Developer Studio 2006

Delphi for Microsoft Win32

Delphi for the Microsoft .NET Framework
C++Builder for Microsoft Win32

C#Builder for the Microsoft .NET Framework

For Windows

Excellence Endures

Borland Software Corporation 100 Enterprise Way Scotts Valley, California 95066-3249 www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance with the License Statement
and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of
this document does not give you any license to these patents.

Copyright 1997 2005 Borland Software Corporation. All rights reserved. All Borland brand and product names are
trademarks or registered trademarks of Borland Software Corporation in the United States and other countries. All
other marks are the property of their respective owners.

For third-party conditions and disclaimers, see the Release Notes on your product CD.
October 2005
PDF

Developer Studio 2006 (Common)

Getting Started

What's Developer StUIO 20067ueeiiiiiiiiieee oot e e e e e e e e e e e e e s e e e e e e b — b e are e e e e e aaaaaaaaeaaaaaaan 21
What's New in Developer Studio 2006coooiiiiiiiiiiiiieeeeeeee e e e e e e e e e aaaaaeeeeaeeaaaaaanns 23
TOUF OF tNE IDE ...t h e b ettt e e ettt et b et e e bt e e s b bt e e anbe e e e naneeenanneeenas 27
S = [y (] aTo I T o (o] [T ox A OO PP UPPPRR SRR 33
(070 T0 [N =l 11 (o] TSP PP PP PP PRSPPI 37
Getting Started With TOGEINETviiiiiiiieeee eeanaranes 41
Y o Yo 10T A I T =1 { o =Y R 43
L T o o o =1 U UUP 45
Managing the Development Life Cycle
Managing the Development CYCIE OVEIVIEWeiiiiiiiiiiiii ittt e e e e e e s nneeeeas 49
U] aTe RS ToT0] (otc I @7o] | (o] PSPPSRI 51
Using the StarTeam INtegrationoooii i es 53
Managing Requirements with CaliberRMooo e 57
Designing USEr INTEITACES ...ttt e e e s ettt e e e s s bt e e e e s aannnreeeee s 59
TOgether FEAtUreS OVEIVIEWueiiiiiiiiiiiie ettt e ettt e e e e bttt e e e e aabbe e e e e e eaabeeeeeeesanbeeeeeeeaanns 61
1Y ToTe L=1 [T To T @Y= Y o SR EPPO 63
TOgether ProjeCt OVEIVIEWueiiiiiiiiiiie ettt e e e e sa e e e e s abe et e e e e snnbeeeeaeeannee 65
Namespace and Package OVEIVIEWuiiiiiiiiiiiiiiae ettt et e e e s et e e e e e snbb e e e e e e e e nnbeeas 67
Together DIagram OVEIVIEWuueiiiiiiiiiiiieee et e ettt e e e e e st bt e e e e e s anbaeeeeeeesanbbeeeeeaeeanne 69
Supported UML SPeCifiCatiOnsccooiiiiiiiii e e e e e e e e e e e e 71
MoOdel EIEMENT OVEIVIEW ...ccoiiiiiiiiiie ettt et e e e et e e e s e e bt e e e e e e nnbbe e e e e e esnnreeeas 73
F N ale] e= 110 o I @ Y=Y Y = PSRRI 75
SNOMCUL OVEIVIEW ...t e et e e e e ettt e e e e e e aa bttt e e e e s anbe e e e e e e aanbeeeeeeeannneeas 77
Diagram FOrMat OVEIVIEWcooiiiuiiiiiiiiiie ettt et e et e e e et e e e s anb e e e e e annbe e e e e ennnbeeeeeanneeas 79
Diagram LayOUt OVEIVIEWc..uuiiiieiiiiiiiiie ettt ettt e ettt e e e ettt e e e et e e e e e nnbbe e e e e e e nnbeeeeeeennnreeas 81
HYPEIIINKING OVEIVIEW ...ttt et e et e e e s et e e e e e b e e e e e e nnnbeeee e e annreeas 83
LIVESOUICE OVEIVIEWeiiiiiieiiiteeee ettt e e e ettt e e e e s ab bt e e e e e s e nnb bt e e e e e e e nnbeeeeeeeeannreeeas 85
Transformation to Source Code OVEIVIEWoocuiiiiiiiiiiiiiiiie et e e e e e e e e eanes 87
OCL SUPPOIT OVEIVIEWeeiiiiieiiitiiiee ettt ettt e e e e sttt e e e e e s bbbt e e e e e e sanbbe et e e e e e ansbeeeeeeeeanbbeeeeeeeannnreeas 89
PatterNS OVEIVIEWcoiiiiiiiiiiie ettt e e e e ettt e e s e an e e e e e e nnbe e e e e e e anbbeeeeeeannneeas 91
REFACIONNG OVEIVIEW ...ttt e e e et e e e e ettt e e e e st bt e e e e e e nbbeeeeeeennnreeas 93
Quality Assurance FacCilitieS OVEIVIEWuuiiiiiiiiiiiiee ettt e e e e e eee e e e anes 95
Documentation Generation Facility OVErVIEWooiiiiiiiiiiii e 97
IMPOrt AN EXPOIt OVEIVIEWooiiiiiiiiiiiiiiiie ettt e ettt e e s s s bt e e e s s nb et e e e e s annteeeeeeannnneeeeens 99
Interoperability OVEIVIEWooi ettt e e e e e s e e e e s e nnaeeeas 101
Compiling, Building, and Running APPlICAtIoNScooiiiiiiiiii e 103
(R E=Tox (o]] oo Y o] o] o= (o] o < PP PRPR 105
REfACIONNG OVEIVIEWeeiiiiiiiiiieie ettt e e et e e e e e e bttt e e e e e s n b et e e e e e anbreeaeeeenneeas 107
Symbol Rename Overview (Delphi, CH#, CH+) ..o 109
Extract Method Overview (DeIphi)eeiiiiiiii e e 111
Extract Resource String (DeIPhi)eoooiiiiiiee e 113
Declare Variable and Declare Field Overview (Delphi)ccoooiiiiiiiiiiieeeee e 115
Find References Overview (Delphi, CH#, CH+) oot 119
Change Parameters OVerview (DeIPhi)oooo i e e e 121
Sync Edit Mode (Delphi, CH, Cr) ...t e e e e st e e e e e s sbbeeeeeeeeannes 123
Undoing a Refactoring (Delphi, CH#)ooiioiiiiiee e 125
BT (g Lo oY o] o 171 (1] 1RO 127
UNit TESHNG OVEIVIEW ..ottt et e e e e ettt e e s ettt e e e e e st te e e e e e ennbreeeeeeanneee 129
DURNIE OVEIVIEW ...ttt ettt et e e e ettt e e e e s bt e e e e e n b e e e e e e anbbe e e e e eanbeeeeeeannbeeaeeannneeas 131
NURNIE OVEIVIEW ...ttt e e e ettt e e e e e bttt e e e e an bt e e e e e anbbe e e e e eanbeeeeeeannbeeaeeenneeas 135

(oY= T4 g o [N o] o] = i o] <SSR 141

D=1 10T To L aTe [N o] o] [[oz= 11 o] o F- T PO PRSP PPP 143
OVEIVIEW OF DEDUGGINGneeieieie ettt ettt e e e ettt e e e e aab bttt e e e e aabbeeeeeesanbeeeeeeeaanes 145
Overview of ReEmMOte DEDUGGINGccoiiiiiiiiiiii i e e e 147

(1T o) (o) V4T o 7N o] = i o] o <SR 149

Procedures

Getting Started Procedures

Adding and REMOVING FIlESuuueiiiii it e e e e e e e e e ettt e et et aa s e s e eeaeaaaaeaeeeeeeesesnnnnes 153
Adding Components 10 @ FOMM ... e e e e e e e e e e e ereeeaaaeeas 155
AdAING REFEIENCESttt e e e e oo e e et bbb e e et e e eaeaeeeeeseesaaeaaabasbessneneeeeaaeas 157
Adding Templates to the ObJect REPOSItOrYccooiiiiiii e 159
ConfiguriNg TOGEINET e et e e e e e e e e e e s e e e e e e e e eaaaaeeeaeeaans 161
Copying References t0 a LoCal Path ... 163
Creating @ Component TEMPIALEooeiiiiiiiiiiiiiiee ea e e 165
(0 1=Y=] o To J= I od (o] [=To: AP PPPPPPPPRT 167
CUSTOMIZING The FOIM ..t e oo e oo e e e e e et s b e e e e e eeeeeeeeaaaaaaaaeeaeaaaaanas 169
Customizing the TOOI PAIELEuuiiiiiiiiiiiiee e e e e e e e e e e e et e e e e e e e e e e e seanaans 171
CUSTOMIZING TOOIDAISttt ettt e e e e e e e e e e et e e e e e e eeaeeeeeeesaaaansbssrasereeeaaaaaaesesanaanns 173
[Lo Ted (1o T e To] INTAT/Tq o o Y- PSS 175
Exploring .NET Assembly Metadataccooiiiiiiiiiiieee e e e e e e 177
Exploring WINAOWs TYPe LIDFari€soouuveeiiii it e e e e e e e e e e e ae s 179
Finding Items on the TOOI PalEttevueeiiiiii e e e e e e e e e e e e e e e e aerearnnanan 181
Installing CustomM COMPONENTSoooiiiiiiiitee eaeeeeeeeaeeaasbssreeeeeeas 183
Installing More Computer LANGQUAGESuuuiiiiiiiiiiieeee ettt e e e e e e e e e et e e e e e e e e e e e eeaeaaasbsreeeeeaeas 185
Renaming Files Using the Project Managerooooo it e e 187
SaVING DESKIOP LAYOULS ...cciiiiiiie ittt ettt e e e ettt e e e e ettt e e e e e anteeeeeeesstaeeeeeeantaneeaeeaansaneeaeaanes 189
Setting CoMPONENT PTrOPEITIEScociiiiiiiiiiee ettt e e ettt e e e e s ettt e e e e e s sanbaeeeeeeesanteneeaaeesannes 191
Setting DYNamIC PrOPEITIESeiiiiiiiiiiiiie ettt e e e ettt e e e e s ettt e e e e s anbaaeeeeesannteeeeeesantseeeeesannes 193
STy i g T [(o =Y o A @ o] 1] 1SRRI 195
Setting Properties @nd EVENESoooiiiiiiiiii ittt e e e e sttt e e e e s eat et e e e e s anteeeeeeesannaaeeaeeeannes 197
Setting The IDE To MImIC DEIPNI 7eeiiiiiiiieeiiee ettt e e s ettt e e e e s st eeeeeessnnteneeaeeesannes 199
Setting TOOI PrefErE&NCEScoiiiiiiiiiie ettt e e e s ettt e e e e s entteeeaeesantteeeeeesannaeeeaeeaannes 201
Using Design Guidelines with VCL COMPONENTSuuiiiiiiiiiiiiiiiiiee s iiiiiiieee e e s st ee e e e s sneeeeeeea e s s snnneeeeeens 203
USING ONIINE HEIP ..ottt ettt e et e e ettt e e e st e e e e e asbee e e e e e nnbaeeeeeannbeeeaeeannseeeaeeannseeas 205
USING TO-D0 LSS ...ttt e e oo oo bbbttt ettt et e e e e e e e e e e s e e s nnbebbeneeeeeeeeaeeas 207
WIHtING EVENE HANAIEIS ...ttt e e e e e e e e e e et e e e eeeeeeeas 209
CaliberRM Procedures
Adding @ DOCUMENT REFEIENCEcoiiiiiiiiiiiie ettt e s e e e s s neeneeeaeeeas 211
Adding a Table into a Requirement DeSCIIPHONoiiiiiiiiiiiei e 213
Adding an Image to a Requirement DESCIPLIONcccoi i 215
Assigning an Owner {0 a ReqUIFEMENTooiiiiiiiii et ee e e e ee e e 217
AsSIgNING RESPONSIDIE USEISooiiiiiiiiiiiiiee ettt e e e s et e e e e s sabe e e e e e s anbaeeeeeeans 219
Choosing a CaliberRM BaSeliNeoiiiiiiiiiiie e et e e et e e e s e rareeeeeeenes 221
Choosing a CaliberRM PrOJECLoiii e e e e e e eee e e e e 223
Creating a CaliberRM ReEQUIFEMENTooiiiiiiiiiiiie ettt e e e s st e e e e s s sabbeeeeaeeeannes 225
Creating CaliDEIrRM TFaCESueiiiiiiiiiiiii ettt e e et e e e e sttt e e e e e sabbe e e e e e s anbbeeeeeesanbeeeeeesannes 227
Deleting a CaliberRM ReqUIremMeENtoooi i 229
Displaying Requirement NUMDEISo et e s e ee e e e e e nneeeas 231
o1 (T gTo = T A= To [N 1T =T o 1= oL PSP 233
Editing @ Requirement DESCIIPLIONcoiiiiiiiiei et e et e e e e e e e e e e e e snneeeas 235
Editing @ ReqUuIreMent NAMEueiiiiiiiii e et e e e s s e e e e s sttt e e e e e s annnneeeeas 237

Editing ReqQUIremMENt PrIOTILYeiiiiiiii e e e b e e e e 239

Editing ReqQUIrEMENTt STATUSeeeiiiiiie e e e 241
Find @ RequireMeENt DY 1D ...ttt e et e s e as 243
Launching CaliberRM Estimate ProfeSSionalcc.uueiiiiiiiiiii e 245
Logging On To CaliDErRM ...t e et e e e e nreeas 247
Modifying CaliberRM Traceability LINKScoooiiiiiii e 249
MOVING @ REQUIFEIMENT ... et e e e e e et e e e e e e s bbb e e e e e e e nnbb e e e e e e e aanbeeas 251
Posting a New Requirement DiSCUSSION MESSAJEeiiiiiiiiiiiiiiiiiiite et 253
Refreshing DISCUSSION MESSAGEScoiiuiiiiiiiiiiiiie ettt e e e e e e b e e e e e e nnbee s 255
Replying to @ DiSCUSSION IMESSAUEceiiiuiiiiiiiiiiiit ettt e e s et e e s e e e e e bt e e e e e nreeas 257
ReqUIFEMENT HISTOY ...ttt ettt e e s et e et e e st e e e e e s annneee s 259
Requirement Validationttt et e aaaaaaaens 261
Specifying Requirement Comment FOrMat ... 263
Updating Requirement COMMENTS ... i ettt eeeeeeaaaaaaaaens 265
Viewing a CaliberRM Project DESCIIPLIONc.iiiiiiiiiiiiiie ettt e e e 267
Viewing CaliberRM CUSIOM TaDSccooiiiiiii e e s 269
Viewing CaliberRM Requirement Type INformationoooiiiiiiiiii e 271
Compiling and Building Procedures
Lo T0] | o T o T =T3¢ Vo[- T PSS 273
[aTeTaTe l A= (=TT o [or =T OO O OO PRSP 275
Linking Delphi Units INto @an APPlICAtIoONcccooiiiii e e e e e 277
Previewing and Applying Refactoring Operationseeeeiiiiiiiiiiiiiiieeeeeee e 279
RENAMING @ SYMDOI ..ot e e e e e e et e e e eeeeeeeeeesseessessaassssaesrereeeeeeeeas 281
Setting ProjECt OPtIONSoiiiiiiiit ettt 195
Using BUild CONfIQUIAtioNSeoiiiiiiiiii ettt ab e e e s 285
Debugging Procedures
F N o 1T =TT = o] o PP 287
Attaching t0 @ RUNNING PrOCESSueiiiiiiiiiiiiee ettt e e e s st e e e e s e nnbaeeeeeeens 289
Debugging RemOote APPIICALIONScoiiiiiiiiie e e e e et e e e e e e 291
Debugging VCL for .NET SOUMCE COUEcociiiiiiiiieiiiiiiie ettt e e e e e e e e neees 293
Displaying Expanded Watch INformation ..o 295
Establishing a Connection for Remote Debuggingoocuueiiiiiiiiiiiii e 297
FINAING REFEIENCES ...ttt e e e s et e e e e e e bbbt e e e e e e nnbb e e e e e e e e nnreeas 275
Inspecting and Changing the Value of Data EIementsc..eoiiiiiiiii e 301
Installing a Debugger on @ ReEmMOte MacChiNecooiiiiiiiiiiiiii e e 303
Modifying Variable EXPreSSIONSeiiiiiiiiiiiiii et e e e e e e e e e e e nb e e e e e e e annneee 305
Preparing a Project for DebUGGINGeuiiiiiiiiiiiiieie ettt st e e s e e e e e e e e e e e e e e 307
Preparing Files for Remote DebUQGGINGcooiuiiiiiiiiiiiiie et e e e e 309
Previewing and Applying Refactoring Operationsooouuiiiiiioiiiieee e 279
= =Tt (o]] o O o o L= PP PRTR 313
ReNAMING @ SYMDOI ...ttt e e e e et e e e e e e s bttt e e e e e nbeee e e e e e nnreeas 281
RESOIVING INTEINAI EFTOTS ...ttt e e e s ettt e e e e s et e e e e e nasnb e e e e e s annneeeeas 319
Setting and Modifying Source Breakpointsoccuiiiiiiiiiiiie e 321
Setting the Search Order for Debug Symbol TabIESoocuiiiiiiiiii e 325
Using Tooltips DUFNNG DEDUGGINGcoiuuriiiiiiiiiiiiiie ettt et e e s et e e s e e bt e e e e e ennbteeaeeesnnreeas 327
Deploying Applications
BUIIAING PACKAGES ...ttt e e e et e e e e e b e e e e e e e bt e e e e e e e nnreeas 273
Linking Delphi Units Into an AppliCation 277
Editing Code Procedures
Creating Code TEMPIALEScooiiiie et e e e e e e et e e e e e ae e e e e e s e e seaabsrreereeeeaaaseeaaaaaans 333
CUSTOMIZING COAE EQILOr .. .uuuiiiiiiiiiiiiiiee et e e e e e e e e e e e e e e e et a s b e aaeeaeeaaaeaaaaeaanas 335
FINAING RETEIENCES ...ttt e et e e et e e e e e e e e e e e e e e e e e e s e aaeab b s s banaeeeeeeeeeaeas 275

Previewing and Applying Refactoring Operationsooiiiiiiiiii e 279

Recording @ KeYSIrOKE IMECTOcooiiiiiiiiiiieie et e e e e e e e 341
(L= =Tt (o]] ol O o =T PP PRSP PRPPP 313
ReNAMING @ SYMDOI ...t e e et e e e et e e e e e e nb b e e e e e e e anreeas 281
USING BOOKMEATIKS ...ttt e ettt e e e ettt e e e e ab bt e e e e e e abbee e e e e e e nreeas 349
USING Class COMPIELIONooiiiiiiiiii ittt e e ettt e e s e bbb e e e e e e e b e e e e e e e e nanreeas 351
6] [aTe [@7 oTe [= T oo] oo [PPSR 353
USING COAE INSIGNT ...ttt e bbbt e e e e s bt e e e e e bbb e e e e e s e nnnneeeas 355
USING COAE TEMPIALES ...t e et e e e et e e e s e aab et e e e e e nb e e e e e e e anbeeas 357
USING SYNC Bt ...ttt e e sttt e e e e bbbt e e e e e e a bt e e e e e e nb b e e e e e e e anbeeas 359
USING the HISTOry MANAGETcooiiiieiii e s e e e e bt e e e e e 361
Localization Procedures
Adding Languages t0 @ PrOJECTvue it e ettt r e e e e e e e e e e e et eeaaeeeeeaaraa—_ 365
Editing Resource Files in the Translation Managerooooviiiiiiiiii e 367
Setting the Active Language fOr @ PrOJECEoviiiiiiiiiieceec e 369
Setting Up the External Translation Managerueveiiiiiiiiii i e e e e 371
Updating RESOUICE MOAUIESooeiiiiiiie it e e e e e e e e e e e e e e et st e e e e e eeaeeeeeaesenannnans 373
Using the External Translation ManagErioii i e e e e et e e e e e e e e e eeeaeseanas 375

Source Control Procedures

StarTeam: AdAING FIlESooi et e et e e e s et bt e e e e s abbe e e e e e s aneeeeeeesannes 377
StarTeam: Checking IN FIlES ...t e e et e e e e s eabreeee e e e annes 379
StarTeam: Checking OUL FIlES ..o et e e e e e eeeee e e anees 381
StarTeam: CoOmMMIttING PrOJECESoooiiiiiiiie et et e e s sb e e e s sareeeeeeanes 383
StarTeam: Comparing File REVISIONScoiiiiiiiiiiie e e e e e 385
StarTeam: Configuring the INtegration ... e 387
StarTeam: Editing the Active ProCess IIEM ..o 389
StarTeam: Finding Files in the REPOSItONYcoooiiiiiiii e 391
StarTeam: Launching the ClENteoiiii e e 393
StarTeam: Locking and UnlOCKING FilScoiiiiiiiiiiii e 395
StarTeam: Merging SOUICE FlEScoooi it e e e s sb e e e s s rabeeeeeeeanes 397
StarTeam: Migrating Projects from the SCC Interface to the StarTeam Integrationccccoiiiieeeenn. 399
StarTeam: Placing Projects and ProjeCt GrOUPScooiiiiiiieiiiiiiiiie e e 401
StarTeam: Pulling Projects and ProjeCt GroUPScooiiiiiiiiieiiiiiiee ettt 403
StarTeam: RemMOVING FilESuiiiiiiii et e e e ettt e e e e s ebb e e e e s snbeeeeeeeanes 405
StarTeam: ReVErING FileSooo et e ettt e e e s ab e e e e s s rabeeeeeeeaanes 407
StarTeam: Updating PrOJECESooii it e e e e st e e e e s snbaeeeeaeesannes 409
Together Diagram Procedures
Adding @ ConditioN@l BIOCKcoooiiiiiii e 411
Adding @ Member 10 @ CONLAINEToooiiiiii e e e e e s ees 413
AlIgNINg MOdel EIBMENTS ...t e e e e e s e be e e e s e nnree s 415
F Lol et (gt JR= T I E=To | =1 o PP PRT 417
AsSIgNINg an EIemMent STEIrEOtYPEcooiiiiiiiiiie e 419
Associating a Lifeline with @ ClIasSifiercooo e 421
Associating a Message Link With @ Methodcooiiiiiiiiii e 423
Associating a Transition or a State with an ACHIVItY ... 425
Associating an Object With @ ClasSIfier ... e 427
Branching MeSSage LINKS ...t e e e e et e e e e e nb e e e e e e annees 429
Browsing a Diagram With OVEIVIEW PaNEccuuuiiiiiiiiiiii e 431
Changing Appearance of ComMpPatMENtso i e 433
Changing Appearance Of INTEIFACEScooiiiiiiii e e e 435
Changing DIiagram NOLAtIONuuiiiii e e e e e e e e e b e e e e e anneee 437
Changing TYPE OF @ LINKeeiiiieiie et e e et e e e e sb e e e e s abbeeeeeeaanes 439
(O3 (o X T o I T 1 =T | =3 R PP P PPPR O PPRP 441

Converting Between UML 1.5 Sequence and Collaboration Diagramscccoccoiiiiiiiiiiiiciiieceeee 443

Copying and Pasting an Execution or Invocation Specificationccccoiiiiiiiiii e 445
Copying and Pasting Model EIEMENTES ... e e 447
Creating a Browse-Through SEQUENCEccoiiiiiiiiiiiiiiie et s e e e e 449
Creating @ Deferred EVENL ...ttt e et e e e ee e e e 451
Creating a Delegation CONMNECIONooiiiiiii et e e e 453
(07 (=T (T aTo = T B I E=To | =1 o PP PPPR PP PPRPRNE 455
Creating a Guard Condition for @ TranSition ... 457
Creating @ History EIBMENTo it e e 459
Creating a Link with Bending POINESuuiiiiiii et 461
Creating @ Member fOr @ STateoooi i e e e 463
Creating @ MUtIple TranSIHIONueiii i e et e e e e e be e e e e 465
(07 (=71 (1o To J= 1 o o [OO P PP PP POPPPPPRN 467
(07 (=T (] aTo J= T o] o S PP PP PPPR R OPRUPPRRPN 469
Creating @ RefErenCed Partoo ittt e e e e e s s b e e e e e e anes 471
Creating @ Self-TranSItioNcooo et e et e e e s sbb e e e e e s abbeeeeeeanes 473
Creating a Sequence or Communication Diagram from an Interactioncccccooiiiic e, 475
Creating @ SNOMTCUL ...ttt e e e e a bttt e e s e aa b et e e e e aaabe e e e e e sanbaeeeeeanes 477
Creating @ SIMPIE LINKoooiiie et e e e e e e a bt e e e e s aab b e e e e e e e s anbeneeaeeeanes 479
Creating a Single Model EIBMENTo e e e e e s e e e e e e anes 481
CrealiNg @ StALeeeiiiiii et e e b e e e e e e e e e e e ab e e e e e eaan 483
Creating @ State INVAriant ...t e e e st e e e e e e e 485
Creating an ACtiVity fOr @ STt ..o 487
Creating an ASSOCIAtION ClASSccoiiiiiiiii e e e e e e e e e e e e e e 489
Creating an EXeNSIioN POINT ... e et e e e e s e e e e e ane 491
Creating an INNEr ClIasSIfIereiii et e e e s bt e e e s aabeeeeeesaaes 493
Creating an Internal Structure for @ NOAEoooiiiiiiii e 495
Creating an Internal TranSItioNcooo it e e e s e bt e e e e e e aeanes 497
Creating MUIIPIE EIBMENTS ...t e e e e e e e nbae e e e e eaneee 499
D= (= o TR T DI E= Lo = o PP PP PRSP PURPOT 501
Designing a UML 1.5 ACLiVity DIiagrameoiiiiiiiiiiie et e e e 503
Designing a UML 1.5 Component DIagramcoooiiiiieiiiiiiee ettt e e e 505
Designing a UML 1.5 Deployment DIagramc.ooieieeeii ittt e e 507
Designing a UML 1.5 Statechart Diagramooouueeieiiiiiiee et 509
Designing a UML 2.0 ACtiVity DIiagrameoiiiiiiiiiii ettt e e e e 511
Designing a UML 2.0 Component DIagramcoooiiiieiiiiiiiiee ettt 513
Designing a UML 2.0 Deployment DIagramooi et e e e e 515
Designing a UML 2.0 Sequence or Communication Diagramccuueeiiiiiiiiiiieeeiiiiieee e 517
Designing a UML 2.0 State Machine Diagram ... 519
Designing Use Case HIBrarChYoooiiiiiiiiii et e e e 521
Exporting a Diagram 10 @n IMAgEeuiiiiiiiiiiiii et 523
Grouping ACtiONS INTO @N ACHIVITYcoioiiiiiiie e 525
Hiding and Showing Model EIEMENTESc.ooiuiiiiiiiii e 527
HyPerlinKiNg DIQGIaMSeiiiiiie ittt et e e e e e bbbt e e e e e e et e e e e e e bbb e e e e e e e annreeas 529
Instantiating @ ClaSSIfIEroiii e e e 531
Laying Out a Diagram AULOMAtICAIIYcoooiiiiiiii e 533
Linking Another Interaction from an Interaction Diagramooouiiiiiiiiiiii e 535
MOVING MOEI EIEMENTS ...t e e e e e e e e nb e e e e e e anbeeas 537
T aL el T= W DI T= e =T o PO PR PP U PRRPOT 539
Putting Diagram Files Under Version CONroloooiiiiiiiiiiie e 541
=T a T o ol e JE= T D IE= o = o I PP PRPR O 543
REIOULING @ LLINK ettt e oottt e e e e bbb et e e e e e bbbt e e e e e e bbb e e e e e e e nnneeeas 545
ReSIZING MOAEl EIBMENTS ...t e et e e s e e e e e s aanneee s 547
SearChiNg DIAGIAMS ...ttt et e e e oo a b et e e e e e o aa b bttt e e e s aab b et e e e e e aabbeeeeeeeanbraeeeeeaane 549
Searching Source Code fOr USAJEScoiiiiiiiiiiiiiiiiii ettt e e e e e e e e 551

Selecting MOdel EIBMENTS ...t e e e e e e e e b ee e e e e e e 553

Specifying Entry and EXit ACHONScoooiiiiiiii ettt e e e e e e e 555
Using a Class DIagram @S @ VIEWoiiiiiiiiiiiiie ittt e e e s e e e e e e e s 557
G aTe =T Er=TaTo B I o] o PSSP UPPRTTRP 559
Using Grid and Other Appearance OPLIONS ...t e e e e e e e aaaeeas 561
Using the UML iN Color Profile ...ttt 563
USING VIEBW FIILEIS ..ottt e et e e et e e e e e b e e e e e e en b e e e e e e nanreeas 565
Working with @ Collaboration USEoooiiiiiiiiiiii ettt e e e e e 567
Working with @ Combined FragmMentoiiiiiii e 569
Working wWith @ COMPIEX STALEooiiiiiii et 571
WOrKing With @ CONSITUCTON ...ttt e et e e e s et e e e e s s abbneeeeeeaas 573
WOTKING WIth @ FIEIA ...ttt e ettt e e e e s bbb e e e e s annneeeee s 575
Working with a Provided or Required INterface ... 577
Working with @ RelatioNSIipcoooiiiiiie e 579
WOrKiNg With @ TIE FramMEoeiiiiiiiiiii ettt et e e e e s bt e e e s s bt et e e e s snbeeeeeeas 581
WOrking With @ UML 1.5 MESSAGEeeieiiiiiiiiiie ettt ettt et e e et e e e s bbb e e e s aannneeeeeas 583
WOrking With @ UML 2.0 MESSAGEeeeeiiiiiiiiiie ittt ettt ettt e e s et e e e e s bbb e e e e e aanneeeeeeas 585
Working with an Instance SpecifiCationoooiiiiiiiiiii e 587
WOrKing With @n INEIFACEcooiiiiiiiie e e e e abreeee e e 589
Working with an Object FIow or @ CONtrol FIOWcoiiiiiiiiii e 591
WOrKing With USEr PrOPEITIESeiiiiiiiiiiiiee ettt ettt e e e et e e e e e ab e e e e e s anbeeeeeeeaas 593
4 oTo) a1 ale TE= T B T= T =10 o H U PPP PR 595
Together Documentation Generation Procedures
Configuring the Documentation Generation FaCility ..., 597
Generating Project DOCUMENTAtIONcooiiiii e e e e e e e e e e e e e e r e e e eeeees 599

