Programming

Windows Store
Apps with HTML,

CSS, and JavaScript

Second Edition

Kraig Brockschmidt

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2014 Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related to
this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of this
book at http://aka.ms/tellpress.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted in examples herein are fictitious. No association with any real company, organization,
product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft Corporation.

Microsoft and the trademarks listed at http.//www.microsoft.com/about/legal/en/us/IntellectualProperty,
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their
respective owners.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions, Developmental, and Project Editor: Devon Musgrave
Cover: Twist Creative « Seattle and Joel Panchot

mailto:mspinput@microsoft.com
http://aka.ms/tellpress
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/%20Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/%20Trademarks/EN-US.aspx

Table of Contents

QR T LT 1T o 21
WhO ThisS BOOK IS FOT .cciiiiiiiiiiiiic et e ere e 23
What You'll Need (Can You Say “Samples”?) ... et e e e 24
A FOrmatting NOTO. ... ettt e e e et e et e e et e e e e e ereeaa e 25
ACKNOWIEAZEMENES ..eveiiii e e e e e e e e e e et e e et e e e e e et e e et e eenneaaannas 26
Free Ebooks from MICroSOTE Presscoooiiiiiiiiiiiiie e 28
The “Microsoft Press GUIdEd TOUTIS” AP P cuuiiiiiiiiieeiieeiiee i ee e iee e et e e e e e e e et e e e eaeannes 28
) R o To] QY U o] oo] AR PPN 28
We Want 0 Hear from YOUt e e et e e e et e e e eaa s 29
SEAY TN TOUCK et e e et e e e s et e e et s e et e et s e et s eeaaeeaanes 29

Chapter 1 The Life Story of a Windows Store App: Characteristics of the

WiINdows PIatformccceeeuiiiiiiiiiiiiiciircrrrcn e e 30
Leaving Home: Onboarding to the Windows STOreoeevviiiiiiiiiiiiiiii e e 32
Discovery, Acquisition, and INstallation............ooouiiiiiii i, 35
Playing in Your Own Room: The AP CONtAINET ...uiiiiiiiieiiin et ee e e e e eae e eaa e 39
Different Views of Life: Views and Resolution Scalingcoovvvvviiiiiiiiiiniiiiiiniicciee e 42
Those Capabilities Again: Getting to Data and DeVIiCeSccuuvviiiiiiiiiiiiiieeeiiiee e 46
Taking a Break, Getting Some Rest: Process Lifecycle Management.........cccoeeviiviiiieeiinncennnns 49
Remembering Yourself: App State and ROamMIiNg........coovuviiiiiiiiii e 51
Coming Back Home: Updates and New Opportunitiesceeveiiiiiiiiiiniiineeeeeeeeeeieenas 56
And, Oh Yes, Then There’s DESIZN ..ouuciiniiiiieei e e e et e e e e e e e e e eaeees 58
Feature Roadmap and Cross-ReferenNCecvvuniiiiiiiiie e 59

(o1 =T (=T 0 TU 1 1] € - 1 o PPN 65
A Really Quick Quickstart: The Blank App Templateccceuiiiiiiiiiiniiiie e 65

Blank App Project STrUCTUIEiii et e e e e 68

QuickStart #1: Here My Am! and an Introduction to Blend for Visual Studio 72

DESIZN Wil TAIMES L. eiiiiiii et et e e e et e e et e e e e e ebeeeaeesatee et eesaneeranens 73
Create the IMArKU c.uu. e e e e e e e e et e e et e e et e e et e e et e eaans 76

K] 077 LY =38 o T 21T 4 Vo 78
Ao Lo g d o o =T 6o Yo [PP 83
Extra Credit: IMProving the AP ..o e e e e e e e e e 97
Receiving Messages from the iframecoooeiiiii i 98
Improving the Placeholder Image with a Canvas Element......cccccovviiiiiiiiiniiiiniiiniciineenis 99
Handling Variable IMage SizeSccvuuiiiiiiiiii e e e e e eaas 100
Moving the Captured Image to AppData (or the Pictures Library)c.ccooeeviiivinninnnnnn. 103
Using a Thumbnail Instead of the FUIl IMAagecovvvniiiiiiiiiiiii e 105
The Other Templates: Projects and [tE€MScc.iiiiiiiiiiiii e 107
NaVIgation APP TEMPIATE ...cceiie it e e e e e e e e e et eeeeaa s 107
Grid APP TEMPIATE oeeniii et e e et e et s e et s e et s e ea s e eanas 107

[UL oA o o T =T 'Y o] F= 1 108

Y o] o =T 2] = N 108

R =T o T =T 0] o] =N €T 108
What We've JUSt LearN@dcovviiiiiiiiiiiiii e 109
Chapter 3 App Anatomy and Performance Fundamentals..........cccceeeirienirieeiereniiienceneeenenees 111
APD ACTIVATION ettt ettt e et ettt e it e e e e eaaae 112
Branding Your App 101: The Splash Screen and Other Visualscccooevviviviiiiiiniinnnennnn. 113
ACTIVAtioON EVENT SEOUENCE .. vttt et e e e e e e et e e e eaneans 117
Activation Code Paths.......cooiiiiiiiiiii e e e eeenee 119
WinJS. APPlICAtioN EVENES . ovniiiiiieiiei e e e e e e et e e e e e e e e e ees 121
OPtiMIZING STATTUP TIMIE couiiiiiii it et et et s e e e s ea s et e e e et eansaannas 124
WIiInRT Events and removeEVeNtLIStENeuuiiiiiii e 126
App Lifecycle Transition Events and Session STAatecovvviiiiiiiiiiiiiniiiiine e 128
Suspend, Resume, and TermiNate.......coeiueiiii i e e e e e e e e e 129

Basic Session State in Here My A ... 133

Page Controls and NaVigationcieuiiiiiiiii e e e e et e e e e e e eaas 136
WinJS Tools for Pages and Page Navigationcccoeuiiiiiiiiiiii e 136
The Navigation App Template, PageControl Structure, and PageControlNavigator 139
The Navigation Process and Navigation StYlesovviviiiiiiiiiiiniin e 146
Optimizing Page Switching: Show-and-Hidecccoviiiiiiiiiiii e 148
PagE-SPECITIC StYIING et ear e 149

Async Operations: Be True tO YOUr PrOmMIiSESiuuiiniiiniiiiieeie ettt ettt e e een e e 151
U SIN PrOMISES . ittt et e e e et e et e et e et e a e e eanns 151
JOINING Parallel PrOMiSES . ..uiiii it eeiiie e e e e e e e e et e et e e et e e eaeaeeas 153
Sequential Promises: Nesting and Chainingcccouuiviiiiiiiiiniin e 153

Managing the Ul Thread with the WinJS Scheduler........c.coooviiiiiiiiiiiii e, 156
SCEAUIET PrIOFITIES evvuie ettt e e e et e ettt s e e e e e eeeenaas 157
Scheduling and Managing Tasksceuuiiiiiiiiiiriii e e e e 158
Setting Priority in Promise Chainscceiuueiiiiiiiii e e e e e e e e e e e 160
LONE-RUNNING TASKS «.eetniiiiieiiie et e e e e e e e et e e et e e st e e aaeeaaa e aans 162

Debugging and Profiling.......cooeiiiii e 165
Debug OUtPUL aNd LOBEING...cuuuiiiiiiiiiiiiie et e e e e e e e e e e e e e e e e eaaneeeaes 165
Error Reports and the EVENT VIEW eIuiiiiiiiiiieiiiiee et e e e et e e eeaa e 166
ASYNC DEDUGEING ..ot et ettt e e e e e e s e et e et e e e ees 169
Performance and Memory ANAlYSiscoueiiiiiiii i 170
The Windows App Certification TOOIKitccuuviiiiiiiiii e, 175

What We'Ve JUSE LEArNEduuii i e e e e en e e 176

Chapter 4 Web Content and SErviCescceveereeirenirenirenereieenerenereereeressesssesssesssasesssnsssnssnns 177

Network Information and CoONNECHIVITYuevvniiiiiiieiii e e 179
Network Types in the Manifest........oviiiiiiiiiii e 180
Network Information (the Network Object ROSter)ccevuvviiiiiiiiiiiiiiieeeeiee e, 181
The ConnectionProfile ObJEC.......oiiii i e 183

CoNNECTIVITY EVENTS .ottt e e et e et e et e e e e e e e eane 184

COST AWAIENESS 1uuuiiiiiiiiiiiiii i et a s b e e e s b e e s e e s 185
RUNNING OFfliNE .. e e e e e e et e e et e et e eaens 189
Hosting Content: the WebView and iframe Elementscccooviiiiiiiiiiiiiii e, 191
Local and Web Contexts (and iframe Elements)ccoouviiiiiiiiiieiiiieeiieceeeeeeeee e 192
(DA oF: 1 o1 (ol @ 31 =Y o | P 195
APP CONLENT URIS L.ttt et et e e et e et e et e et e et e e e e eaneeane 197
The <X-MS-WebVIEW> EI&@MENT.....ciiiiiiiiiiiiiiiee et e e e s 198
HT TP RO U SES ettt ittt et e e e e s e et e e et e e et e e e e e e e e e e e e easaneannenns 209
USING WiN) S XNT e e e e e et e e et e e et e e st e e et e et e eaens 210
Using Windows.Web.Http. HttpClient........oouiiiiiii e 211
Suspend and Resume with Online Content..........oviiiiiiiiiiiiiie e 216
PrefetChing CONTENT ..ocouue e e e e e e et e e e eat e e e earaaaes 218
o] ={go T oo I =Y T L= RPNt 219
BaSiC DOWNIOAAS ...ttt e e e e s 221
2 T (ol U T o] [o = Yo £ 225
Completion and Error Notificationscouuviuiiiiiie e 226
Providing Headers and Credentialsc.oviiuiiiiiiiii e 227
SELEING COST POIICY 1evvuniiiiiii e e e e e e e e et e e e et e e e aaanes 227
LCT Yo TUT o1 o= I [a1 =T P 228
Suspend, Resume, and Restart with Background Transfers..........ccoovvviiiiiiiiiiiniineennnnn, 228
Authentication, the Microsoft Account, and the User Profilecc.coouviiviiiiiiiiniiiiieenne, 230
The Credential LOCKET ...uu et eeaa e 231
The Web Authentication BroKerouueiiiiiiiiiiiiiiiii e, 233
YT aT = LY=L O 1 o T PPN 237
Using the MICroSOTt ACCOUNT ...uuiiiiiii i e e e e et eeaaae s 238
The User Profile (and the Lock Screen Image)ocevveviiiiiiiiiiiiiiiecie e, 244
What We've JUSt LEArNediii i i 246

Chapter 5 Controls and Control Styling......ccccveeiieiiiiiiiiiicicircrrcrrcreree s s rn s s snesnnaens 248

The Control Model for HTML, CSS, and JavaScriptcoevviiiiiiiiiieeceieeeeeeee e, 249
[Y| I oY o {4 o PPNt 251
Extensions t0 HTIML EIEMENTS ...iiiiiiiiiiiiieeec e et e e e e e e 254
WINJS CONEIOIS et e e e e e e e e e eees 255
Syntax for data-Win-0ptioNsiiiei i 259
WIinJS Control INStantiatione e iieiiiiiee et e e 261
Strict Processing and processAll FUNCLIONSviiiiiiiiiiiiinicii e 262
Example: WinJS.ULHEMICONIIOL......couniiiii e 263
Example: WinJS.Ul.Rating (and Other Simple Controls)cccoevviiiiiiiieiiinieieeee e, 264
EXample: WinJS.ULTOOIID «.evveiiiii it e e e e e e e e e e e e e e e aan e eeees 265
Example: WinJS.ULItEMCONTAINETuiiiiiiiiieiii e e e e e e e e ea e eaens 266
Working with Controls in BIENGciiiiiiiiiiiiie e e e e e eaaaes 269
(0feT a1 (o] I A1 1o - PSSP PPRROPRT NN 272
Styling Gallery: HTML CONLIOIS ...ccvniiiii e e e e e e e 274
Styling Gallery: WinJS CONIOISouiiiiiiii e e e e e 276
SOME TIPS AN THICKS 1ouniiiiiiiiii e e et e e e e e e s eaneeaan e 284
CUSEOM CONEIOIS 1eeeiieieiiiieei et e e et e e e e 285
Implementing the DiSpose Patternuoiiiiiiiiiiiiiiie e e eaa e 288
Custom Control EXAMPIESieieiii it e e et e et e e e e eai e 289
Custom Controls iNBIENGccooveiiiiiiiieeeiie e e 293
What We've JUSt LEArNeduuiii it e e e e e e e 297
Chapter 6 Data Binding, Templates, and Collectionsccccceuciieeiirieiiiiciieicrieninnenceneencnennes 298
(DF 1= 111 T L1 = RPN 299
DY I oo [T a Y= T ol PP 299
Data Binding in WINJS ...ttt e e et e et e e e e e e eens 301
Under the Covers: BiNdiNg MIXiNSoiiuiuiiiiiiiiieeiiiie e ee e e et e e e e eeaa e 311
Programmatic Binding and WinJS.Binding.bind............ccooiiiiiiiiiin e, 313

BiNiNg INItIaliZEIS «uuneiiei et aans 315

27T aTo TT oY= K=Y oY o] - 1 Ty RN 319
Template Options, Properties, and Compilationcoevviiiiiiiiiiiin e, 322
(0] [I=Yor o DT L= T Y/ o =TS 324
Windows.Foundation.Collection TYPES .cvuuiiieiiiiiiiii e 325
WINJS BINGING LiSES 1uuuiitiiiiiieiie et e e e e e e e e et e e e e e e e et e e eaneeeeneees 331
What We'Ve JUSE LEAINE T c...ueiiii ittt et e e e e e ta e e e 342
Chapter 7 Collection CONEIOIsccceeeieeiiiiiiiiiiicrcirecrereaerenereerneransenerasernsssansennsenssannnes 344
ColleCtion CONTIOI BASICS . cuururuuuiieeeeiiieiiiiiae e e ee ettt e e e e e ettt e e e e e entb e e e e e eeeeenenaseeeaees 345
Quickstart #1: The WinJS Repeater Control with HTML controlsc.ccceeeiiiieeiiieennnnns 345
Quickstart #2: The FlipView Control Sampleccuuiviiiieiiieiii e 349
Quickstart #3: The ListView Essentials Sampleccvviiiiiiiiiiiiin e 351
Quickstart #4: The ListView Grouping Sampleccoovvviiriiiiiiiniiiiiin e 353
ListView in the Grid App Project TEMPIAte «...vveieiiiiiiii e 357
The Semantic Z0om CONTIOl....ccoiiiiiiiiiiie e e e e eeeees 361
How Templates Work with Collection Controls..........ccceeuiiiiiiiiiii e 364
ReferriNng 10 TEMPIAtES counien e e e e e e e e e e e eas 364
Template FUNctions (Part 1): The BaSiCS ..u.iuuniiiiuiiiiieiiiieiiiieeee et e 365
Creating Templates from Data Sources in Blendccoovviviiiiiiiiiiiiiiiinecciee e, 368
Repeater Features and StYliNG... ..o 372
FlipView Features and StyliNg.......c.oeiiiiiiiiie e e e e e e 377
Collection Control Data SOUICESccuuuruuuiieeeeiiiiiiiii e et eeee e e e e e e e e erennr e e e e 380
The Structure of Data Sources (Interfaces Aplenty!).....cccoeuiviiiiiiiiiiiiiiii e, 381

A FlipView Using the Pictures LIDrary ..o 384
Custom Data Sources and WinJS.Ul.VirtualizedDataSourceccoooeeviviviiniinnnicieennnn. 386
ListView Features and StyliNgcoiviiiiiiiiiiii e e e et e e 393
When Is ListView the Right ChoiCe?cciivviiiiiiii e 393
Options, Selections, and Item Methods...........ceiiiiiiiiiiiii e 395

Loading State TransSitioNscuuiiiiiii et e e e e e e e e e e e e e eaeees 401
DY ==] o To I o o TS 402

I 1Yo 10 £ PPPTPPRPP 405
Template Functions (Part 2): Optimizing ltem Renderingcooveeeiiiiiieiiiiiie e, 414
What We've JUSt LeArNedoviiiiiiiiiiiiiie e 419
Chapter 8 Layout and VIEWSccceeiiiiiimeiiiiiinniiiinieiiienesiisnsesiisnsesiessssssssnsssssssnsssssssnnsans 421
PrincCiples Of Page LaYO ULu.iiiiiiieiiiiie et e et e et e e e et e e e e et e e e eaaa s 423
Sizing, Scaling, and Views: The Many Faces of YOUr APpP.....coivvviiiiiiiiieciiieeei e eeie e 426
Variable View Sizing and Orientationsccuuiiiiiiiiiiiiciir e e 426
Screen Resolution, Pixel Density, and SCalingccvviiiiiiiiiiiiiiiiie e 437
MIUILIPIE VIBWS ettt ettt e e et e et e et e e et e e et e e et e e et e e eaa e e eaan e e aaneeaneennns 442
Pannable Sections and STYIESiiiiiiiiiiiiiee s 446
Laying OUEL The HUDceee ettt e e e e e e eaans 447
Laying OUL the SECTIONS ..euuuiiiiiiiii et e e e e et e e e e e s e e e et e e eaneeeees 448
Panning Styles and RAiliNgoevuniiiiiii e 449
Panning SNap Points and Limitsooeiiiiiiii e e et e e 451
Zooming SNap Points and Limitscevuiiiiiiiiiiiiin e e e e aa e 452
The Hub Control and Hub App TemMPIate.....c.uviiiiiiiiiiiiiie e e 453
HUD CONTrOl STYIING. . e et ere e e e e e e s eaans 460

LU T 1 o LI ORI] o o PPN 461
OVerflowing @ Grid Cellceuniiiiiiiiie e e e e et e e e e e e e eaaaees 463
Centering Content Verticallycouuv i e e 463
Yor: | [T aY=d Se] o} AT LIS 464
=T 0 T I 1Yo U | PP 465
CSS 2D and 3D TranSfOrMS ...cceeeeuieiiiiee ettt e ettt e e e e e ettt s e e e e eeebbbaa e e e eeaeereens 466
FIEXIOX ..ottt ettt e et e e et e e e e e eeebbb s 466
Nested and INliNe GridsS.......uuuuuiiiiieiiiiiiii e e e e 467

FONTS @NA TXE OVEITIOW c..iviniie ittt ettt e e et et et e e eans 468

Multicolumn Elements and REGIONSuvivniiiiiiiiie e e e 470
What WE'VE JUSE LEAINET ...eeveiiiiiiiii et e e ettt e et e et e e s e e e eaa e e e eebaneeeeaans 472
Chapter 9 Commanding Ul.......ccciiieiiiiiiiiiiiieitneeieeeereaereesessnsesensesensessnsssenssssnnssssnsessnsans 474
Where to Place COMMANGSooiiiiiiiiiiiiiii et 475
The APP Bar and NaV Bar ...couuiiiii i e et e e e e e e et e e et e e e e et e e eteeeaneeenen 480
App Bar Basics and Standard Commandscouviiiiiiiiiiiiiiieee e 481
AP P Bar STY NG e e e e e e e ees 490
COMMEANGA IMBINUS ...ttt ettt e e e et ettt e e e e e e ene e e e eeeseeenebaaaeseeesennnnan 494
CUSTOM AP P BalS ceniiiiiii ittt ettt e e ettt e et e et e e e 495
NaV Bar FEAtUIESiiiiiiiiiii s 497

N RV 2 Ty 4] 1o =P 505

[Yo U 13T g Vo LY 1= o TPt 507
WinJS.Ul.Flyout Properties, Methods, and EVENTS........c.ccoeivuiiiiiiiiiiiniiiiniiiecei e 509
Yo T U1 A = g Y] L= 510
Menus and Menu COMMEANGSceeiiiiiiiiiiiee et e e e eeer s e e e e e e eeenenaaaees 513

Y [T (ol D=1 Lo =N 518
Improving Error Handlingin Here My Am! ..o 519
What WE'VE JUSE LEAINE T c..uueiiii ettt e e ettt e e e e e eea e e e 525
Chapter 10 The Story of State, Part 1: App Data and Settingsccccccivieeeiiriienniciiieeieriennnnens 527
LS o] Vo] =1 P 529
APP Data LOCATIONS . ettt et ettt e et et e et a it e aans 532
App Data APIs (WIinRT and WinJS) c.ouniii i e e e e e e e e e eeas 533
N Tl = 00] o1 = 1 =T PPt 534

)) =AY A=T £ o] o 1 o - PPN 536
Folders, Files, and Str@amS......uuiiuiieiiiiii e et e e e e e e e e e e eaas 537
FilelO, PathlO, and WinJS Helpers (plus FileReader)ccccoeiiiiviiiiiiiiiiiiiiiiieeceeieee e, 543
ENCryption and ComMPreSSiON ... iiu i e e e e e e e e e e e e e e e aaneeeeas 544

Q&A on Files, Streams, Buffers, and BlODS............coiiuiiiiiiiiiiieii e 544

Using App Data APIs for State Management.........ceiiieiiiieiiiieeiie e e e e e e 552
Transient SesSiON STateoviiiiiiiiiii 552
[WeYor:1 I [aTe B N=T00] oTo T =] o A] =] { I 553
IndexedDB, SQLite, and Other Database OptioNns.........ccvvvviiiiiiiiiiiiiii e, 555
0o T T g1 =) - | PSP 556

Settings Pane@ and Ul.......ooun it ettt 559
Design GUIdelines FOr SELLINGS .. .civvvuiieiiiie e 561
(oo Y o 18] =X P 0o 0 4 1= Lo S 563
Implementing Commands: Links and Settings FIYOUTSccccviviiiiiiiiiiiiii e, 566
Programmatically Invoking Settings FIYOULS.........ccuuviiiiiiiiiiiiii e, 568

Here My Am I UpPdate ..o et e e e e e e e e e e e et e e aan e eeaaas 570

What We'VE JUSE LEAINE T c...euiiei ittt et e e e e e e ta e e 571

Chapter 11 The Story of State, Part 2: User Data, Files, and OneDrivec.cccceeevenerenncrennnns 573

The Big Picture Of USEr DAta ...cccuuiiieieiiii it e e e e e et e et e et e e et e e eea e e eeen 574

Using the File Picker and AcCess CaCheoviuniiiiiiiiie e e e e e aaas 579
The File PICKer Uloiiiiiiiiiiiii e 580
The File PICKEr APL ... 585
ACCESS CACNE ... ittt ettt e e e e ettt e e e e e e e et tb b e e eeeeeebaaan 589

StorageFile Properties and Metadatac.oouuviiiiiiiiiinii e 592
ANV 11 = o 11 L YN 593
ThUMDBNAIIS .. e e e e 594
] LI o oY o 1T o = 598
VYo T R o T=Tol ki Tol ol o o 1= o A [T PN 601

Folders and Folder QUENIESuuuiiiiiiiiiiiiii et 607
KnownFolders and the StoragelLibrary Objectccuuvviiiiiiiiiiiiiiie e 609
REMOVADIE STOTAEE ..iiiiiiiiiiiii et e et e e et e e e eat e e e eat e e e earaaaes 612
Simple Enumeration and CommOon QUEIIEScuuuiiiinieiiieeiie e e e e e eeaeeeae e 613

(ST 1 o] 2 WO NV [T (=TT 618

Metadata Prefetching With QUETIEScovuiiiniiiiii e, 623
Creating Gallery EXPEIIENCES ...t eii e ee e et e e e e et e e e e et e e st e e st e e st e eaaneeaanaes 625
File Activation and ASSOCIAtIONiiiiiti i e e 627
What We've JUSt LearN@dooviiiiiiiiiiiii e 632

Chapter 12 INput and SENSOISciieeiiiiniiiieiiiieiiiteiiteeirnisresiiireserensisrnsssenssssnssssnsssssnssssnnes 634
Touch, Mouse, and STYIUS TNPUL ...euiiiiiiieeii e e e e e e e e e e e e eaa s 635

The Touch Language and Mouse/Keyboard Equivalents..........cccoeeeeiiiiiiiiiiienneeeeeeiiiinnnn. 636

What Input Capabilities Are PreSent?civiieiiiiiiii e e e e e e e 643

UNiIfied POINTEI EVENES ovuuniiiiiiie ittt e et e e e et s e e e et s e e e et s e e aeana s 645

GESTUrE EVENES ...ceiiiiiiiii 649

The GEStUIE RECOGNIZET ..ivuiiiii it e e e e e et e e e e e e e e e et e e eaneeeaes 658
Keyboard Input and the Soft Keyboardcceuuiiiiiiiiiiiiii e 659

Soft Keyboard Appearance and Configurationccoeeiiviiiiiiiiiiineieiie e 660

Adjusting Layout for the Soft Keyboard.........ccooovuiiiiiiiiii e 663

STANAArd KEYSEIOKES .. evuniiiieii e e e e e e e e e et e e e e e e et e e et e e e e e eaaaeeen 666
1014 V=N 667
GEOIOCATION 1ttt e 669

LCT=To) 1=1 Tl - PP 673
RY=T 0 o PP P PTPPTR 676
What We've JUSt LEArNediiiiiiiiiiiiiiiee e 680

Chapter 13 Media....cccciiiieiiiiiiiiiiieiireeirieerenesrenessneerenssstssssnessrenssssnsssensssssnssssnsssnasssnnnes 681
Creating Media El@mMENTS ... iii e e e e e e e e et e e et e e et e e aaa e 682
Graphics Elements: Img, Svg, and Canvas (and a Little CSS)ccevvviiiieiiiiiiiiieeiieieeeeie 684

Additional Characteristics of Graphics EIemMentsccceuiiiiiiiiiiiiiiiiniic e 688

SOME TIPS AN THICKS ..eieeiriiiieiiie et e et e e e e e et e e e e et e e e aeaa e eeeannes 689

RENAEIING PDFS ..ttt ettt e et e et e et s e et e e e b e e et e e aa e et eeanns 694
Video Playback and Deferred Loading.........ovviuiiiiiiiiii e 699

Disabling Screen Savers and the Lock Screen During Playbackcccoooviviiiiiiiiiniiinnnnnn, 703

Video Element EXteNSION APISiiiiiiiiiiiiiicccii 703

Fa oY o] VAT g Y= TV o [T o T X i Yot (PN 705
BroWSiNg IMEdia SEIVEIS....uuiiii et eii ettt e e e e e et e e et e et e st e e et e et e e et e esaneeanes 706
Audio PIayback and IMIXINGcivuniiiiiiiiii et e e e 706
Audio Element EXEENSION APISiiiiiiiiiiiie et 708
Playback Manager and Background AUdio..........ccouuiiiiiiiiniiiii e e e 708
The Media Transport CONTrol Ul ... e e e e eaes 714
Playing Sequential AUdIOuuiiiiiiiii e e e e e e e eaas 717

o 1Y 1) 719
LG Ko I =TTl o I PP 723
Loading and Manipulating Mediacoiuiiiiiiiiii e 725
Image Manipulation and ENCOTING......cccuuiiiiiiiiiiiiiii e e e e e e eaa e 726
Manipulating AUdio and VIOiiiiiiiiiiii e e e e e 732
Handling Custom Audio and Video FOrmatsccccueiiiiiiiiiiieiiecie e e e e 735

Y 1=To T I G- Y o1 (U 1 I 742
Flexible Capture with the MediaCapture Objectccoviiiiiiiiiiiiiie e, 744
Selecting @ Media Capture DeVICEivuu i et e et e e e e eaneeaneees 748
Streaming Media and Play TOiiiuuei i ettt e e e e e e e et e e e et e e eaaaas 751
Streaming from a Server and Digital Rights Management........ccccoeovvviieiiiiiineeciiie e, 751
Streaming from ApPP 10 NETWOTIK.....iiieiiii e e e e 753

o] 1Y o 754
What We Have LearNed.........u ittt e et e e e e e e ee e e e e e e e 757
Chapter 14 Purposeful ANIMatioNs.......ccccccieeiiieiiieiieniienereeienereereereseresseassesssansrensenssesssassens 759
Systemwide Enabling and Disabling of Animationsc.ccvviiiiiiiiiiiiiin e 761
The WinJS Animations LiDraryeie et e e e e e eaa s 762
ANIMAtioNS INACTION .ovuiiiiii e 765
CSS Animations and TranSitioNSc.ceuuiruiiiiee it e e 769

Designing Animations in Blend for Visual StUdiOcooeviiiiiiiiiiiiii e, 775

The HTML Independent Animations Samplecoeeeiiiiiiiiiii e 777
Rolling Your OWN: Tips @Nd THICKS cevuuiviuniiiiieiiie e et e e e e et e e e e et e e e e et e e e e e eaanas 779
What WE'VE JUSE LEAINET ...eiveiiiiiiiii ettt e et e et e et e et e e et s e e e et s e e eaaaneeeeanns 785

Chapter 15 CoNtracts.....ccceiiieiiiiiiieeiiinniiiiiiieeiirasirinessrssssrsassreessrssssssnssssnssssssssssnssssnsssnnsss 786
)T TSP PPPT PSP 788

Y [o U ol I Y o] o 1P 793

N (I I T =L A Y oo PO UUPRPIN 805

B LT 1] oo =1 816
Launching Apps with URI Scheme AsSOCIationsceeiiiiiiiiiiiiiieeii e e e 818
SEATCH Lo ettt 823

The Search Charm Ul ...cooiiiiiiiii e 825

The WinJS.UL.SearchBoX CONLIOL......ccuuuuuuiiiiee ittt ettt e e e s 829

Providing QUETY SUEBESTIONSiiuiiiiii ittt e e e et e e e e e aan e eenas 831

Providing ReSUIL SUGEESTIONS . u..iiiiiiiiiieeie e e e e e e e e e et e e e e e aaneeeeas 835

SEAICHBOX StYIING e e 837

Indexing and Searching CoONtENtccuiiiniiii et e e et e ees 840

The Search CONEIACE ...cooiiiiiiiiiii e 849
(67 01 = Yot &3P PPRPPTR 850

(60T 4] - [l A 6F: [o KSR UOT PP 850

Using the Contact PICKET ...u.iie e e e e eaas 856
FAY o] ool 1010 1 =] o1 KT PSPPSR 860
What WE'VE JUSE LEAINEA ..ceeveiiiiiiiie ettt e et e et s e e e s e e e et s e e eeaaneeeeanns 864

Chapter 16 Alive with Activity: Tiles, Notifications, the Lock Screen, and

BacKground Tasks......cieceiiiuiiiniiieiiiiiiineiiieeiiineiereniienersnessssssrsnssranssssassssnesssanssssnsssnesssansss 865
Alive With ACtiVity: A VISUGI TOUL ..uuuiiiiiie et e et e e et e e e et e e e et eeeeaa s 866
The Four Sources of Updates and NOtificationscuuueviiiiiiiiiiiiiiin e 875
Tiles, Secondary Tiles, aNd Bad@eSccvuuiiiiiiiiiiiii e e e e e e e eaas 878

SECONAANY THlES ettt ettt ettt e et et e et e e et s e et e e et e e et s e et eeaneaasnaees 880

2 T (ol] TN O 1o Yo -] L 887
Cycling, Scheduled, and EXpiring Updatesccccueeiiiiiiiiieii e e e e e 900
2o F=d R U o To =} (T 902
[T To Yo I ol T oo I 1 TSP 904
Creating an UPdate SEIVICE ..uiiue it e e e e et e e et e e st e e e e eaaaaees 907
Debugging a Service Using the Localhost..........cviiiiiiiiiiiiiiice e 911
Windows Azure and Azure Mobile Servicesooceiviiiiiiiiiiiii e 912
Toast NOIfICAtIONS .ceveeeiiii et e e et e e eeeneea 917
Creating BasiC TOASES cuuiuiiiiiiiiiie ettt e et e et e et e et e et e e e 919
Butter and Jam: Options for YOUr TOASt w.uiiuniiiiiiiiin e e e 921
Tea Time: Scheduled Toasts and Alarms........ccooeviimiiiiiiiiiiiii e 923
Toast Events and ACTIVATIONiiiiii et 926
Push Notifications and the Windows Push Notification Servicececevvvviiiiiiineeeiennnnn. 927
Requesting and Cachinga Channel URI (APP) covveeiiiiiiiiiiiiiie e e e ea e 929
Managing Channel URIS (SEIVICE) ..cvuuuiiiiiiiiiieiii et e e e e e e e e aens 931
Sending Updates and Notifications (SEIVICE)viiueiiiiiiiiiieiiii e 932
RAW NOTIfICAtiONS (SEIVICE) . .ivuniiiiiiiii e e et eaas 933
Receiving NOtifiCationNS (APP) «vueeierririiiiiiiee et e e e et e e e et e e e eeaa s 934
D] oT0 =4 =T = N o T OO 935
Tools and Providers for Push Notificationseoviiiiiiiiiiiii e, 935
Background Tasks and LOCK SCre N APPSivuueiiiieiiiieeeii e et e e e e e e e e e e e ste e e e eaaaaas 937
Background Tasks in the Manifestoeiiiiiiiiii e 938
Building and Registering Background Taskscccuuiiiiiiiiiiiiiieeieie e, 939
CONAILIONS Leeeiiiie ettt ettt e e et e e e e e e e e enenes 941
Tasks fOr Mainte@NanCe THiGEEIS . uvuuuuieiiiiiiee et et e e e et e e et e e e e et e eeat e eeeaanns 942
Tasks for System Triggers (NON-LOCK SCrEEN)iiiiiiiiiiiiiie e 944
Lock Screen—Dependent Tasks and TrigEEIS ..ovuuuiiiieeiiiieiiiieeei e e eeee e e e e e e e e eens 945

Debugging Background TasKseiiuuiiiiiiiiieiiiie et e e e e 949

What We’'ve Just Learned (WHheW!) ... e e eaa e 950
Chapter 17 Devices and Printingcccccieuiiiieiiiiiiiiiiiiiiicriniereneseeerensessnsesseacsenssssnsssssasssennes 952
(DLl L] o= D LAV o] Vol of Y] 956
Enumerating and WatChing DEVICESoivuniiiiiiiiii e e e eaa s 957
SCENATIO API DEVICES ..cvvviiiiiiii ittt e e e e e e 962
IMAEE SCANNEIS ettt ettt et e e e et e et et e et e et e et e eaeensetnsaaneenseenenns 962
Barcode and Magnetic Stripe Readers (Point-of-Service Devices)cccceevevvvinniereinnnnnns 967
Y1 T (o T o PP PPPPPPRTR 970
Fingerprint (BIOMEtric) REAUEIS. ... civun it e e e e e e e e e eeas 971
Bluetooth Call CoNTrolccuvumeiiiiiiiiiiiiii e 972
PriNtiNG IMA 0 EQSY . cvuuiiiiiiiiiieiie ettt et e e e e e et e e e e et e e et e e et e e et e e et aneneannnnas 973
The Printing USEr EXPEIIENCE ..uuiiiiiiiieeiiiiieeee et e et e et e e e et e e et e e e e e e e e e et e e e aeaan s 974
Print DOCUMENT SOUICES ...uuiiiiiiiiiiiii ettt e e e eeas 977
Providing Print Content and Configuring OptioNns.........ccovvuiiiiiieiiiii e e, 979
Protocol APIs: HID, USB, Bluetooth, and Wi-Fi Dir€Ctcoveuiiniiniiiiiiieeeece e 981
Human Interface DEVICES (HID).....uiivun it e e et e eaas 983
CUSEOM USB DEVICES ...uviiiiiiiiiiii ettt e e e e 990
BIUETOOTh (RFCOMIM) ..ottt e et e e e et e e e et e e e e et e e e eataeeeentnn e 992
BIUELOOTh SMATT (LE/GATT) ettt e ee ittt e e ettt e e e e et e e e e e e e e et e e e e e e e eesaanaaanns 996
Wi-Fi DITECT e e e e 999
Near Field Communication and the Proximity APl...........ooviiiiiiiii e 1000
Finding Your Peers (NO Pressure!) ..oou.iiii i e e e e et e et e e e e eeen 1002
Sending One-Shot Payloads: Tap t0 Sharecouiieiiiniiii e, 1007
What We've JUST Learnedoviiiiiiiiiiiiiii e 1009
Chapter 18 WinRT Components: An INtroductionccceceiiieeiiiiieeiiiieeniiinieninneeesneenees 1010
Choosing a Mixed Language Approach (and Web Workers)........cccuueeeiiiiiiiiiiiiiiniiiiiineeeenn, 1012
Quickstarts: Creating and Debugging COmMPONENESccuuiiiiiiiiiiiiie e e e e e e 1014

15

Quickstart #1: Creatinga Component in CHoiiiviiiiiiiiine e e 1015

Simultaneously Debugging Script and Managed/Native Codecoovvvviiiereeeeririnnnnnn. 1020
Quickstart #2: Creatinga Component in CH+iiiniiiiiiiiiiieeii e e 1021
Comparing the RESUIScivuiii et e e e e e e e aans 1023
Key Concepts for WinRT COMPONENES .. .iiuuiiiiiiiieieieeeiee e eeie et e e et e e e e e et e e e e eaan e eennes 1026
Implementing Asynchronous Methodscccouiiiiiiiiiiiiiii e 1028
Projections into JavaSCript 1042
Scenarios for WinRT COMPONENTSiiiuiuieiiiiieeeetiieeeeiieeeseaiieeeestieesestneeseseneesessnaeeesnes 1044
Higher Performance (PEIrNaps)iieueiiiiieiii e e e e et e e et e e e e aen 1044
AcCess 10 AddItioNal APISiiiiiiee e 1047
Obfuscating Code and Protecting Intellectual Propertyccoovveiiviiiiniiiiniiiicecneceeeeeen, 1051
(6fe] 4 [o1 U 4 (=1 o Tor VO PP PPPPRPRPRR 1052
[T =YV 0o T 0] oYY o =Y o £ S UPTR 1053
What We'VE JUSE LEAINE U ceeuuueiie ettt e e e e e ee b e 1056
Chapter 19 Apps for Everyone, Part 1: Accessibility and World-Readiness.....cc..cccccereanennee. 1058
Yool T3] 11 L 42N 1059
Screen Readers and Aria Attributesceeiiiiiiiiiiiiiii 1063
Handling Contrast Variations ieuiiiieeiiie e e e e e e e et e e e e e e e aeen 1068
World Readiness and LOCalizationoiieeiiiiiiiiiiiie e 1075
GIODANIZATION et eeaaas 1077
Preparing for LOCalizationccoeuiiiiiiiii e e 1087
Creating Localized Resources: The Multilingual App Toolkit......cccocvveviiiiiiiiiiiiiiineeeen, 1101
[WeYor:1 172X (oY a ViA=L U1 « S 1108
What We've JUSt Learn@dcooviiiiiiiiiiiiiic e 1109
Chapter 20 Apps for Everyone, Part 2: The Windows Storecccceeeeereecrencrenceecrencrencennnes 1110
YOUr APP, YOUI BUSINESS «.eniiiiieiieie ettt et ettt et e et et e e e e et e ea e ea e e e e eens 1111
Planning: Can the App Be @ Windows StOre APP? ...u.eiiiiiiiiiieiiiieeeeiieee et eeeie e eeaaanes 1113
Planning for Monetization (OF NOT)cccuuiiiiiiiiii e 1114

Growing Your Customer Base and Other Value EXChangescccocevevieiiniiiiniiiiineiinnennnn. 1125

Measuring and Experimenting with Revenue Performancecccoeeevvvivieeeceiineeennnnnn. 1126
The WINAOWS SEOIE APIS ..ciiieiiiiiiiiie et e e e e et e e e et e e e e e e e e abneeeeenaneeeeenanes 1127
The CurrentAppSimulator ObJECT........i i e 1130
Trial Versions and APP PUMCHasecuuiiiiiiiii e e e e 1133
Listing and Purchasing IN-App ProduCtS.........ovvuuiiiiiiiiii e 1137
Handling Large Catalogs ... iieuuu i et e et e e et e e e et e e e e et e e e e eaaan s 1145
= Tol=T o] £SO UPT PR 1146
Instrumenting Your App for Telemetry and Analytics........cooviviiiiiiiiiiiiiie e, 1148
Releasing Your App to the World ... e 1155
Promotional Screenshots, Store Graphics, and Text COPY.....ccovvriuiriiiiriiiiniiiineeineeieens 1156
Testing and Pre-Certification TOOISvvvuiiiiiiiii e 1158
Creating the APP PACKAEE «.vuniiiiii e eeeaan 1159
Onboarding and Working through ReJectioncouuiiiiiiiiiiiiiiiii e, 1163

A oY o JL U 1 o F= 1 TN 1166
Getting Known: Marketing, Discoverability, and the Webccoooviiiiiiiiiiii 1168
Connecting Your Website and Web-Mapped Search Resultsc..ccevveeviiiinniinniinninnnnnn. 1170
Face It: You're RUNNING @ BUSINESS! ..oiuuiiiiiii et e e 1171
[WoYe) @ ol gl @] oo o L] o]1 =TSSP 1172
INVEST IN YOUT BUSINESS ..iiiiiiiiiiii ettt 1172
Fear NOt the Marketingcccvun i e e e e e et e e e e e e een 1172
SUPPOIT YOUI CUSTOMIBIS ceuitiiiiiiiiiieei ettt e ee e e ete et e et e et s et e s e e e s e e e saneensaneannes 1173
Plan fOr the FULUIE ...t e e e e e e e e e e aa s 1173
Selling Your App When 1t's NOt RUNNING......oiuuiiiiiiiii e e e aas 1174
YOU'TE NOT AIONE ettt e e e e e 1175
Final Thoughts: Qualities 0f @ ROCK Star APP ...ccvueviiiiiiie i 1175
What We'Ve JUSt LEAIrNE U «...uuuiie ettt e e e e e ee b e 1176
Appendix A Demystifying Promises....cccciieiiiieiiieniiiiniiiiniiienniiteiiriniirensiieeersnssenssssnssssnnsns 1178

What Is a Promise, Exactly? The Promise Relationshipscccoceeviiiiiiiiiiiiiiiiiiiniincis 1178

The Promise Construct (Core Relationship)ccceueiiiiiiiiiiiiiiie e 1181
Example #1: AN EmMpPLy Promisel . ..o 1183
Example #2: An EMpPty ASYNC PrOomMiSe......ccvuiiiiiiiiiii e e e 1185
Example #3: Retrieving Data from a URl....c..iiiiiiiiiiiiic e 1186

BeNefits Of PrOMISESuuuiiee et 1187

The FUll Promise CONSTIUCTceeiiiiiiiiiiiiseee ettt e ee ettt e e e e e e eeettbai e e eeeeeeebbbiaeeeeeeeaeees 1188
N S IN G P rOMIS S . ittt et e ettt e et et e et e et e ea e en s et s eansenasenneanans 1192
(0 0P 11 V= o o 0 0 1Y T 1195

Promises in WinJS (Thank You, MicroSoft!)ccouuiiiiiiiiiiii e 1200
The WinJS.Promise Classuuiiieeiiiiiiiiiinie ettt ettt e e ree s 1201
Originating Errors with WinJS. Promise.WrapErrorccouviviiiiiiiii e 1203

Some Interesting PromiSe COTE ...uuiiuuiiiiiiiie ittt e et et e e e e e e e eaa s 1204
Delivering a Value in the Future: WinJS.Promise.timeout..........c.ccoeeviiiiiiiii i, 1204
Internals of WinJS.Promise.timeOULcovieiiiiiiiiiiiie e 1205
Parallel Requests 10 @ List Of URISuuiiiiiiiiiicii et e e e e 1205
Parallel Promises with Sequential RESUILScceuviiniiiiiii e, 1206
Constructing a Sequential Promise Chainfroman Array......cccoeveviiiiniiiin e, 1208
PageControlNavigator._navigating (Page Control Rendering)cccoeevevevvineiieinineennnnnnn. 1208

Bonus: Deconstructing the ListView Batching Renderercooovviiiiiiiiiiiiiniiiniiiineciieeeenn, 1210

APPENdiX B WINJS EXTras ..ccceiieniiiniiinniiienniieesiinnssrsserenssssassssnsssssnsssnssssssssssnssssnssssnssssnnnss 1214

EXploring WinJS.Class PatterNsuiiiuiiiii i e e e e e e e e eaans 1214
WiNJS.ClasS.defINEuuie e e e e e e e e s 1214
WiNJS.ClasS.dIIVE «.uuueiiiiiiiiiiiiiie e e e e 1217
IVIIXINIS 1ttt et et e e e e eaaa s 1218

ODBSCUIE WINJS FEATUIES .oeevvtiiiiieeee ettt ettt e e e ettt e e e e e ettt e e e eeeeeeabbaa e eas 1219
Wrappers for Common DOM OpPerationsuueeeeeuueiieeeiiiineeeiieeeeeiiineeseiineeseaineeeeennens 1219
WinJS.Utilities.data, convertToPixels, and Other Positional Methods............cccceevvennenne. 1221

18

WinJS.Utilities.empty, eventWithinElement, and getMembercccovviiiiiiiiniiiiniinnnns 1222

WinJS.Ul.scopedSelect and getltemsFromRaNGEeScuuvvvniiiiiiiiiii et 1222
Extended SPlash SCrEENScciuu i e e et e et e e et e e et e eaans 1223
AdJUSTMENES FOr VIEW SIZES ...ivviiiiiiiiiie et e e e e e e e e et e e et e eaaaas 1229
Custom Layouts for the ListView CONtrolooeviiiiiiiiiiii e 1231
MinIMal Vertical LAYOULiiiee i e e e e e e e e e e et e e e e e aaeeeen 1233
Minimal HOMZoNtal LAYOUL ...evueniiiii et e e et eaeaa s 1235
Two-Dimensional and Nonlin@ar LayOULSvuuuiiiiiiiiiiiiiiiniii e 1239
VIrEURHIZAtION oo e 1241

(€T g0 YU o114 -SRI 1243
The Other STUFf «..eee e 1244
Appendix C Additional Networking TOPICS.....ccceeieeriiiniiiiniiiniiiniiiiniiienisireierenssrassssnessennans 1249
XMLHttpRequest and WINJS.XNIiiiiiiiiii e e e e s 1249
Tips and Tricks FOr WinJS.XIOr ... 1250
Breaking Up Large Files (Background Transfer API)cc.ovvviiiiiiiiiiiie e 1251
Multipart Uploads (Background Transfer API)ccouiiiiiiiiiiiiie e 1252
Notes on Encryption, Decryption, Data Protection, and Certificatesccooeeveenviinnnnnnnnn. 1255
Syndication: RSS, AtomPub, and XML APIS in WINRTccuuiiiiiiniiiineiiieeei e e eiins 1255
REAAING RSS FEEAS ...ttt ettt e et e et s e et e e e e e e e eaas 1256
USING ATOMPUD ...t e e e et s e et e e e e s e et s e et e eaaeeees 1259
SOCKEES -ttt ettt e ettt e e e e e as 1260
DY Fed = T Yo Yol = S 1261

A LT Y0 Yo Tol = PP 1265
Web Sockets: MessageWebSocket and StreamWebSocket.........cccoevvviiiiiiiiiiniiniinnenns 1268
The ControlChannelTrigger Background Taskceevvuiviiiiiiiiiiiiiiniiee e eei e 1273
The Credential PICKEr Ulcooii ittt e e e e e ettt s e e e e eneees 1273
Other Networking SDK SAmMPIESuuuiiiiiiieeiiiii e et e et e e et e e e eeae e e eaa e e e eaaaeeaeanen 1277
Appendix D Provider-Side CoNtractsccceiieeiiieeiiiieiiiiiciienniiininienirenssieeesensisenssenssssnnnes 1279

1 =N el el ST gl o (0 AVA o =Y SN 1279

Manifest DeClarations...........eciiiiiiiiiiiiiiii 1280
Activation of a File Picker Provider...........uuuiiiiiiiiiiiiiiii e 1281
(0= Yol o 1Yo I S T TR U oY =1 o <] N 1288
Updating @ LoCal File: Ul....u.iiiiiii it e e e et e e e e e e een 1291
Updating @ Remote File: Uliieiii it e et e e e e e e 1292

(01 oTo E) ol V] o PR PPP PPN 1294
Contact Cards ACtion ProOVIAErSiiiiiiiiiiiie ettt e e e e eeeeas 1297
CoNtaCt PiCKer PrOVIEIS ..ccuviieiie ettt e e e e ee e 1300
APPOINEMENT PrOVIAEIS . .cuu it ieiii et e e e e e e st e e e e st e e st e e st e e st e eaanaeen 1303
ADOUL the AULhOT ... e eeaes 1309

20

Introduction

Welcome, my friends, to Windows 8.1! On behalf of the thousands of designers, program managers,
developers, test engineers, and writers who have brought the product to life, I'm delighted to welcome
you into a world of Windows Reimagined.

This theme is no mere sentimental marketing ploy, intended to bestow an aura of newness to
something that is essentially unchanged, like those household products that make a big splash on the
idea of "New and Improved Packaging!" No, starting with version 8, Microsoft Windows truly has been
reborn—after more than a quarter-century, something genuinely new has emerged.

| suspect—indeed expect—that you're already somewhat familiar with the reimagined user
experience of Windows 8 and Windows 8.1. You're probably reading this book, in fact, because you
know that the ability of Windows to reach across desktop, laptop, and tablet devices, along with the
global reach of the Windows Store, will provide you with many business opportunities, whether you're
in business, as | like to say, for fame, fortune, fun, or philanthropy.

We'll certainly see many facets of this new user experience throughout the course of this book. Our
primary focus, however, will be on the reimagined developer experience.

I don't say this lightly. When [first began giving presentations within Microsoft about building
Windows Store apps, | liked to show a slide of what the world was like in the year 1985. It was the time
of Ronald Reagan, Margaret Thatcher, and Cold War tensions. It was the time of VCRs and the
discovery of AIDS. It was when Back to the Future was first released, Michael Jackson topped the charts
with Thriller, and Steve Jobs was kicked out of Apple. And it was when software developers got their
first taste of the original Windows API and the programming model for desktop applications.

The longevity of that programming model has been impressive. It's been in place for nearly three
decades now and has grown to become the heart of the largest business ecosystem on the planet. The
APl itself, known today as Win32, has also grown to become the largest on the planet! What started
out on the order of about 300 callable methods has expanded three orders of magnitude, well beyond
the point that any one individual could even hope to understand a fraction of it. I'd certainly given up
such futile efforts myself.

So when | bumped into my old friend Kyle Marsh in the fall of 2009, just after Windows 7 had been
released, and heard from him that Microsoft was planning to reinvigorate native app development for
Windows 8, my ears were keen to listen. In the months that followed | learned that Microsoft was
introducing a completely new API called the Windows Runtime (or WinRT). This wasn't meant to
replace Win32, mind you; desktop applications would still be supported. No, this was a programming
model built from the ground up for a new breed of touch-centric, immersive apps that could compete
with those emerging on various mobile platforms. It would be designed from the app developer's point
of view, rather than the system'’s, so that key features would take only a few lines of code to implement

21

rather than hundreds or thousands. It would also enable direct native app developmentin multiple
programming languages. This meant that new operating system capabilities would surface to those
developers without having to wait for an update to some intermediate framework. It also meant that
developers who had experience in any one of those language choices would find a natural home when
writing apps for Windows 8 and Windows 8.1.

This was very exciting news to me because the last time that Microsoft did anything significant to
the Windows programming model was in the early 1990s with a technology called the Component
Object Model (COM), which is exactly what allowed the Win32 API to explode as it did. Ironically, it was
my role at that time to introduce COM to the developer community, which | did through two editions
of Inside OLE (Microsoft Press, 1993 and 1995) and seemingly endless travel to speak at conferences
and visit partner companies. History, indeed, does tend to repeat itself, for here | am again, with
another second edition!

In December 2010, | was part of the small team who set out to write the very first Windows Store
apps using what parts of the new WinRT APl had become available. Notepad was the text editor of
choice, we built and ran apps on the command line by using abstruse Powershell scripts that required
us to manually type out ungodly hash strings, we had no documentation other than oft-incomplete
functional specifications, and we basically had no debugger to speak of other than the tried and true
window.alert and document.writeln. Indeed, we generally worked out as much HTML, CSS, and
JavaScript as we could inside a browser with F12 debugging tools, adding WinRT -specific code only at
the end because browsers couldn't resolve those APIs. You can imagine how we celebrated when we
got anything to work at all!

Fortunately, it wasn't long before tools like Visual Studio Express and Blend for Visual Studio became
available. By the spring of 2011, when | was giving many training sessions to people inside Microsoft on
building apps for Windows 8, the process was becoming far more enjoyable and exceedingly more
productive. Indeed, while it took us four to six weeks in late 2010 to get even Hello World to show up
on the screen, by the fall of 2011 we were working with partner companies who pulled together
complete Store-ready apps in roughly the same amount of time.

As we've seen—thankfully fulfilling our expectations—it's possible to build a great app in a matter
of weeks. I'm hoping that this ebook, along with the extensive resources on http://dev.windows.com,
will help you to accomplish exactly that and to reimagine your own designs.

Work on this second edition began almost as soon as the first edition was released. (I'd make a quip
about the ink not being dry, but that analogy doesn’t work for an ebook!) When Windows 8 became
generally available in the fall of 2012, work on Windows 8.1 was already well underway: the
engineering team had a long list of improvements they wanted to make along with features that they
weren't able to complete for Windows 8. And in the very short span of one year, Windows 8.1 was itself
ready to ship.

At first | thought writing this second edition would be primarily a matter of making small updates to
each chapter and perhaps adding some pages here and there on a handful of new features. But as | got
deeperinto the updated platform, | was amazed at just how much the API surface area had expanded!

22

http://dev.windows.com/

Windows 8.1 introduces a number of additional controls, an HTML webview element, a stronger HTTP
API, content indexing, deeper OneDrive support, better media capabilities, more tiles sizes (small and
large), more flexible secondary tile, access to many kinds of peripheral devices, and more options for
working with the Windows Store, like consumable in-app purchases. And clearly, this is a very short list
of distinct Windows 8.1 features that doesn't include the many smaller changes to the API. (A fuller list
can be found on Windows 8.1: New APIs and features for developers).

Furthermore, even as | was wrapping up the first edition of this book, | already had a long list of
topics | wanted to explore in more depth. | wrote a number of those pieces for my blog, with the
intention of including them in this second edition. A prime example is Appendix A, “Demystifying
Promises.”

All'in all, then, what was already a very comprehensive book in the first edition has become even
more so in the second! Fortunately, with this being an ebook, neither you nor | need feel guilty about
matters of deforestation. We can simply enjoy the process of learning about and writing Windows
Store Apps with HTML, CSS, and JavaScript.

And what about Windows Phone 8.1? I'm glad you asked, because much of this book is completely
applicable to that platform. Yes, that's right: Windows Phone 8.1 supports writing apps in HTML, CSS,
and JavaScript, just like Windows 8.1, meaning that you have the same flexibility of implementation
languages on both. However, the decision to support JavaScript apps on Windows Phone 8.1 came very
late in the production of this book, so I'm only able to make a few notes here and there for Phone -
specific concerns. | encourage you to follow the Building Apps for Windows blog, where we'll be
posting more about the increasingly unified experience of Windows and Windows Phone.

Who This Book Is For

This book is about writing Windows Store apps using HTML, CSS, and JavaScript. Our primary focus will
be on applying these web technologies within the Windows platform, where there are unique
considerations, and not on exploring the details of those web technologies themselves. For the most
part, I'm assuming that you're already at least somewhat conversant with these standards. We will cover
some of the more salient areas like the CSS grid, which is central to app layout, but otherwise | trust
that you're capable of finding appropriate references for most everything else. For Java Script
specifically, | can recommend Rey Bango's Required JavaScript Reading list, though | hope you'll spend
more time reading this book than others!

I'm also assuming that your interest in Windows has at least two basic motivations. One, you
probably want to come up to speed as quickly as you can, perhaps to carve out a foothold in the
Windows Store sooner rather than later. Toward that end, Chapter 2, "Quickstart,” gives you an
immediate experience with the tools, APIs, and some core aspects of app development and the
platform. On the other hand, you probably also want to make the best app you can, one that performs
really well and that takes advantage of the full extent of the platform. Toward this end, I've also

23

http://msdn.microsoft.com/library/windows/apps/bg182410
http://www.kraigbrockschmidt.com/blog
http://go.microsoft.com/fwlink/?LinkID=392425
http://code.tutsplus.com/tutorials/required-javascript-reading--net-33131

endeavored to make this book comprehensive, helping you at least be aware of what's possible and
where optimizations can be made.

Let me make it clear, though, that my focus in this bookis the Windows platform.| won't talk much
about third-party libraries, architectural considerations for app design, and development strategies and
best practices. Some of these will come up from time to time, but mostly in passing.

Nevertheless, many insights have come from working directly with real-world developers on their
real-world apps. As part of the Windows Ecosystem team, myself and my teammates have been on the
front lines bringing those first apps to the Windows Store. This has involved writing bits of code for
those apps and investigating bugs, along with conducting design, code, and performance reviews with
members of the Windows engineering team. As such, one of my goals with this book is to make that
deep understanding available to many more developers, including you!

What You'll Need (Can You Say “Samples”?)

To work through this book, you should have Windows 8.1 (or a later update) installed on your
development machine, along with the Windows SDK and tools. All the tools, along with a number of
other resources, are listed on Developer Downloads for Windows Store Apps. You'll specifically need
Microsoft Visual Studio Express 2013 for Windows. (Note that for all the screenshots in this book, |
switched Visual Studio from its default “dark” color theme to the "light” theme, as the latter works
better against a white page.)

We'll also acquire other tools along the way as we need them in this ebook, specifically to run some
of the examples in the companion content. Here's the short list:

e Live SDK (for Chapter 4)

e Bing Maps SDK for Windows Store Apps (for Chapters 10 and beyond)

e Visual Studio Express 2013 for Web (for Chapter 16)

e Multilingual App Toolkit (for Chapter 19)

Also be sure to visit the Windows 8.1 Samples Pack page and download at least the JavaScript
samples. We'll be drawing from many—if not most—of these samples in the chapters ahead, pulling in
bits of their source code to illustrate how many different tasks are accomplished.

One of my secondary goals in this book, in fact, is to help you understand where and when to use
the tremendous resources in what is clearly the best set of samples I've ever seen for any release of
Windows. You'll often be able to find a piece of code in one of the samples that does exactly what you
need in your app or that is easily modified to suit your purpose. For this reason|'ve made it a point to
personally look through every one of the JavaScript samples, understand what they demonstrate, and
then refer to them in their proper context. This, | hope, will save you the trouble of having to do that
level of research yourself and thus make you more productive in your development efforts.

24

http://msdn.microsoft.com/windows/apps/br229516
http://www.microsoft.com/en-us/download/details.aspx?id=40739
http://visualstudiogallery.msdn.microsoft.com/224eb93a-ebc4-46ba-9be7-90ee777ad9e1
http://www.microsoft.com/en-us/download/details.aspx?id=40747
http://msdn.microsoft.com/en-us/windows/apps/bg127574
http://go.microsoft.com/fwlink/p/?LinkID=302156

In some cases I've taken one of the SDK samples and made certain modifications, typically to
demonstrate an additional feature but sometimes to fix certain bugs or demonstrate a better
understanding that came about after the sample had to be finalized. I've included these modifications
in the companion content for this book, which you can download at

http://aka.ms/BrockschmidtBook2/CompContent

The companion content also contains a few additional examples of my own, which | always refer to
as "examples” to make it clear that they aren't official SDK content. (I've also rebranded the modified
samples to make it clear that they're part of this book.) I've written these examples to fill gaps that the
SDK samples don't address or to provide a simpler demonstration of a feature that a related sample
shows in a more complex manner. You'll also find many revisions of an app called "Here My Am!” that
we'll start building in Chapter 2 and we'll refine throughout the course of this book. This includes
localizing itinto a number of different languages by the time we reach the end.

There are also a number of videos that I've made for this book, which more readily show dynamic
effects like animations and user interaction. You can find all of them at

http://aka.ms/BrockschmidtBook2/Videos

Beyond all this, you'll find that the Windows Store app samples gallery as well as the Visual Studio
sample gallery let you search and browse projects that have been contributed by other developers—
perhaps also you! (On the Visual Studio site, by the way, be sure to filter on Windows Store apps
because the gallery covers all Microsoft platforms.) And of course, there will be many more developers
who share projects on their own.

In this book | occasionally refer to posts on a number of blogs. First are a few older blogs, namely
the Windows 8 App Developer blog, the Windows Store for Developers blog, and—for the Windows 8
backstory of how Microsoft approached this whole process of reimagining the operating system—the
Building Windows 8 blog. As of the release of this book, the two developer blogs have merged into the
Building Apps for Windows blog that | mentioned earlier.

A Formatting Note

Throughout this book, identifiers that appearin code, such as variable names, property names, and API
functions and namespaces, are formatted with a colorand a fixed-point font. Here's an example:
Windows.Storage.ApplicationData.current. Attimes, certain fully qualified names—those that that
include the entire namespace—can become quite long, so it's necessary to occasionally hyphenate
them across line breaks, asin Windows.Security.Cryptography.CryptographicBuffer. -
convertStringToBinary. Generally speaking, I've tried to hyphenate after a dot or between whole
words but not within a word. In any case, these hyphens are never part of the identifier exceptin CSS
where hyphens are allowed (asin -ms-high-contrast-adjust) and with HTML attributes like aria-
Tabel or data-win-options.

25

http://aka.ms/BrockschmidtBook2/CompContent
http://aka.ms/BrockschmidtBook2/Videos
http://code.msdn.microsoft.com/windowsapps/
http://code.msdn.microsoft.com/vstudio
http://code.msdn.microsoft.com/vstudio
http://blogs.msdn.com/b/windowsappdev/
http://blogs.msdn.com/b/windowsstore/
http://blogs.msdn.com/b/b8/
http://go.microsoft.com/fwlink/?LinkID=392425

Occasionally, you'll also see identifiers that have a different color, as in datarequested. These
specifically point out events that originate from Windows Runtime objects, for which there are a few
special considerations for adding and removing event listeners in JavaScript, as discussed toward the
end of Chapter 3. | make a few reminders about this point throughout the chapters, but the purpose of
this special coloris to give you a quick reminder that doesn't break the flow of the discussion
otherwise.

Acknowledgements

In many ways, this isn't my book—that is, it's not an account of my own experiences and opinions
about writing apps for Windows. I'm serving more as a storyteller, where the story itself has been
written by the thousands of people in the Windows team whose passion and dedication have been a
constant source of inspiration. Writing a book like this wouldn't be possible without all the work that's
gone into customer research; writing specs; implementing, testing, and documenting all the details;
managing daily builds and public releases; and writing again the best set of samples I've ever seen for a
platform. Indeed, the words in some sections come directly from conversations I've had with the people
who designed and developed a particular feature. I'm grateful for their time, and I'm delighted to give
them a voice through which they can share their passion for excellence with you.

A number of individuals deserve special mention for their long-standing support of this project. To
Mahesh Prakriya, lan LeGrow, Anantha Kancherla, Keith Boyd and their respective teams, with whom
I've worked closely, and to Kathy Carper, Roger Gulrajani, Keith Rowe, Dennis Flanagan, and Adam
Denning, under whom I've had the pleasure of serving.

Thanks also to Devon Musgrave at Microsoft Press, who put in many long hours editing my many
long chapters, many times over. My teammates, Kyle Marsh, Todd Landstad, Shai Hinitz, Patrick
Dengler, Lora Heiny, Leon Braginski, and Joseph Ngari have also been invaluable in sharing what
they've learned in working with real-world partners. A special thanks goes to Kenichiro Tanaka of
Microsoft Japan, for always being the first one to return a reviewed chapter to me and for joyfully
researching different areas of the platform whenever | asked. Many bows to you, my friend! Nods also
to others in our international Windows Ecosystem teams who helped with localizing the Here My Am!
app for Chapter 19: Gilles Peingné, Sam Chang, Celia Pip6 Garcia, Juergen Schwertl, Maarten van de
Bospoort, Li-Qun Jia, and Shai Hinitz.

