
A Comparison of Hard Filters and Soft Evidence for
Answer Typing in Watson

Chris Welty, J. William Murdock, Aditya Kalyanpur, James Fan

IBM Research
cawelty@gmail.com, {murdockj,adityakal,fanj}@us.ibm.com

Abstract. Questions often explicitly request a particular type of answer. One
popular approach to answering natural language questions involves filtering can-
didate answers based on precompiled lists of instances of common answer types
(e.g., countries, animals, foods, etc.). Such a strategy is poorly suited to an open
domain in which there is an extremely broad range of types of answers, and the
most frequently occurring types cover only a small fraction of all answers. In
this paper we present an alternative approach called TyCor, that employs soft fil-
tering of candidates using multiple strategies and sources. We find that TyCor
significantly outperforms a single-source, single-strategy hard filtering approach,
demonstrating both that multi-source multi-strategy outperforms a single source,
single strategy, and that its fault tolerance yields significantly better performance
than a hard filter.

1 Introduction

Natural Language Question Answering (QA) systems allow users to ask questions in
their own natural language, using their own terminology, and receive a concise answer
[1]. While the success of Waston [2] was an important landmark, research in this area
continues in the semantic web, as there is a clear gap between the complexity of logic-
based semantic web representations and the capabilities of web users on a large scale
[3]. A comprehensive survey can be found at [4].

Since the late 1990s, approaches to QA have always included a strong focus on typ-
ing. A common technique, possibly influenced by the way people answer questions, is
to analyze the question for the type of thing being asked for, and then to restrict answers
to that type. Many experimental systems have used such a type-and-generate approach,
and rely on a process of Predictive Annotation [5], in which a fixed set of expected
answer types are identified through manual analysis of a domain, and a background
corpus is automatically annotated with possible mentions of these types before answer-
ing questions. These systems then map answer types into the fixed set used to annotate
the corpus, and restrict candidate answers retrieved from the corpus to those that match
this answer type using semantic search (IR search augmented with the ability to search
for words tagged with some type). More recent semantic web QA systems similarly
rely on the ability to map questions into ontology terms, and assume the ontology types
cover all the questions and answers.

Most existing open-domain QA systems also use a single source of typing informa-
tion, or in some cases two sources (where one is WordNet [6]), and a single strategy for



2

analyzing questions for their answer type. While it is well known that multiple sources
would provide more coverage, most systems avoid exploiting multiple sources because
they believe it is necessary to perform ontology alignment between them.

In this paper we compare the single source, single strategy, type-and-generate ap-
proach to a multi-source, multi-strategy generate-and-type approach called TyCor, in
which candidate answers are initially produced without use of answer type informa-
tion, and subsequent stages score the degree to which the candidate answer’s type can
be coerced into the Lexical Answer Type (LAT) of the question. To isolate the compar-
ison, we reduce the type-and-generate approach to hard filtering of answer candidates
by type, and demonstrate that type coercion (TyCor) outperforms it on a large set of
questions from the Jeopardy! quiz show, without requiring ontology alignment.

2 Background

An important part of Watson, the QA system that defeated the best human players on
the American television quiz show Jeopardy!, is the way it identifies the type of the
answer from the question and evaluates candidate answers with respect to that type. At
the very beginning of the Watson project, we used a type-and-generate approach for
generating candidate answers, simply because that is what we had. However, in our
early analysis of the domain of questions from the TV quiz show Jeopardy!, we found
three main problems that led us to consider an alternative.

To begin with, the design of the Jeopardy! game makes confidence an important
part of performance, experts only answer when they think they know the answer and
have to compete with the other players to get to be the one that answers. In order to
account for the impact of confidence on performance, we adopted a metric of precision
at 70% answered (P@70) with an expert level performance target of 85% P@70. In
other words, our target was to perform at 85% precision on the 70% of answers in
which the system was most confident.

The first problem we had with the type-and-generate approach resulted from anal-
ysis of 20K questions from our domain: we observed a very long tail of types (see 2).
While the type system for our predictive annotation engine was among the largest in the
community (over 100 types), these did not cover even half the questions. There were
roughly 5K different type words used in the 20K questions, more than half of these
occurred fewer than three times in the question set, and roughly 12% occurred once. As
we continued to evaluate on hidden data, we found the 12% number to be constant: new
types were being introduced at this rate (one in eight questions on average). In addition,
15% of questions did not identify the answer type with a specific word. This data seems
immediately to contraindicate the use of a predetermined set of answer types.

