(495) 925-0049, ITShop интернет-магазин 229-0436, Учебный Центр 925-0049
  Главная страница Карта сайта Контакты
Поиск
Вход
Регистрация
Рассылки сайта
 
 
 
 

Курс "Разработка и внедрение ML-решений"

Код: MLOPS
Специализация: Авторские курсы: СУБД и хранилища данных

Продолжительность - 3 дня

Расписание:
22 января 2024 года (Москва)        

Стоимость:  49 500 руб.  

Курс «Разработка и внедрение ML-решений» изучает подходы к разработке ML-решений + средства их реализации и внедрения в production. Вы пройдете все шаги создания ML-продукта от сбора данных до интеграции ML-модели в эксплуатацию. Познакомитесь с популярными инструментами командной разработки: Git, MLFlow, DVC. Узнаете главные архитектуры ML-решений и основы менеджмента DS-проектов.

Благодаря стремительному развитию машинного обучения, MLOps-инженеры сегодня — одни из самых востребованных и высокооплачиваемых специалистов в области Data Science.

MLOps – это культура и набор практик комплексного и автоматизированного управления жизненным циклом систем машинного обучения, объединяющие их разработку (Development) и операции эксплуатационного сопровождения (Operations), в т.ч. интеграцию, тестирование, выпуск, развертывание и управление инфраструктурой.

MLOps расширяет методологию CRISP-DM с помощью Agile-подхода и технических инструментов автоматизированного выполнения операций с данными, ML-моделями, кодом и окружением. К таким средствам относятся рассматриваемые в нашем курсе Git, MlFlow, DVC. MLOps позволит избежать распространенных ошибок и проблем, с которыми сталкиваются Data Scientist’ы, работающие по классическим фазам CRISP-DM. Организационные приемы MLOps должны быть независимыми от языка, фреймворка, платформы и инфраструктуры.

MLOps поможет улучшить следующие аспекты ML-проектов:

  • унифицировать цикл выпуска моделей машинного обучения и созданных на их основе программных продуктов;
  • автоматизировать тестирование артефактов Machine Learning, таких как проверка данных, тестирование самой ML-модели и ее интеграции в production-решение;
  • внедрить гибкие принципы в проекты машинного обучения; поддерживать модели машинного обучения и наборы данных для их в системах CI/CD/CT;
  • сократить технический долг по ML-моделям.

Цель курса:


Освоить базовые понятия и методы создания ML-продуктов от сбора данных до интеграции модели в продуктивную среду. Познакомиться с инструментами командной разработки (Git, MLFlow, DVC) и основами менеджмента ML-проектов.

Аудитория:

Python-разработчики, дата-аналитики, инженеры данных, менеджеры AI-продуктов и руководители (тимлиды) ML-команд.

Предварительный уровень подготовки:

  • Опыт программирования на Python
  • Основы анализа данных

Программа

Задачи и инструменты машинного обучения

Цель:

  • дать представление о постановках задач машинного обучения, а также современных методах и инструментах их решения;
  • продемонстрировать отличия от задач, для решения которых достаточно классических методов и алгоритмов (без ML)

Теоретическая часть: погружение в классические постановки задач машинного обучения, методы их решения, метрики качества для оценки точности результатов, знакомимся с инструментами

Практическая часть: освоение инструментарий и настраиваем среды разработки, решаем небольшой набор ознакомительных задач

Домашняя работа: решение задачи классификации/регрессии.

Основные этапы разработки ML-решений: от прототипа до подготовки к production

Цель:

  • демонстрация подходов к прототипированию и основные требования, которым должен удовлетворять прототип;
  • показать этапы доработки прототипа при подготовке MVP;
  • дать представление о возможных подходах к интеграции решения в продуктивной среде;

Теоретическая часть: демонстрация процесса разработки ML-решения, от сбора данных до сериализации ML-модели.

Практическая часть: пример построения сквозного ML-решения.

Домашняя работа: построение индивидуального сквозного ML-решения.

MLOps. Экосистема разработки ML-продуктов

Цель:

  • продемонстрировать необходимость инструментов командной разработки ML-решений;
  • показать этапы доработки прототипа при подготовке MVP;
  • дать представление о возможных подходах к интеграции решения в production;

Теоретическая часть: демонстрация примеров необходимости внедрения MLOps- инструментов.