The following individuals all contributed to this book as well, with chapter reviews, answers to my
questions, deep discussions of the details, and much more. I'm grateful to all of you for your time and

support:
Shakil Ahmed Ryan Demopoulos Jakub Kotynia Jason Olson Adam Stritzel
Arvind Aiyar Scott Dickens Jared Krinke ElliotH Omiya Shijun Sun
Jessica Alspaugh Tyler Donahue Victoria Kruse LisaOng Ellick Sung
Gaurav Anand Brendan Elliott Nathan Kuchta Larry Osterman Sou Suzuki

26

Chris Anderson Matt Esquivel Elmar Langholz Rohit Pagariya Simon Tao
Erik Anderson David Fields Bonny Lau Ankur Patel Henry Tappen
Axel Andrejs Sean Flynn Wonhee Lee Harry Pierson Chris Tavares
Tarek Ayna Erik Fortune Travis Leithead Steve Proteau David Tepper
Art Baker Jim Galasyn Dale Lemieux Hari Pulapaka Lillian Tseng
Adam Barrus Gavin Gear Chantal Leonard Arun Rabinar Sara Thomas
Megan Bates Derek Gephard Cameron Lerum* Matt Rakow Ryan Thompson
Tyler Beam Marcelo Garcia Gonzalez Brian LeVee Ramu Ramanathan Bill Ticehurst
Matthew Beaver Sean Gilmour Jianfeng Lin Sangeeta Ranjit Peter Torr
Kyle Beck Sunil Gottumukkala Tian Luo RaviRao Stephen Toub
Ben Betz Scott Graham Sean Lyndersay Brent Rector Tonu Vanatalu
Johnny Bregar Ben Grover David Machaj Ruben Rios Jeremy Viegas

John Brezak

Paul Gusmorino

Mike Mastrangelo

Dale Rogerson

Alwin Vyhmeister

John Bronskill Chris Guzak Jordan Matthiesen Nick Rotondo Nick Waggoner
Jed Brown Zainab Hakim lan McBurnie David Rousset David Washington
Kathy Carper Rylan Hawkins Sarah McDevitt George Roussos Sarah Waskom
Vincent Celie John Hazen Isaac McGarvey Jake Sabulsky Marc Wautier
Raymond Chen Jerome Holman Jesse McGatha Gus Salloum Josh Williams

Rian Chung Scott Hoogerwerf Matt Merry Michael Sciacqua Lucian Wischik
Arik Cohen Stephen Hufnagel Markus Mielke Perumaal Shanmugam | Dave Wood

Justin Cooperman Sean Hume Pavel Minaev Edgar RuizSilva Kevin Michael Woley
Michael Crider Mathias Jourdain John Morrow Poorva Singal Charing Wong
Monica Czarny Damian Kedzierski Feras Moussa Karanbir Singh Bernardo Zamora
Nigel D'Souza Suhail Khalid John Mullaly Peter Smith Michael Ziller
Priya Dandawate Deen King-Smith Jan Nelson* Sam Spencer

Darren Davis Daniel Kitchener Marius Niculescu Edward Sproull

Jack Davis Kishore Kotteri Daniel Oliver Ben Srour

* For Jan and Cameron, a special acknowledgement for riding down from Redmond, Washington, to visit me in

Portland, Oregon (where | was living at the time), and sharing an appropriately international Thai lunch while we

discussed localization and multilingual apps.

Let me add that during the production of this second edition, | did manage to lose the extra weight
that I'd gained during the first edition. All things must balance out, | suppose!

Finally, special hugs to my wife Kristi and our son Liam (now seven and a half), who have lovingly

27

been there the whole time and who don't mind my traipsing through the house to my office either late
at night or early in the morning.

Free Ebooks from Microsoft Press

From technical overviews to drilldowns on special topics, these free ebooks are available in PDF, EPUB,
and/or Mobi for Kindle formats, ready for you to download:

http://aka.ms/mspressfree

The “Microsoft Press Guided Tours” App

Check the Windows Store soon for the Microsoft Press Guided Tours app, which provides insightful
tours of new and evolving technologies created by Microsoft. While you're exploring each tour's
original content, the app lets you manipulate and mark that content in ways to make it more useful to
you. You can, of course, do the usual things—such as highlight, add notes, mark as favorite, and mark
to read later—but you can also

e viewall links to external documentation and samples in one place via a Resources view;

e sort the Resources view by Favorites, Read Later, and Noted;

e viewa list of all your notes and highlights via the app bar;

e share text, code, or links to resources with friends via email; and

e create your own list of resources, as you navigate online resources, beyond those pointed to in the
Guided Tour.

Our first Guided Tour is based on this ebook. Kraig acts as a guide in two senses: he leads
experienced web developers through the processes and best practices for building Windows Store
apps, and he guides you through Microsoft's extensive developer documentation, pointing you to the
appropriate resources at each step in your app development process so that you can build your apps as
effectively as possible.

Enjoy the app, and we look forward to providing more Guided Tours soon!

Errata & Book Support

We've made every effort to ensure the accuracy of this ebook and its companion content. Any errors
that are reported after the book’s publication will be listed on http://aka.ms/BrockschmidtBook2/Errata.
If you find an error that is not already listed, you can report it to us through the comments area of the

same page.

28

http://aka.ms/mspressfree
http://aka.ms/BrockschmidtBook2/Errata

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered through the
previous addresses. For help with Microsoft software or hardware, go to http://support.microsoft.com.
Support for developers can be found on the Windows Developer Center's support section, especially in
the Building Windows Store apps with HTML5/JavaScript forum. There is also an active community on
Stack Overflow for the winjs, windows-8, windows-8.1, windows-store-apps, and winrt tags.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset.
Please tell us what you think of this book at

http://aka.ms/tellpress

We know you're busy, so we've kept it short with just a few questions. Your answers go directly to
the editors at Microsoft Press. (No personal information will be requested.) Thanks for your input!

Stay in Touch

Let's keep the conversation going! We're on Twitter: http://twitter.com/MicrosoftPress. And you can
keep up with Kraig here: http://www kraigbrockschmidt.com/blog.

29

mailto:mspinput@microsoft.com
http://support.microsoft.com/
http://msdn.microsoft.com/en-US/windows/apps/hh690938
http://social.msdn.microsoft.com/Forums/en-US/winappswithhtml5/threads
http://stackoverflow.com/questions/tagged/winjs
http://stackoverflow.com/questions/tagged/windows-8
http://stackoverflow.com/questions/tagged/windows-8.1
http://stackoverflow.com/questions/tagged/windows-store-apps
http://stackoverflow.com/questions/tagged/winrt
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress
http://www.kraigbrockschmidt.com/blog

Chapter 1

The Life Story of a Windows Store
App: Characteristics of the
Windows Platform

Paper or plastic? Fish or cut bait? To be or not to be? Standards-based or native? These are the
questions of our time....

Well, OK, maybe most of these aren't the grist for university-level philosophy courses, but certainly
the last one has been increasingly important for app developers. Standards-based apps are great
because they run on multiple platforms; your knowledge and experience with standards like HTML5
and CSS3 are likewise portable. Unfortunately, because standards generally take a long time to
produce, they always lag behind the capabilities of the platforms themselves. After all, competing
platform vendors will, by definition, always be trying to differentiate! For example, while HTMLS5 has a
standard for geolocation/GPS sensors and has started on working drafts for other forms of sensor input
(like accelerometers, compasses, near-field proximity, and so on), native platforms already make these
available. And by the time HTML's standards are in place and widely supported, the native platforms
will certainly have added another set of new capabilities.

As a result, developers wanting to build apps around cutting-edge features—to differentiate from
their own competitors!—must adopt the programming language and presentation technology
imposed by each native platform or take a dependency on a third -party framework that tries to bridge
the differences.

Bottom line: it's a hard choice.

Fortunately, Windows 8 and Windows 8.1 provide what | personally think is a brilliant solution for
apps. Early on, the Windows team set out to solve the problem of making native capabilities—the
system AP, in other words—directly available to any number of programming languages, including
JavaScript. This is what's known as the Windows Runtime API, or just WinRT for short (an API that's
making its way onto the Windows Phone platform as well).

WinRT APIs are implemented according to a certain low-level structure and then “projected” into
different languages—namely C++, C#, Visual Basic, and JavaScript—in a way that looks and feels
natural to developers familiar with those languages. This includes how objects are created, configured,
and managed; how events, errors, and exceptions are handled; how asynchronous operations work (to
keep the user experience fast and fluid); and even the casing of method, property, and event names.

30

The Windows team also made it possible to write native apps that employ a variety of presentation
technologies, including DirectX, XAML, and, in the case of apps written in JavaScript, HTML5 and CSS3.

This means that Windows gives you—a developer already versed in HTML, CSS, and JavaScript
standards—the ability to use what you know to write fully native Windows Store apps using the WinRT
API and still utilize web content! And | do mean fully native apps that both offer great content in
themselves and integrate deeply with the surrounding system and other apps (unlike “hybrids” where
one simply hosts web content within a thin, nearly featureless native shell). These apps will, of course,
be specific to the Windows platform, but the fact that you don't have to learna completely new
programming paradigm is worthy of taking a week off to celebrate—especially because you won't have
to spend that week (or more) learning a complete new programming paradigm!

It also means that you'll be able to leverage existing investments in JavaScript libraries and CSS
template repositories: writing a native app doesn't force you to switch frameworks or engage in
expensive porting work. That said, itis also possible to use multiple languages to write an app,
leveraging the dynamic nature of JavaScript for app logic while leveraging languages like C# and C++
for more computationally intensive tasks. (See “Sidebar: Mixed Language Apps” later in this chapter,
and if you're curious about language choice for apps more generally, see My take on HTML/JS vs.
C/XAML vs. C++/DirectX on my blog.)

A third benefitis that as new web standards develop and provide APIs for features of the native
platform, the fact that your app is written in the same language as the web will make it easier to port
features from your native app to cross-platform web applications, if so desired.

Throughout this book we'll explore how to leverage what you know of standards-based web
technologies—HTML, CSS, and JavaScript—to build great Windows Store apps for Windows 8.1. In the
next chapter we'll focus on the basics of a working app and the tools used to build it. Then we'll look at
fundamentals like the fuller anatomy of an app, incorporating web content, using controls and
collections, layout, commanding, state management, and input (including sensors), followed by
chapters on media, animations, contracts through which apps work together, live tiles and toast
notifications, accessing peripheral devices, WinRT components (through which you can use other
programming languages and the additional APIs they can access), expanding your reach through
localization and accessibility, and working with the Windows Store. There is much to learn—it's a rich
platform!

For starters, let's talk about the environment in which apps run and the characteristics of the
platform on which they are built—especially the terminology that we'll depend on in the rest of the
book (highlighted in italics). We'll do this by following an app’s journey from the point when it first
leaves your hands, through its various experiences with your customers, to where it comes back home
for renewal and rebirth (that is, updates). For in many ways your app is like a child: you nurture it
through all its formative stages, doing everything you can to prepare it for life in the great wide world.
So it helps to understand the nature of that world!

31

http://kraigbrockschmidt.com/blog/?p=304
http://kraigbrockschmidt.com/blog/?p=304

Terminology note What we refer to as Windows Store apps, or sometimes just Store apps, are those
that are acquired from the Windows Store and for which all the platform characteristics in this chapter
(and book) apply. These are distinctly different from traditional desktop applications that are acquired
through regular retail channels and installed through their own setup programs. Unless noted, then, an
“app” in this book refers to a Windows Store app.

What about Windows Phone? The answer is yes! Windows Phone 8.1 supports writing apps with
HTML, CSS, and JavaScript using much of what we'll be learning about in this book for Windows Store
apps. However, this capability on Windows Phone happened very late in the production of this book,
so I'm able to provide only a few details. I've included a brief overview later in this chapter under
"Sidebar: Writing Windows Phone Apps with HTML, CSS, and JavaScript,” with pointers to where you'll
be able to find more information.

Leaving Home: Onboarding to the Windows Store

For Windows Store apps, there's really one port of entry into the world: customers always acquire,
install, and update apps through the Windows Store. Developers and enterprise users can side-load
apps, but for the vast majority of the people you care about, they go to the Windows Store and
nowhere else.

This obviously means that an app—the culmination of your development work—has to get into the
Store in the first place. This happens when you take your pride and joy, package it up, and upload it to
the Store by using the Store/Upload App Packages command in Visual Studio. To do this, you'll need to
create a developer account with the Store by using the Store > Open Developer Account command in
Visual Studio Express (and this account works for both Windows and Windows Phone). Visual Studio
Express and Expression Blend, which we'll also be using, are free tools you can obtain from
http://dev.windows.com. This also works in Visual Studio Ultimate, the fuller, paid version of Microsoft's
development environment.

The package itself is an appx file (.appx)—see Figure 1-1—that contains your app’s code, resources,
libraries, and a manifest, up to a combined limit of 8GB. The manifest describes the app (names, logos,
etc.), the capabilities it wants to access (such as media libraries or specific devices like cameras), and
everything else that's needed to make the app work (such as file associations, declaration of
background tasks, and so on). Trust me, we'll become great friends with the manifest!

32

http://dev.windows.com/

AppXManifest.xml

AppBlockMap.xml

Signature

(Some other stuff)

FIGURE 1-1 An appx package is simply a zip file that contains the app’s files and assets, the app manifest, a
signature, and a sort of table-of-contents called the blockmap. When uploading an app, the initial signature is
provided by Visual Studio; the Windows Store will re-sign the app once it's certified.

Blockmaps make updates easy The blockmap is hugely important for the customer experience of app
updates (which are automatically installed by default in Windows 8.1) and, as a consequence, for your
confidence in issuing updates. It describes how the app’s files are broken up into 64K blocks. In
addition to providing certain performance optimizations and security functions (like detecting whether
a package has been tampered with), the blockmap describes exactly what parts of an app have been
updated between versions so that the Windows Store need download only those specific blocks rather
than the whole app anew. This greatly reduces the time and overhead that a user experiences when
acquiring and installing updates. That is, even if your whole app package is 300MB, an update that
affects a total of four blocks would mean your customers are downloading only 256 kilobytes.

The upload process will walk you through setting your app’s name (which you do ahead of time
using the Store > Reserve App Name and Store > Associate App with the Store commands in Visual
Studio), choosing selling details (including price tier, in-app purchases, and trial periods), providing a
description and graphics, and also providing notes to manual testers. After that, your app goes through
a series of job interviews, if you will: background checks (malware scans and GeoTrust certification) and
manual testing by a human being who will read the notes you provide (so be courteous and kind!).
Along the way you can check your app's progress through the Windows Store Dashboard.!

The overarching goal with these job interviews (or maybe it's more like getting through airport
security!) is to help users feel confident and secure in trying new apps, a level of confidence that isn't
generally found with apps acquired from the open web. Because all apps in the Store are certified,
signed, and subject to ratings and reviews, customers can trust all apps from the Store as they would

1 All of the automated tests except the malware scans are incorporated into the Windows App Certification Kit, affectionately
known as the WACK. This is part of the Windows SDK that is itself included with the Visual Studio Express/Expression Blend
download. If you can successfully run the WACK during your development process, you shouldn't have any problem passing the
first stage of onboarding. We'll learn about the WACK in Chapter 20.

33

https://appdev.microsoft.com/StorePortals

trust those recommended by a reliable friend. Truly, this is wonderful news for most developers,
especially those just getting started—it gives you the same access to the worldwide Windows market
that has been previously enjoyed only by those companies with an established brand or reputation.

It's worth noting that because you set up pricing, trial versions, and in-app purchases during the on-
boarding process, you'll have already thought about your app’s relationship to the Store quite a bit!
Afterall, the Store is where you'll be doing business with your app, whether you're in business for fame,
fortune, fun, or philanthropy.

Indeed, this relationship spans the entire lifecycle of an app—from planning and development to
distribution, support, and servicing. This is, in fact, why I've started this life story of an app with the
Windows Store, because you really want to understand that whole lifecycle from the very beginning of
planning and design. If, for example, you're looking to turn a profit from a paid app or in-app
purchases, perhaps also offering a time-limited or feature-limited trial, you'll want to engineer your app
accordingly. If you want to have a free, ad-supported app, or want to use a third-party commerce
solution forin-app purchases (bypassing revenue sharing with the Store), these choices also affect your
design from the get-go. And even if you're just going to give the app away to promote a cause or to
just share your joy, understanding the relationship between the Store and your app is still important.
For all these reasons, you might want to skip ahead and read the "Your App, Your Business” section of
Chapter 20, "Apps for Everyone, Part 2," before you start writing your app in earnest. Also, take a look
at the Certify your app topic on the Windows Developer Center.

Anyway, if your app hits any bumps along the road to certification, you'll geta report back with all
the details, such as any violations of the App certification requirements for the Windows Store (part of
the Windows Store agreements section). Otherwise, congratulations—your app is ready for customers!

Sidebar: The Store APl and Product Simulator

At run time, apps use the Windows.AppTlicationModel.Store.CurrentApp classin WinRT to
retrieve their product information from the Store (including in-app purchase listings), check
license status, and prompt the user to make purchases (such as upgrading a trial or making an
in-app purchase).

This begs a question: how can an app test such features before it's even in the Store? The
answer is that during development, you use these APIs through the CurrentAppSimulator class
instead. This is entirely identical to CurrentApp (and in the same namespace) except that it works
against local data in an XML file rather than live Store data in the cloud. This allows you to
simulate the various conditions that your app might encounter so that you can exercise all your
code paths appropriately. Just before packaging your app and sending it to the Store, just
change CurrentAppSimulator to CurrentApp and you're good to go. (If you forget, the
simulator will simply fail on a non-developer machine, like those used by the Store testers,
meaning that you'll fail certification.)

34

http://msdn.microsoft.com/library/windows/apps/hh694079.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh694082.aspx

Discovery, Acquisition, and Installation

Now that your app is out in the world, its next job is to make itself known and attractive to potential
customers. What's vital to understand here is what the Windows Store does and does not do for you. Its
primary purpose is to provide a secure and trustworthy marketplace for distributing apps, updating
apps, transparently handling financial transactions across global markets, and collecting customer
reviews and basic telemetry (crash dumps)—which taken together is a fabulous service! That said, the
mere act of onboarding an app to the Windows Store does not guarantee anyone will find it. That's
one reality of publishing software that certainly hasn't changed. You still need to write great apps and
you still need to market them to your potential customers, using advertising, social media, and
everything else you'd do when trying to get a business off the ground.

That said, even when your app is found in the Store it needs to present itself well to its suitors. Each
app in the Store has a product description page where people see your app description, promotional
graphics, ratings and reviews, and the capabilities your app has declared in its manifest, as shown in
Figure 1-2. That last bit means you want to be judicious in declaring your capabilities. A music player
app, for instance, will obviously declare its intent to access the user's music library but usually doesn't
need to declare access to the pictures library unless it has a good justification. Similarly, a
communications app would generally ask for access to the camera and microphone, but a news reader
app probably wouldn't. On the other hand, an ebook reader might declare access to the microphone if
it had a feature to attach audio notes to specific bookmarks.

© Skype 7

This app is installed on this PC.
Last updated on this PC on 8/31/2013

i:._;u s 2

Apps by Skype>

Skype Wifi Pete Bergman) o)
Fdii [This app has permission to use:

3 » Your home or work networks

a » Your Internet connection, including

o incoming connections from the Internet
CUET $599 *dkkx 1 @ @ @ » Your webcam
Chat, share files and photos. » Your microphone
» Your Internet connection

Related apps:

Rate this app

Published by Skype
© 2012-2013 Skype and/or Microsoft

Supported processors
x86, x64, ARM

Write a review

FIGURE 1-2 A typical app page in the Windows Store; by tapping the Permissions link at the upper left, the page
pans to the Details section, which lists all the capabilities that are declared in the manifest (overlay). You can see
here that Skype declares five different capabilities, all of which are appropriate for the app’s functionality.

35

The point here is that what you declare must make sense to the user, and if there are any doubts
you should clearly indicate the features related to those declarations in your app’s description.
Otherwise the user might really wonder just what your news reader app is going to do with the
microphone and might opt for another app that seems less intrusive.2

The user will also see your app pricing, of course, and whether you offer a trial period. Whatever the
case, if they choose to install the app (getting it for free, paying for it, or accepting a trial), your app
now becomes fully incarnate on a real user's device. The appx package is downloaded to the device
and installed automatically along with any dependencies, such as the Windows Library for JavaScript
(see “Sidebar: What is the Windows Library for JavaScript?”). As shown in Figure 1-3, the Windows
deployment manager creates a folder for the app, extracts the package contents to that location,
creates appdata folders (local, roaming, and temp, which the app can freely access, along with settings
files for key-value pairs), and does any necessary fiddling with the registry to install the app’s tile on the
Start screen, create file associations, install libraries, and do all those other things that are again
described in the manifest. It can also start live tile updates before your app is even run the first time if
you provide an appropriate URI in your manifest. There are no user prompts during this process—
especially not those annoying dialogs about reading a licensing agreement!

Download and install app package

]

css

images
appxmanifest.xml
etc.

Download and install dependencies
(identified in the manifest)

System folders

Create appdata structures

user\appdata\local\packages\<app>
Settings (+ settings.dat)
{7 LocalState
TempState
RoamingState (automatically
downloaded from the cloud)

Createregistry
entries based on
manifest (including
Start page tile, etc.)

J

Registry

FIGURE 1-3 The installation process for Windows Store apps; the exact sequence is unimportant. Any roaming state
that exists in the cloud from the app on other devices is automatically downloaded as part of installation.

2 The user always has the ability to disallow access to sensitive resources and devices at run time for those apps that have declared
the intent. They can do this for a specific app through the system-provided Settings > Permissions command or generally through

the various section under PC Settings > Privacy.

36

In fact, licensing terms are integrated into the Store; acquisition of an app implies acceptance of
those terms. (However, it is perfectly allowable for apps to show their own license acceptance page on
startup, as well as require an initial login to a service if applicable.) But here’s an interesting point: do
you remember the real purpose of all those lengthy, annoyingly all-caps licensing agreements that we
pretend to read? Almost all of them basically say that you can install the software on only one machine.
Well, that changes with Windows Store apps: instead of being licensed to a machine, they are licensed
to the user, giving that user the right to install the app on up to eighty-one different devices.

In this way Store apps are a much more personal thing than desktop apps have traditionally been.
They are less general-purpose tools that multiple users share and more like music tracks or other media
that really personalize the overall Windows experience. So it makes sense that users can replicate their
customized experiences across multiple devices, something that Windows supports through automatic
roaming of app data and settings between those devices. (More on that later.)

In any case, the end result of all this is that the app and its necessary structures are wholly ready to
awaken on a device as soon as the user taps a tile on the Start screen or launches it through features
like Search and Share. And because the system knows about everything that happened during
installation, it can also completely reverse the process for a 100% clean uninstall—completely blowing
away the appdata folders, for example, and cleaning up anything and everything that was put in the
registry. This keeps the rest of the system entirely clean over time, even though the user may be
installing and uninstalling hundreds or thousands of apps. This is like the difference between having
guests in your house and guests in a hotel. In your house, guests might eat your food, rearrange the
furniture, break a vase or two, feed leftovers to the pets, stash odds and ends in the backs of drawers,
and otherwise leave any number of irreversible changes in their wake (and you know desktop apps that
do this, I'm sure!). In a hotel, on the other hand, guests have access only to a very small part of the
whole structure, and even if they trash their room, the hotel can cleanit out and reset everything as if
the guest was never there.

Sidebar: What Is the Windows Library for JavaScript?

The HTML, CSS, and JavaScript code in a Windows Store app is only parsed, compiled, and
rendered at run time. (See the “Playing in Your Own Room: The App Container” section below.)
As a result, a number of system-level features for apps written in JavaScript, like controls,
resource management, and default styling are supplied through the Windows Library for
JavaScript, or WinJS, rather than through the Windows Runtime API. This way, JavaScript
developers see a natural integration of those features into the environment they already
understand, rather than being forced to use different kinds of constructs.

WinJS, for example, provides HTML implementations of a number of controls, meaning that
instances of those controls appear as part of the DOM and can be styled with CSS like other
intrinsic HTML elements. This is much more natural for developers than having to create an
instance of some WinRT class, bind it to a separate HTML element, and style it through code or
some other proprietary markup scheme. Similarly, WinJS provides an animations library built on

37

CSS that embodies the Windows user experience so that apps don't have to figure out how to re-
create that experience themselves.

Generally speaking, WinJS is a toolkit that contains a number of independent capabilities that
can be used together or separately. WinJS thus also provides helpers for common JavaScript
coding patterns, simplifying the definition of namespaces and object classes, handling of
asynchronous operations (that are all over WinRT) through promises, and providing structural
models for apps, data binding, and page navigation. At the same time, it doesn’'t attempt to wrap
WinRT unless there is a compelling scenario where WinJS can provide real value. After all, the
mechanism through which WinRT is projected into JavaScript already translates WinRT structures
into forms that are familiar to JavaScript developers.

Truth be told, you can write a Windows Store app in JavaScript without WinJS or just pickand
choose what parts of the library are to your liking! But | think you'll find that it saves you all kinds
of tedious work. In addition, WinJS is shared between every Store app written in JavaScript, and
it's automatically downloaded and updated as needed when dependent apps are installed. We'll
see nearly all of its features throughout this book, and you can always explore what's available
through the Windows API reference (just scroll down to where you see WinJS and its subsidiary
namespaces in the left-hand table of contents).

Sidebar: Third-Party Libraries

Apps can freely use third-party libraries by bundling them into their own app package, provided
of course that the libraries use only the APIs available to Windows Store apps and follow
necessary security practices that protect against script injection and other attacks. Many apps use
jQuery 2.0 (see jQuery and WinJS working together in Windows Store apps); others use
Angular.js, Box2D, Prototype, and so forth. Apps can also use third-party binaries, such as WinRT
components, by bundling them with their app package. See this chapter's "Sidebar: Mixed
Language Apps."

For an index of the ever-growing number of third-party solutions that are available for
Windows Store apps, visit the Windows Partner Directory at http://services.windowsstore.com/.

Of course, bundling libraries and frameworks into your app package will certainly make that
package larger, raising natural concerns about longer download times for apps and increased
disk footprint. This has prompted requests for the ability to create shared framework packagesin
the Store (which Microsoft supports only fora few of its own libraries like WinJS). However, the
Windows team devised a different approach. When you upload an app package to the Store, you
will still bundle all your dependencies. On the consumer side, however, the Windows Store
automatically detects when multiple apps share identical files. It then downloads and maintains a
single copy of those files, making subsequent app installations faster and reducing overall disk
footprint.

This way the user sees all the benefits of shared frameworks in a way that's almost entirely

38

http://msdn.microsoft.com/library/windows/apps/br211377.aspx
http://blogs.windows.com/windows/b/appbuilder/archive/2013/07/10/jquery-and-winjs-working-together-in-windows-store-apps.aspx
http://services.windowsstore.com/

transparent to developers. The one requirement is that you should avoid, if possible, recompiling
or otherwise modifying third-party libraries, especially larger ones like game engines, because
you'll then produce different variations that must be managed separately.

Playing in Your Own Room: The App Container

Now, just as the needs of each day may be different when we wake up from our night's rest, Store apps
can wake up—be activated—for any number of reasons. The user can, of course, tap or click the app’s
tile on the Start screen. An app can also be launched in response to charms like Search and Share,
through file or protocol associations, and a number of other mechanisms. We'll explore these variants
as we progress through this book. But whatever the case, there’s a little more to this part of the story
for apps written in JavaScript.

In the app’s package folder are the same kind of source files that you see on the web:.html files, .css
files, js files, and so forth. These are not directly executable like .exe files for apps written in C#, Visual
Basic, or C++, so something has to take those source files and produce a running app with them. When
your app is activated, then, what actually gets launched is that something: a special app host process
called wwahost.exe3, as shown in Figure 1-4.

App folder
html
s Displa
css p y
images
appxmanifest.xml
etc.
- _J
(on the file system)

App Host Process

JavaScript HTML/CSS

Engine Rendering
Engine

App Container

(in memory)

FIGURE 1-4 The app host is an executable (wwahost.exe) that loads, renders, and executes HTML, CSS, and
JavaScript, in much the same way that a browser runs a web application.

3 "wwa" is an old acronym for Windows Store apps written in JavaScript; some things just stick....
39

The app host is more or less Internet Explorer without the browser chrome—more in that your app
runs on top of the same HTML/CSS/JavaScript engines as Internet Explorer, less in that a number of
things behave differently in the two environments. For example:

A number of methods in the DOM API are either modified or not available, depending on their
design and system impact. For example, functions that display modal Ul and block the Ul thread
are not available, like window.alert, window.open, and window.prompt. (Try Windows.UI.-
Popups.MessageDialog instead for some of these needs.)

The MSApp object, which represents the app host's capabilities, provides many of the same
methods like requestAnimationFrame asit does within Internet Explorer, and it also provides
additional features for Store apps.

The engines support additional methods and properties on a variety of elements—such as
audio, video, and canvas—that are specific to being an app as opposed to a website.

The default page of an app written in JavaScript runs in what's called the local context wherein
JavaScript code has access to WinRT, can make cross-domain HTTP requests, and can access
remote media (videos, images, etc.). However, you cannot load remote script (from http[s]
sources, for example), and script is automatically filtered out of anything that might affect the
DOM and open the app to injection attacks (e.g., document.write and innerHTML properties).

Other pages in the app, as well as webview and iframe elements within a local context page,
can run in the web context wherein you get web-like behavior (such as remote script) but don't
get WiInRT access nor cross-domain HTTP requests (though you can still use much of WinJS).
Web context elements are generally used to host web content on a locally packaged page (like
a map control, as we'll see in Chapter 2, "Quickstart"), or to load pages that are directly hosted
on the web, while not allowing web pages to drive the app (a violation of Store policy).

For full details on all these behaviors, see HTML and DOM API changes list and HTML, CSS, and
JavaScript features and differences on the Windows Developer Center, http://dev.windows.com. As with
the app manifest, you should become good friends with the Developer Center.

All Store apps, whether hosted or not, run inside an environment called the app container. This is an
insulation layer, if you will, that generally blocks local interprocess communication and either blocks or
brokers access to system resources. The key characteristics of the app container are described as follows
and illustrated in Figure 1-5:

All Store apps run within a dedicated environment that cannot interfere with or be interfered by
other apps, nor can apps interfere with the system.

Store apps, by default, get unrestricted read/write access only to their specific appdata folders
on the hard drive (local, roaming, and temp). Access to everything else in the file system
(including removable storage) has to go through a broker. This gatekeeper provides access only
if the app has declared the necessary capabilities in its manifest and/or the user has specifically
allowed it. We'll see the specific list of capabilities shortly.

40

http://msdn.microsoft.com/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/library/windows/apps/hh465380.aspx
http://msdn.microsoft.com/library/windows/apps/hh465380.aspx
http://dev.windows.com/

Access to sensitive devices (like the camera, microphone, and GPS) and certain classes of
peripherals is similarly controlled—the WinRT APIs that work with those devices will fail if the
broker blocks those calls because the app hasn't declared the appropriate capability inits
manifest or the user has denied permission at run time. And access to critical system resources,
such as the registry, simply isn't allowed at all.

Store apps cannot programmatically launch other apps by name or file path but can do so
through file or URI scheme associations. Because these associations are ultimately under the
user's control, there’s no guarantee that such an operation will start a specific app. However, we
do encourage app developers to use app-specific URI schemes that will effectively identify your
specific app as a target. Technically speaking, another app could come along and register the
same URI scheme (thereby giving the user a choice), but this is unlikely with a URI scheme that's
closely related to the app's identity.

Store apps are isolated from one another to protect from various forms of attack. This also
means that some legitimate uses (like a snipping tool to copy a region of the screen to the
clipboard) cannot be written as a Windows Store app; they must be a desktop application.

Direct interprocess communication is blocked between Store apps, between Store apps and
desktop applications, and between Store apps and local services. (Exceptions are made for side-
loaded apps in enterprise environments, and in some debugging conditions.) Apps can still
communicate through the cloud (web services, sockets, etc.), and many common tasks that
require cooperation between apps—such as Search and Share—are handled through contracts
in which those apps need not know any details about each other.

Direct Access

AppData

Local, Temp, Roaming Communication

via Cloud

Brokered Access

All other areas

App Process

App Process

g g App Container App Process
P-4 <
g k.
= [}
a S
@

App Process

System APIs

FIGURE 1-5 Process isolation for Windows Store apps.

41

Sidebar: Mixed Language Apps

Windows Store apps written in JavaScript can access only WinRT APIs directly. Apps or libraries
written in C#, Visual Basic, and C++ also have access to a subset of Win32 and .NET APIs, as
documented on Win32 and COM for Windows Store apps. Unfair? Not entirely, because you can
write a WinRT component in those other languages that make functionality built with those other
APIs available in the JavaScript environment (through the same projection mechanism that WinRT

itself uses). Because these components are written in compiled languages, they can execute faster
than the equivalent code written in JavaScript and also offer some degree of intellectual property
protection (e.g., hiding algorithms either through obfuscation or by using a fully compiled
language like C++).

Such mixed language apps thus use HTML/CSS for their presentation layer and JavaScript for
some app logic while placing the most performance critical or sensitive code in compiled
components. The dynamic nature of JavaScript, in fact, makes it a great language for gluing
together multiple components. We'll see more in Chapter 18, "WinRT Components.”

Note that when your mainapp is written in JavaScript, we recommend using only WinRT
components written in C++ to avoid having two managed environments loaded into the same
process. Using WinRT components written in C# or Visual Basic does work but incurs added
memory overhead and risks memory leaks across multiple garbage collectors.

Sidebar: Assigned Access (Kiosk Mode)

In a variety of scenarios, such as a public kiosk, it's desirable to allow only a single app to run on
a device and to prevent users from accessing most system capabilities like the Start screen. This
feature, called assigned access, is configured through PC Settings > Accounts > Other Accounts >
Set Up An Account For Assigned Access, where you associate a specific account with the one app
that's allowed for that account. This can also be done through PowerShell scripts. For more
information, see Assigned access: FAQ and Assigned Access Cmdlets.

Different Views of Life: Views and Resolution Scaling

So, the user has tapped on an app tile, the app host has been loaded into memory, and it's ready to get
everything up and running. What does the user see?

The first thing that becomes immediately visible is the app’s splash screen, which is described in its
manifest with an image and background color. This system-supplied screen guarantees that at least
something shows up forthe app when it's activated, even if the app completely gags onits first line of
code or never gets there at all. In fact, the app has 15 seconds to getits act together and display its
main window, or Windows automatically gives it the boot (terminates it, that is) if the user switches
away. This avoids having apps that hang during startup and just sit there like a zombie, where often the

42

http://msdn.microsoft.com/library/windows/apps/br205757.aspx
http://windows.microsoft.com/en-us/windows-8/assigned-access
http://technet.microsoft.com/library/dn336438.aspx

user can only kill it off by using that most consumer-friendly tool, Task Manager. (Yes, I'm being
sarcastic—Task Manager is today much more user-friendly than it used to be.) Of course, we highly
recommend that you get your app to an interactive state as quickly as possible; we'll look at some
strategies for this in Chapter 3, “App Anatomy and Performance Fundamentals.” That said, some apps
will need more time to load, in which case you can create an extended splash screen by making the
initial view of your main window look the same as the splash screen. This satisfies the 15-second time
limitand lets you display other Ul while the app is getting ready. Details are in Appendix B, “WinJS
Extras.”

Now, when a normally launched app comes up, it might share space with other apps, but often it
has full command of the entire screen—well, not entirely. Windows reserves a one pixel space along
every edge of the display through which it detects edge gestures, but the user doesn't see that detail.
Your app still gets to draw in those areas, mind you, but it will not be able to detect pointer events
therein. A small sacrifice for full-screen glory!

The purpose of those edge gestures—swipes from the edge of the screen toward the center—is to
keep both system and app commands (like menus and other commanding Ul) out of the way until
needed—an aspect of the design principle called “content before chrome.” This helps the user stay fully
immersed in the app experience. The left and right edge gestures are reserved for the system, whereas
the top and bottom are for the app. Swiping up from the top or bottom edges, as you've probably
seen, brings up the app bar on the bottom of the screen where an app places most of its commands,
and possibly also a navigation bar on the top. We'll see these in Chapter 9, “Commanding UL."

When running full-screen, the user’s device can be oriented in either portrait or landscape, and apps
can process various events to handle those changes. An app can also lock the orientation as needed, as
well as specify its supported orientations in the manifest, which prevent Windows from switching to an
unsupported orientation when the app is in the foreground. For example, a movie player will generally
want to lock into landscape mode during playback such that rotating the device doesn't change the
display. We'll see these details in Chapter 8, "Layout and Views."

What's also true is that your app might not always be running full-screen, even from first launch. In
landscape mode, you app can share the screen real estate with perhaps as many as four other apps,
depending on the screen size.* (See Figure 1-6.) In these cases it's helpful to refer to the app’s display
area as a view. By default, Windows allows the user to resize a view down to 500 pixels wide, and you
can indicate in your manifest that your app supports going down to 320 pixels wide, increasing the
likelihood that the user will keep it visible alongside other apps.

4 For developers familiar with Windows 8, the distinct view states of filled, snapped, fullscreen-portrait, and fullscreen-
landscape are replaced in Windows 8.1 with variable sizing.

43

VOWING TO BEAR
OWN

FIGURE 1-6 Various arrangements of Windows Store apps—a 50/50 split view on the smaller screen (in front), and
four apps sharing the screen on a large monitor (behind). Depending on the minimum size indicated in their
manifests, apps must be prepared to show properly in any width and orientation, a process that generally just
involves visibility of elements and layout and that can often be handled entirely within CSS media queries.

In practical terms, variable view sizing means that your layout must be responsive, as it's called with
web design, accommodating different aspect ratios and different widths and heights. Generally
speaking, most if not all of this can be handled through CSS media queries using the orientation
feature (to detect portrait or landscape aspect ratio) along withmin-width and max-width. We'll see
distinct examples in Chapter 2. It's also worth noting that when one app launches another through
associations or other contracts, it can specify whether and how it wants its view to remain visible. This
makes it possible to really have two apps working together side by side fora shared purpose. Indeed,
the default behavior when the user activates a hyperlink in an app is that the browser will openin a
50/50 split view alongside the app.

Apps can also programmatically spawn multiple views, which the user can size and position
independently of one another, even across multiple monitors. (For this reason, views cannot depend on
their relative placement and should represent separate functions of the app.) An app can even project a
secondary view such that it always shows full-screen on a second monitor, as is appropriate foran app
that shows speaker notes in one view and a presentationin the other.

In narrow views, especially the optional 320px minimum, apps will often change the presentation of
content or its level of detail. For instance, in portrait aspect ratios (height > width), horizontally
oriented lists are typically switched to a condensed vertical orientation. But don't be nonchalant about
this: consciously design views for every page in your app and design them well. After all, users like to
look at things that are useful and beautiful, and the more an app does this with all its views, the more
likely it is that users will again keep that app visible even while they're working in another.

44

Another key point for all views is that they aren't mode changes. When a view is resized but still
visible, or when orientation changes, the user is essentially saying, “Please stand over here in this
doorway, or please lean sideways.” So the app should never change what it's doing (like switching from
a game board to a high score list) when updating a view's layout; it should just present a view
appropriately for that width and orientation.

With all views, an app should make good use of all its available screen real estate. Across your
customer base, your app will be run on many different displays, anywhere from 1024x768 (the
minimum hardware requirement) to resolutions like 2560x1440 and beyond that are becoming more
common. The guidance here is that views with fixed content (like a game board) will generally scale in
size to fill the available space, whereas views with variable content (like a news reader) will generally
show more content. For more details, refer to Guidelines for window sizes and scaling to screens and

the Windows Design Center.

It might also be true that you're running on a high-resolution device that has a very small screen
(high pixel density), such as the 10.6" Surface Pro that has a 1920x1200 resolution, a 13.3" QHD device,
or an 8" device with an even sharper screen. Fortunately, Windows does automatic scaling such that the
app still sees a 1366x768 display (more or less) through CSS, JavaScript, and the WinRT API. In other
words, you almost don't have to care. The only concern is bitmap (raster) graphics, with which you'll
ideally provide scale-specific variants as we'll see in Chapters 3 and 8. Fortunately, the Windows Store
automatically manages resources across scale factors and languages (for localization) such that it
downloads only those resources that a user needs for their configuration.

As a final note, when an app is activated in response to a contract like Search or Share, its initial view
might not be a typical app view at all but rather its specific landing page for that contract that overlays
the current foreground app. We'll see these details in Chapter 15, "Contracts.”

Sidebar: Single-Page vs. Multipage Navigation

When you write a web application with HTML, CSS, and JavaScript, you typically end up with a
number of different HTML pages and navigate between them using <a href> tags or by setting
document.location.

This is all well and good and works in a Windows Store app, but it has several drawbacks. One
is that navigation between pages means reloading script, parsing a new HTML document, and
parsing and applying CSS again. Besides obvious performance implications, this makes it difficult
to share variables and other data between pages, as you need to either save that data in
persistent storage or stringify the data and pass it on the URI.

Furthermore, switching between pages is visually abrupt: the user sees a blank screen while
the new page is being loaded. This makes it difficult to provide a smooth, animated transition
between pages as generally seen within the Windows personality—it's the antithesis of “fastand
fluid” and guaranteed to make designers cringe.

45

http://msdn.microsoft.com/library/windows/apps/hh465349.aspx
http://design.windows.com/

To avoid these concerns, apps written in JavaScript are typically structured as a single HTML
page (basically a container div) into which different bits of HTML content, called page controls in
WinJS, are loaded into the DOM at run time, similar to how AJAX works. This DOM replacement
scheme has the benefit of preserving the script context and allows for transition animations
through CSS and/or the WinJS animations library. We'll see the details in Chapter 3.

Those Capabilities Again: Getting to Data and Devices

At run time, now, even inside the app container, your app has plenty of room to play and to delight
your customers. It can employ web content and connectivity to its heart's content, either directly
hosting content in its layout with the webview control or obtaining data through HTTP requests or
background transfers (Chapter 4). An app has many different controls at its disposal, as we'll see in
Chapters 5, 6, and 7, and can style them however it likes from the prosaic to the outrageous. Similarly,
designers have the whole gamut of HTML and CSS to work with for their most fanciful page layout
ideas, along with a Hub control that simplifies a common home page experience (Chapter 8). An app
can work with commanding Ul like the app bar (Chapter 9), manage state and user data (Chapters 10
and 11), and receive and process pointer events, which unify touch, mouse, and stylus (Chapter 12—
with these input methods being unified, you can design for touch and get the others for free; input
from the physical and on-screen keyboards are likewise unified). Apps can also work with sensors
(Chapter 12), rich media (Chapter 13), animations (Chapter 14), contracts (Chapter 15), tiles and
notifications (Chapter 16), and various devices and printers (Chapter 17). They can optimize
performance and extend their capabilities through WinRT components (Chapter 18), and they can
adapt themselves to different markets (Chapter 19), provide accessibility (Chapter 19), and work with
various monetization options like advertising, trial versions, and in-app purchases (Chapter 20).

Note For a more complete mapping between different app features and the chapters of this book, see
the “Feature Roadmap and Cross-Reference” section at the end of this chapter.

Many of these features and their associated APIs have no implications where user privacy is
concerned, so apps have open access to them. These include controls, touch/mouse/stylus input,
keyboard input, and sensors (like the accelerometer, inclinometer, and light sensor). The appdata
folders (local, roaming, and temp) that were created forthe app at installation are also openly
accessible. Other features, however, are again under more strict control. As a person who works
remotely from home, for example, | really don't want my webcam turning on unless | specifically tell it
to—I may be calling into a meeting before I've had a chance to wash up! Such devices and other
protected system features, then, are again controlled by a broker layer that will deny access if (a) the
capability is not declared in the manifest, or (b) the user specifically disallows that access at run time.
Those capabilitiesare listed in the following table:

46

Capability

Description

Prompts for user
consent at run time

Internet (Client) Outbound access to the Internet and public networks (which includes No
making requests to servers and receiving information in response).®

Internet (Client & Server) Outbound and inbound access to the Internet and public networks No

(superset of Internet (Client); (inbound access to critical ports is always blocked).

only one needs to be declared)

Private Networks Outbound and inbound access to home or work intranets (inbound access | No

(Client & Server) to critical ports is always blocked).

MusicLibrary Read/write access to the user's Music/Pictures/Videos area on the file No

Pictures Library system (all files).

Video Library®

Removable Storage Read/write access to files on removable storage devices for specifically No
declared file types.

Microphone Access to microphone audio feeds (includes microphoneson cameras). Yes

Webcam Access to camera audio/video/image feeds. Yes

Location Access to the user’s location via GPS. Yes

Proximity The ability to connect to other devices through near-field communication | No
(NFC).
Access to intranet resources that require domain credentials; not typically | No

Enterprise Authentication

needed for most apps. Requires a corporate accountin the Windows
Store.

Shared User Certificates

Access to software and hardware (smart card) certificates. Requires a
corporate accountin the Windows Store.

Yes, in that the user
must take action to
select a certificate,
inserta smart card, etc.

[otherarbitrary devices and
peripherals]

Access to specific devicesvia USB, HID, Bluetooth, WiFi Direct, and NFC
communication transports.

Yes

When user consent is involved, calling an API to access the resource in question will prompt for user
consent, as shown in Figure 1-7. If the user accepts, the API call will proceed; if the user declines, the
API call will return an error. Apps must accordingly be prepared for such APIs to fail, and they must
then behave accordingly.

Can Maps use your locatio

FIGURE 1-7 A typical user consent dialog that's automatically shown when an app first attempts to use a brokered
capability. This will happen only once within an app, but the user can control their choice through the Settings
charm'’s Permissions command for that app or through PC Settings > Privacy.

5 Note that network capabilities are not necessary to receive push notifications because those are received by the system

and not the app.

6 The Documents Library capability that was present in Windows 8 no longer exists in Windows 8.1 because the scenarios
that actually needed it can be handled through file pickers.

47

When you first start writing apps, really keep the manifest and these capabilities in mind—if you
forget one, you'll see APIs failing even though all your code is written perfectly (or was copied from a
working sample). In the early days of building the first Windows Store apps at Microsoft, we routinely
forgot to declare the Internet (Client) capability, so even things like getting to remote media with an
img element or making a simple call to a web service would fail. Today the tools do a better job of
alerting you if you've forgotten a capability, but if you hit some mysterious problem with code that
you're sure should work, especially inthe wee hours of the night, check the manifest!

We'll encounter many other sections of the manifest besides capabilities in this book. For example,
you can provide a URI through which Windows can request tile updates so that your app has a live tile
experience even before it is run the first time. The removable storage capability requires you to declare
the specific file types for your app (otherwise access will generally be denied). The manifest also
contains content URIs: specific rules that govern which URIs are known and trusted by your app and can
thus act to some degree on the app’s behalf. Furthermore, the manifest is where you declare things like
your supported orientations, background tasks (like playing audio, tracking geofences, or handling real-
time communication), contract behaviors (such as which page in your app should be brought up in
response to being invoked via a contract), custom protocols, and the appearance of tiles and
notifications. You and your app will become bosom buddies with the manifest.

The last note to make about capabilities is that while programmatic access to the file system is
controlled by certain capabilities, the user can always point your app to other noncritical areas of the
file system—and any type of file—through the file picker Ul. (See Figure 1-8.) This explicit user action is
taken as consent for your app to access that particular file or folder (depending on what you're asking
for). Once you're app is given this access, you can use certain APIs to record that permission so that you
can get to those files and folders the next time your app is launched.

In summary, the design of the manifest and the brokering layer is to ensure that the user is alwaysin
control where anything sensitive is concerned, and as your declared capabilities are listed on your app’s
description page in the Windows Store, the user should never be surprised by your app’s behavior.

48

F||eS ¥ Local Disk (C2)

MDebug

Brother PerfLogs Windows.old

FIGURE 1-8 Using the file picker Ul to access other parts of the file system from within a Store app, such as folders
on a drive root (but not protected system folders). This is done by tapping the down arrow next to “Files.” Typically,
the file picker will look much more interesting when it's pointing to a media library!

Taking a Break, Getting Some Rest: Process Lifecycle
Management

Whew! We've covered a lot of ground already in this first chapter—our apps have been busy, busy,
busy, and we haven't even started writing any code yet! In fact, apps can become really busy when they
implement certain sides of contracts. If an app declares itself as a Share target, a Contact or
Appointments provider, or a File Picker provider in its manifest (among other things), Windows will
activate the app in response to the appropriate user actions. For example, if the user invokes the Share
charm and picks your app as a Share target, Windows will activate the app with an indication of that
purpose. In response, the app displays its specific share Ul—not the whole app—and when that task is
complete, Windows will shut your app down again (or send it to the background if it was already
running) without the need for additional user input.

This automatic shutdown or sending the app to the background are examples of built-in lifecycle
management for Windows Store apps that helps conserve power and optimize battery life. One reality
of traditional multitasking operating systems is that users typically leave a bunch of apps running, all of
which consume power. This makes sense with desktop apps because many of them can be at least
partially visible simultaneously. But for Store apps, the system is boldly taking on the job itself and
using the full-screen nature of those apps (or the limited ability to share the screen) to its advantage.

Apps typically need to be busy and active only when the user can see them (in whatever view).
When most apps are no longer visible, there is really little need to keep them idling. It's better to just
turn them off, give them some rest, and let the visible apps utilize the system’s resources.

49

So when an app goes to the background, Windows will automatically suspend it after about 5
seconds (according to the wall clock). The app is notified of this event so that it can save whatever state
it needs to (which I'll describe more in the next section). At this point the app is still in memory, with all
its in-memory structures intact, but it will simply not be scheduled for any CPU time. (See Figure 1-9.)
This is very helpful for battery life because most desktop appsidle like a gasoline -powered car, still
consuming a little CPU in case there's a need, forinstance, to repaint a portion of a window. Because a
Windows Store app in the background is completely obscured, it doesn't need to do such small bits of
work and can be effectively frozen. In this sense itis much more like a modern electric vehicle that can
be turned on and off as often as necessary to minimize power consumption.

If the user then switches back to the app (in whatever view, through whatever gesture), it will be
scheduled for CPU time again and resume where it left off (adjusting its layout for the view, of course).
The app is also notified of this event in case it needs to re-sync with online services, update its layout,
refresh a view of a file system library, or take a new sensor reading because any amount of time might
have passed since it was suspended. Typically, though, an app will not need to reload any of its own
state because it was in memory the whole time.

App gets 55 to handle App is not notified
suspend befcre termination
suspending
User Runni .
unning Suspended Terminated
| aunches Low Resources
App) App App
App resuming

Apps are notified when
they have been resumed

Splash

screen Code gets to run No code runs App not running

Limited background tasks can run
FIGURE 1-9 Process lifetime states for Windows Store apps.

There are a couple of exceptions to this. First, Windows provides a background transfer APl—see
Chapter 4, "Web Content and Services"—to offload downloads and uploads from app code, which
means apps don't have to be running for such purposes. Apps can also ask the system to periodically
update live tiles on the Start screen with data obtained from a service, or they can employ push
notifications (through the Windows Push Notification Service, WNS) that Windows can handle
directly—see Chapter 16, “Alive with Activity.” Second, certain kinds of apps do useful things when
they're not visible, such as audio players, communications apps, or those that need to take action when
specific system events occur (like a network change, user login, etc.). With audio, as we'll see in Chapter
13, “Media,” an app specifies background audio in its manifest (where else!) and sets certain properties
on the appropriate audio elements. This allows it to continue running in the background. With system

50

events, as we'll also see in Chapter 16, an app declares background tasks in its manifest that are tied to
specific functions in their code. In this case, Windows will run that task (while the app is suspended)
when an appropriate trigger occurs. This is shown at the bottom of Figure 1-9.

Over time, of course, the user might have many apps in memory, and most of them will be
suspended and consume very little power. Eventually there will come a time when the foreground
app—especially one that's just been launched—needs more memory than is available. In this case,
Windows will automatically terminate one or more apps, dumping them from memory. (See Figure 1-9
again.)

But here's the rub: unless a user explicitly closes an app—by using Alt+F4 or a top-to-bottom swipe-
and-hold, because Windows Store policy specifically disallows apps with their own close commands or
gestures—she still rightly thinks that the app is running. If she activates it again (as from its tile), she will
expect to return to the same place she left off. For example, a game should be in the same place it was
before (though automatically paused), a reader should be on the same page, and a video should be
paused at the same time. Otherwise, imagine the kinds of ratings and reviews your app will be getting
in the Windows Store!

So you might say, “Well, | should just save my app'’s state when | get terminated, right?” Actually, no:
your app will not be notified when it's terminated. Why? For one, it's already suspended at that time, so
no code will run. In addition, if apps need to be terminated in a low memory condition, the last thing
you want is for apps to wake up and try to save state which might require even more memory! It's
imperative, as hinted before, that apps save their state when being suspended and ideally even at other
checkpoints during normal execution. So let's see how all that works.

Remembering Yourself: App State and Roaming

To step back for a moment, one of the key differences between traditional desktop applications and
Windows Store apps is that the latter are inherently stateful. That is, once they've run the first time, they
remember their state across invocations (unless explicitly closed by the user or unless they provide an
affordance to reset the state explicitly). Some desktop applications work like this, but most suffer from
a kind of identity crisis when they're launched. Like Gilderoy Lockhart in Harry Potter and the Chamber
of Secrets, they often start up asking themselves, “Who am I?”7 with no sense of where they've been or
what they were doing before.

Clearly this isn't a good idea with Store apps whose lifetime is being managed automatically. From
the user's point of view, apps are always running (even if they're not). It's therefore critical that apps
first manage settings that are always in effect and then also save their session state when being

7 For those readers who have not watched this movie all the way through the credits, there's a short vignette at the very end.
During the movie, Lockhart—a prolific, narcissistic, and generally untruthful autobiographer—oses his memory froma backfiring
spell. In the vignette he's shown in a straitjacket on the cover of his newest book, Who am I?

51

suspended. This way, if the app is terminated and restarted, it can reload that session state to return to
the exact place it was before. (Anapp receives a flag on startup to indicate its previous execution state,
which determines what it should do with saved session state. Details are in Chapter 3.)

There's another dimension to statefulness: remember from earlier in this chapter that a user can
install the same Windows Store app on up to eighty-one devices? Well, that means that an app,
depending on its design, of course, can also be stateful between those devices. That is, if a user pauses a
video or a game on one device or has made annotations to a book or magazine on one device, the
user will naturally want to be able to go to another device and pick up at exactly the same place.

Fortunately, Windows makes this easy—really easy, in fact—by automatically roaming app settings
and state, along with Windows settings, between trusted devices on which the user is logged in with
the same Microsoft account, as shown in Figure 1-10. When roaming state exists, it's automatically
downloaded as part of app installation, so it's there when the app is first launched on a new device.

Device #1 Device #2

App Host Process 1 App Host Process

App Container | App Container

| '_ Apps use roaming data as if it were just local appdata |]

v v
AppData AppData
Roaming folder Roaming folder
and settings and settings

Roaming data (up to
100K) automatically
synced between
devices with same app
and same user account

FIGURE 1-10 Automatic roaming of app roaming data (folder contents and settings) between devices.

They key here is understanding how and where an app saves its state. (We already know when.) If
you recall, there's one place on the file system where an app has unrestricted access: its appdata folder.
Within that folder, Windows automatically creates subfolders named Local State, RoamingState, and
TempState when the app is installed. (I typically refer to them without the “State” suffix.) The app can
programmatically get to any of these folders at any time and can create in them all the files and
subfolders that will fulfill its heart's desire. There are also APIs for managing individual Local and

52

Roaming settings (key-value pairs), along with groups of settings called composites that are always
written to, read from, and roamed as a unit. (These are useful when implementing the app’s Settings
features for the Settings charm, as covered in Chapter 10, "The Story of State, Part 1.")

Now, although the app can write as much as it wants to the appdata areas (up to the capacity of the
file system), Windows will automatically roam the data in your Roaming sections only if you stay below
an allowed quota (~100K, but there’'s an API for that). If you exceed the limit, the data will still be there
locally but none of it will be roamed. Also be aware that cloud storage has different limits on the length
of filenames and file paths as well as the complexity of the folder structure. So keep your roaming state
small and simple. If the app needs to roam larger amounts of data, use a secondary web service like
OneDrive or Windows Azure Mobile Services (which we'll see more of in Chapter 16).

The app really needs to decide what kind of state is local to a device and what should be roamed.
Generally speaking, any kind of settings, data, or cached resources that are device -specific should
always be local (and Temp is also local), whereas settings and data that represent the user’s interaction
with the app are potential roaming candidates. For example, an email app that maintains a local cache
of messages would keep those local but would roam account settings (sans passwords; see Tip below)
so that the user can configure the app on one device and have that configuration apply on every other
device. The app would probably also maintaina per-device setting for how it downloads or updates
emails so that the user can minimize network/radio traffic on a mobile device. A media player, similarly,
would keep local caches that are dependent on the specific device’s display characteristics, and it would
roam playlists, playback positions, favorites, and other such settings (should the user want that
behavior, of course).

Tip For passwords in particular, always store them in the Credential Locker (see Chapter 4). If the user
allows password roaming (PC Settings > OneDrive > Sync Settings > Other Settings > Passwords), the
locker's contents will be roamed automatically.

When state is roamed, know that there’s a simple “last writer wins” policy where collisions are
concerned. If you run the same app on two devices at the same time, don't expect there to be any
fancy merging or swapping of state. After all kinds of tests and analysis, Microsoft's engineers finally
decided that simplicity was best!

Along these same lines, if a user installs an app, roams some settings, uninstalls the app, and then
within "a reasonable time" reinstalls the app, she will find that those settings are still in place. This
makes sense, because it would be too draconian to blow away roaming state in the cloud the moment
she just happened to uninstall an app on all her devices. There's no guarantee of this behavior, mind
you, but Windows will apparently retain roaming state for an app for some time.

53

Sidebar: Local vs. Temp Data

For local caching purposes, an app can use either local ortemp storage. The difference is that
local data is always under the app's control. Temp data, on the other hand, can be deleted if the
user runs the Disk Cleanup utility. Local data is thus best used to support an app’s functionality,
and temp data is used to support run-time optimization at the expense of disk space.

For Windows Store apps written in HTML and JavaScript, you can also use existing caching
mechanisms like HTMLS5 local storage, IndexedDB, and app cache, along with third-party
database options like SQLite, which act like local storage.

Sidebar: The Opportunity of Per-User Licensing and Data Roaming

Details aside, | personally find the cross-device roaming aspect of the platform very exciting,
because it enables the developer to think about apps as something beyond a single -device or
single-situation experience. As | mentioned earlier, a user's collection of apps is highly personal
and it personalizes the device; apps themselves are licensed to the user and not the device. In
that way, we as developers can think about each app as something that projects itself
appropriately onto whatever device and into whatever context it finds itself. On some devices it
can be oriented for intensive data entry or production work, while on others it can be oriented
for consumption or sharing. The end result is an overall app experience that is simply more
present in the user's life and appropriate to each context.

An example scenario is illustrated below, where an app can have different personalities or
flavors depending on user context and how different devices might be used in that context. It
might seem rather pedestrian to think aboutan app for meal planning, recipe management, and
shopping lists, but that's something that happens in a large number of households worldwide.
Plus it's something that my wife would like to see me implement if | ever get around to writing
more code than text!

This, to me, is the real manifestation of the next era of personal computing, an era in which
personal computing expands well beyond, yet still includes, a single device experience and
includes embracing the power of cloud-based resources for your personal needs. Devices, then,
are merely viewports for your apps and data, each viewport having a distinct role in the larger
story of how your move through and interact with the world at large.

54

Read magazines,
mark recipes
of interest

Plan menus with
marked recipes,
make shopping lists

/Seeshopping lists, locate stores

with best prices. (At present
Windows Phone 8.1 is

Prepare the day’s meals according to a separate platform and Store,
menu plan (using a dishwasher-safe but cloud data is easily shared.)
tablet too!)

Sidebar: Writing Windows Phone Apps with HTML, CSS, and JavaScript

The diagram in the previous sidebar shows that a Windows Phone can be part of an overall app
presence across multiple devices. At present, apps for Windows 8.1 and Windows Phone 8.1 are
still separate entities, each with their own identity, app package, and storefront. As such, they do
not as yet share common roaming data. They can, however, use common backend services such
as Windows Azure Mobile Services for data sharing and managing push notifications. You can
also use a common live tile service as the tile update XML formatis the same on both.

Indeed, much is the same on the platform level, including the fact that Windows Phone 8.1
supports apps written in HTML, CSS, and JavaScript, exactly like those we're talking about in this
book. With the appropriate update to Visual Studio 2013, you can create solutions in which you
can easily share code between Windows and Windows Phone projects.

On the API level, you'll find that most of WinRT is identical between both platforms, excepting
those areas where the underlying hardware can't support a particular feature or the form factor
isn't suitable. For example, inking, printing, USB/HID device access, the built-in camera capture

55

Ul, and various aspects of a full file system are not available on Windows Phone. Similarly, phone-
specific features like the Wallet APl are not available on Windows.

WinJS is available on both platforms as well but differs somewhat in the available controls,
which I'll detail in Chapter 5. That said, the app model that WinJS presents is identical across
both, as are the mechanisms for dealing with async operations and data binding.

Suffice it to say that much of what you'll learn in this Second Edition will be completely
applicable to Windows Phone projects, which is great news because it means you can use all the
skills you develop to write apps fora much larger combined market! And as the platforms
become increasingly converged in the future, your investments of today will continue to bear
fruit.

As | mentioned at the beginning of this chapter, the ability to write Windows Phone apps with
HTML, CSS, and JavaScript came quite late in the production cycle of this book, so our focus here
will still be Windows Store apps. That said, the Windows Developer Center will have more
information for Windows Phone Apps written in JavaScript, such as clear documentation on the
variations in WinJS and WinRT. I'll also be working on content for both the Windows/Windows
Phone developer blog (where you'll also find announcements about the platforms) and my_
personal blog. Hope to see you there!

Coming Back Home: Updates and New Opportunities

If you're one of those developers that can write a perfect app the first time, | have to ask why you're
actually reading this book! Fact of the matter is that no matter how hard we try to test our apps before
they go out into the world, our efforts pale in comparison to the kinds of abuse that customers will
heap on them. To be more succinct: expect problems. An app might crash under circumstances we
never predicted, or there just might be usability problems because people are finding creative ways to
use the app outside of its intended purpose.

Fortunately, the Windows Store dashboard—go to http://dev.windows.com and click the Dashboard
tab at the top—makes it easy for you get the kind of feedback that has traditionally been very difficult
to obtain. For one, the Store maintains ratings and reviews for every app, which will be a source of
valuable insight into how well your app fulfills its purpose in life and a source of ideas for your next
release. And you might as well accept it now: you're going to get praise (if you've done a decent job),
and you're going to get criticism, even a good dose of nastiness (even if you've done a decent job!).
Don't take it personally—see every critique as an opportunity to improve, and be grateful that people
took the time to give feedback. As a wise man once said upon hearing of the death of his most vocal

critic, "I've just lost my best friend!”

The Store will also provide you with crash analytics so that you can specifically identify problem
areasin your app that evaded your own testing. This is incredibly valuable—maybe you're already

56

http://dev.windows.com/
http://go.microsoft.com/fwlink/?LinkID=392425
http://go.microsoft.com/fwlink/?LinkID=392425
http://www.kraigbrockschmidt.com/blog
http://www.kraigbrockschmidt.com/blog
http://dev.windows.com/

clapping your hands in delight!—because if you've ever wanted this kind of data before, you've had to
implement the entire mechanism yourself. No longer. This is one of the valuable services you get in
exchange foryour annual registration with the Store. Of course, crash analytics are only the
beginning—you'll typically want to instrument your app for much more detailed telemetry so that you
can understand exactly how your customers are using your app and where you want to invest more
effort. For this there are a number of third-party solutions found on the Windows Partner Directory,
and we'll talk about this a little more in Chapter 20.

With this data in hand and all the other ideas you either had to postpone from your first release or
dreamt up in the meantime, you're all set to have your app come home for some new love before its
next incarnation.

Updates are onboarded to the Windows Store just like the app’s first version. You create and upload
an app package (with the same package name as before but a new version number), and then you
update your description, graphics, pricing, and other information. After that your updated package
goes through the same certification and signing process as before, and when all that's complete your
new app will be available inthe Store and automatically installed for your existing customers (unless
they opt out). And remember that with the blockmap business described earlier, only those parts of the
app that have actually changed will be downloaded for an update (to a 64K resolution). This means
that issuing small fixes (especially if they're placed at the end of files) won't force users to repeat
potentially large downloads each time, bringing the update model closer to that of web applications.

When an update gets installed that has the same package name as an existing app, all the settings
and appdata for the prior version remainintact. Your updated app should be prepared, then, to
migrate a previous version of its state if and when it encounters such.

This brings up an interesting question: what happens with roaming data when a user has different
versions of the same app installed on multiple devices? The answer is twofold: first, app state (which
includes roaming data) has its own version number independent of the app, and second, Windows will
transparently maintain multiple versions of the roaming state so long as there are apps installed on the
user's devices that reference those state versions. Once all the devices have updated apps and have
converted their state, Windows will delete old versions. We'll talk more of this in Chapter 10.

Another interesting question with updates is whether you can get a list of the customers who have
acquired your app from the Store. The answer is no, because of privacy considerations. However, there
is nothing wrong with including a registration feature in your app through which users can optin to
receive additional information from you, such as more detailed update notifications. Your Settings
panel is a great place to include this.

The last thing to say about the Store is that in addition to basic analytics about your own app—
which also includes data like sales figures, of course—it also provides you with marketwide analytics.
These help you explore new opportunities to pursue—maybe taking an idea you had for a feature in
one app and breaking that out into a new app in a different category. Here you can see what's selling
well (and what's not) or where a particular category of app is underpopulated or generally has less than
average reviews. For more details, again see the Dashboard at http://dev.windows.com.

57

http://services.windowsstore.com/
http://dev.windows.com/

And, Oh Yes, Then There’s Design

In this first chapter we've covered the nature of the world in which Windows Store apps live and
operate. In this book, too, we'll be focusing on the details of how to build such apps with HTML, CSS,
and JavaScript. But what we haven't talked about, and what we'll only be treating minimally, is how you
decide what your app does—its purpose in the world!—and how it clothes itself for that purpose.

This is really the question of good design for Windows Store apps—all the work that goes into apps
before we even start writing code.