The second problem with type-and-generate is the reliance on question analysis to
map type words in the question to the predetermined set of recognized answer types.
Human language is remarkably rich when it comes to describing types; nearly any word
can be used as a type, especially in questions, e.g.:

– Invented in the 1500s to speed up the game, this maneuver involves 2 pieces of the
same color. (Castling)



3

Fig. 1. The distribution of the 30 most frequent LATs in 20K Jeopardy! questions.

– The first known air mail service took place in Paris in 1870 by this conveyance.
(Hot-air balloon)

– In 2003 this Oriole first sacker was elected to the Baseball Hall of Fame. (Eddie
Murray)

– Freddy Krueger was introduced in this 1984 scarefest. (A Nightmare on Elm Street)
– When hit by electrons, a phosphor gives off electromagnetic energy in this form.

(light)
– Whitney’s patent for this revolutionized the garment industry. (the cotton gin)

Given this variability, one of the intuitive problems with relying on predictive anno-
tation is that we cannot reliably map from these words, which we call the lexical answer
type (LAT), to the predetermined set of known answer types. Even in the cases where
there should be a mapping, as in the case of scarefest, or conveyance, there is no way to
accurately predict for unseen questions what LATs might be used for the known types.

The third and final problem was that the type-and-generate approach itself was a
single point of failure that quite simply prevented us from reaching human expert per-
formance. The basic idea (analyze the question and determine the answer type from a
predetermined set, find answers in the background corpus that have been labelled with
that type, then process those candidates with other forms of evidence) limits the ulti-
mate performance of the end to end system to the recall of the question analysis times
the recall of the predictive annotation. In our case, the recall of our predictive annotator
was estimated at about 70% for the types it knew, and the recall of the question analysis
was similar, leaving us with a maximum performance of under 50% absolute for less
that half the questions, and then we had to have an approach for the other half.



4

While we may have had some hope of improving the recall of question analysis and
predictive annotation, these problems and the need to implement some way to handle
questions in the long tail of LATs anyway, forced us to rethink the approach. It seemed
to us that we needed to be open and flexible about types, treating them as a property
of a question and answer combined. In other words, instead of finding candidates of
the right type, we should find candidates (in some way) and judge whether each one
is of the right type by examining it in context with the lexical answer type from the
question. Furthermore, we needed to accommodate as many sources as possible that
reflect the same descriptive diversity as these questions. Our hypothesis was that, to
reach expert human performance, we needed a system design in which any part of the
system could fail to produce the proper result, without preventing the overall system
from succeeding.

3 TyCor

We use the term Type Coercion to refer to a process of determining whether it is possible
to interpret a candidate answer that is consistent with the type requested by the question.
Note that this term is also used by Pustejovsky [7] as a linguistic phenomenon in which
a speaker imposes an abstract type onto a word by context. For example, saying that
someone finished a book coerces an interpretation of ”book” as an event, while the word
”book” might be interpreted as a physical object in other contexts. Our use of the same
term is largely coincidental; we describe a process of interpretation not a generative
theory of language. However, we share with Pustejovsky the perspective that types can
be dynamic and influenced by context.

3.1 Question Analysis

TyCor depends on getting the type word from the question, and gathers evidence for
each candidate answer that it is of that type. The type word is not interpreted according
to some predefined type system or ontology, unlike with type-and-generate approaches
to question answering. We call the uninterpreted type word from the question the lexical
answer type (LAT). If the LAT has been mapped into some predefined type system, we
refer to the resulting type as the semantic answer type (SAT).

LAT recognition is easier than mapping to a semantic type, and though imperfect
our LAT detection measures above .9 F1 on 20K randomly selected questions [8]. Like
all parts of our system, LAT detection includes a confidence, and all type scores are
combined with LAT confidence.

3.2 Candidate Generation

Our approach to candidate generation, driven by the observations discussed above, was
to raise recall well above .8, and expend more effort on answer scoring to promote
correct answers. A full discussion of candidate generation is beyond the scope of this
paper, and can be found elsewhere [9], but improving this step to .85 recall for the top
500 answers was significant.