Практическая часть: используем Git, MLFlow и dvc в сквозном примере

Домашняя работа: используем Git, MLFlow и dvc в индивидуальном сквозном ML-решении

Подходы к работе с данными на каждом этапе разработки ML-решений

Цель:

  • показать основные типы данных и методы работы с ними;
  • продемонстрировать подходы к поиску, хранению и обработке данных на этапах разработки ML-решений;
  • основные вопросы разметки данных и их подготовки для обучения и использования в production

Теоретическая часть: знакомимся с данными в виде таблиц, текста, картинок, аудио. Отвечаем на вопросы как и чем обрабатывать и производить разметку в каждом отдельном случае. Погружаемся в мир Pandas, PostgreSQL, Apache Spark, Hive для обработки и хранения данных. Смотрим на AirFlow как на инструмент для планирования и выполнения задач по обработке данных.

Практическая часть: продолжаем развитие сквозного ML-решения, увеличиваем объем данных, переезжаем в БД, размечаем данные, настраиваем AirFlow на процесс получения и подготовки данных для обучения

Домашняя работа : развиваем индивидуальное сквозное ML-решение.

Обзор архитектурных решений для интеграции в production. Использование облачных сервисов

Цель:

  • показать основные подходы по интеграции решений в production: монолит или микросервисы, высоконагруженные системы, локальный сервер или облачная платформа;
  • продемонстрировать плюсы и минусы использования облачных сервисов на каждом этапе разработки ML-решений;
  • погрузиться в особенности микросервисных архитектур c использованием контейнеризации;
  • проработать вопрос использования коробочных решений на примере TF serving;
  • интегрировать решение на облачную платформу AWS.

Теоретическая часть: знакомимся с интеграцией в production. Рассмотрим различные варианты архитектур ML-решений. Рассматриваем микросервисную архитектуры с использованием контейнеризации (Docker и K8s). Интеграция с Amazon Web Services.

Практическая часть: упаковываем сквозное ML-решение в контейнер и отправляем в AWS, обновляем текущее решение с добавлением TF serving.

Домашняя работа : развиваем индивидуальное сквозное ML-решение.

Обзор этапов и структуры ML-проекта* (входит в расширенную версию курса - 40 ак.часов)

Цель:

  • показать весь ML-проект целиком: основные этапы и ресурсы, необходимые для реализации проекта;
  • продемонстрировать цикличность в жизненном цикле ML-решения;
  • отметить важность мониторинга и дэшбордов для поддержки и развития ML-решений.

Теоретическая часть: подвести итоги и взглянуть на ML-проект в целом: основные составляющие успешного проекта, количество и состав команды на каждом этапе разработки ML-решения, технологии и инструменты для разработки ML-решения и управления ML-проектом. Менеджмент DS-команды.

Практическая часть: настраиваем DVC и MLFlow, создаем репозиторий в Git, разворачиваем CI/CD для сквозного ML-решения

Домашняя работа : завершаем индивидуальный проект.

В конце обучения на курсе проводится итоговая аттестация в виде теста или на основании оценок за практические работы, выполненных в процессе обучения.


В современном мире сложно обойтись без информационных технологий и их производных - компьютеров, мобильных телефонов, интернета и т.д., особенно в крупных компаниях и государственных организациях, работающих с большим количеством людей, а не только с парой VIP-клиентов, как это может быть в случае небольшой компании. А там, где есть большое количество контрагентов, заявителей и т.д. - не обойтись без баз данных, необходимых для обработки информации. Естественно, что времена гроссбухов и карточек, памятных многим по библиотекам, давно прошли, сегодня используются персональные компьютеры и электронные базы данных.

Сегодня невозможно представить работу крупнейших компаний, банков или государственных организаций без использования баз данных и средств Business Intelligence. Базы данных позволяют нам хранить и получать доступ к большим объемам информации, а система управления базами данных (СУБД) — осуществлять менеджмент доступных хранилищ информации.

В Учебном центре « Интерфейс» Вы научитесь эффективно использовать системы управления базами данных: быстро находить нужную информацию, ориентироваться в схеме базы данных, создавать запросы, осуществлять разработку и создание баз данных.