Together Object Constraint Language (OCL) Procedures

Creating a Guard Condition for @ TranSitionoooiiiiii e 457
Creating @ StAteceeiiii e e e bt e e e e e bt e e e e e e bae e e e e e abaeeeeeeane 483
Creating @ State INVAriantoooi et e e ettt e e e s s e e e e s abreeeeeeane 485
Creating an OCL CONSIrAING ..o e e e st e e e e e e et b e e e e e e e annbeeeeeeeannees 607
Editing @n OCL EXPIrESSIONcoiiiiiiiiiiiiie ettt ettt e e e sttt et e e s st et e e e e e s nbbe e e e e e e ansbeeeeeeesanbbeeeeeeeaannneeeas 609
Showing and Hiding an OCL CONSIraint ... e e e e 611
Working with @ Combined FragmMentooiiiiiii et e e e 569
Together Pattern Procedures
Adding Participants to the Patterns as First Class CitiZeNnsoccuviiiiiiiiiii e 615
Assigning Patterns t0 SNOMCULSooiiiii e 617
Copying and Pasting Shortcuts, Folders or Pattern Trees ... 619
(07 (=71 (1o To Je= 1 o] (o /=T SO OO PPPRPPPTPPRRRN 621
Creating @ Link DY Pattern ... e 623
Creating a Model Element by Pattern ..ot 625
Creating @ Pattern ... et e e e e s e e e e et e e e e e e 627
Creating @ Shortcut 10 @ Pattern ... 629
Creating @ Virtual Pattern Tree ..ot e e e e e e 631
Deleting Patterns as First Class Citizens from the Model ... 633
Deleting shortcuts, folders or pattern tre€s e 635
[=o 11T g Lol (o] o 1=T 4 (1o PSP PP 637
EXPOIING @ PAEIN ... et e e e e et e e e e e b e e e e e b e e e e e nree s 639
IMPorting @ Legacy Pattern ... 641
Opening the Pattern OrganIZET ... e e e s e e e 643
Saving Changes in the Pattern REGISIIYuiiiiiiii e 645
SNAMNG PAEINS ...ttt e e e e bt e e e e e s bt e e e e e e s aabee e e e e e anbaeeeeeane 647
SOMING PAEINS .ttt h e e e e e e b e et e e e e s bttt e e e e aanbee e e e e e abbeeeeeeanes 649
UsSING the Pattern OFgaNIZET ...t e e e e e e ab e e e e e anbeeas 651

UsiNg the Pattern REgISIIYttt e e e e as 653

Using the Stub Implementation Pattern ... e e e e e e 655
Together Project Procedures
Activating Together SUPPOrt fOr ProjECEScccueuiiiiiiieeeee e 659
(014=Y=] aTo J= I od (o] [=To: OO O O PPPPPPPT 661
Exporting a Project 10 XMI FOIMaL ... e e e e e e e e e e e e eerannns 663
Importing a Project Created in TCC or TAR ..o e e e e e e e e 665
Importing a Project Created in TVS, TEC, TJB, OF TPT ...t e e e e e 667
Importing a Project in IBM Rational Rose (MDL) FOrmatc..uuviiiiiiiiiiiiiiie e 669
Importing @ Project in XMI FOIMALoooimiiiiiii et e e e e e et e e e e e e e e e e e e aeeeeseaesenennan 671
Opening an Existing Project for MOAEliNgcccoiiiiie e e e e e e e 673
Sharing a Project Between TCC/TAR and Developer Studio 2006cccccuiiiiiiiiiiieeieeeeeeeeeeeeee e, 675
Synchronizing the Model View, Diagram View, and Source Codecevvviiiiiiiiiiiiiiiiiiccceecceeece, 679
Transforming a Design Project to SOUICe COAEc.uuuiiiiiiiiiiiieeeeeeeeee e a e 681
Troubleshooting @ MOMELeee et e e e e e e e e e et e e e e e st aaeeeeeeeaeeeeeesssnennas 683
Working with @ Namespace Or @ PACKAQEooooiiiiiiiiiiccciie et e e e e e e e e e e e e e e e eeeeeaasanes 685
Working with @ ReferenCed PrOJECEcoi it e e e e e sttt e e e e s enreeeeeeeens 687
Together Quality Assurance Procedures
Creating @ MetriCS CRArtooi ittt e e e e et e e e e e ab e e e e e e e nbaeeeeeenneee 689
EXPOrtiNg AUt RESUIESeoiiiiiiiiiiei ettt ettt e e s ettt e e e s s et e e e s s bbbt e e e e s annnneeeas 691
Printing AUIt RESUIES ...t e e e e st e e e e s bb e e e e e e e nneeeas 693
T o a1 g Yo I B o [< T USSR 695
RUNNING IMEBITICS ..ottt e e ettt e e e e bt e e e e e st et e e e e e nnbeee e e e annbeeeeeeanneeas 697
VIeWING AUAIT RESUILS ...ttt e ettt e e e e s ettt e e e s aabb e e e e e s aanbeeeeeesanneeeeeenns 699
VIEWING MELIC RESUIESooiiiiiiiiii ettt e e e ettt e e e e s ab b e e e e e e e sanbeeeeeeeens 701
WOrking With @ Set Of AUGIESooiuiiiiie e e st e e e e s bb e e e e s snreeeeeens 703
WOrking With @ Set Of MELIICSueiiiiiiiie et e e e s sb e e e s snteeeeeeeans 705
Together Refactoring Procedures
Refactoring: "Safe DEIELE"o e 707
Refactoring: Changing Parametersooo i 709
Refactoring: Creating INline Variablesoo e 711
Refactoring: EXtracting INterfaces ..o 713
Refactoring: EXtracting Methodeeiiiiii e 715
Refactoring: EXtracting SUPEICIASSuueiiiiiiiii e 717
Refactoring: INtrodUCING FIEIASooiiiiiiii e s 719
Refactoring: Introducing Variablesoeiiiiiii e 721
Refactoring: MOVING MEMDEISuiiiiiiiie et e e e e e e e b e e e e e nreeas 723
Refactoring: “Pull Members Up" and “Push Members DOWN”c.uuiiiiiiiiiiiiiiieeeee e 725

Unit Test Procedures
[0 o T TR =] £ 727

10

Developer Studio 2006 for .NET

Building Applications with the ECO framework

oY iyoTo 1§ o1 i o] o N PO OR PP 733
Overview of the ECO framMEBWOTKooviiiiiiiiiieeeee e e e ettt e e s e e e e e e e e e e e e e e eeee s s e e e eeeeeaaesaeeeees 735
ECO Modeling TOOIS OVEIVIEWccooiiiiiiiice ettt e e e e e e e e e e e e e e e e s e e e st reeereeeeeeeaaeas 739
Working with the ECO SEIVICE APeeieiieeeeeeeeeeeeeee e e e e e e e e e 743
Working With ECO HANAIEScoooiieeeeee et e e e e e e e aaaaeeeeaaan 749
Working with ECO SUDSCHIPHIONScoooiiiiiiiii e aaeaaaaan 755
Using State Machines with the ECO framework ... 759
Modeling Behavior with State Machinescoooiii e 761
Using Substates with the ECO frameWOIKooiiiiiiiiiiii it 767
Object Constraint Language (OCL) and ECO Action Languageoooooiiiiiiiii i, 775
Overview of the Object Constraint LaNQUAQEccoiiiiiiiiiiiiiiecee et 777
UsiNg ECO ACLON LANGUAGEuuuuiiiiiiiiiiiiiiiieieeee ettt e bbbt s s s e e s s e e e e e e eeeeeaaaaaaeas 783
Using the ECO framework with Multi-Client AppliCationsooooiiiiiiiiiiiii e 785
The ECO framework and ASP.NEToooviiiiiiei ettt ettt a e e e e e e e e e e e eaa b e e e eeeaeeeeeenanes 787
Using the ECO Framework in Multi-Client Applicationseeviiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeee, 789
CUSTOM OR MAPPING oetiiiiiiiieeeee ettt e e e e e e e e e e e e e e e a et e e e e e e eeeeeaaaeeeeeaesaaaassasbrsbseaeeeaeeaaaaaaaaeaanas 793
Custom ECO Object-Relational Mapping Fil€Soooviiiiiiiiiiiii e 795
Custom OR Mapping with Auto-Increment ColUMNSoeeiiiiiiiiiii e 799
Custom OR Mapping With BLOB TabIEScoooiiiiiiieeee e 801
Custom OR Mapping with Objects stored in multiple tables, with multiple keysccccceeeeeeeeinnnenn. 803
Custom OR Mapping with Singlelink and Compound Keys ... 805
Custom OR Mapping Using Type Discriminator Columnsccccooooiiiiee 807
Building Web Applications with ASP.NET
F Y o VT IO V=Y V. 1=, TR 811
Borland DB WEeD CONrolS OVEIVIEWiiieeiiiieiiee et et e e et e e et e e e et e e e e e e e e s aabeeeeraaneeeeeannaens 815
DB Web Controls Navigation APl OVEIVIEWueiiiiiiiiiiiie ettt s st e e e e e e 817
WOTKING With DAtAVIEWSc.eiiiiiiiiie ittt e e s et e e e s ettt e e e e e nnte e e e e s annnneeeaeas 819
Working with WebDataLink INtErfacesooiiiiiiiiiiie ettt eee e 821
Using DB Web Controls in Master-Detail Applicationsc..eeiiiiiiiiiiii e 823
Using XML Files with DB Web CONLrOlSooiiiiiiiiiiiie et 825
DB Web Control WiIzZard OVEIVIEWuuiiiieiee et e et e ettt e e e et e e e e e et e e e s eabe e e e seaa e aerannanns 827
Deploying ASP.INET APPICALIONS ...ccooiiiiiiiiee ittt et e e e e e ettt e e e e e e e e nreeas 835
Building Web Services with ASP.NET
ASP.NET WED SEIVICES OVEIVIEW ...ttt e et e e e e e eee e e e et e e e e et e e e eenaans 839
Web Services ProtOCOI STACKcooiiiiiie et e e et e e e e e eaee e e e e e e e e e eaneeeeeenen 843
ASP.NET WeD ServiCes SUPPOITttt e e e e e e e e oo e et e e e eeeeeeeeeeaeaaeeas 845
Building Applications with Windows Forms
WiINAOWS FOIMMS OVEIVIEW ...ttt e e e e e e e ettt e e e e e e e e e e e e e e e e e eeeses s abab e aesesaeeaeaeeeeseressreres 849
Deploying Windows FOrms ApPpPlICAtIONSoooiuiiiiiii e e e e e e e e e e aenans 851
Building Applications with VCL.NET Components
VO I o T N O Y=Y 71 N 855
Lo il o VA @1 I Y o] o] o= i o o - PP RSTR 859
Language Issues in Porting VCL Applications to Developer Studio 2006ccccveieieeniiniiiieenee e, 861
Building Database Applications with ADO.NET
ADO.NET OVEIVIEW ...ttt et e et e e e e et e e e e e e e etee e e e e e e et e e e e e e eaaa e e e s eeaaanaeeeeesnaaaeeeeenranns 877
Borland Data Providers for MiCroSOoft INETooiiiiiiieeee e e e 881
]I e | I I = = R Y L= T PSP PRPR 885

BDP.NET COmMPONENt DESIGNEIS ..ottt ettt e et e e e e e b e e e e e e s e e e e e anneeeas 889

5] (ol Yo I doTe=To 11y I @ A= V= 893
VCL for .NET Database TECNNOIOGIESccuiuuuiiiiiiiiiiiiiieee ettt a e e e e e as 895
AbEXPress COMPONENES OVEIVIEWooiiiiiiiiaaaiieiiii it et e e e e e e e e e e e e e e e e eeeeeeeeaaaaeeeaeeaaa e nnnnneenneees 897
(ol o] €Tl o] aaT o] a =T 1 6T @ AVL=T AV = USSR 899
BDP Connection POOING OVEIVIEWccuiiiiiiiiiiiiee ettt e e 901
Getting Started with INterBase EXPreSSuiiiiiiiiiiii e 903
Deploying Database Applications for the .NET Framework ..., 909
Building Applications with Unmanaged Code
Using COM Interop in Managed APPIICAtIONSccooiiiiiiieeeeee e e e e 913
Using Platform Invoke with Developer Studio 2006uuiiiiiiiiiiiiiiieeieeeeeeeeee e e e e e e e e e e e e e e e e e e 919
Virtual LIbrary INTEIFACESoeiiiiiiiii e e e e e e e e e e e s e e e r e e e eeaaaaeas 929
L0 L3 T To T D15 11 (=T o] o T USRS 931
Deploying COM Interop APPlICALtIONSuuuiiiiiiiiiiie e e e e e e e e e e e e eeeeeeas 933
Building Reports for .NET Applications
Using Rave Reports in Developer Studio 20006c..eeiiiiiiiiiiiiiee et e e 937
Procedures

ASP.NET Procedures

Adding Aggregate Values with DBWebAggregateCoNtroleiviiiiiiiiiiiieiee e 941
Adding Web References in ASP.NET Projects ..o 943
Binding Columns in the DBWEDGHIAouiiiiiii e 947
Building an Application with DB Web CONtrols 949
Building an ASP.NET "Hello World" AppliCationooi oo 951
(=101l [TaTe IE=Ta A0S = AN = I N o] o] 1= i o T o SRR 953
Building an ASP.NET Database APPlICAtioNooooiiiiiiiiiiiiiie e 955
Converting HTML Elements to Server CONIOISoooiiiiiiiiiie e 959
Creating a Briefcase Application with DB Web Controls ... 961
Creating @ VIrtUAI DIFECIOTYttt e e e e e st e e e e s aab et e e e e e s anbaneeeeeeaanes 963
Creating an XML File for DB Web CONtrolsooooiiiiiiiii e 965
Creating Metadata for @ DataSetooouiiiiiiii e 967
Debugging and Updating ASP.NET AppliCatioNnsoooiiiiiiiii e 969
Generating HTTP Messages in ASP.INET ... e e e e e e 971
Modifying Database CONNECHONS et e e e e e e e e e e e e e e e e e nnnnnnes 973
Porting a Delphi for Win32 Web Service Client Application to Delphi for NETccccoiiiiiiieeee, 979
Setting Permissions for XML File USEoooiiiiiiii et e e e e e e e e e e e e e e e e 983
Setting Up @ CasSini WED SEIVET ... ittt e e e e et e e e e e e aaaaaaeaaaaeaann 985
Troubleshooting ASP.NET ApPPlICAtioNSooiiiiiiiiiie e e e e e e e aaaae s 987
Using the ASP.NET Deployment Man@gQETocooii oottt e e e e e e e e e e e e eeeeeeaaaeeas 991
Using the DB Web Control WIzZardooooiiiiiii ettt e e e e e e e aaaaaeeeas 995
Using the HTML Tag EItOr ..ottt et eeeeeeaeas 997
Working with ASP.NET USEr CONIIOISeeiiiiiiiieiaiii ittt et e e e e e e e e e e e e e eeeeaaaaens 999
Database Procedures
Adding a New Connection to the Data EXPIOTEruuuuiiiiiiiiiiiiiiieeeee e 1001
Adding Aggregate Values with DBWebAggregateControlcc.uuviiiiiiiiiiiiiee e 941
Adding an BDP Reconcile Error dialog to your BDP Applicationccooiiiiiiiiiiiiiicccceee e 1005
Binding Columns in the DBWEDGHIAccooiiiii et e e e e e e e e e e e e e e e e e aanrannes 947
Browsing a Database in the Data EXPIOTErueeeiii i 1009
Building a Database Application that Resolves to Multiple Tables ..., 1011
Building a Distributed Database APPlICAtIONuiiiiii e ————— 1013

Building a Windows Forms Database Applicationcoooi i 1017

Building an Application with DB Web CONtrolst 949
Building an ASP.NET Database APPlICAtioNoooiiiiiiiiiiiiiei e 955
Creating a Briefcase Application with DB Web Controlso 961
Creating an XML File for DB Web CONtrolscooooiiiiiiiii e 965
Creating Database Projects from the Data EXPIOreroooiiiiiiiiii e 1031
Creating Metadata for @ DataSetooouiiiiiii e 967
Creating Table MapPINGScoiieiiiieiee ittt e et e e e e s b bttt e e e s e s b bt et e e e s aaabbe e e e e e e s anbneeeeaenas 1035
Executing SQL in the Data EXPIOIErcoi e 1037
Handling Errors in Table MapPingcoooiiiiieiiiee et e e e 1039
Migrating Data Between Databasesooiiiiiiiiiii e 1041
Modifying Connections in the Data EXPIOIrErcooi i 1043
Modifying Database CONNECHIONSc.uuiiiiiiiiiii e e e e e e e e e nreeas 973
Passing Parameters in a Database Application ... e 1051
UsiNg Standard DataSetscooooiiiiiiiiii e 1055
Using the Command TexXt EQIOr ..o 1059
Using the Connection Editor DESIGNETcoooi it e e 1061
Using the Data Adapter DESINETuiiiiiiiiieiie e e e e e e e e e e 1063
Using the Data Adapler PrEVIEW ... e e e e e 1065
Using the DB Web Control WIZArdooiiiiiiiiiiiee ettt e e e s 995
USING TYPEA DAASELSooiiiiiiiiiii et e e e e s e e e e e nb e e e e e e aannee 1069
ECO Framework Procedures
Adding a Derived Association End to an ECO Class Diagramc.coooieiiiiiiiiiiiiiciiiiiieeeeeeee e 1073
Adding a Derived Attribute t0 an ECO ClaSSuueiiiiiiiiiieiiei et a e e e e 1075
Adding a Guard Expression to a State TranSitionuuuiiiiiiiiiiiiiiiieeeeeeeeeee e, 1077
Adding a PersistenceMapperClient to an ECO SPaCEecccccoiiiiiiiiiiiiiiiiieieeeeeeeere et 1079
Adding a PersistenceMapperSharer to0 an ECO SPACEceeiiiiiiiiiiiiiiiiiieeeeeeee e 1081
Adding a Reference to an ECO Package in @ DLLc.c.uuviiiiiiiiiie ettt 1083
AddiNg @ REGION 10 @ STALE ...eeeeiiiiiicee e e e e e e e 1085
Adding a Trigger Method t0 an ECO ClasSuuviiiiiiiiiiiiiiieiie e e e e e e e e 1087
Adding an ECO Enabled Windows FOrm t0 @ Project ...t 1089
Adding an ECO UML Package t0 @ PrOJECEuviiiiiiiiiieieec e 1091
Adding an Effect to a State TranSitioncooiiiiiii e 1093
Adding and Configuring a Connection Handle on an ECO SPACEuuuuuuuuiiiniiiiiiiiciicieceee e cee e 1095
Adding Columns and Nestings to0 an ECO HaNdIeouvviiiiiiiiiiiiiie e 1097
Adding Entry and Exit ACtIONS t0 @ Stateccuuuuiiiiiieeeee e 1099
Adding States and Substates to an ECO State Machine Diagramccccooiiiiiiiiiiiiiinieeeeeeeeeee e, 1101
Building Applications with the ECO FrameWork ...ttt 1103
Configuring a PersistenceMapperMultiDb Component ..o 1105
Configuring an OclVariables COMPONENTcoiiiiiiiiii e e e e e e e e e e e 1107
Configuring the Persistence Method of an ECO Spaceooooioiiiiiiiii i 1111
Converting an ECO framework Project to Developer Studio 2006cccvviiiiiiiiieieeieeeee e, 1113
Creating @ New ECO SPAacCe SUDCIASSuuviiiiiiiiiiiiiiieiee 1115
Creating a New ECO Windows FOrms AppliCatioNoooiiiiiiiiiiiiiiieeeee e 1117
Creating a PersistenceMapperPrOVIAETooo i e e e e e e e e e e 1119
Creating an Association Class on an ECO Class Diagramoooooiiiiiiiiii e 1121
Creating an ECO ASP.NET APPLICALIONuvviiiiiiiiiiiiiieeceee et e e e e e e e e e e e e e e e e e e 1123
Creating an ECO framework State Machine Diagrameeeiiiiiiiiiiiiiiiiiiciceeeee e 1125
Creating an ECO Package iN @ DLL ...ttt e e e e e e e e e e e e e e e eaans 1127
Creating an Empty InterBase Databaseccooiiiiiiiiiiiiieee e 1129
Creating an Event Derived COIUMINooiiiii i e e e e e e e e e e e e e aaaaaeeeeeeeaaaaanns 1131
Deploying an ECO framework AppliCationoooiiiiiiiiiiii e 1133
Deriving an Attribute in SOUIMCE COUEoooiiiiiiiiii et e e e e e e e e e e e e e e e e eeeees 1135
Generating a Model and OR Mapping from an Existing Databasecccccoooviciiiiiiiieiiciie e, 1139

13

Implementing a Subclass of SubscriberAdapterBase 1141

Regenerating and Updating ECO SoUrCe COAEooiiiiiiiiiiiiiiiieie et 1145
Selecting ECO UML PACKAGEScoiiiiiiiiiieiitieiee ettt sttt et e e s e e e s ennneeeeeas 1147
Using a Custom Object-Relational Mapping Filecooiiiiiiiiiii e 1149
Using the ECO SPace DESIGNETciiiiiiiiiiiiie ittt e e et e e e e e b e e e e e aa e e e e e e enneeeas 1151
Using the Expression Editor to Build OCL and ECO Action Language EXpressionseeeeeeeeieiennnn. 1153
Using the PersistenceMapperProvider DESIGNETuiviiiiiiiiie e 1155

Interoperable Applications Procedures

Adding a Reference t0 @ COM SEIVET ...ttt e e e reeaaaaa e as 1157
Adding an ActiveX Control 1o the TOOI Paletteeeviiiiiiiii e 1159
Installing Janeva Compilers in the TOOIS MENUoiuiiiiii i 1161
VCL for .NET Procedures
Building @ VCL FOrms APPlICAtIONcoiiiiiiiieie ettt e e e e e e 1163
Building a VCL Forms dbExpress.NET Database Applicationccccceiiiiiii e 1165
Building a VCL Forms Hello World APPlICatioNooiuiiiiiiiiiiieeee et 1167
Building a VCL.NET Forms ADO.NET Database Applicationcc.ceviiiiiiiiiiee e 1169
Building an Application with XML COMPONENESccoiiiiiiiiiiiieiiiiii e 1171
Building VCL Forms Applications With GraphiCsccueiiiiiiiiiiie e 1175
Creating @ New VCL.INET COMPONENT ...ttt e e e sttt e e e e e snbeeeeaeeeans 1177
Creating Actions in @ VCL FOrms APPlICAtIONc.uueiiiiiiiiiiie et 1179
Displaying a Bitmap Image in @ VCL Forms AppliCationcccuuiiiiieiiiiiiiee e 1181
Drawing a Rounded Rectangle in @ VCL Forms Applicationcc.ueeiiiiiiiiiiiiie e 1183
Drawing Rectangles and Ellipses in a VCL Forms Applicationcccciiiiiiiiiieiiieee e 1185
Drawing Straight Lines In @ VCL Forms AppliCationooouiiiiiiii e 1187
Importing .NET Controls t0 VOL.INETooiiiiie e e e e 1189
Placing a Bitmap Image in a Control in a VCL Forms AppliCationccccoceiiiiiiiieiiiiee e 1191
Using ActionManager to Create Actions in a VCL Forms Applicationccccoiiiiiiiii e, 1193
Web Services Procedures
Accessing an ASP.NET "Hello World" Web Services Application ... 1195
Adding Web References in ASP.NET Projects ..o 943
Building an ASP.NET "Hello World" Web Services Applicationcceueiiiiiii e 1201
Porting a Delphi for Win32 Web Service Client Application to Delphi for NETcccoooo, 979
Windows Forms Procedures
Building a Windows FOrms ApPPlICationoouiiiiiii i e e e e e e e 1207
Building a Windows Forms Database AppliCatioNccooiii i 1017
Building a Windows Forms Hello World Applicationuuuiiiiiiiii e 1213
BUilding WINAOWS FOIMS IMENUSouiiiiiiiiei i e s e e ettt s e e s e e e e e e e e e eeaa st aeeeeeaaaeeeeessansnnnanns 1215
Passing Parameters in a Database ApPPlIiCationcooiiiiiiiiiiiiiee e 1051

14

Developer Studio 2006 for Win32

Building Windows Applications with Win32 Forms

WINAOWS OVEIVIEWeeiiiiiiiiiiiie e ittt e e e ettt e e e ettt e e s s eee e e e e nnteeeaeeaanssteeeeeaannsteeeeeeannsbeeeeeeanstaeeeeeennnraeas 1223
Building Web Applications with WebSnap
WiIN32 Web ApPliCatioNS OVEIVIEWuuiiiiiiiiiiiiie ettt ettt e e s s e e e s anbe e e e e s annaeeeas 1227

Building Web Services with Win32 Applications
WED SEIVICES OVEIVIEW ...ttt e e e e e e e e e ettt e e e e e e e e e eeaesbaaa e eeaeeaeseeesessanan 1231
Building Database Applications for the Win32 Platform

ADGO OVEIVIEWeiiiiiiiiiiie ettt ettt e e ettt e e sttt et e e e e e ettt e e e anteeeeeeeanseeeeeeeansaeeeeeaanssseeeesansseeeaesannsneeaenan 1235
ADEXPreSS COMPONENESuviiiiiiiiiiiiiieeee e e e e e e e e et e et e e e e eeeeeeeeeeesesaa e e ataab s st s e saeeeeeeeaeaaaaaaeeaaaeaanns 1237
BDE OVEIVIEW ...cceiiiitiiiiee e e ettt ettt e e e e ekttt e e e e e sttt e e e e e e aa s eeeeeeeeanbeeeaeeeaanebeeeeeeeansbeeeeeeeansaneeaeeeansseeeaeenannnes 1239
Getting Started with INterBase EXPrESSccooiiiiiiieeeee e a e e e 1241
Building Applications with VCL Components
W CL OVEIVIEBW ...eeiiiiiiiieie e ettt ettt e e ettt e e e st e e e e e aa et e e e e aa s e e e e e e aateeeeeeaasbaeeeeeaasbaeeeseannbaeeeeeanstaeeeeaannreeas 1249
Building Interoperable Applications
(=701l [TaTe I @10 11V Y o] o] o= 111] oI SR 1255
Build Configurations
Managing C++ Build ConfigUrationsueueiiiiiiiiiiii it e e e e e e e e e e e e e aaaaans 1263
Debugging C++ Applications with CodeGuard Error Reporting
COAEGUAN OVEIVIEW ...coeiieiieieeiiiie ettt e et e e e e e e e e e e s aa s st e e eeeeeeaeaaeaeeeesaasaaaasssssnssesanenneaeaaaaeeessesannns 1265
(0700 [T @ 0T o [Yy (o] = PSSR 1267
AACCESS EFTOIS ...ttt iee ettt e e e e e e e e e e e e ettt e e et e e e eaeaeeeeaeesas s nssnstestaneeeeeeaaaaeaeeensnnan 1267
TS0 10 o= 30 =ty o) = PR 1268
(et =T o] (o] I =y o] = PR PP RPN 1271
U Tox Lo g TN = 11 [T = =y o] = PSSR 1273
(O7Te [T CTUE= o A =Ty o1V 1 RSP ERTRPR 1275
String CompPariSON WaNINGSeiiiiiiiiiiiiiei et e e e e s ettt e e e e s anbeeeee e e e s snnnneeeeeeaan 1275
Memory Block CompariSON WarNiNGSc.ueiiieiiiiiiiee ettt e e e e e snbee e e e e e sneees 1275
Pathname Merging and Splitting Warningsoocueiiio i 1275
Building Reports for Win32 Applications
Using Rave Reports in Developer Studio 2006oooiiiiiiiee et 1279
Procedures

CodeGuard Procedures
USING COUEGUAITuuiiiiiiiiiieie ettt e e e e e e e e e e et e e e e e eeeaeeeeeeesa e e saabebbsseeeeeeaaaeaeeesseaanansnssssrnnes 1283
Database Procedures

Accessing Schema INfOrmMation ... s 1285
Configuring TSQL CONNECHONciiiiiiiiiiie e e et e e e s et e e e e s aabeeeeeesanbeneeeeeans 1287
Connecting to Databases with TDatabasecooiiiiiiiiiii e 1289
Connecting to the Application Server using DataSnap Componentscccccoeviiiiiiieiiee e 1291
Debugging dbExpress Applications using TSQLMONITONcooiiiiiiiiiiii e 1293
Executing the Commands using TSQLDAtaSetuuviiiiiiiiie e 1295
Fetching the Data using TSQLDAtaSetooiiiiiii e 1297

Managing Database Sessions USINg TSESSIONccceiiiiiiiiiiiiiiie et 1299

Specifying the Data to Display using TSQLDataSetoooiiiiiiiiiii e 1301
Specifying the Provider using TLocalConnection or TConnectionBroKercccceeviiiiiieeii i 1303
L1 T = SRS 1305
6] oL [= e= 1T =T o PP PRPP 1307
USING ADEXPIESS ...ttt e e e e et e e e e e e e e e e e e e e ab e e e e e e e e nnbeeas 1309
USING TBAICNIMOVE ... e e et e e e e e a b e e e e e e b e e e e e e annre s 1311
(] To T I T 1= SRS SRP P 1313
USING TSIMPIEDAIASELcoiiiiiiie et e e e e e e e e e e 1315
UsiNg TSIMPIEODJECIBIOKET ... e e e e e 1317
(] To T ST] TH = o PSP 1319
(0] T To T ST]IS (o =Yoo o oSSR 1321
USING TSQLTADIE ...ttt e et e e e e et e e e e e e st e e e e s e nssaeeaeeanssaeeeeeansbaneeeeennssaeeeeeennnees 1323
6] Lo To I IS (o] =To | o o T PSPPSR PPRP 1325
0] To T I =T o) S PO PP PPRPP 1327
Using TUpdateSQL to Update @ Datasetc.uuviiiiiiiiiiiiiice et e e 1329
Interoperable Applications Procedures
USING COM WIZAIAS ...ttt et e e e e e e e e e e e e e e ee e e bbb e s seeeeeeeeaaaeeaeeeesesaaaannnnsnsrnres 1331
Reporting Procedures
Adding Rave Reports to Developer Studio 2006cc.uveiiiiiiiiiiiee e 1333
VCL Procedures
AddiNG aNd SOMING STINGS .eeiiiiiiiiiie e e e e e e e e e e e e e aabbee e e e e aaeee 1335
Avoiding Simultaneous Thread Access to the Same MemMOrYc.eoiiiiiiiiiiiii e, 1337
Building a Multithreaded AppliCationooiiiiii et e 1339
Building a VCL Forms "Hello world" APplICatioNooi oo 1341
Building a VCL Forms ADO Database Applicationo 1343
Building @ VCL FOrms AppPlICatioNoiiiiiiiiiii ettt e aanns 1345
Building a VCL Forms Application with Decision Support Componentscccccoveiieeiiiiiiiiiiiiiiceee 1347
Building a VCL Forms dbExpress Database Application ... 1351
Building a VCL Forms MDI Application Using @ WiIzardcoooiiiiiiiiiieee e 1353
Building a VCL Forms MDI Application Without Using @ Wizardccccoiiiiiiiiiinii e 1355
Building @ VCL Forms SDI AppliCation ...t e e e e e e e e e e e e e e e e e 1359
Building a VCL Forms Web Browser Application ... 1361
Building a Windows "Hello World" AppliCationo e 1363
Building @ WIiNndows APPLICALIONoiiiiiiiii et e aaaaeeeeaaannns 1365
Building an Application with XML COMPONENLSooiiiiiiiiiiieeaieei et e e e e e e e e e e e e e e e e 1367
[STUT 1l [TaTe Y o] o] [fez=1 1 To] g TN Y/ [T o 11 £ 1371
Building VCL Forms Applications With GraphicCsccooeiiiioiiiiii e 1373
Copying @ Complete SENG LIStoo i e e e e e e 1375
Copying Data From One Stream To ANOhEr ... 1379
Creating @ NeW VCL COMPONENTcooiiiiiiiiiiii ettt e e e e et e e e e e abb e e e e e e e anbeeeeeeeens 1381
Creating a VCL Form Instance Using a Local Variable ... 1383
Creating a VCL Forms ACtiVeX ACHIVE FOMM ... 1385
Creating Actions in @ VCL Forms AppliCation e e 1387
(07 (=T (] o To IS 1T 1 SO PT PRSPPI 1389
Defining the Thread ODJECL ..o e e e e e e e 1391
DTS = i o IS] (] o o T T P PP OPPPPPT 1395
Displaying a Bitmap Image in a VCL Forms Application ... 1399
Displaying a Full View Bitmap Image in a VCL Forms Application ... 1401
Displaying an Auto-Created VCL FOIMM ... i 1403
Drawing a Polygon in @ VCL FOrms AppliCation ... 1405
Drawing a Rounded Rectangle in a VCL Forms Applicationccueeiiiiiiiiiiiiee e 1407
Drawing Rectangles and Ellipses in a VCL Forms Application ... 1409

16

Drawing Straight Lines In @ VCL Forms Application ... 1411

Dynamically Creating @ VCL Modal FOIMM ...t 1413
Dynamically Creating @ VCL MOdEIESS FOMMcoiiiiiiiiieiiee e 1415
HaNdIiNG EXCEPLIONS ...t e e et e e s e bt e e e s e nnb e e e e e e e nnees 1417
T T1 (=1 P4 aTe J= T I == Lo PSPPSR 1419
Iterating Through STriNGS N @ LISteciiii e 1421
Placing A Bitmap Image in a Control in a VCL Forms Application ... 1425
Reading a String and Writing 1t TO @ Filecooo i 1427
RENAMING FIlES ..ot e e e e e e e e e e ettt e e e e nb e e e e e e anreeas 1429
Using ActionManager to Create Actions in a VCL Forms Applicationccccooiiiiiiiini e, 1431
UsiNg the Main VCL TRIEAMoeiiiiiieeie et e e e e e e e e 1433
WaItING TOr TRIEAAS ... ettt e et e e e e e e e s e e e e e e e e anbeeeas 1435
WItING ClE@NUD COUEttt e e et e e e e et e e e e e et e e e e e e e e annbeeeas 1439
Writing the Thread FUNCLON ..o s e e e e 1441
WebSnap Procedures
Building a WebSnap "Hello World" APPlCAtIoNuuuiiiiiiiiiiiiiiieeeeeeeeeee e 1443
Building @ WebSnap APPIICAtIoNooooiiii e 1445
Debugging a WebSnap Application using the Web Application Debuggerccvvveiiiiiiiiiieeiiieeeeeeeen, 1447

17

Concepts

General

18

Getting Started

The Developer Studio 2006 integrated development environment (IDE) provides many tools and features to help
you build powerful applications quickly. Not all features and tools are available in all editions of Developer Studio
2006. For a list of features and tools included in your edition, refer to the feature matrix on http://www.borland.com/
delphi.