I said that we'll be treating this minimally because | simply do not consider myself a designer. |
encourage you to be honest about this yourself: if you don't have a good designer working with you,
get one. Sure, you can probably work out an OK design on your own, but the demands of a consumer-
oriented market combined with a newer design language like that employed in Windows—where the
emphasis is on simplicity and tailored experiences—underscores the need for professional help. It'll
make the difference between a functional app and a great app, between a tool and a piece of art,
between apps that consumers accept and those they /ove.

With design, | do encourage developers to peruse the material onthe Windows Design Center for a
better understanding of design principles. And if you're going to be playing the role of designer, a
great place to start is the Category ideas area where you'll find case studies for converting websites, iOS
apps, and enterprise LOB apps to a Windows Store app and many idea books that serve as starting
points for different kinds of experiences.

But let's be honest: as a developer, do you really want to ponder every design principle and design
not just static wireframes but also the dynamic aspects of an app like animations, page transitions, and
progress indicators? Do you want to spend your time in graphic designand artwork (which is essential
for a great app)? Do you want to haggle over the exact pixel alignment of your layout in all variable
views? If not, find someone who does, because the combination of their design sensibilities and your
highly productive hacking will produce much better results than either of you working alone. As one of
my co-workers puts it, a marriage of “freaks” and “geeks” often produces the most creative, attractive,
and inspiring results.

Let me add that design is neither a one-time nor a static process. Developers and designers will
need to work together throughout the development experience, as design needs will arise in response
to how well the implementation really works. For example, the real-world performance of an app might
require the use of progress indicators when loading certain pages or might be better solved with a
redesign of page navigation. It may also turn out, as we found with one of our early app partners, that
the kinds of graphics called for in the design simply weren't available from the app’s backend service.
The design was lovely, in other words, but couldn't actually be implemented, so a design change was
necessary. So make sure that your ongoing relationship with your designers is a healthy and happy one.

And on that note, let's getinto your part of the story: the coding!

58

http://design.windows.com/
http://msdn.microsoft.com/library/windows/apps/hh868274

Feature Roadmap and Cross-Reference

As a means of indexing the content in this book, the tables below identifies the primary platform
features of Windows 8.1, the chapter and section(s) where they're covered, and the purpose that those
features serve in apps. Note that this is only a cross-reference for platform features: it does not
represent nonfeature topics such as tooling, best practices, custom extensions, and design.

Feature — Chapter 3

Section

Purpose

Visual assets in the app
manifest

“Branding Your App 101"

Defines yourapp's basic presence on the Startscreen and
elsewhere, including the splash screen on first launch.

App lifecycle management
and basic state

“App Lifecycle Transition Events and

Session State”

Allows Windows to manage whether apps are in memory while
maintaining the appearance that they're always running.

WinJS Page controls

“Page Controls and Navigation”

Provides an HTML page loader so that apps can maintain a
single script context.

WinJS navigation

"Page Controls and Navigation”

Provides a means to dynamically load and unload page
controls, maintaining a navigation history.

Asynchronous APls

"Async Operations”

Avoids unresponsive apps due to blocking the Ul thread.

WinJS Scheduler

“Managing the Ul Thread with the
WinJS Scheduler”

Allows apps to set relative priorities of work on the Ul thread to
increase app responsiveness.

Feature — Chapter 4

Section

Purpose

Connectivity and cost
awareness

“Network Information and
Connectivity”

Enables apps to understand network state to implement great
offline supportand to prevent bill shock on metered networks.

Webview element

"Hosting Content”

Allows an app to display arbitrary HTML content, including
content that's downloaded, dynamically generated, or hosted
on theweb.

HttpClient API "HTTP Requests” The more powerful and flexible way to perform HTTP requests
to onlineservices, with support for protocol-level filtering,
cookie control, and precaching.

Background Transfer API “Background Transfers” Configures download and upload operations that will continue

when an app is suspended or terminated, with the ability to set
priorities, cost policies, and grouping.

Credential Locker

“The Credential Locker”

Provides secure roaming storage for credentials and other
information that should be protected.

Web Authentication Broker

"The Web Authentication Broker”
and "Single Sign On”

Provides Ul for server-managed login to web services such that
the app never touches user credentials.

Feature — Chapter 5

Section

Purpose

Core HTML controls: button,
checkbox, drop-down list,
listbox, hyperlink, file upload,
slider, progress, and radio
button

“HTML Controls” and “Styling
Gallery: HTML Controls”

The Ul elements that are declared through standard HTML5
and implemented in the app host.

WinJS controls: back button,
date picker, time picker,
rating, toggle switch, tooltip,
HTML control, item container

“WinJS Controls” and “Styling
Gallery: WinJS Controls”

The Ul elements that are declared using WinJS syntax and
implemented in the WinJS library.

59

Feature — Chapter 6

Section

Purpose

WinJS data binding

“Data Binding”

Facilitates creating automated connections between Ul
elements and data sources.

WinJS Template controls

“Binding Templates”

Defines blocks of generic HTML that can be bound to specific
data sources and then rendered.

WinRT collection classes

“Windows.Foundation.Collection
Types”

Used around WinRT to exchange different kinds of collection
data.

WinJS.Binding.List class

“WinJS Binding Lists”

An observable (bindable) collection type employed by WinJS
collection controls.

Feature — Chapter 7

Section

Purpose

WinJS Repeater control

“Quickstart #1: The WinJS Repeater
Control” and "Repeater Features
and Styling”

Conveniently renders template or other block of HTML foreach
item in a data source; serves as a lightweight means to render a
noninteractive collection.

WinJS FlipView control

"Quickstart #2: The FlipView Control
Sample,” "FlipView Features and
Styling,” and “A FlipView Using the
Pictures Library.”

Provides a one-at-a-time view of a collection.

WinJS Semantic Zoom control

“The Semantic Zoom Control”

Wraps to other collection controls (such as a ListView) and
provides the means to easily switch between them, giving the
user two different views of the same data source.

WinJS ListView control

Most other sections in Chapter 7

Implements the most powerful and flexible means to render a
collection with support for grouping, interactivity, drag and
drop, variable layouts, and virtualization.

Feature — Chapter 8 Section Purpose

Variable app view sizing “Variable View Sizing and Allows a user to arrange multiple apps together on the same

including media queries Orientation” display.

Display rotations and “Variable View Sizing and Allows a user to rotate a tablet device fora differentapp

orientation locking Orientation” experience.

Multiple app views "Multiple Views” Enables an app to create multiple views that the usercan
manage independently.

Projection API "Multiple Views" Enables an app to project a view onto a second display.

Snap points and rails (CSS
features)

“Pannable Sections and Styles”

Controls the experience of pannable regions, including
continuous vs. sectional panning and control of panning
direction. Also includes continuous vs. step-wise zooming.

WinJS Hub control

“The Hub Control and Hub App
Template”

Implements a common Ul pattern through which an app
displays data from multiple heterogeneous sources.

CSS grid, flexbox,
multicolumn text, and regions

“Using the CSS Grid” and “ltem
Layout”

Controls various aspects of page and element layout within the
scope of HTML and CSS.

Feature — Chapter 9

Section

Purpose

WinJS app bar and nav bar

“The App Barand Nav Bar”

Provides the implementation for top and bottom commanding
Ul common to apps.

WinJS flyouts "Flyouts and Menus” Provides local and transient Ul, typically used for popup
messages and secondary command options.
WinJS menus "Menus and Menu Commands” Implements menu Ul.

App-modal message boxes

“Message Dialogs”

Used to display messages that block furtherinteraction with
the app.

60

Feature — Chapter 10

Section

Purpose

Local, temp, and roaming
state including folders and
settings containers

"

“App Data Locations,” “App Data
APIs,” and "Using App Data APIs for
State Management”

Provides the unrestricted locations in whichapps save all data
whose lifetime s tied to the app, including session data, caches,
and roaming state. This is used to maintain continuity across
terminate and restart.

File and folderaccess APls
(StorageFolder, StorageFile)

“Folders, Files, and Streams”

Used to communicate with the local file system as well as with
storage providers that present themselves as part of the file
system even if they are non-local.

Stream APIs and blobs

"Folders, Files, and Streams”

Supply the low-level API for handing byte transfers, utilized in
many areas of WinRT, including cross-compatibility with
HTML5 blobs.

App settings pane (via
Settings charm)

“Settings Paneand Ul"

Provides the space in which an app offers configuration Ul,
account management, options, its privacy policy, and so forth.

Feature — Chapter 11

Section

Purpose

File Picker API “Using the File Pickerand Access Allows the user to navigate to and select files and folders from
Cache” any location on the local file system, the network, and cloud
locations. The act of picking afile or folder grants usage
permission to the app.
Access Cache API “Using the File Pickerand Access Preserves file or folder permissions across app sessions.

Cache”

File metadata and thumbnails

“StorageFile Properties and
Metadata”

Provides access to all information about a file or folder without
reading file data, including the use of thumbnails to display
files without loading content.

Media library management

“Known Folders and the
StorageLibrary Object”

Capabilities related to the user’s Pictures, Videos, and Music
libraries.

Searching files and folders

“Folders and Folder Queries”

Taps into the systemindexer through which an app can quickly
enumerate files and folders that match specific criteria.

File type association

“File Activation and Association”

Allows an app to register itself as able to handle one or more
file types. A user can select from such registered apps when
opening a file.

Access to removable storage

“Removable Storage”

Provides the ability to work with the contents of flash drives,
memory cards, and similar devices.

Feature — Chapter 12

Section

Purpose

Touch input

“Touch, Mouse, and Stylus Inputs,”
“Unified Pointer Events,” “Gesture
Events,” and “The Gesture
Recognizer”

Enables an app to work with touch screens to the degree it
wants, whether to treat touch identically with mouse and stylus
inputor to respond specificallyto touch gestures.

Mouse and styling input

"Unified Pointer Events”

Enables an app to work with the mouse or a stylus.

Keyboard inputincluding the
on-screen keyboard

"Keyboard Input and the Soft
Keyboard”

Provides keystroke information to the app, including how the
on-screen keyboard is configured for and responds to different
input controls.

Inking APIs

"Inking”

Provides the ability to capture full information about touch
input (e.g., stokes, pressure, etc.), which can be used to re-
render thatinput at a later time or implement yourown
recognition engine.

GPS deviceaccess

"Geolocation” and "Geofencing”

Gives apps access to GPS information including the ability to
set up a region with entry and exitevents.

APIs for sensorinput from the
accelerometer, compass,
inclinometer, gyrometer,
orientation sensor, and light
Sensor.

“Sensors”

Provides readings from various sensors on devices that are so
equipped.

61

Feature — Chapter 13

Section

Purpose

Display of graphical

“Graphics Elements”

Displays rasterimages (img), vectorimages (svg), and

information dynamically drawn images (canvas), along with PDFs.
Video playback (video "Video Playback and Deferred Provides the ability to render video in an app, including the
element) Loading” application of effects.

Locking screen orientation
and disabling thelock screen

“Disabling Screen Savers and the
Lock Screen”

Ensures that video playback is notinterrupted by orientation
changes orinactivity timeouts.

Audio playback (audio
element)

“Audio Playback and Mixing" and
"Playlists”

Provides the ability to play audioin an app, including
background audio.

System controls for audio and
video

“The Media Transport Control UI"

Allows an app to provide textual and graphical information for
the system-managed Ul that's connected to hardware/software
playback features.

Text to Speech API

“Textto Speech”

Supplies the ability to use a synthesized voice to convert text to
audio.

Media manipulation including
transcoding

“Loading and Manipulating media”

Provides the ability to convert between different media formats
and to support custom formats.

Dynamic media generation
(video and audio)

“Media Stream Sources”

Enables app code to generate media information on the fly, to
manipulate media as it's played or otherwise rendered, and to
support custom formats.

Using the webcamand
microphones

“Media Capture”

Provides the ability to record video and audio, eitherthrough a
system-provided Ul or an app Ul.

PlayTo

"Streaming Media and PlayTo"

Enables media playback to DLNA devices.

Digital Rights Management

"Streaming Media and PlayTo”

Enables an app to control permissions for media rendering.

Feature — Chapter 14

Section

Purpose

The WinJS animations library

“The WinJS Animations Library”

Provides a predefined set of CSS animations and transitions
that reflect the Windows personality.

Low-level animations

"CSS Animations and Transitions”
and "Rolling Your Own”

Supports custom animations through standard CSS capabilities
or rendering frames using interval timers.

Feature — Chapter 15

Section

Purpose

Share contract

“Share”

Connects two apps together through the Share control so that
a source provides data that a target can then share however it
wants without leaving the context of the source app.

Associating an app with a URI
scheme

“Launching Apps with URI Scheme
Associations”

Allows an app to register itself as able to handle one or more
URI schemes types. A user can select from such registered apps
when a URI is activated.

In-app search

“Search” and “The
WinJS.Ul.SearchBox Control”

Provides the means to easily implementrich in-app searching
capabilities.

Search charminteraction
(Search contract)

“The Search Charm UI” and "The
Search Contract”

In lieu of handing search directly in an app, allows for search
interactions through the Search charm.

Systemindexerand queries
against file contentand app-
provided content

“Indexing and Searching Content”

Allows apps to perform very fast metadata and content queries
againstapp data as well as arbitrary app content.

Contact Cards Ul

“Contacts” and “Contact Cards”

Invokes a system-provided Ul that displays contactinformation
aggregated in the People app, relieving other apps from
having to manage and protect that data.

Contact Picker API

“Using the Contact Pickers”

Allows an app to obtain contact data from any number of
course as defined by provider apps; in this case the app
invoking the picker is responsible for protecting the contact
information.

Appointments APIs

"Appointments”

Enables an app to create and manage entries on the user’s
calendar through bits of Ul supplied by the default calendar
app.

62

Feature — Chapter 16

Section

Purpose

Livetiles

“"Basic Tile Updates” and “Cycling,
Scheduled, and Expiring Updates”

Sends information to the app's tile on the Start screen.

Secondary tiles

“Secondary Tiles"”

Allows an app to create additional tiles on the Start screen with
user consent. Secondary tiles can be live.

Badges

“Badge Updates”

Provides the means to display a small number or glyphon a
Start screen tile.

Periodic tile updates from a
service

"Periodic Updates”

Links a tile on the Startscreen to up to five URIs that provide
tile updates even while the appisn‘t running.

Toast notifications

"Toast Notifications”

Provides the means to display popup messages on the user’s
display, on top of otherapps as well as the lock screen, where
activating the toast activates the app.

Push notifications

"Push Notifications and the
Windows Push Notification Service”

Enables services to push tile updates, badge updates, and toast
notifications to a specific user's device without needing to
involve the app.

Raw notifications

“Raw Notifications (Service)” and
"Receiving Notifications (App)”

Delivers a custom payload to an app via push notifications,
which the running app or a background task can process
however it wants.

Background tasks

“Background Tasks and Lock Screen
Apps”

Configures small pieces of code (with quotas on CPU time
another resources) that can run in response to various triggers
and conditions.

Lock screen apps

“Background Tasks and Lock Screen
Apps”

Enables apps to identify themselves as lock-screen-capable to
the systemso that the user can select them through PC
Settings to display information on the lock screen and have
greater background privileges.

Feature — Chapter 17

Section

Purpose

Discovery of peripheral
devices

“Enumerating and Watching
Devices”

Allows an app to determine what devices of desired types are
attached to the system, and to watch when such devices are
connected and disconnected.

Image scanning

“Image Scanners”

Enables apps to work with image scanners.

Point of Service device APIs

"Barcode and Magnetic Stripe
Readers”

Enables apps to receive information from barcode scanners and
magnetic stripe readers, typically used for point of service
systems.

Accessing virtual smartcards

"Smartcards”

Enables an app to provision avirtual smartcard.

Verifying a user’s physical
presence

“Fingerprint (Biometric) Readers”

Determines whether the machineis capable of reading
fingerprints and can request verification of the physical
presence of the logged-in user.

Call control via Bluetooth
devices

"Bluetooth Call Control”

Informs an app of events that happen with Bluetooth earpieces
and headsets as they affect calls.

Document Printing APls

“Printing Made Easy”

Provides for printing 2D documents. 3D printing is supported
through the Windows platform but not through JavaScript.

Device access via USB, HID,
Bluetooth, and Wi-Fi Direct

"Protocol APIs”

Allows apps to communicate with a wide variety of devices
through different communication transports.

NFC APIs

"Near Field Communication and the
Proximity API"

Enables connectionsbetween devices via taps as well as peer
discovery over Wi-Fidirect.

Feature — Chapter 18

Section

Purpose

Mixed-language apps

“Choosing a Mixed Language
Approach” and most of the chapter

Allows an app to use C#, Visual Basic, or C++ to implement
different functions, providing more flexibility in
implementation strategies and access to additional APIs.

Web workers

“JavaScript Workers”

Provides the means to execute JavaScript code off the Ul
thread.

Creating customasync APIs

“Implementing Asynchronous
Methods”

Provides the means to create custom APls in C#,VB, or C++ like
those in WinRT that execute off the Ul thread.

63

Feature — Chapter 19 Section Purpose
Supporting screen readers “Screen Readers and Aria Helps an app fulfill accessibility requirements by properly
Attributes” labeling its markup for screen readers.

Support high contrast

“Handling Contrast Variations”

Helps an app fulfill accessibility requirements by handling high
contrast modes.

Globalization APIs

“Globalization”

Enables creation of a culture-neutral app that can handle
locale-based variations such as dates, times, and sorting.

Localizing apps with
additional language resources

"Preparing for Localization” and
"Creating Localized Resources”

Enables creation of multilingual apps for a large number of
world markets.

Feature — Chapter 20

Section

Purpose

Side-loading apps

“Sidebar: Side Loading”

Enables developers and enterprises to install apps without
going through the Windows Store.

Paid apps and trial versions

“Paid Apps and Trial Versions” and
"Trial Versions and App Purchase”

Sets an app pricein the Windows Store with or without a free
trial period.

Monetization through ads

“Ad-Supported Apps”

Supports monetization through display of ads within the app.

In-app purchases (durables
and consumables)

“In-App Purchases” and “Listing and
Purchasing In-App Products”

Configures and manages monetization of an app through
feature enablementand otheritem purchases such asin-app
currency.

Large catalogs

“Handling Large Catalogs”

Provides the ability to dynamically configure in-app purchases
without having to define the ahead of time.

Verification of purchase

"Receipts”

Enables an app to make a strong determination thata purchase
was made and who specifically madeit, used to implement
additional licensing schemes and control access to services.

Listing apps in the Store

“Releasing Your App to the World”

Defines the process through which an app is made available to
customers in markets around the world.

Linking websites to apps

“Connecting Your Website and
Web-Mapped Search Results”

Defines a relationship between a website and an app such that
visitors to the website or search results thatinclude that site
can pointto the app.

Feature — Appendices

Section

Purpose

Extended Splash Screens

Appendix B: “Extended Splash
Screens”

Provides away foran app to customize its splash screen and
avoid being terminated if the user switches away while it
continues to load.

Custom ListView layouts

Appendix B: “Custom Layouts for
the ListView Control”

Allows an app to extend the visual layout capabilities of the
WinJS ListView control.

Large and multipart uploads
with the background transfer
API|

Appendix C: “Breaking Up Large
Files” and “Multipart Uploads”

Provides for specialized needs with background transfers.

Security (encryption,
certificates)

Appendix C: “Notes on Encryption,
Decryption, Data Protection, and
Certificates”

Supports apps that need to strongly secure data.

RSS, AtomPub, and XML
manipulation

Appendix C: “Syndication: RSS,
AtomPub, and XML APIs in WinRT"

Provides APIs to work with RSS feeds, to publish via AtomPub,
and to create and manage XML documents.

Sockets (including
websockets)

Appendix C: “Sockets”

Gives apps the ability to communicate overa variety of socket
types.

Credential Picker Ul

Appendix C: “The Credential Picker
ur”

Provides the ability for an app to collect credentials froma user
including domain credentials, smartcard PINs, and other
sources thatinvolve a variety of security protocols.

Providers for file pickers,
contact cards, contact picker,
and appointments

Appendix D (all sections)

Enables apps to serve as providers for a variety of contracts;
applicable to apps that service storage services, manage
address books, and manage calendars.

64

Chapter 2
Quickstart

This is a book about developing apps. So, to quote Paul Bettany’s portrayal of Geoffrey Chaucer in
A Knight's Tale, "without further gilding the lily, and with no more ado,” let's create some!

A Really Quick Quickstart: The Blank App Template

We must begin, of course, by paying due homage to the quintessential “Hello World” app, which we
can achieve without actually writing any code at all. We simply need to create a new app from a project
template in Visual Studio:

1. Run Visual Studio Express for Windows. If this is your first time, you'll be prompted to obtaina
developer license. Do this, because you can't go any further without it!

2. Click New Project... in the Visual Studio window, or use the File > New Project menu command.

3. In the dialog that appears (Figure 2-1), make sure you select JavaScript under Templates on the
left side, and then select Blank App in the middle. Give it a name (HelloWorld will do), a folder,

and click OK.
New Project ?
I Recent Sort by: Default - i Search Installed Templates (Ctrl+E) P~
4 |nstalled Js . -
EJ Blank &pp JavaScript Type: JavaScript

4 Templates e A single-page project for a Windows Store

4 JavaScript -FJ Grid App JavaScript app that has no predefined controls or

- H layout.
Windows Store
= = 45
I Visual Basic :F_J Split App JavaScript
I Visual C# -
) Js
b Visual C++ .FJ Hub App JavaScript
Samples =
IS . .
b Online EJ Navigation App JavaScript
Click here to go online and find templates.
Name: Helle World
Location: [d\bookisrc\Chapter 2 [=]
Solution: Create new solution -
Selution name: Helle World Create directory for solution
[[] Add to source control

FIGURE 2-1 Visual Studio’s New Project dialog using the light Ul theme. (See the Tools > Options menu
command, and then change the theme in the Environment/General section). | use the light theme in this
book because it looks best against a white page background.

65

4. After Visual Studio churns fora bit to create the project, click the Start Debugging button (or
press F5, or select the Debug > Start Debugging menu command). Assuming your installation is
good, you should see something like Figure 2-2 on your screen.

Content goes here

FIGURE 2-2 The only vaguely interesting portion of the Hello World app’s display. The message is at least a
better invitation to write more code than the standard first-app greeting!

By default, Visual Studio starts the debugger in local machine mode, which runs the app full screen
on your present system. This has the unfortunate result of hiding the debugger unless you're on a
multimonitor system, in which case you can run Visual Studio on one monitor and your Windows Store
app on the other. Very handy. See Running apps on the local machine for more on this.8

Visual Studio offers two other debugging modes available from the drop-down list on the toolbar
(Figure 2-3) or the Debug/[Appname] Properties menu command (Figure 2-4):

[TV Debug - Any C

P Local Machine

Simulator

Local Machine

Remote Machine

FIGURE 2-3 Visual Studio’s debugging options on the toolbar.

HelloWorld Property Pages ?

Configuration: | Active(Debug) v | Platform: | Active(Any CPU) “ Cenfiguration Manager...

4 Configuration Properties Debugger to launch:
General

Local Machine v
Local Machine

Simulator

Remote Machine

Debugging

Debugger Type Script Only

FIGURE 2-4 Visual Studio’s debugging options in the app properties dialog.

The Remote Machine option allows you to run the app on a separate device, which is absolutely
essential for working with Windows RT devices that can't run desktop apps at all, such as the Microsoft
Surface and other ARM devices. Setting this up is a straightforward process, and it works on both
Ethernet and wireless networks: see Running apps on a remote machine, and | do recommend that you
get familiar with it. Also, when you don't have a project loaded in Visual Studio, the Debug menu offers

8 For debugging the app and Visual Studio side by side on a single monitor, check out the utility called ModernMix from
Stardock that allows you to run Windows Store apps in separate windows on the desktop.

66

http://msdn.microsoft.com/library/windows/apps/hh441483.aspx
http://msdn.microsoft.com/library/windows/apps/hh441469.aspx
http://www.stardock.com/products/modernmix/

the Attach To Process command, which allows you to debug an already-running app. See How to start
a debugging session (JavaScript).

Tip If you ever load a Windows SDK sample into Visual Studio and Remote Machine is the only
debugging option that's available, the build target is probably set to ARM (the rightmost drop-down):

D GEOLANETG TR Debug -~ ARM ~

P Remote Machine
Remote Machine

Set the build target to Any CPU and you'll see the other options. Note apps written in JavaScript, C#, or
Visual Basic that contain no C++ WiInRT components (see Chapter 18, “WinRT Components”), should
always use the Any CPU target.

Another tip If you ever see a small ® on the tile of one of your app projects, or for some reason it just
won't launch from the tile, your developer license is probably out of date. Just run Visual Studio or
Blend to renew it. If you have a similar problem on a Windows RT device, especially when using remote
debugging, you'll need renew the license from the command line using PowerShell. See Installing
developer packages on Windows RT in the section “Obtaining or renewing your developer license” for
instructions.

The Simulator, for its part, duplicates your current environment inside a new login session and
allows you to control device orientation, set various screen resolutions and scaling fa ctors, simulate
touch events, configure network characteristics, and control the data returned by geolocation APIs.
Figure 2-5 shows Hello World in the simulator with the additional controls labeled on the right. We'll
see more of the simulator as we go along, though you may also want to peruse the Running appsin
the simulator topic.

Always on top
Mouse pointer
Touch emulator
Bl Emulate touch zooming

ol Emulate touch rotation

il Rotate device 90 clockwise
Wl Rotate device 90 counter-clockwise
Bl Set resolution/scaling

Sl Set GPS coordinates

2l Take ascreenshot
Screenshot settings
Bl Set Network Properties

Help

FIGURE 2-5 Hello World running in the simulator, with added labels on the right for the simulator controls. Truly,
the "Blank App” template lives up to its name!

67

http://msdn.microsoft.com/library/windows/apps/hh771032.aspx
http://msdn.microsoft.com/library/windows/apps/hh771032.aspx
http://msdn.microsoft.com/library/windows/apps/bg126232.aspx
http://msdn.microsoft.com/library/windows/apps/bg126232.aspx
http://msdn.microsoft.com/library/windows/apps/hh441475.aspx
http://msdn.microsoft.com/library/windows/apps/hh441475.aspx

Sidebar: How Does Visual Studio Run an App?

Under the covers, Visual Studio is actually deploying the app similar to what would happen if you
acquired it from the Store. The app will show up on the Start screen’s All Apps view, where you
can also uninstall it. Uninstalling will clear out appdata folders and other state, which is very
helpful when debugging.

There's no magic involved: deployment can actually be done through the command line. To
see the details, use the Store/Create App Package in Visual Studio, select No for a Store upload,
and you'll see a dialog in which you can save your package to a folder. In that folder you'll then
find an appx package, a security certificate, and a batch file called Add-AppxDevPackage. That
batch file contains PowerShell scripts that will deploy the app along with its dependencies.

These same files are also what you can share with other developers who have a developer
license, allowing them to side-load your app without needing your full source project.

Blank App Project Structure

Although an app created with the Blank template doesn't offer much in the visual department, itlets us
see the core structure of all projects you'll use. That structure is found in Visual Studio’s Solution
Explorer (as shown in Figure 2-6).

In the project root folder:
o default.html The starting page for the app.
e <Appname>_TemporaryKey.pfx A temporary signature created on first run.

e package.appxmanifest The manifest. Opening this file will display Visual Studio’s manifest
editor (shown later in this chapter). Browse around in this Ul fora few minutes to familiarize
yourself with what's here: references to the various app images (see below), a checkmark on the
Internet (Client) capability, default.html selected as the start page, and all the places where you
control different aspects of your app. We'll be seeing these throughout this book; for a
complete reference, see the App packages and deployment and Using the manifest designer
topics. And if you want to explore the manifest XML directly, right-click this file and select View
Code. This is occasionally necessary to configure uncommon options that aren't represented in
the editor Ul. The APIs for accessing package details are demonstrated in the App package

information sample.

The css folder contains a default.css file that's empty except for a blank rule for the body element.

The images folder contains four placeholder branding images, and unless you want to look like a
real doofus developer, always customize these before sending your app to the Store (and to provide
scaled versions too, as we'll see in Chapter 3, “App Anatomy and Performance Fundamentals”):

68

http://msdn.microsoft.com/library/windows/apps/hh464929.aspx
http://msdn.microsoft.com/library/windows/apps/br230259.aspx
http://code.msdn.microsoft.com/windowsapps/Package-sample-46e239fa
http://code.msdn.microsoft.com/windowsapps/Package-sample-46e239fa

e logo.scale-100.png A default 150x150 (100% scale) image for the Start screen.

¢ smalllogo.scale-100.png A 30x30 image for the zoomed-out Start screen and other places at

run time.

o splashscreen.scale-100.png A 620x300 image that will be shown while the app is loading.

e storelogo.scale-100.png A 50x50 image that will be shown for the app in the Windows
Store. This needs to be part of an app package but is not used within Windows at run time. For
this reason it's easy to overlook—make a special note to customize it.

The js folder contains a simple default,s.

The References folder points to CSS and JavaScript source files for the WinJS library, which you can
open and examine anytime. (If you want to search within these files, you must open and search only
within the specific file. These are not included in solution-wide or project-wide searches.)

NuGet Packages If you right-click References you'll see a menu command Manage NuGet
Packages.... This opens a dialog box through which you can bring many different libraries and SDKs
into your project, including jQuery, knockout.js, Bing Maps, and many more from both official and
community sources. For more information, see http://nuget.org/.

4 Hello World (Windows 8.1)

Pl References
4 Windows Library for JavaScript 2.0
4 css
B ui-dark.css
A ui-light.css
4 is
LT basejs
4 en-us
IT basestringsjs
[T uistrings,js
IT uijs
Pl css
default.css
a images
logo.scale-100.png
smalllogo.scale-100.png
splashscreen.scale-100.png
storelogo.scale-100.png
Pl s
IT defaultjs
I3 default.html
& Hello World_TemporaryKey.pfx
package.appxmanifest

FIGURE 2-6 A Blank app project fully expanded in Solution Explorer.
As you would expect, there's not much app-specific code for this type of project. For example, the
HTML has only a single paragraph element in the body, the one you can replace with “Hello World" if

you're really not feeling complete without doing so. What's more important at present are the
references to the WinJS components: a core stylesheet (ui-dark.css or ui-light.css), base.js, and uijs:

69

http://nuget.org/

<!DOCTYPE html>

<html1>

<head>
<meta charset="utf-8">
<title>Hello World</titTle>

<!-- WinlS references -->

<link href="//Microsoft.Win]S.2.0/css/ui-dark.css" rel="stylesheet">
<script src="//Microsoft.WinJS.2.0/js/base.js"></script>

<script src="//Microsoft.WinJS.2.0/js/ui.js"></script>

<!-- HelloWorld references -->
<link href="/css/default.css" rel="stylesheet">
<script src="/js/default.js"></script>
</head>
<body>
<p>Content goes here</p>
</body>
</html1>

You will generally always have these references in every HTML file of your project (using an
appropriate version number, and perhaps using ui-Tight.css instead). The //'s in the WinJS paths
refer to shared libraries rather than files in your app package, whereas a single / refers to the root of
your package. Beyond that, everything else is standard HTML5, so feel free to play around with adding
some additional HTML of your own to see the effects.

Tip When referring to in-package resources, always use a leading / on URIs, which means “package
root.” This is especially important when using page controls (see Chapter 3) because those pages are
typically loaded into a document like default.html whose location is different from where the page
exists in the project structure.

Where JavaScript is concerned, default.js just contains the basic WinJS activation code centered on
the WinJS.AppTlication.onactivated event along with a stub for an event called
WinJS.Application.oncheckpoint (from which I've omitted a lengthy comment block):

(function O {
"use strict";

var app = WinJS.Application;
var activation = Windows.ApplicationModel.Activation;

app.onactivated = function (args) {
if (args.detail.kind === activation.ActivationKind.launch) {

if (args.detail.previousExecutionState !==
activation.ApplicationExecutionState.terminated) {
// TODO: This application has been newly launched. Initialize
// your application here.

} else {
// TODO: This application has been reactivated from suspension.
// Restore application state here.

70

args.setPromise(WinJS.UI.processAT1());
}
b

app.oncheckpoint = function (args) {

b

app.startQ;
DO;

We'll come back to checkpoint in Chapter 3. For now, remember from Chapter 1, “The Life Story of
a Windows Store App,” that an app can be activated in many ways. These are indicated in the
args.detail.kind property whose value comes from the Windows.ApplicationModel. -
Activation.ActivationKind enumeration.

When an app is launched directly from its tile on the Start screen (orin the debugger as we've been
doing), the kind is just Taunch. As we'll see later on, other values tell us when an app is activated to
service requests like the search or share contracts, file-type associations, file pickers, protocols, and
more. For the Taunch kind, another bit of information from the Windows.ApplicationModel. -
Activation.ApplicationExecutionState enumeration tells the app how it was last running. Again,
we'll see more on this in Chapter 3, so the comments in the default code above should satisfy your
curiosity for the time being.

Now, what is that args.setPromise(WinJS.UI.processA11())for? Aswe'll see many times,
WinJS.UI.processAl1 instantiates any WinJS controls that are declared in yourHTML—that is, any
element (commonly a div or span) that contains a data-win-control attribute whose value is the
name of a constructor function. The Blank app template doesn't include any such controls, but because
just about every app based on this template will, it makes sense to include it by default.® As for
args.setPromise, that's employing something called a deferral that we'll also defer to Chapter 3.

As short as itis, that little app.start(); at the bottomis also very important. It makes sure that
various events that are queued during startup get processed. We'll again see the details in Chapter 3.
I'll betyou're looking forward to that chapter now!

Finally, you may be asking, “What on earth is all that ceremonial (function O { .. 1) O;
business about?” It's just a convention in JavaScript called a self-executing anonymous function that
implements the module pattern. This keeps the global namespace from becoming polluted, thereby
propitiating the performance gods. The syntax defines an anonymous function that's immediately
executed, which creates a function scope for everything inside it. So variables like app along with all the
function names are accessible throughout the module but don't appearinthe global namespace.10

9 There is a similar function WinJS.Binding.processA1l that processes data-win-bindattributes (Chapter 6), and
WinJS.Resources.processAll that does resource lookup on data-win-res attributes (Chapter 19).

10 See Chapter 2 of Nicolas Zakas's High Performance JavaScript (O'Reilly, 2010) for the performance implications of
scoping. More on modules can be found in Chapter 5 of JavaScript Patterns by Stoyan Stefanov (O'Reilly, 2010) and
Chapter 7 of Eloquent JavaScript by Marijn Haverbeke (No Starch Press, 2011).

71

You can still introduce variables into the global namespace, of course, and to keep it all organized,
WinJS offers a means to define your own namespaces and classes (see WinJS.Namespace.define and
WinJS.Class.define), again helping to minimize additions to the global namespace. We'll learn more
of these in Chapter 5, “Controls and Control Styling,” and Appendix B, "WinJS Extras.”

Now that we've seen the basic structure of an app, let’s build something more functional and geta
taste of the WinRT APIs and a few other platform features.

Get familiar with Visual Studio If you're new to Visual Studio, the tool can be somewhat daunting at
first because it supports many features, even in the Express edition. For a quick, roughly 10-minute
introduction, Video 2-1in this chapter's companion content to will show you the basic workflows and
other essentials.

QuickStart #1: Here My Am! and an Introduction to Blend for
Visual Studio

When my son was three years old, he never—despite the fact that he was born to two engineers
parents and two engineer grandfathers—peeked around corners or appeared in a room saying “Hello
world!” No, his particular phrase was “Here my am!” Using that variation of announcing oneself to the
universe, our next app can capture an image from a camera, locate your position on a map, and share
that information through the Windows Share charm. Does this sound complicated? Fortunately, the
WinRT APIs actually make it quite straightforward!

Sidebar: How Long Did It Take to Write This App?

This app took me about three hours to write. “Oh sure,” you're thinking, “you've already written a
bunch of apps, so it was easy for you!” Well, yes and no. For one thing, | also wrote this part of
the chapter at the same time, and endeavored to make some reusable code, which took extra
time. More importantly, the app came together quickly because | knew how to use my tools—
especially Blend—and | knew where | could find code that already did most of what | wanted,

namely all the Windows SDK samples on http://code.msdn.microsoft.com/windowsapps/.

As we'll be drawing from many of these most excellent samples in this book, | encourage you
to download the whole set—go to the URL above, and click the link for “Windows 8.1 app
samples”. On that page you can get a .zip file with all the JavaScript samples. Once you unzip
these, get into the habit of searching that folder for any API or feature you're interested in (make
sure it's being indexed by the Windows file system too). For example, the code | use in this app
to implement camera capture and sharing data came directly from a couple of samples.

| also strongly encourage you to spend a half-day getting familiar with Visual Studio and
Blend for Visual Studio and running samples so that you know what tremendous resources are
available. Such small investments will pay huge productivity dividends even in the short term!

72

http://code.msdn.microsoft.com/windowsapps/

Design Wireframes

Before we start on the code, let's first look at design wireframes for this app. Oooh...design? Yes!
Perhaps for the first time in the history of Windows, there's a real design philosophy to apply to appsin
Windows 8. In the past, with desktop apps, it's been more of an “anything goes” scene. There were
some Ul guidelines, sure, but developers could generally get away with making up any user experience
that made sense to them, like burying essential checkbox options four levels deep in a series of modal
dialog boxes. Yes, this kind of stuff does make sense to developers; whether it makes sense to anyone
else is highly questionable!

If you've ever pretended or contemplated pretending to be a designer, now is the time to surrender
that hat to someone with real training or set development aside for a focused time to invest in that
training yourself. Simply said, design matters for Windows Store apps, and it will make the difference
between apps that really succeed and apps that merely existin the Windows Store and are largely
ignored. And having a designin hand will just make it easier to implement because you won't have to
make those decisions when you're writing code. (If you still intend on filling designer shoes and
communing with apps like Adobe Illustrator, at least be sure to visit Designing UX forapps for the
philosophy and details of Windows Store app design, plus design resources.)

Note Traditional wireframes are great to show a static view of the app, but in the “fast and fluid”
environment of Windows, the dynamic aspects of an app—animations, transitions, and movement—
are also very important. Great app design includes consideration of not just where content is placed
but how and when it gets there in response to which user actions. Chapter 14, “Purposeful
Animations,” discusses the different built-in animations that you can use for this purpose.

When | had the idea for this app, | drew up simple wireframes, let a few designers laugh at me
behind my back (and offer helpful adjustments), and eventually landed on layouts for the various views
as shown in Figures 2-7 through 2-9. These reflect the guidelines of the “grid system” described on
Laying out an app page, which defines what's called the layout silhouette that includes the size of
header fonts, their placement, and specific margins. These suggestions encourage a degree of
consistency between apps so that users’ eyes literally develop muscle memory for common elements of
the Ul. That said, they are not hard and fast rules, just a starting point—designers can and do depart
from them when there’s reason to do so.

Generally speaking, layout is based on a basic 20 pixel unit, with 5 pixel sub-units. In the full
landscape view of Figure 2-7, you can see the recommended left margin of 120px, the recommended
top margin of 140px above the content region, and placement of the header’s baseline at 100px, which
for a 42pt font translates to a 44px top margin. For partial landscape views with width <= 1024px, the
left margin shrinks to 40px (not shown). In the portrait and narrow views of Figure 2-8 and 2-9, the
various margins and gaps get smaller but still align to the grid.

73

http://design.windows.com/
http://msdn.microsoft.com/library/windows/apps/hh872191.aspx

What happened to snapped and filled views? In the first release of Windows 8, app design focused
on four view states known as landscape, portrait, filled, and snapped. With Windows 8.1, each view of
an app can be arbitrarily sized in the horizontal, so distinct names for these states are deprecated in
favor of simply handling different view sizes and aspect ratios—known as responsive design on the
web. For apps, the minimum design size is now 500x768 pixels, and an app can indicate in the manifest
whether it supports a narrower view down to a 320px minimum. The "Here My Am!" app as designed
in this section supports all sizes including narrow. Aspect ratios (width/height) of 1 and below
(meaning square to tall) use the vertically-oriented layouts; aspect ratios greater than 1 use a
horizontally-oriented layout.

To accommodate view sizes, you can use standard CSS3 orientation media queries to differentiate
aspect ratios; the view state media queries from Windows 8 don't differentiate between the filled state
(a narrower landscape) and the 50% split view that will often have an aspect ratio less than 1.

Note, however, that the header font sizes, from which we derive the top header margins, were defined
in the WinJS 1.0 stylesheets in Windows 8 but were removed in WinJS 2.0 for Windows 8.1. To adjust
the font size for narrow views, then, default.css in Here My Am! has specific rules to set h1 and h2
element sizes.

120px (40px if width <= 1024) S ifr 40px

= ES

=

§C’) He r’e My Am " a2 Baseline @ 100px. 42pt = 56px so top margin = 44px

B .
Fhoto 20pt (260) g Loam-uanzopt (26m)
40px

=)

fa)

o

°

3

FIGURE 2-7 Wireframe for wide aspect ratios (width/height > 1). The left margin is nominally 120px, changing to
40px for smaller (<1024px) widths. The “1fr" labels denote proportional parts of the CSS grid (see Chapter 8, “Layout
and Views") that occupy whatever space remains after the fixed parts are laid out.

74

30px 1ifr

|
He Pe Mprﬁgm}fSpr baseling

Photo jopt(eepn §

20px 1fr

xdps
¥z

xdozT

€ tere My Am!

20pt (26px); 80px baseline

S
Fhete 11pt(150x)

4

41
4
xdog

xdpz

Lecation Location Zatleny

11pt (15
pt (15px) 30px

10px

xdQT
xdop

FIGURE 2-8 Wireframes for narrow (320-499px) and portrait (500px or higher) aspect ratios (width/height <= 1).
These views also happen to work nicely on a portrait-first Windows Phone.

Sidebar: Design for All Size Variations!

Just as | thought about all size variations for Here My Am!, | encourage you to do the same for
one simple reason: your app will be put into every state whether you design for it or not (with the
exception of the narrow 320-499px view if you don't indicate itin your manifest). Users control
the views, not the app, so if you neglect to design for any given state, your app will probably
look hideous in that state. You can, as we'll see in Chapter 8, lock the landscape/portrait
orientation for your app if you want, but that's meant to enhance an app’s experience rather
than being an excuse for indolence. So in the end, unless you have a very specific reason not to,
every page in your app needs to anticipate all different sizes and dimensions.

This might sound like a burden, but these variations don't affect function: they are simply
different views of the same information. Changing the view never changes the mode of the app.
Handling different views, therefore, is primarily a matter of which elements are visible and how
those elements are laid out on the page. It doesn't have to be any more complicated than that,
and for apps written in HTML and JavaScript the work can mostly, if not entirely, be handled
through CSS media queries.

Enough said! Let's just assume that we have a great design to work from and our designers are off
sipping cappuccino, satisfied with a job well done. Our job is now to execute on that great design.

75

Create the Markup

For the purposes of markup, layout, and styling, one of the most powerful tools you can add to your
arsenal is Blend for Visual Studio, which is included for free when you install Visual Studio Express.
Blend has full design support for HTML, CSS, and JavaScript. | emphasize that latter point because
Blend doesn't just load markup and styles: it loads and executes your code, right in the “Artboard” (the
design surface), because that code so often affects the DOM, styling, and so forth. Then there’s
Interactive Mode...but I'm getting ahead of myself!

Blend and Visual Studio are very much two sides of a coin: they can share the same projects and
have commands to easily switch between them, depending on whether you're focusing on design
(layout and styling in Blend) or development (coding and debugging in Visual Studio). To demonstrate
that, let’s actually start building Here My Am! in Blend. As we did before with Visual Studio, launch
Blend, select New Project..., and select the Blank App template. This will create the same project
structure as before. (Note: Video 2-2 shows all these steps together.)

Following the practice of writing pure markup in HTML—uwith no styling and no code, and even
leaving off a few classes we'll need for styling—Ilet's drop the following markup into the body element
of default.html (replacing the one line of <p>Content goes here</p>):

<div id="mainContent">
<header aria-label="Header content" role="banner">
<hl class="titlearea win-type-ellipsis">
Here My Am!
</h1>
</header>
<section aria-Tabel="Main content" role="main">
<div id="photoSection" aria-label="Photo section">
<h2 class="group-title" role="heading">Photo</h2>
<img id="photo" src="/images/taphere.png"
alt="Tap to capture image from camera" role="img" />
</div>
<div id="locationSection" aria-Tabel="Location section">
<h2 class="group-title" role="heading">Location</h2>
<iframe id="map" src="ms-appx-web:///html/map.htm]1" aria-Tlabel="Map"></iframe>
</div>
</section>
</div>

Here we see the five elements in the wireframe: a main header, two subheaders, a space for a photo
(fornow an img element with a default “tap here” graphic), and an iframe that specifically houses a
page in which we'll instantiate a Bing maps web control.1!

1 |f you're following the steps in Blend yourself, the taphere.png image should be added to the project in the images
folder. Right-click that folder, select Add Existing Item, and then navigate to the complete sample’s images folder and
select taphere.png. That will copy it into your current project. Note, though, that we'll do away with this later in this
chapter.

76

You'll see that some elements have style classes assigned to them. Those that start with win- come
from the WinJS stylesheet (among others).12 You can browse these in Blend on the Style Rules tab,
shown in Figure 2-9. Other styles like titlearea, pagetitle, and group-title are meant foryou to
define in your own stylesheet, thereby overriding the WinJS styles for particular elements.

Projects Assets Siyle Rules X w default.html >

win-
4 [EB Current document [default.html)
4 B ui-dark.css
, win-typ
2, win-typ
3, win-type-large
4 .win-type-medium, code, pre, samp
body, hS5, .win-type-small, legend
win-type-x-small | Read-only style resource:

.) . . ffMicrosoft.Winl5.2.0/css/ui-dark.css
he, caption, figcaption, small, .win-type

win-type-x-small {
font-size: 11pt;

h1l.win-type-ellipsis, .win-type rge.win-type-ellipsis font-weight: 300

line-height: 1.3636;

win-type-ellipsis

h2.win-type-ellipsis, .win-type-x-large.win-type-ellipsis

body, button, input, textarea, .win-textarea, select, option

FIGURE 2-9 In Blend, the Style Rules tab lets you look into the WinJS stylesheet and see what each particular style
contains. Take special notice of the search bar under the tabs where I've typed “win-". This helps you avoid visually
scanning for a particular style—just start typing in the box, and let the computer do the work!

The page we'll load into the 1iframe, map.html, is part of our app package that we'lladd in a
moment, but note how we reference it. The ms-appx-web:/// protocol indicates that the iframe and
its contents will run in the web context (introduced in Chapter 1), thereby allowing us to load the
remote script for the Bing maps control. The triple slash, for its part—or more accurately the third
slash—is shorthand for “the current app package” (a value that you can obtain from
document.location.host) For more details on this and other protocols, see URI schemes in the
documentation.

To indicate that a page should be loaded in the local context, the protocol is just ms-appx. It's
important to remember that no script is shared between these contexts (including variables and
functions), relative paths stay in the same context, and communication between the two goes through
the HTML5 postMessage function, as we'll see later. All of this prevents an arbitrary website from
driving your app and accessing WinRT APIs that might compromise user identity and security.

12 The two standard stylesheets are ui-dark.cssand ui-Tight. css. Dark styles are recommended for apps that deal with
media, where a dark background helps bring out the graphical elements. We'll use this stylesheet because we're doing
photo capture. The light stylesheet is recommended for apps that work more with textual content.

77

http://msdn.microsoft.com/library/windows/apps/jj655406.aspx

Note I'm using an iframe element in this first example because it's probably familiar to most readers.
In Chapter 4, “"Web Content and Services,” we'll change the app to use an x-ms-webview element,
which is much more flexible than an iframe and is the recommended means to host web content.

I've also included various aria-* attributes on these elements (as the templates do) that support
accessibility. We'll look at accessibility in detail in Chapter 19, "Apps for Everyone, Part 1,” but it's an
important enough consideration that we should be conscious of it from the start: a majority of
Windows users make use of accessibility features in some way. And although some aspects of
accessibility are easy to add lateron, adding aria-* attributesin markup is best done early.

In Chapter 19 we'll also see how to separate strings (including ARIA labels) from our markup,
JavaScript, and even the manifest, and place them in a resource file for the purposes of localization.
This is something you might want to do from early on, so see the “Preparing for Localization” sectionin
that chapter for the details. Note, however, that resource lookup doesn't work in Blend, so you might
want to hold off on the effort until you've done most of your styling.

Styling in Blend

At this point, and assuming you were paying enough attention to read the footnotes, Blend's real-time
display of the app shows an obvious need for styling, just like raw markup should. See Figure 2-10.

(] HereMyAm?2a sin - Blend for Visual Studio 2013 = =
File Edit View Object Project To findow Help
u Projects Style Rules (= EL v CS5 Properties X HTML Attributes

p

a” (1 project]

Here My Am!

Photo

ge, win-type-x...

font-family .

Tap to capture photo
4 body

background-color .

cotor [-

4 body, buttan, input, textares, .win-t..
Live DOM X Device
letter-spacing

4 body, S, win-type-small, legend

4 B <htmi> Location fesrs

P & <head>

4 & mainContent 4 body
509 -

4 [header et
defautt.html Bl dcfaultcss s content-zooming

fontweight

1> 58 <> i */cssfdefault.css” rel="styleshest” /> T o oo
<seript src="/js/default.js"></script>
15/</head> curser
16| <body> width
<div id="mainContent">

<header id="header" aria-label="Header content” height

<hl class="titlearea win-type-ellipsis™> BT
Here My An!</spa
</h1> scroll-transiation

</header> margin-top

FIGURE 2-10 The app in Blend without styling, showing a view that is much like the Visual Studio simulator. If the
taphere.png image doesn't show after adding it, use the View/Refresh menu command.

78

The tabs along the upper left give you access to your Project files, Assets like all the controls you can
add to your Ul, and a browser for all the Style Rules defined in the environment. On the lower left side,
the Live DOM tab lets you browse your element hierarchy and the Device tab lets you set orientation,
screen resolution, view sizes and positions, and minimum size. Clicking an element in the Live DOM will
highlight it in the designer, and clicking an element in the designer will highlight it in the Live DOM
section. Also note the search bar in the Live DOM, where you can enter any CSS selector to highlight
those elements that match that selector.

Over on the right side you see what will become a very good friend: the section for HTML Attributes
and CSS Properties. With properties, the list at the top shows all the sources for styles that are being
applied to the currently selected element and where, exactly, those styles are coming from (oftena
headache with CSS). The location selected in this list, mind you, indicates where changes in the
properties pane below will be written, so be very conscious of your selection! That list also contains an
item called "Winning Styles,” which shows the styles that are actually being applied to the element, and
an item called "Computed Values,” which will show you the exact values applied in the layout engine,
such as the actual sizes of rows and columns in a CSS grid and how values like 1.5em translate into
pixels.

Now to get our gauche, unstylish page to look like the wireframe, we need to go through the
elements and create the necessary selectors and styles. First, | recommend creating a 1x1 grid in the
body element as this seems to help everything in the app size itself properly. So add display: -ms-
grid; -ms-grid-rows: 1fr; -ms-grid-columns: 1fr; todefault.cssfor body.

CSS grids also make this app’s layout fairly simple: we'll just use some of nested grids to place the
main sections and the subsections, following the general pattern of styling that works best in Blend:

e Set the insertion point of the style rule within Blend’s Style Rules tab by dragging the orange-
yellow line control. This determines exactly where any new rule you create will be written. In the
image below, new rules would be inserted in default.css at the beginning of the
Tandscape/max-width: 1024px media query:

Projects Assets Style Rules

4 B Current document (default.html)

I B wi-dark.css
4 B default.css
body

[@ media screen and (orientation: landscape)

79

e In the Live DOM pane (the lower left side in Blend, where you can again search for rules to
highlight elements that use them), right-click the element you want to style and select Create
Style Rule From Element Id or Create Style Rule From Element Class. This will create a new style
rule (at the insertion pointindicated in Style Rules above). Then in the CSS properties pane on
the right, find the rule that was created and add the necessary style properties.

Note If the menu items in the Live DOM pane are both disabled, go to the HTML
Attributes pane (upper right) and add an id, a class, or both, then return to the menu in the
Live DOM. If you do styling without having a distinct rule in place, you'll create inline styles
in the HTML, although Blend makes it easy to copy those out and paste them into a rule.

e Repeatwith every other element you want to style, which could include body, htm1, and so
forth, all of which appearin the Live DOM.

So for the mainContent div, we create a rule from the Id and set itup with display: -ms-grid; -
ms-grid-columns: 1fr; -ms-grid-rows: 140px 1fr 60px;.(See Figure 2-11.) This creates the
basic vertical areas for the wireframes. In general, you won't want to put left or right margins directly in
this grid because the lower section will often have horizontally scrolling content that should bleed off
the left and right edges. In the case of Here My Am! we could use one grid, but instead we'll add those
margins in a nested grid within the header and section elements.

o HereMyAm2asin - Blend for Visual Studio 2013 = =
¢ Projedt To ow Help

s Style Rules X default.css* default.html X

#mainContent (default.css)

#mainCantent selection fui-dark.css)

F

¥ View set properties only

Tap to capture photo

Container
grid-columns 1fr

grid-rows 140px 1fr 60px

Items

4 Layout
Live DOM X Device
display -ms-grid
lLocation

> default.css*
<i-- Hel references -->
<link href="/css/default.css" rel="stylesheet” />
<script sre="/js/default.js"></script>
</head>
<body>
<div id="mainContent"> 7 #mainContent {
<header id="header” aria-label="Header content" 5 display: -ms-grid;
<h1 class="titlearea win-type-ellipsis™> 9 -ms-grid-columns: 1fr;
Here My Am!</spal 10 -ms-grid-rows: 14@px 1fr 6opx;
</h1> 1}

FIGURE 2-11 Setting the grid properties for the mainContent div. Notice how the View Set Properties Only
checkbox (upper right) makes it easy to see what styles are set for the current rule. Also notice how the grid rows
and columns appear on the artboard, including sliders (circled) to manipulate rows and columns directly.

80

Showing this and the rest of the styling—going down into each level of the markup and creating
appropriate styles in the appropriate media queries—is best done in video. Video 2-2 (available with
this book’s companion content) shows this process starting with the creation of the project, styling the
different views, and switching to Visual Studio (right-click the project name in Blend and select Edit In
Visual Studio) to run the app in the simulator for verification. It also demonstrates the approximate
time it takes to style such an app once you're familiar with the tools. (I also highly recommend
watching What's New in Blend for HTML Developers from //build 2013, which goes much more in
depth with various styling processes.)

The result of all this in the simulator looks just like the wireframes—see Figures 2-12 through 2-14—
and all the styling is entirely contained within the appropriate media queries of default.css. Most
importantly, the way Blend shows us the results in real time is an enormous time-saver over fiddling
with the CSS and running the app over and over again, a painful process that I'm sure you're familiar
with! (And the time savings are even greater with Interactive Mode; see Video 5-3 in the companion
content created for Chapter 5 and the //build 2013 talk linked above.)

Here My Am!

Photo Location

Tap to capture photo

FIGURE 2-12 Full landscape view.

81

http://channel9.msdn.com/Events/Build/2013/2-311

Here My Am!

Photo Location

Tap to capture photo

FIGURE 2-13 Partial landscape view (when sharing the screen with other apps).

Here My Am!

Photo

H e r,e My Am | Tap to capture photo

Photo

Tap to capture photo

Tap to capture photo

FIGURE 2-14 Narrow aspect ratio views: 320px wide (left), 50% wide (middle), and full portrait (right). These images
are not to scale with one another. You can also see that the fixed placeholder image in the Photo section doesn’t
scale well to the 50% view; we'll solve this later in this chapter in “Improving the Placeholder Image with a Canvas
Element.”

82

Adding the Code

Let's complete the implementation now in Visual Studio. Again, right-click the project name in Blend's
Project tab and select Edit In Visual Studio if you haven't already. Note that if your projectis already
loaded into Visual Studio when you switch to it, it will (by default) prompt you to reload changed files.
Say yes.13 At this point, we have the layout and styles for all the necessary views, and our code doesn't
need to care about any of it except to make some refinements, as we'll see.

What this means is that, for the most part, we can just write our app'’s code against the markup and
not against the markup plus styling, which is, of course, a best practice with HTML/CSS in general. Here
are the features that we'll now implement:

e A Bing maps control in the Location section showing the user’s current location. We'll create
and display this map automatically.

e Use the WinRT APIs for camera capture to get a photographin response to a tap on the Photo
img element.

e Provide the photograph and the location data to the Share charm when the user invokes it.
Figure 2-15 shows what the app will look like when we're done, with the Share charm invoked and a

suitable target app like Twitter selected.

Share

Here My Am! et

Email

Photo Location

Mail
 Onetote
Twitter

MetroTwit

E Windows Phone

San Francisct

Daly city "
San Mateo

San Jose

FIGURE 2-15 The completed Here My Am! app with the Share charm invoked (with my exact coordinates blurred
out, because they do a pretty accurate job of pinpointing my house).

13 On the flip side, note that Blend doesn't automatically save files going in and out of Interactive Mode. Be aware, then, if
you make a change to the same file open in Visual Studio, switch to Blend, and reload the file, you will lose changes.

83

Creating a Map with the Current Location

For the map, we're using a Bing maps web control instantiated through the map.html page that's
loaded into an iframe on the main page (again, we'll switch over to a webview element later on). As
we're loading the map control script from a remote source, map.html must be running in the web
context. We could employ the Bing Maps SDK here instead, which provides script we can load into the
local context. For the time being, | want to use the remote script approach because it gives us an
opportunity to work with web content and the web context in general, something that I'm sure you'll
want to understand for your own apps. We'll switch to the local control in Chapter 10, “The Story of
State, Part 1."

That said, let's put map.htmlin an htm/ folder. Right-click the project and select Add/New Folder
(entering html to name it). Then right-click that folder, select Add/New Item..., and then select HTML
Page. Once the new page appears, replace its contents with the following, and insert your own key for
Bing Maps obtained from https://www.bingmapsportal.com/ into the init function (highlighted):

<!DOCTYPE html>
<html>
<head>
<title>Map</title>
<script type="text/javascript"
src="http://ecn.dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=7.0"></script>

<script type="text/javascript">
//Global variables here
var map = null;

document.addEventListener("DOMContentLoaded", init);
window.addEventListener("message", processMessage);

//Function to turn a string in the syntax { functionName: ..., args: [...] }
//into a call to the named function with those arguments. This constitutes a generic
//dispatcher that allows code in an iframe to be called through postMessage.
function processMessage(msg) {
//Verify data and origin (in this case the Tocal context page)
if (!msg.data || msg.origin !== "ms-appx://" + document.location.host) {
return;

}
var call = JSON.parse(msg.data);

if (!call.functionName) {
throw "Message does not contain a valid function name.";

}
var target = this[call.functionName];
if (typeof target != 'function') {

throw "The function name does not resolve to an actual function";

}

84

http://msdn.microsoft.com/library/hh846481.aspx
https://www.bingmapsportal.com/

return target.apply(this, call.args);

//Create the map (though the namespace won't be defined without connectivity)

function init() {
if (typeof Microsoft == "undefined") {
return;

}

map = new Microsoft.Maps.Map(document.getElementById("mapDiv"), {
//NOTE: replace these credentials with your own obtained at
//http://msdn.microsoft.com/en-us/Tibrary/ff428642.aspx

" n

credentials: "...",
//zoom: 12,
mapTypeld: Microsoft.Maps.MapTypeld.road
b
}

function pinLocation(lat, Tong) {
if (map === null) {
throw "No map has been created";

}

var location = new Microsoft.Maps.Location(lat, Tong);
var pushpin = new Microsoft.Maps.Pushpin(location, { });
map.entities.push(pushpin);

map.setView({ center: location, zoom: 12, });

return;

}

function setZoom(zoom) {
if (map === null) {
throw "No map has been created";

}

map.setView({ zoom: zoom });
}
</script>
</head>
<body>
<div id="mapDiv"></div>
</body>

</html>

Note that the JavaScript code here could be moved into a separate file and referenced with a
relative path, no problem. I've chosen to leave it all together for simplicity.

At the top of the page you'll see a remote script reference to the Bing Maps control. We can again

reference remote script here because the page is loaded inthe web context within the iframe (ms-
appx-web:// in default.html). You can then see that the init function is called on DOMContentLoaded
and creates the map control. Then we have a couple of other methods, pinLocation and setZoom,

85

which can be called from the main app as needed.

Of course, because this pageisloaded in an iframe in the web context, we cannot simply call those
functions directly from the local context in which our app code runs. We instead use the HTML5
postMessage function, which raises a message event within the iframe. This is an important point: the
local and web contexts are kept separate so that arbitrary web content cannot drive an app or access
WinRT APIs (as required by Windows Store certification policy). The two contexts enforce a boundary
between an app and the web that can only be crossed with postMessage.

In the code above, you can see that we pick up such messages (the window.onmessage handler) and
pass them to the processMessage function, a little generic routine | wrote to turn a JSON string into a
local function call, complete with arguments.

To see how this works, let's look at calling pinLocation from within default,js (our local context app
code). To make this call, we need some coordinates, which we can get from the WinRT Geolocation
APIs. We'll do this within the app’s ready event (which fires after the app is fully running). This way the
user's location is set on startup and saved in the TastPosition variable for later sharing:

//Drop this after the line: var activation = Windows.ApplicationModel.Activation;
var TlastPosition = null;
var Tocator = new Windows.Devices.Geolocation.Geolocator();

//Add this after the app.onactivated handler

app.onready = function () {
Tocator.getGeopositionAsync() .done(function (geocoord) {
var position = geocoord.coordinate.point.position;

//Save for share
lastPosition = { Tatitude: position.latitude, longitude: position.longitude };

callFrameScript(document.frames["map"], "pinLocation",
[position.Tatitude, position.Tongitude]);
b;
}

where callFrameScript isanother little helper function to turn a target element, function name, and
arguments into an appropriate postMessage call:
function callFrameScript(frame, targetFunction, args) {

var message = { functionName: targetFunction, args: args };
frame.postMessage (JSON.stringify(message), '"ms-appx-web://" + document.location.host);

A few points about all this code. First, in the second parameter to postMessage (bothin defaultjs
and map.html) you see ms-appx:// or ms-appx-web:// combined with document.location.host.

14 Be mindful when using the Bing Maps control that every instance you create is a “billable transaction” that counts against
your daily limit depending on your license key. For this reason, avoid creating and destroying map controls across page

navigation, as | explain on my blog post, Minimizing billable transactions with Bing Maps.
86

http://kraigbrockschmidt.com/blog/?p=886

This essentially means “the current app from the [local or web] context,” which is the appropriate origin
of the message. We use the same value to check the origin when receiving a message: the code in
map.html verifies it's coming from the app’s local context, whereas the code in defaultjs verifies that
it's coming from the app’s web context. Always make sure to check the origin appropriately; see

Validate the origin of postMessage data in Developing secure apps.

Next, to obtain coordinates you can use either the WinRT or HTML5 geolocation APIs. The two are
almost equivalent, with the differences described in Chapter 12, “Input and Sensors,” in “Sidebar:
HTML5 Geolocation.” The API exists in WinRT because other supported languages (C# and C++) don't
have access to HTML5 APIs. We're focused on WinRT APIs in this book, so we'll just use functions in the
Windows .Devices.Geolocation namespace.

Note that it's necessary for the WinRT Geolocation.Geolocator objectto stay in scope while an
async location request is happening; otherwise it will cancel the request when a user consent prompt
appears (which we'll see shortly). This is why I'm creating it outside the app.onready handler.

Finally, the call to getGeopositionAsync has an interesting construct, wherein we make the call and
chain this function called done onto it, whose argument is another function. This is a very common
pattern that we'll see while working with WinRT APIs, as any API that might take longer than 50ms to
complete runs asynchronously. This conscious decision was made so that the API surface area leads to
fastand fluid apps by default.

In JavaScript, async APIs return what's called a promise object, which represents results to be
delivered at some time in the future. Every promise object has a done method whose first argument is
the function to be called upon completion, known as the completed handler (often an anonymous
function). done can also take two optional functions to wire up error and progress handlers as well.
We'll see much more about promises as we progress through this book, such as the then function
that's just like done and allows further chaining (Chapter 3), and how promises fit into async operations
more generally (Chapter 18). Also, put it deeply into your awareness that anytime you want to stop an
uncompleted async operation that's represented by a promise, just call the promise’s cancel method.
It's surprising how often developers forget this!

The argument passed to your completed handler contains the results of the getGeopositionAsync
call, which in our example above is a Windows .Geolocation.Geoposition object containing the last
reading. The coordinates from this reading are what we then pass to the pinLocation function within
the iframe, which in turn creates a pushpin on the map at those coordinates and then centers the map
view at that same location. (Later in the section “Receiving Messages from the iframe” we'll make the
pushpin draggable and show how the app can pick up location changes from the map.)

Async result types When reading the docs for an async function, you'll see that the return type is
listed like TAsyncOperation<Geoposition>; the name within < > indicates the actual data type of the
results, so refer to the docs on that class for its details. Note also that the TAsyncOperationand similar
interfaces that exist in WIinRT never surface in JavaScript—they are projected as promises.