Обучение позволит Вам не только получить знания и навыки, но и подтвердить их, сдав соответствующие экзамены на статус сертифицированного специалиста . Опытные специалисты по СУБД Microsoft SQL Server или Oracle могут быть заинтересованы в изучении систем бизнес-аналитики. Это задачи достаточно сложные, использующие громоздкий математический аппарат, но они позволяют не только анализировать происходящие процессы, но и делать прогнозы на будущее, что востребовано крупными компаниями. Именно поэтому специалисты по бизнес-аналитике востребованы на рынке, а уровень оплаты их труда весьма и весьма достойный, хотя и квалифицированным специалистам по базам данных, администраторам и разработчикам, жаловаться на низкий уровень дохода тоже не приходится. Приходите к нам на курсы и получайте востребованную и высокооплачиваемую профессию. Мы ждем Вас!

В конце обучения на курсах проводится итоговая аттестация в виде теста или путём выставления оценки преподавателем за весь курс обучения на основании оценок, полученных обучающимся при проверке усвоения изучаемого материала на основании оценок за практические работы, выполненные в процессе обучения.

Учебный центр "Интерфейс" оказывает консалтинговые услуги по построению моделей бизнес-процессов, проектированию информационных систем, разработке структуры баз данных и т.д.

  • Нужна помощь в поиске курса?
    Наша цель заключается в обеспечении подготовки специалистов, когда и где им это необходимо. Возможна корректировка программ курсов по желанию заказчиков! Мы расскажем Вам о том, что интересует именно Вас, а не только о том, что жестко зафиксировано в программе курса. Если вам нужен курс, который вы не видите на графике или у нас на сайте, или если Вы хотите пройти курс в другое время и в другом месте, пожалуйста, сообщите нам, по адресу mail@interface.ru или shopadmin@itshop.ru
  • Поговорите со своим личным тренинг-менеджером!
    Мы предоставляет Вам индивидуальное обслуживание. Если у вас есть потребность обсудить, все вопросы касательно обучения, свяжитесь, пожалуйста c нами по телефонам: +7 (495) 925-0049, + 7 (495) 229-0436. Или любым другим удобным для Вас средствами связи, которые Вы можете найти на сайтах www.interface.ru или www.itshop.ru


 Распечатать »
 Правила публикации »
   
 Рекомендовать »  
 

Магазин программного обеспечения   WWW.ITSHOP.RU
Allround Automation PL/SQL Developer - Unlimited license
Купить CommView for WiFi 1 лицензия
ABViewer Professional пользовательская
SAP CRYSTAL Reports 2013 WIN INTL NUL
Quest Software. TOAD for Oracle Edition
 
Другие предложения...
 
Курсы обучения   WWW.ITSHOP.RU
 
Другие предложения...
 
Магазин сертификационных экзаменов   WWW.ITSHOP.RU
 
Другие предложения...
 
3D Принтеры | 3D Печать   WWW.ITSHOP.RU
 
Другие предложения...
 
Поиск курсов
 
 
Интересные факты

Учебный центр "Интерфейс" - в десятке ведущих учебных центров России в сфере IT.

  • У нас преподают такие известные эксперты, как Пржиялковский В.В., Леоненков А.В., Новичков А.Н., Зайцев А.Л., Зайцев Р.А., Большаков О.Н., Мирончик И.Я., Саксонов А.А., Пригодина Н.Ю., Красникова С.А.
  • Учебный центр "Интерфейс" проводит авторизованные курсы по продуктам компаний Microsoft, ERwin, Embarcadero (CodeGear), Postgres Professional
  • Подтвердить полученные знания можно, сдав сертификационные экзамены. Учебный центр "Интерфейс" является авторизованным центром тестирования Pearson VUE
  • Учебный центр "Интерфейс" оказывает консалтинговые услуги по построению моделей бизнес-процессов, проектированию информационных систем, разработке структуры баз данных и т.д.
  • Возможна корректировка программ курсов по желанию заказчиков! Мы расскажем Вам о том, что интересует именно Вас, а не только о том, что жестко зафиксировано в программе курса.
  • Где Вам удобнее учиться? В Москве? Санкт-Петербурге? Подмосковье? В вашем собственном офисе? Позвоните нам по тел.:+7 (495) 925-0049 и мы обсудим удобный для Вас вариант обучения.

Горячая линия:
+ 7 (495) 925-0049
mail@interface.ru
Отправить быстрое сообщение

Новости по теме
 
Рассылки Subscribe.ru
Информационные технологии: CASE, RAD, ERP, OLAP
Новости ITShop.ru - ПО, книги, документация, курсы обучения
Обучение для IT-профессионалов
Обучение и сертификация Microsoft
IT сертификация
 
Статьи по теме
 
Новинки каталога Download
 
Исходники
 
Документация
 
 



    
rambler's top100 Rambler's Top100