Proceedings of the 21st ACM International Conference

on Information and Knowledge Management,
Maui, HI, October 2012

Labeling by Landscaping: Classifying Tokens in Context
by Pruning and Decorating Trees

Siddharth Patwardhan
IBM Watson Research Center
1101 Kitchawan Road
Yorktown Heights NY 10598

siddharth@us.ibm.com

Alessandro Moschitti
University of Trento
Via Sommarive 5
38123 Povo (TN), ltaly

moschitti@disi.unitn.it

ABSTRACT

State-of-the-art approaches to token labeling within text
documents typically cast the problem either as a classifica-
tion task, without using complex structural characteristics
of the input, or as a sequential labeling task, carried out by
a Conditional Random Field (CRF) classifier. Here we ex-
plore principled ways for structure to be brought to bear on
the task. In line with recent trends in statistical learning of
structured natural language input, we use a Support Vector
Machine (SVM) classification framework deploying tree ker-
nels. We then propose tree transformations and decorations,
as a methodology for modeling complex linguistic phenom-
ena in highly multi-dimensional feature spaces. We develop
a general purpose tree engineering framework, which enables
us to transcend the typically complex and laborious process
of feature engineering. We build kernel-based classifiers for
two token labeling tasks: fine-grained event recognition, and
lexical answer type detection in questions. For both, we
show that in comparison with a corresponding linear kernel
SVM, our method of using tree kernels improves recognition,
thanks to appropriately engineering tree structures for use
by the tree kernel. We also observe significant improvements
when comparing with a CRF-based realization of structured
prediction, itself performing at levels comparable to state-
of-the-art.

Categories and Subject Descriptors

1.2.7 [Artificial Intelligence]: Natural Language Process-
ing—text analysis, language parsing and understanding

*Work done at IBM Research during a summer internship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’12, October 29-November 2, 2012, Maui, HI, USA.

Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

Branimir Boguraev
IBM Watson Research Center
1101 Kitchawan Road
Yorktown Heights NY 10598

bran@us.ibm.com

*
Apoorv Agarwal
Dept. of Computer Science
Columbia University
New York, NY 10027
apoorv@cs.columbia.edu

Jennifer Chu-Carroll

IBM Watson Research Center

1101 Kitchawan Road

Yorktown Heights NY 10598

jencc@us.ibm.com

General Terms
Algorithms, Design

Keywords

support vector machines, tree kernels, token classification

1. INTRODUCTION

Among classification tasks in text analysis is a subclass
characterized as assigning a binary label to each token in a
given text span. Typically, the label assigned to any given
token depends on the larger context in which the token is
situated. Broadly speaking, current systems for such tasks
are implemented as binary classification, either by suitably
deriving features from the environment surrounding the to-
ken, or by using structured prediction inherent to sequence
labeling, such as Conditional Random Field (CRF) [12].

One example of such a task is event recognition, where the
system must identify words within a document that denote
events—defined in their broad linguistic sense, as situations
that happen or occur, denoted largely by verbs, event nom-
inals, or predicative adjectives. Different approaches (dis-
cussed in more detail in the next section) appeal to some no-
tions of structure (shallow parse, SVO trigrams, local domi-
nance, and so forth), but these are not necessarily informed
by principled analysis of feature informativeness.

For us, this offers an opportunity to explore advances in
machine learning and classification, which actively uses the
complex and intertwined characteristics of (linguistic) struc-
ture as complex features—in contrast to the approaches we
discuss in the next section, approaches that do not use this
structure in a principled way, and rely on manually engi-
neered features.

Recent research [16] on statistical learning of natural lan-
guage structured input seeks to develop methods for more di-
rect encoding of inter-dependencies among elements of com-
plex representations, both bypassing the need for non-trivial
feature (and feature inter-dependence) engineering, and pro-
viding globally optimizing learning algorithms with more di-
rect access to such data elements. Tree kernels, in particular,
used within kernel methods (such as SVMs [26, 10, 27]), of-

fer an effective way to capture possible correlations between
features and categories of features.

Consequently, many classification tasks where the data
can be transformed into tree structures have been shown to
benefit from tree kernels (see Section 2). Tree kernels are
directly applied to such structures within the classification
models, reducing, or even eliminating, the need for inten-
sive feature definition based on introspection over domain
knowledge. Feature engineering is thus replaced with the
engineering of tree structures appropriate for the encapsu-
lation of the essential information required for the effective
application of tree kernels.

In general, the process of engineering trees is faster than
engineering features, and therefore has the potential to be-
come an enabling tool in the machine learning toolkit. How-
ever, existing approaches to engineering tree structures have
been ad-hoc and largely task-specific. The literature pro-
vides little guidance on how one may go about generating
tree structures for a class of tasks employing tree kernels.

In this paper, we begin to articulate a general method-
ology for generating tree representations appropriate to the
general class of tasks outlined earlier—mnamely, those that re-
quire classifying tokens within their context. Our method-
ology provides a convenient way to rapidly engineer tree
representations and to train quality classification models.

To develop the specific methodological steps, we defer
to existing work using tree kernels, where a small number
of “operations” are consistently used in engineering trees.
These include, in particular, operations for tree transforma-
tions and enrichment (we offer an outline in Section 3 below),
as primary components of a flexible mechanism for modeling
complex linguistic phenomena in highly multi-dimensional
feature space. It has been shown that such tree “pruning”
and “decoration” operations improve system performance, as
they can reduce structural variability and inject contextual
and semantic information into the feature space. Conse-
quently, we have developed a general-purpose tree engineer-
ing framework, which supports tree transformations, includ-
ing pruning and decorating to facilitate rapid experimenta-
tion. We motivate our design with the need for exposing
data elements of different nature to the classification algo-
rithms.

The framework we describe builds on the basic notion of
representing classifier instances as trees, with the operations
above providing for enrichment and focusing of these trees.
We also present the particular strategies for tree adaptations
aimed at using structured input, given general characteris-
tics of a category of classification tasks.