5

3.3 Answer Scoring

One of the significant differences between our approach and that of many previous
QA systems is the manner in which candidate answers are generated, and that the pro-
cessing of type information has been moved from candidate generation and search to
answer scoring. Answer scoring is the step in which all candidates, regardless of how
they were generated, are evaluated. During the answer scoring phase, many different al-
gorithms and sources are used to collect and score evidence for each candidate answer
with respect to the question. Type information is just one kind of evidence that is used
for scoring, there are over 100 other dimensions of evidence including temporal and
spatial constraints, n-grams, popularity, source reliability, skip-bigrams, substitutabil-
ity, etc. Each answer scoring method is independent from all others, and may fail on
any particular question-answer pair. The general idea is that across all methods, more
will succeed for the correct answer than any other. In the end, this idea turned out to be
true often enough to win.

3.4 Final Answer Merging and Ranking

With over 100 different methods for retrieving and scoring evidence for candidate an-
swers, an overall determination of the final answer must combine the scores from each
scoring algorithm for each answer in a way that weights each score as appropriate for
the context given by the question [10]. In general, using a large number of blind train-
ing examples (roughly 3K questions with answers), we learn a set of context-dependent
vector models in which each score corresponds to a dimension that is assigned a weight
and combined using a logistic function. The contexts are mainly based on properties of
the question: is there a LAT at all, is the question decomposed, etc.

An important quality of answer scores, due to the way the scores are combined,
is that they exhibit monotonic behavior. That is, they should consistently increase (or
decrease) with the probability of the answer being correct. For TyCor components, this
requirement meant special attention had to be paid in the framework for estimating
and modeling error. To accomplish this, we broke all TyCor components into four ba-
sic steps, and collected error rates for these steps. This allowed us to make more fine
grained predictions of confidence in typing.

3.5 TyCor Framework

TyCor is a class of answer scoring components that take a LAT and a candidate answer,
and return a probability that the candidate’s type is the LAT. Note that since language
does not distinguish between instantiation and subclass, the TyCor components must
allow for this, and given a candidate answer that refers to a class, TyCor should give it
a high score if it can be interpreted as a subclass or instance of the LAT. As mentioned
above, LAT detection produces a confidence, so each (answer,LAT) score is modified
by the LAT confidence.

Each TyCor component uses a source of typing information in some cases (see e.g.
Lexical TyCor in the next section) this source is the answer itself and performs four



6

steps, each of which is capable of error that impacts its confidence. A more complete
description of the framework can be found in [11] and [12], but briefly:

Entity Disambiguation and Matching (EDM): The most obvious, and most error-
prone, step in using an existing source of typing information is to find the entity in that
source that corresponds to the candidate answer. Since the candidate is just a string,
this step must account for both polysemy (the same name may refer to many entities)
and synonymy (the same entity may have multiple names). Each source may require its
own special EDM implementations that exploit properties of the source, for example
DBpedia encodes useful naming information in the entity id. EDM implementations
typically try to use some context for the answer, but in purely structured sources this
context may be difficult to exploit.

Predicate Disambiguation and Matching (PDM): Similar to EDM, the type in the
source that corresponds to the LAT found. In some sources this is the same algorithm
as EDM, in others, type looking requires special treatment. In a few, especially those
using unstructured information as a source, the PDM step just returns the LAT itself.
In type-and-generate, this step corresponds to producing a semantic answer type (SAT)
from the question. PDM corresponds strongly to notions of word sense disambiguation
with respect to a specific source.

Type Retrieval (TR): Once an entity is retrieved from the source, if applicable the
types of that entity must be retrieved. For some TyCors, like those using structured
sources, this step exercises the primary function of the source and is simple. In others,
like unstructured sources, this may require parsing or other semantic processing of some
small snippet of natural language.

Type Alignment (TA): The results of the PDM and TR steps must then be compared
to determine the degree of match. In sources containing e.g. a type taxonomy, this may
include checking the taxonomy for subsumption, disjointness, etc. For other sources,
alignment may utilize resources like wordnet for finding synonyms, hypernyms, etc.
between the types.

3.6 Multi Source Multi Strategy TyCor

We have implemented more than ten different TyCor components for scoring candidate
answers. Some of our TyCor components share algorithms but use different sources of
evidence, others use different algorithms on the same sources. The algorithms mainly
involve different approaches to the four TyCor steps as appropriate for the source, with
an eye towards accurately accounting for the error in the steps (most notably EDM
and alignment) to produce a meaningful score. The sources we use range from DB-
pedia, WordNet, Wikipedia categories, Lists found on the web (e.g. list of nobel prize
winners), as well as the first sentence of Wikipedia articles, lists of common male and
female names, specially mined databases of people and their genders, and mined results
of is-a patterns [13] from large corpora.