87

http://msdn.microsoft.com/library/windows/apps/hh849625.aspx#validate_the_origin_of_postmessage_data
http://msdn.microsoft.com/library/windows/apps/hh849625.aspx

What's in an (async) name? Within the WinRT API, all async functions have Async in their names.
Because this isn't common practice within the DOM API and other JavaScript toolkits, async functions
within WinJS don't use that suffix. In other words, WinRT is designed to be language-neutral and
follows its own conventions; WinJS consciously follows typical JavaScript conventions.

Oh Wait, the Manifest!

Now you may have tried the code above and found that you get an "Access is denied” exception when
you try to call getGeopositionAsync. Why is this? Well, the exception says we neglected to set the
Location capability in the manifest. Without that capability set, calls that depend on the capability will
throw an exception.

If you were running in the debugger, that exceptionis kindly shown in a dialog box:

Microsoft Visual Studio Express 2013 for Windows

Unhandled exception at line 302, column 9 in Function code

080070003 - JavaScript runtime error: Access is denied.

WinRT infermation: The required device capability has not been declared in the
manifest,

If there is a handler for this exception, the program may be safely continued.

Break when this exception type is thrown
Open Exception Settings

Stop Debugging and Add Location Capability to Manifest

Continue Ignore

If you run the app outside of the debugger—from the tile on your Start screen—you'll see that the
app just terminates without showing anything but the splash screen. This is the default behavior for an
unhandled exception. To prevent that behavior, add an error-handling function as the second
parameter to the async promise’s done method:

Tlocator.getGeopositionAsync() .done(function (geocoord) {
/]

}, function(error) {
console.log("UnabTle to get location:

b;

n

+ error.message) ;

The console.log function writes a string to the JavaScript Console window in Visual Studio, which is
obviously a good idea (you can also use Win3JS. log for this purpose, which allows more customization,
as we'll discuss in Chapter 3). Now run the app outside the debuggerand you'll see that the app runs,
because the exceptionis now considered “handled.” Back in the debugger, set a breakpoint on the
console.log line and you'll hit that breakpoint after the exception appears and you press Continue.
(Thisis all we'll do with the error for now; in Chapter 9, “Commanding Ul,” we'll add a better message
and a retry command.)

88

http://msdn.microsoft.com/library/windows/apps/jj150612.aspx

If the exception dialog gets annoying, you can control which exceptions pop up like this through
the Debug > Exceptions dialog box in Visual Studio (shown in Figure 2-16), under JavaScript Runtime
Exceptions. If you uncheck the box under User-unhandled, you won't get a dialog when that particular

exception occurs.

Exceptions ?

Break when an exception is: Add...
Mame Thrown User-unhandled 2
Delete
O v
- Common Language Runtime Exceptions |
-- GPU Memory Access Exceptions | L
= JavaScript Runtime Exceptions | Eind..
- (xB0D70003 Access is denied Find Next
- (80020005 Invalid procedure call or argument O =
- 0x800a0006 Overflow O
.- 0x800a0007 Out of memory O
- (80020009 Subscript out of range | Beset Al
- (800a000a This array is fixed or temporarily locked |
- (xB00a000d Type mismatch |
- (x800a000e Out of string space |
- (80020033 Internal error O
... WANNANN2S File nat frnnd [[hd Cancs

FIGURE 2-16 JavaScript run-time exceptions in the Debug/Exceptions dialog of Visual Studio.

When the Thrown box is checked for a specific exception (as itis by default for Access is denied to
help you catch capability omissions), Visual Studio will always display the “exception occurred” message
before your error handler is invoked. If you uncheck Thrown, your error handler will be called without

any message.

Back to the capability: to get the proper behavior for this app, open package.appxmanifestin your
project, select the Capabilities tab (in the editor Ul), and check Location, as shown in Figure 2-17.

Application Yisual Assets Capabilities

Use this page to specify systemn features or devices that your app can use.

Capabilities: Description:
Provides access to the ¢

] Enterprise Authentication -
PC or derived from ava

Internet (Client)

et (Client & Server)
e ——

{ ™ Location

———

[_[®icrophone

[Music Library

[] Pictures Library

More informaticn

FIGURE 2-17 Setting the Location capability in Visual Studio’s manifest editor. (Note that Blend supports editing the
manifest only as XML.)

89

Now, even when we declare the capability, geolocation s still subject to user consent, as mentioned
in Chapter 1. When you first run the app with the capability set, then, you should see a popup like this,
which appears in the user’s chosen color scheme to indicate that it's a message from the system:

Can Here My Am! (2a) use your location?

If the user blocks access here, the error handler will be invoked with an error of “Canceled.” (This is
also what you get if the Geolocator object goes out of scope while the consent prompt is visible, even if
you click Allow, which is againwhy | create the object outside the app.onready handler.)

Keep in mind that this consent dialog will appear only once for any given app, even across
debugging sessions (unless you change the manifest or uninstall the app, in which cases the consent
history is reset). After that, the user can at any time change their consent in the Settings > Permissions
panel as shown in Figure 2-18, and we'll learn how to deal with such changes in Chapter 9. For now, if
you want to test your app's response to the consent dialog, go to the Start screen and uninstall the app
from its tile. You'll then see the popup when you next run the app.

(© Permissions

y Kraig B
Version 2.0.0.0

Privacy
Allow this app to access your:

Location

Oon |
Webcam

off [

This app has permission to use:
Your Internet connection

FIGURE 2-18 Any permissions that are subject to user consent can be changed at any time through the Settings
Charm > Permissions pane.

Sidebar: Writing Code in Debug Mode

Because of the dynamic nature of JavaScript, it's impressive that the Visual Studio team figured
out how to make the IntelliSense feature work quite well in the Visual Studio editor. (If you're
unfamiliar with IntelliSense, it's the productivity service that provides auto-completion for code

90

as well as popping up API reference material directly inline; learn more at JavaScript IntelliSense).
That said, a helpful trick to make IntelliSense work even better is to write code while Visual
Studio is in debug mode. That is, set a breakpoint at an appropriate place in your code, and then
run the app in the debugger. When you hit that breakpoint, you can then start writing and

editing code, and because the script context is fully loaded, IntelliSense will be working against
instantiated variables and not just what it can derive from the source code. You can also use
Visual Studio’s Immediate Window to execute code directly to see the results. (You will need to
restart the app, however, to execute any new code you write.)

Capturing a Photo from the Camera

In a slightly twisted way, | hope the idea of adding camera capture within a so-called “quickstart”
chapter has raised serious doubts in your mind about this author’s sanity. Isn't that going to take a
whole lot of code? Well, it used to, but no longer. The complexities of camera capture have been
encapsulated within the Windows.Media.Capture APl to such an extent that we can add this feature
with only a few lines of code. It's a good example of how a little dynamic code like JavaScript combined
with well-designed WinRT components—both those in the system and those you can write yourself—
are a powerful combination! (You can also write your own capture Ul, as we'll see in Chapter 13,
“Media,” which is presently necessary on Windows Phone as the APl we're using here isn't available.)

To implement this feature, we first need to remember that the camera, like geolocation, is a privacy -
sensitive device and must also be declared in the manifest, as shown in Figure 2-19.

Application Visual Assets Capabilities
Use this page to specify system features or devices that your app can use.

Capabilities: Description:
[] Enterprise Authentication Provides access to the)
Interet (Client) connected webcams,
[] Internet (Client 8 Server)
Location
[] Microphone
[Music Library
[] Pictures Library
[] Private Metworks (Client 8 Server)
[Proximity
[] Removable Storage
[] Shared User Certificates
[] videos Library
™ Webcam

More information

FIGURE 2-19 The camera capability in Visual Studio’s manifest editor.
91

http://msdn.microsoft.com/library/bb385682.aspx

On first use of the camera at run time, you'll see another consent dialog as follows, where again the
user can later change their consent in Settings > Permissions (shown earlier in Figure 2-18):

Can Here My Am! (2a) use your webcam?

Next we need to wire up the img element to pick up a tap gesture. For this we simply need to add
an event listener for c11ck, which works for all forms of input (touch, mouse, and stylus), as we'll see in
Chapter 12:

document.getElementById("photo™).addEventListener("click", capturePhoto.bind(photo));

Here we're providing capturePhoto as the event handler, and using the function object's bind
method to make sure the this objectinside capturePhoto is bound directly to the img element. The
result is that the event handler can be used for any number of elements because it doesn't make any
references to the DOM itself:

//Place this under var TastPosition = null; (within the app.onactivated handler)
var lastCapture = null;

//Place this after callFrameScript
function capturePhoto() {
//Due to the .bind() call in addEventListener, "this" will be the image element,
//but we need a copy for the async completed handler below.
var captureUI = new Windows.Media.Capture.CameraCapturelUI(Q);
var that = this;

//Indicate that we want to capture a JPEG that's no bigger than our target element --
//the UL will automatically show a crop box of this size.
captureUI.photoSettings.format = Windows.Media.Capture.CameraCaptureUIPhotoFormat.jpeg;

captureUI.photoSettings.croppedSizeInPixels =
{ width: that.clientWidth, height: that.clientHeight };

//Note: this will fail if we're in any view where there's not enough space to display the UI.
captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)
.done(function (capturedFile) {
//Be sure to check validity of the item returned; could be null if the user canceled.
if (capturedFile) {
lastCapture = capturedFile; //Save for Share
that.src = URL.createObjectURL(capturedFile, { oneTimeOnly: true });
}
}, function (error) {
console.log("Unable to invoke capture UI:

s

+ error.message) ;

92

We do need to make a local copy of this within the c11ick handler, though, because once we get
inside the async completed handler (the anonymous function passed to captureFileAsync.done)
we're in a new function scope and the this object will have changed. The convention for such a copy
of this isto call it that. Got that? (You can call it anything, of course.)

To invoke the camera Ul, we only need create an instance of Windows.Media.Capture. -
CameraCaptureUI with new (a typical step to instantiate dynamic WinRT objects), configure it with the
desired format and size (among many possibilities; see Chapter 13), and then call captureFiTleAsync.
This will check the manifest capability and prompt the user for consent, if necessary (and unlike the
Geolocator, a CameraCaptureUI object can go out of scope without canceling the async operation).

This is an async call, so it returns a promise and we hook a .done on the end with our completed
handler, which in this case will receive a Windows.Storage.StorageFile object. Through this object
you can get to all the raw image data you want, but for our purpose we simply want to display itin the
img element. That's easy as well! Data types from WinRT and those in the DOM API are made to
interoperate seamlessly, so a StorageFile can be treated like an HTML blob. This means you can hand
a WInRT StorageFile object to the HTML URL.createObjectURL method and get back an URI that
can be directly assigned to the img. src attribute. The captured photo appears!

Tip The {oneTimeOnly: true} parameter to URL.createObjectURL indicates that the URI is not
reusable and should be revoked via URL . revokeObjectURL whenit's no longer used, as when we
replace img.srcwith a new picture. Without this, we'd leak memory with each new picture unless you
explicitly call URL. revokeObjectURL. (If you've used URL.createObjectURL in the past, you'll see that
the second parameter is now a property bag, which aligns with the most recent W3C spec.)

Note that captureFileAsync will call the completed handlerif the Ul was successfully invoked but
the user hit the back button and didn't actually capture anything (this includes if you cancel the
promise to programmatically dismiss the Ul). This is why we do the extra check on the validity of
capturedFiTe. An error handler on the promise will, forits part, pick up failures to invoke the Ul in the
first place. This will happen if the current view of the app is too small (<500px) for the capture Ul to be
usable, in which case error.message will say "A method was called at an unexpected time.” You can
check the app’s view size and take other action under such conditions, such as displaying a message to
make the view wider. Here we just fail silently; we could also just use the 500px minimum.

Note that a denial of consent will show a message in the capture Ul directly, so it's unnecessary to
display your own errors with this particular API:

© Camera

This app needs permission to use your camera.

You can change this in the app's settings.

93

When this happens, you can again go to Settings > Permissions and give consent to use the camera,
as shown in Figure 2-18 earlier.

Sharing the Fun!

Taking a goofy picture of oneself is fun, of course, but sharing the joy with the rest of the world is even
better. Up to this point, however, sharing information through different social media apps has meant
using the specific APIs of each service. Workable, but not scalable.

Windows 8 instead introduced the notion of the share contract, which is used to implement the
Share charm with as many apps as participate in the contract. Whenever you're in an app and invoke
Share, Windows asks the app for its source data, which it provides in one or more formats. Windows
then generates a list of target apps (according to their manifests) that understand those formats, and
displays that list in the Share pane. When the user selects a target, that app is activated and given the
source data. In short, the contract is an abstraction that sits between the two, so the source and target
apps never need to know anything about each other.

This makes the whole experience all the richer when the user installs more share-capable apps, and
it doesn't limit sharing to only well-known social media scenarios. What's also beautiful in the overall
experience is that the user never leaves the original app to do sharing—the share target app shows up
in its own view as an overlay that only partially obscures the source app (refer back to Figure 2-15). This
way, the user remains in the context of the source app and returns there directly when the sharing is
completed. In addition, the source data is shared directly with the target app, so the user never needs
to save data to intermediate files for this purpose.

So instead of adding code to our app to share the photo and locationto a particular target, like
Facebook or Twitter, we need only package the data appropriately when Windows asks for it. That
asking comes through the datarequested event sent to the Windows.ApplicationModel.-
DataTransfer.DataTransferManager object.l> First we just need to set up an appropriate listener—
place this code is in the activated event in default,s after setting up the c11ick listener on the img
element:
var dataTransferManager =

Windows .ApplicationModel.DataTransfer.DataTransferManager.getForCurrentView();
dataTransferManager.addEventListener("datarequested”, provideData);

Note The notion of a current view as we see here is a way of saying, “get the singular instance of this
system object that's related to the current window,” which supports the ability for an app to have
multiple windows/views (see Chapter 8). You use getForCurrentViewinstead of creating an instance
with new because you only ever need one instance of such objects for any given view.
getForCurrentView will instantiate the object if necessary, or return one that’s already available.

15 Because we're always listening to datarequested while the app is running and add a listener only once, we don't need to
worry about calling removeEventListener. For details, see "WinRT Events and removeEventListener” in Chapter 3.

94

For this event, the handler receives a Windows .ApplicationModel.DataTransfer.DataRequest
objectin the event args (e. request), which in turn holds a DataPackage object (e.request.data).To
make data available for sharing, you populate this data package with the various formats you have
available, as we've saved in TastPosition and TastCapture. So in our case, we make sure we have
positionand a photo and then fill in text and image properties (if you want to obtaina map from Bing
for sharing purposes, see Get a static map):

//Drop this 1in after capturePhoto
function provideData(e) {

var request = e.request;
var data = request.data;

if (!lastPosition || !TastCapture) {
//Nothing to share, so exit
return;
}
data.properties.title = "Here My Am!";
data.properties.description = "At ("
+ TastPosition.latitude + ", " + lastPosition.Tongitude + ")";

//When sharing an image, include a thumbnail
var streamReference =

Windows .Storage.Streams.RandomAccessStreamReference.createFromFile(TastCapture);
data.properties.thumbnail = streamReference;

//It's recommended to always use both setBitmap and setStorageltems for
// sharing a single image since the target app may only support one or the other.

//Put the image file in an array and pass it to setStorageltems
data.setStorageItems([lastCapture]);

//The setBitmap method requires a RandomAccessStream.
data.setBitmap(streamReference);

The latter part of this code is pretty standard stuff for sharing a file-based image (which we have in
TastCapture). | got most of this code, in fact, directly from the Share content source app sample,
which we'll look at more closely in Chapter 15, “Contracts.” We'll also talk more about files and streams

in Chapter 10.

With this last addition of code, and a suitable sharing targetinstalled (such as the Share content
target app sample, as shown in Figure 2-20, or Twitter as shown in Figure 2-21), we now have a very
functional app—in all of 35 lines of HTML, 125 lines of CSS, and less than 100 lines of JavaScript!

95

http://msdn.microsoft.com/library/ff701724.aspx
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782

(© Share Target JS sample Sk

Here My Am!

& Windows SDK Samples

P hOtO QuickLink Id: This app was not activated through a frequent QuickLink. fa)
The following Data Package was received from the source app:
Data Package Properties
Title: Here My Am!
Description: At (39.349602, -120.876602)
Package Family Name: ProgrammingWin-JS-CH2-
HereMyAm2b_Sxchamk3agtdé
Content Source Web Link: (No content source web link)
Content Source Application Link: (No content source application link)
Logo:
Thumbnail:
Data Package Content
Storageltems: Capture - Tue Jun 18 2013 11-46-39 GMT-0700 (Pacific Daylight
Time).jpg
Bitmap:
v
2% Microsoft
Copyright © Microsoft Corporation. All rights reserved. Termsofuse Trademarks Privacy Statement

FIGURE 2-20 Sharing (monkey-see, monkey-do!) to the Share target sample in the Windows SDK, which is highly
useful for debugging as it displays information about all the formats the source app has shared. (And if you still
think I've given you coordinates to my house, the ones shown here will send you some miles down the road where
you'll make a fine acquaintance with the Tahoe National Forest.)

© Twitter v
Here My Aml W Kr2ia Brockschmiat
Photo et

Here My Am! - At (39.349602, -120.876602).
Who is this wacky dud, | mean dudd?

S
Y/

FIGURE 2-21 Sharing to Twitter. The fact that Twitter's brand color is nearly identical to the Windows SDK is sheer
coincidence. The header color of the sharing pane always reflects the target app’s specific color.

96

Extra Credit: Improving the App

The Here My Am! app as we've built it so far is nicely functional and establishes core flow of the app,
and you can find this version in the HereMyAm?2a folder of the companion content. However, there are
some functional deficiencies that we could improve:

Because geolocationisn't always as accurate as we'd like, the pushpin location on the map
won't always be where we want it. To correct this, we can make the pin draggable and report
its updated position to the app via postMessage from the iframe to the app. This will also
complete the interaction story between local and web contexts.

The placeholderimage that reads “Tap to capture photo” works well in some views, but looks
terrible in others (such as the 50% view as seen in Figure 2-14). We can correct this, and
simplify localization and accessibility concerns later on, by drawing the text on a canvas
elementand using itas the placeholder.

Auto-cropping the captured image to the size of the photo display area takes control away
from users who might like to crop the image themselves. Furthermore, as we change views in
the app, the image just gets scaled to the new size of the photo area without any concern for
preserving aspect ratio. By keeping that aspect ratio in place, we can then allow the user to
crop however they want and adapt well across different view sizes.

By default, captured images are stored in the app’s temporary app data folder. It'd be better
to move those images to local app data, or even to the Pictures library, so we could later add
the ability to load a previously captured image (as we'll do in Chapter 9 when we implement
an app bar command for this purpose).

Originally we used URL.createObjectURL directlyon animage’s StorageFile. Because
many images are somewhat larger than most displays, this can use more memory than is
necessary. It's better, for consumption scenarios, to use a thumbnail instead.

The sections that follow explore all these details and together produce the HereMyAm2b app in the
companion content.

Note For the sake of simplicity, we'll not separate strings (like the text for the canvas element) into a
resource file as you typically want to do for localization. This gives us the opportunity in Chapter 19 to
explore where such strings appear throughout an app and how to extract them. If you're starting your
own project now, however, you might want to read the section “World Readiness and Globalization” in
Chapter 19 right away so you can properly structure your resources from the get-go.

Sidebar: Debug or Release?

Because JavaScript code is interpreted at run time instead of being compiled, it lacks conditional
compilation directives like #1 fdef that are commonly used in languages like C++ to provide
separate code for Debug and Release builds. Fortunately, it's not difficult to edit your project file

97

to detect the Visual Studio build target and then selectively copy a debug or release specific file
into the resulting package. This helps you isolate target-specific variables and methods and avoid
littering the rest of your code with a bunch of if statements. | explain the details of doing this on

my blog, A reliable way to differentiate Debug and Release builds for JavaScript apps.

A similar question is whether you can write generic JavaScript code that could be used in a
Windows Store app or a web application. A reasonable way to detect the run-time environment
is to check for the existence of the MSApp object and one of its member functions. See my
StackOverflow answer on Conditional statement to check for Win8 or iOS.

Receiving Messages from the iframe

Just as app code in the local context can use postMessage to send informationto an iframe in the
web context, the iframe can use postMessage to send informationto the app. In our case, we want to
know when the location of the pushpin has changed so that we can update TastPosition.

First, here’s a simple utility function | added to map.html to encapsulate the appropriate
postMessage calls to the app from the iframe:
function notifyParent(event, args) {

//Add event name to the arguments object and stringify as the message

args["event"] = event;
window.parent.postMessage(JSON.stringify(args), "ms-appx://" + document.location.host);

This function basically takes an event name, adds it to an object containing parameters, stringifies
the whole thing, and then posts it back to the parent.

To make a pushpin draggable, we simply add the draggable: true optionwhen we create it in the
pinLocation function (in map.html):
var pushpin = new Microsoft.Maps.Pushpin(location, { draggable: true });

When a pushpin is dragged, it raises a dragend event. We can wire up a handler for this in
pinLocation just after the pushpin is created, which then calls notifyParent with a suitable event:

Microsoft.Maps.Events.addHandler(pushpin, "dragend", function (e) {
var location = e.entity.getlLocation();
notifyParent("locationChanged",

{ latitude: Tocation.latitude, Tongitude: location.longitude });

1N

Back in default,js (the app), we add a listener forincoming messages inside app.onactivated:

window.addEventListener("message", processFrameEvent);

where the processFrameEvent handler looks at the event in the message and acts accordingly:

function processFrameEvent (message) {
//Verify data and origin (in this case the web context page)
if (Imessage.data || message.origin !== "ms-appx-web://" + document.location.host) {

98

http://kraigbrockschmidt.com/blog/?p=1285
http://stackoverflow.com/questions/19409787/conditional-statement-to-check-for-win8-or-ios

return;

}

if (!message.data) {
return;

}
var eventObj = JSON.parse(message.data);

switch (eventObj.event) {
case "locationChanged":
lastPosition = { Tatitude: eventObj.latitude, longitude: eventObj.Tongitude };
break;

default:
break;

1

Clearly, this is more code than we'd need to handle a single message or event from an iframe, but |
wanted to give you something that could be applied more generically in your own apps. In any case,
these additions now allow you to drag the pin to update the location on the map and thus also the
location shared through the Share charm.

Improving the Placeholder Image with a Canvas Element

Although our default placeholderimage, /images/taphere.png, works well in a number of views, it gets
inappropriately squashed or stretched in others. We could create multiple images to handle these
cases, but that will bloat our app package and make our lives more complicated when we look at
variations for pixel density (Chapter 3) along with contrast settings and localization (Chapter 19). To
make a long story short, handling different pixel densities can introduce up to four variants of an
image, contrast concerns can introduce four more variants, and localization introduces as many variants
as the languages you support. So if, for example, we had three basic variants of this image and
multiplied that with four pixel densities, four contrasts, and ten languages, we'd end up with 48 images
per language or 480 across all languages! That's too much to maintain, for one, and that many images
will dramatically bloat the size of your app package (although the Windows Store manages resource
packaging such that users download only what they need).

Fortunately, there’s an easy way to solve this problem across all variations, which is to just draw the
text we need (for which we can adjust contrast and use a localized string later on) on a canvas element
and then use the HTML blob API to display that canvas in an img element. Here's a routine that does all
of that, which we call within app.onready (to make sure document layout has happened):

function setPlaceholderImage() {
//Ignore if we have an image (shouldn't be called under such conditions)
if (TastCapture != null) {
return;

}

99

var photo = document.getElementById("photo");
var canvas = document.createElement("canvas');
canvas.width = photo.clientWidth;
canvas.height = photo.clientHeight;

var ctx = canvas.getContext("2d");

ctx.fil1Style = "#7f7f7f";

ctx.fil1Rect(0, 0, canvas.width, canvas.height);
ctx.fillStyle = "#ffffff";

//Use 75% height of the photoSection heading for the font

var fontSize = .75 *
document.getElementById("photoSection").querySelector("h2").clientHeight;

ctx.font = "normal " + fontSize + "px 'Arial'";

ctx.textAlign = "center";

ctx.fil1Text("Tap to capture photo", canvas.width / 2, canvas.height / 2);

var img = photo.querySelector("img");

//The blob should be released when the img.src is replaced
img.src = URL.createObjectURL(canvas.msToBlob(), { oneTimeOnly: true });

Tu

Here we're simply creating a canvas element that's the same width and height as the photo display
area, but we don't attach it to the DOM (no need). We draw our text on it with a size that's
proportional to the photo section heading. Then we obtain a blob for the canvas using its msToB1ob
method, hand it to our friend URL.createObjectURL, and assign the result to the img.src. Voila!

Because the canvas element will be discarded once this function is done (that variable goes out of
scope) and because we make a oneTimeOnTy blob from it, we can call this function anytime the photo
sectionis resized, which we can detect with the window.onresize event. We need to use this same
event to handle image scaling, so let’s see how all that works next.

Handling Variable Image Sizes

If you've been building and playing with the app as we've described it so far, you might have noticed a
few problems with the photo area besides the placeholderimage. For one, if the resolution of the
camera is not sufficient to provide a perfectly sized image as indicated by our cropping size, the
captured image will be scaled to fit the photo area without concern for preserving the aspect ratio (see
Figure 2-22, left side). Similarly, if we change views (or display resolution) after any image is captured,
the photo area gets resized and the image is again scaled to fit, without always producing the best
results (see Figure 2-22, right side).

100

Here My Am!

Photc

FIGURE 2-22 Poor image scaling with a low-resolution picture from the camera where the captured image isn't
inherently large enough for the display area (left), and even worse results in the 50% view when the display area’s
aspect ratio changes significantly.

To correct this, we'll need to dynamically determine the largest image dimensionwe can use within
the current display area and then scale the image to that size while preserving the aspect ratio and
keeping the image centered in the display. For centering purposes, the easiest solution I've found to
this is to create a surrounding div with a CSS grid wherein we can use row and column centering. So in
default.html:
<div id="photo" class="graphic">

</div>

and in default.css:

#photo {
display: -ms-grid;
-ms-grid-columns: 1fr;
-ms-grid-rows: 1fr;

}

#photoImg {
-ms-grid-column-align: center;
-ms-grid-row-align: center;

The graphic style class on the div always scales to 100% width and height of its grid cell, so the
one row and column within it will also occupy that full space. By adding the centering alignment to the
photoImg child element, we know that the image will be centered regardless of its size.

To scale the image in this grid cell, then, we either set the image element’s width style to 100% if its
aspectratio is greater than that of the display area, or set its height style to 100% if the opposite is
true. For example, on a 1366x768 display, the size of the display area in landscape view is 583x528 for
an aspectratio of 1.1, and let's say we get an 800x600 image back from camera capture with an aspect

101

ratio of 1.33. In this case the image is scaled to 100% of the display area width, making the displayed
image 583x437 with blank areas on the top and bottom. Conversely, in 50% view the display area on
the same screen is 612x249 with a ratio of 2.46, so we scale the 800x600 image to 100% height, which
comes out to 332x249 with blank areas on the leftand right.

The size of the display area is readily obtained through the clientwWidth and clientHeight
properties of the surrounding div we added to the HTML. The actual size of the captured image is then
readily available through its StorageFile object’s properties.getImagePropertiesAsync method.
Putting all this together, here’s a function that sets the appropriate style on the img element given its
parent div and the captured file:

function scaleImageToFit(imgElement, parentDiv, file) {
file.properties.getImagePropertiesAsync().done(function (props) {
var scaleToWidth =
(props.width / props.height > parentDiv.clientWidth / parentDiv.clientHeight);
imgElement.style.width = scaleTowidth ? "100%" : "";
imgETement.style.height = scaleToWidth ? "" : "100%";
}, function (e) {
console.log("getImageProperties error:
b;

+ e.message);

With this in place, we can simply call this in our existing capturePhoto function immediately after
we assigna new image to the element:

img.src = URL.createObjectURL(capturedFile, { oneTimeOnly: true });
scaleImageToFit(img, photoDiv, capturedFile);

To handle view changes and anything else that will resize the display area, we can add a resize
handler within app.onactivated:

window.addEventListener("resize", scalePhoto);

where the scalePhoto handler can call scaleImageToFit if we have a captured image or the
setPlaceholderImage function we created in the previous section otherwise:

function scalePhoto() {
var photoImg = document.getElementById("photoImg");

//Make sure we have an img element
if (photoImg == null) {
return;

}

//If we have an image, scale it, otherwise regenerate the placeholder
if (lastCapture != null) {
scaleImageToFit(photoImg, document.getElementById("photo™), TastCapture);
} else {
setPTaceholderImage();
}

102

With such accommodations for scaling, we can also remove the line from capturePhoto that set
captureUI.photoSettings.croppedSizeInPixels, thereby allowing us to crop the captured image
however we like. Figure 2-23 shows these improved results.

Here My Am! (2b)

Here My Am! (2b)

Photo

!

FIGURE 2-23 Proper image scaling after making the improvements.

Moving the Captured Image to AppData (or the Pictures
Library)

If you take a lookin Here My Am! TempState folder within its appdata, you'll see all the pictures you've
taken with the camera capture Ul. If you set a breakpoint in the debugger and look at capturedFiTe,
you'll see that it has an ugly file path like C:\Users\kraigb\AppData\Local\Packages\ ProgrammingWin-
JS-CH2-HereMyAm2b_5xchamk3agtd6\TempState\picture001.png. Egads. Not the friendliest of
locations, and definitely not one that we'd want a typical consumer to ever see!

Because we'll want to allow the user to reload previous pictures later on (see Chapter 10), it's a good
idea to move these images into a more reliable location. Otherwise they could disappear at any time if
the user runs the Disk Cleanup tool.

Tip For quick access to the appdata folders for your installed apps, type %localappdata%/packages
into the path field of Windows Explorer or in the Run dialog (Windows+R key). Easier still, just make a
shortcut on your desktop, Start screen, or task bar.

For the purposes of this exercise, we'll move each captured image into a HereMyAm folder within
our local appdata and also rename the file in the process to add a timestamp. In doing so, we can also
briefly see how to use an ms-appdata:///Tocal/ URI to directly refer to those images within the
img.src attribute. (This protocol is described in URI schemes along with its roaming and temp variants,
the ms-appx protocol forin-package contents, and the ms-resource protocol for resources, as
described in Chapter 19.) | say “briefly” here because in the next section we'll change this code to use a
thumbnail instead of the full image file.

103

http://msdn.microsoft.com/library/windows/apps/jj655406.aspx

To move the file, we can use its built-in StorageFile. copyAsync method, which requires a target
StorageFolder objectand a new name, and then delete the temp file with its deTeteAsync method.

The target folderis obtained from Windows.Storage.ApplicationData.current.localFolder.
The only real trick to all of this is that we have to chain together multiple async operations. We'll
discuss this in more detail in Chapter 3, but the way you do this is to have each completed handlerin
the chain return the promise from the next async operationin the sequence, and to use then for each
step except for the last, when we use done. The advantage to this is that we can throw any exceptions
along the way and they'll be picked up in the error handler given to done. Here's how it looksin a
modified capturePhoto function:

var img = photoDiv.querySelector("img");
var capturedFile;

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)
.then(function (capturedFileTemp) {
if (!capturedFileTemp) { throw ("no file captured"); }
capturedFile = capturedFileTemp;

//Open the HereMyAm folder, creating it if necessary

var local = Windows.Storage.ApplicationData.current.localFolder;

return _("He reMyAm" ,
Windows.Storage.CreationCollisionOption.openIfExists);

//Note: the results from the returned promise are fed into the
//completed handler given to the next then in the chain.

b
.-('Functi on (-) {
//Again, check validity of the result
if (!myFolder) { throw ("could not create Tlocal appdata folder"); }

//Append file creation time to the filename (should avoid collisions,
//but need to convert colons)

var newName = " Capture - " +
capturedFile.dateCreated.toString() .replace(/:/g, "-") + capturedFile.fileType;

//Make the copy

return capturedFile.copyAsync(myFolder, newName);
b
.then(function (newFile) {

if ('newFile) { throw ("could not copy file"); }

lastCapture = newFile; //Save for Share
img.src = "ms-appdata:///local/HereMyAm/" + newFile.name;
//newFile.name includes extension

scaleImageToFit(img, photoDiv, newFile);
//Delete the temporary file
return EEBEURCORIIEHUSISEEASYRE () ;

1))

//No completed handler needed for the last operation

104

.-(nuﬂ, function (error) {
console.log("UnabTle to invoke capture UI:" + error.message);

b;

This might look a little complicated to you at this point, but trust me, you'll quickly become
accustomed to this structure when dealing with multiple async operations. If you can look past all the
syntactical ceremony here and simply follow the words Async and then, you can see that the sequence
of operations is simply this:

e Capture animage from the camera capture Ul, resulting in a temp file, then...

e Create or openthe HereMyAm folderin local appdata, resulting in a folder object, then...
e Copy the captured file to that folder, resulting in a new file, then...

e Delete the temp file, which has no results, and we're done.

To help you follow the chain, I've use different colors in the code above to highlight each set of
async calls and their associated then methods and results, along with a final call to done. What works
very well about this chaining structure—which is much cleaner than trying to nest operations within
each completed handler—is that any exceptions that occur, whether from WinRT or a direct throw, are
shunted to the one error handler at the end, so we don't need separate error handlers for every
operation (although you can if you want).

Finally, by changing two lines of this code and—very importantly—declaring the Pictures library
capability in the manifest, you can move the files to the Pictures library instead. Just change the line to
obtain TocalFolder to this instead:

var local = Windows.Storage.KnownFolders.picturesLibrary;
and use URL.createObjectUr1 with the img elementinstead of the ms-appdata URI:
img.src = URL.createObjectURL(newFile, {oneTimeOnly: true});

as there isn't a URI scheme for the pictures library. Of course, the line above works just fine for a file in
local appdata, but | wanted to give you an introduction to the ms-appdata:// protocol. Again, we'll be
removing this line in the next section, so in the example code you'll only see it in comments.

Using a Thumbnail Instead of the Full Image

As we'll learn in Chapter 11, "The Story of State, Part 2, most image consumption scenarios never need
to load an entire image file into memory. Images from digital cameras, for example, are often much
larger than most displays, so the image will almost always be scaled down even when shown full screen.
Unless you're showing the zoomed-inimage or providing editing features, then, it's more memory
efficient to use thumbnails forimage display rather than just passing a StorageFile straight to
URL.createObjectURL. This is especially true when loading many images into a collection control.

105

To obtain a thumbnail, use either StorageFile.getThumbnailAsync or StorageFile.getScaled-
ImageAsThumbnailAsync, where the former always relies on the thumbnail cache whereas the latter
will use the full image as a fallback. For the purposes of Here My Am!, we'll want to use the latter. First
we need to remove the img.src assignmentinside capturePhoto, then have the scaleImageToFit
function load up the thumbnail:

function scaleImageToFit(imgElement, parentDiv, file) {
file.properties.getImagePropertiesAsync() .done(function (props) {
var requestedSize;
var scaleToWidth =
(props.width / props.height > parentDiv.clientWidth / parentDiv.clientHeight);

if (scaleToWidth) {
imgElement.style.width = "100%";
imgElement.style.height = "";
requestedSize = parentDiv.clientWidth;
} else {
imgElement.style.width = "";
imgElement.style.height = "100%";
requestedSize = parentDiv.clientHeight;

}

//Using a thumbnail is always more memory efficient unless you really need all the
//pixels in the image file.

//Align the thumbnail request to known caching sizes (for non-square aspects).
if (requestedSize > 532) { requestedSize = 1026; }

else { if (requestedSize > 342) { requestedSize = 532; }

else { requestedSize = 342; }}

file.getScaledImageAsThumbnailAsync(
Windows.Storage.FileProperties.ThumbnailMode.singleItem, requestedSize)
.done(function (thumb) {
imgElement.src = URL.createObjectURL(thumb, { oneTimeOnly: true });
i9H

As we'll see in Chapter 11, the ThumbnailMode.singleItem argument to getScaledImageAs-
ThumbnaiTlAsync is the best mode for loading a largerimage, and the second argument specifies the
requested size, which works best when aligned to known cache sizes (190, 266, 342, 532, and 1026 for
non-square aspects). The resulting thumbnail of this operation is conveniently something you can
again pass directly to URL.createObjectURL, but ensures that we load only as much image data as we
need for our Ul.

With that, we've completed our improvements to Here My Am!, which you can again find in the
HereMyAm2b example with this chapter's companion content. And | think you can guess that this is
only the beginning: we'll be adding many more features to this app as we progress through this book!

106

The Other Templates: Projects and Items

In this chapter we've worked with only the Blank App template so that we could understand the basics
of writing a Windows Store app without any other distractions. In Chapter 3, we'll look more deeply at
the anatomy of apps through a few of the other templates, yet we won't cover them all. To close this
chapter, then, here's a short introduction to these handy tools to get you started on your own projects.

Navigation App Template

"A project for a Windows Store app that has predefined controls for navigation.”
(Blend/Visual Studio description)

The Navigation template builds on the Blank template by adding support for “page” navigation,
where the pages in question are more sections of content than distinct pages like we know on the
Web. As discussed in Chapter 1, Windows Store apps written in JavaScript are bestimplemented by
having a single HTML page container into which other pages are dynamically loaded. This allows for
smooth transitions (as well as animations) between those pages and preserves the script context. Many
web apps, in fact, use this single-page approach.

The Navigation template, and the others that remain, employ a Page Navigator control that
facilitates loading (and unloading) pages in this way. You need only create a relatively simple structure
to describe each page and its behavior. We'll see this in—you guessed it—Chapter 3.

In this model, default.html is little more than a simple container, with everything else in the app
coming through subsidiary pages. The Navigation template creates only one subsidiary page, yet it
establishes the framework for how to work with multiple pages. Additional pages are easily added to a
project through a page item template (right click a folderin your projectin Visual Studio and select
Add > New Item > Page Control).

Grid App Template

"A three-page project for a Windows Store app that navigates among grouped items arranged in a grid.
Dedicated pages display group and item details.” (Blend/Visual Studio description)

Building on the Navigationtemplate, the Grid template provides the basis for apps that will navigate
collections of data across multiple pages. The home page shows grouped items within the collection,
from which you can then navigate into the details of an item or into the details of a group and its items
(from which you can then go into individual item details as well).

In addition to the navigation, the Grid template also shows how to manage collections of data
through the WinJS.Binding.List class, a topic we'll explore much further in Chapter 7, "Collection
Controls.” It also provides the structure for an app bar and shows how to simplify the app’s behaviorin
narrow views.

107

The name of the template, by the way, derives from the particular grid /ayout used to display the
collection, not from the CSS grid.

Hub App Template

“A three-page project for a Windows Store app that implements the hub navigation pattern by using a
hub control on the first page and provides two dedicated pages for displaying group and item details.”
(Blend/Visual Studio description)

Functionally similar to a Grid Template app, the Hub template uses the WinJS Hub control for a
home page with heterogeneous content (that is, where multiple collections could be involved). From
there the app navigates to group and item pages. We'll learn about the Hub control in Chapter 8.

Split Template

"A two-page project for a Windows Store app that navigates among grouped items. The first page allows
group selection while the second displays an item list alongside details for the selected item.”
(Blend/Visual Studio description)

This last template also builds on the Navigation template and works over a collection of data. Its
home page displays a list of groups, rather than grouped items as with the Grid template. Tapping a
group navigates to a group detail page thatis splitinto two sides (hence the template name). The left
side contains a vertical list of items; the right side shows details for the currently selected item.

Like the Grid template, the Split template provides an app bar structure and handles different views
intelligently. That is, because vertically oriented views don't lend well to splitting the display
horizontally, the template shows how to switch to a page navigation model within those views to
accomplish the same ends.

Item Templates

In addition to the project templates described above, there are a number of item templates that you
can use to add new files of particular types to a project, or add groups of files for specific features.
Once a project is created, right-click the folderin which you want to create the item in question (or the
project file to create something at the root), and select Add > New item. This will present you with a
dialog of available item templates, as shown in Figure 2-24 for features specific to Store apps. We'll
encounter more of these throughout this book.

108

Add New Item - App4 ?

| 4 Installed | Sort by: Default Search Installed Templates (Ctrl+E) P~
4 Jav rJIS Action JavaScript r= laetani
—— A JavaScript template for Blend Actions.
Code sz - e,
Data I ehavior avascrip
b Online E@ File Open Picker Contract JavaScript
ﬁ Page Control JavaScript
Ia Search Results Page JavaScript
P.
Ela Share Target Contract JavaScript
Click here to go online and find templates.
Name: Action,js

FIGURE 2-24 Available item templates for a Windows Store app written in JavaScript.

What We've Just Learned

How to create a new Windows Store app from the Blank app template.

How to run an app inside the local debugger and within the simulator, as well as the role of
remote machine debugging.

The features of the simulator that include the ability to simulate touch, set views, and change
resolutions and pixel densities.

The basic project structure for Windows Store apps, including WinJS references.
The core activation structure foran app through the WinJS.Application.onactivated event.

The role and utility of design wireframes in app development, including the importance of
designing for all views, where the work is really a matter of element visibility and layout.

The power of Blend for Visual Studio to quickly and efficiently add styling to an app’s markup.
Blend also makes a great CSS debugging tool.

How to safely use web content (such as Bing maps) within a web context iframe and
communicate between that page and the local context app by using the postMessage method.

How to use the WinRT APIs, especially async methods involving promises such as geolocation
and camera capture. Async operations return a promise to which you provide a completed
handler (and optional error and progress handlers) to the promise’s then or done method.

109

Manifest capabilities determine whether an app can use certain WinRT APIs. Exceptions will
result if an app attempts to use an API without declaring the associated capability.

How to share data through the Share contract by responding to the datarequested event.
How to handle sequential async operations through chained promises.
How to move files on the file system and work with basic appdata folders.

The kinds of apps supported through the other app templates: Navigation, Grid, Hub, and Split.

110

Chapter 3

App Anatomy and Performance
Fundamentals

During the early stages of writing this book (the first edition, at least), | was working closely with a
contractor to build a house for my family. Although | wasn't on site every day managing the effort, |
was certainly involved in nearly all decision-making throughout the home’s many phases, and |
occasionally participated in the construction itself.

In the Sierra Nevada foothills of California, where | live, the frame of a house is built with the
plentiful local wood, and all the plumbing and wiring has to be in the walls before installing insulation
and wallboard (aka sheetrock). It amazed me how long it took to complete that infrastructure. The
builders spent a lot of time adding little blocks of wood here and there to make it much easier for them
to do the finish work later on (like hanging cabinets), and lots of time getting the wiring and plumbing
put together properly. All of this disappeared from sight once the wallboard went up and the finish
work was in place.

But then, imagine what a house would be like without such careful attention to structural details.
Imagine having some light switches that just don't work or control the wrong fixtures. Imagine if the
plumbing leaks inside the walls. Imagine if cabinets and trim start falling off the walls a week or two
after moving into the house. Even if the house manages to pass final inspection, such flaws would make
it almost unlivable, no matter how beautiful it might appear at first sight. It would be like a few of the
designs of the famous architect Frank Lloyd Wright: very interesting architecturally and aesthetically
pleasing, yet thoroughly uncomfortable to actually live in.

Apps are very much the same story—I've marveled, in fact, just how many similarities exist between
the two endeavors! An app might be visually beautiful, even stunning, but once you start using it day
to day (or even minute to minute), a lack of attention to the fundamentals will become painfully
apparent. As a result, your customers will probably start looking for somewhere else to live, meaning
someone else’s app! Another similarity is that taking care of core problems early on is always less
expensive and time-consuming than addressing them after the fact, as anyone who has remodeled a
house will know! This is especially true of performance issues in apps—trying to refactoran app at the
end of a project to improve the user experience is like adding plumbing and wiring to a house after all
the interior surfaces (walls, floors, windows, and ceilings) walls have been covered and painted.

This chapter, then, is about those fundamentals: the core foundational structure of an app upon
which you can build something that looks beautiful and really works well. This takes us first into the
subject of app activation (how apps get running and get running quickly) and then app lifecycle
transitions (how they are suspended, resumed, and terminated). We'll then look at page navigation

111

within an app, working with promises, async debugging, and making use of various profiling tools. One
subject that we won't talk about here are background tasks; we'll see those in Chapter 16, “Alive with
Activity,” because there are limits to their use and they are best discussed in the context of the lock
screen.

Generally speaking, these anatomical concerns apply strictly to the app itself and its existence on a
client device. Chapter 4, “Web Content and Services,” expands this story to include how apps reach out
beyond the device to consume web-based content and employ web APIs and other services. In that
context we'll look at additional characteristics of the hosted environment that we first encountered in
Chapter 2, "Quickstart,” such as the local and web contexts, basic network connectivity, and
authentication. We'll pick up a few other platform fundamentals, like input, in later chapters.

Let me offer you advance warning that this chapter and the next are more intricate than most others
because they specifically deal with the software equivalents of framing, plumbing, and wiring. With my
family’s house, | can completely attest that installing the lovely light fixtures my wife picked out
seemed, in those moments, much more satisfying than the framing work I'd done months earlier. But
now, actually living in the house, | have a deep appreciation for all the nonglamorous work that went
into it. It's a place | want to be, a place in which my family and | are delighted, in fact, to spend the
majority of our lives. And is that not how you want your customers to feel about your apps? Absolutely!
Knowing the delight that a well-architected app can bring to your customers, let's dive in and find our
own delight in exploring the intricacies!

App Activation

One of the most important things to understand about any app is how it goes from being a package
on disk to something that's up and running and interacting with users. Such activation can happen a
variety of ways: through tiles on the Start screen or the desktop task bar, toast notifications, and various
contracts, including Search, Share, and file type and URI scheme associations. Windows might also pre -
launch the user's most frequently used apps (not visibly, of course), after updates and system restarts. In
all these activation cases, you'll be writing plenty of code to initialize your data structures, acquire
content, reload previously saved state, and do whatever else is necessary to establish a great experience
for the human beings on the other side of the screen.

Tip Pay special attention to what | call the first experience of your app, which starts with your app’s
page in the Store, continues through download and installation (meaning: pay attention to the size of
your package), and finished up through first launch and initialization that brings the user to your app'’s
home page. When a user taps an Install button in the Store, he or she clearly wants to try your app, so
streamlining the path to interactivity is well worth the effort.

112

Branding Your App 101: The Splash Screen and Other Visuals

With activation, we first need to take a step back even before the app host gets loaded, to the very
moment a user taps your tile on the Start screen or when your app is launched some other way (except
for pre-launching). At that moment, before any app-specific code is loaded or run, Windows displays
your app'’s splash screen image against your chosen background color, both of which you specify in
your manifest.

The splash screen shows for at least 0.75 seconds (so that it's never just a flash even if the app loads
quickly) and accomplishes two things. First, it guarantees that something shows up when an app is
activated, even if no app code loads successfully. Second, it gives users an interesting branded
experience for the app—that s, your image—which is better than a generic hourglass. (So don't, as one
popularapp | know does, put a generic hour class in your splash screen image!) Indeed, your splash
screen and your app tile are the two mostimportant ways to uniquely brand your app. Make sure you
and your graphic artist(s) give full attention to these. (For further guidance, see Guidelines and checklist

for splash screens.)

The default splash screen occupies the whole view where the app is being launched (in whatever
view state), so it's a much more directly engaging experience for your users. During this time, an
instance of the app host gets launched to load, parse, and render your HTML/CSS, and load, parse, and
execute your JavaScript, firing events along the way, as we'll see in the next section. When the app's
first page is ready, the system removes the splash screen.16

Additional settings and graphics in the manifest also affect your branding and overall presence in
the system, as shown in the tables on the next page. Be especially aware that the Visual Studio and
Blend templates provide some default and thoroughly unattractive placeholder graphics. Take a
solemn vow right now that you truly, truly, cross-your-heart will not upload an app to the Windows
Store with these defaults graphics still in place! (The Windows Store will reject your app if you forget,
delaying certification.)

In the second table, you can see that it lists multiple sizes for various images specified in the
manifest to accommodate varying pixel densities: 100%, 140%, and 180% scale factors, and even a few
at 80% (don't neglect the latter: they are typically used for most desktop monitors and can be used
when you turn on Show More Tiles on the Start screen’s settings pane). Although you can just provide a
single 100% scale image for each of these, it's almost guaranteed that stretching that graphics for
higher pixel densities will ook bad. Why not make your app look its best? Take the time to create each
individual graphic consciously.

Manifest Editor Tab | Text Item or Setting Use

16 This system-provided splash screen is composed of only your splash screen image and your background color and does
not allow any customization. Through an extended splash screen (see Appendix B) you can control the entire display.

113

http://msdn.microsoft.com/library/windows/apps/hh465338.aspx
http://msdn.microsoft.com/library/windows/apps/hh465338.aspx

Application

Display Name

Appears in the “allapps” view on the Start screen, search results, the
Settings charm, and in the Store.

Visual Assets

Tile > Short name

Optional: if provided, is used for the name on thetile in place of the
Display Name, as Display Name may be too long for a square tile.

Tile > Show name

Specifies which tiles should showthe app name (the small 70x70 tile
will never show the name). If none of the items are checked, the name
never appears.

Tile > Defaultsize

Indicates whether to show the square or wide tile on the Start screen
after installation.

Tile > Foreground text

Color of name text shown on thetile if applicable (see Show name).
Options are Light and Dark. There mustbe a 1.5 contrast ratio
between this and the background color. Refer to The Paciello Group’s
Contrast Analyzer for more.

Tile > Background color

Color used for transparent areas of any tile images, the default
background for secondary tiles, notification backgrounds, buttonsin
app dialogs, borders when the app is a provider for file pickerand
contact picker contracts, headers in settings panes, and the app'’s
page in the Store. Also provides the splash screen background color
unless thatis set separately.

Splash Screen >
Background color

Color that will fill the majority of the splash screen; if notset, the App
Ul Background coloris used.

Visual Assets Tab Image Sizes
Image Use
9 80% 100% 140% 180%
Square 70x70 logo A small square tile image for the Start screen. If 56x56 70x70 98x98 126x126
provided, the user has the option to display this
after installation; it cannot be specified as the
default. (Note also that live tiles are not supported
on this size.)
Square 150x150 logo Square tile image for the Start screen. 1202120 150x150 210x210 270x270

Wide 310x150 logo

Optional wide tile image. If provided, thisis shown | 248x120 310x150 434x210 558x270

as the default unless overridden by the Default
option below. The user can use the squaretile if

desired.

Square 310x310 logo

Optional double-size/large square tileimage. If 248x248 310x310 434x434 558x558

provided, the user has the option to display this
after installation; it cannot be specified as the

default.

Square 30x30 logo

Tile used in zoomed-out and “all apps” views of 24x24 30x30 42x42 54x54

the Start screen, and in the Search and Share
panes if the app supports those contracts as
targets. Also used on the app tile if you elect to
show a logoinstead of the app name in the lower
left corner of the tile. Note that there are also four
"Targetsize” icons that are specificallyused in the
desktop file explorer when file type associations
exist for the app. We'll cover this in Chapter 15,

"Contracts.”

114

http://www.paciellogroup.com/resources/contrastAnalyser
http://www.paciellogroup.com/resources/contrastAnalyser

Store logo

Tile/logo image used for the app on its product
description page in the Windows Store. Thisimage
appears only in the Windows Store and is not used
by theapp or systemat run time.

n/a

50x50

70x70

90x90

Badgelogo

Shown next to a badge notification to identify the
app on the lock screen (uncommon, as this
requires additional capabilities to be declared; see
Chapter 16).

n/a

24x24

33x33

43x43

Splash screen

When the app is launched, thisimage is shown in
the center of the screen against the Splash Screen
> Background color (or Tile > Background color if
the otherisn’t specified). The image can utilize
transparency if desired.

n/a

620x300

868x420

1116x540

The Visual Assets tab in the editor shows you which scale images you have in your package, as
shown in Figure 3-1. To see all visual elements at once, select All Image Assets in the left-hand list.

Application

Visual Assets Capabilities Declarations

Content URIs

Packaging

Windows Store apps should support displays of different resolutions. Windows provides a simple way to do this via resource loading. This section
lists all the assets which are used in the manifest.

More information

All lmage Assets

Tile Images and Logos
Square 70x70 Logo
Square 150x150 Logo
Wide 310150 Loge
Square 310x310 Logo
Square 3030 Logo
Store Logo

Badge Logo

Splash Screen

Tile:
Short name:
Show name: Square 150x150 Logo
Wide 310x150 Logo
Square 310310 Logo
Default size: (not set) -
Foreground text: Light M

Background color: #00B294

Square 150x150 logo:
images'tile.png

Scaled Assets

Here My Am!
N2

70 px [=] 210x210px [=] 150%150px

[=] 120x120 px

L]

FIGURE 3-1 Visual Studio’s Visual Assets tab of the manifest editor. It automatically detects whether a scaled asset
exists for the base filename (such asimages\tile.png).

In the table, note that 80% scale tile graphics are used in specific cases like low DPI modes (generally
when the DPI is less than 130 and the resolution is less than 2560 x 1440) and should be provided with
other scaled images. When you upload your app to the Windows Store, you'll also need to provide
some additional graphics. See the App images topic in the docs under “Promotional images” for full

115

http://msdn.microsoft.com/library/windows/apps/hh846296.aspx

details.

The combination of small, square, wide, and large square tiles allows the user to arrange the start
screen however they like. For example:

M S&P 500 - 1:55 PM EDT
anill

1,666.98 ¥ -0.03%

50°

Bryce Canyon - bare
Showers/Clear

National Park, Utah " | | ssepar

L] Weather

Of course, it's not required that your app supports anything other than the 150x150 square tile; all
others are optional. In that case Windows will scale your 150x150 tile down to the 70x70 small size to
give users at least that option.

When saving scaled image files, append .scale-80, .scale-100, .scale-140, and .scale-180 to the
filenames, before the file extension, as in splashscreen.scale-140.png (and be sure to remove any file
that doesn't have a suffix). This allows you, both in the manifest and elsewhere in the app, to refer to an
image with just the base name, such as splashscreen.png, and Windows will automatically load the
appropriate variant for the current scale. Otherwise it looks for one without the suffix. No code need ed!
This is demonstrated in the HereMyAm3a example, where I've added all the various branded graphics
(with some additional textin each graphic to show the scale). With all of these graphics, you'll see the
different scales show up in the manifest editor, as shown in Figure 3-1 above.

To test these different graphics, use the set resolution/scaling button in the Visual Studio
simulator—refer to Figure 2-5 in Chapter 2—or the Device tab in Blend, to choose different pixel
densitieson a 10.6" screen (1366 x 768 =100%, 1920 x 1080 = 140%, and 2560 x 1440 = 180%), or the
7" or 7.5" screens (both use 140%). You'll also see the 80% scale used on the other display choices,
including the 23" and 27" settings. In all cases, the setting affects which images are used on the Start
screen and the splash screen, but note that you might need to exit and restart the simulator to see the
new scaling take effect.

One thing you might notice is that full-color photographic images don't scale down very well to the
smallest sizes (store logo and small logo). This is one reason why Windows Store apps often use simple
logos, which also keeps them smaller when compressed. This is an excellent consideration to keep your
package size smaller when you make more versions for different contrasts and languages. We'll see
more on this in Chapter 19, “Apps for Everyone, Part 1" and Chapter 20, “Apps for Everyone, Part 2.”

116

Package bloat? As mentioned already in Chapters 1 and 2, the multiplicity of raster images that you
need to create to accommodate scales, contrasts, and languages will certainly increase the size of the
package you upload to the Store. (There are 104 possible variants per language of the manifest image
assets alone!) Fortunately, the default packaging model for Windows 8.1 structures your resources into
separate packs that are downloaded only as a user needs them, as we'll discuss in Chapters 19 and 20.
In short, although the package you upload will contain all possible resources for all markets where
your app will be available, most if not all users will be downloading a much smaller subset. That said,
it's also good to consider the differences between file formats like JPEG, GIF, and PNG to get the most
out of your pixels. For a good discussion, see PNG vs. GIF vs. JPEG on StackOverflow.

Tip Three other branding-related resources you might be interested in are the Branding your
Windows Store app topic in the documentation (covering design aspects) the CSS styling and branding
your app sample (covering CSS variations and dynamically changing the active stylesheet), and the
very useful Applying app theme color (theme roller) sample (which lets you configure a color theme,
showing its effect on controls, and which generates the necessary CSS).

Activation Event Sequence

As the app host is built on the same parsing and rendering engines as Internet Explorer, the general
sequence of activation events is more or less what a web application sees ina browser. Actually, it's
more rather than less! Here's what happens so far as Windows is concerned when an app is launched
(refer to the ActivationEvents example in the companion code to see this event sequence as well as the
related WinJS events that we'll discuss a little later):

1. Windows displays the default splash screen using information from the app manife st
(except for pre-launching).

2. Windows launches the app host, identifying the app’s installation folder and the name of
the app’s Start Page (an HTML file) as indicated in the Application tab of the manifest
editor.V?

3. The app host loads that page’s HTML, which in turn loads referenced stylesheets and script
(deferring script loading if indicated in the markup with the defer attribute). Here it's
important that all files are properly encoded for best startup performance. (See the sidebar

on the next page.)

4. document.DOMContentLoaded fires.You can use this to do early initialization specifically
related to the DOM, if desired. This is also the place to perform one-time initialization work
that should not be done if the app is activated on multiple occasions during its lifetime.

5. window.on7load fires. This generally means that document layout is complete and elements
will reflect their actual dimensions. (Note: In Windows 8 this event occurs at the end of this

17 To avoid confusion with the Windows Start screen, I'll often refer to this as the app's home page unless I'm specifically
referring to the entry in the manifest.

117

http://stackoverflow.com/questions/2336522/png-vs-gif-vs-jpeg-when-best-to-use/7752936#7752936
http://msdn.microsoft.com/library/windows/apps/hh465418.aspx
http://msdn.microsoft.com/library/windows/apps/hh465418.aspx
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/Theme-roller-sample-64b679f2
http://msdn.microsoft.com/library/windows/apps/hh849088.aspx#load_only_what_you_need

listinstead.)

6. Windows.UI.WebUI.WebUIApplication.onactivated fires. This is typically where you'll
do all your startup work, instantiate WinJS and custom controls, initialize state, and so on.

Once the activated event handler returns, the default splash screen is dismissed unless the app has
requested a deferral, as discussed later in the “Activation Deferrals and setPromise” section.With the
latter four events, your app’s handling of these very much determines how quickly it comes up and
becomes interactive. It almost goes without saying that you should strive to optimize that process, a
subject we'll return to a little later in “Optimizing Startup Time.”

What's also different between an app and a website is that an app can again be activated for many
different purposes, such as contracts and associations, even while it's already running. As we'll see in
later chapters, the specific page that gets loaded (step 3) can vary by contract, and if a particular page
is already running it will receive only the Windows.UI.WebUI.WebUIApplication.onactivated event
and not the others.

For the time being, though, let's concentrate on how we work with this core launch process, and
because you'll generally do your initialization work within the activated event, let's examine that
structure more closely.

Sidebar: File Encoding for Best Startup Performance

To optimize bytecode generation when parsing HTML, CSS, and JavaScript, which speeds app
launch time, the Windows Store requires that all .html, .css, and js files are saved with Unicode
UTF-8 encoding. This is the default for all files created in Visual Studio or Blend. If you're
importing assets from other sources including third-party libraries, check this encoding: in Visual
Studio’s File Save As dialog (Blend doesn't have a Save As feature), select Save with Encoding and
set that to Unicode (UTF-8 with signature) — Codepage 65001. The Windows App Certification Kit
will issue warnings if it encounters files without this encoding.

Advanced Save Options. ?

D:\Book\src\Chapter 3\HereM: HereM: js\default.

Encoding:

Cancel Unicode (UTF-8 with signature) - Codepage 65001 v

Line endings:

Save r_ Current Setting -

Save with Encoding... Cancel

Along these same lines, minification of JavaScript isn't particularly important for Windows
Store apps. Because an app package is downloaded from the Windows Store as a unit and often
contains other assets that are much larger than your code files, minification won't make much
difference there. Once the package is installed, bytecode generation means that the package's
JavaScript has already been processed and optimized, so minification won't have any additional
performance impact. If your intent is to obfuscate your code (because it is just there in source
form in the installation folder), see “Protecting Your Code” in Chapter 18, "WinRT Components.”

118

Activation Code Paths

As we saw in Chapter 2, new projects created in Visual Studio or Blend give you the following code in
js/defaultjs (a few comments have been removed):

(function O {
"use strict";

var app = WinJS.Application;
var activation = Windows.ApplicationModel.Activation;

app.onactivated = function (args) {
if (args.detail.kind === activation.ActivationKind.launch) {

if (args.detail.previousExecutionState !==
activation.ApplicationExecutionState.terminated) {
// TODO: This application has been newly launched. Initialize
// your application here.

} else {
// TODO: This application has been reactivated from suspension.
// Restore application state here.

}

args.setPromise(WinJS.UI.processA11());

}
};

app.oncheckpoint = function (args) {
1

app.startQ;
DO;

Let's go through this piece by piece to review what we already learned and complete our
understanding of this core code structure:

e (function OO { .. })O; surrounding everything is againthe JavaScript module pattern.

e "use strict" instructs the JavaScriptinterpreter to apply Strict Mode, a feature of ECMAScript
5. This checks for sloppy programming practices like using implicitly declared variables, so it's a
good idea to leave itin place.

e var app = WinJS.Application; and var activation =
Windows.AppTlicationModel.Activation; both create substantially shortened aliases for
commonly used namespaces. This is a common practice to simplify multiple references to the
same part of WinJS or WinRT, and it also provides a small performance gain.

e app.onactivated = function (args) {..} assignsa handler for the WinJS.UI.onactivated
event, which is a wrapper for Windows .UI.WebUI.WebUIApplication.onactivated (butwill
be fired after window.onload). In this handler:

e args.detail.kind identifies the type of activation.

119

http://msdn.microsoft.com/library/br230269.aspx

e args.detail.previousExecutionState identifiesthe state of the app prior to this
activation, which determines whether to reload session state.

e WinlS.UI.processAll instantiates WinJS controls—that is, elements that contain a data-
win-control attribute, as we'll cover in Chapter 5, “Controls and Control Styling.”

e args.setPromise instructs Windows to wait until WinJS.UI.processA11 iscomplete
before removing the splash screen. (See “Activation Deferrals and setPromise” later in this
chapter.)

e app.oncheckpoint, which is assigned an empty function, is something we'll cover in the “App
Lifecycle Transition Events” section later in this chapter.

e app.start() (WinJS.Application.start()) initiates processing of events that WinJS queues
during startup.

Notice how we're not directly handling any of the events that Windows or the app host is firing, like
DOMContentLoaded or Windows.UI.WebUI.WebUIApplication.onactivated. Are we justignoring
those events? Not at all: one of the convenient services that WinJS offers through
WinJS.UI.Application isa simplified structure for activation and other app lifetime events. Its use is
entirely optional but very helpful.

With its start method, for example, a couple of things are happening. First, the WinJS.-
AppTlication objectlistens for a variety of events that come from different sources (the DOM, WinRT,
etc.) and coalesces them into a single object with which you register your handlers. Second, when
WinJS.Application receives activation events, it doesn't just pass them on to the app’s handlers
immediately, because your handlers might not, in fact, have been set up yet. So it queues those events
until the app says it's really ready by calling start. At that point WinJS goes through the queue and
fires those events. That's all there is to it.

As the template code shows, apps typically do most of their initialization work within the WinJS
activated event, where there are a number of potential code paths depending on the values in
args.details (an IActivatedEventArgs object). If you look at the documentation for activated,
yoU'll see that the exact contents of args.details depends on specific activation kind. All activations,
however, share some common properties:

args.details Type (in Windows.Application- Description
Property Model.Activation)
kind ActivationKind The reason for the activation. The possibilities are

Taunch (mostcommon); restrictedLaunch
(specifically forapp to app launching); search,
shareTarget,file,protocol,fileOpenPicker,
fileSavePicker, contactPicker, and
cachedFileUpdater (forservicing contracts); and
device, printTask, settings, and cameraSettings
(generally used with device apps). For each supported
activation kind, the app will have an appropriate
initialization path.

120

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.iactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/br212679.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.activationkind.aspx

previousExecutionState | ApplicationExecutionState The state of the app prior to this activation. Values are
notRunning, running,suspended, terminated, and
closedByUser.Handling the terminated caseis most
common because that's the one where you want to
restore previously saved sessionstate (see “App
Lifecycle Transition Events”).

splashScreen SplashScreen Contains an ondismissedeventforwhen the system
splash screen is dismissed along with an
imagelLocation property (Windows. Foundation. -
Rect) with coordinates where the splash screen image
was displayed. For use of this, see "Extended Splash
Screens” in Appendix B, "WinJS Extras.”

Additional properties provide relevant data for the activation. For example, Taunch provides the
tileIld and arguments from secondary tiles (see Chapter 16). The search kind (the next most
commonly used) provides queryText and Tanguage, the protocol kind provides a uri, and so on.
We'll see how to use many of these in their proper contexts, and sometimes they apply to altogether
different pages than default.html. What's contained in the templates (and what we've already used for
an app like Here My Am!) is primarily to handle normal startup from the app tile or when launched
within Visual Studio’s debugger.