In this work, we also use our general methodology to in-
vestigate the novel application of tree kernels to two token
labeling tasks. First, we demonstrate the effectiveness of our
approach by showing results for event recognition, where our
best performing system is a combination of linear and tree
kernels, utilizing tree shapes derived from complete parses.
In this setting, the system also stacks well against the ac-
cepted baseline for the task. We note that while SVMs have
been previously used for event detection, these have not used
tree kernels. In our second application, we then follow the
same approach, but for a very different token classification
task: lexical answer type detection. The task is to find
within a given question, the word that expresses the type
of the answer (a more detailed description of the task is
presented in Section 4). This is a particularly critical com-

ponent of open-domain question answering. Again, an SVM
classifier capturing context with our tree kernel methodol-
ogy, in addition to a manually engineered feature set, shows
improvement over systems using only manually engineered
features.

2. RELATED WORK

In this section, we first summarize existing work that
employs tree kernels, and proffer that: (a) the techniques
for generating tree representations are typically ad-hoc and
task-specific, (b) have not been previously used to label to-
kens within their context. Second, we examine work in the
literature addressing the two tasks to which we apply our
methodology in this paper.

2.1 Tree Kernels and Kernel Engineering

Applying kernels, especially those for structured input, re-
quires kernel engineering. This includes, in particular, the
design of structures appropriate for the task at hand. Early
work in this direction either used portions of syntactic con-
stituency trees [19], or defined new dependency or shallow
syntactic structures [28, 8]. More recent work promotes the
notion of marking or enriching target nodes of constituency
trees [29, 21], similarly to what we do (Section 3 below) for
marking the target in our dependency structure.

The flexibility and effectiveness of tree kernels is apparent
from the various types of tasks that they have been applied
to—ranging from relation extraction [8] to semantic role la-
beling [21] to question classification [22]. In each of these, we
find that the tree representations used by the tree kernels are
derived from a syntactic parse or predicate argument struc-
ture (PAS), and typically transformed in some way for the
task at hand. Based on observations of some common tree
transformation operations in these previous approaches, we
alm to establish a general purpose methodology in this pa-
per. For instance, in the question classification work by Mos-
chitti et al., we see that they use “slot” parent nodes in the
PAS tree to indicate PAS argument labels. Our tree “dec-
oration” operations described later in the paper are loosely
based in this idea. Similarly, in the relation extraction work,
Culotta and Sorensen keep only the smallest common sub-
tree that includes the entities of the relation. This is akin
to the tree pruning operation we describe later in the paper.
Our main contribution in this paper is to provide a general
purpose methodology to effectively apply tree kernels to a
specific class of classification tasks and quickly enable the
classifier to explore a rich feature space with little effort.

A related approach for exploring a richer feature space
without explicit feature engineering is that of kernel engi-
neering (e.g., [7]). However, this requires expertise in devel-
oping novel kernels for specific tasks. Our goal in this paper
is to rely on existing tree kernel technology and focus our
efforts, instead, on tuning the inputs to the kernel so as to
achieve an appropriate feature space representation for our
tasks. Our methodology provides the flexibility to add var-
ious types of information (such as semantic classes, named
entities, etc.) within the same tree representation frame-
work, enabling the feature space to capture complex inter-
actions between syntactic, lexical and semantic attributes of
each node in the tree. Such a feature space provides accurate
and high generalization, which allows for learning classifiers
with much less training data. Indeed, experiments in Section
5 confirm this for our tasks.

2.2 Event Detection

With small exceptions [25], all approaches to TimeBank-
compliant! event recognition develop and train classifiers for
token tagging. In most cases, the task is that of sequential
labeling of tokens by encoding chunk information into to-
ken tags (IOB2 encoding scheme [24]). Classification, and
interpretation of token sequences, differs across approaches:
Boguraev and Ando [3] use a robust risk minimization classi-
fier followed by Viterbi-style decoding; STEP [2] combines an
SVM enhanced with a suite [11] for general-purpose chunk-
ing; Llorens et al. [15] use a CRF model.

Most approaches share intuitions about morpho-lexical
properties as event indicators; they also share the view that
extraneous information can be beneficial: Boguraev and
Ando [3] use a word-profiling technique [1] to exploit large
unannotated corpora for tagging/chunking, and Llorens et
al. [15] attribute the performance boost they report to the
use of semantic roles. Structural characteristics of the in-
put, however, are used in these event recognition classifiers
minimally, and are cumbersome in their implementation as
features. For instance, some syntactic information is en-
coded in Boguraev and Ando’s features as word uni- and bi-
grams based on subject-verb-object and preposition-noun
constructions. Similarly, some phrasal information is ren-
dered in feature form by Llorens et al., abstracted from a
parse tree. Information (such as SRL and word profiling)
beyond the ‘base’ feature set is clearly useful: for the two
approaches cited, the ‘base’ classifier performance goes from
78.6%/78.67% (F-score) respectively, to 80.3%/81.40%.

There is no systematic way for such classifiers to cap-
ture extraneous information. As we will see (in Section 3)
however, configurational and semantic information can be
encoded—in a principled way—in a tree kernel by pruning
and decorations. This is the primary line of investigation in
our work.

2.3 Lexical Answer Type Detection

Question answering systems interchangeably use notions
like ‘focus’, ‘answer type’ and ‘lexical answer type’ (LAT).
Without going into finer details, these terms refer to the
words that indicate the type of entity being asked for by the
question. For example, in a question like “He was a bank
clerk in the Yukon before he published ‘Songs of a Sourdough’
in 1907.7, LATs are “he” and “clerk”. LATs are different from
semantic types, and detecting them is another example of
context-dependent token classification task. A particularly
thorough study of LAT detection is presented by Lally et al.
[13]; salient to their work is the statistical LAT detection
procedure presented, which sets the bar for state-of-the-art
performance. Relevant intuitions leading to feature design
can be found in previous work by Li and Roth [14]. In sum-
mary, a logistic regression classifier is trained for the task,
with a feature set encapsulating numerous lexical and syn-
tactic features, as well as the results of applying an extensive
set of patterns developed specifically to match contexts in-
dicative of LAT-ness. This classifier performs at close to
83.6% F-score.