Generally speaking, TyCor scores range from [-1,1]; negative scores are interpreted
as evidence that a candidate is not of the right type, positive scores that it is, and a 0
score is interpreted as unknown. For example, if a candidate is simply not known by
a source, this doesn’t constitute evidence that the answer is not of the right type. Most



7

TyCor methods do not even include the ability to collect negative evidence, those that
do are indicated below.

A full discussion of all the components is beyond the space limitations of this paper.
A brief overview follows.

Yago: Many candidate answers in our domain are titles of Wikipedia articles. Each
of these is an entity in DBpedia, a linked open data source compiled automatically from
Wikipedia infoboxes and article templates. Entities (articles) in DBpedia have types
represented in RDF from Yago [14], a semi-automatically constructed type taxonomy
based on WordNet, corpus analysis, and Wikipedia. In addition, we have added roughly
200 disjointness constraints (e.g. a Person is not a Country) at high levels in the tax-
onomy. Using a special purpose reasoner to check for subsumption and disjointness,
Yago Tycor can produce negative evidence when a candidate matches only types that
are disjoint from all the types matching the LAT.

Intro: The first sentence of all Wikipedia articles identifies some types for the entity
described in the article, e.g. Tom Hanks is an American actor, producer, writer, and di-
rector. Intro TyCor utilizes a special source mined from these intro passages and scores
LAT matches, using WordNet synonyms and hypernyms for Type alignment.

Gender: Uses a custom source of data mined from articles about people by de-
termining which pronouns are most commonly used to refer to the person, scores the
degree to which a candidate answer is of the appropriate gender, or not. Can produce
negative evidence if the LAT indicates one gender and the answer is found to be of the
other.

ClosedLAT: Certain LATs identify types with enumerable lists of instances, such
as Countries, US States, US Presidents, etc. When such a list is available, this TyCor
component is capable of producing a negative type score for candidate answers that are
not in the list. Of course, as with everything described here, confidence is never perfect
due to name matching issues and the possibility that the LAT is used in a non-standard
way. For example, the mythical country of Gondor is not on our closed list, but could
conceivably be the answer to a country-LAT question. Based on the domain analysis
in Figure 1, we selected the 50 most frequent closed LATs and developed lists of their
instances.

Lexical: Occasionally LATs specify some lexical constraint on the answer, like that
it is a verb, or a phrase, or a first name, etc. Lexical TyCor uses various special-purpose
algorithms based on the LAT for scoring these constraints. Passage: When a candidate
answer is extracted from a passage of text, occasionally that passage includes some
reference to the candidate’s type, e.g. Actor Tom Hanks appeared at the premier of his
new film. Passage Tycor uses WordNet for type alignment to match the LAT to the type
word in the passage.

Identity: Some candidate answers contain the LAT as part of their name it can be
quite embarrassing for a system to miss King Ludwig as a king just because he isn’t
on a list of Kings. Identity TyCor uses WordNet to match the LAT to any part of the
candidate string itself.

NED: The NED TyCor uses the engine previously used for predictive annotation.
Although our approach supercedes pure predictive annotation for candidate generation,
it does not throw it away. The NED engine recognizes over 100 SATs, most of which



8

are among the top 100 LATs. It uses a special purpose rule base PDM to map from
LATs to SATs, and recognizes candidates as being of the right SAT mainly through
large manually curated list and patterns.

WordNet: WordNet is used primarily in other TyCor components to assist in the type
alignment phase, however it does contain some limited information about well known
entities such as famous scientists, a few geographic and geopolitical entities, etc. It also
has high coverage of biological taxonomies. This TyCor implementation has very high
precision but low recall.

WikiCat: Wikipedia articles are frequently associated with categories that more or
less match, in style and content, the linguist ability to say that one thing has some
topic association. All these categories are stored in DBpedia. The WikiCat TyCor uses
primarily the headword of all the category names for an entity, and performs type align-
ment using WordNet synonyms and hypernyms. Wikicat does not use the category
structure (e.g. subcategory) at all, as this adds too much noise.

List: Wikipedia and many other web sources contain lists of things associated in
some way, like List of Argentinean Nobel Prize Winners. We collect these lists, and
like WikiCat map only the headwords to the LATs.

Prismatic: Prismatic [15] is a repository of corpus statistics such as all subject-verb-
object tuples, or all subject-verb-preposition-object tuples, that allows counting queries
(e.g. how many SVPO tuples with stars as the verb). Prismatic Tycor measures the
frequency with which the candidate answer is directly asserted to be an instance of the
lexical answer type using is-a patterns [13].

