
Statistical Approaches to Question Answering in Watson
J. William Murdock and Gerald Tesauro, IBM TJ Watson Research Center

Introduction
The ability to understand and communicate in natural languages, such as English or Chinese, is a

hallmark of human intelligence, and one of the core challenges in the field of Artificial Intelligence.

Despite decades of AI research, the goal of building machines with human-level conversational fluency,

as depicted by HAL and C3PO in science fiction, remains elusive and daunting. Nevertheless, a burst of

recent progress in the field of Natural Language Processing (NLP) has been enabled by the explosive

growth in machine-readable language data (primarily in text or hypertext form) available from sources

such as the World Wide Web. Furthermore, increasingly powerful computer hardware makes it feasible

to apply complex analysis to these large volumes of text. Consequently, researchers have made exciting

progress in automated Question Answering (QA), which aims to find a specific answer to a user’s natural

language question.

The development of IBM’s Watson QA system, which successfully competed against human grand

champions on the TV game show Jeopardy!, provides the most striking demonstration of surprising

advances in QA research. Other notable systems include Wolfram Alpha, Siri and Evi. Wolfram Alpha

answers fact-based natural language queries by computing the answer from structured knowledge

sources. Examples of questions it can answer include “How many internet users are in Europe?” and

“What is the fifty-second smallest country by per-capita GDP?” Siri is a speech-based natural language

interface for the iPhone. It can answer questions requiring synthesis of on-board data (Contacts,

Calendar, etc.) as well as external data (e.g., movie and restaurant reviews). For example, to answer the

query “Where can I find some good currywurst around here?”, Siri combines GPS, business locations

and restaurant reviews to return top-rated German restaurants near your current location. Evi is also a

voice-enabled QA engine, available as both iPhone and Android apps, that answers questions using

knowledge bases and semantic search technology from True Knowledge Ltd. It can answer questions

requiring fairly deep reasoning, such as “Who was President when Queen Elizabeth II was a teenager?”

The development of Watson involved innovations in a wide variety of research areas, including rule-

based natural-language processing, knowledge-based representation & reasoning, information retrieval,

etc. For more details, we refer the reader to an upcoming special issue of the IBM Journal of Research

and Development (available at www.research.ibm.com/journal) which contains a collection of 17

articles covering all aspects of the Watson system. One important theme running through many (but

certainly not all) aspects of Watson is the use of statistics. This paper provides some prominent

examples of the ways that statistical methods applied to large volumes of data are used in the Watson

research project. Watson uses statistics in some of the algorithms it uses to answer questions, and

researchers use statistics to evaluate how well Watson answers questions.

DeepQA Overview
A high-level depiction of Watson's DeepQA architecture can be seen in Figure 1. DeepQA is a processing

pipeline wherein at each stage, statistical analysis of many alternatives is performed as part of a

massively parallel computation. After basic NLP analysis of the question (parsing, etc.), the first stage

sifts through a large quantity of unstructured text in a search for documents and passages that are

sufficiently “similar” to the text of the question (and also searches for candidate answers in structured

sources, when the basic NLP has understood the question well enough to derive a structured query).

The results of these searches are used as sources of terms that may be considered as candidate

answers. The next stage employs hundreds of algorithms that analyze evidence along different

dimensions (“features”) such as type classification, time, geography, and semantic relatedness; as part

of that stage, additional supporting evidence is retrieved for each candidate answer. The final stage

sums over the different evidence features, using relative weightings that were obtained by training on a

corpus of 25K previously aired Jeopardy! clues, with known right and wrong answers for each clue. The

result is a single numerical score for each candidate, indicating aggregate supporting evidence that the

candidate is correct. Watson selects the candidate with highest score, and applies a logistic function to

obtain a “confidence” value, i.e., a probability estimate that the answer is correct. Watson will attempt

to answer, i.e., “buzz in,” if the confidence value exceeds a threshold value that is computed by

Watson's game-strategy component.

Figure 1: DeepQA Architecture

Information Retrieval
One key step in answering questions involves finding relevant sources of information. Much of the

information used in Watson appears in the form of text. Watson has many algorithms for identifying

candidate answers in text and evaluating whether the text provides compelling evidence that those

candidates being correct. Before these algorithms can begin to operate, Watson needs to find a

manageable quantity of text that is relevant to the Jeopardy! clue it is trying to answer.