3. TOKEN LABELING METHODOLOGY

As a classification task, event or LAT detection reduces to
assigning a binary label to each token in a given document.

!TimeBank is distributed by the LDC; see LDC2006T08.

Existing approaches include standard discriminative classi-
fiers such as SVM, and sequence tagging approaches like
CRF. All approaches follow a similar methodology. They
analyze each token within a document in sequence, and iden-
tify a set of features likely to indicate the “eventness”; or
“LAT-ness” of that token. Machine Learning models are
then trained using training data to classify each token as
a positive or negative instance, based on the feature values
associated with the token.

Many features capture only the context independent prop-
erties of the tokens — such as their part-of-speech, tense,
lemma, etc. While these features are quite informative, they
are not sufficient to achieve state-of-the-art performance.
For instance, most events are represented as either verbs
or nouns (typically nominalizations of verbs) and, as a re-
sult, part-of-speech is an important feature in the model.
similar observations hold for the part-of-speech feature in a
LAT model. However, beyond such inherent characteristics
of tokens, their context is essential in resolving many of the
more subtle or ambiguous cases. It is no surprise, then, that
the best performing systems additionally model the context
surrounding each target token.

The context surrounding the target token is typically cap-
tured by either including properties of neighboring tokens as
features or by identifying certain structural clues surround-
ing the token, within the syntactic parse of the sentence.
Take, for example, the event detection system implemented
by Boguraev and Ando [3]. Their research employed features
of the target token, such as: token/capitalization/part-of-
speech (POS) in 8-token window, bi-grams of adjacent words
in 5-token window, words in the same syntactic chunk, and
word unigrams/bigrams based on subject-verb-object among
others. Many such features were manually engineered to
capture the context of a token through adjacency in a token
window, through adjacency in syntactic chunks, and through
proximity in the syntactic parse.

This type of feature engineering tends to rely heavily on
human analysis of the data, and risks resulting in ad-hoc
rules/patterns, that may not be able to model all the subtle
pieces of contextual information required for the task. In
this work, we take a more principled approach to modeling
the context of tokens through the use of trees structures
representing their context. SVM classifiers with tree kernels
effectively exploit these tree structure to improve labeling
performance over manually engineered features.

3.1 Tree Kernels

Tree kernels are an instance of a general class of convolu-
tion kernels. First introduced by Haussler [9], they can be
used to compare abstract objects, like strings, instead of fea-
ture vectors. Convolution kernels involve a recursive calcula-
tion over the “parts” of abstract objects. This calculation is
made computationally efficient by using dynamic program-
ming techniques. By considering all possible combinations
of fragments, tree kernels capture any possible correlation
between features and categories of features.

Tree kernels in the past have been successfully applied for
numerous Natural Language Processing tasks such as parser
and tagger re-ranking [6], and question answer classification
[22]. These are classification tasks where each example to
be classified is a sentence (and, as such, has an associated
tree). Cases where examples can be naturally represented

begun the real

Figure 1: Dependency parse tree for the sentence:
the real referendum campaign has clearly begun.

as trees also fall easily into the tree-kernel space (for e.g.,
semantic role labeling [21] and relation extraction [28, 8]).

More recently, the notion emerged that the tree repre-
sentation in the kernel itself may be transformed—for in-
stance, by pruning, to remove extraneous material [23], or
by decorating, to add additional information [7]. Still not
completely formalized, this notion is gaining ground; we will
build upon it below.

In general, however, tree kernels have not been used for
token labeling tasks like event or LAT detection. To the best
of our knowledge, ours is the first work that explores the use
of tree kernels, and presents a novel and effective data rep-
resentation explicitly exploiting notions of tree transforma-
tions, for these tasks. We describe below the representation
of the tree structures and motivation behind this design.

3.2 Tree Representation of a Token

While standard tree kernel classifiers have previously been
used in numerous language processing tasks, the tree struc-
tures representing the instances to be classified in these
tasks have typically been developed on a task-by-task basis.
For many tasks, instances for classification can be naturally
transformed into tree representations that are provided as
input to tree kernels. For instance, in sentence classification,
the parse trees of the sentences are tree structures that can
be input for tree kernel classifiers. A token within a sen-
tence, on the other hand, does not naturally lend itself to
a tree representation. The key contribution of this paper is
an approach for effectively capturing the context of a token
with a tree representation so as to enhance the feature space
of the classification task with standard tree kernel technol-
ogy.

To generate the tree representation of a token within its
context, we begin with the dependency parse of the sen-
tence in which the target token appears. We map the token
to a node within the parse tree, and then apply some tree
transformations to generate the final contextual tree given
as input to the classifier. Our tree transformations include
node “decorating” operations and tree “pruning” operations
around the token.

Before we begin decorating and transforming operations,
we first obtain a tree that represents the basic structure
of the sentence containing the target token. We take the
dependency parse of a sentence and label each node with its
syntactic role in the tree. Each node in the tree corresponds
to a token from the sentence. Since the tree kernel ignores
edge labels, these are dropped from the structure. This tree,
with node labels representing the relationship of each node
to its parent is the starting point for our tree operations to

follow. Figure 1 is an example of this tree for the sentence:
the real referendum campaign has clearly begun. Note that
the labels in red, outside the nodes, are the tokens from the
sentence corresponding to the respective nodes. They are
for illustrative purposes only, and are not part of the data
structure used in our tree operations.

Our tree operations then enable the classifier to essentially
focus on the token to be classified, and to view its relation-
ships with the immediate context of the token. The opera-
tions of focusing on a target token, and transforming the tree
around it to both reduce noise and inject extra contextual
information, are described in the following subsections.