In This Section
What's Developer Studio 20067
Provides a product overview and describes the Developer Studio 2006 tools for managing the development
life cycle.

What's New in Developer Studio 2006
Introduces key new features and functionality in the product.

Tour of the IDE
Describes the various IDE elements.

Starting a Project
Describe the parts of a project and provides a list of projects supported in Developer Studio 2006.

Code Editor
Describes the features of the Developer Studio 2006 Code Editor.

Help on Help
Explains how information is organized in the online Help and lists additional developer resources.

Procedures

19

20

What's Developer Studio 2006?

Developer Studio 2006 is an integrated development environment (IDE) for building Delphi, Delphi for .NET, C#,
and C++ applications. The Developer Studio 2006 IDE provides a comprehensive set of tools that streamline and
simplify the development life cycle. The tools available in the IDE depend on the edition of Developer Studio 2006
you are using. The following sections briefly describe these tools.

Defining Requirements

Developer Studio 2006 provides an interface to Borland CaliberRM, a Web-based requirements definition and
management system designed to help control the product development process. Within the IDE, you can access
CaliberRM to collaborate on project requirements and ensure that your applications meets end-user needs.

Modeling Applications

Modeling can help you can improve the performance, effectiveness, and maintainability of your applications by
creating a detailed visual design before you ever write a line of code. Developer Studio 2006 provides UML-based
class diagramming tools and a framework of Enterprise Core Objects (ECO) to help you create model-

powered .NET applications.

Designing User Interfaces

The Developer Studio 2006 visual designer surface lets you create graphical user interfaces by dragging and
dropping components from the Tool Palette to a form. Using the designers, you can create VCL Forms, Windows
Forms, Web Forms, and HTML pages.

Generating and Editing Code

Developer Studio 2006 auto-generates much of your application code as soon as you begin a project. To help you
complete the remaining application logic, the text-based Code Editor provides features such as refactoring,
synchronized editing, code completion, recorded keystroke macros, and custom key mappings. Syntax highlighting
and code folding make your code easier to read and navigate.

Compiling, Debugging, and Deploying Applications

Within the IDE, you can set compiler options, compile and run your application, and view compiler messages. The
integrated Borland .NET and Borland Win32 debuggers help you find and fix runtime and logic errors, control program
execution, and step through code to watch variables and modify data values. The Developer Studio 2006 ASP.NET
Deployment Manager can assist you in copying the files required by your ASP.NET application to a web server.
Additionally, the .NET Framework includes several utilities to help you prepare applications for deployment.
Developer Studio 2006 includes InstallShield Express for creating Windows Installer setups.

Controlling Access and Tracking Changes to Code

Source control systems enable team development by controlling access and tracking changes to source code and
other files. Developer Studio 2006 provides a full-featured, direct integration with StarTeam, Borland's automated

change and software configuration management system. Within the Developer Studio 2006 IDE, you can perform
common source control tasks, such as file check in, check out, and synchronization.

21

The .NET Framework

The Microsoft .NET Framework provides the foundation for building and running .NET applications. The Framework
includes the common language runtime and class library. The common language runtime manages the execution
of code and provides services, such as memory management and cross-language integration, that simplify the
development process. The class library is a collection of reusable, object-oriented components for developing .NET
applications that take advantage of the common language runtime services.

Developer Studio 2006 makes the entire Framework class library available in the IDE to help you develop .NET
applications. Developer Studio 2006 enhances the Framework in the following areas:

m The Developer Studio 2006 Borland Data Providers for .NET provide access to InterBase, Oracle, DB2
Universal, and Microsoft SQL Server databases.

m Several database utilities assist in performing tasks such as connecting to databases, browsing and editing
databases, and executing SQL queries.

m The .NET Menu Designers simplify the creation of main menus and context menus on Windows Forms.

22

What's New in Developer Studio 2006

Developer Studio 2006 provides key new features for developing Delphi, Delphi for .NET, C#, and C++ applications

C++ Personality

Developer Studio 2006 provdes support for developing C++ applications. The following key features are available
for only the C++ personality:

m Build configurations: You can create and quickly switch between multiple build configurations, which store
sets of command-line options for build tools such as the compiler and linker.

m Build events: You can specify commands to execute at certain points in the build by righ-clicking a buildable
file in the Project Manager and choosing Build Events.

m CodeGuard integration: CodeGuard, a tool that provides runtime debugging for C++ applications, has tighter
integration with Developer Studio 2006.

m Dinkumware runtime libraries: Dinkumware runtime libraries are provided for enhanced conformance to
ANSI/ISO C++ standards.

IDE

= New Memory Manager: This relncludes a new memory manager that significantly improves start-up time,
runtime speed, and hyperthreading performance.

m Improved Speed for Several Features: The Search | Find Uses/Import Namespace, Find Class, and Change
Parameters features all have significant performance improvements in this release.

m Change Parameters Refactoring: You can add, remove, or change the ordering of method parameters using
this refactoring. Change parameters refactoring is available for Delphi for Win32 and Delphi for .NET.

m Message view: The Message view automatically scrolls to display new items.

m Project Repository improvements: You can now add a starter project, demo, template, or other frequently
used file to the Object Repository, which causes it to become available on the New menu.

Form Designer
m Design Guidelines: When you move components on a form, design guidelines appear and help you align
components.

m Form Positioner: This new view appears in the lower-right corner of the Form Designer. You can expand this
view and quickly reposition the runtime position of the form.

Code Editor

m New code templates: Code templates provide a means of automating the task of typing frequently used code
structures. Developer Studio 2006 provides a library of templates for every supported language, and you can
add other new templates by choosing File ¥ New F Other k¥ Other Files k Code Template.

m Surround templates: You can right-click a selected a block of code and choose Surround to view a list of
possible templates with which to surround your code.

m Live templates editing: When you add a code template to your source code, you can TAB through fields and
insert points to quickly populate the template with logic.

23

Block completion: Block closures are automatically added as needed when you edit code.

Method navigation: You can quickly navigate between methods in your source code using a series of hotkeys.
CTRL+ALT+UP and CTRL+ALT+DOWN move to the previous and next method, respectively. CTRL+ALT+HOME and
CTRL+ALT+END move to the first and last methods in the source, respectively. CTRL+ALT+QAL toggles class lock,
which causes method navigation to apply to only the current class.

Improved Code Editor gutter: The Code Editor gutter is now more readable and less cluttered.

Diff highlighting: Yellow highlights appear in the Code Editor gutter next to lines modified since your last save.
Green highlights appear next to lines that have been modified and saved in the current editing session.

Close all other pages: You can close all other pages by right-clicking a page tab and choosing Close All Other
Pages.

Debugger

Remote debugging: Remote debugging is now available for native Win32 applications, managed applications,
and ASP.NET applications.

Symbol table management: You can now specify the order in which symbols tables are loaded for a particular
module that you are debugging. You can also limit the search to specific symbol tables, which can speed up
the debugging process.

Expandable watches: You can now inspect the values of members within a watched object, as well as elements
within an object. Expanded tooltips are available for watched objects.

CPU view: In the CPU view, you can now select multiple items and copy them to the clipboard..
Sort by load order: In the Module view, modules can now be sorted by their load order.

Close implicitly opened files: The debugger now closes any files it automatically opens in a debugging
session.

ECO Framework

ECO State Machines: The addition of ECO state machine diagrams allow you to model the behavior of classes.
ECO state machine diagrams support entry and exit actions, transition effects, OCL guard expressions, and
concurrent state machines.

ECO Action Language: ECO Action Language is an extension of the Object Constraint Language (OCL) that
allows side-effects. You can use ECO Action Language on state machine diagrams to completely specify
behavior on the diagram itself, rather than writing code.

OCL Expression Editor: The OCL Expression Editor is now available from both the ECO WinForm designer,
and on ECO UML diagrams.

Reverse and Wrap an Existing Database with ECO: The ECO space designer now contains a tool to help
you create an ECO model from an existing database. This wizard steps you through the process of selecting a
database and customizing the OR mapping.

Modeling

Together UML Tools: New diagram types and code constructs such as interfaces, enumerations and structures
may be created from the Model view. The following diagrams and constructs are available: Class diagram, Use
case diagram, Sequence diagram, Collaboration diagram, State chart diagram, Activity diagram, Component
diagram, Deployment diagram, Class, Interface, Structure, Enumeration, Delegate, Namespace, Object,
Constraint, Note.

24

m Together Engine: The core engine has been rewritten to provide increased speed and stability

ASP.NET Web Development
m Show referenced assemblies: The Deployment Manager can now show all assemblies referenced by the
current project.

m Adding external files: You can easily choose the external files that you want to deploy using the External
Files dialog box.

m Markup source preservation: When you edit a markup document using the MSHTML control, the IDE now
preserves whitespace, user-specified tag and attribute formatting, and closing tags.

m Change default layout: You can now change the default layout in the Design Editor to be Grid Layout or
Flow Layout. Choose Tools k Options ¥ HTML/ASP.NET Options to change the default layout.

m Cassini:Developer Studio 2006 provides better support for the Cassini debugging web server. A pre-built server
is included with the IDE.

Database

Many changes have been made to improve support for database application development in Developer Studio 2006.

dbExpress

m dbExpress Unicode support: The MSSQL driver now supports unicode.

m ConnectionString property: The ConnectionString property in dbExpress lets you pass all database options
and connection information using a single connection string.

m Customizable decimal separator: You can now specify the decimal separator.
m MSSQL Return values: Support for doExpress MSSQL return values from Stored Procedures has been added.
m TSQLQuery support: Support for TQSLQuery OUT and INOUT parameters has been added.

BDP.NET Updates

m Connection pooling support: You can now use connection pooling to decrease connection time by using a
connection from an existing pool. Connection pooling options are available on the Connections Editor dialog
box.

m Reconcile Error Dialog: When an error occurs during a database Delete, Insert or Update operation, the
Reconcile Error dialog box lets you to decide which data source to use, whether to abort the operation
completely or to continue on with the next update.

General database features

m Support for MySQL 4.0.24 BDP Provider
m Customizable SQL type mapping for Data Migration
m QuoteObjects support for CREATE/ALTER/DROP in ISQLSchemaCreate

m Related Objects and ForeignKey support in ISQLExtendedMetaData (for ORACLE, Interbase, MSSQL, and
Sybase)

25

m Support for the following Oracle 9i data types: TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP
WITH LOCAL TIME ZONE, INTERVAL YEAR TO MONTH, and INTERVAL DAY TO SECOND

VCL’
New components: The following new components have been added to the Visual Component Library:

m TTraylcon
m TGridPanel
m TFlowPanel

New classes: The following new classes have been added:

m TCustomTransparentControl
m TMargins
m TPadding

Delphi Language Enhancements
Records: The following support has been added for record types:
m Operator overloading
m Non-virtual method declaration
m Regular instance methods
m Constructors with non-empty parameter lists
m Static methods and properties

Note: Destructors in records are not permitted.

StarTeam Integration

m Search: The StarTeam integration has been enhanced to include access to the Borland Search feature.

m Visual Diff / Merge: You can now use the Visual Diff and Visual Merge features from the embedded StarTeam
client, even if you do not have the standalone StarTeam client installed.

CaliberRM Integration

m Integration: You can log on to the CaliberRM server directly from the IDE. Once you are logged on, you can
use the CaliberRM requirements management features to add, remove, or update requirements.

m Linking requirements to source code files: You can link a requirement directly to source code files within the
IDE.

26

Tour of the IDE

When you start Developer Studio 2006, the integrated development environment (IDE) launches and displays
several tools and menus. The IDE helps you visually design user interfaces, set object properties, write code, and
view and manage your application in various ways.

The default IDE desktop layout includes some of the most commonly used tools. You can use the View menu to
display or hide certain tools. You can also customize and save the desktop layouts that work best for you.

The tools available in the IDE depend on the edition of Developer Studio 2006 you are using and include the

m Welcome Page

m Accessibility Options
m Forms

m Form Designer

m Tool Palette

m Object Inspector
m Object Repository
m Project Manager
m Data Explorer

m Structure View

m History Manager
m Code Editor

The following sections describe each of these tools.

Welcome Page

When you open Developer Studio 2006, the Welcome Page appears with a number of links to developer resources,
such as product-related articles, training, and online Help. As you develop projects, you can quickly access them
from the list recent projects at the top of the page. If you close the Welcome Page, you can reopen it by

choosing View F Welcome Page.

Accessibility Options

The IDE's main menu supports MS Active Accessibility (MSAA). This means that you can use the Windows
accessibility tools from the Start Menu viaAll Programs k Accessories F Accessibility.

Forms

Typically, a form represents a window or HTML page in a user interface. At design-time, a form is displayed on the
Designer surface. You add components from the Tool Palette to a form to create your user interface.

Developer Studio 2006 provides several types of forms, as described in the following sections. Select the form that
best suits your application design, whether it's a Web application that provides business logic functionality over the
Web, or a Windows application that provides processing and high-performance content display. To switch between
the Designer and Code Editor, click their associated tabs below the IDE.

To access forms, choose File ¥ New F Other.

27

Windows Forms

Use Windows Forms to build native Windows applications that run in a managed environment. You use the .NET
classes to build Windows clients which presents two major advantages—it allows application clients to use features
unavailable to browser clients, and it leverages the .NET Framework infrastructure. Windows Forms present a
programming model that takes advantage of a unified .NET Framework (for security and dynamic application
updates, for instance) and the richness of GUI Windows clients. You use Windows controls, such as buttons, list
boxes, and text boxes, to build your Windows applications.

To access a Windows Form, choose File ¥ New k Other ¥ Delphi for .NET Projects ¥ Windows Forms
Application.

ASP.NET Web Forms

Use ASP.NET Web Forms to create applications that can be accessed from any Web browser on any platform. You
use the .NET classes to create a ASP.NET Web Forms application. The form consists of the visual representation
of the HTML, the actual HTML, and a code-behind file.

To access an ASP.NET Web Form, choose File ¥ New k Other F Delphifor .NET Projects ¥ ASP.NET Web
Application.

VCL Forms

Use VCL Forms to create applications that use VCL.NET components to run in the .NET Framework. You use the
Borland Visual Component Library for .NET classes to create a VCL Forms application.

VCL Forms are especially useful if you want to port an existing Delphi application containing VCL controls to
the .NET environment, or if you are already familiar with the VCL and prefer to use it.

To access a VCL Forms, choose File ¥ New k Other ¥ Delphi for .NET Projects ¥ VCL Forms Application.

Form Designer

The Form Designer, or Designer, is displayed automatically when you are using a form. The appearance and
functionality of the Designer depends on the type of form you are using. For example, if you are using an ASP.NET
Web Form, the Designer will display an HTML tag editor. To access the Designer, click the Design tab at the bottom
of the IDE.

Visual Components

Visual components appear on the form at design-time and are visible to the end user at runtime. They include such
things as buttons, labels, toolbars, and listboxes.

Form Preview

A preview icon at the bottom right of the Designer (for VCL Forms) shows the positioning of your form as it will appear
on the screen at runtime. This allows you to position the forms of your application in relation to each other as you
design them.

HTML Designer

Use the HTML Designer to view and edit ASP.NET Web Forms or HTML pages. This Designer provides a Tag
Editor for editing HTML tags alongside the visual representation of the form or page. You can also use the Object
Inspector to edit properties of the visible items on the HTML page and to display the properties of any current HTML
tag in the Tag Editor. A combo box located above the Tag Editor lets you display and edit SCRIPT tags.

To create a new HTML file, choose File ¥ New ¥ Other ¥ Web Documents k¥ HTML Page.

28

Nonvisual Components and the Component Tray

Nonvisual components are attached to the form, but they are only visible at design-time; they are not visible to end
users at runtime. You can use nonvisual components as a way to reuse groups of database and system objects or
isolate the parts of your application that handle database connectivity and business rules.

When you add an nonvisual component to a form, they are displayed in the component tray at the bottom of the
Designer surface. The component tray lets you distinguish between visual and nonvisual components.

Design Guidelines

If you are creating components for a form, you can register an object type and then indicate various points on or
near a component's bounds that are "alignment" points. These "alignment" points are vertical or horizontal lines that
cut across a visual control's bounds.

When you have the alignment points in place, you can supply Ul guideline information so that each component will
adhere to rules such as distance between controls, shortcuts, focus labels, tab order, maximum number of items
(listboxes, menus), etc. In this way, the Form Designer can assist the Code Developer in adhering to established Ul
guidelines.

If the Snap to Grid option is enabled, and Use Designer Guidelines is also enabled, the designer guidelines will take
precedence. This means that if a grid point is within the tolerance of the new location and a guideline is also within
that distance away, then the control will snap to the guideline instead of the grid position, even if the guideline does
not fall on the grid position. The snap tolerance is determined by the grid size. Even if the Snap to Grid and Show
Grid options are disabled, the Designer will still use the grid size in determining the tolerance.

This feature is currently only available in VCL and VCL.NET only (This includes C++). Winforms does not yet have
this feature. See the link at the end of this topic for more information about setting Designer Guidelines.

Tool Palette

The Tool Palette contains items to help you develop your application. The items displayed depend on the current
view. For example, if you are viewing a form on the Designer, the Tool Palette displays components that are
appropriate for that form. You can double-click a control to add it to your form. If you are viewing code in the Code
Editor, the Tool Palette displays code segments that you can add to your application.

Customized Components

In addition to the components that are installed with Developer Studio 2006, you can add customized or third party
components to the Tool Palette and save them in their own category.

Component Templates

You can create templates that are made up of one or more components. After arranging components on a form,
setting their properties, and writing code for them, you can save them as a component template. Later, by selecting
the template from the Tool Palette, you can place the preconfigured components on a form in a single step; all
associated properties and event-handling code are added to your project at the same time. You can reposition the
components independently, reset their properties, and create or modify event handlers for them just as if you had
placed each component in a separate operation.

Object Inspector

The Object Inspector lets you set designtime properties and create event handlers for components. This provides
the connection between your application’s visual appearance and the code that makes the application run. The
Object Inspector contains two tabs: Properties and Events.

Use the Properties tab to change physical attributes of your components. Depending on your selection, some
category options let you enter values in a text box while others require you to select values from a drop-down box.

29

For Boolean operations, you toggle between True or False. After you change your components’ physical attributes,
you create event handlers that control how the components function.

Use the Events tab to specify the event of a specific object you select. If there is an existing event handler, use the
drop-down box to select it. By default, some options in the Object Inspector are collapsed. To expand the options,
click the plus sign (+) next to the category.

Certain nonvisual components, for example, the Borland Data Providers, allow quick access to editors such as the
Connection Editor and Command Text Editor. You can access these editors in the Designer Verb area at the
bottom of the Object Inspector. To open the editors, point your cursor over the name of the editor until your cursor
changes into a hand and the editor turns into a link. Alternatively, you can right-click the nonvisual component, scroll
down to its associated editor and select it. Note that not all nonvisual components have associated editors. In addition
to editors, this area can also display hyperlinks to show custom component editors, launch a web page and show
dialog boxes.

Object Repository

To simplify development, Developer Studio 2006 offers pre-designed templates, forms, and other items that you can
access and use in your application.

Inside the Object Repository

The Object Repository contains items that address the types of applications you can develop. It contains templates,
forms, and many others items. You can create projects such as class library, control library, console applications,
HTML pages, and many others by accessing the available templates.

The Object Repository is accessible by choosing File ¥ New k Other. A New Items dialog box appears, displaying
the contents of the Object Repository . You can also edit or remove existing objects from the Object Repository
by right-clicking the Object Repository to view your editing options.

Object Repository Templates

You can add your own objects to the Object Repository as templates to reuse or share with other developers.
Reusing objects lets you build families of applications with common user interfaces and functionality to reduce
development time and improve quality.

You can add a starter project, demo, template, or other useful file to the Repository, and then make it available
through the New menu. Choose Project ¥ Add to Repository. Select your file. Now when you select the File
New command, you can choose the file you just added and work with a new copy of it.

Project Manager

A project is made up of several application files. The Project Manager lets you view and organize your project files
such as forms, executables, assemblies, objects and library files. Within the Project Manager, you can add, remove,
and rename files. You can also combine related projects to form project group, which you can compile at the same
time.

Add References

You can integrate your legacy COM servers and ActiveX controls into managed applications by adding references
to unmanaged DLLs to your project, and then browse the types just as you would with managed assemblies. Choose
Project ¥ Add Reference to integrate your legacy COM servers or ActiveX controls. Alternatively, right-click the
Reference folder in the Project Manager and click Add Reference. You can add other .NET assemblies, COM/
ActiveX components, or type libraries using the Add Reference feature.

30

Copy References to a Local Path

During runtime, assemblies must be in the output path of the project or in the Global Assembly Cache (GAC) for
deployment. In the Project Manager, you can right-click an assembly and use the Copy Local setting to copy the
reference to the local output path. Follow these guidelines to determine whether a reference must be copied.

m If the reference is to an assembly created in another project, select the Copy Local setting.
m If the assembly is in the GAC, do not select the Copy Local setting.

Add Web References

You can quickly add a Web Reference to your client application and access the Web Service you want to use. When
you add a Web Reference, you are importing a WSDL document into your client application, which describes a
particular Web Service. Once you imported the WSDL document, Developer Studio 2006 generates all the interfaces
and class definitions you need for calling that Web Service. To use the Add Web Reference feature, from your
Project Manager, right-click the Web Services node.

Data Explorer

The Data Explorer lets you browse database server-specific schema objects including tables, fields, stored
procedure definitions, triggers, and indexes. Using the context menus, you can create and manage database
connections. You can also drag and drop data from a data source to most forms to build your database application
quickly.

Structure View

The Structure View shows the hierarchy of source code or HTML displayed in the Code Editor, or components
displayed on the Designer. When displaying the structure of source code or HTML, you can double-click an item to
jump to its declaration or location in the Code Editor. When displaying components, you can double-click a
component to select it on the form.

If your code contains syntax errors, they are displayed in the Errors folder in the Structure View. You can double-
click an error to locate its source in the Code Editor.

You can control the content and appearance of the Structure View by choosing Tools ¥ Options k Environment
Options Fk Explorer and changing the settings.

History Manager

The History Manager lets you see and compare versions of a file, including multiple backup versions, saved local
changes, and the buffer of unsaved changes for the active file. If the current file is under version control, all types
of revisions are available in the History Manager. The History Manager is displayed to the right of the Code tab
and contains the following tabbed pages:

m The Contents page displays current and previous versions of the file.

m The Diff page displays differences between selected versions of the file.

m The Info page displays all labels and comments for the active file.

You can use the History Manager toolbar to refresh revision information, revert a selected version to the most

current version, and synchronize scrolling between the source viewers in the Contents or Diff pages and the Code
Editor.

31

Code Editor

The Code Editor provides a convenient way to view and modify your source code. ltis a full-featured, customizable,
UTF8 editor that provides refactoring, automatic backups, Code Insight, syntax highlighting, multiple undo capability,
context-sensitive Help, Code Templates, Smart Block Completion, Find Class, Find Unit/Import Namespace, and

more. Choose the Code Editor link in the section below to view descriptions for each of these Code Editor features.

32

Starting a Project

A project is a collection of files that is used to create a target application. This collection of files consists of the files
you include and modify directly, such as source code files and resources, and other files that Developer Studio 2006
maintains to store project settings, such as the .bdsproj project file. Projects are created at design time, and they
produce the project target files (.exe, .dll, .bpl, etc.) when you compile the project.To assist in the development
process, the Object Repository offers many pre-designed templates, forms, files, and other items that you can use
to create applications.

To create a project, click New from the Welcome Page and select the type of application you want to create, or
choose File ¥ New Fk Other. To open an existing project, click Project from the Welcome Page or choose File
F Open Project.

This section includes information about

m Types of projects
m Working with unmanaged code

Type of Projects

Depending on the edition of Developer Studio 2006 that you are using, you can create traditional Windows
applications, ASP.NET Web applications, ADO.NET database applications, Web Services applications, and many
others. Developer Studio 2006 also supports assemblies, custom components, multi-threading, and COM. For a list
of the features and tools included in your edition, refer to the feature matrix on either the Borland Delphi web page
or the Borland C#Builder web page.

Windows Applications

You can create Windows applications using Windows Forms to provide processing and high-performance content
display. In addition to traditional uses for Windows applications, a Windows application can be used with constructs
from the newer .NET framework. For instance, a Windows application can function as a front end to an ADO.NET
database.

ASP.NET Web Applications

You can create Web applications using ASP.NET Web Forms to provide Web access to databases and Web
Services. Web Forms provide the user interface for Web applications and consist of HTML, server controls, and
application logic in code-behind files. Developer Studio 2006 lets you drag and drop components and provides in-
place HTML editing.

In addition to drag and drop components and visual designers, Borland provides an easy way to create application
menus and submenus. The .NET Menu Designers MainMenu and ContextMenu are components that work like
editors to let you visually design menus and quickly code their functionality.

ASP.NET Web Services Applications

You can create Web Services applications that deliver content, such as HTML pages or XML documents, over the
Web. Web Services is an internet-based integration methodology that allows applications to connect through the
Web and exchange information using standard messaging protocols.

Developer Studio 2006 simplifies the creation of Web Services by providing methods for creating a SOAP Server
application. The .asmx and .dll files are created automatically and you can test the Web Service within the IDE,
without writing a client application for it.

33

When writing a client application that uses, or consumes, a published Web Service, you can use the UDDI Browser
to locate and import WSDL that describes the Web Service into your client application.

VCL.NET Applications
You can use VCL Forms to create a .NET Windows application that uses components from the VCL.NET framework.

Developer Studio 2006 simplifies the task of building .NET-enabled applications by supporting VCL components that
have been augmented to run on the .NET Framework. This eliminates the need for you to create custom components
to provide standard VCL component capabilities. This makes the process of porting Win32 applications to .NET
much simpler and more reliable.

Database Applications

Whether your application uses Windows Forms, Web Forms, or VCL Forms, Developer Studio 2006 has several
tools that make it easy to connect to a database, browse and edit a database, execute SQL queries, and display
live data at design time.

The ADO.NET framework data providers let you access MS SQL, Oracle, and ODBC and OLE DB-accessible
databases. The Borland Data Providers (BDP.NET) let you access MS SQL, Oracle, DB2, and InterBase databases.
You can connect to any of these data sources, expose their data in datasets, and use SQL commands to manipulate
the data. Using BDP.NET provides the following advantages:

m Portable code that's written once and connects to any supported database.

m Open architecture that allows you to provide support for additional database systems.

m Logical data types that map easily to .NET native types.

m Consistent data types that map across databases, where applicable.

m Unlike OLE DB, there is no need for a COM/Interop layer.

When using VCL Forms and the VCL.NET framework components, you can extend database support even further
by using the BDE.NET, dbExpress.NET, and Midas Client for .NET connection technologies.