The field of Information Retrieval (IR) focuses on taking a large corpus and finding a small subset that is

relevant to a particular query. Watson uses existing, off-the-shelf IR components to perform the

retrieval step, but uses a variety of novel mechanisms that take a Jeopardy! clue and formulate a query

to pose to these components [1]. One very well-established mathematical technique in IR is TF*IDF

(Term Frequency * Inverse Document Frequency). This technique is built on the observation that the

relevance of a document to a query tends to increase with the number of times that query terms appear

in that text but decrease with the number of times that those query terms appear in the whole corpus

of text. If some term in the query appears often in a single document and rarely in the whole corpus,

then there is considerable evidence that this document is the one that is most useful for the query. In

contrast, if a term appears in many documents, then that term is not as useful for deciding whether any

one of those documents is relevant to the query as a whole. There are a variety of mathematical

formulations of TF*IDF, typically using logarithms and some sort of normalization. The off-the-shelf IR

components use TF*IDF along with a wide variety of other IR techniques to identify text for Watson to

consider.

Large-Scale Text Mining
One resource Watson uses for answering questions is PRISMATIC [2]: a large knowledge-base of

information automatically extracted from text. One of the kinds of relationships stored in PRISMATIC is

a relationship between an instance and a type. For example, given a sentence like “Aachen was the first

major German city to be occupied by the Allies,” a relation extractor [3] would detect an instance-type

(or “isA”) relationship between “Aachen” and “city.” This information is then aggregated using a variety

of statistics such as frequency and mutual information. This provides components of Watson with

insights such as the fact that Aachen is often characterized as a city or a town and less often as a

junction. Watson is able to use this information to find candidate answers and also to evaluate

candidate answers that have been found in other sources.

Statistical Answer Merging and Ranking

As we mentioned earlier, Watson uses classification learning techniques to train a vector of weights 

that apply to a candidate’s evidence feature vector x to obtain an aggregate evidence score E = x =

( i xi +0), where 0 is a learned offset parameter. During the project we experimented with many

different learning architectures (e.g., decision trees, neural networks and Support Vector Machines),

however we consistently found that a relatively simple logistic regression model yielded the best

performance. The output of logistic regression is f(E) = 1/(1+exp(– E)), and may be interpreted as a

“confidence” (probability of correctness) estimate. While the Watson architecture allows separate

models for ranking candidates and estimating confidence, we observed no loss in performance by simply

using a single logistic regression model where ranking is based on confidence scores.

An interesting aspect of scoring and ranking candidates is that several textually different candidates may

be equivalent in the context of a given question, and hence their evidence scores can be combined. For

example, the terms “Lincoln,” “Abraham Lincoln” and “President Lincoln” might be equivalent for a

question asking about the 16th US President, but not if the question is asking about Ford automobiles.

When combining candidates, choosing the best string to represent the combination may be far from

trivial. The learned weights obtained by training on unmerged candidates can provide a great benefit, as

the highest-ranked candidate can be selected to represent the merged set, unless there is significant

evidence to override this. Watson’s methodology for merging candidates also includes methods for

merging the respective feature vectors. The architecture allows different merging methods to be used

on different features, so that certain features may be merged according to max value, while others may

be merged via a sum or decaying sum of individual values [4].

Evaluation Metrics
An enormous part of the success of the Watson project has been the team’s commitment to frequent

and detailed evaluation of our progress. Some of that evaluation is anecdotal: the team looks at specific

cases of questions that Watson answers incorrectly (or cases where Watson chooses a correct answer

but lacks confidence that the answer is correct). Anecdotal error analysis is useful for developing new

ideas for how to improve the system, but judging the potential impact of some idea (or the actual

impact, once it is implemented) needs to be conducted in terms of the impact on a sufficiently large

sample of questions.

Some of the most interesting metrics that are used to evaluate Watson’s effectiveness at answering

questions are:

 Accuracy: Percent of questions with correct answer in first place.

 Precision@70%: Percent of questions with correct answer in first place on the 70% of questions with

the highest confidence scores.