3.2.1 Identifying the Target

Given a parse tree containing the target token to be clas-
sified, we would first like to be able to “identify” this token
to the classifier in some way. Standard tree kernels operate
on pairs of trees and compute a similarity score for each pair
by counting the number of substructures that are common
between the given input pair. The similarity score is essen-
tially a function of these overlap statistics. Since we would
like our trees to represent the relationships of the target
token with its context, identifying the target token to the
kernel essentially boils down to identifying any relationships
between the target token and its neighboring nodes that are
common between any two given trees. We try to achieve
this by “decorating” or marking the target node in the tree.
There are several possibilities that can be explored: (a) re-
place the label of the target node with an identifier (such
as -target-) that is common across any pair of trees, (b)
insert a parent node above the target, with an identifier that
is common across trees, or (c) insert a child node below the
parent, with an identifier that is common across trees.

In our work, we mark the target node by inserting a par-
ent node with the label -target- above the target node. We
tried several experiments, and found this to be the most ef-
fective for our tasks (the differences between the three meth-
ods, however, were very small). This decoration enables us
to match relationships across trees between the target node
and nodes above it in tree structures being compared by the
kernel. Relationships between the target and nodes below it
are matched by the kernel only if the target plays the same
syntactic role in the trees being compared. Figure 2(a) il-
lustrates the “target” node decoration for the example tree,
with the node corresponding to the word “campaign” marked
as the target.

3.2.2 Pruning Around the Context

Many of the trees we typically deal with can come from
long sentences, and are complex trees with many nodes and
edges. For our classification tasks, many of the nodes in
the tree can be in a parts of the tree completely separate
and unrelated to the target node. Such nodes should not be
considered as a part of the local context of the target node,
and should have little or no impact on the classification de-
cision. Leaving such nodes in the tree can allow these to
match within the kernel, and could artificially increase the
kernel similarity score of a pair of trees that do not actually
represent a similar context for the target tokens. In other
words, large trees can introduce noise into the contextual
representation of target tokens. We, therefore, prune the
trees around the target token to eliminate such noise. As an

Figure 2: (a) Dependency parse tree for the sentence the real referendum campaign has clearly begun. The
dotted line encloses the pruned tree. (b) Pruned tree with “decoration.” Nodes in blue are subset of features

we add to the tree nodes.

added benefit, we find that pruning also substantially speeds
up the classifier (as it now needs to match fewer subtrees).

There are many possible ways in which a tree may be
pruned to capture the essential context required by the clas-
sifier. For instance, one may choose to keep only the direct
ancestors of the target as its required context. Alternatively,
one may choose to base pruning decisions using a more prin-
cipled linguistic approach using the types of parse nodes
and edges for pruning. Depending on the task, this could
mean keeping only the pre-modifiers and post-modifiers of
the target or restricting the pruning to the clause in which
the target appears. We found that for our tasks, an effective
pruning strategy was to keep only the direct ancestors and
child nodes of the target, and discard all other nodes and
edges in the tree. The dotted line in Figure 2(a) illustrates
this pruning approach for the example sentence.

3.2.3 Decorating the Nodes

Having pruned the tree to restrict the context around the
target, and marked the target node within the tree, we now
perform one additional (and important) step to better repre-
sent the context of the target — node decoration. Observe
that after pruning, the tree contains only the information
about the syntactic relationships of each node with its neigh-
bors. Hidden in each node is a wealth of additional infor-
mation about the context that could be effectively exposed
in the tree. For instance, each node in the tree represents a
token, which has a lexical surface form, part of speech, se-
mantic class information, etc. that could be effectively used
by the classifier in its decisions. We incorporate these “node
features” as “decorations” on the tree.

We decorate each node corresponding to a token with to-
ken features by inserting them as new child nodes with labels
encoding the token features. For instance, we add new child
nodes “lemma=campaign”, “part-of-speech=noun”, etc. to
the node corresponding to the token “campaign”. Figure
2(b) illustrates these new token feature nodes (with blue la-
bels) in our example tree. Due to space constraints we do
not show the feature names (“lemma=", “part-of-speech=",
etc.) in the figure. The set of node features can be obtained
from existing NLP tools, such as the parser, a named entity
tagger, semantic class detector, and the like.

This tree representation combines many categories of fea-
tures (lexical, syntactic and semantic) in one succinct rep-

Figure 3: Example partial trees in tree kernel fea-
ture space.

resentation. This gives the learner an opportunity to learn
combinations of features which would otherwise be tedious,
if not impossible, for humans to encode in an explicit fea-
ture space. For this reason, we use a Partial Tree (PT)
kernel (first proposed by Moschitti [20]) for defining the im-
plicit feature space of the learner. A PT kernel calculates
the similarity between two trees by comparing all possible
subtrees. For example, some of the subtrees in the implicit
feature space of a partial tree kernel on the tree in Figure
2(b) are shown in Figure 3. This means that the tree kernel
attempts to combine all of the information available to it
in different ways, resulting in various levels of abstraction
depending on which pieces of information were selected for
a particular subtree. One subtree may drop all lexical items
of the selected nodes, keeping only syntactic and semantic
information for the included nodes. Another may keep only
the lexical information. And yet another have a combination
of these different pieces of information for different nodes in
the subtree. As one would imagine, this results in a massive
(implicit) feature space of all possible subtrees. However,
learning and classification is made tractable by the kernel,
which uses dynamic programming for an efficient enumera-
tion of this space. Thus, with the use of this approach, it is
not necessary to manually engineer features at all levels of
abstraction.

4. TASK DEFINITION AND DATA SET

The event detection task is a token-in-context labeling
problem, in the sense defined earlier, in Section 1. Con-
ventionally, however, many of the approaches to date (as
discussed in Section 2) treat it as a sequential tagging prob-
lem. For us, it is an instance of a more general category
of classification problems, interesting because of its intrin-
sic characteristics which make it a suitable example for the
application of our tree kernel-based methods. In order to
demonstrate broader applicability of these methods, we also
focus on another token labeling task, namely that of LAT
detection. The results we report below (Section 5) underpin
our claim for the effectiveness of our tree transformations-
based methods of leveraging tree kernels for token labeling.
In future work, we plan to apply these methods to other to-
ken labeling tasks, such as, for instance, markable detection
for coreference resolution.