4 Experiment

We performed a series of experiments to validate our hypothesis that the type-and-
generate (TaG) approach exemplified by TyCor would lead to improved performance
over a generate-and-type (GaT) approach to open-domain QA. In particular, we were
interested in validating that generating only candidate answers believed to be of the
right semantic type before seeing the question would limit system performance.

4.1 Experimental Setup

The full QA system we ran this experiment with is the version of Watson that partici-
pated in the televised exhibition match. It performs at 71% accuracy overall and with a
confidence estimation capability that allows it to perform at over 85% P@70 (precision
at 70% answered). This combination of overall accuracy and confidence estimation is
unprecedented in the community. The system was tested in a public display on blind
questions which were held by independent auditors to ensure the test was fair and truly
blind.

We ran a second set of experiments using a smaller “lite” version of Watson that
removes all the answer scoring components (except, where applicable, the TyCor com-
ponent being tested), relying on only the scores resulting from candidate generation
methods, primarily (though not exclusively) search. This set of experiments was in-
tended to demonstrate that the relative difference between TaG and GaT changes with
the overall performance.



9

While the performance numbers are interesting in themselves (the lite version of
the system already performs at levels that would make it one of the top 2 open domain
QA systems at TREC [16]) it is simply beyond the scope of this paper to describe how
they were obtained. For the purposes of this paper, within each set of experiments (full
system and lite system) all aspects of the system were held constant except for the
approach to answer typing. Thus it is the relative performance numbers we focus on.

For the full and lite versions of the system, we ran four experiments:
No Typing: Uses no typing components in scoring answers, although since the LAT

is a search keyword, some type information does make it into candidate generation and
scoring.

Tycor: Uses the full set of TyCor components (described above) as separate answer
scorers.

NED Tycor: Uses only the NED based TyCor component as an answer scorer, to
illustrate the effectiveness of predictive annotation as a source of evidence.

TaG: We simulate the type-and-generate approach by using the NED TyCor com-
ponent as a hard filter on candidate answers that are scored. Candidates are generated
in the same way as other versions of the system, but all those that do not match the SAT
according to the NED annotator are filtered out. We chose this approach over using ac-
tual semantic search for candidate generation in order to hold the search engine itself
constant, since the one we used in Watson did not support semantic search [9]. As can
be seen from the lite version of the system, the search component alone produces 50%
accuracy and 64% P@70, which is significant.

All experiments were run on 3500 blind questions from past Jeopardy! games. Can-
didate generation recall for all versions is the same, at 87% in the top 500.

4.2 Results

Lite System Full System
Accuracy P@70 Accuracy P@70

No Typing 50.0% 63.4% 65.5% 81.4%
NED TyCor 53.8% 67.8% 67.9% 84.2%
TaG 45.9% 62.1% 55.3% 74.9%
TyCor 58.5% 75.0% 70.4% 87.4%

Table 1. Relative Performance on Lite and Full QA Systems

Table 1 shows the relative performance of the four configurations of the typing
components described above on the lite and full versions of the system. The lite version
has no other answer scoring except search and candidate generation. The full version
uses all answer scoring in the system that performed in the exhibition match. Accuracy
(precision @ 100% answered), is shown along with P@70. All results within columns
are different with statistical significance at p < .01.

The main comparisons are between the TaG and TyCor versions of the system, and
between the NED TyCor and TaG, in both the lite and full systems, although it is clearly



10

worth noting that TaG draws down the performance of the system even with no typing
at all.

4.3 Analysis and Discussion

Throughout this paper we have been careful to distinguish the type-and-generate ap-
proach (TaG) from predictive annotation itself. Predictive annotation refers only to the
process of annotating a background corpus with types from a predefined set of possible
semantic answer types. The TaG approach is one in which questions are analyzed to
produce the semantic answer type, and candidate generation produces only candidate
answers which were identified as being of the right type during the predictive annotation
step. Note that while there is a clear similarity between predictive annotation and named
entity detection (NED), predictive annotation tends to favor recall over precision, and
is generous in labeling mentions in a corpus; often mentions will have multiple type
labels.