Model-Driven Applications

Modeling is a term used to describe the process of software design. Developing a model of a software system is
roughly equivalent to an architect creating a set of blueprints for a large development project. Like a set of blueprints,
a model not only depicts the system as a whole, but also allows you to focus in on specifics such as structural and
behavioral details. Abstracted away from any particular programming language (and at some levels, even from
specific technology), the model allows all participants in the development cycle to communicate in the same
language.

Borland's Model Driven Architecture (MDA) describes an approach to software engineering where the modeling tools
are completely integrated within the development environment itself. The MDA is designed around Borland’s
Enterprise Core Objects (ECO) framework. The ECO framework is a set of interface, classes, and custom attributes
that provide the communication conduit between your application and the modeling-related features of the IDE.

The ECO features include:

m Automatic mapping of the model classes, with their attributes and relationships, to a relational schema.
m Automatic evolution of schema when the model changes.

m Specification of the persistence backend. You can choose to store objects in a relational database or in an XML
file.

m Design-time structural validation of the model and its Object Constraint Language (OCL) expressions.
m Runtime validation of the OCL expressions.

34

m An event mechanism that allows you to receive notifications whenever objects are added, changed, or removed.

Developer Studio 2006 IDE leverages the ECO framework to provide an integrated surface on which to develop your
application model. The IDE and its modeling surface features include:

m Creating model-driven applications as a new kind of project.
m Creating class diagrams, and manipulating model elements (packages, and classes) directly on the surface.
m Adding, removing, and changing class attributes and methods on the class diagram.

m Two-way updating between source code and the modeling surface. Changes in source code are reflected in
the graphical depiction, and vice versa.

m Two-way navigating between model elements and source code. You can navigate from the graphical depiction
of a model element directly to its corresponding source code. Similarly, you can navigate from a modeled class
in source code directly to its graphical diagram on the modeling surface.

m Exporting and importing models using XMl 1.1.

Note: Not all modeling features are available in all editions of Developer Studio 2006. To determine the modeling
features supported in your product edition, refer to the feature matrix on either the Borland Delphi web page
or the Borland C#Builder web page.

Assemblies

An assembly is a logical package, much like a DLL file, that consists of manifests, modules, portable executable
(PE) files, and resources (.html, .jpeg, .gif) and is used for deployment and versioning. An application can have one
or more assemblies that are referenced by one or more applications, depending on whether the assemblies reside
in an application directory or in a global assembly cache (GAC).

Additional Projects

In addition to the project types described above, Developer Studio 2006 provides templates to create class libraries,
control libraries, console applications, Visual Basic applications, reports, text files, and more. These templates are
stored in the Object Repository and you can access them by choosing File ¥ New k Other.

Unmanaged Code and COM/Interop

Unmanaged code refers to applications that do not target the .NET Framework Common Language Runtime (CLR).
COM/Interop is a .NET service that allows seamless interoperation between managed and unmanaged code. The
COM/Interop service allows you to leverage existing COM servers and ActiveX controls in your .NET applications,
and expose .NET components in legacy unmanaged applications. The Developer Studio 2006 IDE includes tools to
help you integrate your legacy COM servers and ActiveX controls into managed applications. Additionally, you can
add references to unmanaged DLLs to your project, and then browse the types contained, just as you would with
managed assemblies.

35

36

Code Editor

The Code Editor is a full-featured, customizable, UTF8 editor that provides syntax highlighting, multiple undo
capability, and context-sensitive Help for language elements.

As you design the user interface for your application, Developer Studio 2006 generates the underlying code. When
you modify object properties, your changes are automatically reflected in the source files.

Because all of your programs share common characteristics, Developer Studio 2006 auto-generates code to get
you started. You can think of the auto-generated code as an outline that you can examine to create your program.

Note: If you are using WinForms, do not modify the auto-generated code for the Initialize Components method. Doing
so will cause your form to disappear when you click the Design tab.

The Code Editor provides the following features to help you write code:

m Change Bars

m Code Insight

m Sync Edit

m Code Completion
m Code Browsing
m Help Insight

m Code Templates
m Code Folding

m To-Do Lists

m Keystroke Macros
m Bookmarks

m Block comments

Change Bars

When you make changes to your code with the Code Editor in Developer Studio 2006, the left margin of the Code
Editor will display a yellow change bar to indicate that changes have been made after the last Save operation. You
can customize the change bars to display in other colors.

Code Insight

Code Insight refers to a subset of features embedded in the Code Editor (such as Code Parameter Hints, Code
Hints, Help Insight, Code Completion, Class Completion, Block Completion, and Code Browsing) that aid in the code
writing process. These features help identify common statements you wish to insert into your code, and assist you
in the selection of properties and methods. Some of these features are described in more detail in the sub-sections
below.

To invoke Code Insight, press CTRL+SPACE while using the Code Editor. A pop-up window displays a list of symbols
that are valid at the cursor location.

To enable and configure Code Insight features, choose Tools F Options and click Code Insight.

When you're using the Delphi Language, the pop-up window filters out all interface method declarations that are
referred to by property read or write clauses. The window displays only properties and stand-alone methods declared
in the interface type. Code insight supports WM_xxx, CM_xxx, and CN_xxx message methods based on like named
constants from all units in the uses clause.

37

Code Parameter Hints

Displays a hint containing argument names and types for method calls. Available between the parenthesis of a call
i.e. ShowMessage (|);

You can invode Code Parameter Hints by pressing CTRL+SHIFT+SPACE.

Code Hints
Display a hint containing information about the symbol such as type, file and line # declared at.

You can display Code Hints by hovering the mouse over an identifier in your code, while working in the Code Editor.

Note: Code Hints only work when you have disabled the Help Insight feature.

Help Insight

Help Insight displays a hint containing information about the symbol such as type, file, line # declared at, and any
XML documentation associated with the symbol (if available).

Invoke Help Insight by hovering the mouse over an identifier in your code, while working in the Code Editor. You
can also invoke Help Insight by pressing CTRL+SHIFT+H.

Code Completion

The Code Completion feature displays a drop-down list of available symbols at the current cursor location. You
invoke Code Completion for your specific language in the following way:

Delphi — CTRL + SPACE +.
C# — CTRL + SPACE +.
C++ — CTRL + SPACE + —>

Class Completion

Class completion simplifies the process of defining and implementing new classes by generating skeleton code for
the class members that you declare. By positioning the cursor within a class declaration in the interface section of
a unit and pressing CTRL+SHIFT+C, any unfinished property declarations are completed. For any methods that require
an implementation, empty methods are added to the implementation section. They are also on the editor context
menu.

Block Completion

When you press ENTER while working in the Code Editor and there is a block of code that is incorrectly closed, the
Code Editor enters the closing block token at the next available empty line after the current cursor position. For
instance, if you are using the Code Editor with the Delphi language, and you type the token begin and then press
ENTER, the Code Editor automatically completes the statement so that you now have: begin end; . This feature also
works for the C# and C++ languages.

Code Browsing

While using the Code Editor to edit a VCL Form application, you can hold down the CTRL key while passing the
mouse over the name of any class, variable, property, method, or other identifier. The mouse pointer turns into a
hand and the identifier appears highlighted and underlined; click on it, and the Code Editor jumps to the declaration
of the identifier, opening the source file, if necessary. You can do the same thing by right-clicking on an identifier
and choosing Find Declaration.

38

Code browsing can find and open only units in the project Search path or Source path, or in the product Browsing
or Library path. Directories are searched in the following order:

1 The project Search path (Project ¥ Options k Directories/Conditionals).
2 The project Source path (the directory in which the project was saved).

3 The global Browsing path (Tools ¥ Options F Library).

4 The global Library path (Tools ¥ Options F Library).

The Library path is searched only if there is no project open in the IDE.

Code Navigation

The sections below describe features that you can use to navigate through your code while you are using the Code
Editor.

Method Hopping

You can navigate between methods using a series of editor hotkeys. You can also lock the hopping to occur only
within the methods of the current class. For example, if class lock is enabled and you are in a method of TComponent,
then hopping is only available within the methods of TComponent.

The keyboard shortcuts for Method Hopping are as follows:
m CTRL+QAL - toggles class lock
m CTRL+ALT+UP - moves to the top of the current method, or the previous method
m CTRL+ALT+DOWN - moves to the net method
m CTRL+ALT+HOME - first method in source
B CTRL+ALT+END - last method in source
m CTRL+ALT+MOUSE_WHEEL - scrolls through methods

Finding Classes

Allows you to find classes (using C# regular expressions). Use theSearch k Find Classes command to see a list
of available classes that you can select. After you choose one, the IDE navigates to its declaration.

Finding Units

Depending on which language you are programming in, you can use a refactoring feature to locate namespaces or
units. If you are using C#, you can use the Use the Import Namespace command to import namespaces into your
code. If you are using the Delphi language, you can use the Find Unit command to locate and add units to your

code file. For code that is written using the .NET framework, the Assembly Browser will open if the expression is not
found. The Assembly Browser will allow you to browse for a type. The Find Type window allows regular expressions.

Code Templates

Code Templates allow you to have a dictionary of pre-written code, which can be inserted into your programs while
you're working with the Code Editor. This reduces the amount of typing that you must do on a daily basis.

Use the links at the end of this topic to learn more about creating and using Code Templates.

39

Code Folding

Code folding lets you collapse sections of code to create a hierarchical view of your code and to make it easier to
read and navigate. The collapsed code is not deleted, but hidden from view. To use code folding, click the plus and
minus signs next to the code.

To-Do Lists

A To-Do List records tasks that need to be completed for a project. After you add a task to the To-Do List, you can
edit the task, add it to your code as a comment, indicate that it has been completed, and then remove it from the
list. You can filter the list to display only those tasks that interest you.

Keystroke Macros

You can record a series of keystrokes as a macro while editing code. After you record a macro, you can play it back
to repeat the keystrokes during the current IDE session. Recording a macro replaces the previously recorded macro.

Bookmarks

Bookmarks provide a convenient way to navigate long files. You can mark a location in your code with a bookmark
and jump to that location from anywhere in the file. You can use up to ten bookmarks, numbered 0 through 9, within

a file. When you set a bookmark, a book icon |i is displayed in the left gutter of the Code Editor.

Block Comments

You can comment a section of code by selecting the code in the Code Editor and pressing CTRL+/ (slash). Each
line of the selected code is prefixed with // and will be ignored by the compiler. Pressing CTRL+/ will add or remove
the slashes, based on whether the first line of the code is prefixed with //. When using the Visual Studio or Visual
Basic key mappings, use CTRL+K+C to add and remove comment slashes.

40

Getting Started with Together

This section contains in introduction to modeling with Borland Together.

The two sample projects are designed to help you explore Together features while working with projects. Some of
the special features include: UML modeling, patterns, generating project documentation.

In This Section

About Together
Provides a brief introduction to the feature set of Together. Use Together for building a UML model of your

application.

41

42

About Together

Welcome to Borland® Together®, the award-winning, design-driven environment for modeling applications.
Together includes features such as support for UML 2.0, OCL, patterns, Quality Assurance audits and metrics,
source code refactoring and generation, IBM Rational Rose (MDL) format import, XMI format import and export, and
automated documentation generation.

A key feature of Together, LiveSource™, keeps your Together diagrams synchronized with your source code in the
Developer Studio 2006 Editor.

Together is an integral part of a complete ALM (Application Lifecycle Management) solution provided by Borland
Software Corporation. This version of Together is a part of the new generation of the Borland’s ALM solution named
SDO (Software Delivery Optimization). SDO is Borland’s vision and strategy for transforming software delivery to
an incorporated and disciplined approach that aligns teams, technology and process to maximize the business value
of software.

The Together features are tightly integrated with the Developer Studio 2006 environment. When Together support
is activated, the following items are added or modified:

m Diagram View

m Model View

m Object Inspector

m Tool Palette

In addition, specific commands are added to the main menu and the context menus of the Project Manager and
Structure View.
The following offer additional assistance, information, and resources:

m For information on how to use this Help system, see Help on Help

m Borland Together Home Page

m Borland Together Documentation

m Borland Product Support
m Borland Newsgroups

Not all features described in this Help system are available in all editions of the product.

43

44

Help on Help
This section includes information about the:

m Developer Studio 2006 Help

m Microsoft .NET Framework SDK Help

m Borland Developer Support Services and Web Sites
m Developer Studio 2006 Quick Start Guide

m Typographic Conventions Used in the Help

Developer Studio 2006 Help

The Developer Studio 2006 Help includes conceptual overviews, procedural how-to's, and reference information,
allowing you to navigate from general to more specific information as needed.

Additionally, the persistent navigation panes in the Help window make it easier to locate and filter information. By
default, no filter is set, allowing you to view all of the installed Help. However, to narrow the focus when searching
the Help or using the index, use the Filter by: drop-down list on the Content, Search, and Index panes. To display
the navigation panes, use the View k Navigation menu command.

Tip: When navigating to a topic by using a link from another topic, the context of the topic you are viewing might

not be obvious. To find the context of that topic within the Content pane, click the Sync Contents " button
on the toolbar of the Borland Help viewer.

Conceptual Overviews

The conceptual overviews provide information about product architecture, components, and tools that simplify
development. If you are new to a particular area of development, such as modeling or ADO.NET, see the overview
topic at the beginning of each section in the online Help.

At the end of most of the overviews, you will find links to related, more detailed information. Icons are used to indicate
that a link leads to the .NET SDK, partner Help, or to a web site. The icons are explained later in this topic.

How-To Procedures

The how-to procedures provide step-by-step instructions. For development tasks that include several subtasks, there
are core procedures, which include the subtasks required to accomplish a larger task. If you are beginning a
development project and want to know what steps are involved, see the core procedure for the area you are working
on.

In addition to the core procedures, there are several single-task procedures.

All of the procedures are located under Procedures in the Content pane of the Help window. Additionally, most of
the conceptual overviews provide links to the pertinent procedures.

Reference Topics

The reference topics provides detailed information on subjects such as API elements, the Delphi language, and
compiler directives.

All of the reference topics are located under Reference in the Content pane of the Help window. Additionally, most
API references are underlined and link directly to the appropriate reference topic.

45

Context Sensitive F1 Help
Context sensitive Help is available throughout the IDE by selecting an item and pressing F1:

m In the Code Editor, select and highlight the entire element, such as a namespace, keyword, or method
m On a form Design tab, select the component

m In the Messages window, select a message

m Within IDE windows, such as the Project Manager or Model View, click within the window

Note: Pressing F1 on an element that is part of the VCL.NET framework displays the Developer Studio 2006 Help.
Pressing F1 on an element that is part of the .NET framework displays the Microsoft .NET Help.

Microsoft SDK Help

Developer Studio 2006 is distributed with the both the Microsoft .NET Framework SDK and the Microsoft Platform
SDK, which include extensive online Help. Where appropriate, the Developer Studio 2006 Help provides links to the
SDK online Help. Alternatively, you can access the SDK Help directly from the Content pane of this Help system.

Borland Developer Support Services and Web Site

Borland offers a variety of support options to meet the needs of its diverse developer community. To find out about
support, refer to www.borland.com/devsupport. From the web site, you can access many newsgroups where
developers exchange information, tips, and techniques. The site also includes a list of books, technical documents,
and Frequently Asked Questions (FAQ). Additionally, you can access the Borland Developer Network.

Developer Studio 2006 Quick Start Guide

The Developer Studio 2006 Quick Start guide provides an overview of the Developer Studio 2006 development
environment to help you install and start using the product right away. The Quick Start guide is shipped along with
your product.

Typographic Conventions Used in the Help
The following typographic conventions are used throughout the Developer Studio 2006 online Help.

Typographic conventions
Convention Used to indicate

Monospace type Source code and text that you must type.

Boldface Reserved language keywords or compiler options, references to dialog boxes and tools.

Italics Developer Studio 2006 identifiers, such as variables or type names. Italicized text is also used for book
titles and to emphasize new terms.

KEYCAPS Keyboard keys, for example, the CTRL or ENTER key.

WEB A link to Web resources.

S0¥, An external link to Microsoft SDK documentation.

kA An external link to documentation provided by Borland partners.

46

Managing the Development Life Cycle

The application development life cycle involves designing, developing, testing, debugging, and deploying
applications. Developer Studio 2006 provides powerful tools to support this iterative process, including integrated
source control, form design tools, the Delphi for .NET compiler, an integrated debugging environment, and
installation and deployment tools.

In This Section
Managing the Development Cycle Overview
Provides a brief overview of the steps involved in managing the development cycle.

Using Source Control
Provides an overview of general source control concepts and specifics of the Developer Studio 2006 source
control capabilities.

Designing User Interfaces
Provides an overview of designing user interfaces with the Developer Studio 2006 designers.

Together Features Overview
Compiling, Building, and Running Applications
Provides an overview of compiling, building, and running applications in the IDE.

Localizing Applications
Describes the Translation Tools available with Developer Studio 2006.

Overview of Debugging
Provides general debugging information and describes the debugging tools available in Developer Studio
2006.

Deploying Applications
Provides information about deploying applications.

47

48

Managing the Development Cycle Overview

The development cycle as described here is a subset of Application Lifecycle Management (ALM), dealing
specifically with the part of the cycle that includes the implementation and control of actual development tasks. It
does not include such things as modeling applications. Developer Studio 2006 provides a framework of tools that
helps you manage and perform all of your development requirements.

These tools include:

m Requirements management

m Source control integration

m User interface design

m Code visualization capabilities

m Project building, compilation, and debugging capabilities

Requirements Management

Developer Studio 2006 provides full integration with CaliberRM requirements management software. Using this
integration, you can add, remove, and update requirements for your software project within the Developer Studio
2006 IDE. This integration also enables you to create links between the requirement specification and the portions
of the code within your software project that fulfill the requirement.

Source Control Integration

Developer Studio 2006 provides a full-featured direct integration with Borland StarTeam. This integration allows you
to access your source control system in one of two ways:

m Manage project files within the source control system from the Developer Studio 2006 IDE.
m Invoke the source control system in a separate process.

Invoke the source control system in a separate process if you need to use specific features of that system, which
are not exposed in the Developer Studio 2006 IDE. The source control application appears in a separate window.

In most cases, you manage your project files from within the Developer Studio 2006 IDE. The integration provided
allows you to check-in, check-out, update, commit, and otherwise manage your source files using a simplified user
interface. The integration supports the level of multi-user capabilities provided by your specific source control system.

User Interface Design

Developer Studio 2006 provides a rich environment for designing a .NET user interface. In addition to the Windows
Form Designer, which includes a full set of visual components, the IDE gives you tools to build ASP.NET Web Forms,
along with a set of Web Controls. Developer Studio 2006 also includes a VCL.NET Forms design tool, which allows
you to build .NET applications using VCL components. The Designer offers a variety of alignment tools, font tools,
and visual components for building many types of applications, including MDI and SDI applications, tabbed dialogs,
and data aware applications.

Code Visualization

The Code Visualization feature of Developer Studio 2006 provides the means to document and debug your class
designs using a visual paradigm. As you load your projects and code files, you can use the Model View to get both
a hierarchical graphical view of all of the objects represented in your classes, as well as a UML-like model of your

49

application objects. This feature can help you visualize the relationships between objects in your application, and
can assist you in developing and implementing.

Build, Compile, Run, and Debug

Developer Studio 2006 provides a full-featured build and compile system, along with an integrated debugger. The
visual approach to building, compiling, and running your application makes the entire development process simpler
than in the past. Projects with subprojects and multiple source files can be compiled all together, which is called
building, or you can compile each project individually.

The integrated debugger allows you to set watches and breakpoints, and to step through, into, and over individual
lines of code. A set of debugger windows provides details on variables, processes, and threads, and lets you drill
down deeply into your code to find and fix errors.

50

Using Source Control

Borland's Developer Studio 2006 provides a full-featured direct integration with StarTeam, Borland's automated
change and software configuration management (SCM) system. This integration lets you access StarTeam's rich
feature set from within the IDE. The integration also provides some Developer Studio 2006-specific features to allow
you to easily check in and check out Developer Studio 2006 project source files and manage your work more easily.

Source Control Basics

Each source control system consists of one or more centralized repositories and a number of clients. A repository
is a database that contains not only the actual data files, but also the structure of each project you define.

Most source control systems adhere to a concept of a logical project, within which files are stored, usually in one or
more tree directory structures. A source control system project might contain one or many Developer Studio 2006

projects in addition to other documents and artifacts. The system also enforces its own user authentication or, very
often, takes advantage of the authentication provided by the underlying operating system. Doing so allows the source
control system to maintain an audit trail or snapshot of updates to each file. These snapshots are typically referred
to as diffs, for differences. By storing only the differences, the source control system can keep track of all changes
with minimal storage requirements. When you want to see a complete copy of your file, the system performs a merge
of the differences and presents you with a unified view. At the physical level, these differences are kept in separate
files until you are ready to permanently merge your updates, at which time you can perform a commit action.

This approach allows you and other team members to work in parallel, simultaneously writing code for multiple
shared projects, without the danger of an individual team member's code changes overwriting another's. Source
control systems, in their most basic form, protect you from code conflicts and loss of early sources. Most source
control systems give you the tools to manage code files with check-in and check-out capabilities, conflict
reconciliation, and reporting capabilities. Most systems do not include logic conflict reconciliation or build
management capabilities. For details about your particular source control system capabilities, refer to the appropriate
product documentation provided by your source control system vendor.

Commonly, source control systems only allow you to compare and merge revisions for text-based files, such as
source code files, HTML documents, and XML documents. The source control systems supported by Developer
Studio 2006 allow you to include binary files, such as images or compiled code, in the projects you place under
control. You cannot, however, compare or merge revisions of binary files. If you need to do more than store and
retrieve specific revisions of of these types of files, you might consider creating a manual system for keeping tracking
of the changes you make to binary files.

Repository Basics

Source control systems store copies of source files and difference files in some form of database repository. In some
systems, such as CVS or VSS, the repository is a logical structure that consists of a set of flat files and control files.
In other systems, the repositories are instances of a particular database management system (DBMS) such as
InterBase, Microsoft Access, MS SQL Server, IBM DB2, or Oracle.

Repositories are typically stored on a remote server, which allows multiple users to connect, check files in and out,
and perform other management tasks simultaneously. You need to make sure that you establish connectivity not
only with the server, but also with the database instance. Check with your network, system, and database
administrators to make sure your machine is equipped with the necessary drivers and connectivity software, in
addition to the client-side source control software.

Some source control systems allow you to create a local repository in which you can maintain a snapshot of your
projects. Over time the local image of your projects differs from the remote repository. You can establish a regular
policy for merging and committing changes from your local repository to the remote repository.

Generally, it is not safe to give each member of your team a separate repository on a shared project. If you are each
working on completely separate projects and you want to keep each project under source control locally, you can

51

use individual local repositories. You can also create these multiple repositories on a remote server, which provides
centralized support, backup, and maintenance.

Working with Projects

Source control systems, like development environments, use the project concept to organize and track groups of
related files. No matter which source control system you use, you create a project that maintains your file definitions
and locations. You also create projects in Developer Studio 2006 to organize the various assemblies and source
code files for any given application. Developer Studio 2006 stores the project parameters in a project file. You can
store this file in your source control system project, in addition to the various code files you create. You might share
your project file among all the developers on your team, or you might each maintain a separate project file. Most
source control systems consider development environment project files to be binary, whether they are actually binary
files or not. As a consequence, when you check a project file into a source control system repository, the source
control system overwrites older versions of the file with the newer one without attempting to merge changes. The
same is true when you pull a project, or check out the project file; the newer version of the project file overwrites the
older version without merging.

Working with Files

The file is the lowest-level object that you can manage in a source control system. Any code you want to maintain
under source control must be contained in a file. Most source control systems store files in a logical tree structure.
Some systems, such as CVS, actually use terms like branch, to refer to a directory level. You can create files in a
Developer Studio 2006 project and include them in your source control system, or you can pull existing files from
the source control system. You can put an entire directory into the source control system, then you can check out
individual files, multiple files, or entire subdirectory trees. Developer Studio 2006 gives you control over your files at
two levels—at the project level within Developer Studio 2006 and in the source control system, through the Developer
Studio 2006 interface to the source control system.

Note: The History View provides revision information for your local source files. The History View can be used to
track changes you make to files as you work on them in the Designer or the Code Editor.

52

Using the StarTeam Integration

Borland's StarTeam integration for Developer Studio 2006 provides direct access to StarTeam features and functions
from within the IDE. The StarTeam integration lets you use Developer Studio 2006 menus or embedded StarTeam
Client elements to manage access to projects and files stored in the server repository, to maintain an audit trail of
changes you make to the projects and files, and to resolve file revision conflicts.

The function and use of the StarTeam Client and the elements incorporated into Developer Studio 2006 are
documented in detail in the StarTeam User's Guide and the StarTeam Administrator's Guide. StarTeam is a powerful
tool, with comprehensive version control features and capabilities. We strongly recommend that you familiarize
yourself with the StarTeam documentation before using this integration. All StarTeam documentation is available
for download from the Borland web site at http://info.borland.com/techpubs/starteam/.

How Developer Studio 2006 Interacts with StarTeam

Local Files Server
A Delphi IDE

StarTeam
Client

Source Control
System

Source Control
Repository

StarTeam
Client

StarTeam consists of server and client components. On the server side, the StarTeam Server maintains a database
repository that captures a complete snapshot of the source files in your project and incremental changes (deltas or
differences) to those files. The StarTeam client is integrated seamlessly with Developer Studio 2006. You can place
projects into and pull projects out of your source control repository, and check in, check out, merge, and compare
files.

Note: The StarTeam integration for Developer Studio 2006 supports StarTeam 5.4, 6.0 and 2005 Servers.

StarTeam Client

The StarTeam integration for Developer Studio 2006 includes a StarTeam Client for the .NET Framework. You can
launch the full StarTeam Client, or view the client as embedded elements of the IDE. These embedded StarTeam
elements provide access to most of the commands and information available in the client's main window (also called
the Project View Window).

The StarTeam client provided with the Delphi integration can only be started from within Delphi. There are no
provisions for using StarTeam's command-line interface with the StarTeam integration for Delphi.

53

With the exception of the aforementioned items, the features supported by your StarTeam installation are supported
by the Developer Studio 2006 integration. For example, if you have StarTeam Standard, which does not support
tasks, requirements, or alternate property editors (APEs), the StarTeam integration for Developer Studio 2006 will
not support tasks, requirements, or APEs. If you have StarTeam Enterprise, which supports tasks, your StarTeam
integration will support tasks. If you have StarTeam Enterprise Advantage, your StarTeam integration will support
tasks, requirements, and APEs. For more information about StarTeam, including a feature matrix, see the StarTeam
product page on the Borland web site at http://www.borland.com/starteam/index.html.

Standard Version Control Support
The StarTeam integration provides support for standard version control operations. Using the integrated StarTeam
Client, you can perform the following operations:
m Place and pull projects and project groups to and from a StarTeam repository
m Commit changes for the entire project
m Update the entire project with the latest revisions in the repository
m Check individual files in and out from the repository
m Add files to the StarTeam project
m Lock files for exclusive editing
m Compare two revisions of a file
m Revert files back to a prior revision

Developer Studio 2006 provides access to these operations through the StarTeam menu on the main menu bar, or
through StarTeam context menus in the Project Manager.

Advanced Features

The integrated StarTeam Client lets you access advanced StarTeam features without leaving the development
environment. Some of these include:

m Create and edit items other than files, such as change requests, requirements, tasks, and topics
m Apply labels to a file, an item, a group of files, or a group of items
m Establish process items and rules to help you link and track changes to your files

These features will help you assign and track responsibilities for tasks throughout your project. The client that can
be launched from within Developer Studio 2006 provides even more features and functions for managing your files
and projects, such as the ability to generate reports and charts, and administer user accounts and servers.

Developer Studio 2006 Features

Some features and behaviors of the StarTeam integration are specific to Developer Studio 2006. Beyond the
embedded client, the most obvious of these is the support for Developer Studio 2006 projects and project groups.
The StarTeam integration provides commands for placing, pulling, and updating Developer Studio 2006 projects
and project groups, as well as for committing changes to all files in a project. Additionally, the integration provides
quick access to StarTeam commands through context menus in the Project Manager.

The StarTeam integration works together with the Developer Studio 2006History Manager to display both local and
StarTeam version information for the active file. You can use the History Manager to compare the contents of your
current working file with revisions of the file in the StarTeam repository. You can also revert the contents of your
working file to any StarTeam revision.

The StarTeam integration supports file renaming and deleting. When you rename or delete a file in your project, the
StarTeam integration will automatically carry out the changes on the repository when you commit the project.

54

Similarly, if a team member has renamed or deleted files, and committed the changes, the changes are carried out
in your local project when you update the project. This capability prevents loss of revision information when a file is
renamed or moved.

Note: If the file renaming or deletions made in your local project conflict with changes made by another team
member in the StarTeam Client, you must manually resolve the pending renaming or deletion of files. The
Pending Renames/Deletes dialog box (StarTeam Fk Pending Renames/Deletes) lets you commit any
pending local file renames or deletions to the repository or cancel the pending operations.

When the Structure View displays the folder hierarchy for your StarTeam project, the Structure View includes a
toolbar with the following features:

m A drop-down list of paths to the folders you've previously selected. Choose a path from the drop-down list to go
to that StarTeam folder in the current hierarchy. The most recently selected folder sorts to the top.
m A Refresh button. Click this button to update the information in the current tree.

m A button for selecting which node in the folder hierarchy to show as the root folder, the project or the view. This
button is available when the project and view are not at the same level.

55

56

Managing Requirements with CaliberRM

CaliberRM is a requirements management system that enables teams to fully define, manage and communicate
changing requirements for software development projects. The integrated CaliberRM client provides direct access
to features and functions from within theDeveloper Studio 2006 IDE. After you log in to CaliberRM through Developer
Studio 2006, you can display and update data that is stored on the CaliberRM server. This data is accessible through
both the integrated CaliberRM client and the Windows CaliberRM client. The Windows CaliberRM client is
documented in detail in the CaliberRM User Guide. All CaliberRM documentation is available for download from the
Borland web site at http://info.borland.com/techpubs/caliber_rm/.

The integration of CaliberRM into Developer Studio 2006 provides additional features not available from the
standalone CaliberRM application.

m Direct logon to the CaliberRM server
m Linking between requirements and source code

Using the Integrated CaliberRM Client

CaliberRM consists of a client and a server component. An enhanced version of the client is available directly within
the Developer Studio 2006 IDE. If you are logged on to the CaliberRM server, you can display the project
requirements within the IDE. If you are not logged on, the logon screen displays.