4.1 Event Recognition

Events in general text may be expressed in a variety of
ways; morpho-syntactically, they may be realized by means
of untensed or tensed verbs, nominalizations, predicative ad-
jectives or clauses, or certain prepositional phrases. For ex-
ample, only some of the nouns and verbs in the following
sentence are to be labeled as event mentions.

Several pro-Iraq demonstrations have taken place in the
last week.

In line with the event recognition work discussed in Sec-
tion 2, we use the TimeBank event-specific data set to train
our models, as well as to evaluate their performance on the
event recognition task.

The distribution of event mentions in the corpus follows
the natural distribution of event-denoting linguistic tokens
in (news) discourse. There are 56,632 (non-punctuation)
tokens in TimeBank, of which 7,921 are captured by event
annotations. TimeBank is relatively small, and Boguraev
and Ando [4] discuss its make-up in some detail.

Practically, only a tiny proportion of event instances in the
data are realized as multi-token mentions. In fact, the guide-
lines for TimeBank-compliant event annotation are heavily
leaning to a convention which favors marking single tokens
as ‘proxies’ for event-denoting phrases. It turns out that
in the entire TimeBank corpus (~57K word tokens), there
are only 30 or so multi-token event mentions. This imbal-
ance is such that the rationale for casting the task as that of
multi-class sequential tagging—as most of the approaches in
Section 2 do—is questionable: it is unreasonable to expect
that concurrent models can be built for ‘begin’ and ‘inside’
event tags from such impoverished data.

From our point of view, this is sufficient justification to
model the event recognition task as a binary token classifi-
cation.

4.2 Lexical Answer Type Detection

The Lexical Answer Type (LAT) detection task (a subtask
of question answering) is also a binary token classification
problem of identifying an answer type string in a question.
For example, in a question like:

Which US president was first to be re-elected for a
second term?

the text span “president”is the LAT (it identifies what type
of entity is being asked for in the question). Multi-token

Feature | Description
POS The part of speech of the token

surface | The lexical surface form of the token
lemma | The morphological root of the token
semantic | Semantic class features based on a named-
entity recognition system
parse Parse features from a set of 44 syntactic
properties assigned by the parser

Table 1: The set of features we add as children to
the nodes of the dependency parse tree.

LATs may apparently (and occasionally) be encountered in
the data (e.g. “vice president”), but our parser (see Sec-
tion 5.1 below) handles these as single tokens.

The dataset we use is the one described in Lally, et al. [13].
It is a manually annotated set of 9,128 Jeopardy! questions.
In terms of class distribution, this question data set contains
of the order of 111,597 tokens, 11,906 of which are positive
(LAT) examples. The dataset is split into 8,000 training
and 1,128 test questions (97,741 training tokens and 13,856
testing). Given the observation in Section 2, concerning the
relatively small volumes of training data sufficient for learn-
ing good classification functions when the tree kernel can
capture dependencies between lexical, syntactic and seman-
tic features, this size of dataset turns out to be adequate.
We will return to this point in the next section (5).

S. EVALUATION AND DISCUSSION

Within the framework and methodology described in the
previous section, we have developed classifiers for event de-
tection and LAT detection. In both cases, we demonstrate
the effectiveness of tree kernels, by enhancing an existing
manually feature engineered model with our tree kernel.
This is done by implementing the manually feature engi-
neered model using a linear kernel, and combining that with
our tree kernel. Note that by design, in the tree kernels set-
tings there are additional features in the feature space: this
reflects our approach of letting the kernel identify salient
structural characteristics present in the data, and use them
as features in a highly multi-dimensional space. The combi-
nation of linear and tree kernels is done using a composite
kernel that sums the two. Our SVM classifier uses the com-
posite kernel for the task at hand.

5.1 Implementation

In this work, we use dependency parses derived from the
output of the English Slot Grammar parser [17]. Each to-
ken in that sentence then maps to a specific node in the
dependency parse. A node is only labeled with the syntac-
tic role of the token within this parse. We then apply the
tree transformations (described in Section 3) to obtain the
“contextual trees” for the tokens. This includes marking the
target with a parent node, pruning the tree around the tar-
get, and inserting feature “decorations” as child nodes. The
various types of information that we attach as child nodes
are obtained from the syntactic parser are listed in Table 1.

5.2 Experimental Setup

Our experiments are designed to investigate our claims:
namely, that combining linear and tree kernels outperforms
individual kernel settings, and that a tree kernel utilizing
pruning and decorations in a particular way can effectively

drive a classifier (SVM) for token labeling tasks. For both
tasks, a model based on the linear kernel uses a manually en-
gineered set of features. For event detection, this is loosely
based on the feature set from Boguraev and Ando [3]. For
LAT detection, we refer to the feature set from Lally et al.
[13]. The features broadly fall into lexical, morphological,
and syntactic categories, and capture sequentiality of tokens
by observing occurrences of lexical elements (tokens, lem-
mas), and/or their properties (orthography, part-of-speech,
inflectional information) in 3- or 5-token windows.

The features include: token, capitalization, part-of-speech
(POS) in 3-token window; bigrams of adjacent words in 5-
token window; and trigrams of POS, capitalization and word
suffix. To the extent that it is used, structural information is
derived largely by observing the output of a parser. In con-
trast to the work by Boguraev and Ando [3], who use a shal-
low parser, we extract features from a deep syntactic tree;
this allows us to have reliable word uni- and bi-grams based
on subject-verb-object and preposition-noun constructions.
Additional grammatical information is injected into the fea-
ture space by mapping the labels of immediately dominating
phrases, and by windowing over adjacent base phrasal units:
we derive features for words in the same (base) syntactic
phrase, and for head-words in 3-phrase window.