In the full system, the TaG configuration performs at 55.3% accuracy and 74.9%
P@70, compared to 70.4% and 87.4% resp. for TyCor. It could be argued that the
multi-source multi-strategy (hereafter, multi-strategy) aspect of TyCor accounts for this
difference and not the TaG vs. generate-and-type (GaT) approaches, and that a multi-
strategy approach could have been used during predictive annotation itself. If true, this
would mean the only difference between the two is one of efficiency at question an-
swering time. In reality, aspects of the multi-strategy approach make it computationally
impractical to annotate the entire corpus this way, but to further isolate the comparison
we ran the system with only the NED TyCor component, which is the same component
used to hard filter answers in the TaG configuration.

The results demonstrate that the TaG approach is a hindrance to a high performing
QA system. The idea of predictive annotation itself, however, is a helpful one, as shown
by the NED TyCor rows. In both cases, having some evidence for typing, even when
(as in this case) it covers roughly 60% of the questions, is more helpful than no typing
information at all, provided that evidence is used in answer scoring, not as a filter.
Indeed, the NED TyCor component is consistently among the top 4 performing TyCor
components over large sets of questions. The main issue it has, which is more than made
up for by the full complement of TyCors, is that it works only on types in the head of
the LAT curve (see 2).

The main reason the GaT approach outperforms TaG is the fault tolerance of the
answer scoring phase in DeepQA. It is possible for a correct answer to “win out” and
become the top answer even when the NED TyCor believes the answer is of the wrong
type. In TaG, when question analysis or predictive annotation make mistakes, there is no
way to recover from them. This is borne out further by the difference between the full
system and the lite, where there are more kinds of answer scoring and thus more ways in
which other evidence can overcome typing failures; the relative and absolute differences
in the full system for TaG vs. GaT are more. Interestingly, until our system reached a
performance level of about 50% overall accuracy, we were not able to validate the TaG
vs. GaT hypothesis experimentally, due mainly to the lack of sufficient other evidence
to overcome the typing failures. This seems to indicate that, for systems performing at



11

50% or less, TaG is a reasonable approach. This performance level characterized all but
the top performing system at the TREC QA evaluations [16].

The results also show the relative impact of the multi-strategy TyCor approach on
the system. In the lite system, full TyCor adds 15.7% relative (8.5% absolute) to ac-
curacy and 16.8% relative to P@70 (11.6% absolute). For the full system, TyCor adds
7.2% relative accuracy improvement (4.9% absolute), and 7.1% relative P@70 (6%
absolute). All components in our system (there are over 100) see the same sort of di-
minished relative impact in the full system compared to the lite, this is due to the fact
that many of the scoring components overlap. For example, another scoring compo-
nent counts the n-gram frequency of terms in the question with the candidate answer.
Since the LAT is one of the terms in the question, the ngram score can provide partial
information about typing.

That the multi-strategy approach outperforms a single strategy for typing candidate
answers should come as no surprise, but it is interesting to note that the DeepQA archi-
tecture facilitates the combination easily. Training the system only against a question-
answer ground truth (ie as opposed to a task-specific ground truth of candidate answers
and types), DeepQA is able to effectively combine the 14 different TyCor implementa-
tions to produce significantly better results than against any of them in isolation. Here
we show only the comparison to the NED TyCor in isolation, a full set of experiments
showing the relative performance of each in isolation can be found in [12].

5 Related Work

QUARTZ [17] is a QA System that uses WordNet as the background knowledge base
for mapping answer types expressed in the question. This approach mitigates the type
coverage issue in earlier QA systems due to the conceptual breadth of WordNet. The
mapping from answer type to WordNet synset, which is essentially a Word Sense Dis-
ambiguation (WSD) problem, is done using statistical machine learning techniques.
Having obtained a WordNet synset T for the answer type, the system estimates a set of
complementary-types C(T) in WordNet (typically considering siblings of T). A given
candidate answer is then determined to be of the correct type if it has a stronger corre-
lation to type T than to the types in C(T), where the correlation is computed using Web
data and techniques like mutual information (MI) e.g. how often does the candidate an-
swer co-occur with the type across a collection of Web documents. In [18] the approach
has been taken a step further by combining correlation-based typing scores with type
information from resources such as Wikipedia, using a machine-learning based scheme
to compute type validity.