WinJS.Application Events

WinJS.Application isn't concerned only with activation—its purpose is to centralize events from
several different sources and turn them into events of its own. Again, this enables the app to listen to
events from a single source (either assigning handlers via addEventListener(<event>) or on<event>
properties; both are supported). Here's the full rundown on those events and when they're fired (if
queued, the event is fired within your call to WinJS.AppTication.start):

e Joaded Queued forDOMContentLoaded in both local and web contexts.28 This is fired before
activated.

e activated Queued inthe local context for Windows.UI.WebUI.WebUIApplication.-
onactivated (which fires after window.onload). In the web context, where WinRT is not
applicable, this is instead queued for DOMContentLoaded (where the launch kind will be Taunch
and previousExecutionState isset to notRunning).

e ready Queued after Toaded and activated. This is the last one in the activation sequence.

e error Fired ifthere's an exceptionin dispatching another event. (If the error is not handled
here, it's passed onto window.onerror.)

e checkpoint Fired when the app should save the session state it needs to restart from a
previous state of terminated. It's fired in response to both the document’s beforeunload

18 There is also WinJS.Utilities.ready through which you can specifically set a callback for DOMContentLoaded. This is
used within WinJS, in fact, to guarantee that any call to WinJS.UI.processAll is processed after DOMContentlLoaded.

121

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211903.aspx

event as well as Windows .UI.WebUI.WebUIApplication.onsuspending.
e unload Also firedfor beforeunload after the checkpoint event is fired.

e settings Fired inresponse toWindows.UI.ApplicationSettings.SettingsPane.-
oncommandsrequested. (See Chapter 10, “The Story of State, Part 1.")

I think you'll generally find WinJS.Application to be a useful tool in your apps, and it also
provides a few more features as documented on the WinJS.Application page. For example, it
provides Tocal, temp, roaming, and sessionState properties, which are helpful for managing state.
We saw a little of Tocal already in Chapter 2; we'll see more later on in Chapter 10.

The other bits are the queueEvent and stop methods. The queueEvent method drops an event into
the queue that will get dispatched, after any existing queue is clear, to whatever listeners you've set up
on the WinJS.Application object. Events are simply identified with a string, so you can queue an
event with any name you like, and call WinJS.Application.addEventListener with that same name
anywhere else in the app. This makes it easy to centralize custom events that you might invoke both
during startup and at other points during execution without creating a separate global function for
that purpose. It's also a powerful means through which separately defined, ind ependent components
can raise events that get aggregated into a single handler. (For an example of using queueEvent, see
scenario 2 of the App model sample.)

As for stop, this is provided to help with unit testing so that you can simulate different activation
sequences without having to relaunch the app and somehow recreate a set of specific conditions when
it restarts. When you call stop, WinJS removes its listeners, clears any existing event queue, and clears
the sessionState object, but the app continues to run. You can then call queueEvent to populate the
queue with whatever events you like and then call start again to process that queue. This process can
be repeated as many times as needed.

Activation Deferrals and setPromise

As noted earlier under "Activation Event Sequence,” once you return from your handler for
WebUIApplication.onactivated (orWinJS.Application.onactivated), Windows assumes that
your home page is ready and that it can dismiss the default splash screen. The same is true for
WebUIApplication.onsuspending (and by extension, WinJS.Application.oncheckpoint): Windows
assumes that it can suspend the app once the handler returns. More generally, WinJS.Application
assumes that it can process the next event in the queue once you return from the current event.

This gets tricky if your handler needs to perform one or more async operations, like an HTTP
request, whose responses are essential for your home page. Because those operations are running on
other threads, you'll end up returning from your handler while the operations are still pending, which
could cause your home page to show before its ready or the app to be suspended before it's finished
saving state. Not quite what you want to have happen! (You can, of course, make other secondary
requests, in which case it's fine for them to complete after the home page is up—always avoid blocking
the home page for nonessentials.)

122

http://msdn.microsoft.com/library/windows/apps/br229774.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d

For this reason, you need a way to tell Windows and WinJS to defer their default behaviors until
your most critical async work is complete. The mechanism that provides for this is in WinRT called a
deferral, and the setPromise method that we've seen in WinJS ties into this.

On the WInRT level, the args given to WebUIApplication.onactivated containsa little method
called getDeferral (technically Windows .UI.WebUI.ActivatedOperation.getDeferral). This
function returns a deferral object that contains a complete method. By calling getDeferral, you tell
Windows to leave the system splash screen up until you call complete (subjectto a 15-second timeout
as described in "Optimizing Startup Time" below). The code looks like this:

//In the activated handler
var activatedDeferral = Windows.UI.WebUI.ActivatedOperation.getDeferral();

someOperationAsync() .done(function O {
//After initialization is complete
activatedDeferral.complete();

This same mechanism is employed elsewhere in WinRT. You'll find that the args for
WebUIAppTlication.onsuspending also has a getDeferral method, so you can defer suspension until
an async operation completed. So does the DataTransferManager.ondatarequested event that we
saw in Chapter 2 for working with the Share charm. You'll also encounter deferrals when working with
the Search charm, printing, background tasks, Play To, and state management, as we'll see in later
chapters. In short, wherever there's a potential need to do async work within an event handler, you'll
find getDeferral.

Within WinJS now, whenever WinJS provides a wrapper for a WinRT event, as with WinJS. -
Application.onactivated, it also wrapsthe deferral mechanism into a single setPromise method
that you'll find on the args object passed to the relevant event handler. Because you need deferrals
when performing async operations in these event handlers, and because async operations in JavaScript
are always represented with promises, it makes sense for WinJS to provide a generic means to link the
deferral to the fulfillment of a promise. That's exactly what setPromise does.

WinJS, in fact, automatically requests a deferral whether you need it or not. If you provide a promise
to setPromise, WinJS will attacha completed handler to it and call the deferral’s complete at the
appropriate time. Otherwise WinJS will call comp1ete when your event handler returns.

You'll find setPromise on the args passed to the WinJS.Application Toaded, activated, ready,
checkpoint, and unload events. Again, setPromise both defers Windows' default behaviors for WinRT
events and tellswWinJS.Application to defer processing the next event in its queue. This allows you,
for example, to delay the activated event until an async operation within Toaded is complete.

Now we can see the purpose of setPromise within the activation code we saw earlier:

var app = WinJS.Application;

app.onactivated = function (args) {
if (args.detail.kind === activation.ActivationKind.launch) {

123

http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.activateddeferral.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datatransfermanager.datarequested.aspx

//. ..
args.setPromise(WinJS.UI.processA11Q));
}

};

WinJS.UI.processAl1 startsan async operationto instantiate WinJS controls. It returns a promise
that is fulfilled when all those controls are ready. Clearly, if we have WinJS controls on our home page,
we don't want to dismiss the default splash screen until processA11 is done. So we defer that dismissal
by passing that promise to setPromise.

Oftentimes you'll want to do more initialization work of your own when processA11 is complete. In
this case, simply call then with your own completed handler, like so:
args.setPromise(WinJS.UI.processA11(Q) .then(function O {

//Do more initialization work

D

Here, be sure to use then and not done because the latter returns undefined rather than a promise,
which means that no deferral will happen. See “Error Handling Within Promises: then vs. done” later on.

Because setPromise just waits fora single promise to complete, how do you handle multiple async
operations? Just pick the one you think will take the longest? No—there are a couple of ways to do
this. First, if you need to control the sequencing of those operations, you can chain them together as
we already saw in Chapter 2 and as we'll discuss further in this chapter under “Async Operations: Be
True to Your Promises.” Just be sure that the end result of the chain is a promise that becomes the
argument to setPromise—again, use then and not done!

Second, if the sequence isn't important but you need all of them to complete, you can combine
those promises by using WinJS.Promise.join, passing the result to setPromise. If you need only one
of the operations to complete, you can use WinJS.Promise.any instead. Again, see "Be True to Your
Promises” later on.

The other means is to register more than one handler with WinJS.Application.onactivated; each
handler will get its own event args and its own setPromise function, and WinJS will combine those
returned promises together with WinJS.Promise.join.

Optimizing Startup Time

Ideally, an app launches and its home page comes up within one second of activation, with an
acceptable upper bound being three seconds. Anything longer begins to challenge most user’s
patience threshold, especially if they're already pressed for time and swilling caffeine-laden beverages!
In fact, the Windows App Certification Toolkit, which we'll meet at the end of this chapter, will give you
a warning if your app takes more than a few seconds to get going.

Windows is much more generous here, however. It allows an app to hang out on the default start
screen for aslong as the user is willing to stare at it. Apparently that willingness peaks out at about 15
seconds, at which point most users will pretty much assume that the app has hung and return to the

124

Start screento launch some other app that won't waste the afternoon. For this reason, if an app doesn't
get its home page up in that time—that is, return from the activated event and complete any
deferral—and the user switches away, then boom!: Windows will terminate the app. (This saves the user
from having to do the sordid deed in Task Manager.)

Of course, some apps, especially onfirst run after acquisition, might really need more time to get
started. To accommodate this, there is an implementation strategy called an extended splash screen
wherein you make you home page lookjust like the default start screen and then place additional
controls on it to keep the user informed of progress so that she knows the app isn't hung. Once you're
on the extended splash screen, the 15-second limit no longer applies. For more info, see Appendix B.

For most startup scenarios, though, it's best to focus your efforts on minimizing time to interactivity.
This means prioritizing work that's necessary for the primary workflows of the home page and
deferring everything else until the home page it up. This includes deferring configuration of app bars,
nav bars, settings panels, and secondary app pages, as well as acquiring and processing content for
those secondary pages. But even before that, let's take a step back to understand what's going on
behind the default splash screen to begin with, because there are things you can do to help that
process along as well.

When the user taps your tile, Windows first creates a new app host process and points it to the start
page specified in your manifest. The app host then loads and parses that file. In doing so, it must also
load and parse the CSS and JavaScript files it refers to. This process will fire various events, as we've
seen, at which point it enters your activation code.

Up to that point, one thing that really matters is the structure of your HTML markup. As much as
possible, avoid inline styles and scripts because these cause the HTML parser to switch from an HTML
parsing context into a CSS or JavaScript parsing context, which is relatively expensive. In other words,
the separation of concerns between markup, styling, and script is both a good development practice
and a good performance practice! Also make sure to place any static markup in the HTML file rather
than creating it from JavaScript: it's faster to have the app host's inner engine parse HTML than to
make DOM API calls from code for the same purpose. And even if you must create elements
dynamically, once you use more than four DOM API calls it's faster to build an HTML string and assign
it to an innerHTML or similar property (so that the inner engine does the work).

Similarly, minimize the amount of CSS that has to be loaded for your start page to appear; CSS that's
needed for secondary pages can be loaded with those pages (see “Page Controls and Navigation” later
in this chapter).

Loading JavaScript files can also be deferred, both for secondary pages but also on the start page.
That is, you can use the defer="defer" attribute on <script> tags to delay loading specific js files
until after the first parsing pass, or you can dynamically inject <script> tagsor call eval at a later time
in your activation path or after your initial activationis complete.

Review all the resources that your markup references as well, and place any critical ones directly into
the app package where you can reference them with ms-appx:/// URIs. Any remote resources will, of

125

course, require a round trip to the network with possible connectivity failures. Where making HTTP
requests is unavoidable, suggest your most critical URIs to the Windows .Networking. -
BackgroundTransfer.ContentPrefetcher object (see "Prefetching Content” in Chapter 4). If the
prefetcher determines that those URIs are among the top requests, it will actively cache requests to
those URIs such that requests from your code will draw directly from that cache. This won't help the
app the firsttime it's run, but it can help with subsequent activations.

Consider whether you can also cache such content directly in your app package. That way you have
something to work with immediately, even if there’s no connectivity when the app is first run. This
would mean building a refresh/sync strategy into your data model, but it's certainly doable.

Once you hit your activation code, a new set of considerations come into play. The key thing to
consider here is this: so long as you're on the default or an extended splash screen, go ahead and block
the Ul thread for high-priority work. A splash screen, by definition, is noninteractive, so any Ul thread
work that deals with interactivity is a much lower priority than work that's necessary to initialize
controls, retrieve and process data, and otherwise get ready for interactivity. (Page content animations,
similarly, should be disabled while the splash screen is up.)

Most important, though, is making sure that your critical non-Ul work runs at a higher priority than
Ul rendering processes, especially while the splash screen is still active. For this you use the WinJS
scheduler API, which we'll return to later in "Managing the Ul Thread with the WinJS Scheduler.” For
now, know that you can schedule work to happen at a higher priority than layout and rendering and
also at other lower priorities. This way you can kick off a number of HTTP requests, for example, but
give your most important ones a high priority while giving your secondary ones a much lower priority
so that they happen after layout and rendering. With this APl you can also reprioritize work at any time:
for example, if the user immediately navigates to a secondary page as soon as the app comes up, you
can set that request (or more specifically, the function that processes its results) to high priority.

For a deeper dive on these matters of startup performance, | recommend two talks from //build
2013: Create Fast and Fluid Interfaces with HTML and JavaScript (Paul Gildea) and Web Runtime
Performance (Tobin Titus). Also refer to Reducing your app’s loading time in the documentation.

WinRT Events and removeEventListener

Before going further, we need to take a slight detour into a special consideration for events that
originate from WinRT, such as dismissed. You may have noticed that I'm highlighting these with a
different text color than other events.

As we've already been doing in this book, typical practice within JavaScript, especially for websites, is
to call addEventListener to specify event handlers or to simply assignan event handler to an
on<event> property of some object. Oftentimes these handlers are just declared as inline anonymous
functions:

var myNumber = 1;

126

http://channel9.msdn.com/Events/Build/2013/3-156
http://channel9.msdn.com/Events/Build/2013/3-068
http://channel9.msdn.com/Events/Build/2013/3-068
http://msdn.microsoft.com/library/windows/apps/hh849088.aspx

element.addEventListener(<event>, function (e) { myNumber++; });

Because of JavaScript's particular scoping rules, the scope of that anonymous function ends up
being the same as its surrounding code, which allows the code within that function to refer to local
variables like myNumber as used here.

To ensure that such variables are available to that anonymous function when it's laterinvoked as an
event handler, the JavaScript engine creates a closure: a data structure that describes the local variables
available to that function. Usually the closure requires only a small bit of memory, but depending on
the code inside that event handler, the closure could encompass the entire global namespace—a rather
large allocation! Every such active closure increases the memory footprint or working set of the app, so
it's a good practice to keep closures at a minimum. For example, declaring a separate named
function—which has its own scope—rather than using an anonymous function, will reduce the size of
any necessary closure.

More important than minimizing closures is making sure that the event listeners themselves—and
their associated closures—are properly cleaned up and their memory allocations released. Typically, this
is not even something you need to think about. When objects such as HTML elements are destroyed or
removed from the DOM, their associated listeners are automatically removed and closures are released.
However, in a Windows Store app written in HTML and JavaScript, events can also come from WinRT
objects. Because of the nature of the projection layer that makes WinRT available in JavaScript, WinRT
ends up holding references to JavaScript event handlers (known also as delegates) and the JavaScript
closures hold references to those WinRT objects. As a result of these cross-references, the associated
closures aren't released unless you do so explicitly with removeEventListener (or assignment of nul1
to an on<event> property).

This is not a problem, mind you, if the app is always listening to a particular event. For example, the
suspending and resuming events are two that an app typically listens to for its entire lifetime, so any
related allocations will be cleaned up when the app is terminated. It's also not much of a concern if you
add a listener only once, as with the splash screen dismissed event. (In that case, however, it's good to
remove the listener explicitly, because there's no reasonto keep any closures in memory once the
splash screen is gone.)

Do pay attention, however, when an app listens to a WinRT object event only temporarily and
neglects to explicitly call removeEventListener, and when the app might call addEventListener for
the same event multiple times (in which case you can end up duplicating closures). With page controls,
which are used to load HTML fragments into a page (as discussed later in this chapter under “Page
Controls and Navigation”), it's common to call addEventListener or assign a handler to an on<event>
property on some WinRT object within the page’s ready method. When you do this, be sure to match
that call with removeEventListener (or assign null to on<event>) in the page’s unload method to
release the closures.

Note Events from WinJS objects don't need this attention because the library already handles removal
of event listeners. The same is true for listeners you might add for window and document events that
persist for the lifetime of the app.

127

Throughout this book, the WinRT events with which you need to be concerned are highlighted with
a special color, asin datarequested (except where the text is also a hyperlink). This is your cue to
check whether an explicit call to removeEventListener or on<event>=null is necessary. Again, if
you'll always be listening to the event, removing the listenerisn't needed, but if you add a listener
when loading a page control, or anywhere else where you might add that listener again, be sure to
make that extra call. Be especially aware that the samples inthe Windows SDK don’t necessary pay
attention to this detail, so don't duplicate the oversight.

In the chapters that follow, | will remind you of what we've just discussed on our first meaningful
encounter with a WinRT event. Keep your eyes open for the WinRT color coding in any case. We'll also
come back to the subject of debugging and profiling toward the end of this chapter, where we'll learn
about tools that can help uncover memory leaks.

App Lifecycle Transition Events and Session State

Now that we've seen how an app gets activated into a running state, our next concern is with what can
happen to it while it's running. To an app—and the app’s publisher—a perfect world might be one in
which consumers ran that app and stayed in that app forever (making many in-app purchases, no
doubt!). Well, the hard reality is that this just isn't reality. No matter how much you'd love it to be
otherwise, yours is not the only app that the user will ever run. After all, what would be the point of
features like sharing or split-screen views if you couldn't have multiple apps running together? For
better or for worse, users will be switching between apps, changing view states, and possibly closing
your app, none of which the app can control. But what you can do is give energy to the "better” side of
the equation by making sure your app behaves well under all these circumstances.

The first consideration is focus, which applies to controls in your app as well as to the app itself (the
window object). Here you can simply use the standard HTML blur and focus events. For example, an
action game or one with a timer would typically pause itself on window.onbTur and perhaps restart
againon window.onfocus.

A similar but different condition is visibility. An app can be visible but not have the focus, as when
it's sharing the screen with others. In such cases an app would continue things like animations or
updating a feed, which it would stop when visibility is lost (that is, when the app is actuallyin the
background). For this, use the visibilitychange eventin the DOM API, and then examine the

visibilityState property of the window or document object, as well as the document.hidden
property. (The event works for visibility of individual elements as well.) A change in visibility is also a
good time to save user data like documents or game progress.

For view state changes, an app can detect these in several ways. As shown in the Here My Am!
example, an app typically uses media queries (in declarative CSS or in code through media query
listeners) to reconfigure layout and visibility of elements, which is really all that view states should
affect. (Again, view state changes never change the mode of the app.) Atany time, an app can also
retrieve its view state through Windows.UI.ViewManagement.ApplicationView.orientation

128

http://msdn.microsoft.com/library/windows/apps/hh441213.aspx
http://msdn.microsoft.com/library/windows/apps/hh453385.aspx

(returning an ApplicationViewOrientation value of either portrait or Tandscape), the size of the
app window, and other details from AppTlicationView like isFul1Screen; details in Chapter 8, “Layout
and Views."19

When your app is closed (the user swipes top to bottom and holds, or just presses Alt+F4), it's
important to note that the app is first moved off-screen (hidden), then suspended, and then closed, so
the typical DOM events like body.unToad aren't much use. A user might also kill your app in Task
Manager, but this won't generate any events in your code either. Remember also that apps should not
close themselves nor offera means for the user to do so (this violates Store certification requirements),
but they can use MSApp.terminateApp to close due to unrecoverable conditions like corrupted state.

Suspend, Resume, and Terminate

Beyond focus, visibility, and view states, there are three other critical momentsin an app’s lifetime:

e Suspending When an app is not visible in any view state, it will be suspended after five
seconds (according to the wall clock) to conserve battery power. This means it remains wholly in
memory but won't be scheduled for CPU time and thus won't have network or disk activity
(except when using specifically allowed background tasks, discussed in Chapter 16). When this
happens, the app receives the Windows.UI.WebUI.WebUIApplication.onsuspending event,
which is also exposed through WinJS.AppTlication.oncheckpoint. Apps must return from this
event within the five-second period, or Windows will assume the app is hung and terminate it
(period!). During this time, apps save transient session state and should also release any
exclusive resources acquired as well, like file streams or device access. (See How to suspend an
app.) If you need to do async work in the suspending handler, WinRT provides a deferral object
as with activation and WinJS provides the setPromise equivalent. Using the deferral will not,
however, extend the suspension deadline.

e Resuming If the user switches backto a suspended app, it receives the
Windows.UI.WebUI.WebUIApplication.onresuming event. This is not surfaced through
WinJS.AppTlication, mind you, because WinJS has no value to add, but it's easy enough to use
WinJS.Application.queueEvent for this purpose. We'll talk more about this event in coming
chapters, asit's used to refresh any data that might have changed while the app was suspended.
For example, if the app is connected to an online service, it would refresh that content if
enough time has passed while the app was suspended, as well as check connectivity status
(Chapter 4). In addition, if you're tracking sensor input of any kind (like compass, geolocation, or
orientation, see Chapter 12, “Input and Sensors”), resuming is a good time to geta fresh
reading. You'll also want to check license status for your app and in-app purchases if you're
using trials and/or expirations (see Chapter 20). There are also times when you might want to
refresh your layout (as we'll see in Chapter 8), because it's possible for your app to resume

19 The Windows 8 view states from ApplicationView.value—namely fullscreen-Tandscape, fullscreen-portrait,
filled, and snapped—are deprecated in Windows 8.1 in favor of just checking orientation and window size.

129

http://msdn.microsoft.com/library/windows/apps/hh465138.aspx
http://msdn.microsoft.com/library/windows/apps/hh465138.aspx

directly into a different view state than when it was suspended, or resume to a different screen
resolution as when the device has been connected to an external monitor. The same goes for
enabling/disabling clipboard-related commands (Chapter 9, “Commanding Ul"), refreshing any
tile updates and push notification channels (see Chapter 16), and checking any saved state that
might have been modified by background tasks or roaming (Chapter 10).

e Terminating When suspended, an app might be terminated if there’s a need for more
memory. There is no event for this, because by definition the app is already suspended and no
code can run. Nevertheless, this isimportant for the app lifecycle because it affects
previousExecutionState when the app restarts.

Before we go further, it's essential to know that you can simulate these conditions in the Visual
Studio debugger by using the toolbar drop-down shown in Figure 3-2. These commands will trigger
the necessary events as well as set up the previousExecutionState value for the next launch of the
app. (Be very grateful for these controls—there was a time when we didn't have them, and it was
painful to debug these conditions!)

Suspend -

Suspend
Resume

Suspend and shutdown

FIGURE 3-2 The Visual Studio toolbar drop-down to simulate suspend, resume, and terminate.

We've briefly listed those previous states before, but let's see how they relate to the events that get
fired and the previousExecutionState value that shows up when the app is next launched. This can
get a little tricky, so the transitions are illustrated in Figure 3-3 and the table below describes how the
previousExecutionState values are determined.

Value of previousExecutionState Scenarios
notrunning First run afterinstall from Store.

First run after reboot or log off.

Appis launched within 10 seconds of being closed by user (about the time it
takes to hide, suspend, and cleanly terminate the app; if the user relaunches
quickly, Windows has to immediately terminate it without finishing the suspend
operation).

App was terminated in Task Manager while running or closed itself with

MSApp . terminateApp.

running Appis currently running and then invoked in a way other than its app tile, such
as Search, Share, secondary tiles, toast notifications, and all other contracts.
When an app is running and the user taps the app tile, Windows just switches to
the already-running app and without triggering activation events (though focus
and visibilitychange will both be raised).

suspended Appis suspended and then invoked in a way other than the app tile (as above
for running). In addition to focus/visibility events, the app will also receive the
resuming event.

terminated App was previously suspended and then terminated by Windows due to

130

resource pressure. Note that this does not apply to MSApp. terminateApp
because an app would have to be running to call that function.

closedByUser App was closed by an uninterrupted close gesture (swipe down +hold or Alt+F4).
An "interrupted” close is when the user switches back to the app within 10
seconds, in which case the previous state will be notrunning instead.

activated, running suspending/checkpoint
load, etc. .
(in memory)
suspended
notRunning, resuming | (in memory)

closedByUser,
or terminated

(no event)
previous state == terminated only if Windows closed the app

FIGURE 3-3 Process lifecycle events and previousExecutionState values.

The big question for the app, of course, is not so much what determines the value of
previousExecutionState aswhat it should actually do with this value during activation. Fortunately,
that story is a bit simplerand one that we've already seen in the template code:

e If the activationkind is Taunch and the previous state is notrunning or closedByUser, the app

should start up with its default Ul and apply any persistent state or settings. With
closedByUser, there might be scenarios where the app should perform additional actions (such
as updating cached data) after the user explicitly closed the app and left it closed for a while.

e If the activationkind is Taunch and the previous state is terminated, the app should start up in
the same session state as when it was last suspended.

e For Taunch and other activation kinds that include additional arguments or parameters (as with
secondary tiles, toast notifications, and contracts), it should initialize itself to serve that purpose
by using the additional parameters. The app might already be running, so it won't necessarily
initialize its default state again.

In the first two requirements above, persistent state refers to state that always applies to an instance
of the app, such as user accounts, Ul configurations, and similar settings. Session state, on the other
hand, is the transient state of a particular instance and includes things like unsubmitted form data,
page navigation history, scroll position, and so forth.

131

We'll see the full details of managing state in Chapter 10. What's important to understand at present
is the relationship between the lifecycle events and session state, in particular. When Windows
terminates a suspended app, the app is still running in the user's mind. Thus, when the user activates the
app again for normal use (activationkind is Taunch, rather than through a contract), he or she expects
that app to be right where it was before. This means that by the time an app gets suspended, it needs
to have saved whatever state is necessary to make this possible. It then rehydrates the app from that
state when previousExecutionState is terminated. This creates continuity across the suspend-
terminate-restart boundary.

For more on app design where this is concerned, see Guidelines for app suspend and resume. Be
clear that if the user directly closes the app with Alt+F4 or the swipe-down+hold gesture, the
suspending and checkpoint events will also be raised, so the app still saves session state. However,
the app won't be asked to reload session state when it's restarted because previousExecutionState

will be notRunning or closedByUser.

It works out best, actually, to save session state as it changes during the app’s lifetime, thereby
minimizing the work needed within the suspending event (where you have only five seconds). Mind
you, this session state does not include persistent state that an app would always reload or reapply in
its activation path. The only concern here is maintaining the illusion that the app was always running.

You always save session state to your appdata folders or settings containers, which are provided by
the Windows.Storage.ApplicationData APl. Again, we'll see all the details in Chapter 10. What |
want to point out here are a few helpers that WinJS provides for all this.

First is the WinJS.Application.checkpoint event, which is raised when suspending fires.
checkpoint provides a single convenient place to save both session state and any other persistent data
you might have, if you haven't already done so. If you need to do any async work in this handler, be
sure to pass the promise for that operationto eventArgs.setPromise. This ties into the WinRT
deferral mechanism as with activation (and see “Suspending Deferrals” below).

Second is the WinJS.Application.sessionState object. On normal startup, this is just an empty
object to which you can add whatever properties you like, including other objects. A typical strategy is
to just use sessionState directly as a container for session variables. Within the checkpoint event,
WinJS automatically serializes the contents of this object (using JSON. stringify) into a file within your
local appdata folder (meaning that all variables in sessionState must have a string representation).
Note that because WinJS ensures that its own handler for checkpoint is always called after your app
gets the event, you can be assured that WinJS will save whatever you write into sessionState at any
time before your checkpoint handler returns.

Then, when the app is activated with the previous state of terminated, WinJS automatically
rehydrates the sessionState object so that everything you put there is once again available. If you use
this object for storing variables, you need only to avoid setting those values back to their defaults when
reloading your state.

Finally, if you don't want to use the sessionState objector you have state that won't work with it,

132

http://msdn.microsoft.com/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdata.aspx

the WinJS.AppTication object makes it easy to write your own files without having to use async
WinRT APIs. Specifically, it provides (as shown in the documentation) Tocal, temp, and roaming objects
that each have methods called readText, writeText, exists, and remove. These objects each work
within their respective appdata folders and provide a simplified API for file /O, as shown in scenario 1

of the App model sample.

Suspending Deferrals and Deadlines

As noted earlier, the suspending event has a deferral mechanism, like activation, to accommodate
async operations in your handler. That is, Windows will normally suspend your app as soon as you
return from the suspending event (regardless of whether five seconds have elapsed), unless you
request a deferral.

The event args for suspending contains an instance of Windows .UI.WebUI.WebUIApplication.-

SuspendingOperation. Its getDeferral method returns a deferral object with a compTete method,
which you call when your async operations are finished. WinJS wraps this with the setPromise method
on the event args object passed to a checkpoint handler. To this you pass whatever promise you have
for your async work and WinJS automatically adds a completed handler that calls the deferral’s
complete method.

Well, hey! All this sounds pretty good—is this perhaps a sneaky way to circumvent the restrictionon
running Windows Store apps in the background? Will my app keep running indefinitely if | request a
deferral by never calling complete?

No such luck, amigo. Accept my apologies for giving you a fleeting moment of exhilaration! Deferral
or not, five seconds is the most you'll ever get. Still, you might want to take full advantage of that time,
perhaps to first perform critical async operations (like flushing a cache) and then to attempt other
noncritical operations (like a sync to a server) that might greatly improve the user experience. For such
purposes, the suspendingOperation objectalso contains a deadline property, a Date value
indicating the time in the future when Windows will forcibly suspend you regardless of any deferral.
Once the first operationis complete, you can check if you have time to start another, and so on.

Note The suspendingOperation objectis not surfaced through the WinJS checkpoint event; if you
want to work with the deadline property, you must use a handler for the WinRT suspending event.

A basic demonstration of using the suspending deferral can be found in the App activated, resume,
and suspend sample. This also shows activation through a custom URI scheme, a subject that we'll be
covering laterin Chapter 15. An example of handling state, in addition to the updates we'll make to
Here My Am! in the next section, can be found in scenario 3 of the App model sample.

Basic Session State in Here My Am!

To demonstrate some basic handling of session state, I've made a few changes to Here My Am! as
given in the HereMyAm3b example in the companion content. Here we have two pieces of information

133

http://msdn.microsoft.com/library/windows/apps/br229774.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.suspendingoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.suspendingoperation.aspx
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d

we care about: the variables TastCapture (a StorageFile with the image) and TastPosition (a set of
coordinates). We want to make sure we save these when we get suspended so that we can properly
apply those values when the app gets launched with the previous state of terminated.

With TastPosition, we can just move this into the sessionState object (prepending
app.sessionState.). If this value exists on startup, we can skip making the call to
getGeopositionAsync because we already have a location:

//If we don't have a position in sessionState, try to initialize
if (lapp.sessionState.lastPosition) {
Tlocator.getGeopositionAsync() .done(function (geocoord) {
var position = geocoord.coordinate.point.position;

//Save for share
app.sessionState.lastPosition = {
latitude: position.latitude, longitude: position..longitude };

updatePosition();
}, function (error) {
console.log("Unable to get location.");

b

With this change I've also moved the bit of code to update the map locationinto a separate
function that ensures a location exists in sessionState:

function updatePosition() {
if (lapp.sessionState.lastPosition) {
return;

}

callFrameScript(document.frames["map"], "pinLocation",
[app.sessionState.lastPosition.latitude, app.sessionState.lastPosition.longitude]);

Note also that because app.sessionState isinitialized to an empty object by default, { },
lastPosition will be undefined until the geolocation call succeeds. This also works to our advantage
when rehydrating the app. Here's what the previousExecutionState conditions look like for this:
if (args.detail.previousExecutionState !==

activation.ApplicationExecutionState.terminated) {
//Normal startup: initialize lastPosition through geolocation API

} else {
//Winl]S reloads the sessionState object here. So try to pin the map with the saved location
updatePosition();

}

Because the contents of sessionState are automatically saved in WinJS.Application.-
oncheckpoint and automatically reloaded when the app is restarted with the previous state of
terminated, our previous location will existin sessionState and updatePosition just works.

134

You can test all this by running the HereMyAm3b app, taking a suitable picture and making sure
you have a location. Then use the Suspend and Shutdown option on the Visual Studio toolbar to
terminate the app. Set a breakpoint on the updatePosition call above, and then restart the app in the
debugger. You'll see that sessionState.lastPosition is initialized at that point.

With the last captured picture, we don't need to save the StorageFiTe, just the URI: we copied the
file into our local appdata (so it persists across sessions already) and can just use the ms-appdata://
URI scheme to refer to it. When we capture an image, we just save that URI into
sessionState.imageURI (the property name is arbitrary) at the end of the promise chain inside
capturePhoto:

app.sessionState.imageURI = "ms-appdata:///local/HereMyAm/" + newFile.name;

Again, because imageURI is saved within sessionState, this value will be available when the app is
restarted after being terminated. We also need to re-initialize TastCapture with a StorageFiTle so
that the image is available through the Share contract. For this we can use Windows.Storage. -
StorageFile.getFileFromApplicationUriAsync. Here, then, is the code within the
previousExecutionState == terminated case during activation:

//Winl]S reloads the sessionState object here: initialize from the saved image URI and Tocation.
if (app.sessionState.imageURI) {
var uri = new Windows.Foundation.Uri(app.sessionState.imageURI);
Windows.Storage.StorageFile.getFileFromApplicationUriAsync(uri).done(function (file) {
TastCapture = file;
var img = document.getElementById("photoImg™);
scaleImageToFit(img, document.getElementById("photo™), file);
b
}

updatePosition();

As always, the code to set img. src with a thumbnail happens inside scaleImageToFit. This callis
also inside the completed handler here because we want the image to appearonly if we can also access
its StorageFile again for sharing. Otherwise the two features of the app would be out of sync.

In all of this, note again that we don't need to explicitly reload these variables within the
terminated case because WinJS reloads sessionState automatically. If we managed our state more
directly, such as storing some variables in roaming settings within the checkpoint event, we would
reload and apply those values at this time.

Note Using ms-appdata:///and getFileFromApplicationUriAsync (or its sibling
getFileFromPathAsync) works because the file exists in a location that we can access
programmatically by default. It also works for libraries for which we declare a capability in the manifest.
If, however, we obtain a StorageFile from the file picker, we need to save thatin the

Windows .Storage.AccessCache to preserve access permissions across sessions. We'll revisit the access
cache in Chapter 11, “The Story of State, Part 2."

135

Page Controls and Navigation

Now we come to an aspect of Windows Store apps that very much separates them from typical web
applications but makes them very similarto AJAX-based sites.

To compare, many web applications do page-to-page navigationwith <a href> hyperlinks or by
setting document.location from JavaScript. This is all well and good: oftentimes there's little or no
state to pass between pages, and even then there are well -established mechanisms for doing so, such
as HTMLS sessionStorage and TocalStorage (which work just fine in Store apps, by the way).

This type of navigation presents a few problems for Store apps, however. For one, navigating to a
new page means a wholly new script context—all the JavaScript variables from your previous page will
be lost. Sure, you can pass state between those pages, but managing this across an entire app likely
hurts performance and can quickly become your least favorite programming activity. It's better and
easier, in other words, for client apps to maintain a consistent in-memory state across pages and also
have each individual page be able to load what script it uniquely needs, as needed.

Also, the nature of the HTML/CSS rendering engine is such that a blank screen appears when
navigating a hyperlink. Users of web applications are accustomed to waiting a bit for a browser to
acquire a new page (I've found many things to do with an extra 15 seconds!), but this isn't an
appropriate user experience for a fast and fluid Windows Store app. Furthermore, such a transition
doesn't allow animation of various elements on and off the screen, which can help provide a sense of
continuity between pages if that fits with your design.

So, although you can use direct links, Store apps typically implement “pages” by dynamically
replacing sections of the DOM within the context of a single page like default.html, akin to how
“single-page” web applications work. By doing so, the script context is always preserved and individual
elements or groups of elements can be transitioned however you like. In some cases, it even makes
sense to simply show and hide pages so that you can switch back and forth quickly. Let's look at the
strategies and tools for accomplishing these goals.

WinJS Tools for Pages and Page Navigation

Windows itself, and the app host, provides no mechanism for dealing with pages—from the system’s
perspective, this is merely an implementation detail for apps to worry about. Fortunately, the engineers
who created WinlJS and the templates in Visual Studio and Blend worried about this a lot! As a result,
they've provided some marvelous tools for managing bits and pieces of HTML+CSS+JS in the context
of a single container page:

e WinJS.UI.Fragments containsa low-level “fragment-loading” API, the use of which is
necessary only when you want close control over the process (such as which parts of the HTML
fragment get which parent). We won't cover itin this book; see the documentation and the
Loading HTML fragments sample.

136

http://msdn.microsoft.com/library/windows/apps/br229781.aspx
http://code.msdn.microsoft.com/windowsapps/Fragments-91f66b07

e WinJS.UT.Pages isa higher-level APl intended for general use and is employed by the
templates. Think of this as a generic wrapper around the fragment loader that lets you easily
define a "page control”—simply an arbitrary unit of HTML, CSS, and JS—that you can easily pull
into the context of another page as you do other controls.22 They are, in fact,implemented like
other controls in WinJS (as we'll see in Chapter 5), so you can declare them in markup,
instantiate them with WinJS.UI.process[A11], use as many of them within a single host page
as you like, and even nest them.

These APIs provide only the means to load and unload individual “pages”—they pull HTML in from
other files (along with referenced CSS and JS) and attach the contents to an element in the DOM. That's
it. As such they can be used forany number of purposes, such as a custom control model, depending
on how you like to structure your code. See scenario 1 of the HTML Page controls sample.

Page controls and fragments are not gospel To be clear, there's absolutely no requirement that you
use the WinJS mechanisms described here in a Windows Store app. These are simply convenient tools

for common coding patterns. In the end, it's just about making the right elements and content appear
in the DOM for your user experience, and you can implement that however you like.

Assuming that you'll want to save yourself loads of trouble and use WinJS for page-to-page
navigation, you'll need two other pieces. The firstis something to manage a navigation stack, and the
second is something to hook navigation events to the loading mechanism of WinJS.UI.Pages.

For the first piece, you can turn to WinJS.Navigation, which supplies, through about 150 lines of
CS101-level code, a basic navigation stack. This is all it does. The stack itself is just a list of URIs on top
of which WinJS.Navigation exposes Tocation, history, canGoBack, and canGoForward properties,
along with one called state in which you can store any app-defined object you need. The stack
(maintained in history) is manipulated through the forward, back, and navigate methods, and the
WinJS.Navigation objectraises a few events—beforenavigate, navigating, and navigated—to
anyone who wants to listen (through addEventListener).2

Tip In the WinJS.Navigation.history.current object there’s an initialPlaceholder flag that
answers the question, "Can WinJS.Navigation.navigate go to a new page without adding an entry
in the history?" If you set this flag to true, subsequent navigations won't be stored in the nav stack. Be
sure to set it back to false to reenable the stack.

What this means is that WinJS.Navigation by itself doesn't really do anything unless some other
piece of code is listening to those events. That is, for the second piece of the navigation puzzle we need
a linkage betweenWinJS.Navigation and WinJS.UI.Pages, such that a navigation event causes the

2 |f you are at all familiar with user controls in XAML, this is the same idea.
2 The beforenavigate event can be used to cancel the navigation, if necessary. Either call args. preventDefault (args
being the event object), return true, or call args.setPromise where the promise is fulfilled with true.

137

http://msdn.microsoft.com/library/windows/apps/hh770584.aspx
http://code.msdn.microsoft.com/windowsapps/Page-Controls-sample-568b10b4
http://msdn.microsoft.com/library/windows/apps/br229778.aspx

target page contents to be added to the DOM and the current page contents to be removed.
The basic process is as follows, and it's also shown in Figure 3-4:

1. Create a new div with the appropriate size (typically the whole app window).
CallwinJS.UI.Pages.render to load the target HTML into that element (along with any
script that the page uniquely references). This is an async function that returns a promise.
We'll take a look at what render does later on.

3. When that loading (that is, rendering) is complete, attach the new element from step 1 to
the DOM.

4. Remove the previous page’s root element from the DOM. If you do this before yielding the
Ul thread, you won't ever see both pages on-screen together.

default.html (contentHost)
<div id="pagel">
[content from pagel.html]

</div>

page2 = createElement("div");
WinJS.Ul.Pages.render(page2, "page2.html");

default.html (contentHost) contentHost.append(page2);
contentHost.remove(pagel)

<divid="page2">

[content from page2.html]

</div>

FIGURE 3-4 Performing page navigation in the context of a single host (typically default.html) by replacing
appending the content from page2.html and removing that from pagel.html. Typically, each page occupies the
whole display area, but page controls can just as easily be used for smaller areas.

As with page navigationin general, you're again free to do whatever you want here, and in the early
developer previews of Windows 8 that's all that you could do! But as developers built the first apps for
the Windows Store, we discovered that most people ended up writing just about the same boilerplate
code over and over. Seeing this pattern, two standard pieces of code have emerged. One is the WinJS
back button control, WinJS.UI.BackButton, which listens for navigation events to enable itself when
appropriate. The other is a piece is called the PageControlNavigator and is magnanimously supplied
by the Visual Studio templates. Hooray!

138

Because the PageControlNavigator is just a piece of template-supplied code and not part of
WinJS, it's entirely under your control: you can tweak, hack, or lobotomize it however you want.?2 In
any case, because it's likely that you'll often use the PageControlNavigator (and the back button) in

your own apps, let's look at how it all works in the context of the Navigation App template.

Note Additional samples that demonstrate basic page controls and navigation, along with handling

session state, can be found in the following SDK samples: App activate and suspend using WinJS (using
the session state object in a page control), App activated, resume and suspend (described earlier;
shows using the suspending deferral and restarting after termination), and Navigation and navigation
history (showing page navigation along with tracking and manipulating the navigation history). In fact,
just about every sample uses page controls to switch between different scenarios, so you have no
shortage of examples to draw from!

The Navigation App Template, PageControl Structure, and

PageControlNavigator

Taking one step beyond the Blank App template, the Navigation App template demonstrates the basic
use of page controls. (The more complex templates build navigation out further.) If you create a new
project with this template in Visual Studio or Blend, here's what you'll get:

default.html Contains a single container div with a PageControlNavigator control pointing
to pages/home/home.html as the app’s home page.

js/default.js Contains basic activation and state checkpoint code for the app.
css/default.css Contains global styles.

pages/home Contains a page control for the “home page” contents, composed of
home.html, home.js, and home.css. Every page control typically has its own markup, script,
and style files. Note that CSS styles for page controls are cumulative as you navigate from page
to page. See “Page-Specific Styling” later in this chapter.

js/navigator.js Contains the implementation of the PageControlNavigator class.

To build upon this structure, you can add additional pages to the app with the page control item
template in Visual Studio. For each page | recommend first creating a specific folder under pages,
similar to home in the default project structure. Then right-click that folder, select Add > New Item, and
select Page Control. This will create suitably named .html, js. and .css files in that folder.

Now let's look at the body of default.html (omitting the standard headerand a commented -out

AppBar control):

22 The Quickstart: using single-page navigation topic also shows a clever way to hijack HTML <a href> hyperlinks and hook
them into WinJS.Navigation.navigate. This can be a useful tool, especially if you're importing code from a web app or

otherwise want to create page links in declarative markup.

139

http://code.msdn.microsoft.com/windowsapps/App-activation-events-and-d39c53d5
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/Navigation-sample-cf242faa
http://code.msdn.microsoft.com/windowsapps/Navigation-sample-cf242faa
http://msdn.microsoft.com/en-us/library/windows/apps/hh452768.aspx

<body>
<div id="contenthost" data-win-control="Application.PageControlNavigator"
data-win-options="{home: '/pages/home/home.html'}"></div>
</body>

All we have here is a single container div named contenthost (it can be whatever you want), in
which we declare the Application.PageControlNavigator as acustom WinJS control. (This is the
purpose of data-win-control and data-win-options, as we'll see in Chapter 5.) With this we specify
a single option to identify the first page control it should load (/pages/home/home.html). The
PageControlNavigator will be instantiated within our activated handler's call to
WinJS.UI.processAll.

Within home.html we have the basic markup for a page control. Below is what the Navigation App
template provides as a home page by default, and it's pretty much what you get whenever you add a
new page control from the item template (with different filenames, of course):

<!DOCTYPE html>
<htm1>
<head>
<!--... typical HTML header and Winl]S references omitted -->
<link href="/css/default.css" rel="stylesheet">
<1link href="/pages/home/home.css" rel="stylesheet">
<script src="/pages/home/home.js"></script>
</head>
<body>
<!-- The content that will be Toaded and displayed. -->
<div class="fragment homepage">
<header aria-label="Header content" role="banner">
<button data-win-control="WinJS.UI.BackButton"></button>
<hl class="titlearea win-type-ellipsis">
Welcome to NavApp!
</h1>
</header>
<section aria-Tabel="Main content" role="main">
<p>Content goes here.</p>
</section>
</div>
</body>
</html>

The div with fragment and homepage CSS classes, along with the header, creates a page with a
standard silhouette and a WinJS.UI.BackButton control that automatically wires up keyboard, mouse,
and touch events and again keeps itself hidden when there’s nothing to navigate back to. (Isn't that
considerate of it!) All you need to do is customize the text within the h1 element and the contents
within section, or just replace the whole smash with the markup you want. (By the way, even though
the WinJS files are referenced in each page control, they aren't actually reloaded; they exist here to
allow you to edit a standalone page control in Blend.)

140

Tip The leading / on what looks like relative paths to CSS and JavaScript files actually creates an
absolute reference from the package root. If you omit that /, there are many times—especially with
path controls—when the relative path is not what you'd expect, and the app doesn't work. In general,
unless you really know you want a relative path, use the leading /.

The definition of the actual page control is in pages/home/home js; by default, the templates just
provide the bare minimum:

(function O {
"use strict";

WinJS.UI.Pages.define("/pages/home/home.html", {
// This function is called whenever a user navigates to this page. It
// populates the page elements with the app's data.
ready: function (element, options) {

// TODO: Initialize the page here.

}

b

DO;

The most important part is WinJS.UI.Pages.define, which associates a project-based URI (the
page control identifier, always starting with a /, meaning the project root), with an object containing
the page control’s methods. Note that the nature of define allows you to define different members of
the page in multiple places: multiple calls to WinJS.UI.Pages.define with the same URI will add
members to an existing definition and replace those that already exist.

Tip Be mindful that if you have a typo in the URI that creates a mismatch between the URI in define
and the actual path to the page, the page won't load but there won't be an exception or other visible
error. You'll be left wondering what’s going wrong! So, if your page isn't loading like you think it
should, carefully examine the URI and the file paths to make sure they match exactly.

For a page created with the Page Control item template, you get a couple more methods in the
structure (some comments omitted; in this example page2 was created in the pages/page2 folder):

(function O {
"use strict";

WinJS.UI.Pages.define("/pages/page2/page2.html", {
ready: function (element, options) {

h

unload: function () {
// TODO: Respond to navigations away from this page.
}

updatelLayout: function (element) {
// TODO: Respond to changes in Tayout.
1,
b
DO;

141

A page control is essentially just an object with some standard methods. You can instantiate the
control from JavaScript with new by first obtaining its constructor function from WinJS.UI.Pages.-
get(<page_uri>) and then calling that constructor with the parent element and an object containing
its options. This operation already encapsulated within Win]S.UI.Pages.render, as we'll see shortly.

Although a basic structure for the ready method is provided by the templates, Win]S.UI.Pages
and the PageControlNavigator will make use of the following if they are available, which are
technically the members of an interface called WinJS.UI.IPageControlMembers:

PageControl Method | When Called

init Called before elements from the page control have been created.

processed Called after WinJS.UI.processAll is complete (thatis, controls in the page have been instantiated,
which is done automatically), but before page contentiitself has been added to the DOM. Once you
return from this method—ora promise you return is fulfilled—WinJS animates the new page into
view withWinJS.UI.Animation.enterPage, so all initialization of properties and data-binding
should occur within this method; it's also a good place to load string resources.

ready Called after the page have been added to the DOM (and before the unload of the previous page;
note that in WinJS 1.0 this was called after the previous page’s unload).

error Called if an error occurs in loading or rendering the page.

unload Called when navigation has left the page. By default, WinJS automatically disposes of controls on a
page when that page is unloaded; see “Sidebar: The Ubiquitous dispose Method" in Chapter 5.

updatelayout Called in response to the window.onresize event, which signals changes between various view
states.

Note that WinJS.UI.Pages calls the first four methods; the unload and updatelLayout methods, on
the other hand, are used only by the PageControlNavigator.

Of all of these, the ready method is the most common one to implement. It's where you'll do
further initialization of controls (e.g., populate lists), wire up other page-specific event handlers, and so
on. Any processing that you want to do before the page content is added to the DOM should happen
in processed, and note that if you return a promise from processed, WinJS will wait until that promise
is fulfilled before starting the enterpage animation.

The unToad method is also where you'll want to remove event listeners for WinRT objects, as
described earlier in this chapterin “WinRT Events and removeEventListener.” The updatelLayout
method is important when you need to adapt your page layout to a new view, as we've been doingin
the Here My Am! app.

As forthe PageControlNavigator itself, which I'll just refer to as the “navigator,” the code in
js/navigator.js shows how it's defined and how it wires up navigation events in its constructor:

(function O {
"use strict";

// [some bits omitted]
var nav = WinJS.Navigation;

WinJS.Namespace.define("Application"”, {
PageControINavigator: WinJS.Class.define(

142

http://msdn.microsoft.com/library/windows/apps/jj126146.aspx
http://msdn.microsoft.com/library/windows/apps/br212672.aspx

// Define the constructor function for the PageControlNavigator.
function PageControlNavigator (element, options) {
this.element = element || document.createElement("div'");
this.element.appendChild(this._createPageElement());

this.home = options.home;

// ...

// Adding event Tisteners; addRemovableEventListener is a helper function
addRemovableEventListener(nav, 'navigating',

this._navigating.bind(this), false);
addRemovableEventListener(nav, 'navigated',

this._navigated.bind(this), false);

/]
b
/]

First we see the definition of the App1ication namespace as a container forthe PageControl-
Navigator class (see “Sidebar: WinJS.Namespace.define and WinJS.Class.define” later). Its constructor
receives the eTement that contains it (the contenthost div in default.html), or it creates a new one if
none is given. The constructor also receives an options object that is the result of parsing the data-
win-options string of that element. The navigator then appends the page control’s contents to this
root element, adds listeners forthe WinJS.Navigation.onnavigated event, among others.2

The navigator then waits for someone to call WinJS.Navigation.navigate, which happens in the
activated handler of js/defaultjs, to navigate to either the home page or the last page viewed if
previous session state was reloaded:

if (app.sessionState.history) {
nav.history = app.sessionState.history;
}
args.setPromise(WinJS.UI.processA11(Q).then(function () {
if (nav.location) {
nav.history.current.initialPlaceholder = true; // Don’t add first page to nav stack
return nav.navigate(nav.location, nav.state);
} else {
return nav.navigate(Application.navigator.home);
}
D);

Notice how this code is using the WinJS sessionState object exactly as described earlierin this
chapter, taking advantage again of sessionState being automatically reloaded when appropriate.

When a navigation happens, the navigator's _navigating handler is invoked, which in turn calls
WinJS.UI.Pages.render to do the loading, the contents of which are then appended as child

3 |f the use of .bind(this) is unfamiliar to you, please see my blog post, The purpose of this <event>.bind(this).
143

http://kraigbrockschmidt.com/blog/?p=32

elements to the navigator control:

_navigating: function (args) {
var newElement = this._createPageElement();
var parentedComplete;
var parented = new WinJS.Promise(function (c) { parentedComplete = c; 1});

this._lastNavigationPromise.cancel();

this._lastNavigationPromise = WinJS.Promise.timeout().then(function O {
return WinJS.UI.Pages.render(args.detail.location, newElement,
args.detail.state, parented);
}) .then(function parentElement(control) {
var oldElement = this.pageElement;
if (oldETement.winControl && oldETement.winControl.unload) {
oldETement.winControl.unload();
}
Win]S.UtiTities.disposeSubTree(this._element);
this._element.appendChild(newElement) ;
this._element.removeChild(oldElement);
oldETement.innerText = "";
parentedComplete();
}.bind(this));

args.detail.setPromise(this._TastNavigationPromise);

b

If you look past all the business with promises that you see here (which essentially makes sure the
rendering and parenting process is both asynchronous and yields the Ul thread), you can see how the
navigator is handling the core process shown earlierin Figure 3-4. It first creates a new page element.
Then it calls the previous page’s unload event, after which it asynchronously loads the new page’s
content. Once that's complete, the new page’s content is added to the DOM and the old page’s
contents are removed. Note that the navigator uses the WinlJS disposal helper, WinJS.Utilities.-
disposeSubTree to make sure that we fully clean up the old page. This disposal pattern invokes the
navigator's dispose method (also in navigator.js), which makes sure to release any resources held by
the page and any controls within it, including event listeners. (More on this in Chapter 5.)

Tip In a page control's JavaScript code you can use this.element.querySelector rather than
document. querySelector if you want to look only in the page control's contents and have no need to
traverse the entire DOM. Because this.element isjust a node, however, it does not have other
traversal methods like getETementById (which, by the way, operates off an optimized lookup table
and actually doesn't traverse anything).

And that, my friends, is how it works! In addition to the HTML Page controls sample, and to show a
concrete example of doing this in a real app, the code in the HereMyAm3c sample has been converted
to use this model for its single home page. To make this conversion, | started with a new project by
using the Navigation App template to get the page navigation structures set up. Then | copied or
imported the relevant code and resources from HereMyAm3b, primarily into pages/home/home.html,

144

http://msdn.microsoft.com/library/windows/apps/dn301980.aspx
http://msdn.microsoft.com/library/windows/apps/dn301980.aspx
http://code.msdn.microsoft.com/windowsapps/Page-Controls-sample-568b10b4

homejs, and home.css. And remember how | said that you could opena page control directly in Blend
(which is why pages have WinJS references)? As an exercise, open the HereMyAm3c projectin Blend.
You'll first see that everything shows up in default.html, but you can also open home.html by itself and
editjust that page.

Note To give an example of calling removeEventListener for the WinRT datarequestedevent, |
make this call in the unToad method of pages/home/home,js.

Be aware that WinJS callswinJS.UI.processAl1 inthe process of loading a page control (before
calling the processed method), so we don't need to concern ourselves with that detail when using
WinJS controls in a page. On the other hand, reloading state when previousExecutionState ==
terminated needs some attention. Because this is picked up in the WinJS.Application.onactivated
event before any page controls are loaded and before the PageControlNavigator iseven instantiated,
we need to remember that condition so that the home page’s ready method can later initialize itself
accordingly from app.sessionState values. For this | simply write another flag into
app.sessionState called initFromState (true if previousExecutionState is terminated, false
otherwise.) The page initialization code, now in the page’s ready method, checks this flag to determine
whether to reload session state.

The other small change | made to HereMyAm3c is to use the updatelLayout method in the page
control rather than attaching my own handler to window.onresize. With this | also needed to add a
height: 100%; style to the #mainContent rule in home.css. In previous iterations of this example, the
mainContent element was a direct child of the body element and it inherited the full screen height
automatically. Now, however, it's a child of the contentHost, so the height doesn't automatically pass
through and we need to set it to 100% explicitly.

Sidebar: WinJS.Namespace.define and WinJS.Class.define

WinJS.Namespace.define providesa shortcut for the JavaScript namespace pattern. This helps
to minimize pollution of the global namespace as each app-defined namespace is just a single
objectin the global namespace but can provide access to any number of other objects, functions,
and so on. This is used extensively in WinJS and is recommended for apps as well, where you
define everything you need in a module—that is, within a (function() { ... })(block—and
then export selective variables or functions through a namespace. In short, use a namespace
anytime you're tempted to add any global objects or functions!

Here's the syntax: var ns = WinJS.Namespace.define(<name>, <members>) where <name>
is a string (dots are OK) and <members> is any object contained in { }'s. Also,WinJS.Namespace. -
defineWithParent(<parent>, <name>, <members>) definesone within the <parent>
namespace.

If you call Win]S.Namespace.define for the same <name> multiple times, the <members> are

145

http://msdn.microsoft.com/library/windows/apps/br212667.aspx

combined. Where collisions are concerned, the most recently added members win. For example:

WinJS.Namespace.define(""MyNamespace", { x: 10, y: 10 });
Win]S.Namespace.define("MyNamespace", { x: 20, z: 10 });
//MyNamespace == { x: 20, y: 10, z: 10}

WinJS.Class.define is, for its part, a shortcut for the object pattern, defining a constructor
so that objects can be instantiated with new.

Syntax: var className = WinJS.Class.define(<constructor>, <instanceMembers>,
<staticMembers>) where <constructors is a function, <instanceMembers> isan object with
the class’s properties and methods, and <staticMembers> is an object with properties and
methods that can be directly accessed via <className> . <member> (without using new).

Variants: Win]S.Class.derive(<baseClass>, ...) createsa subclass (... isthe samearg
list as with define) using prototypal inheritance, and WinJS.Class.mix(<constructors>,
[<classes>]) defines a class that combines the instance (but not static) members of one or
more other <classes> and initializes the object with <constructors.

Finally, note that because class definitions just generate an object, Win]S.Class.define is
typically used inside a module with the resulting object exported to the rest of the app as a
namespace member. Then you can use new <namespace>.<class> anywhere in the app.

For more details on classes in WinJS, see Appendix B.

Sidebar: Helping Out IntelliSense

If you start poking around in the WinJS source code—for example, to see how WinJS.UI.Pages
is implemented—you’ll encounter certain structures within code comments, often starting with a
triple slash, ///. These are used by Visual Studio and Blend to provide rich IntelliSense within the
code editors. You'll see, for example, /// <reference path../> comments, which create a
relationship between your current script file and other scripts to resolve externally defined
functions and variables. This is explained on the JavaScript IntelliSense page in the
documentation. For your own code, especially with namespaces and classes that you will use
from other parts of your app, use these comment structures to describe your interfaces to
IntelliSense. For details, see Extending JavaScript IntelliSense, and again look around the WinJS
JavaScript files for many examples.

The Navigation Process and Navigation Styles

Having seen how page controls, WinJS.UI.Pages, WinJS.Navigation, and the PageControl-
Navigator all relate, it's straightforward to see how to navigate between multiple pages within the
context of a single HTML container (e.g., default.html). With the PageControlNavigator instantiated
and a page control defined via WinJS.UI.Pages, simply callWwin]S.Navigation.navigate with the
URI of that page control (its identifier). This loads that page’s contents into a child elementinside the

146

http://msdn.microsoft.com/library/windows/apps/br229813.aspx
http://msdn.microsoft.com/library/bb385682.aspx
http://msdn.microsoft.com/library/hh874692.aspx

PageControlNavigator, unloading any previous page. That becomes page visible, thereby
“navigating” to it so far as the user is concerned. You can also use (like the WinJS BackButton does) the
other methods of WinJS.Navigation to move forward and back in the nav stack, which results in page
contents being added and removed. The WinJS.Navigation.canGoBack and canGoForward
properties allow you to enable/disable navigation controls as needed. Just remember that all the while,
yoU'll still be in the overall context of your host page where you created the PageControlNavigator
control.

As an example, create a new project using the Grid App template and look at these particular areas:

e pages/groupeditems/groupeditems is the home or “hub” page. It contains a ListView control
(see Chapter 6, "Data Binding, Templates, and Collections”) with a bunch of defaultitems.

e Tapping a group header in the list navigates to section page (pages/groupDetail). This is done
in pages/groupeditems/groupeditems.html, where an inline onc1ick handler event navigates
to pages/groupDetail/groupDetail.html| with an argument identifying the specific group to
display. That argument comes into the ready function of pages/groupDetail/groupDetail js.

e Tapping an item on the hub page goes to detail page (pages/itemDetail). The itemInvoked
handler for the items, the _itemInvoked function in pages/groupeditems/groupeditem,js, calls
Winl]S.Navigation.navigate("/pages/itemDetail/itemDetail.htm1") with an argument
identifying the specific item to display. As with groups, that argument comes into the ready
function of pages/itemDetail/itemDetail,js.

e Tapping an item in the section page also goes to the details page through the same
mechanism—see the _itemInvoked function in pages/groupDetail/groupDetail js.

e The back buttons on all pages wire themselves into WinJS.Navigation.back for keyboard,
mouse, and touch events.

The Split App template works similarly, where each list item on pages/items is wired to navigate to
pages/split when invoked. Same with the Hub App template that has a hub page using the
WinJS.UI.Hub control that we'll meetin Chapter 8.

The Grid App and Hub App templates also serve as examples of what's called the Hub-Section-Item
navigation style (it's most explicitly so in the Hub App). Here the app’s home page is the hub where the
user can explore the full extent of the app. Tapping a group header navigates to a section, the second
level of organization where only items from that group are displayed. Tapping an item (in the hub orin
the section) navigates to a details page for that item. You can, of course, implement this navigation
style however you like; the Grid App template uses page controls, WinJS.Navigation, and the
PageControlNavigator. (Semantic zoom, as we'll see in Chapter 7, “Collection Controls,” is also
supported as a navigation tool to switch between hubs and sections.)

An alternate navigation choice is the Flat style, which simply has one level of hierarchy. Here,
navigation happens to any given page at any time through a navigation bar (swiped inalong with the
app bar, as we'll see in Chapter 9). When using page controls and PageControlNavigator, navigation

147

commands or buttons can just invoke WinJS.Naviation.navigate for this purpose. Note that in this
style, there typically is no back button: users are expected to always swipe in the navigation bar from
the top and go directly to the desired page.

These styles, along with many other Ul aspects of navigation, can be found on Navigation design for
Windows Store apps. This is an essential topic for designers.

Sidebar: Initial Login and In-App Licensing Agreements (EULA) Pages

Some apps might require either a login or acceptance of a license agreement to do anything,
and thus it's appropriate that such pages are the first to appearin an app after the splash screen.
In these cases, if the user does not accept a license or doesn't provide a login, the app should
display a message describing the necessity of doing so, but it should always leave it to the user
to close the app if desired. Do not close the app automatically. (This is a Store certification
requirement.)

Typically, such pages appear only the first time the app is run. If the user provides a valid
login, or if you obtain an access token through the Web Authentication Broker (see Chapter 4),
those credentials/token can be saved for later use via the Windows.Security.Credentials. -
PasswordVault API. If the user accepts a EULA, that fact should be saved in appdata and
reloaded anytime the app needs to check. These settings (login and acceptance of a license)
should then always be accessible through the app’s Settings charm. Legal notices, by the way, as
well as license agreements, should always be accessible through Settings as well. See Guidelines
and checklist forlogin controls.

Optimizing Page Switching: Show-and-Hide

Even with page controls, there is still a lot going on when navigating from page to page: one set of
elements is removed from the DOM, and another is added in. Depending on the pages involved, this
can be an expensive operation. For example, if you have a page that displays a list of hundreds or
thousands of items, where tapping any item goes to a details page (as with the Grid App template),
hitting the back button from a detail page will require complete reconstruction of the list (or at least its
visible parts if the listis virtualized, which could still take a long time).

Showing progress indicators can help alleviate the user's anxiety, of course, but users are notoriously
impatient and will likely want to quickly switch between a list of items and item details. (You've
probably already encountered apps that seem to show progress indicators all the time for just about
everything—how do they make you feel?) Indeed, the recommendation is that switching between fully
interactive pages takes a quarter second or less, if possible, and no more than half a second. In some
cases, completely swapping out chunks of the DOM with page controls will just become too time-
consuming. (You could use a split master-detail view, of course, but that means splitting the available
screen real estate.)

148

http://msdn.microsoft.com/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/library/windows/apps/hh965453.aspx
http://msdn.microsoft.com/library/windows/apps/hh965453.aspx

A good alternative is to actually keep the list/master page fully loaded the whole time. Instead of
navigating to the item details page in the way we've seen, simply render that details page (using
WinJS.UI.Pages.render directly) into another div that occupies the whole screen and overlays the
list (similar to what we do with an extended splash screen), and then make that div visible without
removing the list page from the DOM. When you dismiss the details page, just hide its div. This way
you get the same effect as navigating between pages but the whole process is much quicker. You can
also apply WinJS animations like enterContent and exitContent to make the transition more fluid.

If necessary, you can clear out the details div by just setting its innerHTML to "". However, if each
details page has the same structure for every item, you can leave it entirely intact. When you “navigate”
to the next details page, you would go through and refresh each element’s data and properties for the
new item before making that page visible. This could be significantly faster than rebuilding the details
page all over again.

Note that because the PageControlNavigator implementationin navigator,jsis provided by the
templates and becomes part of your app, you can modify it however you like to handle these kinds of
optimizations ina more structured manner that's transparent to the rest of your code.

Page-Specific Styling

When creating an app that uses page controls, you'll end up with each page having its own .css file in
which you place page-specific styles. What's very important to understand here, though, is that while
each page's HTML elements are dynamically added to and removed from the DOM, any and all CSS
that is loaded for page controls is cumulative to the app as a whole. That is, styles behave like scriptand
are preserved across page “navigations.” This can be a source of confusion and frustration, so it's
essential to understand what's happening here and how to work with it.

Let's say the app's root page is default.html and its global styles are in css/default.css. It then has
several page controls defined in pages/pagel (pagel.html. pagel,s, pagel.css), pages/page2
(page2.html. page2,js, page2.css), and pages/pagel (page3.html. page3.js, page3.css). Let's also say that
pagelis the “home"” page that's loaded at startup. This means that the styles in default.css and
pagel.css have been loaded when the app first appears.