The two sets of features (for event, and for LAT, detec-
tion) largely overlap; the differences, where they exist, stem
from the different nature of the two tasks. For instance, for
lexical answer types, the shape of the encompassing phrasal
unit (typically a noun phrase) is very important; conse-
quently, there are a large number of structural pattern rules,
which detect LAT-indicative contexts. Even so, as the re-
sults show, the tree kernels are able to identify additional
salient features.

Further, and in contrast to Boguraev and Ando [3], who
do not use semantic features, we bring semantics into the
feature space by deferring to the semantic properties of parse
nodes, as they are constructed by the parser and integrated
into larger, semantically coherent, constituents. Our parser
implements its own set of ontological types, and some of
these bear directly upon both the task of determining the
eventness of a verb or a noun and the task of determining
that a word in a question acts as its lexical answer type.

All the feature sets from Boguraev and Ando [3], Lally
et al. [13], and our implementations have been shown to
achieve good accuracy at their respective tasks. Overall,
the features have been manually engineered to represent the
attributes of the token and its surrounding context within
the linear kernel. An SVM trained only on the linear kernel
forms a baseline system for comparison.

Given that the tasks are somewhat akin to sequence la-
beling, our experiments also include results from applying
a linear chain CRF [12], a popular and effective discrimina-
tive technique for supervised sequence labeling. CRFs are
undirected graphical models, a special case of conditionally-
trained finite state machines. This makes them appropriate
(especially in the event detection case), since a CRF by its
nature does a form of structured prediction, and thus incor-
porates the structure (albeit only “sequential” structure) of
the data in its decision making process.

Intended as an additional baseline, our CRF implementa-
tions? [5] use the same feature sets used by the correspond-

2We use the CRF implemented in the MinorThird package;
see http://sourceforge.net/apps/trac/minorthird/

Acc | P | R | F
Event Detection

SVM-lin | 94.16% | 0.753 | 0.853 | 0.800
CRF | 93.86% | 0.765 | 0.811 | 0.787
SVM-prune-tree | 92.90% | 0.709 | 0.818 | 0.760
SVM-full-tree+lin | 94.04% | 0.743 | 0.864 | 0.799
SVM-prune-tree+lin | 94.36% | 0.754 | 0.874 | 0.810
LAT Detection
SVM-lin | 96.26% | 0.806 | 0.853 | 0.829
CRF | 96.43% | 0.870 | 0.782 | 0.823
SVM-prune-tree | 94.33% | 0.719 | 0.765 | 0.741
SVM-full-tree+lin - -
SVM-prune-tree+lin | 96.46% | 0.816 | 0.861 | 0.838

Table 2: Experimental results.

ing linear kernels (see below), for both tasks. In the case of
event detection, our CRF baseline runs at a level compara-
ble to the state-of-the-art.> In the case of LAT detection,
there are no CRF results reported to compare to, but our
CRF-based LAT classifier offers a data point which further
confirms the superiority of the framework and method we
propose here.

5.3 Results

Table 2 presents the results of our experiments. All our
event detection models are trained on a 150 document train-
ing set of randomly chosen documents from the 183 Time-
bank documents. We evaluate these on the remaining 33
documents. Similarly, out LAT detection models are trained
on 8,000 Jeopardy! questions and evaluated on 1,128 ques-
tions, all annotated with LATs. We report overall accuracy
and also precision, recall and F-score on the positive class.
The row labeled SVM-lin contains the performance of the
linear kernel SVM using the manually engineered feature
set; the row labeled CRF contains the performance of our
CRF baseline; the row labeled SVM-prune-tree contains the
performance of our tree kernel SVM model; the row labeled
SVM-full-tree+lin contains the performance of our model
which is a combination of the linear and full parse tree ker-
nel; the row labeled SVM-prune-tree+lin contains the per-
formance of our model which is a combination of the linear
and pruned parse tree kernel. We were unable to generate
performance scores for LAT detection with the SVM-full-
tree+lin configuration primarily due to the sheer size of the
trees and the size of the data set, that required for too many
computational resources for the experiment to complete suc-
cessfully.

Our results show that our SVM-prune-tree+lin configu-
ration outperforms the CRF baseline—for both tasks—by
2.3% F-score absolute on event detection, and by 1.5% F-
score absolute on LAT detection. As we pointed out earlier
(Section 5.2), our CRF classifier for event detection is run-
ning at state-of-the-art level, as its feature set compares with
an experimental setup (orthographic, morpho-syntactic, and
lexical semantic, without semantic roles) reported by Llorens
et al. [15]: F=78.67%. The additional claim of that work,
that CRFs outperform SVMs for event detection, refers to
a very different SVM configuration to ours, and should only
be considered in the context of that work.

3See Section 2, where we highlight the accuracy levels of
the ‘base’ classifiers used by Boguraev and Ando [3] and
Llorens et al. [15], which are very close, at 78.6% and 78.67%
respectively.

Acc | P | R | F
Event Detection
SVM-prune-tree+lin | 94.36% | 0.754 | 0.874 | 0.810
ablate mark-target | 94.29% | 0.752 | 0.871 | 0.807
ablate decorations | 94.10% | 0.742 | 0.874 | 0.802
LAT Detection
SVM-prune-tree+lin | 96.46% | 0.816 | 0.861 | 0.838
ablate mark-target | 96.42% | 0.812 | 0.862 | 0.836
ablate decorations | 96.24% | 0.804 | 0.854 | 0.828

Table 3: Ablating mark target and tree decorations.

Our best system also outperforms the SVM-lin baseline by
1.0% F-score absolute (statistically significant with p < 0.05
using McNemar’s test [18]) for event detection and by 0.9%
F-score absolute (statistically significant with p < 0.06) on
LAT detection. While tree kernels alone perform worse than
the two baselines, when combined with the linear feature
space, we achieve our best performing system. Clearly, there
is structural information offered by the kernel design that is
absent in both the CRF and linear kernel baseline.