Note: The CaliberRM integration for Developer Studio 2006 uses the CaliberRM 2005 Server, which is only
available for Windows 2000 and Windows NT. See the CaliberRM Installation Guide for a complete list of
system requirements and installation instructions for the server.

Logging On To the CaliberRM Server

You must log on to the CaliberRM server before you can display or update the requirements. You can log on to the
server directly from the Developer Studio 2006 IDE. Once you are logged on, the integrated CaliberRM client displays
in the bottom portion of the IDE.

Linking Between a Requirement and Source Code

You can select source code in your project and drag it into a requirement for your project. This creates a link that
appears in the Traceability tab for that requirement. When you click the link, the project opens to that source code
shippet.

57

58

Designing User Interfaces

A graphical user interface (GUI) consists of one or more windows that let users interact with your application. At
designtime, those windows are called forms. Developer Studio 2006 provides a designer for creating Windows
Forms, Web Forms, VCL Forms, and HTML pages. The Designer and forms help you create professional-looking
user interfaces quickly and easily.

Using the Designer

When you create a Windows, Web, or Web Services application, the IDE automatically displays the appropriate type
of form on the Design tab in the IDE. As you drop components, such as labels and text boxes, from the Tool
Palette on to the form, Developer Studio 2006 generates the underlying code to support the application. You can
use the Object Inspector to modify the properties of components and the form. The results of those changes appear
automatically in the source code on the Code tab. Conversely, as you modify code with Code Editor, the changes
you make are immediately reflected on the Design tab.

The Tool Palette provides dozens of controls to simplify the creation of Windows Forms, Web Forms, and HTML
pages. When creating a Windows Form, for example, you can use the MainMenu component to create a customized
main menu in minutes. After placing the component on a Windows Form, you type the main menu entries and
commands in the boxes provided. The ContextMenu component provides similar functionality for creating context
menus. There are also several dialog box components for commonly performed functions, such as opening and
saving files, setting fonts, selecting colors, and printing. Using these components saves time and provides a
consistent look and feel for the dialogs in your application.

As you design your user interface, you can undo and repeat previous changes to a form by choosing Edit k
Undo and Edit ¥ Redo. When you are satisfied with the appearance of the form, you can lock the components and
form to prevent accidental changes by right-clicking the form and choosing Lock Controls.

Setting Designer Options

You can set options that effect the appearance and behavior of the Designer. For example, you can adjust the grid
settings, and the style of generated code and HTML. To set these options, choose Tools k Options and then use
the Windows Form Designer and HTML Option dialog boxes.

Setting Designer Guidelines with VCL Components

You can use VCL or VCL.NET (with Delphi or C++) to setup components that are "aware" of their relation to other
components on a form. For instance, when you drop a component on a form, it will leave a certain amount of space
from the border of the form, depending on how the 'padding' property is set.

You can set properties to specify the distance between controls, shortcuts, focus labels, tab order, and maximum
number of items (listboxes, menus).

The Code Developer can then use these components to create forms. when the Use Designer Guidelines option is
enabled. If the Snap to Grid option is enabled, and Use Designer Guidelines is also enabled, the designer guidelines
will take precedence.

See the Creating Designer Guidelines link at the end of this topic, to view the procedure for setting these guidelines.

59

60

Together Features Overview

This section provides an overview of the features provided by Borland Together.

In This Section

61

Modeling Overview
Describes what modeling with Together means in general.

Together Project Overview
Describes the Together projects.

Namespace and Package Overview
Describes Together namespaces and packages.

Together Diagram Overview
Describes the Together UML diagram.

Supported UML Specifications
Describes supported UML specifications.

Model Element Overview
Describes the model elements.

Annotation Overview
Describes the feature for annotating UML diagrams.

Shortcut Overview
Describes the shortcuts on UML diagrams.

Diagram Format Overview
Describes the UML diagram format.

Diagram Layout Overview
Describes the algorithms available to lay out UML diagrams.

Hyperlinking Overview
Describes the hyperlinking feature.

LiveSource Overview
Describes the LiveSource feature.

Transformation to Source Code Overview
Describes the transformation to source code feature.

OCL Support Overview
Describes support for Object Constraint Language.

Patterns Overview
Describes support for design patterns.

Refactoring Overview

Describes the concept of refactoring and introduces the refactoring operations included in Developer Studio
2006.

Quality Assurance Facilities Overview
Describes the Quality Assurance facilities.

Documentation Generation Facility Overview
Describes the documentation generation feature.

Import and Export Overview
Describes the import and export features.

Interoperability Overview
Describes the interoperability with other versions of Together.

62

Modeling Overview

Effective modeling with Together simplifies the development stage of your project. Smooth integration to Developer
Studio 2006 provides developers with easy transition from models to source code.

The primary objective of modeling is to organize and visualize the structure and components of software intensive
systems. Models visually represent requirements, subsystems, logical and physical elements, and structural and
behavioral patterns.

While contemporary software practices stress the importance of developing models, Together extends the benefits
inherent to modeling by fully synchronizing diagrams and source code.

63

64

Together Project Overview

Work in Together is done in the context of a project. A project is a logical structure that holds all resources required

for your work. Together works with the following project types: design and implementation, and multiple project
formats.

Itis up to you to define which directories, archives, and files should be included in your project. You can set up project
properties when the project is being created, and modify them further, using the Object Inspector.

65

66

Namespace and Package Overview
A namespace is an element in a model that contains a set of named elements that can be identified by name.

A project consists of one or more namespaces (or packages). A namespace and a package are almost synonyms:
the term “namespace” is used for implementation projects, the term “package” is used for design projects.

A namespace (or a package) is like a box where you put diagrams and model elements. Contents of a namespace
(package) can be displayed on a special type of the Class diagram.

Each project contains the default namespace (or package) just after its creation.

67

68

Together Diagram Overview

Diagrams can be thought of as graphs with vertices and edges that are arranged according to a certain algorithm.

Each diagram belongs to a certain diagram type (for example, UML 2.0 Class Diagram). A set of model elements
available for use on a diagram depends on the diagram type.

Diagrams exist within the context of a namespace (or a package). You have to create or open a project or project
group before creating a new diagram. When Together support is activated, the project-level package diagram is
created by default. You can create the various UML diagrams in the project.

In addition to the standard properties of diagrams and their elements, you can create user properties, represented
by the Name-Value pair.

69

70

Supported UML Specifications

The Object Management Group’s Unified Modeling Language (UML) is a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of distributed object systems.

Together supports UML to help you specify, visualize, and document models of your software systems, including
their structure and design.

Refer to UML documentation for the detailed information about UML semantics and notation. The UML (version):
Superstructure document defines the user level constructs required for UML. It is complemented by the UML
(version): Infrastructure document which defines the foundational language constructs required for UML. The two
complementary specifications constitute a complete specification for the UML modeling language.

UML 1.5 and UML 2.0

The set of available diagrams depends on your project type.
For design projects, both UML 1.5 and 2.0 are supported.
For implementation projects, UML 1.5 is only supported.

The version of UML is selected when a project is created. It cannot be changed later.

UML In Color

“UML In Color” is an optional profile to support the modeling in color methodology. Color modeling makes it possible
to analyze a problem domain and easily spot certain classes during analysis. Together supports the use of the four
main groups of the color-modeling stereotypes:

m Role

m Momentinterval, Mi-detail

m Party, Place, Thing

m Description

For each of these stereotypes you can choose a specific color to make your model more understandable at a glance.
Note that the other stereotypes do not have associated colors.

See also "Java Modeling in Color with UML: Enterprise Components and Process" by Coad, Lefebvre and De Luca.

71

72

Model Element Overview

Model element is any component of your model that you can put on a diagram.

Model elements include nodes and links between them.

A set of available model elements depends on a current diagram type. Available model elements are displayed in
the Tool Palette.

A link can have a label. You can move a label to any point of the link line.

73

74

Annotation Overview

The Tool Palette for UML diagram elements displays note and note link buttons for all UML diagrams. Use these
elements to place annotation nodes and their links on the diagram.

Notes can be free floating or you can draw a note link to some other element to show that a note pertains specifically
to it.

You can attach a note link to another link.

The text of notes linked to class diagram elements does not appear in the source code.

75

76

Shortcut Overview

A shortcut is a representation of an existing node element placed on the same or a different diagram.

Shortcuts facilitate reuse of elements, make it possible to display library classes on diagrams, and demonstrate
relationships between the diagrams within the model.

You can create a shortcut to an element of any other project in the current project group. You can create a shortcut
to an inner class or interface of another classifier. It is also possible to add a shortcut to an element from project
References, including binary (.d11, .exe) files.

The small special symbol appears over a node to indicate a shortcut. It appears only if this node belongs to a different
namespace or package.

Select a shortcut on your diagram and choose Navigate To Element on the context menu to navigate to the source
element in the Model View.

77

78

Diagram Format Overview

Together stores diagrams in an XML-based format with the extension . txv (diagram) under the
ModelSupport $PROJECTNAMES ModelSupport folder of a project.

These files contain information about diagram elements such as layout, background color, stereotypes, and so on.

For example, the (name) . txvcls file corresponds to a class diagram. All products that provide modeling (Borland
Together for Visual Studio .NET, Borland Together ControlCenter, Borland Together Architect, Borland Together
Edition for Eclipse, and Borland Together for JBuilder) support the same diagram format, which makes the diagrams
compatible across the product line. You can copy and reuse diagrams created in the different products.

The diagram elements in fact belong to the parent default package (namespace) files (default.txaPackage).
These files contain all the information about the elements and their properties, while the diagram files contain
information about locations and dimensions of elements.

This version of Together uses the format with embedded model elements (created as filemates).

79

80

Diagram Layout Overview

You can customize diagram notation in several ways.

Together enables you to manage simple or complex diagrams with automated layout features that optimize the
diagram layout for viewing or printing. Nodes and links on a diagram are arranged according to a certain algorithm.

It is also possible to adjust their arrangement manually.

There are several diagram layout algorithms available:

m Autoselect: several algorithms can be available for each diagram type. This option analyzes internal information
of each algorithm, and selects the one that best suits the current diagram type. If autoselect: Each of the layout
algorithms contains internal information about the types of diagrams it will work with and the numeric
characteristics for the final quality of the produced layout when applied to each applicable diagram type. Several
algorithms can be available for the same diagram type. The autoselect option uses such internal information
and picks the best algorithm for the current diagram type.

m Hierarchical: this type of algorithm is most suitable to analyze hierarchical structure (for example study
inheritance relationships). The Hierarchical algorithm originates from the Sugiyama algorithm. The algorithm
draws the UML diagram hierarchically according to the preferences that you select.

m Together: algorithm applicable to all types of diagrams. It includes the layout options used in version 6.1 of
Together ControlCenter and Together Edition for JBuilder.

m Tree: the algorithm draws a tree diagram in a tree layout. The algorithm draws the given graph in a tree layout
according to its maximum spanning tree.

m Orthogonal: simple structural algorithm is used when hierarchy is not important. The Orthogonal algorithm uses
heuristics to distribute diagram nodes among a lattice.

m Spring Embedder: Spring Embedder are force-directed layout algorithms that model the input graph as a
system of forces and try to find a minimum energy configuration of this system. All edges are drawn as straight
lines. This type of layout is especially suitable for projects with numerous diagram elements based on large
amount of source code. When you lay out a graph according to the Spring Embedder layout algorithm, the
program will simulate the graph as a physical model (masses and springs) and subject it to physical forces. The
unnecessarily-long edges will be the most tense, and will try to contract the most. When the nodes and edges
have been balanced, you will have a geometric representation of the graph.

Each algorithm has a set of specific options defined in the Together F (level) k Diagram F Layout category of
the Options dialog window.

81

82

Hyperlinking Overview

You can create hyperlinks from diagrams or diagram elements to other system artifacts and browse directly to them.

Why use hyperlinking?
Use hyperlinks for the following purposes:

m Link diagrams that are generalities or overviews to specifics and details.

m Create browse sequences leading through different but related views in a specific order; create hierarchical
browse sequences.

m Link descendant classes to ancestors; browse hierarchies.
m Link diagrams or elements to standards or reference documents or generated documentation.
m Facilitate collaboration among team members.

Create a hyperlink from an existing diagram or one of its elements to any other diagram or diagram element in the
project, or create a new diagram that will be hyperlinked to the current diagram.

You can also create hyperlinks from your diagrams to external documents such as files or URLs. For most users,
such hyperlinking will probably take the form of documents on a LAN or document server or URLs on the company
intranet. However, you can also easily link to online information such as newsgroups or discussion forums. If it is
available online, you can link to it.

Hyperlink types
You can create hyperlinks to:

m An existing diagram or diagram element anywhere in the project group
m A new diagram (it will be created on-the-fly)

m A document or file on a local or remote storage device

m A URL on your company intranet or the Internet

83

84

LiveSource Overview

LiveSource™ is the key feature of Together that keeps your model and source code in sync. That is why it applies
to implementation projects only.

When a Class diagram is created in an implementation project, it is immediately synchronized with the
implementation code. When you change a Class diagram, Together updates the corresponding source code.

Together allows you to synchronize different aspects of your project in several ways.

Use the Reload command to refresh the Together model from the source code.

About MDA
Together supports the OMG’s Model Driven Architecture (MDA) initiative.

MDA is an evolving conceptual architecture for a set of industry-wide technology specifications that will support a
model-driven approach to software development.

MDA is supported by UML, XMI, and other technologies.

Doc comment properties

Some properties that are defined for the model elements and members in the Object Inspector, are presented in
the source code as language-specific doc comments. In particular, these properties are: author, since, version,
stereotype, associates, and so on. When such comments are encountered in the source code, they are reverse
engineered to model properties.

Doc comments are presented as XML tags, preceeded by /// (for C# projects).

So doing, if the properties of an element are presented in the legacy format and one of these properties is changed
to the new format '<property> value</property>, all the other properties are also converted.

85

86

Transformation to Source Code Overview

Together enables you to generate source code based on a language-neutral design project.

About transformation to source code

You can generate source code from the class diagrams of your design project and add this source code to a project
in one of the supported languages. The target implementation project must already exist in the same project group.

Alternatively, you can import source code from an external design project into your current implementation project.

Name mapping

You can force Together to generate different names for your model elements in the source code. For example, you
can have ClassItem in your source code for the Class1 elementin your model.

This feature is especially useful, if your model names are not English. You can use names in Japanese and other
languages on your diagrams, but keep names in Latin alphabet in your code.

If you enable this feature, the file codegen map.=xml is created in the model support folder of the source design
project. You can edit it with any XML or text editor. This file contains a mapping table, where each entry (model
element) has two names: one for the source design project (attribute name), and another one for the destination
implementation project (attribute alias). There are several sections in this file: Class, Attribute, Operation and
Package for UML 1.5 projects, and Class and Package for UML 2.0 projects. Attributes name must be unique for all
entries in a section.

You can optionally create an XML file with the same name and structure in a folder of any package.

Then, if you transform your project to source code and the name mapping feature is enabled, Together searches
forthe codegen map . xm1 file for each model element. If the file is absent for a current package, Together searches
in a parent package, and so on.

Note: If you add a new element to your model later and then transform the project to source code, Together adds
a new entry for this item to the corresponding codegen map . xml file. The existing entries are not changed.

87

88

OCL Support Overview

About OCL

The Object Constraint Language (OCL) is a textual language, especially designed for use in the context of
diagrammatic languages such as the UML. OCL was added to UML, as it turned out a visual diagram-based language
is limited in its expressiveness.

OCL 2.0is the newest version of the OMG’s constraint language to accompany their suit of Object Oriented modelling
languages.

The use of OCL as an accompanying constraint and query language for modelling with these languages is essential.

Note: Portions of this product include the Object Constraint Language Library, courtesy of Kent University, United
Kingdom. See http://www.cs.kent.ac.uk/projects/ocl/

OCL constraint and expression

OCL constraint

The Tool Palette on some types of diagrams (for example, UML 2.0 Class Diagram) contains buttons that enable
you to create OCL constraints as design elements on diagrams, and link these constraints with the desired context.

You can show or hide constraint elements for the better presentation of your diagrams.

OCL support for constraints provides error highlighting. The text of the constraint is validated when the constraint is
linked to its context. The valid constraints are displayed in the regular font; invalid constraints, or OCL expressions
with syntax errors, are displayed in a red font.

Constrained elements are marked with the decorators. The decorators are small icons attached to the context
elements of constraints. If a constraint is valid the decorator is green; otherwise the decorator is red. If the constraints
are concealed, you can still monitor the validity of constraints by means of the decorators.

Any OCL constraint contains an OCL expression.

OCL expression

For OCL expressions without object constraints (expressions as properties of other nodes), no validation is
performed since no valid OCL context can be set for these elements.

Supported diagram types
OCL is supported for the following diagram types:
Diagram types with OCL support

Diagram type Version of UML How support is provided
Class (class, namespace, package) UML 1.5, 2.0 Creating object constraints is supported.
Interaction (Sequence and Communication) UML 2.0 State invariant constraints for lifelines and constraints for the

operands of the combined fragments as OCL expressions.

State Machine UML 2.0 Guard conditions of transitions as OCL expressions.

89

Use Case UML 2.0 Pre- and post-condition constraints for the behavior associated
with the use cases as OCL expressions. For example, an
interaction chosen as a behavior.

90

Patterns Overview

Patterns provide software developers with powerful reuse facilities. Rather than trying to tackle each design problem
from the very outset, you can use the predefined patterns supplied with Together. The hierarchy of patterns is defined
in the Pattern Registry. You can manage and logically arrange your patterns using the Pattern Organizer.

Patterns are intended to:

m Create frequently used elements
m Modify existing elements
m Implement useful source code constructions or project groups in your model

Pattern Registry

The Pattern Registry defines the virtual hierarchy of patterns. You can create virtual folders and group the patterns
logically to meet your specific requirements. All operations with the contents of the Pattern Registry are performed
in the Pattern Organizer and synchronized with the Pattern Registry.

Pattern Organizer

The Pattern Organizer enables you to logically organize patterns (using virtual trees, folders and shortcuts), and
view and edit the pattern properties. You will be working with shortcuts, not with the actual patterns. Because of this,
shortcuts to the same pattern may be included in several folders.

Code templates

Together supports code templates as a way to provide backward compatibility with the legacy Together
ControlCenter projects. You can copy the folders with your legacy source code templates to the Patterns subfolder
of your Together installation directory, and use these templates to create elements in implementation projects.

Code templates are text files with the language-specific extensions that use macros to be substituted with real values
when the templates are applied. Therefore, code templates can be regarded as forms ready for "filling in" for a
specific instance. A code template consists of a template file containing source code, and a properties file that
contains macro descriptions and their default values.

Code templates are stored inthe Patterns\templates directory of your Together installation using the following
structure:

/<language>/<category>/<template name>

where <category> is CLASS, LINK or MEMBER. Each <template_name> folder contains the following files:

m %Name%.<ext>
m <template_name>,properties (optional)

Design patterns

A design pattern is an XML file that contains a sequence of statements or actions, required to create entities and
links and set their properties. Each statement creates either one model element or one link between the model
elements.

In addition to creating new elements, you can use design patterns to add members to a container element. The
pattern that you are applying to the specified container element should have its Use Existent property set as True.

91

You can then apply the pattern to the container element you want to modify. For example, if you want to add several
methods stored in a class as pattern to an existing class, then you have to apply that pattern to the diagram where
that class exists.

The design patterns are stored as XML files in the Patterns directory of your Together installation.

Patterns as First Class Citizens

A First Class Citizen (FCC) pattern is a specific type of design pattern that contains information about the pattern
name and the role of each participant. When applied to a diagram, FCC patterns create their own entities and display
on the diagram with links to the created entities. Such patterns enable further modification by means of adding new
participants.

Patterns as First Class Citizens are represented by GoF patterns.

A pattern is displayed on a diagram as an oval with the pattern name and an expandable list of participants. Each
participant is connected with the pattern oval by a link, labeled with the participant's role.

FCC patterns generate source code, but the oval FCC pattern elements do not. The entities created by patterns are
stored in the diagram files.

Stub implementation pattern

When you create an inheritance link between a class and another abstract class or interface, the methods and
members are not automatically added to the child class. This problem is solved using the Stub implementation
pattern. You can also create an implementation link and stub implementation in one step by using the Implementation
link and stub pattern.

If the destination of a link is an interface, the pattern makes the class-source implement that interface, and creates
in a class the stubs for all of the methods found in the interface and all of its parent interfaces.

If the destination link is an abstract class, this pattern makes the class-source extend the class-destination, and
makes stubs for all of the constructors found in the class-destination. These constructor stubs call the corresponding
constructors in the class-destination.

You can find the Implementation link and stub pattern in the Pattern Wizard by clicking the Link by Pattern or Node
by Pattern buttons in the Tool Palette, or by using the Create by Pattern context menu for a class.

The Implementation link and stub pattern creates the following members of interfaces and abstract classes:

m Methods
Functions
Subroutines

|

|

m Properties
m Indexers
|

Events

92

Refactoring Overview

Together provides extensive support for refactoring your implementation projects.

Refactoring means rewriting existing source code with the intent of improving its design rather than changing its
external behavior. The focus of refactoring is on the structure of the source code, changing the design to make the
code easier to understand, maintain, and modify.

The refactoring features provided by Together affect both source code and model. As a result, your project is
consisting after refactoring, even if it includes UML diagrams.

The primary resource book on refactoring is Refactoring - Improving the Design of Existing Code by Martin Fowler
(Addison - Wesley, 1999).

93

94

Quality Assurance Facilities Overview

Together provides audits and metrics as Quality Assurance features to unobtrusively help you enforce company
standards and conventions, capture real metrics, and improve what you do. Although audits and metrics are similar
in that they both analyze your code, they serve different purposes.

Audits and metrics are run as separate processes. Because the results of these two processes are different in nature,
Together provides different features for interpreting and organizing the results. Note that some of the features and
procedures described in this section apply to both audits and metrics while some are specific to one or the other.

Audits

When you run audits, you select specific rules to which your source code should conform. The results display only
the violations of those rules so that you can examine each problem and decide whether to correct the source code.
Together provides a wide variety of audits to choose from, ranging from design issues to naming conventions, along
with descriptions of what each audit looks for and how to fix violations. You can create, save, and reuse sets of audits
to run. Together ships with a predefined saved audit set (current.adt) and you can create your own custom sets
of audits to use.

Warning: This feature is available for implementation projects only.

Metrics

Metrics evaluate object model complexity and quantify your code. It is up to you to examine the results and decide
whether they are acceptable. Metrics results can highlight parts of code that need to be redesigned, or they can be
used for creating reports and for comparing the overall impact of changes in a project.

Together supports a wide range of metrics. See the descriptions of available metrics in the Metrics dialog window.
You can define, save, and reuse sets of metrics.

Along with the full set of metrics, Together provides tips for using metrics and interpreting results.

Warning: This feature is available for implementation projects only.

Bar chart

Metrics results can also be viewed graphically. Two graphic views allow you to summarize metrics results: bar charts
and Kiviat charts. Both charts are invoked from the context menu of the table. Use the Kiviat chart for rows and the
bar chart for columns.

The bar chart displays the results of a selected metric for all packages, classes, and/or operations.
The bar color reflects conformance to the limiting values of the metric in reference:

m Green represents values that fall within the permissible range.

m Red represents values that exceed the upper limit.

m Blue represents values that are lower than the minimal permissible value.
m A thin vertical red line represents the upper limit and a thin vertical blue line represents the lower limit.

Kiviat chart

Use the Kiviat chart for rows and the bar chart for columns.

95

The Kiviat chart demonstrates the analysis results of the currently selected class or package for all the metrics that
have predefined limiting values. The metrics results are arranged along the axes that originate from the center of
the graph.

Each axis has a logarithmic scale with the logarithmic base being the axis metric upper limit so that all upper limit
values are equidistant from the center. In this way, limits and values are displayed using the following notation:
m Upper limits are represented by a red circle. Any points outside the red circle violate the upper limit.

m Lower limits are represented by blue shading, showing that any points inside the blue area violate the lower
limit. Note that blue shading does not show up in areas of the graph with lower limits of 1 or 0.

As the mouse cursor hovers over the chart, the Visual Studio status bar displays information about the metrics or
metrics values that correspond to the tick marks.
m The actual metrics show up in the form of a star with metric values drawn as points.
Green points represent acceptable values.
Blue points represent values below the lower limit.

|

|

m Red points represent values exceeding the upper limit.

m Scale marks are displayed as clockwise directional ticks perpendicular to the Kiviat ray.
|

Lower limit labels are displayed as counterclockwise directional blue ticks perpendicular to the Kiviat ray.

Sets of audits and metrics

Both Audits and Metrics dialog boxes display the set of all available audits and metrics. When you open a project,
a default subset is active. Active audits and metrics are indicated by checkmarks. If you open the desired dialog and
click Start, all of the active audits/metrics are processed.

You will not want to run every audit or metric in the default active set every time, but rather some specific subset.
Together enables you to create saved sets of active audits and metrics that can be loaded and processed as you
choose. To do that, use the Load Set and Save Set buttons on the toolbar of the Audits and Metrics dialog windows.
You can always restore the default active set using the Set Defaults button in the Audits dialog. Refer to the Audits
dialog for description of controls.

Use the default active audits set or any saved set as the basis for creating a new saved set. By default, audit sets
are saved in the QA folder under the Together installation.

96

Documentation Generation Facility Overview

This feature automatically generates documentation for your project. Use this feature to illustrate you programme
with the documentation in the HTML format. You can update this automatically generated documentation when your
project changes, or edit this documentation manually afterwards.

Documentation files

All the documentation that Together generates is written to a single directory that you specify in the output folder
of the Generate HTML dialog box. By default, the generated documentation opens in your external web browser.
The browser opens with a frameset to display the generated documentation. If you choose not to open the
documentation immediately, you can open it later using the index . html file found on the root of the documentation
directory specified in the Generate HTML dialog box.

HTML documentation frames

The HTML documentation contains three frames:

m Diagram frame, when Include diagrams option is turned on

m Project and Overview frame, when Include navigation tree option is turned on

m PackageList and PackageOverview frame, when Include navigation tree option is turned off
m Documentation frame

You can click the Project tab in the lower left frame and expand the nodes in the project tree view. Notice that clicking
a class name in the Project tab opens the documentation in the lower right pane (the Documentation frame). When
you select a diagram in the Project tab, it opens in the Diagram frame. Elements in the Diagram frame are
hyperlinked to the Documentation frame. If you select an element in the Diagram frame, its contents are displayed
in the Documentation frame.

The Documentation frame displays the documentation of your source code and diagrams, and includes everything
you would expect when generating HTML documentation. The top of the Documentation frame contains a
navigation bar for browsing your project documentation.

The Project tab contains a tree representation of the project. Expand the nodes to reveal individual diagrams and
elements. Clicking a class or interface opens the related documentation in the Documentation frame.

97

98

Import and Export Overview

You can share model information with other systems by importing and exporting model information, or by sharing

project files:

Import and export features
Feature

Exporting diagrams to images

Importing IBM Rational Rose (MDL) models

Importing from XMl
Exporting to XMI

Importing from other versions of Together

Description

You can save diagrams in several formats, including:
Bitmap image (BMP)

Enhanced windows metafile (EMF)

Graphics interchange (GIF)

JPEG file interchange (JPG)

W3C portable network graphics (PNG)

Tag image file (TIFF)

Windows metafile (WMF)

Itis possible to convert models designed in IBM Rational Rose 2003 to the
format of Together. The following file formats are supported: .md1,
ptl, .cat,and .sub.

For import, you create a new design UML 1.5 project based on the IBM
Rational Rose project.

XMI (XML Metadata Interchange) enables the exchange of metadata
information. Using XMI, you can exchange models across languages and
applications. For example, if you have a modeling project created with a
tool other than Together, you can import it to Together as an XMl file for
extension or as the basis of a new project. Likewise, you can export
Together projects for use in other applications. The result in each case is
a single, portable .xml file.

Together supports UML 1.3 Unisys XMI interchange for 8 types of UML
diagrams.

This feature is available for design projects that comply with the UML 1.5
specification.

See Interoperability Overview

Export a Quality Assurance metric chart to image Create a chart and then export it to image.

99

100

Interoperability Overview

This version of Together supports compatibility with other versions. This compatibility is based on the common
diagram format, which enables you to reuse models created in the different editions of Together:

Borland Together ControlCenter (TCC)

Borland Together Architect (TAR)

Borland Together for Microsoft Visual Studio .NET (TVS)

Borland Together for Eclipse (TEC)

Borland Together for JBuilder (TJB)

Borland Together Designer 2005 and Borland Together Developer 2005, for PrimeTime (TPT)

101

102

Compiling, Building, and Running Applications

As you develop your application, you can compile, build, and run the application in the IDE. While all three operations
can produce either an executable (.exe) or an assembly (.dll), they differ slightly in behavior:

m Compiling a project compiles the files in the current project that have changed since the last build and any files
that depend on them. It does not execute the application.

m Building a project compiles all of the source code in the current project, regardless of whether any source code
has changed. Building is useful when you are unsure which files have changed, or if you have changed project
or compiler options.

m Running a project compiles any changed source code and, if the compile is successful, executes your
application, allowing you to use and test it in the IDE.

Use the commands on the Project and Run menus to compile, build, and run your project.

Compiler Options

You can set many of the compiler options for a project by choosing Project ¥ Options and selecting the
Compiler page. Most of the options on the Compiler page correspond to a compiler option and are described in
the online Help for that page.

For Visual Basic and C# projects, you can save compiler options as an option set. This lets you quickly change
options based on your development activity. For example, you can set compiler options specific to debugging your
project, and then change the option set when you are done debugging it.

If you need to specify additional compiler options, you can invoke the compiler from the command line. For a complete
list of the Delphi compiler options and information about running the Delphi compiler from the command line, see
Delphi Language Guide in the Content pane. For a complete list of the C# compiler options and information about
running the C# compiler from the command line, see the .NET Framework SDK online Help.

As you compile your project, you can display the current compiler options in the Messages window. Choose Tools
F Options F Environment Options and select the Show command line option. The next time you compile a
project, the command used to compile the project and the response file will displayed in the Messages window. The
response file lists the compiler options and the files to be compiled.

Compiler Status and Information

You can display compiler information in the IDE during and after compilation. You can request that a status dialog
be displayed each time you compile a project by choosing Tools F Option F Environment Options and checking
the Show Compiler Progress check box.

After you compile a project, you can display information about it by choosing Project F Information. The resulting
Information dialog box displays the number of lines of source code compiled, the byte size of your code and data,
the stack and file sizes, and the compile status of the project.

Compiler Errors

As you compile a project, compiler messages are displayed in the Messages window. For an explanation of a
message, select the message and press F1.