Now the user navigates to page2. This causes the contents of pagel.html to be dumped from the
DOM, but its styles remain in the stylesheet. So when page2 is loaded, page2.css gets added to the
overall stylesheet as well, and any styles in page2.css that have identical selectors to pagel.css will
overwrite those in pagel.css. And when the user navigates to page3 the same thing happens again: the
styles in page3.css are added in and overwrite any that already exist. But so far we haven't seen any
unexpected effect of this.

Now, say the user navigates back to pagel. Because the apphost's rendering engine has already
loaded pagel.css into the stylesheet, pagel.csswon't be loaded again. This means that any styles that
were overwritten by other pages' stylesheets will not be reset to those in pagel.css—basically you get
whichever ones were loaded most recently. As a result, you can see some mix of the styles in page2.css

149

http://msdn.microsoft.com/library/windows/apps/Hh701582.aspx
http://msdn.microsoft.com/library/windows/apps/hh701585.aspx

and page3.css being applied to elements in pagel.2*

There are two ways to handle CSS files to avoid these problems. The first way is to take steps to
avoid colliding selectors: use unique selectors for each page or can scope your styles to each page
specifically. For the latter, wrap each page's contents in a top-level div with a unique class (asin <div
class="pagel">) so that you can scope every rule in pagel.css with the page name. For example:

.pagel p {
font-weight: bold;

}

Such a strategy can also be used to define stylesheets that are shared between pages, as with
implementing style themes. If you scope the theme styles with a theme class, you can include that class
in the top-level div to apply the theme.

A similar case arises if you want to use the ui-light.css and ui-dark.css WinJS stylesheets in different
pages of the same app. Here, whichever one is loaded second will define the global styles such that
subsequent pages that refer to ui-light.css might appear with the dark styles.

Fortunately, WinJS already scopes those styles that differ between the two files: those in ui-light.css
are scoped with a CSS classwin-ui-Tight and those in ui-dark.css are scoped withwin-ui-dark. This
means you can just refer to whichever stylesheet you use most often in your .html files and then add
eitherwin-ui-Tight orwin-ui-dark to those elements that you need to style differently. When you
add either class, note that the style will apply to that element and all its children. For a simple
demonstration of an app with one dark page (as the default) and one light page, see the PageStyling
example in the companion content.

The other way of avoiding collisions is to specifically unload and reload CSS files by modifying
<Tink> tags in the page header. You can either remove one <1ink> tag and add a different one,
toggle the disabled attribute for a tag between true and false, or change the href attribute of an
existing link. These methods are demonstrated for styling an iframe in the CSS styling and branding
your app sample, which swaps out and enables/disables both WinJS and app-specific stylesheets.
Another demonstration for switching between the WinJS stylesheets is in scenario 1 of the HTML
NavBar control sample that we'll see more of in Chapter 9 (js/1-CreateNavBar,s):

function switchStyle() {
var 1inkEl = document.querySelector('1link');
if (1inkEl.getAttribute('href') === "//Microsoft.Win]S.2.0 /css/ui-Tight.css") {
T1inkE1.setAttribute('href', "//Microsoft.WinJS.2.0 /css/ui-dark.css");
} else {
T1inkEl.setAttribute('href', "//Microsoft.WinJS.2.0 /css/ui-light.css");
}

2 The same thing happens with js files, by the way, which are not reloaded if they've been loaded already. To avoid
collisions in JavaScript, you either have to be careful to not duplicate variable names or to use namespaces to isolate
them from one another.

150

http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/HTML-NavBar-control-sample-4472d92a
http://code.msdn.microsoft.com/windowsapps/HTML-NavBar-control-sample-4472d92a

The downside of this approach is that every switch means reloading and reparsing the CSS files and
a corresponding re-rendering of the page. This isn't much of an issue during page navigation, but
given the size of the WinJS files | recommend using it only for your own page-specific stylesheets and
using the win-ui-Tight and win-ui-dark classes to toggle the WinJS styles.

Async Operations: Be True to Your Promises

Even though we've just got our first apps going, we've already seen a lot to do with async operations
and promises. We've seen their basic usage, and in the “Moving the Captured Image to AppData (or
the Pictures Library)” section of Chapter 2, we saw how to combine multiple async operationsinto a
sequential chain. At other times you might want to combine multiple parallel async operationsinto a
single promise. Indeed, as you progress through this book you'll find that async APIs, and thus
promises, seem to pop up as often as dandelions in a lawn (without being a noxious weed, of course)!
Indeed, the implementation of the PageControlNavigator._navigating method that we saw earlier
has a few characteristics that are worth exploring.

To reiterate a very important point, promises are simply how async operations in WinRT are
projected into JavaScript, which matches how WinJS and other JavaScript libraries typically handle
asynchronous work. And because you'll be using all sorts of async APIs in your development work,
you're going to be using promises quite frequently and will want to understand them deeply.

Note There are a number of different specifications for promises. The one presently used in WinJS and
the WInRT API is known as Common JS/Promises A. Promises in jQuery also follow this convention and
are thus interoperable with WinJS promises.

The subject of promises gets rather involved, however, so instead of burdening you with the details
in the main flow of this chapter, you'll find a full treatment of promises in Appendix A, “Demystifying
Promises.” Here | want to focus on the most essential aspects of promises and async operations that
we'll encounter throughout the rest of this book, and we'll take a quick look at the features of the
WinJS.Promise class. Examples of the concepts can be found in the WinJS Promise sample.

Using Promises

The first thing to understand abouta promise is that it's really nothing more than a code construct or a
calling convention. As such, promises have no inherent relationship to async operations—they just so
happen to be very useful in that regard! A promise is simply an object that represents a value that
might be available at some pointin the future (or might be available already). It's just | ike we use the
term in human relationships. If | say to you, “l promise to deliver a dozen donuts,” it doesn't matter
when and how | get them (or even whether | have them already in hand), it only matters that | deliver
them at some point in the future.

A promise, then, implies a relationship between two people or, to be more generic, two agents, as |

151

http://wiki.commonjs.org/wiki/Promises/A
http://code.msdn.microsoft.com/windowsapps/Promise-e1571015

call them. There is the originator who makes the promise—that is, the one who has some goods to
deliver—and the consumer or recipient of that promise, who will also be the later recipient of the
goods. In this relationship, the originator creates a promise in response to some request from the
consumer (typically an API call). The consumer can then do whatever it wants with both the promise
itself and whatever goods the promise delivers. This includes sharing the promise with other interested
consumers—the promise will deliver its goods to each of them.

The way a consumer listens for delivery is by subscribing a completed handler through the promise’s
then or done methods. (We'll discuss the differences later.) The promise invokes this handler when it
has obtained its results. In the meantime, the consumer can do other work, which is exactly why
promises are used with async operations. It's like the difference between waiting in line at a restaurant’s
drive-through for a potentially very long time (the synchronous model) and calling out for pizza
delivery (the asynchronous model): the latter gives you the freedom to do other things.

Of course, if the promised value is already available, there's no need to wait: it will be delivered
synchronously to the completed handler as soon as then/done is called.

Similarly, problems can arise that make it impossible to fulfill the promise. In this case the promise
will invoke any error handlers given to then/done as the second argument. Those handlers receive an
error object containing name and message properties with more details, and after this point the
promise isin what's called the error state. This means that any subsequent calls to then/done will
immediately (and synchronously) invoke any given error handlers.

A consumer can also cancel a promise if it decides it no longer needs the results. A promise has a
cancel method for this purpose, and calling it both halts any underlying async operation represented
by the promise (however complex it might be) and puts the promise into the error state.

Some promises—which is to say, some async operations—also support the ability to report
intermediate results to any progress handlers given to then/done as the third argument. Check the
documentation for the particular APl in question.?

Finally, two static methods on the WinJS.Promise object might come in handy when using
promises:

e is determines whether an arbitrary value is a promise, returning a Boolean. It basically makes
sure it's an object with a function named “then”; it does not test for “"done”.

e theneach takes an array of promises and subscribes completed, error, and progress handlers to
each promise by calling its then method. Any of the handlers can be nu11. The return value of
theneach is itself a promise that's fulfilled when all the promises in the array are fulfilled. We
call this a join, as described in the next section.

% If you want to impress your friends while reading the WinRT APl documentation, know that if an async function shows it
returns TAsync[Action | Operation]WithProgress (for whatever result type), it will invoke progress handlers. If it lists

only TAsync[Action | Operation], progress is not supported.

152

http://msdn.microsoft.com/library/windows/apps/br211667.aspx
http://msdn.microsoft.com/library/windows/apps/br211867.aspx
http://msdn.microsoft.com/library/windows/apps/br211765.aspx
http://msdn.microsoft.com/library/windows/apps/br229727.aspx

Tip If you're new to the concept of static methods, these refer to functions that exist on an object class
that you call directly through the fully-qualified name, such as WinJS.Promise.theneach. These are
distinct from instance methods, which must be called through a specific instance of the class. For
example, if you have a WinJS. Promise object in the variable p, you cancel that particular instance with

p.cancel().

Joining Parallel Promises

Because promises are often used to wrap asynchronous operations, it's certainly possible that you can
have multiple operations going on in parallel. In these cases you might want to know either when one
promise in a group is fulfilled or when all the promises in the group are fulfilled. The static functions

WinJS.Promise.any and WinJS.Promise.join provide for this. Here's how they compare:

Function

any

join

Arguments

An array of promises

An array of promises

Fulfilled when

One of the promises is fulfilled (a logical OR)

All of the promises are fulfilled (a logical AND)

Fulfilled result

Thisis a little odd. It's an object whose key
property identifies the promise that was
fulfilled and whose value property is an
object containing that promise’s state. Within
that stateis a _value property that contains
the actual result of that promise.

Thisisn't clearly documented but can be
understood from the source code or simple
tests from the consumerside. If the promises in
the join all complete, the completed handler
receives an array of results from the individual
promises (even if those results are nu11 or
undefined). If there's an error in the join, the
error object passed to the error handleris an
array that contains theindividual errors.

Progress behavior

None

Reports progress to any subscribed handlers
where the intermediate results are an array of
results from those individual promises that
have been fulfilled so far.

Behavior after fulfillment

All the operations for the remaining promises
continueto run, calling whatever handlers
might have been subscribed individually.

None—all promises have been fulfilled.

Behavior upon cancellation

Canceling the promise from any cancels all
promises in the array, even if the first has
already been fulfilled.

Cancels all other promises that are still
pending.

Behavior upon errors

Invokes the subscribed error handler for every
error in the individual promises. This one error
handler, in other words, can monitor
conditions of the underlying promises.

Invokes the subscribed error handler with an
array of error objects from any failed promises,
but the remainder continueto run. In other
words, this reports cumulative errors in the way
that progress reports cumulative completions.

Appendix A, by the way, has a small code snippet that shows how to use join and the array’s
reduce method to execute parallel operations but have their results delivered in a specific sequence.

Sequential Promises: Nesting and Chaining

In Chapter 2, when we added code to Here My Am! to copy the captured image to another folder, we
got our first taste of using chained promises to run sequential async operations. To review, what makes
this work is that any promise’s then method returns another promise that's fulfilled when the given

153

http://msdn.microsoft.com/library/windows/apps/br229660.aspx
http://msdn.microsoft.com/library/windows/apps/br211774.aspx

completed handler returns. (That returned promise also enters the error state if the first promise has an
error.) That completed handler, forits part, returns the promise from the next async operationin the
chain, the results of which are delivered to the next completed handler down the line.

Though it may look odd at first, chaining is the most common pattern for dealing with sequential
async operations because it works better than the more obvious approach of nesting. Nesting means to
call the next async API within the completed handler of the previous one, fulfilling each with done. For
example (extraneous code removed for simplicity):

//Nested async operations, using done with each promise

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)
.done(function (capturedFileTemp) {

/]
local.createFolderAsync("HereMyAm", ...)
.done(function (myFolder) {
/]
capturedFile.copyAsync(myFolder, newName)
.done(function (newFile) {
1))
b
b;

The one advantage to this approachis that each completed handler will have access to all the
variables declared before it. Yet the disadvantages begin to pile up. For one, there is usually enough
intervening code between the async calls that the overall structure becomes visually messy. More
significantly, error handling becomes much more difficult. When promises are nested, error handling
must be done at each level with distinct handlers; if you throw an exception at the innermost level, for
instance, it won't be picked up by any of the outer error handlers. Each promise thus needs its own
error handler, making real spaghetti of the basic code structure:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)
.done(function (capturedFileTemp) {
/] ..
local.createFolderAsync("HereMyAm", ...)
.done(function (myFolder) {
/] ...
capturedFile.copyAsync(myFolder, newName)
.done(function (newFile) {

¥
function (error) {
9
Fanction (error) {
s
s
function (error) {

b

| don't know about you, but | really get lostin all the }'s and)’s (unless | try hard to remember my
LISP class in college), and it's hard to see which error function applies to which async call. And just
imagine throwing a few progress handlers in as well!

154

Chaining promises solves all of this with the small tradeoff of needing to declare a few extra temp
variables outside the chain for any variables that need to be shared amongst the various completed
handlers. Each completed handlerin the chain again returns the promise for the next operation, and
each link is a call to then except for a final call to done to terminate the chain. This allows you to indent
all the async calls only once, and it has the effect of propagating errors down the chain, as any
intermediate promise that's in the error state will be passed through to the end of the chain very
quickly. This allows you to have only a single error handler at the end:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)
.then(function (capturedFileTemp) {
/..

return local.createFolderAsync(''HereMyAm", ...);
b
.then(function (myFolder) {

/]

return capturedFile.copyAsync(myFolder, newName);

1))

.done(function (newFile) {

1,
function (error) {

1))

To my eyes (and my aging brain), this is a much cleaner code structure—and it's therefore easier to
debug and maintain. If you like, you can even end the chain with done(nul11, errorHandler), as we
did in Chapter 2:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

Y/

.then(function (newFile) {

b

.done(null, function (error) {
b

1))

Remember, though, that if you need to pass a promise for the whole chain elsewhere, as to a
setPromise method, you'll use then throughout.

Error Handling in Promise Chains: then vs. done

This brings us to why we have both then and done and to why done is used at the end of a chain as
well as for single async operations. To begin with, then returns another promise, thereby allowing
chaining, whereas done returns undefined, so it always occurs at the end of a chain. Second, if an
exception occurs within one async operation’s then method and there’s no error handler at that level,
the error gets stored in the promise returned by then (that is, the returned promise is in the error
state). In contrast, if done sees an exceptionand there’s no error handler, it throws that exception to the
app's event loop. This will bypass any local (synchronous) try/catch block, though you can pick them
up in either inWinJS.Application.onerror orwindow.onerror handlers. (The latter will get the
error if the former doesn't handle it.) If you don't have an app-level handler, the app will be terminated

155

and an error report sent to the Windows Store dashboard. For that reason we recommend that you
implement an app-level error handler using one of the events above.

In practical terms, then, this means that if you end a chain of promises witha then and not done, all
exceptionsin that chain will get swallowed and you'll never know there was a problem! This can place
an app in an indeterminate state and cause much larger problems later on. So, unless you're going to
pass the last promise in a chain to another piece of code that will itself call done (as you do, for
example, when using a setPromise deferral orif you're writing a library from which you return
promises), always use done at the end of a chain even for a single async operation.2

Promise error events If you look carefully at the WinJS.Promise documentation, you'll see that it has
an error event along with addEventListener, removeEventListener, and dispatchEvent methods.
This is primarily used within WinJS itself and is fired on exceptions (but not cancellation). Promises from
async WInRT APIs, however, do not fire this event, so apps typically use error handlers passed to
then/done for this purpose.

Managing the Ul Thread with the WinJS Scheduler

JavaScript, as you are probably well aware, is a single-threaded execution environment, where any and
all of your code apart from web workers and background tasks run on what we call the Ul thread. The
internal working of asynchronous APIs, like those of WinRT, happen on other threads as well, and the
internal engines of the app host are also very much optimized for parallel processing.?” But regardless
of how much work you offload to other threads, there's one very important characteristic to always
keep in mind:

The results from all non-Ul threads eventually get passed back to the app on the main Ul
thread through callback functions such as the completed handler given to a promise.

Think about this very clearly: if you make a whole bunch of async WinRT calls within a short amount
of time, such as to make HTTP requests or retrieve information from files, those tasks will execute on
separate threads but each one will pass their results back to the Ul thread when the task is complete.
What this means is that the Ul thread can become quite overloaded with such incoming traffic!
Furthermore, what you do (or what WinJS does on your behalf) in response to the completion of each
operation—such as adding elements to the DOM or innocently changing a simple layout-affecting
style—can trigger more work on the Ul thread, all of which competes for CPU time. As a result, your Ul
can become sluggish and unresponsive, the very opposite of “fast and fluid”!

% Some samples in the Windows SDK might still use then instead of done, especially for single async operations. This came
from the fact that done didn't yet exist at one point and not all samples have been updated.

27 |n Windows 8 and Internet Explorer 10, most parsing, JavaScript execution, layout, and rendering on a single thread.
Rewriting these processes to happen in parallel is one of the major performance improvements for Windows 8.1 and
Internet Explorer 11, from which apps also benefit.

156

This is something we certainly saw with JavaScript apps on Windows 8, and developers created a
number of strategies to cope with it such as starting async operations in timed batches to manage their
rate of callbacks to the Ul thread, and batching together work that triggers a layout pass so as to
combine multiple changes in each pass.

Still, after plenty of performance analysis, the WinJS and app host teams at Microsoft found that
what was really needed is a way to asynchronously prioritize different tasks on the Ul thread itself. This
meant creating some low-level scheduling APIs in the app host such as MSApp.executeAtPriority.
But don't use such methods directly—use the WinJS.Utilities.Scheduler APl instead. The reason
for this is that WinJS very carefully manages its own tasks through the Scheduler, so by using it
yourself you ensure that all the combined work is properly coordinated. This API also provides a simpler
interface to the whole process, especially where promises are concerned.

Let's first understand what the different priorities are, then we'll see how to schedule and manage
work at those priorities. Keep in mind, though, that using the scheduleris not at all required —it's there
to help you tune the performance of your app, not to make your life difficult!

Scheduler Priorities

The relative priorities for the WinJS Scheduler are expressed in the Scheduler.Priority
enumeration, which | list here in descending order: max, high, aboveNormal, normal (the default for
app code), belowNormal, idle, and min. Here's the general guidance on how to use these:

Priority Best Usage

max, high Use sparingly for truly high priority work as these priorities take priority over layout
passes in the rendering engine. If you overuse these priorities, the app can actually
become /ess responsive!

aboveNormal, normal, belowNormal Use these to indicate the relative importance between most of your tasks.

idle, min Use forlong-running and/or maintenance tasks where there isn'ta Ul dependency.

Although you need not use the schedulerin your own code, a little analysis of your use of async
operations will likely reveal places where setting priorities might make a big difference. Earlierin
“Optimizing Startup Time,” for example, we talked about how you want to prioritize non-Ul work while
your splash screen is visible, because the splash screen is noninteractive by definition. If you're doing
some initial HTTP requests, for example, set the most critical ones for your home page to max or high,
and set secondary requests to beTowNormal. This will help those first requests get processed ahead of
Ul rendering, whereas your handling of the secondary requests will then happen after your home page
has come up. This way you won't make the user wait for completion of those secondary tasks before
the app becomes interactive. Other requests that you want to start, perhaps to cache data for a
secondary leaderboard page, can be set to beTowNormal or idTe. Of course, if the user navigatesto a
secondary page, you'll want to change its task priorities to aboveNormal or high.

WinJS, for its part, makes extensive use of priorities. For example, it will batch edits to a data-binding
source at high priority while scheduling cleanup tasks at idle priority. In a complex control like the
ListView, fetching new items that are necessary to render the visible part of a ListView control is done at

157

http://msdn.microsoft.com/library/windows/apps/dn301978.aspx
http://msdn.microsoft.com/library/windows/apps/dn301907.aspx

max, rendering of the visible items is done at aboveNormal, pre-loading the next page of items forward
is setto normal (anticipating that the user will pan ahead), and pre-loading of the previous page (to
anticipate a reverse pan) is set to belowNormal.

Scheduling and Managing Tasks

Now that we know about scheduling priorities, the way to asynchronously execute code on the Ul
thread at a particular priority is by calling the Scheduler.schedule method (whose default priority is
normal). This method allows you to provide an optional object to use as this inside the function along
with a name to use forlogging and diagnostics.2

As asimple example, scenario 1 of the HTML Scheduler sample schedules a bunch of functions at
different priorities in a somewhat random order (js/schedulesjobscenario.js):

window.output("\nScheduling Jobs...");
var S = WinJS.Utilities.Scheduler;

S.schedule(function () { window.output("Running job at aboveNormal priority"); },
S.Priority.aboveNormal);
window.output("Scheduled job at aboveNormal priority");

S.schedule(function () { window.output("Running job at idle priority"); },
S.Priority.idle, this);
window.output("Scheduled job at idle priority™);

S.schedule(function () { window.output("Running job at belowNormal priority"); 1},
S.Priority.belowNormal);
window.output("Scheduled job at belowNormal priority");

S.schedule(function () { window.output("Running job at normal priority"); }, S.Priority.normal);
window.output("Scheduled job at normal priority™);

S.schedule(function () { window.output("Running job at high priority"); }, S.Priority.high);
window.output("Scheduled job at high priority");

window.output("Finished Scheduling Jobs\n");

The output then shows that the “jobs,” as they're called, which execute in the expected order:

Scheduling Jobs...

Scheduled job at aboveNormalPriority
Scheduled job at idlePriority
Scheduled job at belowNormalPriority
Scheduled job at normalPriority
Scheduled job at highPriority
Finished Scheduling Jobs

Running job at high priority

28 The Scheduler. execHigh method is also a shortcut for directly calling MSApp. execAtPriority with Priority.high. This
method does not accommodate any added arguments.

158

http://msdn.microsoft.com/library/windows/apps/dn301941.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-Scheduler-Sample-4b8084f2
http://msdn.microsoft.com/library/windows/apps/dn301933.aspx

Running job at aboveNormal priority
Running job at normal priority
Running job at belowNormal priority
Running job at idle priority

No surprises here, | hope!

When you call scheduTe, what you get back is an object with the Scheduler.IJob interface, which
defines the following methods and properties:

Properties Description

id (read-only) A uniqueid assigned by the scheduler.

name (read-write) The app-provided name assigned to the job, if any. The name argumentto schedule
will be stored here.

priority (read-write) The priority assigned through schedule; setting this property will change the priority.

compTleted (read-only) A Boolean indicating whether the job has completed (that s, the function given to
scheduTe has returned and all its dependent async operations are complete).

owner (read-write) An owner token that can be used to group jobs. This is undefined by default.

Methods Description

pause Halts further execution of the job.

resume Resumes a previously paused job (no effect if the job isn't paused).

cancel Removes the job from the scheduler.

In practice, if you've scheduled a job at a low priority but navigate to a page that really needs that
job to complete before the page is rendered, you simply bump up its priority property (and then
drain the scheduler as we'll see in a moment). Similarly, if you scheduled some work on a page that you
don't need to continue when navigating away, then call the job’s cancel method within the page’s
unload method. Or perhaps you have an index page from which you typically navigate into a details
page, and then back again. In this case you can pause any jobs on the index page when navigating to
the details, then resume them when you return to the index. See scenarios 2 and 3 of the sample for
some demonstrations.

Scenario 2 also shows the utility of the owner property (the code is thoroughly mundane so I'll leave
you to examine it). An owner token is something created through Scheduler.createOwnerToken and
then assigned to a job’s owner (which replaces any previous owner). An owner token is simply an object
with a single method called cancelA11 that calls the cancel method of whatever jobs are assigned to
it, nothing more. It's a simple mechanism—the owner token really does nothing more than maintain an

array of jobs—but clearly allows you to group related jobs together and cancel them with a single call.
This way you don't need to maintain your own lists and iterate through them for this purpose. (To do
the same for pause and resume you can, of course, just duplicate the pattern in your own code.)

The other important feature of the Scheduler is the requestDrain method. This ensures that all jobs
scheduled at a given priority or higher are executed before the Ul thread yields. You typically use this
to guarantee that high priority jobs are completed before a layout pass. requestDrain returns a
promise that is fulfilled when the jobs are drained, at which time you can drain lower priority tasks or
schedule new ones.

159

http://msdn.microsoft.com/library/windows/apps/dn255156.aspx
http://msdn.microsoft.com/library/windows/apps/dn301931.aspx
http://msdn.microsoft.com/library/windows/apps/dn255179.aspx
http://msdn.microsoft.com/library/windows/apps/dn301934.aspx

A simple demonstrationis shown in scenario 5 of the sample. It has two buttons that schedule the
same set of varying jobs and then call requestDrain with either high or belowNormal priority. When
the returned promise completes, it outputs a message to that effect (js/drainingscenario.js):

S.requestDrain(priority).done(function O {
window.output("Done draining™);

b

Comparing the output of these two side by side (high on the left, beTowNormal on the right), as
below, you can see that the promise is fulfilled at different points depending on the priority:

Draining scheduler to high priority Draining scheduler to belowNormal priority
Running job2 at high priority Running job2 at high priority

Done draining Running jobl at normal priority

Running jobl at normal priority Running job5 at normal priority

Running job5 at normal priority Running job4 at belowNormal priority
Running job4 at belowNormal priority Done draining

Running job3 at idle priority Running job3 at idle priority

The other method that exists on the Scheduler is retrieveState, a diagnostic aid that returns a
descriptive string for current jobs and drain requests. Adding a call to this in scenario 5 of the sample
just after the call to requestDrain will return the following string:

Jobs:
id: 28, priority: high
id: 27, priority: normal
id: 31, priority: normal
id: 30, priority: belowNormal
id: 29, priority: idle
Drain requests:
*priority: high, name: Drain Request 0

Setting Priority in Promise Chains

Let's say you have a set of async data-retrieval methods that you want to execute in a sequence as
follows, processing their results at each step:

getCriticalDataAsync() .then(function (resultsl) {
var secondaryPages = processCriticalData(resultsl);
return getSecondaryDataAsync(secondaryPages);
}) .then(function (results2) {
var itemsToCache = processSecondaryData(results2);
return getBackgroundCacheDataAsync(itemsToCache);
}) .done(function (results3) {
populateCache(results3);
b;

By default, all of this would run at the current priority against everything else happening on the Ul
thread. But you probably want the call to processCriticalData to run ata high priority,

160

http://msdn.microsoft.com/library/windows/apps/dn301935.aspx

processSecondaryData to run at normal, and populateCache torun at idle. With schedule by itself
you'd have to do everything the hard way:

var S = WinJS.Utilities.Scheduler;

getCriticalDataAsync().done(function (resultsl) {
S.schedule(function O {
var secondaryPages = processCriticalData(resultsl);
S.schedule(function () {
getSecondaryDataAsync(secondaryPages) .done(function (results2) {
var itemsToCache = processSecondaryData(results2);
S.schedule(function () {
getBackgroundCacheDataAsync(itemsToCache) .done(function (results3) {
populateCache(results3);
b;
}, S.Priority.idle);
b;
}, S.Priority.normal);
}, S.Priority.high);
b

Urg. Blech. Ick. It's more fun going to the dentist than writing code like this! To simplify matters, you
could encapsulate the process of setting a new priority within another promise that you can then insert
into the chain. The best way to do this is to dynamically generate a completed handler that would take
the results from the previous step in the chain, schedule a new priority, and return a promise that
delivers those same results (see Appendix A for the use of new WinJS.Promise):

function schedulePromise(priority) {
//This returned function is a completed handler.
return function completedHandler (results) {
//The completed handler returns another promise that's fulfilled
//with the same results it received...
return new WinJS.Promise(function initializer (c) {
//But the delivery of those results are scheduled according to a priority.

Winl]S.Utilities.Scheduler.schedule(function () {
c(results);
}, priority);
b;

Fortunately we don't have to write this code ourselves. The WinJS.Utilities.Scheduler already
has five pre-made completed handlers like this that also automatically cancel a job if there is an error.
These are called schedulePromiseHigh, schedulePromiseAboveNormal, schedulePromiseNormal
schedulePromiseBelowNormal, or schedulePromiseIdlie

Because these APIs are pre-made completed handlers rather than methods you call directly, simply
insert the appropriate name at those points in a promise chain where you want to change the priority,
as highlighted below:
var S = WinJS.Utilities.Scheduler;

161

http://msdn.microsoft.com/library/windows/apps/dn301938.aspx
http://msdn.microsoft.com/library/windows/apps/dn301936.aspx
http://msdn.microsoft.com/library/windows/apps/dn301940.aspx
http://msdn.microsoft.com/library/windows/apps/dn301937.aspx
http://msdn.microsoft.com/library/windows/apps/dn301939.aspx

getCriticalDataAsync().then(S.schedulePromiseHigh).then(function (resultsl) {
var secondaryPages = processCriticalData(resultsl);
return getSecondaryDataAsync(secondaryPages);

3} .then(S.schedulePromise.normal) .then(function (results2) {
var itemsToCache = processSecondaryData(results2);
return getBackgroundCacheDataAsync(itemsToCache);

}) .then(S.schedulePromiseldle) .done(function (results3) {
populateCache(results3);

b

Long-Running Tasks

All the jobs that we've seen so far are short-running in that we schedule a worker function at a certain
priority and it just completes its work when it's called. However, some tasks might take much longer to
complete, in which case you don't want to block higher priority work on your Ul thread. To help with
this, the scheduler has a built-in interval timer of sorts for tasks that are scheduled at aboveNormal
priority or lower, so a task can check whether it should cooperatively yield and have itself rescheduled
for its next bit of work. Let me stress that word cooperatively: nothing forces a task to yield, but because
all of this is affecting the Ul performance of your app and your app alone, if you don't play nicely you'll
just be hurting yourself!

The mechanism for this is provided through a job info object that's passed as an argument to the
worker function itself. To make sure we're clear on how this fits in, let's first look at everything a worker
has available within its scope, which is best explained with a few comments within the basic code
structure:

var job = WinJS.Utilities.Scheduler.schedule(function worker(jobInfo) {
//jobInfo.job is the same as the job returned from schedule.
//Scheduler.currentPriority will match the second argument to schedule.
//this will be the third argument passed to schedule.

}, S.Priority.idle, this);

The members of the jobInfo object are defined by Scheduler.IJobInfo:

Properties Description
job (read-only) The same job object as returned from scheduTe.
shouldYield (read-only) A Boolean flag that is typically false when the worker is first called and then changes

to true if the worker should yield the Ul thread and reschedule its work.

Methods Description
setWork Provides the worker for the rescheduled task.
setPromise Provides a promise that the scheduler will wait upon before rescheduling the task, where the

worker to rescheduleis the fulfillment value of the promise.

Scenario 4 of the HTML Scheduler sample shows how to work with these. When you press the
Execute a Yielding Task button, it schedules a function called worker at id1e priority that just spins
within itself until you press the Complete Yielding Task button, which sets the taskCompTeted flag
below to true (js/yieldingscenario.js, with the 2s interval changed to 200ms):

162

http://msdn.microsoft.com/library/windows/apps/dn255148.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-Scheduler-Sample-4b8084f2

S.schedule(function worker(jobInfo) {
while (!taskCompleted) {
if (jobInfo.shouldYield) {
// not finished, run this function again
window.output("Yielding and putting idle job back on scheduler.™);
jobInfo.setWork(worker);
break;

}
else {
window.output("Running idle yielding job...");
var start = performance.now();
while (performance.now() < (start + 200)) {
// do nothing;
}

}

if (taskCompleted) {
window.output("CompTleted yielding task.");
taskCompleted = false;
}
}, S.Priority.idle);

Provided that the task is active, it does 200ms of work and then checks if shouldYield has changed
to true. If so, the worker calls setWork to reschedule itself (or another function if it wants). You can
trigger this while the idle worker is running by pressing the Add Higher Priority Tasks to Queue button
in the sample. You'll then see how those tasks are run before the next call to the worker. In addition,
you can poke around elsewhere in the Ul to observe that the idle task is not blocking the Ul thread.

Note here that the worker function checks shouldYield first thing to immediately yield if necessary.
However, it's perfectly fine to do a little work first and then check. Again, this is all about cooperating
within your own app code, so such self-throttling is your choice.

As for setPromise, this is slightly tricky. Calling setPromise tells the scheduler to wait until that
promise is fulfilled before rescheduling the task, where the next worker function for the task is provided
directly through the promise’s fulfillment value. (As such, IJobInfo.setPromise doesn't pertainto
handling async operations like other setPromise methods in WinJS that are tied in with WinRT
deferrals. If you called IJobInfo.setPromise with a promise from some random async API, the
scheduler would attempt to use the fulfillment value of that operation—which could be anything—as a
function and thus likely throw an exception.)

In short, whereas setWork says “go ahead and reschedule with this worker,” setPromise says "hold
off rescheduling until | deliver the worker sometime later.” This is primarily useful to create a work
queue composed of multiple jobs with an ongoing task to process that queue. To illustrate, consider
the following code for such an arrangement:

var workQueue = [];

function addToQueue(worker) {
workQueue.push(worker) ;

163

}

S.schedule(function processQueue(jobInfo) {
while (work.Tength) {
if (jobInfo.shouldYield) {
jobInfo.setWork(processQueue);
return;
}
work.shift(O(Q; //Pull the first from the FIFO queue and call it.
}

}}, S.Priority.belowNormal);

Assuming that there are some jobs in the queue when you first call schedule, the processQueue task
will cooperatively empty that queue. And if new jobs are added to the queue in the meantime,
processQueue will continue to be rescheduled.

The problem, however, is that the processQueue worker will finish and exit as soon as the queue is
empty, meaning that any jobs you add to the queue later on won't be processed. To fix this you could
just have processQueue repeatedly call setWork on itself againand again even when the queue is
empty, but that would be wasteful. Instead, you can use setPromise to have the scheduler wait until
there is more work in the queue. Here's how that would work:

var workQueue = [];
var haveWork = function O { }; //This function is just a placeholder

function addToQueue(worker) {
workQueue.push(worker) ;
haveWork();

}

S.schedule(function processQueue(jobInfo) {
while (work.Tlength) {
if (jobInfo.shouldYield) {
jobInfo.setWork(processQueue);
return;
}
work.shift()(Q; //Pull the first from the FIFO queue and call it.
}

//If we reach here the queue is empty, but we don't want to exit the worker.
//Instead of calling setWork without work to do, create a promise that's fulfilled
//when addToQueue 1is called again, which we do by replacing the haveWork function
//with one that calls the promise's completed handler.
jobInfo.setPromise(new Winl]S.Promise(function (completeDispatcher) {
haveWork = function () { completeDispatcher(processQueue) };

19))

b;

With this code, say we populate workQueue with a number of jobs and then make the call to
scheduTe. Up to this point and so long as the queue doesn't become empty, we stay inside the while
loop of processQueue. Any call to the empty haveWork function so far is just a no-op.

164

If the queue becomes empty, however, we'll exit the while loop but we don't want processQueue to
exit. Instead, we want to tell the scheduler to wait until more work is added to the queue. This is why
we have that placeholder function for haveWork, because we can now replace it with a function that
will complete the promise with processQueue, thereby triggering a rescheduling of that worker

function.
Note that an alternate way to accomplish the same goal is to use this assignment for haveWork:
haveWork = completeDispatcher.bind(null, processQueue);

This accomplishes the same result as an anonymous function and avoids creating a closure.

Debugging and Profiling

As we've been exploring the core anatomy of an app in this chapter along with performance, now's a
good time to talk about debugging and profiling. This means, as | like to put it, becoming a doctor of
internal medicine for your app and learning to diagnose how well that anatomy is working.

Tip Debug logging, which is local to and only relevant on your development machine, is a very
different concern from telemetry logging, with which you monitor and record user activity. See
“Instrumenting Your App for Telemetry and Analytics” in Chapter 20.

Debug or release? Because JavaScript is not a compiled language, it lacks conditional compilation
directives like #1fdef in C#/C++. There are, however, a few ways to more or less make this
determination at run time (with some caveats). See “Sidebar: Debug or Release?” in Chapter 2.

Debug Output and Logging

It's sometimes heartbreaking to developers that window.prompt and window.alert are not available
to Windows Store apps as quickie debugging aids. Fortunately, you have two other good options for
that purpose. One isWindows.UI.Popups.MessageDialog, which is actually what you use for real user
prompts in general (see Chapter 9). The other is console.log, aswe've used in our code already, which
sends text to Visual Studio’s output pane. These messages can also be logged as Windows events, as
we'll see shortly.

For readers who are seriously into logging, beyond the kind you do with chainsaws, there are two
other options: a more flexible method in WinJS called WinJS.log, and the logging APIs in

Windows.Foundation.Diagnostics.

WinJS.log is a curious beast because although it's ostensibly part of the WinJS namespace, it’s
actually not implemented within WinJS itself! At the same time, it's used all over the place in the library
for errors and other reporting. For instance:

WinJS.Tog && WinlS.log(safeSerialize(e), "winjs", "error");

165

http://msdn.microsoft.com/library/windows/apps/jj150612.aspx

This kind of JavaScript syntax, by the way, means “check whether WinJS.Tog exists and, if so, call it.”
The && is a shortcut for an i f statement: the JavaScript engine will not execute the part after the && if
the first partisnu11, undefined, or false. It's a very convenient bit of concise syntax.

Anyway, the purpose of WinJS.1og is to allow you to implement your own logging function and
have it pick up WinJS's logging as well as any you add to your own code. What's more, you can turn
the logging on and off at any time, something that's not possible with console.Tog unless, well, you
write a wrapper like WinJS. Tog!

Your WinJS.log function, as described in the documentation, should accept three parameters:
1. The message to log (a string).

2. Astring with a tag or tags to categorize the message. WinJS always uses “winjs” and sometimes
adds an additional tag like "binding”, in which case the second parameteris “winjs binding”. |
typically use "app” in my own code.

non non

3. A string describing the type of the message. WinJS will use “error”, “info”, "warn”, and “perf".

Conveniently, WinJS offers a basic implementation of this which you set up by calling
WinJS.Utilities.startLog(). This assigns a function to WinJS.log that uses WinJS.Utilities.-
formatlog to produce decent-looking output to the console. What's very useful is that you can pass a
list of tags (in a single string) to startLog and only those messages with those tags will show up.
Multiple calls to startLog will aggregate those tags. Then you can call WinJS.Utilities.stoplLog to
turn everything off and start againif desired (stopLog is not made to remove individual tags). As a
simple example, see the HereMyAm3d example in the companion content.

Tip Although logging will be ignored for released apps that customers will acquire from the Store, it's
a good idea to comment out your one call to startLogbefore submitting a package to the Store and
thus avoid making any unnecessary calls at run time.

WinJS.log is highly useful for generating textual logs, but if you want to go much deeperyou'll
want to use the WinRT APIs in Windows . Foundation.Diagnostics, namelythe LoggingSession and
FileLoggingSession classes. These work with in-memory and continuous file-based logging,
respectively, and generate binary “Event Trace Log” (ETL) data that can be further analyzed with the
Windows Performance Analyzer (wpa.exe) and the Trace Reporter (tracerpt.exe) tools in the Windows
SDK. This is a subject well beyond the scope of this book (and this author’s experience), so refer to the
Windows Performance Analyzer documentation for more, along with the LoggingSession sample and
FileLoggingSession sample.

Error Reports and the Event Viewer

Similarto window.alert, another DOM API function to which you might be accustomed is
window.cTose. You can still use this as a development tool, but in released apps Windows interprets
this call as a crash and generates an error report in response. This report will appear in the Store

166

http://msdn.microsoft.com/library/windows/apps/hh701617.aspx
http://msdn.microsoft.com/library/windows/apps/hh701587.aspx
http://msdn.microsoft.com/library/windows/apps/hh701587.aspx
http://msdn.microsoft.com/library/windows/apps/hh701626.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.diagnostics.aspx
http://msdn.microsoft.com/library/hh448170.aspx
http://code.msdn.microsoft.com/windowsapps/LoggingSession-Sample-ccd52336/view/SourceCode
http://code.msdn.microsoft.com/windowsapps/FileLoggingSession-Sample-2bc103d9

dashboard for your app, with a message telling you to not use it! Generally, Store apps should not
provide their own close affordances.

There might be situations, however, when a released app absolutely needs to close itself in response
to unrecoverable conditions. Although you can use window. close for this, it's better to use
MSApp . terminateApp because it allows you to also include information as to the exact nature of the
error. These details show up in the Store dashboard, making it easier to diagnose the problem.

In addition to the Store dashboard, you should make fast friends with the Windows Event Viewer.2?
This is where error reports, console logging, and unhandled exceptions (which again terminate the app
without warning) can be recorded. To enable this, start Event Viewer, navigate to Application And
Services Logs on the left side (after waiting for a minute while the tool initializes itself), and then
expand Microsoft > Windows > AppHost. Then left-click to select Admin (this is important), right-click
Admin, and select View > Show Analytic And Debug Logs. This turns on full output, including tracing
for errors and exceptions, as shown in Figure 3-5. Then right-click AppTracing (also under AppHost)
and select Enable Log. This will trace any calls to console.log as well as other diagnostic information
coming from the app host.

Al Event Viewer = =
File Action View Help
«=|zFE BE
{2 Event Viewer (Local) ~ Actions
> [Custom Views _ -
T -
» [y Windows Logs Next Page Backto Top AppTracing
a [Applications and Services Logs 4J To make this Analytic, Debug or Classic event log easier to navigate and manipulate, first save | & Open Saved Log
] Hardware Events ¥ Create Custom View..
] Internet Explorer Level Date and Time Source EventID TaskC..
: = . Import Custom View..
] Key Management Service [(1] Information 6/18/2013 :48:24 PM AppHost 10002 (29)
4 [Mierosoft (@)Information 6/18/2012 8:42:29 PM AppHost 10002 (29) Clear Log...
4 [Windows (i) Information 6/18/2013 8:50:00 PM AppHost 10002 (29) F Filter Current Log...
»] All-User-Install-Agent \ nformation 6/18/2013 %:51:02 PM AppHost 10002 (29) [] Propertes
4 L AppHost (D Information 6/12/2013 %:51:02 PM AppHost 10002 (29) Disable L
(] Admin (Dlnformation 6/12/2013 8:51:10 PM AppHost 10002 (29) isabletog
] AppTracing # Find..
& D 1 Event 10002, AppHost x
%m‘fj::‘w [Save All Events As...
» 5] AppiD Geepl] Det=is Attach a Task To this L.
> L ApplicabilityEngine @ Friendly View () XML View View »
» 7] Application Server-Applic
. [7] Application-Experience G Refresh
- (7] ApplicationResourceMan + System H Hep 4
»] ApplLocker UserDat
» (1 AppModel-Runtime - Userbata Event 10002, AppHost 4
-] AppReadiness - WWADevToolBarLog [5] Event Properties
4 1 Apps i Save Selected Events.
] icrosoftWindows- DisplayName Here My Am! (3¢) i
] Microsoft-Windows-" ApplicationName App 5 Copy 4
» [AppXDeployment @ Refresh
> (5] AppXDeployment-Server AppUserModelld ProgrammingWin8-JS-CH3- B Fe ,
- elp
» [AppxPackagingOM HereMyAm3c_Sxchamk3agtd6!App
> 1 ash -
. [ATAPort PackageFullName ProgrammingWin8-JS-CH3-
> [Audio < >
A thenticstinn b
< >

FIGURE 3-5 App host events, such as unhandled exceptions, load errors, and logging can be found in Event Viewer.

We already introduced Visual Studio’s Exceptions dialog in Chapter 2; refer back to Figure 2-16. For
each type of JavaScript exception, this dialog supplies two checkboxes labeled Thrown and User-

2 If you can't find Event Viewer, press the Windows key to go to the Start screen and then invoke the Settings charm. Select
Tiles, and turn on Show Administrative Tools. You'll then see a tile for Event Viewer on your Start screen.

167

unhandled. Checking Thrown will display a dialog box in the debugger (see Figure 3-6) whenever an
exceptionis thrown, regardless of whether it's handled and before reaching any of your error handlers.

Microsoft Visual Studio Express 2013 for Windows
Unhandled exception at line 302, celumn 9in Function code
0xB00T0005 - JavaScript runtime error: Access is denied.

WinRT information: The required device capability has not been declared in the
manifest,

If there is a handler for this exception, the program may be safely continued.

Break when this exception type is thrown
Open Exception Settings

Stop Debugging and Add Location Capability to Manifest

Continue lgnore

FIGURE 3-6 Visual Studio’s exception dialog. As the dialog indicates, it's safe to press Continue if you have an error
handler in the app; otherwise the app will terminate. Note that the checkbox in this dialog is a shortcut to toggle
the Thrown checkbox for this exception type in the Exceptions dialog.

If you have error handlers in place, you can safely click the Continue button in the dialog of Figure
3-6 and you'll eventually see the exception surface in those error handlers. (Otherwise the app will
terminate; see below.) If you click Breakinstead, you can find the exception details in the debugger’s
Locals pane, as shown in Figure 3-7.

Mame Value Type =
b @ this .} Object
S eception) s
b @ _proto_ Error
@ asyncOpCausalityld 37 Number
b @ asyncOpSource) Object
@ asyncOpType "Windows.Foundation.|AsyncOperation 1 <Windows.Devices.Geolocation.Geoposition> " Q ~ String
@ description "Access is denied\r\n" o~ Stiing
@ message "Access is denied.\i\n" Q - String
@ number -2147024891 Number
@ stack "WinRTError: Access is denied \rin\n at getResultsOfAsyncOp (Function code:338:5)\n at completed (Function code:427:21)" Q, - String
b @ arguments {} Object, (+

JavaScript Console Locals

FIGURE 3-7 Information in Visual Studio’s Locals pane when you break on an exception.

The User-unhandled option (enabled for all exceptions by default) will display a similar dialog
whenever an exceptionis thrown to the event loop, indicating that it wasn't handled by an app-
provided error function (“user” code from the system’s perspective).

You typically turn on Thrown for only those exceptions you care about; turning them all on can
make it very difficult to step through your app! But it's especially helpful if you're debugging an app
and end up at the debugger line in the following bit of WinJS code, just before the app is terminated:

var terminateAppHandler = function (data, e) {
debugger;
MSApp . terminateApp(data);

};

168

If you turn on Thrown for all JavaScript exceptions, you'll then see exactly where the exception
occurred. You can also just check Thrown for only those exceptions you expect to catch.

Do leave User-unhandled checked for everything else. In fact, unless you have a specific reason not
to, make sure that User-unhandled is checked next to the topmost JavaScript Runtime Exceptions item
because this includes all exceptions not otherwise listed. This way you can catch (and fix) exceptions
that might abruptly terminate the app, which is something your customers should never experience.

WinJS.validation Speaking of exceptions, if you set WinJS.validationto trueinyourapp, you'l
instruct WinJS to perform a few extra checks on arguments and internal state, and throw exceptions if
something is amiss. Just search on “validation” in the WinJS source files for where it's used.

Async Debugging

Working with asynchronous APIs presents a challenge where debugging is concerned. Although we
have a means to sequence async operations with promise chains (or nested calls, for that matter), each
step in the sequence involves an async call, so you can't just step through as you would with
synchronous code. If you try this, you'll step through lots of promise code (in WinJS or the JavaScript
projection layer for WinRT) rather than your completed handlers, which isn't particularly helpful.

What you'll need to do instead is set a breakpoint on the first line of each completed handler and
on the firstline of each error function. As each breakpoint is hit, you can step through that handler.
When you reach the next async call in a completed handler, click the Continue button in Visual Studio
so that the async operation can run. Afterthat you'll hit the breakpoint in the next completed handler
or the breakpoint in the error handler.

When you stop at a breakpoint, or when you hit an exception within an async process, take a look at
the debugger’s Call Stack pane (typically in the lower right of Visual Studio), as shown here:

Call Stack -

Name Language
)] Anonymous function (nome] Line 36— Sergt |

[External Code]

[Async Call]

ready [home.js] Line 35 Script

[External Code]

[Async Call]

[External Code]

Anonymous function [navigator,js] Line 96 Script

[External Code]

_navigating [navigator,js] Line 95 Script

[External Code]

[Async Call]

[External Code]

Anonymous function [default.js] Line 39 Script

Global code [default.js] Line 1 Script

The Call Stack shows you the sequence of functions that lead up to the point where the debugger
stopped, at which point you can double-click any of the lines and examine that function’s context. With
async calls, this can get really messy with all the generic handlers and other chaining that happens
within WinJS and the JavaScript projection layer. Fortunately—very fortunately!—Visual Studio spares

169

http://msdn.microsoft.com/library/windows/apps/br230472.aspx

you from all that. It condenses such code into the gray [Async Call] and [External Code] markers,
leaving only a clear call chain for your app’s code. In this example | set a breakpointin the completed
handler for geolocationin HereMyAm3d. That completed handleris an anonymous function, as the
first line of the Call Stack indicates, but the next reference to the app code clearly shows that the real
context is the ready method within home.js, which itself is part of a longer chain that originated in
defaultjs. Double-clicking any one of the app code references will open that code in Visual Studio and
update the Locals pane to that context.

The real utility of this comes when an exception occurs somewhere other than within you own
handlers, because you can then easily trace the causality chain that led to that point.

The other feature for async debugging is the Tasks pane, as shown below. You turn this on through
the Debug > Windows >Tasks menu command. You'll see a full list of active and completed async

operations that are part of the current call stack.

D S 15 Start Time Duration Location Task
Y 73 O Active 1412241418532 104.3979676475 ti Setinterval
Y 57 © Active 0.991803083472 104.8184059826 done done
Y 56 O Active 0.991708228863 104.8185008372 then async: Promise_then
Y 55 ° Active 0.99160967861% 104.8185993875 done done
Y 52 D Active 0914311384277 104.8058976818 startMonitoring Setinterval
Y [© Complete 7.330503846333 6.955543163774 capturePhoto Windows.Media.Capture.CameraCapturell.captureFileAsync
Y 76 @ Complete 2210830179041 (.128092321868 getObjectAsync SetTimeout
Y 75 @ Complete 1.739150234097 0.000397075357 startRunning Setimmediate -

Tasks | JavaScript Console Locals | Watch 1

Performance and Memory Analysis

Alongside its excellent debugging tools, Visual Studio also offers additional aids to help evaluate the
performance of an app, analyze its memory usage, and otherwise discover and diagnose problems that
affect the user experience and the app’s effect on the system. To close this chapter, | wanted to give
you a brief overview of what's available along with pointers to where you can learn more—because this
subject could fill a book in itself! (In lieu of that, a general pointer is to filter the //build 2013 videos by
the "performance” tag, which turns up a healthy set.)

For starters, the Writing efficient JavaScript topic is well worth a read (as are its siblings under Best
practices using JavaScript), because it explains various things you should and should not do in your
code to help the JavaScript engine run best. One thing you shouldn’t worry about is the performance of
querySelector and getETementById, both of which are highly optimized because they're used so
often. Keep this in mind, because | know for myself that any function that starts with “query” just
sounds like it's going to do a lot of work, but that's not true here.

Next, when thinking about performance, start by setting specific goals for your user experience,
such as “the app should become interactive within 1.5 seconds” and “navigating between the gallery
and details pages happensin 0.5 seconds or less.” In fact, such goals should really be part of the app’s
design that you discuss with your designers, because they're just as essential to the overall user

170

http://channel9.msdn.com/Events/Build/2013?sort=sequential&direction=desc&term=&t=performance
http://channel9.msdn.com/Events/Build/2013?sort=sequential&direction=desc&term=&t=performance
http://msdn.microsoft.com/library/windows/apps/hh781219.aspx
http://msdn.microsoft.com/library/windows/apps/hh465194.aspx
http://msdn.microsoft.com/library/windows/apps/hh465194.aspx

experience as static considerations like layout. In the end, performance is not about numbers but about
creating a great user experience.

Establishing goals also helps you stay focused on what matters. You can measure all kinds of
different performance metrics for an app, but if they aren’t serving your real goals, you end up with a
classic case of what Tom DeMarco, in his book Why Does Software Cost So Much? (Dorset House, 1995),
calls “measurement dysfunction”: lots of data with meaningless results or results that lead to undesired
action.30

Along the same lines, when running analysis tools, it's important that you exercise the app like a user
would. That way you get results that are meaningful to the real user experience—that is, the human
experience!l—rather than results that would be meaningful to a robot. In the end, all the performance
analysis in the world won't be worth anything unless is translates into two things: better ratings and
reviews in the Windows Store, and greater app revenue.

With your goals in mind, run analysis tools on a regular basis and evaluate the results against your
goals. Then adjust your code, run the tools again, and evaluate. In other words, running performance
tools to evaluate your performance goals is just another part of making sure you're creating the app
according to its design—the static and dynamic parts alike.

Remember also to run performance analysis on a variety of hardware, especially lower-end devices
such as ARM tablets that are much more sensitive to performance issues than is your souped-up dev
machine. In fact, slower devices are the ones you should be most concerned about, because their users
will probably be the first to notice any issues and ding your app ratings accordingly. And yes, you can
run the performance tools on a remote machine in the same way you can do remote debugging (but
not in the simulator). Also be aware that analysis tools always run outside of the debugger for obvious
reasons, because stopping at breakpoints and so forth would produce bad performance data!

| very much encourage you, then, to spend a few hours exercising the available tools and getting
familiar with the information they provide. Make them a regular part of your coding/testing cycle so
that you can catch performance and memory issues early on, when it's easier and less costly to fix
them. Doing so will also catch what we call “regressions,” where a later change to the code causes
performance problems that you fixed a long time ago to rear their ugly heads once again. As the
character Alistor Moody of the Harry Potter books says, “Constant vigilance!”

3 DeMarco tells an amusing story of metrics at their worst: “Consider the case of the Soviet nail factory that was measured
on the basis of the number of nails produced. The factory managers hit upon the idea of converting their entire factory to
production of only the smallest nails, tiny brads. Some commissar, realizing this as a case of dysfunction, came up with a
remedy. He instituted measurement of tonnage of nails produced, rather than numbers. The factory immediately
switched over to producing only railroad spikes. The image | propose to mark the dysfunction end of the spectrum is a
Soviet carpenter, looking perplexed, with a useless brad in one hand and an equally useless railroad spike in the other.”

171

Tip Two topics in the documentation also contain loads of detailed information in these areas:
Performance best practices for Windows Store apps using JavaScript and General best practices for
performance.

So, on to the tools. These are found on the Debug > Performance And Diagnostics... menu, which
brings up the hub shown below with tools that are appropriate to your project’s language:

Startup Project

@ HereMyAm3d

Change
Target ™

Available Tools

] CPU Sampling [Energy Consumption

Examine which native and managed functions are using the Examine where energy is consumed in your application
CPU most frequently

] HTML Ul Responsiveness [JavaScript Function Timing

Examine where time is spent in your website or application Examine where time is spent in your JavaScript code

[JavaScript Memory

Investigate the JavaScript heap to help find issues such as
memory leaks

Get Visual Studio updates New tools are often released with updates to Visual Studio, so be sure to
install them and read the accompanying blogs or release notes to understand what's new.

By default, Visual Studio will set the target to be the currently loaded project. However, you can run
the tools on any app by using the options on the Change Target drop-down:

3

Change
Target ™

Startup Project
Use the startup project

Installed App...
Launch an installed Windows Store App

]
D Running App...

© Attach to a running Windows Store App
03

As the drop-downindicates, the Installed App option will launch an app anew, whereas the Running
App option attaches to one that's already been launched. Both are essential for profiling apps on

172

http://msdn.microsoft.com/library/windows/apps/hh465194.aspx
http://msdn.microsoft.com/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/library/windows/apps/hh994633.aspx

devices where your full projectis not present; the latteris also useful if your app is already running and
you want to analyze specific user interactions for a set of conditions that you've already set up. This
way you won't collect a bunch of extra data that you don't need.

Note that you can run these tools on any installed app, not just your own, which means you can
gather data from other apps that have the level of performance you'd like to achieve foryours.

The Performance and Diagnostic Hub as a whole is designed to be extensible with third-party tools,
giving you a one-stop shop for enabling multiple tools simultaneously. The ones shown above are
those built into Visual Studio, and be sure to install new Visual Studio updates because that's often how
new tools are released.

Here's a quick overview of what the current tools accomplish:

Tool Description

HTML Ul Responsiveness Provides a graph of Visual Throughput (frames per second) for the rendering engine over time,
helping to identify places where your Ul is not as responsive as you'd like. It also provides a
millisecond breakdown of CPU utilization in various subsystems: loading, scripting, garbage
collection, styling, rendering, and image decoding, with various important lifecycle events
indicated along the way. This data is also shown on a time line where you can select any part to
see the breakdown in more detail. All this is helpful for finding areas where the interactions
between subsystems is adding lots of overhead, where there's excessive fragmentation, or
where work being donein a particular subsystem s causing a drop in visual throughput. A
walkthrough is on HTML Ul Responsiveness tool in Visual Studio 2013 (MSDN blogs). Also see
Analyze Ul responsiveness.

Energy Consumption Launches the app and collects data about power usage (in milliwatts) over time, split up by
CPU, display, and network. This is very important to writing power-efficient apps for tablet
devices. It can also help you determine whether it's more power efficient to use the local CPU
or a network server for certain tasks, as network I/0 can take as much and even more power
than a burst of CPU activity. For more, see Energy Consumption toolin Visual Studio 2013.

JavaScript Memory Launches the app and provides a dynamic graph of memory usage over time as well as the
ability to take heap snapshots, allowing you to see memory spikes that occurin response to
user activity, and whether that memory is being properly freed. Refer to JavaScript memory
anaylsis for Windows Store apps in Visual Studio 2012 (MSDN blogs) and Analyzing memory
usagein Windows Store apps.

JavaScript Function Timing Displays data on when and where function calls are being made in JavaScript and how much
(also called the JavaScript time is spentin what part of your code. A walkthrough can be found on How to profilea
Profiler) JavaScript App for performance problems (MSDN blogs). Also see Analyizing JavaScript

Performance in Windows Store apps, which covers both local and remote machines.

CPU Sampling Similarto the JavaScript Function Timing tool but works for managed (C#/Visual Basic) and
native (C++) code. This is useful only if you're writing a multi-language app with both
JavaScript and one of the otherlanguages.

For a video demonstration of most of these, watch the Visual Studio 2013 Performance and

Diagnostics Hub video on Channel 9 and Diagnosing Issues in JavaScript Windows Store Apps with
Visual Studio 2013 from the //build 2013 conference, both by Andrew Hall, the real expert on these

matters. Note that everything you see in these video (with the exception of the console app profiler) is
173

http://blogs.msdn.com/b/visualstudioalm/archive/2013/07/16/html-ui-responsiveness-tool-in-visual-studio-2013.aspx
http://msdn.microsoft.com/library/windows/apps/dn194502.aspx
http://blogs.msdn.com/b/visualstudioalm/archive/2013/07/10/energy-consumption-tool-in-visual-studio-2013.aspx
http://blogs.msdn.com/b/visualstudio/archive/2013/01/28/javascript-memory-analysis-for-windows-store-apps-in-visual-studio-2012.aspx
http://blogs.msdn.com/b/visualstudio/archive/2013/01/28/javascript-memory-analysis-for-windows-store-apps-in-visual-studio-2012.aspx
http://msdn.microsoft.com/library/windows/apps/jj819177.aspx
http://msdn.microsoft.com/library/windows/apps/jj819177.aspx
http://blogs.msdn.com/b/visualstudioalm/archive/2013/04/24/how-to-profile-a-javascript-windows-store-app-for-performance-problems.aspx
http://blogs.msdn.com/b/visualstudioalm/archive/2013/04/24/how-to-profile-a-javascript-windows-store-app-for-performance-problems.aspx
http://msdn.microsoft.com/library/windows/apps/hh780915.aspx
http://msdn.microsoft.com/library/windows/apps/hh780915.aspx
http://channel9.msdn.com/Shows/Visual-Studio-Toolbox/Visual-Studio-2013-Performance-and-Diagnostic-Hub
http://channel9.msdn.com/Shows/Visual-Studio-Toolbox/Visual-Studio-2013-Performance-and-Diagnostic-Hub
http://channel9.msdn.com/Events/Build/2013/3-312
http://channel9.msdn.com/Events/Build/2013/3-312

available inthe Visual Studio Express edition that we've been using, and if you want to skip the part

about XAML Ul responsiveness in the first video, you can jump ahead to about 13:30 where he talks
about the JavaScript tools.

Tip In the first video, the responsiveness problems for the demo apps written both in XAML/C# and
HTML/JavaScript primarily come from loading full image files just to generate thumbnails for gallery
views. As the video mentions, you can avoid this entirely and achieve much better performance by
using Windows .Storage.StorageFile.getThumbnailAsync. This APl draws on thumbnail caches and
other mechanisms to avoid the memory overhead and CPU cost of loading full image files. We'll see
more of this in Chapter 11.

It's important, of course, with all these tools to clearly correlate certain events in the app with the
various measurements. This is the purpose of the performance.mark function, which exists in the
global JavaScript namespace.3! Events written with this function appear as User Marks in the timelines
generated by the different tools, as shown in Figure 3-8. In looking at the figure, note that the
resolution of marks on the Memory Analyzer timeline on the scale of seconds, so use marks to indicate
only significant user interaction events rather than every function entry and exit. (With other tools,
however, the resolution is much finer, so you can use performance.mark more frequently.)

entering ready method
map pushpin moved
entering capturePhoto
capturePhoto: new image set
entering provideData (share source)

Diagnostic Session: |:29 minutes l l
v Y v 25¥ Y ¥50s 1:15min 1:40min
v v vy w vy vy v

4 Total memory (MB)

162.1
Memory baseline
0.0
<

FIGURE 3-8 Output of the JavaScript Memory analyzer annotated with different marks. The red dashed line is also
added in this figure to show the ongoing memory footprint; it is not part of the tool's output.

As one example of using these tools, let's run the Here My Am! app through the memory analyzer
to see if we have any problems. We'll use the HereMyAm3d example in the companion code where I've

31 This function is part of a larger group of methods on the performance object that reflect developing standards. For more
details, see Timing and Performance APIs. performance .mark spedifically replaces msWriteProfilerMark.

174

http://msdn.microsoft.com/library/windows/apps/br211377.aspx
http://msdn.microsoft.com/library/windows/apps/jj572389.aspx
http://msdn.microsoft.com/library/windows/apps/jj572389.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh767418.aspx

added some performance.mark calls for events like startup, capturing a new photo, rendering that
photo, and exercising the Share charm. Figure 3-8 shows the results. For good measure—logging,
actually!—I've also converted console.log callstoWinJS.Tog, where I've used a tag of “app” in each
calland in the callto WinJS.Utilities.startLog (see default,s).

Referring to Figure 3-8, here’s what | did after starting up the app in the memory analyzer. Once the
home page was up (first mark), | repositioned the map and its pushpin (second mark), and you can see
that this increased memory usage a little within the Bing maps control. Next | invoked the camera
capture Ul (third mark), which clearly increased memory use as expected. After taking a picture and
displaying itin the app (fourth mark), you can see that the allocations from the camera capture Ul have
been released, and that we land at a baseline footprint that now includes a rendered image. | then do
into the capture Ul two more times, and in each case you can see the memory increase during the
capture, but it comes back to our baseline each time we return to the main app. There might be some
small differences in memory usage here depending on the size of the image, but clearly we're cleaning
up the image when it get replaced. Finally | invoked the Share charm (last mark), and we can see that
this causes no additional memory usage in the source app, which is expected because all the work is
being done in the target. As a result, | feel confident that the app is managing its memory well. If, on
the other hand, that baseline kept increasing over time, then I'd know | have a leak somewhere.

Tip There's no rule anywhere that says you have to profile your full app project. When you're trying to
compare different implementation strategies, it can be much easier to create a simple test project and
run the profiling tools on it so that you can obtain very focused comparisons for different approaches.
Doing so will speed up your investigations and avoid disturbing your main project in the process.

The Windows App Certification Toolkit

The other tool you should run on a regular basis is the Windows App Certification Toolkit (WACK),
which is actually one of the first tools that's automatically run on your app when you submit it to the
Windows Store. If this toolkit reports failures on your local machine, you can be certain that you'll fail
certification very early in the process.

Running the toolkit can be done as part of building an app package for upload, but until then,
launch it from your Start screen (it's called Windows App Cert Kit). When it comes up, select Validate
Windows Store App, which (after a disk-chewing delay) presents you with a list of installed apps,
including those that you've been running from Visual Studio. It takes some time to generate that list if
you have lots of apps installed, so you might use the opportunity to take a little stretching break. Then
select the app you want to test, and take the opportunity to grab a snack, take a short walk, play a few
songs on the guitar, or otherwise entertain yourself while the WACK gives your app a good whacking.

Eventually it'll have an XML report ready for you. After saving it (you have to tell it where), you can
view the results. Note that for developer projects it will almost always report a failure on bytecode
generation, saying “This package was deployed for development or authoring mode. Uninstall the
package and reinstall it normally.” To fix this, uninstall it from the Start menu, select a Release targetin
Visual Studio, and then use the Build > Deploy Solution menu command. But you can just ignore this

175

particular error for now. Any other failure will be more important to address early on—such as crashes,
hangs, and launch/suspend problems—rather than waiting until you're ready to submit to the Store.

Note Visual Studio also has a code analysis tool on the Build > Run Code Analysis On Solution menu,

which examines source code for common defects and other violation of best practices. However, this
tool does not presently work with JavaScript.