 Average precision from 30% to 80%: Average value across the range from 30% to 80% of the percent

of questions with correct answer in first place when the set is restricted the with the highest

confidence scores.

 Ideal uniform earnings fraction: The maximum across all possible threshold values of the “uniform

earnings fraction” at that threshold. Uniform earnings fraction at a threshold is defined as the

number of questions for which the top ranked answer is correct and has a confidence greater than

the threshold divided by the total number of questions for which the top ranked answer has a

confidence greater than the threshold.

 Binary Recall: Percent of questions with the correct answer somewhere in the answer list.

 Binary Recall @ K (for K=5, 10, 25, 50, and 100): Percent of questions with the correct answer in the

top K answers for that question.

Accuracy is a simple and intuitive metric that directly measures how well a system identifies the correct

answer. It is very useful for component developers working on development data because changes in

accuracy can be clearly and unambiguously associated with specific questions that were gained or lost.

However, accuracy does not measure all of the aspects of the system’s capabilities that we would want

to measure. One key issue that accuracy does not measure is how effective the system’s confidence

scores are at gauging whether a particular answer is right. Precision@70, average precision from 30% to

80%, and ideal uniform earnings fraction are metrics that do account for confidence. Of these, ideal

uniform earnings fraction most directly measures what is needed to win at Jeopardy!, since Jeopardy!

provides the same amount of credit for answering a question correctly as the penalty it provides for

answering a question incorrectly. In other domains in which the ability of the system to determine a

level of confidence is important, other metrics may better reflect how useful the system is.

Figure 2 (which also appears in [5]) shows a confidence curve for two configurations of the Watson 1.0

system: one that includes the set of components referred to as “TyCor” [5] and one that does not. Each

point on this graph shows the percentage of questions that the system answers correctly (the vertical

value) when it attempts to answer the specified percentage of questions (the horizontal value) for which

it has the highest confidence in the correct answer. The blue line shows how effective the full Watson

1.0 system is at answering questions and judging confidence in its answers; the red line shows how well

the ablated Watson 1.0 system without the TyCor components performs. The far right end-points of the

graph show the accuracy: the percent answered correctly when Watson attempts to answer 100% of all

questions. The vertical value at the 70 point on the horizontal axis is the precision@70 for the two

configurations. The average vertical value from the 30 to the 80 points on the horizontal axis is the

average precision from 30% to 80%. As you can see on the graph, the blue line is higher throughout the

range: no matter what percentage of question Watson tries to answer, it gets more of those questions

right with the TyCor components than it does without them. Furthermore, the difference between the

lines is bigger at the 70% value than it is at the 100% value, suggesting that the TyCor components are

useful not only for selecting answers for a particular question but also for assessing the confidence in

the selected answer: these components provide a bigger boost to how precisely Watson can answer

questions if Watson is able to avoid answering the 30% for which it is least confident.

Another aspect of the system’s effectiveness is the ability of the system to provide correct answers that

are not the top answer. This ability is not particularly important for playing Jeopardy! because a

Jeopardy! player generally only provides the answer that they like best, not any other answer. However,

in other applications, a question answering system may provide a list of answers with supporting

evidence for each. For those applications, the ability to find the right answer and rank it near the top of

the list can be extremely valuable. Even in Jeopardy!, binary recall is useful for tracking the progress of

Watson’s ability to identify the correct answer as a candidate answer, independently of Watson’s ability

to rank that answer correctly. Since Watson has distinct components for finding answers, it is useful to

have metrics that track the progress of those components.

Figure 2: Precision vs. percentage of questions answered

Jeopardy! Game Strategy
Watson also contains a significant body of code for making Jeopardy! strategy decisions, such as

wagering on a Daily Double (DD) and deciding whether to attempt to answer a clue. While this does not

help in computing correct answers, it nonetheless makes Watson a much more formidable Jeopardy!

contestant. As described in [6], we employed a variety of advanced statistical techniques to develop

Watson’s strategy algorithms. Our approach is founded upon estimating Watson’s winning chances in a

given game state, using a stochastic simulation model that provides a reasonably faithful emulation of

likely events when Watson plays against two humans. We can perform live Monte-Carlo simulations to

calculate whether Watson should buzz near the end of the game, and its best wager in Final Jeopardy.