Both [18] and [17] use a similar approach to type-coercion in DeepQA in that they
defer type-checking decisions to later in the QA pipeline and use a collection of tech-
niques and resources (instead of relying on classical NERs) to check for a type match
between the candidate and the expected answer type in the question. However, that is
where the similarity ends. A fundamental difference in our approach is that the type
match information is not used as a filter to throw out candidate answers, instead, the in-
dividual TyCor scores are combined with other answer scores using a weighted vector
model. Also, our type-coercion is done within a much more elaborate framework that



12

separates out the various steps of EDM, PDM, Type Alignment etc, and the intermedi-
ate algorithms (and resources) used in these steps are far more complex and varied –
having either much more precision, and/or much broader scope compared to existing
work, and a precise model of error. For example, the only use of Wikipedia content for
type inference in [18] is through a shallow heuristic that searches for the mention of
the expected answer type on the Wikipedia page of a candidate answer (mapped us-
ing an exact string match to the page title) and makes a Yes/No decision for the type
validity based on this finding. In contrast, in our Wikipedia-based TyCors we use an
EDM algorithm to map the candidate answer string to a Wikipedia page using a variety
of resources such as Wikipedia redirects, extracted synonym lists, link-anchor data etc,
and then use different kinds of type information expressed in Wikipedia, such as lexi-
cal types in the introductory paragraphs, Wikipedia categories etc. Similarly, while [17]
uses the notion of complement-type sets, which are approximated using heuristics such
as sibling-types, we define explicit disjoint types in the Yago Ontology and use dis-
jointness information to down weigh candidate answers whose types are disjoint with
the LAT.

An approach that combines slightly softens the type and generate approach by ap-
plying semantic answer type constraints to passage ranking is presented in [19]. Like
our system, search terms are extracted from questions for a search engine which returns
ranked sets of passages. These passages are then pruned by removing all passages that
do not contain terms labeled with the semantic answer type detected in the question. The
approach shows improvement in passage ranking metrics, but QA performance is not
evaluated. Such an approach could be used in our system, as removing passages without
detected answer types in them is subtlety different than removing answers themselves;
candidate answers can be generated from passages by e.g. extracting all noun phrases,
whether they have the right annotation labels or not. Still, our analysis here suggests
that this would probably only help for lower performing QA systems.

A similar approach to our combination of NED and WikiCat is presented in [20].
The traditional type-and-generate approach is used when question analysis can recog-
nize a semantic answer type in the question, and falls back to Wikipedia categories for
candidate generation, using it as a hard filter instead of predictive annotation. In our
approach we assume any component can fail, and we allow other evidence, both from
other TyCor components and from other answer scoring components, to override the
failure of one particular component when there is sufficient evidence.

6 Conclusion

Answer typing is an important component in a question answering (QA) system. The
majority of existing factoid QA systems adopt a type-and-generate pipeline that rely on
a search component to retrieve relevant short passages from the collection of newswire
articles, and to extract and rank candidate answers from those passages that match the
answer type(s) identified, based on the question, from a pre-constructed and fixed set
of semantic types of interest. For example, the semantic answer type for the question
“What city is was 2008 World Sudoku Championship held in?” is City, and the candi-
date answer set for this question typically consists of all cities extracted from a relevant



13

passage set by a named entity recognizer (NER). This approach suffers from two main
problems.

First, restricting the answer types to a fixed and typically small set of concepts
makes the QA system brittle and narrow in its applicability and scope. Such a closed-
typing approach does not work for open-domain Question Answering, and in particular
the Jeopardy! problem, where answer types in questions span a broad range of topics,
are expressed using a variety of lexical expressions (e.g. scarefest when referring to the
semantic type horror movie) and are sometimes vague (e.g. form) or meaningless (e.g.
it).

Second, the QA system performance is highly dependent on the precision and recall
of the NERs used, as they act as candidate selection filters, and the system has no way
to recover from errors made at this stage.

We have presented an approach to handling answer types in open domain question
answering systems that is more open and flexible than the commonly used type-and-
generate approach. Our generate-and-type approach does not rely on a fixed type sys-
tem, uses multiple strategies and multiple sources of typing information, gathers and
evaluates evidence based on the type words used in the question, and is not a hard filter.
Our approach is broken into four basic steps, which have allowed us to more accurately
model and predict the error of typing statements, which increases the ability of the typ-
ing system to inform the confidence in final answers. We compared our approach to
type-and-generate within a high performance QA system and found a significant differ-
ence in performance, both in the overall accuracy and the ability to estimate confidence.