What We've Just Learned

e How apps are activated (brought into memory) and the events that occur along the way.

e The structure of app activation code, including activation kinds, previous execution states, and
the WinJS.UI.Application object.

e Using deferrals when needing to perform async operations behind the splash screen, and
optimizing startup time.

e Howto handle important events that occur during an app's lifetime, such as focus events,
visibility changes, view state changes, and suspend/resume/terminate.

e The basics of saving and restoring state to restart after being terminated, and the WinJS utilities
for implementing this.

e How to implement page-to-page navigation within a single page context by using page
controls, WinJS.Navigation, and the PageControlNavigator from the Visual Studio/Blend
templates, such as the Navigation App template.

e Details of promises that are commonly used with, but not limited to, async operations.

e Howto join parallel promises as well as execute a sequential async operations with chained
promises.

e How exceptions are handled within chained promises and the differences between then and
done.

e How to create promises for different purposes.

e Using the APIsinWinJ]S.Utilities.Scheduler for prioritizing work on the Ul thread,
including the helpers for prioritizing different parts of a promise chain.

e Methods for getting debug output and error reports for an app, within the debugger and the
Windows Event Viewer.

e How to debug asynchronous code and how Visual Studio makes it easy to see the causality
chain.

e The different performance and memory analysis tools available in Visual Studio.

176

Chapter 4
Web Content and Services

The classic aphorism, “No man is an island,” is a way of saying that all human beings are interconnected
within a greater social, emotional, and spiritual reality. And what we see as greatness in a person is very
much a matter of how deeply he or she has realized this truth.

The same is apparently also true for apps. The data collected by organizations such as Distmo shows
that connected apps—those that reach beyond themselves and their host device rather than thinking
of themselves as isolated phenomena—generally rate higher and earn more revenue in various app
stores. In other words, just as the greatest of human beings are those who have fully realized their
connection to an expansive reality, so also are great apps.

This means that we cannot simply take connectivity for granted or give it mere lip service. What
makes that connectivity truly valuable is not doing the obvious, like displaying some part of a web
page in an app, downloading some RSS feed, or showing a few updates from the user’s social network.
Greatness needs to do more than that—it needs to bring online connectedness to life in creative and
productive ways that also make full use of the local device and its powerful resources. These are
"hybrid” apps at their best.

Beyond social networks, consider what can be obtained from thousands of web APIs that are
accessible through simple HTTP requests, as listed on sites like http://www.programmableweb.com/. As
of this writing, that site lists over 11000 separate APIs, a number that continues to grow monthly. This
means not only that there are over 11000 individual sources of interesting data that an app might
employ, but that there are literally billions of combinations of those APIs. In addition to traditional RSS

mashups (combining news feeds), a vast unexplored territory of APl mashups exists, which means
bringing disparate data togetherin meaningful ways. The Programmable Web, in fact, tracks web
applications of this sort, but as of this writing there were several thousand fewer such mashups than
there were APIs! It's like we've taken only the first few steps on the shores of a new continent, and the
opportunities are many.32

I think it's pretty clear why connected apps are better apps: as a group, they simply deliver a more
compelling and valuable user experience than those that limit themselves to the scope of a client
device. Thus, it's worth taking the time early in any app project to make connectivity and web content a
central part of your design. This is why we're discussing the subject now, even before considerations

%2 |ncreasing numbers of entrepreneurs are also realizing that services and web APIs in themselves can be a profitable
business. Companies like Mashape and Mashery also exist to facilitate such monetization by managing scalable access
plans for developers on behalf of the service providers. You can also consider creating a marketable Windows Runtime
Component that encapsulates your REST API within class-oriented structures.

177

http://www.programmableweb.com/
http://www.mashape.com/
http://www.mashery.com/

like controls and other Ul elements!

Of course, the real creative effort to find new ways to use online content is both your challenge and
your opportunity. What we can cover in this chapter are simply the tools that you have at your disposal
for that creativity.

We'll beginwith the essential topic of network connectivity, because there's not much that can be
done without it! Then we'll explore the options for directly hosting dynamic web content within an
app’s own Ul, as is suitable for many scenarios. Then we'll look at the APIs for HTTP requests, followed
by those for background transfers that can continue when an app is suspended or not running atall.
We'll then wrap up with the very important subject of authentication, which includes working with the
user's Microsoft account, user profile, and Live Connect services.

One part of networking that we won't cover here is setting up service connections for live tilesand
push notifications, which are covered in Chapter 16, “Alive with Activity.” The subject of roaming app
state is something we'll pick up in Chapter 10, “The Story of State, Part 1,” and navigating to and
choosing files from network shares has context with the file pickers that we'll see in Chapter 11, “The
Story of State, Part 2."

And there is yet more to say on some web-related and networking-related subjects, such as sockets,
but | didn't want those details to intrude on the flow of this chapter. You can find those matters in
Appendix C, “Additional Networking Topics.”

Sidebar: Debugging Network Traffic with Fiddler

Watching the traffic between your machine and the Internet can be invaluable when trying to
debug networking operations. For this, check out the freeware tool from Telerik called Fiddler
(http://fiddler2.com/get-fiddler). In addition to inspecting traffic, you can also set breakpoints on
various events and fiddle with (that is, modify) incoming and outgoing data.

Sidebar: Windows Azure Mobile Services

No discussion of apps and services is complete without giving mention to the highly useful
features of Windows Azure Mobile Services, especially as you can start using them for free and
start paying only when your apps become successful and demand more bandwidth.

e Data: easy access to cloud-based table storage (SQL Server) without the need to use HTTP
requests or other low-level mechanisms. The client-side libraries provide very
straightforward APIs for create, insert, update, and delete operations, along with queries.
On the server side, you can attach node.js scripts to these operations, allowing you to
validate and adjust the data as well as trigger other processes if desired.

e Authentication: you can authenticate users with Mobile Services using a Microsoft account

178

http://fiddler2.com/get-fiddler
http://www.windowsazure.com/en-us/develop/mobile/

or other identity providers. This supplies a unique user id to Mobile Services as you'll often
want with data storage. You can also use server-side node,js scripts to perform other
authorization tasks.

e Push Notifications: a streamlined back-end for working with the Windows Notification
Service to support live tiles, badges, toasts, and raw notifications in your app.

e Services: sending email, scheduling backend jobs, and uploading images.

To get started, visit the Mobile Services Tutorials and Resources page. We'll also see some of
these features in Chapter 16 when we work with live tiles and notifications. And don't forget all
the other features of Windows Azure that can serve all your cloud needs, which have either free
trials or limited free plans to get you started.

Network Information and Connectivity

At the time | was writing on the subject of live tiles for the first edition of this book (see Chapter 16)

and talking about all the connections that Windows Store apps can have to the Internet, my home and

many thousands of others in Northern California were completely disconnected due to a fiber optic
breakdown. The outage lasted for what seemed like an eternity by present standards: 36 hours!

Although | wasn't personally at a loss for how to keep myself busy, there was a time when | opened one

of my laptops, found that our service was still down, and wondered for a moment just what the
computer was really good for! Clearly I've grown, as | suspect you have too, to take constant
connectivity completely for granted.

As developers of great apps, however, we cannot afford to be so complacent. It's always important
to handle errors when trying to make connections and draw from online resources, because any

number of problems can arise within the span of a single operation. But it goes much deeper than that.

It's our job to make our apps as useful as they can be when connectivity is lost, perhaps just because
our customers got on an airplane and switched on airplane mode. That is, don't give customers a
reason to wonder about the usefulness of their device in such situations! A great app will prove its
worth through a great user experience even if it lacks connectivity.

Indeed, be sure to test your apps early and often, both with and without network connectivity, to
catch little oversights in your code. In Here My Am!, for example, my first versions of the script in
html/map.html didn't bother to check whether the remote script for Bing Maps had actually been
downloaded; as a result, the app terminated abruptly when there was no connectivity. Now it at least

checks whether the Microsoft namespace (for the Microsoft.Maps.Map constructor) is valid. So keep

these considerations in the back of your mind throughout your development process.

Be mindful that connectivity can vary throughout an app session, where an app can often be
suspended and resumed, or suspended for a long time. With mobile devices especially, one might

move between any number of networks without necessarily knowing it. Windows, in fact, tries to make

179

http://www.windowsazure.com/develop/mobile/resources

the transition between networks as transparent as possible, except where it's important to inform the
user that there may be costs associated with the current provider. It's a good idea, for instance, foran
app to be aware of data transfer costs on metered networks and prevent “bill shock” from not-always-
generous mobile broadband providers. Just as there are certain things an app can’t do when the device
is offline, the characteristics of the current network might also cause it to defer or avoid certain
operations as well.

Anyway, let’s see how to retrieve and work with connectivity details, starting with the different types
of networks represented in the manifest, followed by obtaining network information, dealing with
metered networks, and providing for an offline experience. And unless noted otherwise, the classes and
other APIs that we'll encounter are in the Windows .Networking namespace.

Note Network connectivity, by its nature, is an intricate subject, as you'll see in in the sections that
follow. But don't feel compelled to think about all these up front! If you want to take connectivity
entirely for granted for a while and get right into playing with web content and making HTTP requests,
feel free to skip ahead to the “Hosting Content” and “"HTTP Requests” sections. You can certainly come
back here later.

Network Types in the Manifest

Nearly every sample we'll be working with in this book has the Internet (Client) capability declaredinits
manifest, thanks to Visual Studio turning that on by default. This wasn't always the case: early app
builders within Microsoft would occasionally scratch their heads wondering just why something really
obvious—Ilike making a simple HTTP request to a blog—failed outright. Without this capability, there
just isn't any Internet!

Still, Internet (Client) isn't the only playerin the capabilities game. Some networking apps will also
want to act as a server to receive unsolicited incoming traffic from the Internet, and not just make
requests to other servers. In those cases—such as file sharing, media servers, VolP, chat,
multiplayer/multicast games, and other bi-directional scenarios involving incoming network traffic, as
with sockets—the app must declare the Internet (Client & Server) capability, as shown in Figure 4-1. This
lets such traffic through the inbound firewall, though critical ports are always blocked.

There is also network traffic that occurs on a private home or business network, where the Internet
isn't involved at all, as with line-of-business apps, talking to network-attached storage, and local
network games. For this there is the Private Networks (Client & Server) capability, also shownin Figure
4-1, which is good for file or media sharing, line-of-business apps, HTTP client apps, multiplayer games
on a LAN, and so on. What makes any given IP address part of this private network depends on many
factors, all of which are described on How to configure network isolation capabilities. For example, IPv4
addresses in the ranges of 10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, and 192.168.0.0-
192.168.255.255 are considered private. Users can flag a network as trusted, and the presence of a
domain controller makes the network private as well. Whatever the case, if a device's network endpoint
falls into this category, the behavior of apps on that device is governed by this capability rather than
those related to the Internet.

180

http://msdn.microsoft.com/library/windows/apps/windows.networking.aspx
http://msdn.microsoft.com/library/windows/apps/Hh770532.aspx

Note The Private Networks capability isn't necessary when you'll be using the File Picker (see Chapter
11) to allow users to browse local networks. It's necessary only if you're needing to make direct
programmatic connections to such resources.

Capabilities:
(| Enterprise Authentication
Internef En

[+ Internet (Client & Server]
[] Location
[] Microphone
[] Music Library

[Pictures Libra
Private Metworks (Client & Server
[Proximi

["] Removable Storage

[] Shared User Certificates
[] Videos Library

[[] webcam

FIGURE 4-1 Additional network capabilities in the manifest.

Sidebar: Localhost Loopback

Regardless of the capabilities declared in the manifest, local loopback—that is, using
http://localhost URIs—is blocked for apps distributed through the Windows Store. Exceptions are
made for side-loaded enterprise apps, and for machines on which a developer license has been
installed, as described in “Sidebar: Using the Localhost” inthe "Background Transfer” section of
this chapter (we'll need to use it with a sample there). The developer exception exists only to
simplify debugging apps and services together on the same machine during development. You
can disable this allowance in Visual Studio through the Project > Property Pages dialog under
Debugging > Allow Local Network Loopback, which helps you test your app as a consumer
would experience it.

Network Information (the Network Object Roster)

Regardless of the network involved, everything you want to know about that network is available
through the Connectivity.NetworkInformation object. Besides a single networkstatuschanged
event that we'll discuss in “Connectivity Events” a little later, the interface of this objectis made up of
methods to retrieve more specific details in other objects.

Below is the roster of the methods in NetworkInformation and the contents of the objects
obtained through them. You can exercise the most common of these APIs through the indicated
scenarios of the Network information sample:

e getInternetConnectionProfile (Scenariol) Returns a single ConnectionProfile object

181

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkinformation.aspx
http://code.msdn.microsoft.com/windowsapps/Network-Information-Sample-63aaa201
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.aspx

for the currently active Internet connection. If there is more than one connection, this method
returns the preferred profile that's most likely to be used for Internet traffic.

getConnectionProfiles (Scenario 3) Returns a vector of ConnectionProfile objects, one

for each connection, among which will be the active Internet connection as returned by
getInternetConnectionProfile. Alsoincluded are any wireless connections you've made in
the past for which you indicated Connect Automatically. (In this way the sample will show you
some details of where you've been recently!) See the next section for more on
ConnectionProfile.

findConnectionProfilesAsync (Scenario 6) Given a ConnectionProfileFilter object,
returns a vector of ConnectionProfile objects that match the filter criteria. This helps you find
available networks that are suitable for specific app scenarios such as finding a Wi-Fi connection

or one with a specific cost policy.

getHostNames Returns a vector (see note below) of HostName objects, one for each
connection, that provides various name strings (displayName, canonicalName, and rawName),
the name’s type (from HostNameType, with values of domainName, ipv4, ipv6, and bluetooth),
and an ipinformation property (of type IPInformation) containing prefixLength and
networkAdapter properties for IPV4 and IPV6 hosts. (The latter is a NetworkAdapter object
with various low-level details.) The HostName class is used in various networking APIs to identify
a server or some other endpoint.

getLanIdentifiers (Scenario4) Returns a vector of LanIdentifier objects, each of which
contains an infrastructureld (LanIdentifierData containing a type and value), a
networkAdapterId (a GUID), and a portId (LanIdentifierData).

getProxyConfigurationAsync Returns a ProxyConfiguration object for a given URI and the
current user. The properties of this object are canConnectDirectly (a Boolean) and proxyUris
(a vector of Windows . Foundation.Uri objects for the configuration).

getSortedEndpointPairs Sorts an array of EndpointPair objects according to
HostNameSortOptions. An EndpointPair contains a host and service name for local and
remote endpoints, typically obtained when you set up specific connections like sockets. The two
sort options are none and optimizeForLongConnections, which vary connection behaviors
based on whether the app is making short or long duration connection. See the documentation
for EndpointPair and HostNameSortOptions for more details.

What is a vector? A vector is a WIinRT type that's often used for managing a list or collection. It has
methods like append, removeAt, and clear through which you can manage the list. Other methods
like getAt and getMany allow retrieval of items, and a vector supports the [] operator like an array.
For more details, see “Windows.Foundation.Collections Types” in Chapter 6, "Data Binding, Templates,
and Collections.” In its simplest use, you can treat a vector like a JavaScript array through the []
operator.

182

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofilefilter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostname.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnametype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.ipinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkadapter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.lanidentifier.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.proxyconfiguration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.endpointpair.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnamesortoptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.endpointpair.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnamesortoptions.aspx
http://msdn.microsoft.com/library/windows/apps/br206631.aspx

The ConnectionProfile Object

Of all the information available through the NetworkInformation object, the mostimportant for apps
is found in ConnectionProfile, most frequently that returned by getInternetConnectionProfile
because that's the one through which an app’s Internet traffic will flow. The profile is what contains all
the information you need to make decisions about how you're using the network, especially for cost

awareness. It's also what you'll typically check when there’s a change in network status. Scenarios 1 and
3 of the Network information sample retrieve and display most of these details.

Each profile has a profileName property (a string), such as “Ethernet” or the SSID of your wireless
access point, a serviceProviderGuid property (the network operator ID), plus a getNetworkNames
method that returns a vector of friendly names for the endpoint. The networkAdapter property
contains a NetworkAdapter object for low-level details, should you want them, and the
networkSecuritySettings property contains a NetworkSecuritySettings objectdescribing
authentication and encryption types.

More generally interesting is the getNetworkConnectivityLevel method, which returns a value
from the NetworkConnectivitylLevel enumeration: none (no connectivity), TocalAccess (the level
you hate to see when you're trying to geta good connection!), constrainedInternetAccess (captive
portal connectivity, typically requiring further credentials as is often encountered in hotels, airports,
etc), and internetAccess (the state you're almost always trying to achieve). The connectivity level is
often a factor in your app logic and something you typically watch with network status changes.
Related to this is the getDomainConnectivitylLevel that provides a DomainConnectivitylevel value
of none (no domain controller), unauthenticated (user has not been authenticated by the domain
controller),and authenticated.

To check if a connection is on Wi-Fi, check the isWlanConnectionProfile flagand, ifit's true, you
can look at the wlanConnectionProfileDetails property for more details, such as the SSID. If you're
on a mobile connection, on the other hand, the isWwanConnectionProfile flag will be true, in which
case the wwlanConnectionProfileDetails property tells you about the type of data service and
registration state of the connection. And if for either of these you want to display the connection'’s
strength, the getSignalBars method will give you back a value from 0 to 5.

The ups and downs of a connection’s lifetime is retrieved through getConnectivityIntervals-
Async, which produces you a vector of ConnectivityInterval objects. Each one describes when this
network was connected and how long it remained so.

To track the inbound and outbound traffic on a connection, the getNetworkUsageAsync and
method returns a NetworkUsage object that contains bytesReceived, bytesSent, and

connectionDuration properties fora given time period and NetworkUsageStates (roaming or
shared). Similarly, the getConnectionCost and getDataPlanStatus provide the informationan app
needs to be aware of how much network traffic is happening and how much it might cost the user.
We'll come back to this in "Cost Awareness” shortly, including how to see per-app usage in Task
Manager.

183

http://msdn.microsoft.com/library/windows/apps/br207249.aspx
http://code.msdn.microsoft.com/windowsapps/Network-Information-Sample-63aaa201
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networksecuritysettings.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkconnectivitylevel.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.getdomainconnectivitylevel.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.domainconnectivitylevel.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.wlanconnectionprofiledetails.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.wwanconnectionprofiledetails.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.getsignalbars.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.getconnectivityintervalsasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.getconnectivityintervalsasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectivityinterval.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.getnetworkusageasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkusage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkusagestates.aspx

Connectivity Events

It is very common for a running app to want to know when connectivity changes. This way it can take
appropriate steps to disable or enable certain functionality, alert the user, synchronize data after being
offline, and so on. For this, apps need only watch the onnetworkstatuschanged event of the
NetworkInformation object, which is fired whenever there’s a significant change within the hierarchy
of objects we've just seen (and be mindful that this event comes from a WinRT object, so remove your
listeners properly). For example, the event will be fired if the connectivity level of a profile changes or
the network is disconnected. It fires when new networks are found, in which case you might want to
switch from one to another (forinstance, from a metered network to a nonmetered one). It will also be
fired if the Internet profile itself changes, as when a device roams between different networks, or when
a metered data plan is approaching or has exceeded its limit, at which point the user will start worrying
about every megabyte of traffic.

In short, you'll generally want to listen for this event to refresh any internal state of your app that's
dependent on network characteristics and set whatever flags you use to configure the app’s
networking behavior. This is especially important for transitioning between online and offline and
between unlimited and metered networks; Windows, for its part, also watches this event to adjust its
own behavior, as with the Background Transfer APIs.

Note Windows Store apps written in JavaScript can also use the basic window.nagivator.ononline
and window.navigator.onoff1ine eventsto track connectivity. The window.navigator.onLine
property is also true or false accordingly. These events, however, will not alert you to changes in
connection profiles, cost, or other aspects that aren't related to the basic availability of an Internet
connection. For this reason it's generally better to use the WinRT APIs.

You can play with networkstatuschanged in scenario 5 of the Network information sample. As you
connect and disconnect networks or make other changes, the sample will update its details output for
the current Internet profile if one is available (code condensed from js/network-status-change.js):

var networkInfo = Windows.Networking.Connectivity.NetworkInformation;
// Remember to removeEventListener for this event from WinRT as needed
networkInfo.addEventListener("networkstatuschanged", onNetworkStatusChange);

function onNetworkStatusChange(sender) {
internetProfileInfo = "Network Status Changed: \n\r";
var internetProfile = networkInfo.getInternetConnectionProfile();

if (internetProfile === null) {
// Error message
} else {

internetProfileInfo += getConnectionProfileInfo(internetProfile) + "\n\r";
// display info
}

internetProfileInfo = "";

184

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkinformation.networkstatuschanged.aspx
http://code.msdn.microsoft.com/windowsapps/Network-Information-Sample-63aaa201

Of course, listening for this event is useful only if the app is actually running. But what if it isn't? In
that case an app needs to register a background task for what's known as the networkStateChange
trigger, typically applying the internetAvailable or internetNotAvailable conditions as needed.
We'll talk more about background tasks in Chapter 16; for now, refer to the Network status
background sample fora demonstration. The sample itself simply retrieves the Internet profile name
and network adapterid in response to this trigger; a real app would clearly take more meaningful
action, such as activating background transfers for data synchronization when connectivity is restored.
The basic structure is there in the sample nonetheless.

It's also very important to remember that network status might have changed while the app was
suspended. Apps that watch the networkstatuschanged event should also refresh their connectivity-
related state within their resuming handler.

As a final note, check out the Troubleshooting and debugging network connections topic, which has
a little more guidance on responding to network changes as well as network errors.

Cost Awareness

If you ever crossed between roaming territories with a smartphone that's set to automatically download
email, you probably learned the hard way to disable syncing in such circumstances. | once drove from
Washington State into Canada without realizing that | would suddenly be paying $15/megabyte for the
privilege of downloading large email attachments. Of course, since I'm a law-abiding citizen | did not
look at my phone while driving (wink-wink!) to notice the roaming network. Well, a few weeks later and
$100 poorer | knew what “bill shock” was all about!

The point here is that if users conclude that your app is responsible for similar behavior, regardless
of whether it's actually true, the kinds of rating and reviews you'll receive in the Windows Store won't
be good! If your app might transfer any significant data, it's vital to pay attention to changes in the cost
of the connection profiles you're using, typically the Internet profile. Always check these details on
startup, within your networkstatuschanged event handler, and within your resuming handler.

Tip A powerful way to deal with cost awareness is through what's called a filter on which the
Windows .Web.Http.HttpClient APl is built. This allows you to keep the app logic much cleaner by
handling all cost decisions on the lower level of the filter. To see this in action, refer to scenario 11 of

the HttpClient sample.

You—and all of your customers, | might add—can track your app's network usage in the App
History tab of Task Manager, as shown below. Make sure you've expanded the view by tapping More
Details onthe bottom left if you don't see this view. You can see that it shows Network and Metered
Network usage along with the traffic due to tile updates:

185

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.systemtriggertype.aspx
http://code.msdn.microsoft.com/windowsapps/Network-status-background-957eb3eb
http://code.msdn.microsoft.com/windowsapps/Network-status-background-957eb3eb
http://msdn.microsoft.com/library/windows/apps/hh770534.aspx
http://code.msdn.microsoft.com/windowsapps/HttpClient-sample-55700664

=

File Options View

Processes | Performance | App history | Startup | Users | Details | Services

Resource usage since 6/17/2013 for current user account.

Delete usage history

Name
Music
[Travel
B News Reader JS sample
4 Mail, Calendar, and People (3)
[E7 Here My Am! (3b)
L3 Weather
[=] Internet Explorer
E4 sports
T News
57 Here My Am! (22)
[57 Here My Am! (2b)

(~) Fewer details

Task Manager

CPU time " Network | Metered network Tile updates
0:00:04 53 MB 0MB 0MB "
0:00:41 4.8 MB 0MB 0.3 MB
0:00:05 4.8 MB 0MB 0MB
0:01:33 3.0MB 0MB 0.1 MB
0:00:41 27MB 0MB 0MB
0:00:37 24MB 0MB 03 MB
0:00:15 21MB 0MB 0MB
0:00:15 1.5MB 0MB 1.5MB
0:00:00 11MB 0MB 11 MB
0:00:23 1.0MB 0MB 0MB
0:00:43 09MB 0MB 0MB

Programmatically, as noted before, the profile supplies usage information through its
getConnectionCost and getDataPlanStatus methods. These return ConnectionCost and
DataPlanStatus objects, respectively, which have the following properties:

ConnectionCost Properties

Description

networkCostType A NetworkCostType value, one of unknown, unrestricted (no extra charges), fixed
(unrestricted up to a limit), and variable (charged on a per-byte basis).
roaming A Boolean indicating whether the connection is to a network outside of your provider's

normal coverage area, meaning that extra costs are likely involved. An app should be

very conservative with network activity when this is true and ask the user for consent
for larger data transfers.

approachingDatalimit

A Boolean thatindicates that data usage on a fixed type network (see networkCostType)
is getting close to the limit of the data plan.

overDatalLimit

A Boolean indicating that a fixed data plan’s limit has been exceeded and overage
charges are definitely in effect. When this is true, an app should again be very
conservative with network activity, as when roaming s true.

DataPlanStatus Properties

Description

dataPlanLimitInMegabytes

The maximum data transfer allowed for the connection in each billing cycle.

dataPlanUsage

A DataPlanUsage object with an all-important megabytesUsed property and a
lastSyncTime (UTC) indicating when megabytesUsed was last updated.

maxTransferSizeInMegabytes

The maximum recommended size of a single network operation. This property reflects
notso much the capacities of the metered network itself (as its documentation
suggests), but rather an appropriate upper limit to transfers on that network.

nextBillingCycle

The UTC date and time when the next billing cycle on the plan kicks in and resets
dataPlanUsage to zero.

InboundBitsPerSecond and
outboundBitsPerSecond

Indicate the nominal transfer speed of the connection.

With all these properties you can make intelligent decisions about your app’s network activity, warn
the user about possible overage charges, and ask for the user's consent when appropriate. Clearly,
when the networkCostType isunrestricted, you can really do whatever you want. On the other

186

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectioncost.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.dataplanstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkcosttype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.dataplanusage.aspx

hand, when the type is variable and the user is paying for every byte, especially when roaming is
true, you'll want to inform the user of that status and provide settings through which the user can limit
the app’s network activity, if not halt that activity entirely. After all, the user might decide that certain
kinds of data are worth having. For example, they should be able to set the quality of a streaming
movie, indicate whether to download email messages or just headers, indicate whether to download
images, specify whether caching of online data should occur, turn off background streaming audio, and
so on.

Such settings, by the way, might include tile, badge, and other notification activities that you might
have established, as those can generate network traffic. If you're also using background transfers, you
can set the cost policies for downloads and uploads as well.

An app can, of course, ask the user's permission for any given network operation. It's up to you and
your designers to decide when to ask and how often. The Windows Store policy once required that you
ask the user for any transfer exceeding one megabyte when roaming and overDatalLimit are both
true and when performing any transfer over maxTransferSizeInMegabytes. This is no longer
required, but it's still a good starting point—your customers will clearly appreciate careful
consideration, especially if your app is making a number of smaller transfers that might add up to
multiple megabytes. At the same time, you don't want to be annoying with consent prompts, so be
sure to give the user a way to temporarily disable warnings or ask at reasonable intervals. In short, put
yourself in your customer’s shoes and design an experience that empowers their ability to control the
app's behavior.

On a fixed type network, where data is unrestricted up to dataPlanLimitInMegabytes, we find
cases where a number of the other properties become interesting. For example, if overDataLimit is
already true, you can ask the user to confirm additional network traffic or just defer certain operations
until the nextBi11ingCycle. Or, if approachingDatalLimit is true (oreven when it's not), you can
determine whether a given operation might exceed that limit. This is where the connection profile’s
getNetworkUsageAsync method comes in handy to obtain a NetworkUsage object fora given period
(see How to retrieve connection usage data for a specific time period). Call getNetworkUsageAsync
with the time period between DataPlanUsage.lastSyncTime and DateTime.now(). Then add that
value to DataPlanUsage.megabytesUsed and subtract the result from DataPlanUsage.dataPlan-
LimitInMegabytes. This tells you how much more data you can transfer before incurring extra costs,
thereby providing the basis for asking the user, “Downloading this file will exceed your data plan limit
and dock your wallet. Is that OK or would you rather save your money for something else?”

For simplicity's sake, you can think of cost awareness in terms of three behaviors: normal,
conservative, and opt-in, which are described on Managing connections on metered networks and,
more broadly, on Developing connected apps. Both topics provide additional guidance on making the
kinds of decisions described here already. In the end, saving the user from bill shock—and designing a
great user experience around network costs—is definitely an essential investment.

187

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh465162.aspx
http://msdn.microsoft.com/library/windows/apps/hh750310.aspx
http://msdn.microsoft.com/library/windows/apps/hh465399.aspx

Sidebar: Simulating Metered Networks

You may be thinking, "OK, so | get the need for my app to behave properly with metered
networks, but how do [test such conditions?” You can, of course, use a real metered network
through a mobile provider, such as the Internet Sharing feature on my phone. However, | do
have a data limitand | certainly don't want to test the effect of my app on real roaming fees!
Fortunately, you can also simulate the behavior of metered networks with the Visual Studio
simulator and, to some extent, directly in Windows with any Wi-Fi connection.

In the simulator, click the Change Network Properties button on the lower right side of the
simulator’s frame (it's the command above Help—refer back to Figure 2-5 in Chapter 2,
“Quickstart”). This brings up the following dialog:

Set Metwork Properties

¥| Use simulated network properties
Profile Name:
Network C ype:

Data Limit Status Flag: Under Data Limit

Roaming State: Mot Roaming

Set Properties

In this dialog you can create a profile with whatever name and options you'd like. The
variations for cost type, data limit status, and roaming allow you to test all conditions that your
app might encounter. As such, this is your first choice for working with cost awareness.

To simulate a metered network with a Wi-Fi connection, go to PC Settings > Network >
Connections and then tap your current connection under Wi-Fi (as shown below left). On the
next page, turn on Set As A Metered Connection under Data Usage (below right):

Data usage

Show my estimated data use in the Networks list

Wi-Fi on el

m Nuthatch Set as a metered connection

Connected On i

Although this option will not set up DataUsage properties and all that a real metered network
might provide, it will return a networkCostType of fixed, which allows you to see how your app
responds. You can also use the Show My Estimated Data Use in the Networks List option to
watch how much traffic your app generates during its normal operation, and you can reset the
counter so that you can take some accurate readings:

188

| Nuthatch

Estimated
34.95 MB since 3 minutes ago

Reset

Running Offline

The other user experience that is likely to earn your app a better reputation is how it behaves when
there is no connectivity or when there’s a change in connectivity. Ask yourself the following questions:

e What happens if your app starts without connectivity, both from tiles (primary and secondary)
and through contracts such as search, share, and the file picker?

e What happens if your app runs the first time without connectivity?
e What happens if connectivity is lost while the app is running?
e What happens when connectivity comes back?

As described above inthe “"Connectivity Awareness” section, use the networkstatuschanged event
to handle these situations while running and your resuming handler to check if connection status
changed while the app was suspended. If you have a background task for to the networkStateChange
trigger, it would primarily save state that your resuming handler would then check.

It's perfectly understood that some apps just can't run without connectivity, in which case it's
appropriate to inform the user of that situation when the app is launched or when connectivity is lost
while the app is running. In other situations, an app might be partially usable, in which case you should
inform the user more on a case-by-case basis, allowing them to use unaffected parts of the app. Better
still is to cache data that might make the app even more useful when connectivity is lost. Such data
might even be builtinto the app package so that it's always available on first launch.

Consider the case of an ebook reader app that would generally acquire new titles from an online
catalog. For offline use it would do well to cache copies of the user’s titles locally, rather than rely solely
on having a good Internet connection (subject to data transfer limits and appropriate user consent, of
course). The app’s publisher might also include a number of popular free titles directly in the app
package such that a user could install the app while waiting to board a plane and have at least those
books ready to go when the app is first launched at 10,000 feet (and you don't like paying forin-flight
WiFi). Other apps might include some set of preinstalled data at first and then add to that data over
time (perhaps through in-app purchases) when unrestricted networks are available. By following
network costs closely, such an app might defer downloading a large data set until either the user
confirms the action or a different connection is available.

189

Tip Caching a set of default data in your app package has several benefits. First, it allows for a good
first-run experience when there’s no connectivity, because at least some data will appear, even if it's
only as current as the last app update in the Store. Second, you can use such cached data to bring the
app up very quickly even when there’s connectivity, rather than waiting for an HTTP request to
respond. Third, you can store the data in your package in its most optimized form so that you don't
need to process it as you might an XML or JSON response from a service. What can also work very well
is implementing a data model (classes that hide the details of your data management) within your app
data that is initially populated from your in-package data and then transparently refreshed and
updated with data from HTTP requests. This way the most current data is always used on subsequent
runs and is always available offline.

How and when to cache data from online resources is probably one of the fine arts of software
development. When do you download it? How much do you acquire? Where do you store it? What
might you include as default data in the app package? Should you place an upper limit on the cache?
Do you allow changes to cached data that would need to be synchronized with a service when
connectivity is restored? These are all good questions ask, and certainly there are others to ask as well.
Let me at least offer a few thoughts and suggestions.

First, you can use any network transport to acquire data to cache, such as the various HTTP request
APIs we'll discuss later, the background transfer API, as well as the HTML5 AppCache mechanism.
Separately, other content acquired from remote resources, such as images and even script
(downloaded within x-ms-webview or iframe elements), are also cached automatically like typical
temporary Internet files. Note that this caching mechanism and AppCache are subject to the storage
limits defined by Internet Explorer (whose subsystems are shared with the app host). You can also
exercise some control over caching through the HttpClient APIL.

How much data you cache depends, certainly, on the type of connection you have and the relative
importance of the data. On an unrestricted network, feel free to acquire everything you feel the user
might want offline, but it would be a good idea to provide settings to control that behavior, such as
overall cache size or the amount of data to acquire per day. | mention the latter because even though
my own Internet connection appears to the system as unrestricted, I'm charged more as my usage
reaches certain tiers (on the order of gigabytes). As a user, | would appreciate having a say in matters
that involve significant network traffic.

Even so, if caching specific data will greatly enhance the user experience, separate that optionto
give the user control over the decision. For example, an ebook reader might automatically download a
whole title while the readeris perhaps just browsing the first few pages. Of course, this would also
mean consuming more storage space. Letting users control this behavior as a setting, or even on a per-
book basis, lets them decide what's best. For smaller data, on the other hand—say, in the range of
several hundred kilobytes—if you know from analytics that a user who views one set of data is highly
likely to view another, automatically acquiring and caching those additional data sets could be the
right design.

190

http://msdn.microsoft.com/library/ie/hh673545.aspx

The best places to store cached data are your app data folders, specifically the LocalFolder and
TemporaryFolder. Don't use the RoamingFolder to cache data acquired from online sources: besides
running the risk of exceeding the roaming quota (see Chapter 10), it's also quite pointless. Because the
system would have to roam such data over the network anyway, it's better to just have the app re-
acquire it when it needs to.

Whether you use the LocalFolder or TemporaryFolder depends on how essential the data is to the
operation of the app. If the app cannot run without the cache, use local app data. If the cache is just an
optimization such that the user could reclaim that space with the Disk Cleanup tool, store the cache in
the TemporaryFolder and rebuild it again later on.

In all of this, also consider that what you're caching really might be user data that you'd want to
store outside of your app data folders. That is, be sure to think through the distinction between app
data and user data! We'll think about this more in Chapters 10 and 11.

Finally, you might again have the kind of app that allows offline activity (like processing email)
where you will have been caching the results of that activity for later synchronization with an online
resource. When connectivity is restored, then, check if the network cost is suitable before starting your
sync process.

Hosting Content: the WebView and iframe Elements

One of the most basic uses of online content is to load and render an arbitrary piece of HTML (plus CSS
and JavaScript) into a discrete element within an app’s overall layout. The app's layout is itself, of
course, defined using HTML, CSS, and JavaScript, where the JavaScript code especially has full access to
both the DOM and WinRT APIs. For security considerations, however, such a privilege cannot be
extended to arbitrary content—it's given only to content that is part of the app’s package and has thus
gone through the process of Store certification. For everything else, then, we need ways to render
content within a more sandboxed environment.

There are two ways to do this, as we'll see in this section. One is through the HTML iframe element,
which is very restricted in that it can display only in-package pages (ms-appx[-web]:/// URIs) and
secure online content (https://). The other more general-purpose choice is the x-ms-webview
element, which I'll just refer to as the webview for convenience. It works with ms-appx-web, http[s],
and ms-appdata URIs, and it provides a number of other highly useful features such as using your own
link resolver. The caveats with the webview is that it does not at present support IndexedDB,
geolocation, clipboard access, or the HTML5 AppCache, which the iframe does. If you require these
capabilities, you'll need to use an iframe through an https URI. Atthe same time, the webview also
has integrated SmartScreen filtering support to protect your app from phishing attacks. Such choices!

In earlier chapters we've already encountered the ms-appx-web URI scheme and made mention of
the local and web contexts. We'll start this section by exploring these contexts and other security
considerations in more detail, because they apply directly to iframe and webview elements alike.

191

Wrapping a web experience iframe and x-ms-webviewelements enable you to easily present a
website in an app frame, and this is perfectly allowable. Ideally, you want to do a little more than just
show a website in a webview. As an app, your content should look like an app, navigate like an app,
work well with touch, use the app bar, support contracts like Search and Share, have a live tile, and
draw on other system capabilities. There is a project called the Web app template that helps
accomplish some of these basics through configuration data, but think of it as a starting point. The
best kind of hybrid app will make the best of both the web and the native platform.

Local and Web Contexts (and iframe Elements)

As described in Chapter 1, “The Life Story of a Windows Store App,” apps written with HTML, CSS, and
JavaScript are not directly executable like their compiled counterparts written in C#, Visual Basic, or
C++. In our app packages, there are no EXEs, just .html, .css, and s files that are, plain and simple,
nothing but text. So something has to turn all this text that defines an app into something that's
actually running in memory. That something is again the app host, wwahost.exe, which creates what we
call the hosted environment for Store apps.

Let's review what we've already learned in Chapters 1 and 2 about the characteristics of the hosted
environment:

e The app host (and the apps in it) use brokered access to sensitive resources, controlled both by
declared capabilities in the manifest and run-time user consent.

e Though the app host provides an environment very similar to that of Internet Explorer (10+),
there are a number of changes to the DOM API, documented on HTML and DOM API changes

listand HTML, CSS, and JavaScript features and differences. A related topic is Windows Store
apps using JavaScript versus traditional web apps.

e HTML content in the app package can be loaded into the local or web context, depending on
the hosting element. iframe elements can use the ms-appx:/// scheme to refer to in-package
pages loaded inthe local context or ms-appx-web:/// to specify the web context. (The third /
again means “in the app package”; the Here My Am! app uses this to load its map.html file into
a web context iframe.) Remote https content in an iframe and all content in a webview
always runs in the web context.

e Any content within a web context can refer to in-package resources (such asimages and other
media) with ms-appx-web URIs. For example, a page loaded into a webview from an http
source can refer to an app’s in-package logo. (Such a page, of course, would not work in a
browser!)

e The local context has access to the WinRT API, among other things, but cannot load remote
script (referenced via http://); the web context is allowed to load and execute remote script
but cannot access WinRT.

192

http://wat.codeplex.com/
http://msdn.microsoft.com/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/library/windows/apps/hh465380.aspx
http://msdn.microsoft.com/library/windows/apps/hh465408.aspx
http://msdn.microsoft.com/library/windows/apps/hh465408.aspx

e ActiveX control plug-ins are generally not allowed in either context and will fail to load in both
iframe and webview elements. The few exceptions are noted on Migrating a web app.

e In the local context, strings assigned to innerHTML, outerHTML, adjacentHTML, and other
properties where scriptinjection can occur, as well as strings given to document.write and
similar methods, are filtered to remove script. This does not happen in the web context.

e Every iframe and webview element—in either context—has its own JavaScript global
namespace that's entirely separate from that of the parent page. Neither can access the other.

e The HTML5 postMessage function can be used to communicate between an iframe and its
containing parent across contexts; with a webview such communication happens with the
invokeScriptAsync method and window.external.notify. These capabilities can be useful
to execute remote script within the web context and pass the results to the local context; script
acquired in the web context should not be itself passed to the local context and executed there.
(Again, Windows Store policy disallows this, and apps submitted to the Store are analyzed for
such practices.)

e Further specifics can be found on Features and restrictions by context, including which parts of
WinJS don't rely on WinRT and can thus be used in the web context. (WinJS, by the way, is not
supported for use on web pages outside of an app, just the web context within an app.)

An app’s home page—the one you point to in the manifestin the Application > Start Page field—
always runs in the local context, and any page to which you navigate directly (via <a href> or
document.Tocation) must also be in the local context. When using page controls to load HTML
fragments into your home page, those fragments are of course rendered into the local context.

Next, a local context page can contain any number of webview and iframe elements. For the
webview, because it always loads its content in the web context and cannot refer to ms-appx URIs, it
pretty much acts like an embedded web browser where navigation is concerned.

Each iframe element, on the other hand, can load in-package content in either local or web
context. (By the way, programmatic read-only access to your package contents is obtained via
Windows.AppTlicationModel.Package.Current.InstalledLocation.) Referring to a remote location
(https) will always place the iframe in the web context.

Here are some examples of different URIs and how they getloaded in an iframe:

<!-- iframe in Tlocal context with source in the app package -->
<!-- these forms are allowed only from inside the local context -->
<iframe src="/frame-local.html"></1iframe>

<iframe src="ms-appx:///frame-Tocal.html"></1iframe>

<!-- iframe in web context with source in the app package -->
<iframe src="ms-appx-web:///frame-web.html"></iframe>

<!-- iframe with an external source automatically assigns web context -->
<iframe src="https://my.secure.server.com"></iframe>

193

http://msdn.microsoft.com/library/windows/apps/hh465143.aspx
http://msdn.microsoft.com/library/windows/apps/hh465373.aspx

Also, if youuse an tag with target pointing to an iframe, the
scheme in href determines the context. And once in the web context, an iframe can host only other
web context iframes such as the last two above; the first two elements would not be allowed.

Tip Some web pages contain frame-busting code that prevents the page from being loaded into an
iframe, in which case the page will be opened in the default browser and not the app. In this case, use
a webview if you can; otherwise you'll need to work with the site owner to create an alternate page
that will work for you.

Although Windows Store apps typically don't use <a href> or document.location for page
navigation, similar rules apply if you do happen to use them. The whole scene here, though, can begin
to resemble overcooked spaghetti, so I've simplified the exact behavior for these variations and for
iframes in the following table:

Target Result in Local Context Page Result in Web Context Page

<iframe src="ms-appx:///"> iframeinlocal context Not allowed

<iframe src="ms-appx-web:///"> iframeinweb context iframeinweb context

<iframe src="https:// "> iframeinweb context iframeinweb context

 iframe inlocal orweb context iframe in web context; [uri]

<iframe name="myFrame"> depending on [uri] cannot begin with ms-appx.

 Links to page in local context Not allowed unless explicitly
specified (see below)

 Not allowed Links to page in web context

 with any other protocolincluding | Opens default browserwith [uri] Opens default browser with [uri]

http[s]

The last two items in the table really mean that a Windows Store app cannot navigate from its top -
level page (in the local context) directly to a web context page of any kind (local or remote) and remain
within the app—the app host will launch the default browser instead. That's just life in the app host!
Such content must be placed in an iframe or a webview. Similarly, navigating from a web context page
to a local context page is not allowed by default but can be enabled, as we'll see shortly.

In the meantime, let's see a few simpler i frame examples. Again, in the Here My Am!app we've
already seen how to load an in-package HTML page in the web context and communicate with the
parent page through postMessage (We'll change this to a webview in a later section.) Very similarand
more isolated examples canalso be found in scenarios 2 and 4 of the Integrating content and controls

from web services sample.

Scenario 3 of that same sample demonstrates how calls to WinRT APIs are allowed in the local
context but blocked in the web context. It loads the same page, callWinRT.html, into a separate iframe
in each context, which also means the same JavaScript is loaded (and isolated) in both. When running
this scenario you can see that WinRT calls will fail in the web context.

A good tip to pick up from this sample is that you can use the document.location.protoco]l
property to check which context you're running in, as done in js/callWinRT js:

var isWebContext = (document.location.protocol === "ms-appx-web:");

194

http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b

Checking against the string “ms-appx:” will, of course, tell you if you're running in the local context.

Scenarios 5 and 6 of the sample are very interesting because they help us explore matters around
inserting HTML into the DOM and navigating from the web to the local context. Each of these subjects,
however, needs a little more context of their own (forgive the pun!), as discussed in the next two
sections.

Tip To prevent selection of content in an iframe, style the iframe with -ms-user-select: none or
set its style.msUserSelect property to "none" in JavaScript. This does not, however, work for the
webview control; its internal content would need to be styled instead.

Dynamic Content

As we've seen, the ms-appx and ms-appx-web schema allow an app to navigate iframe and webview
elements to pages that existinside the app package. This begs a question: can an app point to content
on the local file system that exists outside its package, such as a dynamically created file in an appdata
folder? Can, perchance, an app use the file:// protocol to navigate to and/or access that content?

Well, as much as I'd love to tell you that this just works, the answer is somewhat mixed. First, the
file protocol—along with custom protocols—are wholly blocked by design for various security
reasons, even for your appdata folders to which you otherwise have full access. Fortunately, there is a
substitute, ms-appdata:///, that fulfills part of the need (the third /again allows you to omit the
specific package name). Within the local context of an app, ms-appdata is a shortcut to your appdata
folder wherein exist local, roaming, and temp folders. So, if you created a picture called image65.png in
your appdata local folder, you can refer to it by using ms-appdata:///local/image65.png. Similar
forms work with roaming and temp and work wherever a URI can be used, including within a CSS style
like background.

Within iframes, ms-appdata can be used only for resources, namely with the src attribute of img,
video, and audio elements. It cannot be used to load HTML pages, CSS stylesheets, or JavaScript, nor
can it be used for navigation purposes (i frame, hyperlinks, etc.). This is because it wasn't feasible to
create a sub-sandbox environment for such pages, without which it would be possible for a page
loaded withms-appdata to access everything in your app. Fortunately, you can navigate a webview to
app data content, as we'll see shortly, thereby allowing you to generate and display HTML pages
dynamically without having to write your own rendering engine (whew!).

You can also load bits of HTML, as we've seen with page controls, and insert that markup into the
DOM through innerHTML, outerHTML, adjacentHTML and related properties, as well as
document.write and DOMParser.parseFromString. But remember that automatic filtering is applied
in the local context to prevent injection of scriptand other risky markup (and if you try, the app host
will throw exceptions, as will WinJS.Utilities.setInnerHTML, setOuterHTML, and insertAdjacent-
HTML). This is not a concern in the web context, of course.

This brings us to whether you can generate and execute script on the fly in the local context at all.

195

http://msdn.microsoft.com/library/windows/apps/hh779846.aspx

The answer is again qualified. Yes, you can take a JavaScript string and pass it to the eval or
execScript functions, even inject script through properties like innerHTML. But be mindful that
requirement 3.9 of the App certification requirements (as of this writing) disallows dynamically
downloading code or data that changes how the app interacts with the WinRT API. This is admittedly a
bit of a gray area—downloading data to configure a game level, for instance, doesn't quite fall into this
category. Nevertheless, this requirement is taken seriously, so be careful about making assumptions.

That said, there are situations where you, the developer, really know what you're doing and enjoy
juggling chainsaws and flaming swords (or maybe you're just trying to use a third -party library; see the
sidebar below). Acknowledging that, Microsoft provides a mechanism to consciously circumvent script
filtering: MSApp . execUnsafeLocalFunction. For all the details regarding this, refer to Developing
secure apps, which covers this along with a few other obscure topics that I'm not including here (like
the numerous variations of the sandbox attribute for i frames, which is also demonstrated in the

JavaScript iframe sandbox attribute sample).

And curiously enough, WinJS actually makes it easier for you to juggle chainsaws and flaming
swords! WinJS.Utilities.setInnerHTMLUnsafe, setOuterHTMLUnsafe, and insertAdjacentHTML-
Unsafe are wrappers for calling DOM methods that would otherwise strip out risky content.
Alternately, if you want to sanitize HTML before attempting to inject it into an element (and thereby
avoid exceptions), you can use the toStaticHTML method, as demonstrated in scenario 5 of the
Integrating content and controls from web services sample.

Sidebar: Third-Party Libraries and the Hosted Environment

In general, Windows Store apps can employ libraries like jQuery, Angular, Prototype, Dojo, and
so forth, as noted in Chapter 1. However, there are some limitations and caveats.

First, because local context pagesin an app cannot load script from remote sources, apps
typically need to include such libraries in their packages unless they're only being used from the
web context. WinJS, mind you, doesn't need bundling because it's provided by the Windows
Store, but such “framework packages” are not enabled for third parties.

Second, DOM API changes and app container restrictions might affect the library. For
example, using window. alert won't work. One library also cannot load another library from a
remote source in the local context. Crucially, anything in the library that assumes a higher level of
trust than the app container provides (such as open file system access) will have issues.

The most common problem comes up when libraries inject elements or script into the DOM
(as through innerHTML), a widespread practice for web applications thatis not automatically
allowed within the app container. You can get around this on the app level by wrapping code
within MSApp . execUnsafelocalFunction, but that doesn't solve injections coming from deeper
inside the library. In these cases you really need to work with the library author.

In short, you're free to use third-party libraries so long as you're aware that they might have
been written with assumptions that don't always apply within the app container. Over time, of

196

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh849625.aspx
http://msdn.microsoft.com/library/windows/apps/hh849625.aspx
http://code.msdn.microsoft.com/windowsapps/JavaScript-iframe-sandbox-0f077ece
http://msdn.microsoft.com/library/windows/apps/hh466094.aspx
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b

course, fully Windows-compatible versions of such libraries, like jQuery 2.0, will emerge. Note
also that for any libraries that include binary components, those must be targeted to Windows
8.1 for use with a Windows 8.1 app.

App Content URIs

When drawing on a variety of web content, it's important to understand the degree to which you trust
that content. That is, there’s a huge difference between web content that you control and that which
you do not, because by bringing that content into the app, the app essentially takes responsibility for it.
This means that you want to be careful about what privileges you extend to that web content. In an
iframe, those privileges include cross-context navigation, geolocation, IndexedDB, HTML5 AppCache,
clipboard access, and navigating to web content with an https URI. In a webview, it means the ability
for remote content to raise an event to the app.33

If you ask nicely, in other words, Windows will let you enable such privileges to web pages that the
app knows about. All it takes is an affidavit signed by you and sixteen witnesses, and...OK, I'm only
joking! You simply need to add what are called application content URI rules to your manifest in the
Content Uri tab. Each rule—composed of an exact https URI or one with wildcards (*)—says that
content from some URI is known and trusted by your app and can thus act on the app’s behalf. You
can also exclude URIs, which is typically done to exclude specific pages that would otherwise be
allowed by another rule.

For instance, the very simple ContentUri example in this chapter's companion content has an
iframe pointing to https://www.bing.com/maps/ (Bing allows an https:// connection), and this URI is
included in the in the content URI rules. This allows the app to host the remote content as partially

shown belowNow click or tap the geolocation crosshair circle on the upper left of the map next to
World. Because the rules say we trust this content (and trust that it won't try to trick the user), a
geolocation request invokes a consent dialog (as shown below) just as if the request came from the
app. (Note: When run inside the debugger, the ContentUri example will probably show exceptions on
startup. If so, press Continue within Visual Studio; this doesn't affect the app running outside the
debugger.)

Can Content Uri (4) use your location?

Such brokered capabilities require a content URI rule because web content loaded into an iframe
can easily provide the means to navigate to other arbitrary pages that could potentially be malicious.

33 At whatever point the webview supports IndexedDB or AppCache, these features will likely require such permissions.

197

http://blogs.msdn.com/b/windowsappdev/archive/2013/04/01/windows-store-app-support-in-jquery-version-2-0.aspx
https://www.bing.com/maps/

Lacking a content URI rule for that target page, the iframe will not navigate there at all.

In some app designs you might have occasion to navigate from a web context page in the app to a
local context page. For example, you might host a page on a server where it can keep other server-side
content fully secure (that is, not bring it onto the client). You can host the page in an iframe, of course,
but if for some reason you need to directly navigate to it, you'll probably need to navigate backto a
local context page. You can enable this by calling the super-secret function MSApp.add-
PubliclocalApplicationUri from code in a local page (and it actually is well-documented) for each
specific URl you need. Scenario 6 of the Integrating content and controls from web services sample
gives an example of this. First it has an iframe in the web context (html/addPublicLocalUri.html):

<iframe src="ms-appx-web:///navigateTolLocal.html"></iframe>

That page then has an <a href> to navigate to a local context page that calls a WinRT API for good
measure; see navigateToLocal.html in the project root:

Navigate to ms-appx:///callWinRT.html

To allow this to work, we then have to call addPublicLocalApplicationUri from a local context
page and specify the trusted target (js/addPublicLocalUri js):

MSApp.addPublicLocalApplicationUri("calTWinRT.htm1");
Typically it's a good practice to include the ms-appx:/// prefixin the call for clarity:
MSApp.addPublicLocalApplicationUri("ms-appx:///callWinRT.htm1");

Be aware that this method is very powerful without giving the appearance of such. Because the web
context can host any remote page, be especially careful when the URI contains query parameters. For
example, you don't want to allow a website to navigate to something like ms-appx:///delete.htm1?
file=superimportant.doc and just accept those parameters blindly! In short, always consider such
URI parameters (and any informationin headers) to be untrusted content.

The <x-ms-webview> Element

Whenever you want to display some arbitrary HTML page within the context of your app—specifically
pages that exists outside of your app package—then the x-ms-webview element is your best friend.3*
This is a native HTML element that's recognized by the rendering engine and basically works like the
core of a web browser (without the surrounding business of navigation, favorites, and so forth).
Anything loaded into a webview runs in the web context, so it can be used for arbitrary URIs except
those using the ms-appx schema. It also supports ms-appdata URIs and rendering string literals, which

3 The inclusion of the webview element is one of the significant improvements for Windows 8.1. In Windows 8, apps
written in HTML, CSS, and JavaScript have only i frame elements at their disposal. However, i frames don't work with web
pages that contain frame-busting code, can't load local (appdata) pages, and have some subtle security issues. For this
reason, Windows 8.1 has the native x-ms-webviewHTML element for most uses and limits i frame to in-package ms-
appx[-web] and https URIs exclusively.

198

http://msdn.microsoft.com/library/windows/apps/hh465759.aspx
http://msdn.microsoft.com/library/windows/apps/hh465759.aspx
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b
http://msdn.microsoft.com/library/windows/apps/dn301831.aspx

means you can easily display HTML/CSS/JavaScript that you generate dynamically as well as content
that's downloaded and stored locally. This includes the ability to do your own link resolution, as when
images are stored in a database rather than as separate files. Webview content again always runs in the
web context (without WinRT access), there aren't restrictions as to what you can do with script and such
so far as Store certificationis concerned. And the webview even supports additional features like
rendering its contents to a stream from which you can create a bitmap. So let’s see how all that works!

What's with the crazy name? You're probably wondering why the webview has this oddball x-ms-
webview tag. This is to avoid any future conflict with emerging standards, at which point a vendor-
prefixed implementation could become ms-webview.

Because the webview is an HTML element like any other, you can style it with CSS however you
want, animate the element around, and so forth. Its JavaScript object also has the full set of properties,
methods, and events that are shared with other HTML elements, along with a few unique ones of its
own. Note, however, that the webview does not have or support any child content of its own, so
properties like innerHTML and childNodes are empty and have no effectif you set them.

The simplest use case for the webview (and | call it this because it's tiresome to type out the funky
element name every time) is to just point it to a URI through its src attribute. One exampleisin
scenario 1 of the Integrating content and controls from web services sample (html/webContent.html),
with the results shown in Figure 4-2:

<x-ms-webview id="webContentHolder"
src="http://www.microsoft.com/presspass/press/NewsArchive.mspx?cmbContentType=PressRelease">

</x-ms-webview>

The sample lets you choose different links, which are then rendered in the webview by again simply
setting its src attribute.

&5 Windows SDK Samples

Mashup

Description

1) Including Web Content in a Local Page

unt
ntext and is allc
3) Web Context versus Local Context can select a link to navigate the x-m:

2) Inc luding Inline Web Content
iew to different online locations.
4) Passing Data Between Frames

5) Adding Dynamic HTML to the DOM

Output

Select a page 1o navigate the xms-webniew 10 peryrm—v—r—

News Center

Pr OurCompany OurProducts Blogs & Communities Press Tools

ews Archive
eature Storie

Corporation. All rights reserved.

199

http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b

FIGURE 4-2 Displaying a webview, which is an HTML element like any others within an app layout. The webview
runs within the web context and allows navigation within its own content.

Clicking links inside a webview will navigate to those pages. In many cases with live web pages,
you'll see JavaScript exceptions if you're running the app in the debugger. Such exceptions will not
terminate the app as a whole, so they can be safely ignored or left unhandled. Outside of the
debugger, in fact, a user will never see these—the webview ignores them.

As we see in this example, setting the src attribute is one way to load content into the webview. The
webview object also supports four other methods:

e navigate Navigatesthe webview to a supported URI (http[s], ms-appx-web, and ms-
appdata). That page can contain references to other URIs except for ms-appx.

e navigateWithHttpRequestMethod Navigatesto a supported URI with the ability to set the
HTTP verb and headers.

e navigateToString Renders an HTML string literal into the webview. References can again
refer to supported URIs except for ms-appx.

e navigateTolLocalStreamUri Navigatestoa pagein local appdata using an app-provided
object to resolve relative URIs and possibly decrypt the page content.

Examples of the most of these can be found in the HTML Webview control sample. Scenario 1 shows

navigate, starting with an empty webview and then calling navigate with a URI string
(js/1_NavToUrl js):

var webviewControl = document.getElementById("webview") ;
webviewControl.navigate("http://go.microsoft.com/fwlink/?LinkId=294155");

Navigating through navigateWithHttpRequestMessage is a little more involved. Though not
included in the sample, relevant code can be found on the App Builders Blog in Blending Apps and
Sites with the HTML x-ms-webview:

//The site to which we navigate
var siteUrl = new Windows.Foundation.Uri("http://www.msn.com");

//Specify the type of request (get)
var httpRequestMessage = new
Windows .Web.Http.HttpRequestMessage (Windows.Web.Http.HttpMethod.get, siteUrl);

// Append headers to request the server to check against the cache
httpRequestMessage.headers.append("Cache-Control", "no-cache™);

httpRequestMessage.headers.append("Pragma", "no-cache");

// Navigate the WebView with the request info
webview.navigateWithHttpRequestMessage (httpRequestMessage) ;

Scenario 2 of the SDK sample shows navigateToString by loading anin-package HTML file into a
string variable, which is like calling navigate with the same ms-appx-web URI. Of course, if you have

200

http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa
http://blogs.windows.com/windows/b/appbuilder/archive/2013/10/01/blending-apps-and-sites-with-the-html-x-ms-webview.aspx
http://blogs.windows.com/windows/b/appbuilder/archive/2013/10/01/blending-apps-and-sites-with-the-html-x-ms-webview.aspx

the content in an HTML file already, just use navigate! It's more common, then, to use
navigateToString with dynamically-generated content. For example, let's say | create a string as
follows, which you'll notice includes a reference to an in-package stylesheet. You can find this in
scenario 1 of the WebviewExtras example in this chapter's companion content (js/scenariol,js):

var baseURI = "http://www.kraigbrockschmidt.com/images/";
var content = "<!doctype HTML><head><style>";
//Refer to an in-package stylesheet (or one in ms-appdata:/// or http[s]://)
content +=
"<head><1ink rel='stylesheet' href="ms-appx-web:///css/localstyles.css' /></head>";
content += "<html><body><hl>Dynamically-created page</h1>";
content += "<p>This document contains its own styles as well as a remote image references.</p>"

content += "" + space;
content += "" + space;
content += "" + space;
content += "" + space;

content += ""

content += "</body></html>";

With this we can then just load this string directly:

var webview = document.getElementById("webview");
webview.navigateToString(content);

We could just as easily write this text to a file in our appdata and use navigate with an ms-appdata
URI (this is what's shown in js/scenariol,s):

var local = Windows.Storage.ApplicationData.current.localFolder;

local.createFolderAsync("pages",
Windows.Storage.CreationColTlisionOption.openIfExists).then(function (folder) {
return folder.createFileAsync("dynamicPage.html",
Windows .Storage.CreationColTisionOption.replaceExisting);
B .then(function (file) {
return Windows.Storage.FileIO.writeTextAsync(file, content);
}) .then(function O {
var webview = document.getElementById("webview™);
webview.navigate("ms-appdata:///Tlocal/pages/dynamicPage.htm1");
}) .done(null, function (e) {
WinJS.Tog & WinJS.Tlog("failed to create dynamicPage.html, err = " + e.message, "app");
b

In both of these examples, the output (styled with the in-package stylesheet) is the following
shameless display of my current written works:

201

Dynamically-created page

This document contains its own styles as well as a remote image references.

 Microsoft ra—

Finbing o

Programming Programming MvaTic MicRosGFY F OCLIS Harmonium

Handbook

Windows Store Windows 8 Apps ==
Apps with HTML, i ; %‘?A
CSS, and JavaScript ?&'?L'L“QESS' £

Second Edition A a4 s i i i ity

.

-

Kraig Brockschmidt

Take careful note of the fact that | create this dynamic page in a subfolder within local appdata. The
webview specifically disallows navigation to pages in a root local, roaming, or temp appdata folder to
protect the security of other appdata files and folders. That is, because the webview runs in the web
context and can contain any untrusted content you might have downloaded from the web, and
because the webview allows that content to exec scriptand so forth, you don't want to risk exposing
potentially sensitive information elsewhere within your appdata. By forcing you to place appdata
content in a subfolder, you would have to consciously store other appdata in that same folderto allow
the webview to access it. It's a small barrier, in other words, to give you pause to think clearly about
exactly what you're doing!

In the example | also include a link to an in-package image (not shown), just to show that you can
use ms-appx-web URIs for this purpose:

content += "";

Scenario 3 of the SDK’'s HTML WebView control sample (js/scenario3,js) also shows an example of
using ms-appdata URIs, in this case copying an in-package file to local appdata and navigating to that.
Another likely scenario is that you'll download content from an online service via an HTTP request,
store that in an appdata file, and navigate to it. In such cases you're just building the necessary file
structure in a folder and navigating to the appropriate page. So, for example, you might make an HTTP
request to a service to obtain multimedia content in a single compressed file. You can then expand that
file into your appdata and, assuming that the root HTML page has relative references to other files, the
webview can load and render it.

But what if you want to download a single file in a private format (like an ebook) or perha ps acquire
a potentially encrypted HTML page along with a single database file for media resources? This is the
purpose of navigateToLocalStream, which lets you inject your own content handlers and link
resolvers into the rendering process. This method takes two arguments:

e A content URI that's created by calling the webview's buildLocalStreamUri method with an
app-defined content identifier and the relative reference to resolve.

e A resolver object that implements an interface called IUriToStreamResolver, whose single
method UriToStreamAsync takes a relative URI and produces a WinRT IInputStream through

202

http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa
http://msdn.microsoft.com/library/windows/apps/windows.web.iuritostreamresolver.aspx

which the rendering engine can then load the media.

Scenario 4 of the HTML WebView control sample demonstrates this with resolver objects
implemented via WinRT components in C# and C++. (See Chapter 18, "WinRT Components,” for how
these are structured.) Here's how one is invoked:
var contentUri = document.getElementById("webview").buildLocalStreamUri("NavigateToStream",

"simple_example.html");

var uriResolver = new SDK.WebViewSampleCS.StreamUriResolver();
document.getElementById("webview") .navigateToLocalStreamUri(contentUri, uriResolver);

In this code, contentUri will be an ms-Tocal-stream URI, such as ms-local-stream:;//microsoft.
sdksamples.controlswebview.js_4e61766967617465546f53747265616d/simple_example.html. Because
this starts with ms-1ocal-stream, the webview will immediately call the resolver object’s
UriToStreamAsync to generate a stream for this page as a whole. So if you had a URI to an encrypted
file, the resolver object could perform the necessary decryption to get the first stream of straight HTML
for the webview, perhaps applying DRMin the process.

As the webview renders that HTML and encounters other relative URIs, it will call upon the resolver
object for each one of those in turn, allowing that resolver to stream media from a database or perform
any other necessary steps in the process.

The details of doing all this are beyond the scope of this chapter, so do refer again to the HTML
WebView control sample.

Webview Navigation Events

The idea of navigating to a URI is one that certainly conjures up thoughts of a general purpose web
browser and, in fact, the web view can serve reasonably well in such a capacity because it both
maintains an internal navigation history and fires events when navigation hap pens.

Although the contents of the navigation history are not exposed, two properties and methods give
you enough to implement forward/back Ul buttons to control the webview:

e canGoBack and canGoForward Boolean properties thatindicate the current position of the
web view within its navigation history.

e goBack and goForward Methods that navigate the webview backwards or forwards in its
history.

