|
|
|||||||||||||||||||||||||||||
|
Что такое на самом деле Big Data и чем они прекрасныИсточник: habrahabr
Директор по маркетингу сервисов Яндекса Андрей Себрант рассказал студентам Малого ШАДа о том, что такое большие данные, и о тех, зачастую неожиданных местах, где они находят своё применение
Bid Data как понятие у всех на слуху уже не первый год. Но точное представление о том, что же представляет собой это понятие, есть далеко не у всех, особенно это касается людей за пределами IT-сферы. Проще всего несведущему человеку объяснить это на практическом примере. Два года назад огромная сеть магазинов Target стала использовать машинное обучение при взаимодействии с покупателями. В качестве обучающей выборки использовались данные, накопленные компанией за несколько лет. В качестве маркеров конкретных покупателей использовались банковские и именные скидочные карты. Алгоритмы проанализировали, как и в каких условиях менялись предпочтения покупателей и делали прогнозы. А на основе этих прогнозов покупателям делались всевозможные специальные предложения. Весной 2012 года разразился скандал, когда отец двенадцатилетней школьницы пожаловался, что его дочери присылают буклеты с предложениями для беременных. Когда сеть Target уже приготовилась признавать ошибку и извиняться перед обиженными покупателями, выяснилось, что девочка действительно была беременна, хотя ни она, ни ее отец на момент жалобы не знали об этом. Алгоритм отловил изменения в поведении покупательницы, характерные для беременных женщин.
Применения могут быть самыми разнообразными. Например, сайт ancestry.com пытается построить семейную историю всего человечества, основываясь на всех доступных на сегодняшний день типах данных: от рукописных записей во всевозможных книгах учета до ДНК-анализа. На сегодняшний день им удалось собрать уже около пяти миллиардов профилей людей, живших в самые разные исторические эпохи, и 45 миллионов генеалогических деревьев, описывающих связи внутри семей.
Главная сложность в этой работе заключается в том, что обрабатываемые данные страдают неполнотой, в них много неточностей, а идентифицировать людей нужно по отнюдь не уникальным именам, фамилиям, датам рождения, смерти и т.п. Стандартные алгоритмы не справляются с обработкой таких данных. Однако машинное обучение позволяет учитывать все эти неточности и с большой вероятностью выдавать правильные результаты. Другой пример - проект eHarmony. Это сайт знакомств, на котором сейчас есть около 40 миллионов зарегистрированных пользователей. В анкетах можно указывать до 1000 различных признаков. Ежедневно система делает около 100 миллионов предположений о том, что два человека могут подходить друг другу.
И предположения эти строятся не просто на банальном нахождении соответствий в указанных пользователями свойствах и пристрастиях. Например, выяснилось, что относительная площадь лица на фотографии в профиле может влиять на вероятность контакта между определенными людьми. Кроме того, оказалось, что люди с пристрастиями к определенным видам пищи могут обладать разной совместимостью друг с другом. Два вегетарианца с вероятностью в 44% найдут общий язык и начнут общение, в то время как два любителя гамбургеров с вероятностью 42% никаких отношений не заведут.
|
|