Our results show that pruning is crucial. In comparison
to the configuration using the full parse tree (SVM-full-
tree+lin), the pruned version (SVM-prune-tree+lin) per-
forms substantially better. We also measured the impact
of marking the target nodes in the trees and that of deco-
rating the nodes with features as child nodes by ablating
these from the SVM-prune-tree+lin configuration. Table
3 presents these results. The rows labeled “ablate mark-
target” are the results for the SVM-prune-tree+lin config-
uration without the target node marked with parent node.
The rows labeled “ablate mark-target” are the results for the
SVM-prune-tree+lin configuration without the child node
decorations. In both tasks, we see that the feature decora-
tions clearly have the most impact, while marking the target
node has a lower (but positive) impact.

Previous work has also shown that the use of tree kernels
can reduce the amount of training data required to train
SVM classifiers. We demonstrate that this is also true for
our tasks by generating learning curves. We evaluate models
trained on randomly sampled subsets of the training data.
Figures 4 and 5 present the learning curves for the event de-
tection and LAT detection, respectively. The x-axis in each
graph is the percentage of training data used for training
model, and the y-axis represents the F-score of the model
on the test data. Each figure has one graph (Linear) gen-
erated for the basline (SVM-lin) configuration of the SVM
and one graph (Linear+TK) for the tree kernel (SVM-prune-
tree+lin) configuration. It is clear from both figures that the
tree kernels can learn a good model with far fewer training
examples as compared to the linear kernel baseline.

In our experiments, we do not offer direct comparison with
related work. This reflects, partly, lack of a uniform base-
line. While performance is reported in experimental settings
with cross-validation over the entire corpus, the nature and
relative weight of the individual folds are not identical. As
there is no develop/train/test split of the reference corpus
(stratified or otherwise), the measures reported in the lit-
erature can not be directly comparable. In any case, our
primary focus in this work is not to come up with an event,
or LAT detection device, which will best, say, CRF methods
for the same task; rather, we are interested in the novel use of
structured input (tree-kernel-based) for a sequence labeling

task, which allows us to implement an alternative classifica-
tion framework, performing at, or close to, state-of-the-art
levels. Even though we cannot directly compare our systems
with the state-of-the-art, our performance numbers suggest
that both our systems are within state-of-the-art levels.

6. CONCLUSIONS

The work presented in this paper was originally framed
as a classification-based framework for recognizing events in
text. Fundamentally, however, we were motivated to study
the applicability, and effectiveness, of recent work on tree
kernel-based methods for structured-input based learning.
More specifically, the event detection task highlighted a class
of labeling applications where the goal is to assign binary
labels to token targets, and where correct labeling crucially
depends on the larger context.

Common to the classification frameworks developed for
token labeling tasks are the intrinsic characteristics of fea-
ture sets for the respective classifiers: manual feature engi-
neering underpins all efforts, and invariably is largely con-
cerned with exposing lexical, morpho-syntactic, and in some
cases semantic features. While it is recognized that contex-
tual dependencies are of importance, corresponding features
capture only approximations of such dependencies, within a
tiny window, at that.

Structural characteristics of the inputs, which may well
carry significant signal for the task at hand, are hardly en-
coded in the feature set. We propose a set of extensions
to an SVM-based classifier deploying tree kernels, such that
the information intrinsic in a parse tree representation of the
input can be directly folded into multi-dimensional feature
space. ‘Raw’ trees, however, may be somewhat distracting,
as well as incomplete with respect to the broad set of data
categories which may be of relevance to the classification
task. Our framework builds on notions of tree pruning and
decorating, to provide for refocusing the learning algorithms
to appropriate signal-bearing tree fragments, additionally
adorning them with extrinsic information. In effect, we re-
introduce feature engineering, but instead of introspecting
about individual features, we allow for such multiple fea-
tures, and inter-dependencies therebetween, to be directly
accessible by globally optimizing learning algorithms.

In the methodology we have developed, we recast the
token labeling tasks appropriately, re-purposing traditional
features as decorations on suitably pruned tree fragments;
these now become richly adorned representations of the to-
ken targets, and the focus of new classifiers deploying tree
kernels, which capture structural inter-dependencies between
contextually related data elements. We have instantiated
this methodology for two diverse labeling tasks, event recog-
nition and lexical answer type detection. Our results show
that the information coming from the tree kernel comple-
ments the information captured in a manually engineered
set of features. This is manifested in better resuts: the
new (composite kernel) classifiers show statistically signifi-
cant improvement over configurations using manually engi-
neered features.

7. ACKNOWLEDGEMENTS

This research is supported in part by Air Force Contract
FA8750-09-C-0172 under the DARPA Machine Reading Pro-
gram.

p
80.0 =]
78.0 <2 e m—
/ T
76.0 /'/
74.0 el 7
[
% 720 J\(/]
[
£ 700 [x /
~—
[T
68.0 J -*-Linear
7L -@-Linear+TK
66.0
64.0
62.0
2.0 12.0 22.0 32.0 42.0 52.0 62.0 72.0 82.0 92.0
Percentage of Training Data
Figure 4: Learning curve for event detection.
83.5
83.0 — _— !
p — 3
Pas. A T .
82.5 \
j (—\—a:/
82.0 / /
o 81.5
2
o 81.0
[
: P
o 80.5
f -*-Linear
80.0 ¥
/ -@-Linear+TK
79.5 f
79.0 i
78.5
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Percentage of Training Data

Figure 5: Learning curve for LAT detection.

8. REFERENCES

[1] R. K. Ando. Exploiting Unannotated Corpora for
Tagging and Chunking. In The Companion Volume to
the Proceedings of 42st Annual Meeting of the
Association for Computational Linguistics, pages
142-145, Barcelona, Spain, July 2004.