When you navigate the webview in any way, it will fire the following events:
e MSWebViewNavigationStarting Navigation has started.

e MSWebViewContentLoading The HTML content stream has been provided to the webview
(e.g., a fileisloaded or a resolver object has provided the stream).

e MSWebViewDOMContentLoaded The webview's DOM has been constructed.

203

http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa
http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa

e MSWebViewNavigationCompleted The webview's content has been fully loaded, including any
referenced resources.

If a problem occurs along the way, the webview will raise an MSwebViewUnviewableContent-
Identified event instead.It's also worth mentioning that the standard change event will also fire
when navigation happens, but this also happens when setting other properties, so it's not as useful for
navigation purposes.

Scenario 1 of the HTML WebView control sample, which we saw earlier for navigate, essentially
gives you a simple web browser by wiring these methods and events to a couple of buttons. Note that
any popups from websites you visit will open in the browser alongside the app.

Tip You'll find when working with the webview in JavaScript that the object does not provide
equivalent on* properties for these events. This omission was a conscious choice to avoid potential
naming conflicts with emerging standards. At present, then, you must use addEventListener to wire
up these events.

In addition to the navigating/loading events for the webview’s main content, it also passes along
similar events for i frame elements within that content: MSwebViewFrameNavigationStarting,
MSWebViewFrameContentLoading, MSWebViewFrameDOMContentLoaded, and MSWebV1iewFrame-
NavigationCompleted, each of which clearly has the same meaning as the related webview events but
also include the URI to which the frame is navigated in eventArgs.uri.

Calling Functions and Receiving Events from Webview Content

The other event that can come from the webview is MSWebViewScriptNotify. This is how JavaScript
code in the webview can raise a custom event to its host, similar to how we've used postMessage from
an iframe in the Here My Am! app to notify the app of a location change. On the flip side of the
equation, the webview's invokeScriptAsync method provides a means for the app to call a function
within the webview.

Invoking scriptin a webview is demonstrated in scenario 5 of the HTML WebView control sample,
where the following content of html/script_example.html (condensed here) is loaded into the webview:

<!DOCTYPE html><html><head>
<title>Script Example</title>
<script type="text/javascript">
function changeText(text) {
document.getElementById("myDiv'").innerText = text;
}
</script>
</head><body>
<div id="myDiv">Call the changeText function to change this text</div>
</body></htm1>

The app calls changeText as follows:

document.getElementById("webview") .invokeScriptAsync("changeText",

204

document.getElementById("textInput").value).start(Q;

The second parameter to invokeScriptAsync method is always a string (or will be converted to a
string). If you want to pass multiple arguments, use JSON.stringify on an object with suitably named
properties and JSON. parse it on the other end.

Take note! Notice the all-important start() tacked onto the end of the invokeScriptAsync call.
This is necessary to actually run the async calling operation. Without it, you'll be left wondering just
why exactly the call didn't happen! We'll talk more of this in a moment with another example,
including how we get a return value from the function.

Receiving an event from a webview is demonstrated in scenario 6 of the sample. An event is raised
using the window.external.notify method, whose single argument is againa string. In the sample,
the html/scriptnotify_example.html page contains this bit of JavaScript:

window.external.notify("The current time is " + new Date());

which is picked up in the app as follows, where the event arg’s value property contains the arguments
from window.external.notify:

document.getElementById("webview") .addEventListener("MSWebViewScriptNotify", scriptNotify);

function scriptNotify(e) {
var outputArea = document.getETementById("outputArea™);
outputArea.value += ("ScriptNotify event received with data:\n" + e.value + "\n\n");
outputArea.scrollTop = outputArea.scrollHeight;

Requirement MSwWebViewScriptNotify will be raised only from webviews loaded with ms-appx-web,
ms-Tocal-stream, and https content, where https also requires a content URI rule in your manifest,
otherwise that event will be blocked. ms-appdataisalso allowed if you have a URI resolver involved.
Note that a webview loaded through navigateToString does not have this requirement.

As another demonstration of this call/event mechanism with webview, I've made some changes to
Here My Am! in the HereMyAm4 example in this chapter's companion content. First, I've replaced the
iframe we've been using to load the map page with x-ms-webview. Then | replaced the postMessage
interactions to set a location and pick up the movement of a pin with invokeScriptAsync and
MSWebViewScriptNotify. The code structure is essentially the same, and it's still useful to have some
generic helper functions with all this (though we don't need to worry about setting the right origin
strings as we do with postMessage).

One piece of code we can wholly eliminate is the handler in html/map.html that converted the
contents of a message event into a function call. Such code is unnecessary as invokeScriptAsync goes
straight to the function; just note again that the arguments are passed as a single string so the invoked
function (like our pinLocation in html/map.html) needs to account for that.

205

The piece of code we want to look at specifically is the new callwebviewScript helper, which
replaces the previous callFrameScript function. Here's the core code:
var op = webview.invokeScriptAsync(targetFunction, args);

op.oncomplete = function (args) { /* args.target.result contains script return value */ };
op.onerror = function (e) { /* ... */ };

//Don't forget this, or the script function won't be called!
op.start(Q;

What might strike you as odd as you look at this code is that the return value of invokeScript-
Async is not a promise, but rather a DOM object that has complete and error events (and can have
multiple subscribers to those, of course). In addition, the operation does not actually start until you call
this object’s start method. What gives? Well, remember that the webview is not part of WinRT: it's a
native HTML element supported by the app host. So it behaves like other HTML elements and APIs (like
XMLHttpRequest) rather than WinRT objects. Ah sweet inconsistencies of life!

The reason why start must be called separately, then, is so you can attach completed and error
handlers to the object before the operation gets started, otherwise they won't be called.

Fortunately, it's not too difficult to wrap such an operation within a promise. Just place the same
code structure above within the initialization function passed to new WinJS.Promise, and call the
complete and error dispatchers within the operation’s complete and error events (referto Appendix
A, "Demystifying Promises,” on using WinJS.Promise). Notice here that the return value from the script
function isin args.target.result, so we use that value to complete the promise:

return new WinlJS.Promise(function (completeDispatch, errorDispatch) {
var op = webview.invokeScriptAsync(targetFunction, args);

op.oncomplete = function (args) {;
//Return value from the invoked function (always a string) is in args.target.result
completeDispatch(args.target.result);

1

op.onerror = function (e) {
errorDispatch(e);

};

op.start(Q;
b;

This works because the promise initializer is attaching completed/error handlers before calling
start, where those handlers invoke the appropriate dispatchers. Thus, if you call then or done on the
promise afterit’s already finished, it will call your completed/error handlers right away. You won't miss
out on anything!

For errors that occur outside this operation (such having an invalid targetFunction), be sure to
create an error object with WinJS.ErrorFromName and return a promise in the error state by using
WinJS.Promise.wrapError. You can see the complete code in HereMyAm4 (pages/home/home.js).

206

Capturing Webview Content

The other very useful feature of the webview that really sets it apart is the ability to capture its content,
something that you simply cannot do with an iframe. There are three ways this can happen.

First is the src attribute. Once MSWebViewNavigationCompleted has fired, src will contain a URI to
the content as the webview sees it. For web content, this will be an http[s] URI, which can be opened
in a browser. Local content (loaded from strings or app data files) will start with ms-Tocal-web, which
can be rendered into another webview using navigateToLocalStream. Be aware that while navigation
is happening prior to MSWebViewNavigationCompleted, the state of the src property is indeterminate;
use the uri property in those handlers instead.

Second is the webview's captureSelectedContentToDataPackageAsync method, which reflects
whatever selection the user has made in the webview directly. The fact that a data package is part of
this API suggests its primary use: the Share contract. From a user’s perspective, any web content you're
displaying in the app is really part of the app. So if they make a selection there and invoke the Share
charm, they'll expect that their selected data is what gets shared, and this method lets you obtain the
HTML for that selection. Of course, you can use this anytime you want the selected content—the Share
charm is just one of the potential scenarios.

As with invokeScriptAsync, the return value from captureSelectedContentToDataPackage-
Async is againa DOM-ish object with a start method (don't forget to call this!) along with complete
and error events. If you want to wrap this in a promise, you can use the same structure as shown in
the last section for invokeScriptAsync. In this case, the result you care about within your complete
handler, within its args.target.result, is aWindows .ApplicationModel.DataTransfer.-

DataPackage object, the same as what we encountered in Chapter 2 with the Share charm. Calling its
getView method will produce a DataPackageView whose availableFormats objecttells you what it
contains. You can then use the appropriate get* methods like getHtm1FormatAsync to retrieve the
selection data itself. Note that if there is no selection, args.target.result will be nul11, so you'll need
to guard against that. Here, then, is code from scenario 2 of the WebviewExtras example in this
chapter's companion content that copies the selection from one webview into another, showing also
how to wrap the operationin a promise (js/scenario2,js):

function captureSelection() {
var source = document.getElementById("webviewSource™);

//Wrap the capture method in a promise

var promise = new WinlJS.Promise(function (cd, ed) {
var op = source.captureSelectedContentToDataPackageAsync();
op.oncomplete = function (args) { cd(args.target.result); };
op.onerror = function (e) { ed(e); };
op.start(Q;

b;

//Navigate the output webview to the selection, or show an error
var output = document.getElementById("webviewOutput");

promise.then(function (dataPackage) {

207

http://msdn.microsoft.com/library/windows/apps/dn301836.aspx
http://msdn.microsoft.com/library/windows/apps/br205873.aspx
http://msdn.microsoft.com/library/windows/apps/br205873.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.getview.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackageview.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackageview.gethtmlformatasync.aspx

if (dataPackage == null) { throw "No selection"; }

var view = dataPackage.getView();
return view.getHtmlFormatAsync(Q);
}) .done(function (text) {
output.navigateToString(text);
}, function (e) {
output.navigateToString("Error:

b

+ e.message);

The output of this example is shown in Figure 4-3. On the leftis a webview-hosted page (my blog),
and on the right is the captured selection. Note that the captured selectionisan HTML clipboard
format that includes the extra information at the top before the HTML from the webview. If you need
to extractjust the straight HTML, you'll need to strip off this prefix text up to <!DOCTYPE htm1>.

Generally speaking, captureSelectedContentToDataPackageAsync will produce the formats
AnsiText, Text, HTML Format, Rich Text Format, and msSourceUrl, but not a bitmap. For this you need to
use the third method, capturePreviewToBlobAsync, which again has a start method and
complete/error events. The results of this capture (in args.target.result within the complete
handler) is a blob object for whatever content is contained within the webview's display area.

jersion:1.0 StartHTML:000000197 EndHTML:000004657 StartFragment:000004064

g 4570
[SeurceURL: http://kraigbrockschmidt.com/blog/

kraig brockschmidt

arity A new store, but it's still about selling

great software

SiteHome Blog Articles, Papers, & Essays Books Music, Images, &

AboutKraig Contact Support

FIGURE 4-3 Example output from the WebviewExtras example, showing that the captured selection from a webview
includes information about the selection as well as the HTML itself.

You can do a variety of things with this blob. If you want to display it in an img element, you can use
URL.createObjectURL on this blob directly. This means you can easily load some chunk of HTML in an
offscreen webview (make sure the display style is not “none”) and then capture a blob and display the
results in an img. Besides preventing interactivity, you can also animate that image much more
efficiently than a full webview, applying 3D CSS transforms, for instance. Scenario 3 of my
WebviewExtras example demonstrates this.

For other purposes, like the Share charm, you can call this blob’s msDetachStream method, which
conveniently produces exactly what you need to provide to a data package’s setBitmap method. This
is demonstrated in scenario 7 of the SDK's HTML Webview control sample and more completely (and
accurately) in scenario 4 of the Webview Extras example. For more about the Share contract in general,
see Chapter 15, "Contracts.”

208

http://msdn.microsoft.com/library/windows/apps/dn301835.aspx

HTTP Requests

Rendering web content directly into your layout with the webview element, as we saw in the previous
section, is fabulous provided that, well, you want such content directly in your layout! In many cases
you instead want to retrieve data from the web via HTTP requests. Then you can further manipulate,
combine, and process it either for display in other controls or to simply drive the app's experience.
You'll also have many situations where you need to send information to the web via HTTP requests as
well, where one-way elements like the webview aren't of much use.

Windows gives you a number of ways to exchange data with the web. In this section we'll look at
the APIs for HTTP requests, which generally require that the app is running. One exceptionis that
Windows lets you indicate web content that it might automatically cache, such that requests you make
the next time the app starts (or resumes) can be fulfilled without having to hit the web at all. This takes
advantage of the fact that the app host caches web content just like a browser to reduce network
trafficand improve performance. This pre-caching capability simply takes advantage of that but is
subject to some conditions and is not guaranteed for every requested URI.

Another exceptionis what we'll talk about in the next section, “Background Transfers.” Windows can
do background uploads and downloads on your behalf, which continue to work even when the app is
suspended or terminated. So, if your scenarios involve data transfers that might test the user’s patience
for staring at lovely but oh-so-tiresome progress indicators, and which tempt them to switch to
another app, use the background transfer APl instead of doing it yourself through HTTP requests.

HTTP requests, of course, are the foundation of the RESTful web and many web APIs through which
you can getto an enormous amount of interesting data, including web pages and RSS feeds, of course.
And because other protocols like SOAP are essentially built on HTTP requests, we'll be focused on the
latter here. There are separate WinRT APIs for RSS and AtomPub as well, details for which you can find
in Appendix C.

Right! So | said that there are a number of ways to do HTTP requests. Here they are:

e XMLHttpRequest This intrinsic JavaScript object works just fine in Windows Store apps, which
is very helpful for third-party libraries. Results from this async function come through its
readystatechanged event.

e WinlS.xhr This wrapper provides a promise structure around XMLHttpRequest, as we did in
the last section with the webview's async methods. WinJS. xhr provides quite a bit of flexibility
in setting headers and so forth, and by returning a promise it makes it easy to chain WinJS.xhr
calls with other async operations like WinRT file I/O. You can see a simple example inscenario 1
of the HTML Webview control sample we worked with earlier.

e HttpClient The most powerful, high-performance, and flexible APl for HTTP requests is
found in WinRT in the Windows .Web.Http namespace and is recommended for new code. Its
primary advantages are that it performs better, works with the same cache as the browser,

209

http://msdn.microsoft.com/library/windows/apps/br229787.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa

serves a wider spectrum of HTTP scenarios, and allows for cookie management, filtering, and
flexible transports. You can also create multiple HttpClient instances with different
configurations and use them simultaneously.

We'll be focusing here primarily on HttpClient here. For the sake of contrast, however, let's take a
quick look at WinJS.xhr in case you encounter it in other code.

Note If you have some experience with the .NET framework, be aware that the HttpClient APlin
Windows .Web .Httpis different from .NET's System.Net.Http.HttpClient APL

Downloadable posters Microsoft's networking team has made some API posters for the HttpClient,
Background Transfer, and Sockets APIs, which make handy at-a-glance references.

Using WinJS.xhr

Making a WinJS.xhr call is quite easy, as demonstrated in the SimpleXhrl example for this chapter.
Here we use WinJS.xhr to retrieve the RSS feed from the Windows App Builder blog, noting that the
default HTTP verb is GET, so we don't have to specify it explicitly:

WinJS.xhr({ url: "http://blogs.msdn.com/b/windowsappdev/rss.aspx" })
.done(processPosts, processError, showProgress);

That is, give WinJS.xhr a URI and it gives back a promise that delivers its results to your completed
handler (in this case processPosts) and will even call a progress handler if provided. With the former,
the result contains a responseXML property, which is a DomParser object. With the latter, the event
object contains the current XML in its response property, which we can easily use to display a
download count:
function showProgress(e) {

var bytes = Math.floor(e.response.length / 1024);
document.getElementById("status™).innerText = "Downloaded " + bytes + " KB";

The rest of the app just chews on the response text looking for item elements and displaying the
title, pubDate, and Tink fields. With a little styling (see default.css), and utilizing the WinJS
typography style classes of win-type-x-large (fortitle), win-type-medium (for pubDate), and win-
type-small (for 1ink), we get a quick app that looks like Figure 4-4. You can look at the code to see
the details.3

35 Again, WInRT has a specific API for dealing with RSS feeds in Windows .Web. Syndication, as described in Appendix C.
You can use this if you want a more structured means of dealing with such data sources. As it is, JavaScript has intrinsic
APIs to work with XML, so it's really your choice. In a case like this, the syndication APl along with Windows.Web.AtomPub
and Windows .Data.Xm1 are very much needed by Windows Store apps written in other languages that don’t have the

same built-in features as JavaScript.

210

http://www.microsoft.com/en-us/download/details.aspx?id=40018
http://www.microsoft.com/en-us/download/details.aspx?id=40018

Windows App Builder Blog

Targeting your Windows 8.1 app to the correct version of WinJS 2.0
Tue, 08 Oct 2013 16:00:00 GMT
http://blogs windows.com/windows/b/appbuilder/archive/2013/10/08/targeting-your-windows-8-1-app-to-the-correct-version-of-winjs-2-0.aspx

Blending apps and sites with the HTML x-ms-webview
Tue, 01 Oct 2013 19:00:00 GMT
http://blogs windows.com/windows/b/appbuilder/archive/2013/10/01/blending-apps-and-sites-with-the-html-x-ms-webview aspx

Increasing the app roaming limits
Fri, 27 Sep 2013 20:00:00 GMT
http://blogs.windows.com/windows/b/appbuilder/archive/2013/09/27/increasing-the-app-roaming-limits.aspx

Making it easier to give your app an age rating
Tue, 24 Sep 2013 16:00:00 GMT
http://blogs windows.com/windows/b/appbuilder/archive/2013/08/24/making-it-easier-to-give-your-app-an-age-rating. aspx

Delivering push notifications to millions of devices with Windows Azure Natification Hubs
Mon, 16 Sep 2013 18:54:52 GMT
http://blogs windows.com/windows/b/appbuilder/archive/2013/09/16/delivering-push-notifications-to-millions-of-devices-with-windows-azure-notification-hubs aspx

Updating your JavaScript apps to use the new Windows Web Http API
Fri, 06 Sep 2013 23:00:00 GMT
http://blogs windows.com/windows/b/appbuilder/archive/2013/09/06/updating-your-javascript-apps-to-use-the-new-windows-web-http-api aspx

Get your apps ready for the Windows 8.1 launch!
Tue, 27 Aug 2013 17:00:00 GMT
http://blogs windows.com/windows/b/appbuilder/archive/2013/08/27/get-your-apps-ready-for-the-windows-8-1-launch aspx

FIGURE 4-4 The output of the SimpleXhrl and SimpleXhr2 apps.

In SimpleXhrl too, | made sure to provide an error handler to the WinJS.xhr promise so that |
could atleast display a simple message.

For a fuller demonstration of XMLHttpRequest/WinJS.xhr and related matters, refer to the XHR
handling navigation errors, and URL schemes sample and the tutorial called How to create a mashup in
the docs. Additional notes on XMLHttpRequest and WinJS.xhr can be found in Appendix C.

Using Windows.Web.Http.HttpClient

Let's now see the same app implemented with Windows .Web.Http.HttpClient, which you'll find in
SimpleXhr2 in the companion content. For our purposes, the HttpClient.getStringAsync method is
sufficient:

var htc = new Windows.Web.Http.HttpClient();
htc.getStringAsync(new Windows.Foundation.Uri("http://blogs.msdn.com/b/windowsappdev/rss.aspx"))

.done(processPosts, processError, showProgress);

This function delivers the response body text to our completed handler (processPosts), so we just
need to create a DOMParser object to talk to the XML document. After that we have the same thing as
we received from WinJS.xhr:

var parser = new window.DOMParser();
var xml = parser.parseFromString(bodyText, "text/xml1");

The HttpClient object provides a number of other methods to initiate various HTTP interactions
with a web resource, as illustrated in Figure 4-5.

211

http://code.msdn.microsoft.com/windowsapps/XHR-handling-navigation-50d03a7a
http://code.msdn.microsoft.com/windowsapps/XHR-handling-navigation-50d03a7a
http://msdn.microsoft.com/library/windows/apps/hh452745.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpclient.getstringasync.aspx

HttpClient Async Result

deleteAsync(uri) HttpResponseMessage
postAsync(uri, content) HttpResponseMessage
putAsync(uri, content) HttpResponseMessage
=3
2
a
Web/CIoud HTTP * %‘ sendRequestAsync(message) HttpResponseMessage
Resources a2
o
=
HTTP GET § getAsync(uri) HttpResponseMessage
=
find
HTTP GET getBufferAsync(uri) |Buffer
HTTP GET getinputStreamAsync{uri) lInputStream
HTTP GET getStringAsync(uri) string }
HttpResponseMessage.content:
readAsStringAsync parse as needed
readAsInputStreamAsync .
readAsBufferAsync T saveto file, convert to blob =
bufferAllAsync [into memery] ™ saveto flle, apply encryption <

writeToStreamAsync [to output stream]
headers [collection]
tryComputelength

FIGURE 4-5 The methods in the HttpClient object and their associated HTTP traffic. Note how all traffic is routed
through an app-supplied filter (or a default), which allows fine-grained control on a level underneath the API.

In all cases, the URI is represented by a Windows.Foundation.Uri object, as we saw in the earlier
code snippet. All of the specific get* methods fire off an HTTP GET and deliver results in a particular
form: a string, a buffer, and an input stream. All of these methods (as well as sendRequestAsync)
support progress, and the progress handler receives an instance of Windows .Web.Http.HttpProgress
that contains various properties like bytesReceived.

Working with strings are easy enough, but what are these buffer and input streams? These are
specific WinRT constructs that can then be fed into other APIs such as file I/O (see Windows .Storage.
Streams and Windows.Storage.StorageFile), encryption/decryption (see Windows.Security. -
Cryptography), and also the HTML blob APIs. For example, an IInputStream can be given to
MSApp.createStreamFromInputStream, which results in an HTML MSStream object. This can then be
given to URL.createObjectURL, the result of which can be assigned directly to an img. src attribute.
This is how you can easily fire off an HTTP request for an image resource and show the results in your
layout without having to create an intermediate file in your appdata. For more details, see "“Q&A on
Files, Streams, Buffers, and Blobs” in Chapter 10.

The getAsync method creates a generic HTTP GET request. Its message argument is an
HttpRequestMessage object, where you can construct whatever type of request you need, setting the
requestUri, headers, transportInformation,3 and other arbitrary properties that you want to
communicate to the filter and possibly the server. The completed handler for getAsync will receive an

3% This read-only property works with certificates for SSL connections and contains the results of SSL negotiations; see
HttpTransportInformation.To seta client certificate, there's a property on the HttpBaseProtocolFiTter.

212

http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpprogress.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httprequestmessage.aspx

HttpResponseMessage object, as we'll see in a moment.

Handle exceptions! It's very important with HTTP requests that you handle exceptions, that is,
provide an error handler for methods like getAsync. Unhandled exceptions arising from HTTP requests
has been found to be one of the leading causes of abrupt app termination!

For other HTTP operations, you can see in Figure 4-5 that we have putAsync, postAsync, and
deleteAsync, along with the wholly generic sendRequestAsync. With the latter, its message argument
is againan HttpRequestMessage as used with getAsync, only here you can also set the HTTP method
that will be used (thisis an HttpMethod object that also allows for additional options). deleteAsync,
for its part, works completely from the URI parameters.

In the cases of put and post, the arguments to the methods are the URI and content, which is an
object that provides the relevant data through methods and properties of the IHttpContent interface
(see the lower left of Figure 4-5). It's not expected that you create such objects from scratch (though
you can)—WinRT provides built-inimplementations called HttpBufferContent, HttpStringContent,
HttpStreamContent, HttpMultipartContent, HttpMultipartFormDataContent, and

HttpFormUrlEncodedContent.

What you then get back from getAsync, sendRequestAsync, and the delete, put, and post methods
is an HttpResponseMessage object. Here you'll find all that bits you would expect:

e statusCode, reasonPhrase, and some helper methods for handling errors—namely,
ensureSuccessStatusCode (to throw an exceptionif a certain code is not received) and
isSuccessStatusCode (to check forthe range of 200-299).

e A collectionof headers (of type HttpResponseHeaderCollection, which then leads to many
other secondary classes).

e The original requestMessage (an HttpRequestMessage).

e The source, avalue from HttpResponseMessageSource that tells you whether the data was
received over the network or loaded from the cache.

e The response content, an object with the THttpContent interface as before. Through this you
can obtain the response data as a string, buffer, input stream, and an in-memory array
(bufferAllAsync).

It's clear, then, that the HttpClient object really gives you complete control over whatever kind of
HTTP requests you need to make to a service, including additional capabilities like cache control and
cookie management as described in the following two sections. It's also clear that HttpClient is still
somewhat of a low-level API. For any given web service that you'll be working with, then, | very much
recommend creating a layer or library that encapsulates requests to that API and the process of
converting responses into the data that the rest of the app wants to work with. This way you can also

213

http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpmethod.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.ihttpcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpbuffercontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpstringcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpstreamcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpmultipartcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpmultipartformdatacontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpformurlencodedcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpresponsemessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.headers.httpresponseheadercollection.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httprequestmessage.aspx

isolate the rest of the app from the details of your backend, allowing that backend to change as
necessary without breaking the app. It's also helpful if you want to incorporate additional features of
the Windows.Web.Http API, such as filtering, cache control, and cookie management.

I'd love to talk about cookies first (it's always nice to eat dessert before the main meal!) but it's all
part of filtering. Filtering is a mechanism through which you can control how the HttpClient manages
its requests and responses. A filter is either an instance of the default HttpBaseProtocolFilter class
(in the Windows . Web.Http.Filters namespace) configured for your needs or an instance of a derived
class. You pass this filter object to the HttpClient constructor, which will use HttpBaseProtocol-
Filter as a default if none is supplied. To do things like cache control, though, you create an instance
of HttpBaseProtocolFilter directly, set properties, and then create the HttpClient with it.

Tip It's perfectly allowable and encouraged, even, to create multiple instances of HttpClient when
you need different filters and configurations for different services. There is no penalty in doing so, and
it can greatly simplify your programming model.

The filteris essentially a black box that takes an HTTP request and produces an HTTP response—
refer to Figure 4-5 againfor its place inthe whole process. Within the filter you can handle details like
credentials, proxies, certificates, and redirects, as well as implement retry mechanisms, caching, logging,
and so forth. This keeps all those details in a central place underneath the HttpClient APIs such that
you don't have to bother with them in the code surrounding HttpClient calls.

With cache control, a filter contains a cacheControl property that can be set to an instance of the
HttpCacheControl class. This object has two properties, readBehavior and writeBehavior, which
determine how caching is applied to requests going through this filter. For reading, readBehavior is
set to a value from the HttpCacheReadBehavior enumeration: default (works like a web browser),
mostRecent (does an if-modified-since exchange with the server), and onlyFromCache (for offline use).
For writing, writeBehavior can be a value from HttpCacheWriteBehavior, which supports default
and noCache.

Managing cookies happens on the level of the filter as well. By default—through the
HttpBaseProtocolFilter—the HttpClient automatically reads incoming set-cookie headers, saves
the resulting cookies as needed, and then adds cookies to outgoing headers as appropriate. To access
these cookies, create the HttpClient with an instance of HttpBaseProtocolFilter. Then you can
access the filter's cookieManager property (that sounds like a nice job!). This property is an instance of
HttpCookieManager and has three methods: getCookies, setCookie, and deleteCookie. These allow
you to examine specific cookies to be sent for a request or to delete specific cookies for privacy
concerns.

Cookie behaviorin general follows the same patterns as the browser. A cookie will persist across app
sessions depending on the normal cookie rules: the cookie must be marked as persistent, is subject to
the normal per-app limitations, and so on. Also note that cookies are isolated between apps for normal
security reasons, even if those apps are using the same online resource.

214

http://msdn.microsoft.com/library/windows/apps/windows.web.http.filters.httpbaseprotocolfilter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.filters.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.filters.httpcachereadbehavior.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.filters.httpcachewritebehavior.aspx

For additional thoughts on HttpClient, refer to Updating Your JavaScript Apps to Use the New
Windows Web HTTP API on the Windows App Builder blog. Demonstrations of the AP, including

filtering, can then be found in the HttpClient sample in the Windows SDK. Here's a quick run-down of
what its scenarios demonstrate:

Scenarios 1-3 GET requests for text (with cache control), stream, and an XML list.

Scenarios 4-7 POST requests for text, stream, multipart MIME form, and a stream with
progress.

Scenarios 8-10 Getting, setting, and deleting cookies.

Scenario 11 A metered connection filter that implements cost awareness on the level of the
filter.

Scenario 12 A retry filter that automatically handles 503 errors with Reply-After headers.

To run this sample you must first set up a Tocalhost server along with a data file and an upload
target page. To do this, make sure you have Internet Information Services installed on your machine, as
described below in “Sidebar: Using the Localhost.” Then, from an administrator com mand prompt,
navigate to the sample’s Server folder and run the command powershell —file setupserver.psl. This
will install the necessary server-side files for the sample onthe localhost (c:\inetpub\wwwroot).

Sidebar: Using the Localhost

The localhost is a server process that runs on your local machine, making it possible to debug
both sides of client-server interactions. For this you can use a server like Apache or you can use
the solution that's built into Windows and integrated with the Visual Studio tools: Internet
Information Services (11S).

To turn on IS in Windows, go to Control Panel > Programs and Features > Turn Windows

Features On or Off. Check the Internet Information Services box at the top level, as shown below,
to install the core features:

= Windows Features = B

Turn Windows features on or off (7]

To turn a feature on, select its check box. To turn a feature off, clear its
check box. A filled box means that only part of the feature is turned on.

|E| , MET Framewaork 3.5 {includes .MET 2.0 and 3.0) A
[=] |, .NET Framework 4.5 Advanced Services
[[] |, Active Directory Lightweight Directory Services

J Hyper-V

i Internet Information Services

O

[+#]

[=]

. feEs Hostable Web Core
[l

.

[E=]

, Legacy Components
Media Features

=]

215

http://blogs.windows.com/windows/b/appbuilder/archive/2013/09/06/updating-your-javascript-apps-to-use-the-new-windows-web-http-api.aspx
http://blogs.windows.com/windows/b/appbuilder/archive/2013/09/06/updating-your-javascript-apps-to-use-the-new-windows-web-http-api.aspx
http://code.msdn.microsoft.com/windowsapps/HttpClient-sample-55700664

Once IIS is installed, the local site addressed by http://Tocalhost/ is found in the folder
c:\inetpub\wwwroot. That's where you drop any server-side page you need to work with.

With that page running on the local machine, you can hook it into whatever tools you have
available for server-side debugging. Here it's good to know that access to localhost URIs—also
known as local loopback—is normally blocked for Windows Store apps unless you're on a
machine with a developer license, which you are if you're been running Visual Studio or Blend.
This won't be true for your customer’s machines, though! In fact, the Windows Store will reject
apps that attempt to do so.%’

To install other server-side features on IIS, like PHP or Visual Studio Express for Web (which
allows you to debug web pages), use Microsoft's Web platform installer. We'll make use of these
when we work with live tiles in Chapter 16.

Suspend and Resume with Online Content

Now that we've seen the methods for making HTTP requests to any URI, you really have the doors of
the web wide open to you. As many web APIs provide REST interfaces, interacting with them is just a
matter of putting together the proper HTTP requests as defined by the APl documentation. | must
leave such details up to you because processing that data within your app has little to do with the
Windows platform (except for creating Ul with collection controls, but that's for a later chapter).

Instead, what concerns us here are the implications of suspend and resume. In particular, an app
cannot predict how long it will stay suspended before being resumed or before being terminated and
restarted.

In the first case, an app that gets resumed will have all its previous data still in memory. It very much
needs to decide, then, whether that data has become stale since the app was suspended and whether
sessions with other servers have exceeded their timeout periods. You can also think of it this way: after
what period of time will users not remember nor care what was happening the last time they saw your
app? If it's a week or longer, it might be reasonable to resume or restart in a default state. Then again,
if you pick up right back where they were, users gain increasing confidence that they can leave apps
running fora long time and not lose anything. Or you can compromise and give the user options to
choose from. You'll have to think through your scenarios, of course, but if there's any doubt, resume
where the app left off.

To check elapsed time, save a timestamp on suspend (from new Date().getTime()), getanother
timestamp in the resuming event, take the difference, and compare that against your desired refresh
period. A Stock app, for example, might have a very short period. With the Windows App Builder blog,
on the other hand, new posts don't show up more than once per day, so a much longer period on the

37 Visual Studio enables local loopback by default for a project. To change it, right-click the project in Solution Explorer,
select Properties, select Configuration Properties > Debugging on the left side of the dialog, and set Allow Local Network

Loopback to No. For more on the subject of loopback, see How to enable loopback and troubleshoot network isolation.
216

http://www.microsoft.com/web/downloads/platform.aspx
http://msdn.microsoft.com/library/windows/apps/Hh780593.aspx

order of hours is sufficient to keep up-to-date and to catch new posts within a reasonable timeframe.

This is implemented in SimpleXhr2 by first placing the getStringAsync call into a separate function
called downToadPosts, which is called on startup. Then we register for the resuming event with WinRT:
Windows .UI.WebUI.WebUIApplication.onresuming = function O {

app.queueEvent({ type: "resuming" });
}

Remember how | said in Chapter 3, "App Anatomy and Performance Fundamentals,” we could use
WinJS.Application.queueEvent to raise our own events to the app object? Here's a great example.
WinJS.Application doesn't automatically wrap the resuming event because it has nothing to add to
that process. But the code above accomplishes exactly the same thing, allowing us to register an event
listener right alongside other events like checkpoint:
app.oncheckpoint = function (args) {

//Save in sessionState in case we want to use it with caching

app.sessionState.suspendTime = new Date().getTime(Q);
b

app.addEventListener("resuming”, function (args) {
//This is a typical shortcut to either get a variable value or a default
var suspendTime = app.sessionState.suspendTime || O;

//Determine how much time has elapsed in seconds
var elapsed = ((new Date().getTime()) - suspendTime) / 1000;

//Refresh the feed if > 1 hour (or use a small number for testing)
if (elapsed > 3600) {
downloadPosts();
}
b;

To test this code, run it in Visual Studio’s debugger and set breakpoints within these events. Then
click the suspend button in the toolbar, and you should enter the checkpoint handler. Wait a few
seconds and click the resume button (playicon), and you should be in the resuming handler. You can
then step through the code and see that the elapsed variable will have the number of seconds that
have passed, and if you modify that value (or change 3600 to a smaller number), you can see it call
downloadPosts again to perform a refresh.

What about launching from the previously terminated state? Well, if you didn't cache any data from
before, you'll need to refresh it again anyway. If you do cache some of it, your saved state (including
the timestamp) helps you decide whether to use the cache or simply load data anew. You can also take
a hybrid approach of drawing on your own cache as much as you can and then updating it with
whatever new data comes from the service.

What helps in this context is that you can ask Windows to prefetch the responses for various URIs,
such that when you make the request it is fulfilled from that prefetch cache. And that's our next topic.

217

Prefetching Content

HTTP requests made through the XMLHttpRequest, WinJX.xhr, and HttpClient APIs all interoperate
with the internet cache, such that repeated requests for the same remote resource, whether from an
app or Internet Explorer, can be fulfilled from the cache. (HttpClient also gives you control over how
the cache is used.) Caching works great for offline scenarios and improving performance generally.38

One of the first things that many connected apps do upon launch is to make HTTP requests for their
home page content. If such a request has not been made previously, however, or if the response data
has changed since the last request, the user will have to wait for that data to arrive. This clearly affects
the app’s startup performance. What would really help, then, is having a way to get that content into
the internet cache before the app makes the request directly.

Apps can do this by asking Windows to prefetch online content (any kind of data) into the cache,
which will take place even when the app itself isn't running. Of course, Windows won't just fulfill such
requests indiscriminately, so it applies these limits:

e Prefetching happens only when power and network conditions are met (Windows won't
prefetch on metered networks or when battery power is low).

e Prefetching is prioritized for apps that the user runs most often.

e Prefetching is prioritized for content that apps actually request later on. That is, if an app makes
a prefetch request but seldom asks for it, the likelihood of the prefetch decreases.

e Windows limits the overall number of requests to 40.

e Resources are cached only for the length of time indicated in the response headers.

In other words, apps don't have control over whether their prefetching requests are fulfilled—
Windows optimizes the process so that users see increased performance for the apps they use and the
content they access most frequently. Apps simply continue to make HTTP requests, and if prefetching
has taken place those requests will just be fulfilled right away without hitting the network.

There are two ways to make prefetching requests. The first is to insert Windows . Foundation.Uri
objects into the Windows .Networking.BackgroundTransfer.ContentPrefetcher.contentUris
collection. This collection is a vector (see Chapter 6), so you use methods like append to add the URIs
and removeAt to delete them. Note that you can modify this list both from the running app and froma
background task. The latter especially lets you periodically refresh the list without having the user run

the app.

Here's a quick example from scenario 1 of the ContentPrefetcher sample (js/S1-direct-content-

38 For readers familiar with .NET languages, note that the .NET System.Net.HttpClient APl does not benefit from the
cache or precaching.

218

http://msdn.microsoft.com/library/windows/apps/windows.foundation.uri.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.contentprefetcher.contenturis.aspx
http://msdn.microsoft.com/library/windows/apps/br206631.aspx
http://code.msdn.microsoft.com/windowsapps/ContentPrefetcher-Sample-5822048a

uris.js, with some error handling omitted):

uri = new Windows.Foundation.Uri(uriToAdd);
Windows .Networking.BackgroundTransfer.ContentPrefetcher.contentUris.append(uri);

The second means is to give the prefetcher the URI of an XML file (local or remote) that contains
your list. You store this in the ContentPrefetcher.indirectContentUri property, asshownin
scenario 2 of the sample (js/S2-indirect-content-uri js).

uri = new Windows.Foundation.Uri("http://example.com/prefetchlist.xm1");
Windows .Networking.BackgroundTransfer.ContentPrefetcher.indirectContentUri = uri;

This allows your service to maintain a dynamic list of URIs (like those of a news feed) such that your
prefetching stays very current. The XML in this case should be structured as follows, with as many URIs
as are needed (the exact schema is on the indirectContentUri page linked above):

<?xml version="1.0" encoding="utf-8"7>

<prefetchUris>
<uri>http://example.com/2013-02-28-headlines.json</uri>
<uri>http://example.com/2013-02-28-1mg1295.jpg</uri>
<uri>http://example.com/2013-02-28-1mgl296.jpg</uri>
<uri>http://example.com/2013-02-28-ad_config.xml</uri>

</prefetchUris>

Note Prefetch requests will include X-MS-RequestType: Prefetch in the headers if services need to
differentiate the request from others. Existing cookies will also be included in the request, but beyond
that there are no provisions for authentication.

Lastly, the ContentPrefetcher.lastSuccessfulPrefetchTime property tells you just how fresh
the content really is. Scenario 3 of the sample retrieves this timestamp (js/S3-last-prefetch-time.js):

var TlastPrefetchTime =
Windows .Networking.BackgroundTransfer.ContentPrefetcher.lastSuccessfulPrefetchTime;

You can use this to decide whether you still want to make a direct request, in which case you'll need
to use the HttpCacheReadBehavior.mostRecent flagwiththe HttpClient object’s CacheControl to
make sure you have the latest data. Note that you must use HttpClient rather than WinJS.xhr to
exercise this degree of control.

Background Transfer

A common use of HTTP requests is to transfer potentially large files to and from an online repository.
For even moderately sized files, however, this presents a challenge: very few users typically want to
stare at their screen to watch file transfer progress, so it's highly likely that they'll switch to another app
to do something far more interesting while the transfer is taking place. In doing so, the app that's
doing the transfer will be suspended and possibly even terminated. This does not bode well for trying
to complete such operations using a mechanism like HttpClient!

219

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.contentprefetcher.indirectcontenturi.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.contentprefetcher.lastsuccessfulprefetchtime.aspx

One solution would be to provide a background task for this purpose, which was a common request
with early previews of Windows 8. However, there’s little need to run app code for this common
purpose, so WinRT provides a specific API, Windows .Networking.BackgroundTransfer (which
includes the prefetcher, as we just saw at the end of the previous section). This API supports up to 500
scheduled transfers systemwide and typically runs five transfers in parallel. It offers built-in cost
awareness and resiliency to changes in connectivity (switching seamlessly to the user's preferred
network), relieving apps from such concerns. Transfers continue when an app is suspended and will be
paused if the app is terminated (including if the user terminates the app with a gesture or Alt+F4),
except for uploads (HTTP POST) which cannot be paused. When the app is resumed or launched again,
it can then check the status of background transfers it previously initiated and take further action as
necessary—processing downloaded information, noting successful uploads in its Ul (issuing toasts and
tile updates is built into the API), and enumerating pending transfers, which will restart any that were
paused or otherwise interrupted.

In short, use the background transfer APl whenever you expect the operation to exceed your
customer’s tolerance for waiting. This clearly depends on the network’s connection speed and whether
you think the user will switch away from your app while such a transfer is taking place. For example, if
you initiate a transfer operation but the user can continue to be productive (or entertained) in your app
while that's happening, using HTTP requests directly might be a possibility, though you'll still be
responsible for cost awareness and handling connectivity. If, on the other hand, the user cannot do
anything more until the transfer is complete, you might choose to use background transfer for perhaps
any data larger than 500K or some other amount based on the current network speed.

In any case, when you're ready to employ background transfer in your app, the
BackgroundDownloader and BackgroundUploader objects will become your fast friends. Both objects
have methods and properties through which you can enumerate pending transfers as well as perform
general configuration of credentials, HTTP request headers, transfer method, cost policy (for metered

networks), and grouping. Each individual operation is then represented by a DownloadOperation or
UploadOperation object, through which you can control the operation (pause, cancel, etc.) and
retrieve status. With each operation you can also set priority, credentials, cost policy, and so forth,
overriding the general settings in the BackgroundDownToader and BackgroundUploader classes. Both
operation classes also have a constructor to which you can passa StorageFile that contains a request
body, in case the service you're working with requires something like form data for the transfer.

Note In both download and upload cases, the connection request will be aborted if a new TCP/SSL
connection is not established within five minutes. Once there’s a connection, any other HTTP request
involved with the transfer will time out after two minutes. Background transfer will retry an operation
up to three times if there's connectivity and will defer retries if there’s no connectivity.

One of the primary reasons why we have the background transfer APl is to allow Windows to
automatically manage transfers according to systemwide considerations. Changes in network cost, for
example, can cause some transfers to be paused until the device returns to an unlimited network. To
save battery power, long-running transfers can be slowed (throttled) or paused altogether, as when the

220

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounddownloader.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.aspx

system goes into standby. In the latter case, apps can keep the process going by requesting an
unconstrained transfer. This way a user can let a very large download run all day, if desired, rather than
coming back some hours later only to find that the transfer was paused. (Note that a user consent
prompt appears if the device is on battery power.)

To see the background transfer APl in action, let's start by looking at the Background transfer
sample. Note that this sample depends on having the localhost set up on your machine as we did with
the HttpClient sample earlier. Refer back to “Sidebar: Using the localhost” for instructions, and be sure
to run powershell —file setupserver.psl in the sample’s Server folder to set up the necessary files.

Basic Downloads

Scenario 1 (js/downloadFilejs) of the Background transfer sample lets you download any file from the
localhost server and save it to the Pictures library. By default the URI entry field is set to a specific
localhost URI and the control is disabled. This is because the sample doesn't perform any validation on
the URI, a process that you should always perform in your own app. If you'd like to enter other URIs in
the sample, of course, just remove disabled="disabled" from the serverAddressField elementin
html/downloadFile.html.

By default, scenario 1 here makes a request to http.//localhost/BackgroundTransferSample/
download.aspx, which serves up a stream of 5 million‘a’ characters. The sample saves this content in a
text file, so you won't see any image showing up on the display, but you will see progress. Change the
URI to an image file3? and you'll see that image appearonthe display. (You can also copy an image file
to c:\inetpub\wwwroot and point to it there.) Note that you can kick off multiple transfers to observe
how they are all managed simultaneously; the cancel, pause, and resume buttons help with this.

Three flavors of download are supported in the WinRT API and reflected in the sample:

e A normal download at normal priority. Such a transfer continues to run when the app is
suspended, but if it's a long transfer it could be slowed (throttled) or paused depending on
system conditions like battery life and network type. The system supports up to five parallel
transfers at normal priority.

¢ A normal download at high priority. Typically an app will setits most important download at a
higher priority than others it starts at the same time. A high-priority transfer will start even if
there are already five normal-priority downloads running. If you schedule multiple high-priority
transfers, up to six of them will run in parallel (one plus replacing all of the five normal -priority
downloads) until the high-priority queue is cleared, then normal-priority transfers are resumed.

e Anunconstrained download at either priority. As noted before, an unconstrained download will
continue to run (subject to user consent) even in modes like connected standby. You use this
feature in scenarios where you know the user would want a transfer to continue possibly for a

39 Might I suggest http:

http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61
http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61
http://kraigbrockschmidt.com/images/photos/kraigbrockschmidt-dot-com-122-10-S.jpg

long period of time and not have it interrupted or paused.

Starting a download happens as follows. First create a StorageFiTe to receive the data (though this
is not required, as we'll see laterin this section). Then create a DownloadOperation object for the
transfer using BackgroundDownTloader.createDownload, to which you pass the URI of the data, the
StorageFiTe in which to store it, and an optional StorageFile containing a request body to send to
the server when starting the transfer (more on this later). In the operation object you can then set its
priority, method, costPolicy, and transferGroup propertiesto override the defaults supplied by
the BackgroundDownloader. The priority is a BackgroundTransferPriority value (default or high),
and method is a string that identifies the type transfer being used (normally GET for HTTP or RETR for
FTP). We'll come back to the other two properties later in the “Setting Cost Policy” and “Grouping
Transfers” sections.

Once the operationis configured as needed, the last step is to call its startAsync method, which
returns a promise to which you attach your completed, error, and progress handlers via then or done.
Here's code from js/downloadFile.js:%

// Asynchronously create the file in the pictures folder (capability declaration required).
Windows .Storage.KnownFolders.picturesLibrary.createFileAsync(fileName,
Windows .Storage.CreationColT1isionOption.generateUniqueName)
.done(function (newFile) {
// Assume uriString is the text URI of the file to download
var uri = Windows.Foundation.Uri(uriString);
var downloader = new Windows.Networking.BackgroundTransfer.BackgroundDownTloader();

// Create a new download operation.
var download = downloader.createDownload(uri, newFile);

// Start the download
var promise = download.startAsync().done(complete, error, progress);

}

While the operation underway, the following properties provide additional information on the
transfer:

e requestedUri and resultFile The same as those passed to createDownload.
e guid A unique identifier assigned to the operation.

e progress A BackgroundDownloadProgress structure with bytesReceived,
totalBytesToReceive, hasResponseChanged (a Boolean, see the getResponseInformation
method below), hasRestarted (a Booleansetto true if the download had to be restarted), and

status (aBackgroundTransferStatus value: idle, running, pausedByApplication,
pausedCostedNetwork, pausedNoNetwork, canceled, error, and completed).

40 The code in the sample has more structure than shown here. It defines its own DownloadOperation class that
unfortunately has the same name as the WinRT class, so I'm electing to omit mention of it.

222

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.downloadoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferpriority.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounddownloadprogress.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferstatus.aspx

A few methods of DownloadOperation can also be used with the transfer:

e pause and resume Control the download in progress. We'll talk more of these in the "Suspend,
Resume, and Restart with Background Transfers” section below.

e getResponseInformation Returns a ResponseInformation objectwith properties named
headers (a collection of response headers from the server), actualUri, isResumable, and
statusCode (from the server). Repeated calls to this method will return the same information
until the hasResponseChanged property is set to true.

e getResultStreamAt Returnsan IInputStream forthe content downloaded so far or the
whole of the data once the operationis complete.

In scenario 1 of the sample, the progress function—which is given to the promise returned by
startAsync—uses getResponseInformation and getResultStreamAt to show a partially
downloaded image:

var currentProgress = download.progress;
/...

// Get Content-Type response header.
var contentType = download.getResponseInformation().headers.Tookup("Content-Type™);

// Check the stream is an image.

if (contentType.indexOf("image/") === 0) {
// Get the stream starting from byte 0.
imageStream = download.getResultStreamAt(0);

// Convert the stream to a WinRT type
var msStream = MSApp.createStreamFromInputStream(contentType, imageStream);
var imageUrl = URL.createObjectURL(msStream);

// Pass the stream URL to the HTML image tag.
id("imageHolder").src = imageUrl;

// Close the stream once the image is displayed.
id("imageHolder").onload = function () {
if (imageStream) {
imageStream.close();
imageStream = null;

};

All of this works because the background transfer API is saving the downloaded data into a
temporary file and providing a stream on top of that, hence a function like URL.createObjectURL
does the same job as if we provided it with a StorageFile object directly. Once the

DownTloadOperation object goes out of scope and is garbage collected, however, that temporary file
will be deleted.

223

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.responseinformation.aspx

The existence of this temporary file is also why, as | noted earlier, it's not actually necessary to
provide a StorageFile objectin which to place the downloaded data. That is, you can pass nulT as
the second argument to createDownload and work with the data through DownToadOperation.-
getResultStreamAt. This is entirely appropriate if the ultimate destination of the data in your app isn't
a separate file.

As mentioned earlier, there is a variation of createDownload that takes a second StorageFile
argument whose contents provide the body of the HTTP GET or FTP RETR request that will be sent to the
server URI before the download is started. This accommodates some websites that require you to fill out
a form to start the download. Similarly, createDownloadAsync supplies the request body through an
IInputStream instead of a file, if that's better suited to your needs.

Sidebar: Where Is Cancel?

You might have already noticed that neither DownToadOperation nor UploadOperation have
cancellation methods. So how is this accomplished? You cancel the transfer by canceling the
startAsync operation, which means calling the cancel method of the promise returned by
startAsync. Thus, you need to hold on to the promises for each transfer you initiate if you want
to possibly cancel them later on.

Requesting an Unconstrained Download

To request an unconstrained download, you use pretty much the same code as in the previous section

except for one additional step. With the DownToadOperation from BackgroundDownloader.create-

Download, don't call startAsync right away. Instead, place that operation object (and others, if

desired) into an array, then pass that array to BackgroundDownloader.requestUnconstrained-

DownloadsAsync. This async function will complete with an UnconstrainedTransferRequestResult

object, whose single isContrained member will tell you whether the request was granted. Here's the

code from the sample for that case (js/downloadFile,js):

Windows .Networking.BackgroundTransfer.BackgroundDownloader
.requestUnconstrainedDownToadsAsync(requestOperations)

.done(function (result) {

printLog("Request for unconstrained downloads has been " +
(result.isUnconstrained ? "granted" : "denied") + "
");

promise = download.startAsync().then(complete, error, progress);
}, error);

As you can see, you still call startAsync after making the request, which the sample here does
regardless of the request result. In your own app, however, you can make other decisions, such as
setting a higher priority for the download even if the request was denied.

224

http://msdn.microsoft.com/library/windows/apps/hh943065.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounddownloader.createdownloadasync.aspx

Basic Uploads

Scenario 2 (js/uploadFile.js) of the Background transfer sample exercises the background upload
capability, specifically sending some file (chosen through the file picker) to a URI that can receive it. By
default the URI points to http.//localhost/BackgroundTransferSample/upload.aspx, a page installed with
the PowerShell script that sets up the server. As with scenario 1, the URI entry control is disabled
because the sample performs no validation, as you would again always want to do if you accepted any
URI from an untrusted source (user input in this case). For testing purposes, of course, you can remove
disabled="disabled" from the serverAddressField element in html/uploadFile.ntml and enter other
URIs that will exercise your own upload services. This is especially handy if you run the server part of
the sample in Visual Studio Express for Web where the URI will need a localhost port number as
assigned by the debugger.

In addition to a button to start an upload and to cancel it, the sample provides another button to
start a multipart upload. For more on breaking up large files and multipart uploads, see Appendix C.

In code, an upload happens very much like a download. Assuming you have a StorageFile with
the contents to upload, create an UploadOperation object forthe transfer with
BackgroundUploader.createUpload. If, on the other hand, you have datain a stream
(IInputStream), create the operation object with BackgroundUploader.createUploadFrom-
StreamAsync instead. This can also be used to break up a large file into discrete chunks, if the server
can accommodate it; see “Breaking Up Large Files” in Appendix C.

With the operation objectin hand, you can customize a few properties of the transfer, overriding
the defaults provided by the BackgroundUpToader. These are the same as for downloads: priority,
method (HTTP POST or PUT, or FTP STOR), costPolicy, and transferGroup. For the lattertwo, again
see "Setting Cost Policy” and “Grouping Transfers” below.

Once you're ready, the operation’s startAsync starts the upload:*

// Assume uri is a Windows.Foundation.Uri object and file is the StorageFile to upload
var uploader = new Windows.Networking.BackgroundTransfer.BackgroundUploader();

var upload = uploader.createUpload(uri, file);

promise = upload.startAsync().then(complete, error, progress);

While the operationis underway, the following properties provide additional information on the
transfer:

e requestedUri and sourceFile The same as those passed to createUpload (an operation
created with createUploadFromStreamAsync supports only requestedUri).

e guid A unique identifier assigned to the operation.

e progress A BackgroundUploadProgress structure with bytesReceived,

41 As with downloads, the code in the sample has more structure than shown here and again defines its own
UploadOperation class with the same name as the one in WinRT, so I'm omitting mention of it.

225

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.uploadoperation.aspx
http://msdn.microsoft.com/library/windows/apps/hh701127.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.createuploadfromstreamasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.createuploadfromstreamasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploadprogress.aspx

totalBytesToReceive, bytesSent, totalBytesToSend, hasResponseChanged (a Boolean, see
the getResponseInformation method below), hasRestarted (a Booleansetto true if the
upload had to be restarted), and status (a BackgroundTransferStatus value, again with
values of id1e, running, pausedByApplication, pausedCostedNetwork, pausedNoNetwork,

canceled, error, and completed).

Unlike a download, an UpToadOperation does not have pause or resume methods but does have
the same getResponseInformation and getResultStreamAt methods. In the upload case, the
response from the server is less interesting because it doesn't contain the transferred data, just headers,
status, and whatever body contents the upload page cares to return. If that page returns some
interesting HTML, though, you might use the results as part of your app’s output for the upload.

As noted before, to cancel an UpToadOperation, call the cancel method of the promise returned
from startAsync. You can also see that the BackgroundUploader also has a requestUnconstrained-
UploadsAsync method like that of the downloader, to which you can pass an array of Upload-
Operation objects for the request. Again, the result of the request tells you whether or not the request
was granted, allowing you to decide what you might want to change before calling each operation’s

startAsync.

Completion and Error Notifications

With long transfer operations, users typically want to know when those transfers are complete or if an
error occurred along the way. However, those transfers might finish or fail while the app is suspended,
so the app itself cannot directly issue such notifications. For this purpose, the app can instead supply
toast notifications and tile updates to the BackgroundDownToader and BackgroundUpTloader classes.
Notice that you're not setting notifications on individual operation objects, which means that the
content of these notifications should describe all active transfers as a whole. If you have only a single
transfer, then of course your language can reflect that, but otherwise you'll want to be more generic
with messages like "Your new photo gallery of 108 images has finished uploading.”

The downloader and uploader objects each have four different notification objects you can set:

. successToastNotification and failureToastNotification Instances of the
Windows .UI.Notifications.ToastNotification class.

e successTileNotification and failureTileNotification Instances of the
Windows.UI.Notification.TileNotification class.

For details on using these classes, including all the different templates you can use, refer to Chapter
16. Basically you create these instances as if you intend to issue notifications directly from the app, but
hand them off to the downloader and uploader objects so that they can do it on your behalf.

226

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotification.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tilenotification.aspx

Providing Headers and Credentials

Within the BackgroundDownloader and BackgroundUploader you have the ability to set values for
individual HTTP headers by using their setRequestHeader methods. Both take a header name and a
value, and you call them multiple times if you have more than one header to set.

Similarly, both the downloader and uploader objects have two properties for credentials:
serverCredential and proxyCredential, depending on the needs of your server URI. Both
properties are Windows . Security.Credentials.PasswordCredential objects. Asthe purposein a
background transfer operationis to provide credentials to the server, you'd typically create a
PasswordCredential as follows:

var cred = new Windows.Security.Credentials.PasswordCredential(resource, userName, password);

where the resource in this case is just a string that identifies the resource to which the credentials
applies. This is used to manage credentials in the credential locker, as we'll see in the “Authentication,
the Microsoft Account, and the User Profile” section later. For now, just creating a credential in this way
is all you need to authenticate with your server when doing a transfer.

Note At present, setting the serverCredential property doesn't work with URIs that specify an FTP
server. To work around this, include the credentials directly in the URI with the form ftp://<user>:
<password > @server.com/file.ext (for example, ftp://admin:passwordl@server.com /ffile.bin).

Setting Cost Policy

As mentioned earlier in the “Cost Awareness” section, the Windows Store policy requires that apps are
careful about performing large data transfers on metered networks. The Background Transfer API takes
this into account, based on values from the BackgroundTransferCostPolicy enumeration:

e default Allow transfers on costed networks.
e unrestrictedOnly Do not allow transfers on costed networks.

e always Alwaysdownload regardless of network cost.

To apply a policy to subsequent transfers, set the value of BackgroundDownloader.costPolicy
and/or BackgroundUploader.costPolicy. The policy for individual operations can be set through the
DownToadOperation.costPolicy and UploadOperation.costPolicy properties.

Basically, youwould change the policy if you've prompted the user accordingly or allow them to set
behavior through your settings. For example, if you have a setting to disallow downloads or uploads on
a metered network, you'd set the general costPolicy to unrestrictedOnly. If you know you're on a
network where roaming charges would apply and the user has consented to a transfer, you'd want to
change the costPolicy of that individual operationto always. Otherwise the APl would not perform
the transfer because doing so on a roaming network is disallowed by default.

227

http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordcredential.aspx

When a transfer is blocked by policy, the operation’s progress.status property will contain
BackgroundTransferStatus.pausedCostedNetwork.

Grouping Transfers

Grouping multiple transfers together lets you enumerate and control related transfers. For example, a
photo app that organizes pictures into albums or album pages can present a Ul through which the user
can pause, resume, or cancel the transfer of an entire album, rather than working on the level of
individual files. The grouping features of the background transfer APl makes the implementation of this
kind of experience much easier, as the app doesn't need to maintain its own grouping structures.

Note Grouping has no bearing on the individual transfers themselves, nor is grouping information
communicated to servers. Grouping is simply a client-side management mechanism.

Grouping is set through the transferGroup property that's found in the BackgroundDownloader,
BackgroundUploader, DownloadOperation, and UploadOperation objects. This property is a
BackgroundTransferGroup object created through the static BackgroundTransferGroup. -
createGroup method using whatever name you want to use for that group. Note that the
transferGroup property can be set only through BackgroundDownloader and BackgroundUpToader;
you would assign this prior to creating a series of individual operations in that group. Each individual
operation object will then have that same transferGroup as a read-only property.

In addition to its assigned name, a transferGroup objecthas a transferBehavior property, which
is a value from the BackgroundTransferBehavior enumeration. This allows you to control whether
the operations in the group happen serially orin parallel. A video player fora TV series, for example,
could place all the episodes in the same group and then set the behavior to BackgroundTransfer-
Behavior.serialized. This ensures that the group’s operations are done one at a time, reflecting how
the user is likely to consume that content. A photo gallery app that download a composite page of
large images, on the other hand, might use BackgroundTransferBehavior.parallel (the default). As
for pausing, resuming, and cancelling groups, that's best discussed in the context of app lifecycle
events, which is the subject of the next section.

Suspend, Resume, and Restart with Background Transfers

Earlier | mentioned that background transfers will continue while an app is suspended, and paused if
the app is terminated by the system. Because apps will be terminated only in low-memory conditions,
it's appropriate to also pause background transfers in that case.

When an app is resumed from the suspended state, it can check on the status of pending transfers
by using the BackgroundDownloader.getCurrentDownloadsAsync and BackgroundUploader. -
getCurrentUploadsAsync methods. To limit that list to a specific transferGroup, use the
getCurrentDownloadsForTransferGroupAsync and getCurrentUploadsForTransferGroupAsync

228

methods instead.*?

The list that comes back from these methods is a vector of DownTloadOperation and
UploadOperation objects, which can be iterated like an array:

Windows .Networking.BackgroundTransfer.BackgroundDownloader.getCurrentDownloadsAsync()
.done(function (downloads) {
for (var i = 0; i < downloads.size; i++) {
var download = downloads[i];

3
s

Windows .Networking.BackgroundTransfer.BackgroundUploader.getCurrentUploadsAsync()
.done(function (uploads) {
for (var i = 0; i < uploads.size; i++) {
var upload = uploads[i];
}
B;

In each case, the progress property of each operation will tell you how far the transfer has come
along. The progress.status property is especially important. Again, status is a
BackgroundTransferStatus value and will be one of id1e, running, pausedByApplication,
pausedCostedNetwork, pausedNoNetwork, canceled, error, and completed). These are clearly
necessary to inform users, as appropriate, and to give them the ability to restart transfers that are
paused or experienced an error, to pause running transfers, and to act on completed transfers.

Speaking of which, when using the background transfer API, an app should always give the user
control over pending transfers. Downloads can be paused through the DownloadOperation.pause
method and resumed through DownloadOperation.resume. (There are no equivalents for uploads.)
Download and upload operations are canceled by canceling the promises returned from startAsync.
Again, if you requested a list of transfers for a particular group, iterate over the results to affect the
operations in that group.

This brings up an interesting situation: if your app has been terminated and later restarted, how do
you restart transfers that were paused? The answer is quite simple. By enumerating transfers through
getCurrentDownloads [ForTransferGroup]Async and getCurrentUploads[ForTransferGroup]-
Async, incomplete transfers are automatically restarted. But then how do you retrieve the promises
originally returned by the startAsync methods? Those are not values that you can save in your app
state and reload on startup, and yet you need them to be able to cancel those operations, if necessary,
and also to attach your completed, error, and progress handlers.

For this reason, both DownTloadOperation and UpToadOperation objects provide a method called
attachAsync, which returns a promise for the operationjust like startAsync did originally. You can
then call the promise’s then or done methods to provide your handlers:

42 The optional group argument for the other methods is obsolete and replaced with these that work with a transferGroup
argument.

229

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferstatus.aspx

promise = download.attachAsync().then(complete, error, progress);

and call promise.cancel if needed. In short, when Windows restarts a background transfer and
essentially calls startAsync on your app's behalf, it holds that promise internally. The attachAsync
methods simply return that new promise.

Authentication, the Microsoft Account, and the User Profile

If you think about it, just about every online resource in the world has some kind of credentials or
authentication associated with it. Sure, we can read many of those resources without credentials, but
having permission to upload data to a website is more tightly controlled, as is access to one’s account
or profile in a database managed by a website. In many scenarios, then, apps need authenticate with
services in some way, using service-specific credentials or perhaps using accounts from other providers
like Facebook, Twitter, Microsoft, and so on.

There are two approaches for dealing with credentials. First, you can collect credentials directly
through your own Ul, which means the app is fully responsible for protecting those credentials. For this
there are a number of design guidelines for different login scenarios, such as when an app requires a
loginto be useful and when a loginis simply optional. These topics, as well as where to place loginand
account/profile management Ul, are discussed in Guidelines for login controls.

For storage purposes, the Credential Locker APl in WinRT will help you out here—you can securely
save credentials when you collect them and retrieve them in later sessions so that you don't have to
pester the user again. Transmitting those credentials to a server, on the other hand, will require
encryption work on your part, and there are many subtleties that can get complicated. For a few notes
on encryption APIs in WinRT, as well as a few other security matters, see Appendix C.

The simpler and more secure approach—one that we highly recommend—is to use the Web
Authentication Broker API. This lets the user authenticate directly with a server in the broker’s Ul,
keeping credentials entirely on the server, after which the app receives back a token to use with later
calls to the service. The Web Authentication Broker works with any service that's been setup asa
provider. This can be your own service, as we'll see, or an OAuth/OpenlID provider.

Tip When thinking about providers that you might use for authentication, remember that non-
domain-joined users sign into Windows with a Microsoft account to begin with. If you can leverage
that Microsoft account with your own services, signing into Windows means they won't have to enter
any additional credentials or create a separate account for your service, providing a delightfully
transparent experience. The Microsoft account also provides access to other features, as we'll see in
“Using the Microsoft Account” later on.

One of the significant benefits of the Web Authentication Broker is that authentication for any given
service transfers across apps as well as websites, providing a very powerful single sign-on experience for
users. That is, once a user signs in to a service—eitherin the browser or in an app that uses the

230

http://msdn.microsoft.com/library/windows/apps/hh965453.aspx

broker—they're already signed into other apps and sites that use that same service (again, signing into
Windows with a Microsoft account also applies here). To make the story even better, those credentials
also roam across the user's trusted devices (unless they opt out) so that they won't even have to
authenticate again when they switch machines. Personally I've found this marvelously satisfying—when
setting up a brand new device, for example, all those credentials are immediately in effect!

Sidebar: User Verification via Fingerprints

If your scenario calls for verification that the user that is logged into the current Microsoft
account is physically present (as opposed to someone who just happens to know a password),
check out the APl in Windows.Security.Credentials.UI.UserConsentVerifier. This object
has just two methods, checkAvailabilityAsync and requestVerificationAsync, and yet
provides one of the str