтепродуктов и снижение их качества.

К 2020 году "Газпром нефть" ставит цель выйти на 100% возможностей Центра управления эффективностью. Среди заявленных показателей - анализ надежности всего оборудования, предупреждение потерь по качеству и количеству продукции, предиктивное управление технологическими отклонениями.

Дарья Козлова, старший консультант VYGON Consulting: "В целом интегрированные решения приносят существенный экономический эффект для отрасли. К примеру, по оценкам Accenture, экономический эффект от цифровизации может составить более 1 трлн $. Поэтому когда речь идёт о крупных вертикально-интегрированных компаниях, то внедрение интегрированных решений весьма оправдано. Но оно и оправдано для небольших компаний, так как повышение эффективности может высвободить им дополнительные средства за счёт снижения затрат, увеличить эффективность управления оборотным капиталом и т. д.".



 Распечатать »
 Правила публикации »
  Обсудить материал в конференции Дискуссии и обсуждения общего плана »
Написать редактору 
 Рекомендовать » Дата публикации: 29.01.2018 
 

Магазин программного обеспечения   WWW.ITSHOP.RU
EMS SQL Management Studio for InterBase/Firebird (Business) + 1 Year Maintenance
Антивирус ESET NOD32 Antivirus Business Edition newsale for 5 user, лицензия на 1 год
Acronis Backup 12.5 Standard Server License incl. AAS ESD 1 Range
ESET NOD32 Parental Control – универсальная лицензия на 1 год для всей семьи
DevExpress / ASP.NET Subscription
 
Другие предложения...
 
Курсы обучения   WWW.ITSHOP.RU
 
Другие предложения...
 
Магазин сертификационных экзаменов   WWW.ITSHOP.RU
 
Другие предложения...
 
3D Принтеры | 3D Печать   WWW.ITSHOP.RU
 
Другие предложения...
 
Новости по теме
 
Рассылки Subscribe.ru
Информационные технологии: CASE, RAD, ERP, OLAP
Безопасность компьютерных сетей и защита информации
Новые материалы
CASE-технологии
Программирование на Microsoft Access
СУБД Oracle "с нуля"
Программирование на Visual С++
 
Рассылки Maillist.ru
Программирование на Visual С++
 
Статьи по теме
 
Новинки каталога Download
 
Исходники
 
Документация
 
Обсуждения в форумах
Пишу программы на заказ для студентов (108)
Пишу для студентов на с, с++, паскаль в средах ms visual studio, qt, builder, borland c, delphi....
 
Пишу программы на заказ профессионально (2007)
Пишу программы на заказ на языках Pascal (численные методы, списки, деревья, прерывания) под...
 
Написание любых программ на заказ (4)
Напишу любую программу на заказ
 
Ищу программиста для написания программы (6)
Ищу программиста ,владеющего Вижуал Бэйсик и программированием в Экселе, для написания...
 
Corel. Сохранение файла в старом формате. (25)
у меня есть горящий вопрос по Корелу и никто мне не может дать на него ответ. Я работаю в...
 
 
 



    
rambler's top100 Rambler's Top100