We also used a nonlinear regression model, trained over millions of offline simulation trials, to compute

DD wagers in cases where the Monte-Carlo analysis is too slow to use in live play. Finally, Watson can

seek out and find the DDs faster than humans by using Bayesian inference: this combines the historic

frequencies of DD placement with evidence from revealed clues to compute where the DDs are most

likely to be located. These methods give Watson a distinct edge in the strategic aspects of Jeopardy!,

since human contestants cannot match the speed and precision of Watson’s strategy calculations during

live play.

Future Work
The Watson research team is no longer studying Jeopardy!, but many of the mathematical issues

described here still apply to other challenge problems. Watson’s mechanisms for retrieving information,

mining data from large volumes of text, and selecting answers using a statistical classifier are all relevant

to a wide variety of practical applications.

In many cases, different evaluation metrics are more important: for example, in Jeopardy! no credit is

awarded when Watson has the right answer as its second choice. However, for many real-world

information gathering tasks, having the right answer along with relevant evidence among a list of five or

ten possible answers provides value to end users. Thus some important metrics for real-world

applications should focus not only on the accuracy and confidence of Watson’s top answer, but also on

the quality of answers that it ranks near the top of its list. Providing convincing evidence for an answer

is an important task for a real-world Watson system. Effectiveness on this task is challenging to measure

because it is very subjective; addressing this challenge will be key to the future success of Watson,

because a Watson-based tool for helping real-world decision makers will not be particularly useful if it

finds a lot of correct answers but cannot convince the users that those answers are correct.

Looking beyond near-term extensions of Watson, we see the field of NLP research as being poised for

tremendous progress over the next decade, building upon recent advances in Watson and other

impressive QA systems. With ever-increasing language data, algorithm sophistication and compute

power, it now seems plausible that computers could be built in the next decade that outperform

humans on virtually any fact-based QA task. Such QA systems will also make use of vast and deep

structured knowledge bases, enabling much deeper reasoning and comprehension of the material

contained in evidence sources. Computers may play an important role in automatically constructing

such knowledge bases, as evidenced by today’s systems such as PRISMATIC and CMU’s Never-Ending

Language Learner [7]. The progress that we envision is likely to result from the same types of

quantitative, massive data-driven approaches that went into building Watson; the rate of progress in

NLP due to such approaches may in fact be accelerating.

References
[1] J. Chu-Carroll, J. Fan, B. K. Boguraev, D. Carmel, D. Sheinwald, and C. Welty, Finding needles in the

haystack: Search and candidate generation. IBM J. Res. & Dev., vol. 56, no. 3/4, 2012.

[2] J. Fan, A. Kalyanpur, D. C. Gondek, and D. Ferrucci, Automatic knowledge extraction from documents,

IBM J. Res. & Dev., vol. 56, no. 3/4, 2012.

[3] C. Wang, A. Kalyanpur, J. Fan, B. K. Boguraev, and D. C. Gondek, Relation extraction and scoring in

DeepQA. IBM J. Res. & Dev., vol. 56, no. 3/4, 2012.

[4] D. C. Gondek, A. Lally, A. Kalyanpur, J. W. Murdock, P. Duboue, L. Zhang, Y. Pan, Z. M. Qiu, and C.

Welty, A framework for merging and ranking of answers in DeepQA. IBM J. Res. & Dev., vol. 56, no. 3/4,

2012.

[5] J. W. Murdock, A. Kalyanpur, C. Welty, J. Fan, D. Ferrucci, D. Gondek, L. Zhang, and H. Kanayama.

Typing candidate answers using type coercion. IBM J. Res. & Dev., vol. 56, no. 3/4, 2012.

[6] G. Tesauro, D. Gondek, J. Lenchner, J. Fan and J. Prager. Simulation, Learning and Optimization

Techniques in Watson’s Game Strategies. IBM J. Res. & Dev., vol. 56, no. 3/4, 2012.

[7] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr. and T.M. Mitchell. Toward an

Architecture for Never-Ending Language Learning. In: Proceedings of AAAI, 2010.