103

104

Refactoring Applications

Refactoring is a technique you can use to restructure and modify your code in such a way that the intended behavior
of your code stays the same. Developer Studio 2006 provides a number of refactoring features that allow you to
streamline, simplify, and improve both performance and readability of your application code.

In This Section
Refactoring Overview
Describes the concept of refactoring and introduces the refactoring operations included in Developer Studio
2006.

Symbol Rename Overview (Delphi, C#, C++)
Describes the rename feature.

Refactoring Code
Describes how to use the refactoring features in Developer Studio 2006.

Previewing and Applying Refactoring Operations
Describes how to preview and apply refactoring operations.

Sync Edit Mode (Delphi, C#, C++)
Describes Sync Edit Mode.

Extract Method Overview (Delphi)
Describes the Extract Method refactoring.

Find References Overview (Delphi, C#, C++)
Describes the Find References refactoring feature.

Declare Variable and Declare Field Overview (Delphi)
Describes the concepts of declaring variables and fields through refactoring.

Extract Resource String (Delphi)
Describes the refactoring feature Extract Resource String.

Finding References
Describes how to use the Find References features.

Undoing a Refactoring (Delphi, C#)
Describes the Undo refactoring operation.

Finding Units and Using Namespaces (Delphi, C#)
Describes the refactoring feature that allows you to locate namespaces or units.

105

106

Refactoring Overview

Refactoring is a technique you can use to restructure and modify your existing code in such a way that the intended
behavior of your code stays the same. Refactoring allows you to streamline, simplify, and improve both performance
and readability of your application code.

Each refactoring operation acts upon one specific type of identifier. By performing a number of successive
refactorings, you build up a large transformation of the code structure, and yet, because each refactoring is limited
to a single type of object or operation, the margin of error is small. You can always back out of a particular refactoring,
if you find that it gives you an unexpected result. Each refactoring operation has its own set of constraints. For
example, you cannot rename symbols that are imported by the compiler. These are described in each of the specific
refactoring topics.

Developer Studio 2006 includes a refactoring engine that evaluates and executes the refactoring operation. The
engine also displays a preview of what changes will occur in a refactoring pane that appears at the bottom of the
Code Editor. The potential refactoring operations are displayed as tree nodes, which can be expanded to show
additional items that might be affected by the refactoring, if they exist. Warnings and errors also appear in this pane.
You can access the refactoring tools from the Main menu and from context-sensitive drop down menus.

Developer Studio 2006 provides the following refactoring operations:

m Symbol Rename (Delphi, C#, C++)
Extract Method (Delphi)

Declare Variable and Field (Delphi)
Sync Edit Mode (Delphi, C#)

Find References (Delphi, C#, C++)
Extract Resourcestring (Delphi)
Find Unit (Delphi)

Use Namespace (C#)

Undo (Delphi, C#)

Change Parameters (Delphi)

107

108

Symbol Rename Overview (Delphi, C#, C++)

Renames identifiers and all references to the target identifier. You can rename an identifier if the original declaration
identifier is in your project or in a project your project depends on, in the Project Group. You can also rename an
identifier if it is an error identifier, for instance, an undeclared identifier or type.

The refactoring engine enforces a few renaming rules:

m You cannot rename an identifier to a keyword.
m You cannot rename an identifier to the same identifier name unless its case differs.

m You cannot rename an identifier from within a dependent project when the project where the original declaration
identifier resides is not open.

m You cannot rename symbols imported by the compiler.
m You cannot rename an overridden method when the base method is declared in a class that is not in your project.

m If an error results from a refactoring, the engine cannot apply the change. For example, you cannot rename an
identifier to a name that already exists in the same declaration scope. If you still want to rename your identifier,
you need to rename the identifier that already has the target name first, then refresh the refactoring. You can
also redo the refactoring and select a new name. The refactoring engine traverses parent scopes, searching
for an identifier with the same name. If the engine finds an identifier with the same name, it issues a warning.

Rename Method

Renaming a method, type, and other objects is functionally the same as renaming an identifier. If you select a
procedure name in the Code Editor, you can rename it. If the procedure is overloaded, the refactoring engine
renames only the overloaded procedure and only calls to the overloaded procedure. An example of this rule follows:

procedure Foo; overload;

procedure Foo (A:Integer); overload;
Foo () ;

Foo;

Foo (5) ;

If you rename the first procedure Foo in the preceding code block, the engine renames the first, third, and fourth items.

If you rename an overridden identifier, the engine renames all of the base declarations and descendent declarations,
which means the original virtual identifier and all overridden symbols that exist. An example of this rule follows:

TFoo = class
procedure Foo; virtual;
end;
TFoo2 = class (TFoo)
procedure Foo; override;
end;
TFoo3 = class (TFoo)
procedure Foo; override;
end;

TFoo4 = class (TFoo3)
procedure Foo; override;
end;

Performing a rename operation on Foo renames all instances of Foo shown in the preceding code sample.

109

110

Extract Method Overview (Delphi)

Use the Extract Method refactoring operation to change a code fragment into a method whose name describes the
purpose of the method. The Extract Method feature analyzes any highlighted code. If that code is not extractable to
a method, the refactoring engine warns you. If the method can be refactored, the refactoring engine creates a new
method outside of the current method. The refactoring engine then determines any parameters, generates local
variables, determines the return type, and prompts the user for a new name. The refactoring engine inserts a method
call to the new method in the location of the old method.

There are certain limitations to the extract method refactoring. They include:

m Cannot extract expressions, only statements.

m Cannot extract statements that include a call to inherited in Delphi.

m Cannot extract statements that are contained within a with statement.
m Cannot extract statements that call a local procedure or function.

If you select an expression and choose the Extract Method command, your selection will be expanded to include

the entire statement. If the expression in your statement is used as a result, the extracted code returns a function
result in place of the expression.

111

112

Extract Resource String (Delphi)

Extracting resource strings helps centralize string definitions which can then be more easily translated, if necessary.
You can extract string values to resource strings that are defined in the resourcestring section of your code file. If
there is no resourcestring section in your code, the refactoring engine creates one following either the

implementation keyword or the uses list.
You cannot create a resource string from the following elements:

'abcdefg'; cannot be extracted to a resource string.
string="'test'") ; the string

m Constants. For example, const A =

m Constants in Parameters. For example, in MyProc (A, B:Integer; C:
cannot be extracted to a resource string.

m Resource Strings. For example, resourcestring A = 'test'; is already a resource string.

113

114

Declare Variable and Declare Field Overview (Delphi)
You can use the Refactoring feature to create variables and fields. This feature allows you to create and declare
variables and fields while coding without planning ahead. This topic includes information about:

m Declare Variable

m Initial Type Suggestion

m Declare Field

Declare Variable

You can create a variable when you have an undeclared identifier that exists within a procedure block scope. This
feature gives you the capability to select an undeclared identifier and create a new variable declaration with a simple
menu selection or keyboard shortcut. When you invoke the Declare Variable dialog, the dialog contains a suggested
name for the variable, based on the selection itself. If you choose to name the variable something else, the operation
succeeds in creating the variable, however, the undeclared identifier symbol (Error Insight underlining) remains.

Variable names must conform to the language rules for an identifier. In Delphi, the variable name:

m Cannot be a keyword.
m Cannot contain a space.
m Cannot be the same as a reserved word, such as if or begin.

m Must begin with a Unicode alphabetic character or an underscore, but can contain Unicode alphanumeric
characters or underscores in the body of the variable name.

m In the Delphi language, the type name can also be the keyword string.

Note: The .NET SDK recommends against using leading underscores in identifiers, as this pattern is reserved for
system use.

Note: On the dialog that appears when you choose to declare a variable, you can set or decline to set an initial
value for the variable.

Initial Type Suggestion

The refactoring engine attempts to suggest a type for the variable that it is to create. The engine evaluates binary
operations of the selected statement and uses the type of the sum of the child operands as the type for the new
variable. For example, consider the following statement:

myVar := x + 1;

The refactoring engine automatically assumes the new variable myVar should be set to type Integer, provided x is
an Integer.

Often, the refactoring engine can infer the type by evaluating a statement. For instance, the statement 1f foo
Then. . . implies that foo is a Boolean. Inthe example If (foo = 5) Then. .. the expressionresultis a Boolean.
Nonetheless, the expression is a comparison of an ordinal (5) and an unknown type (foo). The binary operation
indicates that foo must be an ordinal.

Declare Field

You can declare a field when you have an undeclared identifier that exists within a class scope. Like the Declare
Variable feature, you can refactor a field you create in code and the refactoring engine will create the field declaration

115

for you in the correct location. To perform this operation successfully, the field must exist within the scope of its
parent class. This can be accomplished either by coding the field within the class itself, or by prefixing the field name
with the object name, which provides the context for the field.

The rules for declaring a field are the same as those for declaring a variable:

m Cannot be a keyword.
m Cannot contain a space.
m Cannot be the same as a reserved word, such as if or begin.

m Must begin with a Unicode alphabetic character or an underscore, but can contain Unicode alphanumeric
characters or underscores in the body of the field name.

m In the Delphi language, the type name can also be the keyword string.

Note: Leading underscores on identifiers are reserved in .NET for system use.

You can select a visibility for the field. When you select a visibility that is not private or strict private, the refactoring
engine performs the following operations:

m Searches to find all child classes.

m Searches each child class to find the field name.

m Displays a red error item if the field name conflicts with a field in a descendant class.

m You cannot apply the refactoring if it conflicts with an existing item name.

Sample Refactorings
The following examples show what will happen when declaring variables and fields using the refactoring feature.

Consider the following code:

TFoo = class
private

procedure Fool;
end;

implementation

procedure TFoo.Fool;
begin

FTestString := 'test'; // refactor TestString, assign field
end;

Assume you apply a Declare Field refactoring. This would be the result:

TFoo = class

private
FTestString: string;
procedure Fool;

end;

If you apply a Declare Variable refactoring instead, the result is:

116

procedure TFoo.Fool;

var // added by refactor
TestString: string; // added by refactor

begin
TestString := 'test'; // added by refactor
TestString := 'whatever';

end;

118

Find References Overview (Delphi, C#, C++)

Sometimes, you may not want to change code, but want to find references to a particular identifier. The refactoring
engine provides Find References, Find Local References, and Find Declaration Symbol commands.

Both Find References and Find Local References commands provide you with a hierarchical list in a separate
Find References window, showing you all occurrences of a selected reference. If you choose the Find
References command, you are presented with a treeview of all references to your selection in the entire project. If
you want to see local references only, meaning those in the active code file, you can select the Find Local
References command from the Search menu. If you want to find the original declaration within the active Delphi
code file, you can use the Find Declaration Symbol command. The Find Declaration Symbol command is only
valid in Delphi and does not apply to C#.

Sample Refactoring

The following sample illustrates how the Find References refactoring will proceed:

1 TFoo = class

2 loc a: Integer; // Find references on loc_a finds only
3 procedure Fool; // this line (Line 2) and the usage

4 end; // in TFoo.Fool (Line 15)

5 var

6 loc a: string; // Find references on loc_a here

// finds only this line (Line 6) and
// the usage in procedure Foo (Linell)
7 implementation

8 {SR *.nfm}

9 procedure Foo;

10 begin

11 loc a := 'test';
12 end;

13 procedure TFoo.Fool;
14 begin //

15 loc a:=1;

16 end;

119

120

Change Parameters Overview (Delphi)

Adding or removing a parameter from a function is a commonly performed and tedious programming task. Developer
Studio 2006 provides the Change Parameters refactoring to automate this task. You can use Change
Parameters to add, remove, and rearrange function parameters.

To use this refactoring, select a function name in the Code Editor and choose Refactor ¥ Change Params.

When you use the Change Parameters refactoring, the following function signature conflicts can occur:
m A descendant class contains an override for the function you are refactoring. When you refactor the function,
any functions that override the refactored function will also be refactored.

m A descendent class contains an overloaded version of the function that has the same signature as the refactored
version. When you refactor the function, the overload is changed to an override.

m A descendent class has an overridden method that matches the original signature. When you refactor the
function, the override is changed to an overload.

Note: If youremove a parameter, you need to manually remove any method code that uses the removed parameter.

121

122

Sync Edit Mode (Delphi, C#, C++)

Sync Edit mode allows you to change all occurrences of an identifier when you change one instance of that identifier.
When you enter Sync Edit mode, you can tab to each highlighted identifier in your current Code Editor window. If
you change an identifier that appears elsewhere in the file, all occurrences transform to whatever you type, character

by character.

123

124

Undoing a Refactoring (Delphi, C#)

The refactoring engine takes advantage of a versioning mechanism, known as local striping, to allow you to undo
renames in source code files. The IDE records the current timestamp of each file included in the current refactoring
changeset. The timestamp corresponds to a specific local revision of the file. When you select the undo command,
the IDE copies the local backup file that matches that timestamp back over the refactored file.

The important point to understand is that any changes that you make to the files after the refactoring will also be
rolled back when you perform an Undo. Before the Undo is applied, you will get a warning message confirming that
you want to apply the Undo. Applying the Undo reverts changes back to before the refactoring was originally applied
in all modified files. You will lose any changes made in those files since the refactoring was originally applied.

Undo performs local striping only for Rename because Rename is the only refactoring operation that affects multiple
files.

If you want to undo Extract Method, Declare Field, or Declare Variable refactorings, use Ctrl-z (regular Undo) in the
Code Editor, or the Undo button in the Refactoring window, which accomplishes the same thing.

125

126

Testing Applications

Unit testing is an integral part of building reliable applications. The following topics discuss unit testing features
included in Developer Studio 2006.

In This Section
Unit Testing Overview
Describes the integration of DUnit and NUnit in Developer Studio 2006.

Building Tests
Describes how to build tests with Unit Test Wizards.

127

128

Unit Testing Overview

Developer Studio 2006 integrates two open-source testing frameworks, DUnit and NUnit, that allow you to build and
run automated test cases for your Delphi and C# applications. These frameworks simplify the process of building
tests for classes and methods in your application. Using unit testing in combination with refactoring can improve
your application stability. Testing a standard set of tests every time a small change is made throughout the code
makes it more likely that you will catch any problems early in the development cycle.

The testing frameworks are both based on the JUnit test framework and share much of the same functionality.
This topic includes the following information:

m What Gets Installed.

m Test Projects.

m Test Cases.
m Test Fixtures.

What Gets Installed

Both products are installed during the complete Developer Studio 2006 installation. DUnit is installed by default,
however, you can choose not to install NUnit or you can choose to install NUnit to a non-default location.

DUnit

DUnit gets installed automatically by the Developer Studio 2006 installer. You can find many DUnit resources in the
\source\DUnit directory, under your primary installation directory. These resources include documentation and test
examples.

When using DUnit, at a minimum you usually include at least one test case and one or more test fixtures. Test cases
typically include one or more assertion statements to verify the functionality of the class being tested.

DUnit is licensed under the Mozilla Public License 1.0 (MPL).

NUnit

During the install process, you will be prompted to install NUnit. You can change the default location of the installation,
or you can accept the default, which installs NUnit into C:\Program Files\NUnit V2.x, where x is a point release
number.. The installation directory includes a number of resources including documentation and example tests.

NUnit is the name of the .NET testing framework and can be used with both Delphi for .NET and C# projects. There
are some subtle but important differences between the way NUnit and DUnit work. For example, NUnit does not link
in .dcu files, as DUnit does.

When using NUnit, at a minimum, you usually include at least one test case and one or more test fixtures. Test cases
typically include one or more assertion statements to verify the functionality of the class being tested.

Test Projects

A test project encapsulates one or more test cases and is represented by a node in the IDE Project Manager. You
can create a test project before creating test cases. Once you have a test project that is associated with a code
project, you can add test cases to the test project. Developer Studio 2006 provides a Test Project Wizard to help
you build a test project.

129

Test Cases

Every class that you want to test must have a corresponding test class. You define a test case as a class in order
to instantiate test objects, which makes the tests easier to work with. You implement each test as a method that
corresponds to one of the methods in your application. More than one test can be included in a test case. The ability
to group and combine tests into test cases and test cases into test projects is what sets a test case apart from simple
forms of testing, such as using print statements or evaluating debugger expressions. Each test case and test project
is reusable and rerunnable, and can be automated through the use of shell scripts or console commands.

Generally, you should create your tests in a separate project from the source file project. That way, you do not have
to go through the process of removing your tests from your production application. Developer Studio 2006 provides
a Test Case Wizard to help you build test cases. You can add test cases directly into the same project as your
source file, however, doing so increases the size of your project. You can also conditionally compile your test cases
out of production code by using IFDEF statements around the test case code.

Test Fixtures

The term test fixture refers to the combination of multiple test cases, which test logically related functionality. You
define test fixtures in your test case. Typically, you will instantiate your objects, initialize variables, set up database
connection, and perform maintenance tasks in the SetUp and TearDown sections. As long as your tests all act upon
the same objects, you can include a number of tests in any given test fixture.

130

DUnit Overview

DUnit is an open-source unit test framework based on the JUnit test framework. The DUnit framework allows you
to build and execute tests against Delphi Win32 applications. The Developer Studio 2006 integration of DUnit allows
you to test both Delphi Win32 and Delphi .NET applications.

Each testing framework provides its own set of methods for testing conditions. The methods represent common
assertions. You can also create your own custom assertions. You will be able to use the provided methods to test
a large number of conditions.

This topic includes information about:

m Building DUnit Tests.
m DUnit Functions.
m DUnit Test Runners.

Building DUnit Tests

Every DUnit test implements a class of type TTestCase. The following sample Delphi Win32 program defines two
functions that perform simple addition and subtraction:

unit CalcUnit;
interface
type
{ TCalc }
TCalc = class
public
function Add(x, y: Integer): Integer;
function Sub(x, y: Integer): Integer;
end;
implementation
{ TCalc }
function TCalc.Add(x, y: Integer): Integer;
begin
Result := x + y;
end;
function TCalc.Sub (X, Y: Integer): Integer;
begin
Result := x + y;

end;

end.

The following example shows the test case skeleton file that you need to modify to test the two functions, Add and
Sub, in the preceding code.

unit TestCalcUnit;

131

interface

uses
TestFramework, CalcUnit;
type
// Test methods for class TCalc
TestTCalc = class (TTestCase)
strict private
aTCalc: TCalc;
public
procedure SetUp; override;
procedure TearDown; override;
published
procedure TestAdd;
procedure TestSub;
end;

implementation

procedure TestTCalc.SetUp;
begin

aTCalc := TCalc.Create;
end;

procedure TestTCalc.TearDown;
begin

aTCalc := nil;
end;

procedure TestTCalc.TestAdd;
var
_result: System.Integer;
y: System.Integer;
x: System.Integer;

begin
_result := aTCalc.Add(x, y);
// TODO: Add testcode here
end;

procedure TestTCalc.TestSub;
var
_result: System.Integer;
y: System.Integer;
x: System.Integer;

begin
_result := aTCalc.Sub(x, y);
// TODO: Add testcode here
end;
initialization

// Register any test cases with the test runner
RegisterTest (TestTCalc.Suite) ;
end.

DUnit Functions

DUnit provides a number of functions that you can use in your tests.

132

Function Description

Check Checks to see if a condition was met.
CheckEquals Checks to see that two items are equal.
CheckNotEquals Checks to see if items are not equal.

CheckNotNull Checks to see that an item is not null.

CheckNull Checks to see that an item is null.

CheckSame Checks to see that two items have the same value.

EqualsErrorMessage Checks to see that an error message emitted by the application matches a specified error message.

Fail Checks that a routine fails.

FailEquals Checks to see that a failure equals a specified failure condition.

FailNotEquals Checks to see that a failure condition does not equal a specified failure condition.
FailNotSame Checks to see that two failure conditions are not the same.

NotEqualsErrorMessage Checks to see that two error messages are not the same.

NotSameErrorMessage Checks that one error message does not match a specified error message.

For more information on the syntax and usage of these and other DUnit functions, see the DUnit help files in \source
\dunit\doc.

DUnit Test Runners

A test runner allows you to run your tests without impacting your application. The DUnit test project you create is
your test runner. You can indicate the TextTestRunner to output test results to the console. The GUI test runner

displays your results interactively in a GUI window right in the IDE. The results are color-coded to highlight which
tests succeeded and which failed.

The GUI test runner is very useful when actively developing unit tests or the code you are testing. The GUI test
runner displays a green bar over a test that completes successfully, a red bar over a test that fails, and a yellow bar
over a test that is skipped.

The DUnit console/text test runner is useful when you need to run completed code and tests from automated build
scripts.

133

134

NUnit Overview

NUnit is an open-source unit test framework based on the JUnit test framework. The NUnit framework allows you
to build and execute tests against .NET Framework applications. The Developer Studio 2006 integration of NUnit
allows you to test both Delphi for NET and C# applications.

This topic includes information about:

m Building NUnit Tests.
m NUnit Asserts.
m NUnit Test Runners.

Building NUnit Tests

Each testing framework provides its own set of methods for testing conditions. The methods support common
assertions. You can also create your own custom assertions. You will be able to use the provided methods to test
a large number of conditions.

If you want to create tests for an application, you can first create a Test Project. The Test Project contains the Test
Case files, which contain one or more tests. A test case is analogous to a class. Each test is analogous to a method.
Typically, you might build one test for each method in your application. You can test each method in your application
classes to make sure that the method performs the task you expect.

When you create a Test Project and add a Test Case to it, Developer Studio 2006 builds two template files: a test
project template, which contains the attributes needed to compile the test project into an assembly, and a test case
template, which contains the basic structure of the test case. The Test Case Wizard generates a skeleton test method
for each method in the class being tested. This includes local variable declarations for each of the parameters to the
method being called. You will need to write the code required to setup the parameters for the call (in SetUp) and the
appropriate call to verify the return values or other state that is appropriate following the call (in TearDown).

The following example shows a small C# program that performs simple addition and subtraction:

[C#]

using System;

namespace CSharpCalcLib
{
/// <summary>
/// Simple Calculator Library
/// </summary>
public class Calc

{
public int Add(int x, int vy)

{

return x + y;

}

public int Sub (int x, int vy)
{

return x + y;

}

The following example shows the test case skeleton file that you need to modify to test the two methods, Add and
Sub, in the preceding code.

135

[Delphi]

namespace TestCalc

{
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using NUnit.Framework;
using CSharpCalcLib;

// Test methods for class Calc
[TestFixture]

public class TestCalc

{

private Calc aCalc;

[SetUp]
public void SetUp ()
{

aCalc = new Calc();

[TearDown]
public void TearDown ()
{

aCalc = null;

[Test]

public void TestAdd ()

{
int x;
int vy;
int returnValue;
// TODO: Setup call parameters
returnValue = aCalc.Add(x, VY);
// TODO: Validate return value

[Test]

public void TestSub ()

{
int x;
int vy;
int returnValue;
// TODO: Setup call parameters
returnValue = aCalc.Sub(x, Vy);
// TODO: Validate return value

Note: Each test method is automatically decorated with the [Test] attribute in C# projects. In addition, in C# the test
methods are defined as functions returning void.

The following example shows a small Delphi for .NET program that performs simple addition and subtraction:

136

unit CalcUnit;
// .Net Version

interface

type
{ TCalc }

TCalc = class
public
function Add(x, y: Integer): Integer;
function Sub(x, y: Integer): Integer;
end;

implementation
{ TCalc }

function TCalc.Add(x, y: Integer): Integer;
begin

Result := x + y;
end;

function TCalc.Sub (X, Y: Integer): Integer;
begin

Result := x + y;
end;

end.

The following example shows the test case skeleton file that you need to modify to test the two functions, Add and
Sub, in the preceding code.

unit TestCalcUnit;
interface

uses
NUnit.Framework, CalcUnit;

type

// Test methods for class TCalc
[TestFixture]
TestTCalc = class
strict private

FCalc: TCalc;
public

[SetUp]

procedure SetUp;

[TearDown]

procedure TearDown;
published

[Test]

procedure TestAdd;

[Test]

procedure TestSub;
end;

137

implementation

procedure TestTCalc.SetUp;
begin

FCalc := TCalc.Create;
end;

procedure TestTCalc.TearDown;
begin

FCalc := nil;
end;

procedure TestTCalc.TestAdd;
var

ReturnValue: Integer;

y: Integer;

x: Integer;

begin
// TODO: Setup call parameters
ReturnValue := FCalc.Add(x, vVy);
// TODO: Validate return value
end;

procedure TestTCalc.TestSub;
var

ReturnValue: Integer;

y: Integer;

x: Integer;

begin
// TODO: Setup call parameters
ReturnValue := FCalc.Sub(x, vy);
// TODO: Validate return value

end;

end.

Note: In Delphi for .NET the test methods are defined as procedures.
Each test method must:
m be public

m be a procedure for Delphi for .NET or a function with a void return type for C#
m take no arguments

Setup

Use the SetUp procedure to initialize variables or otherwise prepare your tests prior to running. For example, this is
where you would set up a database connection, if needed by the test.

TearDown

The TearDown method can be used to clean up variable assignments, clear memory, or perform other maintenance
tasks on your tests. For example, this is where you would close a database connection.

138

NUnit Asserts

NUnit provides a number of asserts that you can use in your tests.

Function Description Syntax

AreEqual Checks to see that two items are equal. Assert.AreEqual (expected, actual [, string
message])

IsNull Checks to see that an item is null. Assert.IsNull (object [, string message])

IsNotNull Checks to see that an item is not null. Assert.IsNotNull (object [, string messagel)

AreSame Checks to see that two items are the same. Assert.AreSame (expected, actual [, string

message])
IsTrue Checks to see that an item is True. Assert.IsTrue(bool condition [, string message])
IsFalse Checks to see that an item is False. Assert.IsFalse (bool condition [, string message])
Fail Fails the test. Assert.Fail ([string message])

You can use multiple asserts in any test method. This collection of asserts should test the common functionality of
a given method. If an assert fails, the entire test method fails and any other assertions in the method are ignored.
Once you fix the failing test and rerun your tests, the other assertions will be executed, unless one of them fails.

NUnit Test Runners

A test runner allows you to run your tests without impacting your application. If you use the console test runner, it
directs the output to the console. If you use the GUI test runner, you can see the results interactively in a GUI non-
modal window right in the IDE. The results are color-coded to highlight which tests succeeded and which failed.

NUnit includes two test runners:

m NUnitConsole.exe
m NUnitGUl.exe

The GUI test runner is very useful when actively developing unit tests or the code you are testing. The GUI test
runner displays a green bar over a test that completes successfully, a red bar over a test that fails, and a yellow bar
over a test that is skipped.

The NUnit console test runner is useful when you need to run completed code and tests from automated build scripts.
If you want to redirect the output to a file, use the redirection command parameter. The following example shows
how to redirect test results to a TestResult.txt text file:

nunit-console nunit.tests.dll /out:TestResult.txt

Note: You may need to set the path to your host application in the Project Options dialog. Set the Host Application
property to the location of the test runner you want to use.

139

140

Localizing Applications

Developer Studio 2006 includes a suite of Translation Tools to facilitate localization and development of .NET and
Win32 applications for different locales. The Translation Tools include the following:

m Satellite Assembly Wizard (for .NET)

m Resource DLL Wizard (for Win32)

m Translation Manager

m Translation Repository

The Translation Tools are available for Delphi VCL Forms applications (both .NET and Win32), and Win32 console
applications, packages, and DLLs. You can access the Translation Tools configuration options by choosing Tools
k Options F Translation Tools Options.

The Wizards

Before you can use the Translation Manager or Translation Repository, you must add languages to your project by
running either the Satellite Assembly Wizard for .NET projects or the Resource DLL Wizard for Win32 projects. The
Satellite Assembly Wizard creates a .NET satellite assembly for each language you add. The Resource DLL Wizard
creates a Win32 resource DLL for each language. For simplicity, this documentation uses the term resource
module to refer to either a satellite assembly or a resource DLL.

While running either wizard, you can include extra files, such as .resx or .rc files, that are not normally part of a
project. You can add new resource modules to a project at any time. If you have multiple projects open in the IDE,
you can process several at once.

You can also use the wizards to remove languages from a project and restoring languages to a project.

Translation Manager

After resource modules have been added to your project, you can use the Translation Manager to view and edit VCL
forms and resource strings. After modifying your translations, you can update all of your application’s resource
modules.

The External Translation Manager (ETM) is a version of the Translation Manager that you can set up and use without
the IDE. ETM has the same functionality as the Translation Manager, with some additional menus and toolbars.

Translation Repository

The Translation Repository provides a database for translations that can be shared across projects, by different
developers. While working in the Translation Manager, you can store translated strings in the Repository and retrieve
translated strings from the Repository.

By default, each time your assemblies are updated, they will be populated with translations for any matching strings
that exist in the Repository. You can also access the Repository directly, through its own interface, to find, edit, or
delete strings.

The Translation Repository stores data in XML format. By default, the file is named default.tmx and is located in the
Developer Studio 2006\bin directory.

Files Generated by the Translation Tools

The files generated by the Translation Tools include the following:

141

File extension Description

.nfn (.NET) The Translation Tools maintain a separate file for each form in your application and each target language.
dfn (Win32) These files contain the data (including translated strings) that you see in the Translation Manager.

.resx (NET) The Satellite Assembly Wizard uses the compiler-generated .drcil file to create an .resx file for each target

language. These .resx files contain special comments that are used by the Translation Tools.

.rc (Win32) The Resource DLL Wizard uses the compiler-generated .drc file to create an .resx file for each target language.
These .resx files contain special comments that are used by the Translation Tools.

mx The Translation Repository stores data in an .tmx file. You can maintain more than one repository by saving
multiple .tmx files.

.bdsproj The External Translation Manager lists the assemblies (languages) and resources to be translated into
a .bdsproj project file. When third-party translators add and remove languages from a project, they can save
these changes in an .bdsproj file, which they return to the developer.

Note: You should not edit any of these files manually.

142

Debugging Applications

Many of the same techniques are used for debugging applications in different environments. Developer Studio 2006
provides an integrated debugging environment that enables you to debug Win32 application and .NET applications.
In addition, you can use the debugger to debug an application running on a remote machine that does not have
Developer Studio 2006 installed.

In This Section
Overview of Debugging
Provides general debugging information and describes the debugging tools available in Developer Studio
2006.

Overview of Remote Debugging
Provides an overview of debugging an application on a remote machine that does not have the IDE installed.

143

144

Overview of Debugging

Developer Studio 2006 includes both the Borland .NET Debugger and Borland Win32 Debugger. The IDE
automatically uses the appropriate debugger based on the active project type. Cross-platform debugging within a
project group is supported and, where possible, the debuggers share a common user interface.