[2] S. Bethard and J. H. Martin. Identification of Event
Mentions and their Semantic Class. In Proceedings of
the 2006 Conference on Empirical Methods in Natural
Language Processing, pages 146-154, Sydney,
Australia, July 2006.

[3] B. Boguraev and R. K. Ando. TimeML-compliant
Text Analysis for Temporal Reasoning. In Proceedings
of the Nineteenth International Joint Conference on
Artificial Intelligence, pages 997-1003, Edinburgh,
Scotland, August 2005.

[4] B. Boguraev and R. K. Ando. Analysis of TimeBank
as a Resource for TimeML Parsing. In Proceedings of

the Fifth International Conference on Language
Resources and FEvaluation, pages 71-76, Genoa, Italy,
May 2006.

[6] W. Cohen. MinorThird: Methods for Identifying
Names and Ontological Relations in Text using
Heuristics for Inducing Regularities from Data.
http://minorthird.sourceforge.net, 2004.

[6] M. Collins and N. Duffy. Convolution kernels for
Natural Language. In Advances in Neural Information
Processing Systems, Vancouver, Canada, December
2001.

[7] D. Croce, A. Moschitti, and R. Basili. Structured
Lexical Similarity via Convolution Kernels on
Dependency Trees. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language
Processing, pages 1034-1046, Edinburgh, Scotland,
July 2011.

[8] A. Culotta and J. Sorensen. Dependency Tree Kernels

[12]

[13]

[14]

[21]

[22]

for Relation Extraction. In Proceedings of the 42nd
Meeting of the Association for Computational
Linguistics (ACL’04), pages 423429, Barcelona,
Spain, July 2004.

D. Haussler. Convolution Kernels on Discrete
Structures. Technical Report UCSC-CRL-99-10,
University of California at Santa Cruz, July 1999.

V. Kecman. Learning and Soft Computing. The MIT
Press, Cambridge, MA, 2001.

T. Kudo and Y. Matsumoto. Chunking with Support
Vector Machines. In Proceedings of the Second Meeting
of the North American Chapter of the Association for
Computational Linguistics, pages 192-199, Pittsburgh,
PA, June 2001.

J. Lafferty, A. McCallum, and F. Pereira. Conditional
Random Fields: Probabilistic Models for Segmenting
and Labeling Sequence Data. Proceedings of the 18th
International Conference on Machine Learning, pages
282-289, June 2001.

A. Lally, J. Prager, M. McCord, B. Boguraev,

S. Patwardhan, J. Fan, P. Fodor, and J. Chu-Carroll.
Question Analysis: How Watson Reads a Clue. IBM
Journal of Research and Development,
56(3/4):2:1-2:14, May/July 2012.

X. Li and D. Roth. Learning Question Classifiers: The
Role of Semantic Information. In Proceedings of the
19th International Conference on Computational
Linguistics, pages 556-562, Taipei, Taiwan, August
2004.

H. Llorens, E. Saquete, and B. Navarro-Colorado.
TimeML Events Recognition and Classification:
Learning CRF Models with Semantic Roles. In
Proceedings of the 23rd International Conference on
Computational Linguistics (Coling 2010), pages
725-733, Beijing, China, August 2010.

L. Marquez and A. Moschitti. Special Issue on
Statistical Learning of Natural Language Structured
Input and Output. Natural Language Engineering,
18(2):147-153, April 2012.

M. McCord. Slot Grammar: A System for Simpler
Construction of Practical Natural Language
Grammars. In Proceedings of the International
Symposium on Natural Language and Logic, pages
118-145, Hamburg, Germany, May 1989.

Q. McNemar. Note on the Sampling Error of the
Difference Between Correlated Proportions or
Percentages. Psychometrika, 12(2):153-157, 1947.

A. Moschitti. A Study on Convolution Kernels for
Shallow Statistic Parsing. In Proceedings of the 42nd
Meeting of the Association for Computational
Linguistics (ACL’04), pages 335-342, Barcelona,
Spain, July 2004.

A. Moschitti. Efficient Convolution Kernels for
Dependency and Constituent Syntactic Trees. In
Proceedings of the 17th European Conference on
Machine Learning, pages 318-329, Berlin, Germany,
September 2006.

A. Moschitti, D. Pighin, and R. Basili. Tree Kernels
for Semantic Role Labeling. Computational
Linguistics, 34(2):193-224, June 2008. Special Issue on
Semantic Role Labeling.

A. Moschitti, S. Quarteroni, R. Basili, and

29]

S. Manandhar. Exploiting Syntactic and Shallow
Semantic Kernels for Question Answer Classification.
In Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, pages
776-783, Prague, Czech Republic, June 2007.

T.-V. T. Nguyen, A. Moschitti, and G. Riccardi.
Convolution Kernels on Constituent, Dependency and
Sequential Structures for Relation Extraction. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages
1378-1387, Singapore, August 2009.

L. Ramshaw and M. Marcus. Text Chunking using
Transformation-Based Learning. In Proceedings of
Third Annual Workshop on Very Large Corpora, pages
82-94, Cambridge, MA, June 1995.

R. Sauri, R. Knippen, M. Verhagen, and

J. Pustejovsky. Evita: A Robust Event Recognizer For
QA Systems. In Proceedings of Human Language
Technology Conference and Conference on Empirical
Methods in Natural Language Processing, pages
700-707, Vancouver, Canada, October 2005.

V. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, NY, 1995.

L. Wang, editor. Support Vector Machines: Theory
and Applications. Springer, Berlin, Germany, 2005.

D. Zelenko, C. Aone, and A. Richardella. Kernel
Methods for Relation Extraction. In Proceedings of the
2002 Conference on Empirical Methods in Natural
Language Processing, pages 71-78, Philadelphia, PA,
July 2002.

M. Zhang, J. Zhang, and J. Su. Exploring Syntactic
Features for Relation Extraction using a Convolution
Tree Kernel. In Proceedings of the Human Language
Technology Conference of the North American Chapter
of the Association for Computational Linguistics,
pages 288295, New York City, USA, June 2006.