7 Acknowledgements

Numerous people contributed to Watson

References

1. Hirschman, L., Gaizauskas, R.: Natural language question answering: the view from here.
Nat. Lang. Eng. 7(4) (December 2001) 275–300

2. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A., Mur-
dock, J.W., Nyberg, E., Prager, J., Schlaefer, N., Welty, C.: Building watson: An overview
of the deepqa project. AI Magazine (2010) 59–79

3. Kaufmann, E., Bernstein, A., Fischer, L.: NLP-Reduce: A ”naive” but Domain-independent
Natural Language Interface for Querying Ontologies. (2007)

4. Lopez, V., Uren, V., Sabou, M., Motta, E.: Is question answering fit for the semantic web?
a survey. Semantic Web ? Interoperability, Usability, Applicability 2(2) (September 2011)
125–155

5. Prager, J., Brown, E., Coden, A., Radev, D.: Question-answering by predictive annotation.
In: Proceedings of the 23rd annual international ACM SIGIR conference on Research and
development in information retrieval. SIGIR ’00, New York, NY, USA, ACM (2000) 184–
191

6. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11) (November
1995) 39–41



14

7. Pustejovsky, J.: Type coercion and lexical selection. In: Semantics and the Lexicon. Kluwer
Academic Publishers, Dordrecht, The Netherlands (1993)

8. Lally, A., Prager, J.M., McCord, M.C., Boguraev, B.K., Patwardhan, S., Fan, J., Fodor, P.,
Chu-Carroll, J.: Question analysis: How watson reads a clue. IBM Journal of Research and
Development 56(3.4) (may-june 2012) 2:1 –2:14

9. Chu-Carroll, J., Fan, J., Boguraev, B.K., Carmel, D., Sheinwald, D., Welty, C.: Finding
needles in the haystack: Search and candidate generation. IBM Journal of Research and
Development 56(3.4) (may-june 2012) 6:1 –6:12

10. Gondek, D., Lally, A., Kalyanpur, A., Murdock, J., Duboue, P., Zhang, L., Pan, Y., Qiu, Z.,
Welty, C.: Finding needles in the haystack: Search and candidate generation. IBM Journal
of Research and Development 56(3.4) (may-june 2012) 14:1 –14:12

11. Kalyanpur, A., Murdock, J.W., Fan, J., Welty, C.A.: Leveraging community-built knowledge
for type coercion in question answering. In Aroyo, L., Welty, C., Alani, H., Taylor, J., Bern-
stein, A., Kagal, L., Noy, N.F., Blomqvist, E., eds.: International Semantic Web Conference
(2). Volume 7032 of Lecture Notes in Computer Science., Springer (2011) 144–156

12. Murdock, J.W., Kalyanpur, A., Welty, C., Fan, J., Ferrucci, D.A., Gondek, D.C., Zhang, L.,
Kanayama, H.: Typing candidate answers using type coercion. IBM Journal of Research and
Development 56(3.4) (may-june 2012) 7:1 –7:13

13. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings
of the 14th conference on Computational linguistics - Volume 2. COLING ’92, Stroudsburg,
PA, USA, Association for Computational Linguistics (1992) 539–545

14. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Pro-
ceedings of the 16th international conference on World Wide Web. WWW ’07, New York,
NY, USA, ACM (2007) 697–706

15. Fan, J., Kalyanpur, A., Gondek, D.C., Ferrucci, D.A.: Automatic knowledge extraction from
documents. IBM Journal of Research and Development 56(3.4) (may-june 2012) 5:1 –5:10

16. Voorhees, E., ed.: Overview of the TREC 2006 Conference, Gaithersburg, MD (2006)
17. Schlobach, S., Ahn, D., de Rijke, M., Jijkoun, V.: Data-driven type checking in open domain

question answering. J. Applied Logic 5(1) (2007) 121–143
18. Grappy, A., Grau, B.: Answer type validation in question answering systems. In: Adap-

tivity, Personalization and Fusion of Heterogeneous Information. RIAO ’10, Paris, France,
France, LE CENTRE DE HAUTES ETUDES INTERNATIONALES D’INFORMATIQUE
DOCUMENTAIRE (2010) 9–15

19. Aktolga, E., Allan, J., Smith, D.A.: Passage reranking for question answering using syntactic
structures and answer types. In et al., P.C., ed.: ECIR 2011, LNCS 6611. (2011) 617628

20. Buscaldi, D., Rosso, P.: Mining Knowledge from Wikipedia from the question answering
task. In: Proceedings of the 5th International Conference on Language Resources and Eval-
uation (LREC 2006), Genoa, Italy (2006)