The integrated debuggers let you find and fix both runtime errors and logic errors in your Developer Studio 2006
application. Using the debuggers, you can step through code, set breakpoints and watches, and inspect and modify
program values. As you debug your application, the debug windows are available to help you manage the debug
session and provide information about the state of your application.

Stepping Through Code

Stepping through code lets you run your program one line of code at a time. After each step, you can examine the
state of the program, view the program output, modify program data values, and continue executing the next line of
code. The next line of code does not execute until you tell the debugger to continue.

The Run menu provides the Trace Into and Step Over commands. Both commands tell the debugger to execute
the next line of code. However, if the line contains a function call, Trace Into executes the function and stops at the
first line of code inside the function. Step Over executes the function, then stops at the first line after the function.

Evaluate/Modify

The Evaluate/Modify functionality allows you to evaluate an expression. You can also modify a value for a variable
and insert that value into the variable. The Evaluate/Modify functionality is customized for the language you are
using. For a C++ project, the Evaluate/Modify dialog accepts only C++ expressions. For a C# project, the Evaluate/
Modify dialog accepts only C# expressions. For a Delphi project, the Evaluate/Modify dialog accepts only Delphi
expressions.

Breakpoints

Breakpoints pause program execution at a certain point in the program or when a particular condition occurs. You

can then use the debugger to view the state of your program, or step over or trace into your code one line or machine
instruction at a time. The debugger supports three types of breakpoints. Source breakpoints pause execution at a

specified location in your source code. Address breakpoints pause execution at a specified memory address. Data
breakpoints allow you to pause execution when memory at a particular address changes.

Note: Data breakpoints are available only for the Win32 debugger.

Watches

Watches lets you track the values of program variables or expressions as you step over or trace into your code. As
you step through your program, the value of the watch expression changes if your program updates any of the
variables contained in the watch expression.

Debug Windows

The following debug windows are available to help you debug your program. By default, most of the windows are
displayed automatically when you start a debugging session. You can also view the windows individually by using
the View k¥ Debug Windows sub-menu.

145

Each window provides one or more right-click context menus. The F1 Help for each window provides detailed
information about the window and the context menus.

Debug Window Description

Breakpoint List Displays all of the breakpoints currently set in the Code Editor or CPU window.
Call Stack Displays the current sequence of function calls.
Watch List Displays the current value of watch expressions based on the scope of the execution point.

Local Variables Displays the current function’s local variables, enabling you to monitor how your program updates the values
of variables as the program runs.

Modules Displays processes under control of the debugger and the modules currently loaded by each process. It
also provides a hierarchical view of the namespaces, classes, and methods used in the application.

Threads Status Displays the status of all processes and threads of execution that are executing in each application being
debugged. This is helpful when debugging multi-threaded applications.

Event Log Displays messages that pertain to process control, breakpoints, output, threads, and module.

CPU Displays the low-level state of your program, including the assembly instructions for each line of source
code and the contents of certain registers.

FPU Displays the contents of the Floating-point Unit and SSE registers in the CPU.

Remote Debugging

Remote debugging lets you debug an application running on a remote computer. Your computer must be connected
to the remote computer through TCP/IP and the remote debugger must be installed on the remote machine. After
you create and copy the required application files to the remote computer, you can connect to that computer and
begin debugging.

146

Overview of Remote Debugging

Remote debugging enables you to debug one or more applications on a remote machine when the IDE is running
only on your local machine. This allows debugging on a machine where it is impractical to install the entire IDE and
rebuild a project. Remote debugging is useful for applications that run differently on your local machine than on an
end user's machine.

The Remote Debugger Executable

The remote debugger executable is named rmtdbg100.exe. The executable and its supporting files must be present
on the remote machine. The easiest way to install the executable is directly from the Developer Studio 2006
installation disk. However, if the installation disk is not available, you can copy the required files from a machine that
has the full Developer Studio 2006 IDE installed.

Local and Remote Files
Three types of files are involved in remote debugging:

m Source files
m Executable files
m Symbol files

Local Machine Remote Machine

I I I I
I I
I {With IDE) : : With Remote Debugger 1
. : | (Without IDE) :
: Source Files ! I :
1 Compile Locally I : I
I i
I : : I
| o :
I I
I | + Symbol Files I i |+ Symbol Files :
i | * Executable Files + Executable Files I
I I
I I

Source files are compiled using the IDE on the local machine. The executable files and symbol files produced after
compilation must be copied to the remote machine.

Source Files

When you debug a project on a remote machine, the source files for the project must be open on the local machine.
The source files display in the editor window to show a program's current execution point. You do not use source
files on the remote machine.

Executable Files

Executable files are the .dll files and .exe files that are mapped into the application's address space. You generate
these files on the local machine, then copy them to the remote machine.

147

Symbol Files

Symbol files are generated on the local machine at compile time. These are used by the debugger to get information
such as the mapping of machine instructions to source line numbers or the names and types of variables declared
in the source files. The extension for the symbol files depends on the language, as shown in the following table:

Language Debug symbol file extension
Delphi for Win32 .rsm

Delphi for NET .rsm and .pdb

C++ tds

C# .pdb

You must set up specific options to generate symbol files on the local machine, then copy the files to the remote
machine.

Local and Remote Machines

To use remote debugging, you must be able to log on to the remote machine and you must have write access to at
least one directory.

Note: The remote debugger does not provide a mechanism for interacting with an application on the remote
machine. If you need to interact with the application, you must establish a remote desktop connection.

148

Deploying Applications

After you have written, tested, and debugged your application, you can make it available to others by deploying it.
Depending on the size and complexity of the application, you can package it as one or more assemblies, as
compressed cabinet (.cab) files, or in an installer program format (such as .msi). After the application is packaged,
you can distribute it by using XCOPY, FTP, as a download, or with an installer program.

This sections includes the following general topics:

m Deploying .NET Applications

m Deploying Win32 Applications

m Using Installation Programs

m Redistributing Developer Studio 2006 Files
m Redistributing Third Party Software

For additional information about deploying specific types of applications, refer to the list of links at the end of this topic.

Deploying .NET Applications
Assuming that the target computer already has the .NET Framework installed on it, deploying a simple application

that consists of a single executable is as easy as copying the .exe file to the target computer. You don't need to
register the application and deleting the application files effectively uninstalls it.

Applications That Include Shared Assemblies

If your application includes an assembly that will be shared by other applications, you will need to uniquely identify
the assembly with a strong name and then install it in the Global Assembly Cache (GAC). The strong name consists
of the assembly's text name, version number, optional culture information, and the public key and digital signature
to ensure uniqueness. The .NET Framework SDK provides command line utilities for creating a public/private key
(sn.exe), assigning a strong name (al.exe), and installing an assembly in the GAC (gacutil.exe). For more information
about these utilities, see the Framework SDK online Help.

Deploying VCL.NET Applications

When building applications that use the VCL .NET framework, the way you build the application determines what
files you need to distribute with it. If you build the application by compiling VCL for .NET units directly into the program
executable file, the application will have external dependencies only on the .NET Framework.

However, if you build the application by compiling the application to have external references to VCL for .NET
assemblies, the application will have external dependencies on the .NET Framework, the Borland.Delphi.dll, and
whatever Developer Studio 2006 packages you have added to the project references, for example, Borland.VcIRtl.
dll or Borland.Vcl.dll.

Deploying ASP.NET Applications

Developer Studio 2006 includes the ASP.NET Deployment Manager to assist you in deploying ASP.NET
applications. You can use it to deploy to a remote computer by using a share or an FTP connection, or to your local
computer. When you add a Deployment Manager to your project, an XML file (.bdsdeploy) is added to the project
directory and a Deploy tab is added to the IDE. You provide destination and connection information on the
Deploy tab and optionally modify the suggested list of files to copy, then the Deployment Manager copies the files
to the deployment destination.

Redistributing the .NET Framework

If you plan to deploy your application to a computer that does not have the .NET Framework installed on it, you will
need to redistribute and install the .NET Framework with your application. Microsoft provides a redistributable

149

installer called dotnetfx.exe, which contains the common language runtime and .NET Framework components
required to run .NET applications. For more information about dotnetfx.exe, see the .NET Framework SDK online
Help.

Before Deploying a C# Application

Typically, while developing a C# application, you compile it with debugging information to facilitate testing. When
you create a new project, it uses the default Debug option set, which creates the executable files and the program
database file (.pdb) for debugging in the projecf\bin\Debug directory.

When you are ready to deploy the C# application, you can compile it using the default or a user-defined Release
option set to create an optimized version of the application in the projecf\bin\Release directory. The optimized
application is smaller, faster, and more efficient. To change the Debug/Release option sets, choose Project k
Options.

Deploying Win32 Applications

For information on deploying Win32 applications, refer to the Deploying Win32 Applications link at the end of this
topic.

Using Installation Programs

For complex applications that consist of multiple files, you can use an installation program. Installation programs
perform various tasks, such as copying executable and supporting files to the target computer and making Windows
registry entries.

Setup toolkits, such as InstallShield Express, automate the process of creating installation programs, often without
the need to write any code. InstallShield Express is based on Windows Installer (MSI) technology and can be installed
from the Developer Studio 2006 installation CD. After installing it, refer to the online InstallShield online Help for
information about using the product.

Redistributing Developer Studio 2006 Files

Many of the files associated with Developer Studio 2006 applications are subject to redistribution limitations or cannot
be redistributed at all. Refer to the following documents for the legal stipulations regarding the redistribution of these
files.

File Description

deploy.htm Contains deployment considerations for each edition of Developer Studio 2006.

license.txt Addresses legal rights and obligations concerning Developer Studio 2006.

readme.htm Contains last minute information about Developer Studio 2006, possibly including information that could affect
the redistribution rights for Developer Studio 2006 files.

These files are located, by default, at C:\Program Files\Borland\BDS\4.0.

Redistributing Third Party Software

The redistribution rights for third party software, such as components, utilities, and helper applications, are governed
by the vendor that supplies the software. Before you redistribute any third party software with your Developer Studio
2006 application, consult the third party vendor or software documentation for information regarding redistribution.

150

Procedures

151

Getting Started Procedures

152

Adding and Removing Files

You can add and remove a variety of file types to your projects.

To add a file to a project

1 Choose Project ¥ Add to Project.
The Add to Project dialog box appears.

2 Select a file to add and click Open.
The file appears below the Project.exe node of the Project Manager.

To remove a file from a project

1 Choose Project ¥ Remove From Project.
A Remove From Project dialog box appears.

2 Select the file or files you want to remove and click OK.

153

154

Adding Components to a Form

To add components to a form

1 On the Tool Palette, select a visual or nonvisual component.
2 Double-click the component to place it on the form or drag the component onto the form.

If you add a nonvisual component to the form, the component tray appears at the bottom of the Designer surface.
3 Repeat steps 1 and 2 to add additional components.

4 Use the dotted grid on the form to align your components.

155

156

Adding References

You can integrate your legacy COM servers and ActiveX controls into managed applications by adding references
to unmanaged DLLs to your project, and then browse the types just as you would with managed assemblies.

To add references
1 From the main menu, choose Project k Add Reference.
The Add Reference dialog box appears.

2 Select either a legacy COM type library or ActiveX control to integrate into your managed application.
3 Click Add Reference.
The reference is added to the text box.

4 Click OK.

Tip: You can also right-click the References folder in the Project Manager, and choose Add
Reference.

157

158

Adding Templates to the Object Repository

You can add your own objects to the Object Repository as templates to reuse or share with other developers.
Reusing objects lets you build families of applications with common user interfaces and functionality to reduce
development time and improve quality.

To add a template to the Object Repository

1 Save your project.

2 Choose Project Fk Add to Repository.

3 Enter the project name, description, and author information in the dialog box.
4 Click Browse to select an icon to represent the project you saved.

5 Click OK.

159

160

Configuring Together

Together is flexibly configurable. Use the Options dialog window to tune modeling features to best fit your
requirements.

The Options dialog window provides a number of diagram customization settings. You can configure the appearance
and layout of the diagrams, specify font properties, member format, and level of detail.

To configure Together settings:

On the main menu, choose Tools k Options.
In the Options dialog window, expand the Together category.
Select the desired option level.

A WO DN -

For the Project and Diagram option levels, choose the project or diagram where the configuration changes should
apply. To do that, click the chooser buttons in the corresponding fields and select the desired project or diagram
from the model.

a

Click the desired subcategory.
6 Edit configuration options as required.
7 Click OK to apply changes and close the dialog window.

You can make configuration options final at a certain parent level and disable any changes on the lower levels:

To disable configuration changes:

1 On the main menu, choose Tools Fk Options.

2 Click the Together category to expand it.

3 Select the required sub-category (default, project group or project).
4 Check the Disable sublevels option.

161

162

Copying References to a Local Path

During runtime, assemblies must be in the output path of the project or in the GAC for deployment. If your project
contains areference to an object that is not in one of the two locations, the reference must be copied to the appropriate

output path.

To a copy reference to a local path

1 In the Project Manager, right-click an assembly DLL in the References folder.
2 Set the Copy Local option to copy the file to the output directory.

Note: The IDE maintains the Copy Local setting until you change it.

163

164

Creating a Component Template

You can save selected, preconfigured components on the current form as a reusable component template accessible
from the Tool Palette.

To create a component template

1 Place and arrange components on a form.
2 In the Object Inspector, set the component properties and events as desired.

3 Select the components that you want to save as a component template. To select several components, drag the
mouse over them.

Tip: To select all of the components on the form, choose Edit k Select All.

Gray handles appear at the corners of each selected component.
4 Choose Component ¥ Create Component Template.

The Create Component Template dialog box appears.
5 Specify a name, a Tool Palette category, and an icon for the template.
6 Click OK.

Your new template appears immediately on the Tool Palette, in the category that you specified.

To use a component template

1 Display the form to which you want to add the components from the component template.
2 On the Tool Palette, double-click the component template icon.

The components in the component template are added to the form, along with their preconfigured properties and
events. You can reposition the components independently, reset their properties, and create or modify event
handlers for them, just as if you had placed each component in a separate operation.

To delete a component template

1 On the Tool Palette, right-click the component template to display a context menu.
2 Choose the Delete [template name] Button command.
The component template is deleted immediately from the Tool Palette.

165

166

Creating a Project

To add a new project

1 Choose Project k¥ Add New Project.
The New Items dialog box appears.

2 Select a project and click OK.
The project is added to the Project Manager.

To add an existing project

1 Choose Project ¥ Add Existing Project.
The Open Project dialog box appears.

2 Select an existing project to add and click Open.

167

168

Customizing the Form

To customize the form

1 Choose Tools k Options.

2 From the Options dialog box, click Windows Forms Designer.

3 Enable or disable the snap to grid and show grid features by selecting and deselecting the check boxes.
4 Choose one of the bracing styles.

5 Click OK.

Tip: The changes will affect only forms created after these options are changed. To change the settings for existing
forms, set the GridSize, DrawGrid, and SnapToGrid properties of the form.

169

170

Customizing the Tool Palette

To arrange individual components

1 Click the component.
2 Drag the component anywhere within the Tool Palette.

To arrange an entire category of components

1 Click a category name .
2 Drag the category anywhere within the Tool Palette.
3 Release your mouse button to place the category in the desired location.

To add additional categories

1 Right-click the Tool Palette.
2 Choose the Add New Category command.
The Create a new Category dialog box appears.
3 Enter a name for the category in the New Category Name text box.
4 Click OK.
The new category appears at the bottom of the Tool Palette.

171

172

Customizing Toolbars

To arrange your toolbars

1 Click the grab bar on the left side of any toolbar.
2 Drag the toolbar to another location or onto your desktop.

To delete icons from the toolbar

1 Choose View F Toolbars F Customize.

2 From the toolbar, not the Customize dialog box, drag the tool from the toolbar until its icon displays an X and
then release the mouse button.

3 When completed, click Close.

To add icons to the toolbar

1 Choose View F Toolbars k Customize.

2 Click the Commands tab.

3 In the Categories list, select a category to view its tool icons.

4 From the Commands list, drag the selected icon onto the toolbar of your choice.
5 When completed, click Close.

173

174

Docking Tool Windows

The Auto-Hide feature lets you undock and hide tool windows, such as the Object Inspector, Tool Palette, and
Project Manager, but still have access to them.

To use Auto-Hide to hide your tools

1 Click the push pin in the upper right corner of a tool window.
The tool window is replaced by one or more tabs at the outer edge of the IDE window.

2 To display the tool window, position the cursor over the tab.

The tool window slides into view.
3 To slide the tool window out of view, move the cursor away from the tool window.
4 To redock the tool window, click the push pin until it points down.

To dock the tools with one another

1 Click the tool window title bar and drag the window into another tool window.
2 Select a location to drop the tool window and release the mouse button.

To undock the tools from one another

1 Click the tool window title bar and drag the window away from the other tool window.
2 Select a location to drop the tool window and release the mouse button.

175

176

Exploring .NET Assembly Metadata

You can open and explore the namespaces and types contained with a .NET assembly. The assembly metadata is
displayed in a Windows Explorer-style presentation, with a left pane containing a tree of the namespaces and types
within the assembly. The right pane displays specific information on the selected item in the tree. The Call Graph
tab shows you a list of the methods called by the selected method, as well as a list of the methods that call the
selected method.

To inspect a .NET assembly

1 Choose File ¥ Open.
2 In the Open dialog box, from the Files of type drop-down list, select Assembly Metadata.
3 Navigate to the folder where the .NET assembly is located. Select the assembly and click Open.

You can open multiple .NET assemblies in the metadata explorer. Each open assembly is displayed in the tree in
the left-pane; the top-level node for a .NET assembly is denoted by the “* icon.

To close a particular .NET assembly, right-click on the top-level cr icon and select Close.

Using the Call Graph tab

1 Select a method node in the left pane.
2 Select the Call Graph tab.
The top half of the Call Graph tab shows you a list of methods that call the method you selected in the left pane.

The bottom half of the Call Graph tab shows you the methods called by the method you selected in the left pane.

Methods that exist in the same assembly as the currently selected method will appear as clickable links, and are
displayed in blue underlined text. Clicking on a link will cause that method to become selected in the tree in the
left-hand pane.

Tip: You can use the Browser buttons on the toolbar to navigate backwards and forwards to previously
selected items in the left pane.

177

178

Exploring Windows Type Libraries

You can open and inspect the interfaces and other types contained within a Windows type library. The type library
contents are displayed in a Windows Explorer-style presentation, with a left pane containing a tree of the interface
and type definitions within the type library. The right pane displays specific information on the selected item in the

tree. The Type Library Explorer can open a .TLB file, as well as OCX controls, and .DLL and .EXE files that have
type libraries as embedded resources.

To Inspect a Windows Type Library

1 Choose File ¥ Open.
2 In the Open dialog box, from the Files of type drop-down list, select Type Library.
This sets the file filter to display files with extensions of .TLB, .OLB, .OCX, .DLL, and .EXE.

3 Navigate to the folder where the type library is located.
4 Select the file and click Open.

You can open multiple type libraries in the explorer. Each open type library is displayed in the tree in the left pane;

the top-level node for a type library is denoted by the # con.

To close a particular type library, right-click on the top-level % jcon and select Close.

179

180

Finding Items on the Tool Palette

To find items on the Tool Palette

1 Click anywhere on the Tool Palette and start typing the name of the item that you want to find.

The Tool Palette is filtered to display only those item names that match what you are typing. The characters that
you have typed appear in bold in the item names.

2 Double-click an item to perform the default action for that item. For example, double-clicking a component adds
it to your form, whereas double-clicking a code snippet adds it to your code.

3 4

To remove the search filter from the Tool Palette, click the filter icon

181

182

Installing Custom Components

To install custom components

1 Choose Component Fk Installed .NET Components.
2 Click Select an Assembly.
3 Navigate to the folder containing the component assembly.
Alternatively, you can enter the name of the full path to the assembly in the File Name field.
4 Select the assembly.
5 Click Open.
The Installed .NET Components dialog box displays the components from the assembly.
6 Verify that the components you want to install on the Tool Palette are checked.
7 Click OK.

183

184

Installing More Computer Languages

If you have installed Developer Studio 2006 with only one or two computer languages (Delphi, C#, C++), and you
later decide to add a language that was not originally installed, follow the steps below.

To add more computer languages to your IDE:

1 Choose Start k Settings ¥ Control Panel ¥ Add or Remove Programs.
2 Select Developer Studio 2006
3 Click the Change button.

4 When the Installation Wizard comes up, it will ask you if you want to Modify, Repair, or Remove the program.
Select the Modify radio button.

5 Follow the rest of the steps in the Installation Wizard to choose the languages that you want to add.
6 Click the Finish button.

185

186

Renaming Files Using the Project Manager

Renaming a file changes the name of the file in both the Project Manager and on disk.

To rename a file

1 In the Project Manager, right-click the file that you want to rename.
The context menu is displayed.

2 Choose Rename.

3 Enter the new name for the file.

If the file has associated files that appear as child nodes in the Project Manager tree, those files are automatically
renamed.

187

188

Saving Desktop Layouts

You can switch between multiple desktop layouts. Choose a layout from the drop-down list box located on the
Desktop toolbar. Additionally, you can save your desktop or debug desktop layouts as default.

To save a desktop layout

1 Choose View k Desktops k Save Desktop.
2 Enter the name of the desktop in the Save Desktop dialog box.
3 Click OK.

To set a debug desktop layout

1 Choose View F Desktops k Set Debug Desktop.
2 Select a debug desktop layout.
3 Click OK.

189

190

Setting Component Properties

After you place your components on your Designer, set their properties using the Object Inspector. By setting a
component’s properties, you can change the way a component appears and behaves in your application. Because
properties appear during designtime, you have more control over a component’s properties and can easily modify
them without having to write additional code.

To set component properties

1 On the Object Inspector, click the Properties tab.
2 Set the component properties by entering values in the text box or through an editor.
Boolean properties like True and False can be toggled.

191

192

Setting Dynamic Properties

Many of the .NET Framework objects support dynamic properties. Dynamic properties provide a way to change
property values without recompiling an application. The dynamic properties and their values are stored in a
configuration file, along with the application's executable file. Changing a property value in the configuration file
causes the change to take effect the next time the applications runs. Dynamic properties are useful for changing an
application after it has been deployed.

To set a dynamic property in the Object Inspector

1 In a form on the Design tab, click the object for which you want to set dynamic properties.

2 In the Object Inspector, expand (DynamicProperties) and click (Advanced). If the object does not support
dynamic properties, (DynamicProperties) is not displayed.

Tip: If the Object Inspector is arranged by category, (DynamicProperties) is displayed under
Configurations.

3 Click the ellipsis (...) button next to (Advanced) to display the Dynamic Properties dialog box.
This dialog lists all of the properties that can be stored in the configuration file.

4 Select the properties you want to store in the configuration file.

5 Optionally, you can override the default key name listed in the Key mapping field.

6 Click OK.
The dynamic properties are marked with an icon in the Object Inspector.

Developer Studio 2006 creates an XML file named app.config (for a Windows application) or Web.config (for a
Web application) in the project directory. This file lists the dynamic properties and their current values.

7 Compile the application.

Developer Studio 2006 creates a file named <projectname>.exe.config (for a Windows application) or
<projectname>.dll.config (for a Web application) in the same directory as the application's executable or DLL file.

To change a dynamic property value in the configuration file

1 In the directory that contains the application's executable or DLL file, locate the configuration file.
2 Open the file in a text editor.

3 Locate the add key= statement for the property to be changed and edit the value.

4 Save your changes and close the file.

The next time the application runs, the changed property value will be in effect.

193

194

Setting Project Options

You can manage application and compiler options for your project. Making changes to your project only affects the
current project. However, you can also save your selections as the default settings for new projects.

To change compiler options
1 Choose Project k¥ Options.
The Options dialog box appears.

2 Select Compiler and set your options to modify how you want your program to compile.
3 Click OK.

To change application options

1 Choose Project ¥ Options.

The Options dialog box appears.
2 Select Application and specify a title and extension for your application.
3 Click OK.

To change debugger options

1 Choose Project ¥ Options.
The Options dialog box appears.

2 Use the Debugger page to pass command-line parameters to your application, specify a host executable for
testing a DLL, or load an executable into the debugger.

3 Use the Environment Block page to indicate which environment variables are passed to your application while
you are debugging it.

4 Click OK.

195

196

Setting Properties and Events

Properties, methods, and events are attributes of a component.

To set object properties

1 On your form, click once on the object to select it.
2 In the Object Inspector, click the Properties tab.

3 Select the property that you want to change and either enter a value in the text box, select a value from the drop-
down list, or click the ellipsis (...) next to the text box to use the associated property editor, depending on which
update technique is available for the property.

To set an event handler

1 On your form, click once on the object to select it.
2 On the Object Inspector, click the Events tab.

3 If an event handler already exists, select it from the drop-down box. Otherwise, double-click the event to switch
to Code view.

4 Type the code you want to execute when the event occurs.

197

198

Setting The IDE To Mimic Delphi 7

Use this procedure to set the IDE to mimic Delphi 7 or C++Builder, where each pane is its own window.

To turn off the Embedded Designer layout

1 Choose Tools k Options ¢ Environment Options ¥ VCL Designer.
2 Uncheck Embedded Designer.

3 Click OK.

4 Restart Developer Studio 2006 for the change to take effect.

199

200

Setting Tool Preferences

You can customize the appearance and behavior of many tools and features, such as the Object Inspector, Code
Editor, and integrated debugger.

To set tool preferences

1 Choose Tools k Options.
2 Review the options in each tool category and customize the settings to suit your needs.
3 Click OK.

201

202

Using Design Guidelines with VCL Components

You can use VCL or VCL.NET (with Delphi or C++) to setup components that are "aware" of their relation to other
components on a form. You can set properties to specify the distance between controls, shortcuts, focus labels, tab
order, and maximum number of items (listboxes, menus).

To see and use the design guidelines:

1 Register an object type.

2 Indicate various points on or near a component's bounds that are "alignment" points. These "alignment" points
are vertical or horizontal lines that cut across a visual control's bounds.

3 Supply Ul guideline information so that each component will adhere to rules such as distance between controls,
shortcuts, focus labels, tab order, maximum number of items (listboxes, menus),

Your new Error Reconcile Form will display four columns in the upper portion of the window, and six radio buttons
in the bottom portion of the window. The following table describes each of the columns.

Component Default Value when 'Use Design Guidelines' is Set
Alignment The names of the columns of the table in which an error has occurred.
Margins Bottom = 3, Left = 3, Right = 3, Right =3, Top =3

Padding The last update that was saved to the Server. (This represents what the row contains on the server.)

203

204

Using Online Help

To get assistance while you work, do one of the following:

1 To see a description of what any screen element does in any opened dialog box, press F1 or click Help.
2 To see a relevant help topic for a pane, view, Tool Palette icon or another element, press F1.

3 To open the Table of Contents for online help, choose Help F Borland Help on the main menu to see the
Contents tab.

4 To search for specific topics and terms, use the Index tab.

5 If you have questions about Developer Studio 2006, visit Borland Technical Support at http://support.
borland.com.

To filter help information, do the following:

1 To filter out the unnecessary books and topics from the Table of Contents and Index, choose one of the following
filters in the Filtered by list box:

m Developer Studio 2006 for .NET
m Developer Studio 2006 for Win32
m and soon

2 If a topic provides information that can be relevant to one or another Developer Studio 2006 feature set, you can
show or hide the desired contents within a topic using the filter button.

205

206

Using To-Do Lists

A to-do list records and displays tasks that need to be completed for a project.

To create a to-do list and add an item to it

1 Choose View k To-Do List.

2 In the To-Do List dialog box, right-click and choose Add.

3 In the Add To-Do Item dialog box, enter a description of the task and adjust the other fields as necessary.
4 Click OK.

To add a to-do list item as a comment in code

1 In the Code Editor, position your cursor where you want to add the comment.
2 Right-click and choose Add To-Do List Item.

3 In the Add To-Do Item dialog box, select the item that you want to add.

4 Click OK.

The item is added as a comment to your code, beginning with the word TODO.

To mark a to-do list item as completed

1 Choose View F To-Do List.
2 In the To-Do List dialog box, check the check box next to the item to indicate completion.

The item remains in the list, but the text is crossed out. If the item was added as a comment to code, the comment
is updated to indicate DONE instead of TODO.

To filter the items in a to-do list

1 Choose View F To-Do List.

2 Right-click the To-Do List dialog box and choose Filter.

3 Choose either Categories, Owner, or ltem types, depending on which you want to filter.

4 In the Filter To-Do List dialog box, uncheck the items that you want to hide in the to-do list.
5 Click OK.

The to-do list is redisplayed, with the filtered items hidden. The status bar at the bottom of the To-Do List dialog
box indicates how many items are hidden due to filtering.

To delete an item from a to-do list

1 Choose View k To-Do List.
2 In the To-Do List dialog box, select the item to delete.
3 Right-click and choose Delete.

The item is removed from the to-do list. If the item was added as a comment to code, the comment is also
removed.

207

208

Writing Event Handlers

Your source code usually responds to events that might occur to a component at runtime, such as a user clicking a
button or choosing a menu command. The code that responds to an occurrence is called an event handler. The
event handler code can modify property values and call methods.

To write an event handler

1 On your form, click the component for which you want to write an event handler.
2 To create the default event for the component, double-click the component on the form.

To choose another event for the component, click the Events tab in the Object Inspector, locate the event, and
double-click its text box.

The Code Editor appears.

3 Type the code that will execute when the event occurs at runtime.

209

CaliberRM Procedures

210

Adding a Document Reference

Document references provide additional information for a requirement. You can add additional information as a text
reference for a requirement, or add a web reference for the requirement.

To add a document reference for a requirement

1 Select the requirement to add a reference to.
2 Click the References tab. The tab is displayed.
3 Click New Text or New Web, depending on what to create.

4 In the pane at the bottom of the tab, enter the information for the reference. To view a web reference, double-
click the web reference.

5 Click Save to save the changes or Cancel Changes to cancel the changes.
6 To remove a reference, select the reference and click Remove.

211

212

Adding a Table into a Requirement Description

To add a table to a requirement description

a Hh WO N =

Select the requirement whose description in which to add a table.

Place your cursor where to insert the table and click Insert Image. The Open dialog box displays.
Indicate how many rows and columns to add.

Indicate the width and height, in pixels or as a percentage of the window.

Indicate how to align the table, the border width, the size of the cell padding (the amount of space between the
contents of a table cell and the inside edges of a table cell; adding extra padding can prevent tables, especially
large ones, from looking dense and crowded), and the size of the space between cells.

Click OK to add the table, or Cancel to cancel the addition.

To delete the table, place your cursor at a corner of the table until you get a cross-arrow icon, then right-click and
select Cut.

213

214

Adding an Image to a Requirement Description

To add an image to a requirement description

1 Select the requirement in which to add an image.

2 Place your cursor where to insert the image and click Insert Image. The Open dialog box displays.
3 Enter the name of the file or navigate to locate the pictureto insert.

4 When you have found the file, click Open. The image is inserted.

5 Click Save to save the change, or Cancel Save to cancel the change.

215

216

Assigning an Owner to a Requirement

The default Owner is the user who created the requirement. You may assign the requirement to someone else, but
you may not be able to modify it again after it is saved if you do not have security privileges to do so.

To edit requirement status

1 Select the requirement with the owner to change.

2 Click the Details tab. The tab displays.

3 From the Owner drop-down box, select an owner.

4 Click Save to save the changes, or Cancel Changesto cancel the changes.

217

218

Assigning Responsible Users

Users that are accountable for the completion of a requirement are assigned responsibility for that requirement.
Typically, several individuals are assigned to each requirement. For example, the business analyst who created the
requirement is assigned, as well as a developer, tester and manager. When requirements are changed, the users
assigned to them are notified in order to keep development on track.

To assign responsible users to a requirement

1 Select the requirement.
2 Click the Responsibilities tab. The tab displays project groups and member selection boxes.

3 Click the plus (+) or minus (-) sign to the left of a group/member name to expand or collapse a list. A gray check
box next to a group indicates that at least one member of that group has been selected.

4 To select all members of a group, select the check box to the left of that group. To select only certain members
of a group, select the check box to the left of each member you want to assign.

5 Click Save to save the changes, or Cancel Changesto cancel the changes.
6 To unassign a user, select the check box next to the user's name.

219

220

Choosing a CaliberRM Baseline

To choose a CaliberRM baseline

1 Click the Baseline drop-down arrow.
2 Select the baseline from the list.

221

222

Choosing a CaliberRM Project

To choose a CaliberRM project

1 Click the Project drop-down arrow.
2 Select a project from the list.

223

224

Creating a CaliberRM Requirement

To create a CaliberRM requirement
1 Click one of the following buttons to determine the placement of the new requirement:

m Create Requirement: Creates a new requirement as a child of the currently selected requirement.

m Insert Above: Creates a new requirement at the same hierarchical level and before the currently selected
requirement.

m Insert Below: Creates a new requirement at the same hierarchical level and after the currently selected
requirement.
A new requirement is created in the tree.

2 On each tab, enter information about the requirement.

3 After you have entered all requirement information, click Save to save the requirement or Cancel Save to cancel
the creation.

225

226

Creating CaliberRM Traces

Changing an object, whether it is a requirement, a test step, or a section of source code, can potentially require
changes in other elements of the project. Requirement traceability is supported to allow you to see relationships
between requirements and other related development and testing information. Linking related objects together helps
to ensure that changes are implemented correctly at all levels.

To create a CaliberRM trace

Open the application to trace to or from a CaliberRM requirement.
Select View k CaliberRM Requirements.

Log on to CaliberRM.

Select the requirement to trace to or from.

Click the file that contains the code to trace.

Click the Code tab.

Go to the line to trace.

0 N OO G A WON -

Right-click and select Requirements k Trace To or Trace From.
The trace appears on the Traceability tab for the requirement.

227

228

Deleting a CaliberRM Requirement

To delete a CaliberRM Requirement

1 Select the requirement to delete.
2 Click Delete Requirement
The Confirmation dialog box displays.

3 Click Yes to delete the requirement, or No to cancel the deletion.

Warning: You cannot recover a requirement once it is deleted.

229

230

Displaying Requirement Numbers

Each requirement within a project has two different numbers associated with it. One is the hierarchical number, which
is determined by the requirement’s placement within the project tree or hierarchy. The hierarchical number changes
as requirements are added, moved or deleted. The other number associated with each requirement is its unique
serial (or ID) number. The serial number generally does not change, regardless of the requirement’s position within
a requirement type, but it will change if you move a requirement to a different type. It is not reused if the requirement
is deleted. Serial numbers are composed of the requirement type tag and a number. For example, Business
Requirement types may have the tag “BR.” Serial numbers for Business Requirement types may have the “BR” tag
as a prefix for the serial number.

To display requirement numbers

1 To display the requirement hierarchical numbers, click Hierarchical Numbers. The hierarchical numbers appear
in the requirement list.

2 Todisplay the requirement serial numbers, click Serial Numbers. The serial numbers appear in the requirement
list.

231

232

Editing a Requirement

To edit a requirement

1 Select the requirement to edit.
2 Click the tab that contains the information you want to edit.
3 Make the changes.

4 Click Save to save the changes, or Cancel Save to cancel the changes.

233

234

Editing a Requirement Description

You can edit the fonts and styles, add bullets and numbering, adjust the indentation, and choose a foreground color
for requirement descriptions.

To edit a requirement description

1 Select the requirement.
2 Select the text to change.
3 To change the font:

m Select a font style in the Font Name box.
m Select the font size in the Font Size box.
m Select Bold to make the text bold.

m Select Italics to make the text italic.

m Select Underline to underline the text.

4 Click Left Justify, Center Justify or Right Justify to change the justification.
5 Click Numbered list or Bullets to add numbers or bullets to the text.

6 Click Foreground Color, then select a color to select a foreground color.

7 Click OK.

8 Click Save to save your changes, or Cancel Changes to cancel the changes.

235

236

Editing a Requirement Name

To edit a requirement name

1 Select the requirement.

2 Click the Details tab. The tab is displayed.

3 Type the new name or make changes to the name procedure in the Requirement Name field.
4 Click Save to save the changes, or Cancel Changesto cancel the changes.

237

238

Editing Requirement Priority

To edit requirement status

1 Select the requirement with the status to change.

2 Click the Details tab. The tab displays.

3 From the Priority drop-down box, select the priority.

4 Click Save to save the changes, or Cancel Changes to cancel the changes.

239

240

Editing Requirement Status

To edit requirement status

1 Select the requirement.

2 Click the Details tab. The tab displays.

3 From the Status drop-down box, select the status you want.

4 Click Save to save the changes, or Cancel Changesto cancel the changes.

241

242

Find a Requirement by ID

To search for a requirement

1 Click Find Requirement by ID.
2 Enter the ID number in the Find What field.
3 Click Find to search for the requirement or Cancel to cancel the search.

243

244

Launching CaliberRM Estimate Professional

CaliberRM Estimate Professional allows you to generate project planning estimates.

To launch CaliberRM Estimate Professional

1 Click CaliberRM Estimate Professional.

2 Check the check box if you want to transfer effort data from CaliberRM.
3 Select the appropriate option button for building a hierarchy.

4 Select the appropriate option button for naming tasks.

5 Click OK.

6 Select a project.

7 Click OK.

CaliberRM Estimate Professional is launched and calculates initial effort and schedule estimates for the entire
project, based on pre-defined calibration parameters.

245

246

Logging On To CaliberRM

Before you can view or update requirements in CaliberRM, you must log on to the server that contains the data for
your project.

To log on to CaliberRM

1 Select View k CaliberRM Requirements.
2 Type the name of the server that hosts the project you are working on.
3 Type your user name and password for the server.
4 Click Logon.
To log off from CaliberRM, click Log Off.

To refresh CaliberRM server data, click Refresh.

Tip: You can also press F5 to refresh data.

247

248

Modifying CaliberRM Traceability Links

You can remove a CaliberRM traceability link, make a link suspect or go to a requirement.

To modify trace link information

1 Select a requirement.
2 Click the Traceability tab.
3 Right-click an object in the Traces From or Trace To window.
The following options appear in the pop-up menu.
B Remove Traceability: Deletes the trace.

m Make Suspect: Makes the link a suspect link. If a link is already suspect, this option is Clear Suspect.
m Go To: Navigates to the Traceability tab of the requirement you have selected.

4 Select an option from the list.

249

250

Moving a Requirement

To move a requirement

1 Select the requirement you want to move.
2 Drag the requirement to a new location, or click Move Requirement Up or Move Requirement Down.

251

252

Posting a New Requirement Discussion Message

Project teams can provide feedback on requirements and projects through the Discussion feature. This collaborative
feature enables team members to enter and reply to comments to help define, refine and prioritize requirements.

To post a new requirement discussion message

1 Select the requirement to post a message to.

2 Click the Discussion tab. The tab displays.

3 Click Post New. The New Message dialog box displays.

4 Type a subject for the message.

5 Type the message text, then click Send. The message is posted and is displayed on the Discussion tab.

253

254

Refreshing Discussion Messages

Project teams can provide feedback on requirements and projects through the Discussion feature. This collaborative
feature enables team members to enter and reply to comments to help define, refine and prioritize requirements.

When you select a requirement's Discussion tab, its discussion list contains all current messages. However, if a
message is added while you are in the Discussion tab, you may not automatically receive that message.

To refresh a requirement discussion message

1 Select the requirement with the discussion to refresh.
2 Click the Discussion tab.
3 Click Refresh.

255

256

Replying to a Discussion Message

Project teams can provide feedback on requirements and projects through the Discussion feature. This collaborative
feature enables team members to enter and reply to comments to help define, refine and prioritize requirements.

To reply to a requirement discussion message

1 Select the requirement to post a reply to.
2 Click the Discussion tab. The tab displays.
3 Select the message to reply to.
4 Click Reply . The New Reply Message dialog box displays.
5 Type the message text.
6 Click Send.
The message is posted and is displayed on the Discussion tab.

257

258

Requirement History

A history record for each requirement is maintained. The history record assigns revision numbers and keeps a list
of changes for each revision. All changes made to a requirement, including changes to specific attributes, the
requirement description, status, priority and more are recorded in the requirement’s history.

To view the history of a requirement

1 Select the requirement and click the History tab.
The history record is made up of two parts: the Revisions list and the Changes list. The upper window contains
the Revisions list. Each entry in the revisions list contains the following fields:

m Rev # When a change is made, the revision number is automatically updated. The change may cause a major
or minor revision number change. An administrator determines this when attributes types are defined.

m Date/time: The date and time the change was made.
m Changed by: The userid or name of the person who made the change.
m Comment: If a supporting comment is entered at the time the change is saved, it is displayed here.

2 Select a change in the list to see all details about a particular change. The bottom window displays a list of
changes for the revision selected in the upper window. Entries in the change list contain the following fields:

m Attribute: the changed field
m Changed from: the original data
m Changed to: the new data

259

260

Requirement Validation

When you create a requirement, it is often helpful for testers to know how to verify that the requirement is implemented
properly. Therefore, you can enter in a validation procedure for each requirement if you want. The validation
procedure is “free form,” meaning the procedure can be any form you want, from a paragraph to a numbered list of
steps.

To define the requirement validation procedure

1 Select the requirement.

2 Click the Validation tab. The tab displays.

3 Type the validation procedure in the Validation Procedure field.

4 Click Save to save the changes, or Cancel Changes to cancel the changes.

261

262

Specifying Requirement Comment Format

To specify the format for requirement comments

1 Create an application or open an existing one.

2 Login to CaliberRM.

3 Select a requirement.

4 Click Requirement Commenting Format.

5 Select a format.

6 Click Save to save the changes, or Cancel Changes to cancel the changes

263

264

Updating Requirement Comments

If you have added a requirement comment to source code and another user updates that requirement, you can
update the comment in your code.

To update a requirement comment

1 Open the project containing requirement comments to update.

2 Click View Fk CaliberRM Requirements.

3 Log on to CaliberRM.

4 Click on the file that contains the requirement comment.

5 Locate the requirement comment.

6 Place your cursor in the comment and right-click.

7 Select Requirements F Update Requirement Comments.
The requirement information is updated.

265

266

Viewing a CaliberRM Project Description

To view a CaliberRM project description

1 In the Project list, select the project from the list.
2 Select the project in the requirements tree list.
The description displays in the Project Info window.

267

268

Viewing CaliberRM Custom Tabs

Custom tabs provide you a way to customize attributes and requirement information specific to your organization.

To view CaliberRM custom tabs

1 Select the requirement with the custom tab to view.
2 Select the custom tab.
The tab displays user-defined attributes for the requirement.
3 If necessary, make edits to the attributes.
4 Click Save save the changes, or Cancel Save to cancel the changes.

269

270

Viewing CaliberRM Requirement Type Information

You can view the name, tag and description of a CaliberRM requirement type and assigned custom tabs.

To view CaliberRM requirement type information

1 Select the desired Requirement Type in the requirements tree list.
The information is displayed.

2 Select the Custom Tabs tab to view assigned custom tabs and attributes assigned.

271

Compiling and Building Procedures

272

Building Packages

You can create packages in Developer Studio 2006 and include them in your projects.

To create a new package
1 File ¥ New k Other to display the New Items object gallery.

2 Depending on your type of project, select either the Delphi Projects node, the Delphi for .NET Projects node,
or the C++Builder Projects node.

3 Double-click the Package icon.

This creates a new empty package and makes an entry for it in the Project Manager, along with two folders:
one marked Contains and one marked Requires.

Note: If you want to add required files to the package, you must add compiled packages (.dcpil, .dll)
to the Required folder. Add uncompiled code files (.pas, .cpp, .h) to the Contains folder.

Select the package name in the Project Manager.

Right-click to display the drop-down context menu and choose Add to display the Add dialog box.
Browse to locate the file or files you want to add.

Select one or more files, and click Open.

Click OK.

This adds the selected files to the package.

0 N o o »

9 Choose Project F Build <Package Name> to build the package.

To add a package to a project

Choose File ¥ New k Other ¥ VCL Forms Application.
Select the project name in the Project Manager.
Right-click to display the drop-down context menu.
Choose Add.

Browse to locate a package file.

Select the file and click Open.

Click OK.

This adds the package to the project.

N O g A WODN -

8 Choose Project k Build <Project Name> to build the project.

To add a component package to the Tool Palette
1 Choose Components F Installed .NET Components.
2 Click the .NET VCL Components tab.
3 Click Add.
4 Locate the package file you want to add to the Tool Palette.
5 Click Open.
This displays the available components from the package.
6 Click OK.

273

The components appear in the Tool Palette.

274

Finding References

The Find References refactoring feature helps you locate any connections between a file containing a symbol you
intend to rename and other files where that symbol also appears. A preview allows you to decide how you want the
refactoring to operate on specific targets or on the group of references as a whole.

To create a Find References list

1 Open a project.
2 Select an identifier in the Code Editor.
3 Choose Search F Find References.

Note: You can also invoke Find References with the keyboard shortcut Shift+Ctrl+Enter.

4 Double-click a node in the window to go to that location in the Code Editor.

Note: If you continue to perform Find References operations without clearing the results, the new
results are appended in chronological order to the existing results in the window.

To clear results from the Find References window

1 Select a single reference or a node.

Note: No matter which you select, you get the same results. The entire node will be cleared.
2 Click the Refactor Delete icon X at the top of the Find References window, to delete the selected item and

any item in that result set.

Note: Deleting items from the Find References window does not delete them from your actual code files or your
project.

To clear all results from the Find References window
1 Select any item in the window.

2 Click the Remove All References icon '@ at the top of the Find References window.
This action clears all results from the window.

Note: Deleting items from the Find References window does not delete them from your actual code files or your
project.

275

276

Linking Delphi Units Into an Application

When compiling an application that references a Delphi-produced assembly, you can link the Delphi units for that
assembly into your application. The compiler will link in the binary DCUIL files, which will eliminate the need to
distribute the assembly with your application.

To link in a Delphi unit

1 With your application open in the IDE, choose Project ¥ Add Reference.

2 In the Add Reference dialog box, select a Delphi-produced assembly DLL from the list of .NET assemblies and
click the Add Reference button.

If the assembly you want to link to is not in the list, use the Browse button to find and select it.

3 Click OK.
The assembly is listed in the References node of the Project Manager.

4 In the Project Manager, right-click the assembly and choose Link in Delphi Units.
The menu command is disabled if the reference is not a Delphi-produced assembly.

In the Object Inspector, the corresponding Link Units property is set to True.

5 Choose Project ¥ Compile to compile the application.

277

278

Previewing and Applying Refactoring Operations

You can preview most refactoring operations in the Refactoring pane. Some refactorings occur immediately and
allow no preview. You might want to use the preview feature when you first begin to perform refactoring operations.
The preview shows you how the refactoring engine evaluates and applies refactoring operations to various types of
symbols and other refactoring targets. Previewing is set as the default behavior. When you preview a refactoring
operation, the engine gathers refactoring information in a background thread and fills in the information as the
information is collected.

If you apply a refactoring operation right away, it is performed in a background thread also, but a modal dialog blocks
the Ul activity. If the refactoring engine encounters an error during the information gathering phase of the operation,
it will not apply the refactoring operation. The engine only applies the refactoring operation if it finds no errors during
the information gathering phase.

To preview a refactoring operation
Open a project.
Locate a symbol name in the Code Editor.

Select the symbol name.
Right-click to display the context menu.

a h WN =

Select Refactoring ¥ Rename 'symbol type' where symbol type is one of the valid types, such as method,
variable, or field.

This displays the Rename Symbol dialog.
6 Type a new name in the New name text box.
7 Select the View references before refactoring check box.
8 Click OK.

This displays a hierarchical list of the potentially refactored items, in chronological order as they were found. You
can jump to each item in the Code Editor.

Note: If you want to remove an item from the refactoring operation, select the item and click the Delete
Refactoring icon in the toolbar.

To jump to a refactoring target from the Message Pane

1 Expand any of the nodes that appear in the Message Pane.
2 Click on the target refactoring operation that you would like to view in the Code Editor.
3 Make any changes you would like in the Code Editor.

Warning: If you change an item in the Code Editor, the refactoring operation is prevented. You need
to reapply the refactoring after making changes to any files during the process, while the
Message Pane contains refactoring targets.

To apply refactorings

1 Open a project.
2 Locate a symbol name in the Code Editor.
3 Select the symbol name.

279

4 Right-click to display the context menu.

5 Select Refactoring ¥ Rename 'symbol type' where symbol type is one of the valid types, such as method,
variable, or field.

This displays the Rename Symbol dialog.
6 Type a new name in the New name text box.
7 Click OK.

As long as the View references before refactoring check box is not selected, the refactoring occurs
immediately.

Warning: If the refactoring engine encounters errors, the refactoring is not applied. The errors are
displayed in the Message Pane.

280

Renaming a Symbol

You can rename symbols if the original declaration symbol is in your project, or if a project depended upon by your
project contains the symbol and is in the same open project group. You can also rename error symbols.

To rename a symbol

1 Select the symbol name in the Code Editor.
2 Right-click to display the drop-down context menu.

3 Select Refactoring F Rename 'symbol type' ' symbol name' where symbol type is either method, variable,
or field, and symbol name is the actual name of the selected symbol.

This displays the Rename dialog box.
4 Enter the new name in the New Name text box.

5 If you want to preview the changes to your project files, select the View References Before Refactoring check
box.

Note: The menu commands are context-sensitive. If you select a method, the command will read

Rename Method method name where method name is the actual name of the method you
have selected. This context-sensitivity holds true for all other object types, as well.

281

282

Setting Project Options

You can manage application and compiler options for your project. Making changes to your project only affects the
current project. However, you can also save your selections as the default settings for new projects.

To change compiler options
1 Choose Project k¥ Options.
The Options dialog box appears.

2 Select Compiler and set your options to modify how you want your program to compile.
3 Click OK.

To change application options

1 Choose Project ¥ Options.

The Options dialog box appears.
2 Select Application and specify a title and extension for your application.
3 Click OK.

To change debugger options

1 Choose Project ¥ Options.
The Options dialog box appears.

2 Use the Debugger page to pass command-line parameters to your application, specify a host executable for
testing a DLL, or load an executable into the debugger.

3 Use the Environment Block page to indicate which environment variables are passed to your application while
you are debugging it.

4 Click OK.

283

284

Using Build Configurations

Note: Build configurations are available in only the C++ personality.

To create and use a new build configuration

1 Create a new build configuration.
2 Change build configuration settings.
3 Activate the build configuration.

To create a new build configuration
1 Choose Project k Build Configurations.
The Build Configurations dialog box appears.

2 Click New or select an existing build configuration and click Copy.
The New Build Configuration dialog box appears.

3 Enter the name and output directory and the new build configuration and click OK.

The new build configuration now appears in the Build Configurations drop-down list on the Project Options dialog
box.

To change build configuration settings

1 Choose Project ¥ Options.
The Project Options dialog box appears.

2 Choose the build configuration you want to work with from the Build Configurations drop-down list.
3 Select a page that provides options for a build tool, such as C++ Compiler.
4 Change settings on build tool options pages.

Note: If you are working with a build configuration other than All Configurations, some options might
appear in blue. Options appear in blue when they override the value set in All Configurations.

5 Click OK.

To activate a build configuration

1 Choose Project ¥ Build Configurations.
The Build Configurations dialog box appears.

2 Select the build configuration you want to activate and click Activate.
(active) is appended to the build configuration you selected.

3 Click OK.

The build configuration you activated will now be used when you build your project.

285

Debugging Procedures

286

Adding a Watch

Add a watch to track the values of program variables or expressions as you step over or trace into code. Each time
program execution pauses, the debugger evaluates all the items listed on the Active tab (or ActiveWatchGroup) in
the Watch List window and updates their displayed values.

You can organize watches into groups. When you add a watch group, a new tab is added to the Watch List window
and all watches associated with that group are shown on that tab. When a group tab is displayed, only the watches
in that group are evaluated during debugging. By grouping watches, you can also prevent out-of-scope expressions
from slowing down stepping.

To add a watch

1 Choose Run k Add Watch to display the Watch Properties dialog box.
2 In the Expression field, enter the expression you want to watch.

An expression consists of constants, variables, and values contained in data structures, combined with language
operators. Almost anything you can use as the right side of an assignment operator can be used as a debugging
expression, except for variables not accessible from the current execution point.

3 Optionally, enter a name in the Group Name field to create the watch in a new group, or select a group name
from the list of previously defined groups.

4 Specify other options as needed (click Help on the Watch Properties dialog for a description of the options).
For example, you can request the debugger to evaluate the watch, even if doing so causes function calls, by
selecting the Allow Function Calls option.

5 Click OK.

The watch is added to the Watch List window.

287

288

Attaching to a Running Process

You can attach to a process that is running on your computer or on a remote computer. This is useful for debugging
a program that was not created with Developer Studio 2006.

To attach to a running process

1 Choose Run F Attach to Process to display the Attach to Process dialog box.

2 Select either Borland .NET Debugger or Borland Win32 Debugger from the Debugger drop-down list,
depending on whether you want to attach to a .NET or Win32 process.

The list of Running Processes is refreshed to display the appropriate processes. For Win32 processes, you
can also check Show System Processes to include system processes in the list.

3 If the process is running on a remote computer, enter the name the computer in the Remote Machine field

Note: The remote debug server must be running on the remote computer.

4 Select a process from the list of Running Processes.
5 If you do not want the process to pause after you have attached to it, uncheck Pause After Attach.
6 Click Attach.

289

290

Debugging Remote Applications

Remote debugging lets you debug a Developer Studio 2006 application running on a remote computer. Once the
remote debug server is running on the remote computer, you can use Developer Studio 2006 to connect to that

computer and begin debugging.

Use the following set of procedures to debug an application running on a remote machine

1 Enable debugging on a machine without the full IDE installation. For details on this procedure, see

Installing a Debugger on a Remote Machine
2 Connect the local machine to the remote machine. For details on this procedure, see

Establishing a Connection for Remote Debugging

3 Generate program files to be copied to the remote machine. For details on this procedure, see

Preparing Files for Remote Debugging

291

292

Debugging VCL for .NET Source Code

To debug VCL for .NET source code, you must set certain project options that are not needed when debugging other
types of applications. The options are off by default and must be specifically set.

To enable options for debugging VCL for .NET source code

1 Open a VCL for .NET project.
2 Choose Project k Options k Compiler.
3 Check the Use debug DCUILs check box.
4 Click OK.
5 Select any Borland-produced assembly under References in the Project Manager.
6 Right-click the assembly and choose Link in Delphi Units.
This sets the Link Units property to True in the Object Inspector.

7 Repeat the previous two steps for each Borland assembly that you want to debug.
You are now able to debug VCL for .NET source code.

Tip: You can use this procedure to debug VCL for .NET assemblies produced by a third party if the debug DCUILs
for those assemblies are available.

293

294

Displaying Expanded Watch Information

When you debug an application, you can inspect the values of members within a watched object whose type is a
complex data object (such as a class, record, or array). These values display in the Watch List window when you
expand a watched object. Additionally, you can expand the elements within an object, displaying its sub-elements
and their values. You can expand all levels in the object. Members are grouped by ancestor.

To display expanded watch information in the Watch List window
1 Set a breakpoint on a valid source line within your project.
A breakpoint icon displays in the gutter next to the selected line.
2 Choose Run F Add Watch to add a watch for an object in your application.
The watch displays in the Watch List window.

3 Choose Run F Run to begin running the program. If needed, use the feature of the program that will cause it to
run to the breakpoint you set.

The IDE automatically switches to the Debug layout and the program stops at the breakpoint.

4 Click the + next to the name of the object that you added to the watch list.
The names and values of elements of the watched object display in the Watch List window.

295

296

Establishing a Connection for Remote Debugging

You must establish a TCP/IP connection between the local and remote machines in preparation for remote
debugging. This connection uses multiple ports that are chosen dynamically by Windows. The remote debug server
listens on one port, and a separate port is opened for each application that is being debugged. A firewall that only
allows connections to the listening port will prevent the remote debugger from working.

Note: Ifthe remote machine uses the firewall included with Windows XP service pack 2, you will receive a message

asking whether Borland remote debugging service should be allowed. You must indicate that this is allowed.

Warning: The connection between Developer Studio 2006 and the remote debug server is a simple TCP/IP socket,

with neither encryption nor authentication support. Therefore, the remote debug server should not be run
on a computer that can be accessed over the network by untrusted clients.

To connect the local machine and the remote machine

1

Ensure that the remote debugger is installed on the remote machine.

2 Ensure that the executable files and symbol files (.tds. .rsm and .pdb) have been copied to the remote machine.

3 On the remote machine, start rmtdbg100.exe with the -listen argument.

rmtdbgl00.exe -listen

This starts the remote debugger's listener and directs it to wait for a connection from your host machine's IDE.
On the local machine, choose Run k Attach to Process.

This displays the Attach to Process dialog.

Specify the host name or TCP/IP address for the remote machine, then click Refresh.

A list of processes running on the remote machine is displayed. This verifies the connectivity between the local
and remote machines.

On the local machine, choose Run F Load Process F Remote.
This displays the Remote page of the Load Process dialog.

In the Remote path field, specify the full path for the directory on the remote machine into which you copied the
executable files and symbol files. The name of the executable must be included.

For example, if you are debugging a program1.exe, and you copy this to a directory named RemoteDebugFiles
\Program1 on the remote machine, specify

C:\RemoteDebugFiles\Programl\programl.exe.

8 In the Remote host field, specify the host name or TCP/IP address for the remote machine.
9 Click the Load button.

This connects the IDE on the local machine to the debugger on the remote machine.

Once this connection is established, you can use the IDE on the local machine to debug the application as it runs
on the remote machine.

Note: You cannot interact directly with the remote application through the remote debugger. For interactive

debugging, you can establish a remote desktop connection.

297

298

Finding References

The Find References refactoring feature helps you locate any connections between a file containing a symbol you
intend to rename and other files where that symbol also appears. A preview allows you to decide how you want the
refactoring to operate on specific targets or on the group of references as a whole.

To create a Find References list

1 Open a project.
2 Select an identifier in the Code Editor.
3 Choose Search F Find References.

Note: You can also invoke Find References with the keyboard shortcut Shift+Ctrl+Enter.

4 Double-click a node in the window to go to that location in the Code Editor.

Note: If you continue to perform Find References operations without clearing the results, the new
results are appended in chronological order to the existing results in the window.

To clear results from the Find References window

1 Select a single reference or a node.

Note: No matter which you select, you get the same results. The entire node will be cleared.
2 Click the Refactor Delete icon X at the top of the Find References window, to delete the selected item and

any item in that result set.

Note: Deleting items from the Find References window does not delete them from your actual code files or your
project.

To clear all results from the Find References window
1 Select any item in the window.

2 Click the Remove All References icon '@ at the top of the Find References window.
This action clears all results from the window.

Note: Deleting items from the Find References window does not delete them from your actual code files or your
project.

299

300

Inspecting and Changing the Value of Data Elements

The Debug Inspector lets you inspect data elements by automatically formatting the type of data it is displaying.
The Debug Inspector is especially useful for examining compound data objects, such as arrays and linked lists.
Because you can inspect individual items displayed in the Debug Inspector, you can perform a walkthrough of
compound data objects by opening a Debug Inspector on a component of the compound object.

Note: The Debug Inspector is only available when the process is stopped in the debugger.

To inspect a data element directly from the Code Editor

1 In the Code Editor, place the insertion point on the data element that you want to inspect.
2 Right-click and choose Debug F Inspect to display the Debug Inspector.

To inspect a data element from the menu

1 Choose Run F Inspect to display the Inspect dialog box.
2 In the Inspect dialog box, type the expression you want to inspect.
3 Click OK.

The Debug Inspector is displayed.

Unlike watch expressions, the scope of a data element in the Debug Inspector is fixed at the time you evaluate it.
If you use the Inspect command from the Code Editor, the debugger uses the location of the insertion point to
determine the scope of the expression you are inspecting. This makes it possible to inspect data elements that are
not within the current scope of the execution point.

If you use Run F Inspect, the data element is evaluated within the scope of the execution point.

If the execution point is in the scope of the expression you are inspecting, the value appears in the Debug
Inspector. If the execution point is outside the scope of the expression, the value is undefined and the Debug
Inspector becomes blank.

To view members of the object you are inspecting

1 Click the Data tab to view strings, boolean values, and other values for such things as variable name, expression,
and owner.

Tip: If you want to see the hexadecimal representation of a string, sub-inspect the string value in the
Debug Inspector.

2 Click the Methods tab to view all of the methods that are members of the object's class.

Tip: If you want to see the return type for any method, select the method and look at the status bar
of the Debug Inspector, where the syntax line for the method, including the return type is
displayed.

3 Click the Properties tab to view all of the properties for the active object.
4 Click any property name to see its type displayed in the status bar of the Debug Inspector.

5 Click the question mark (?) icon to see the actual value for that property at this point of the execution of the
application.

301

To change the value of a data element

1 In the Debug Inspector, select a data element that has an ellipsis (...) next to it.
The ellipsis indicates that the data element can be modified.
2 Click the ellipsis (...), or right-click the element and choose Change.

3 Type a new value, then click OK.

To inspect local variable values

1 While running in Debug mode, double-click any variable that appears in the Local Variables window.

This displays the Debug Inspector for that local variable.

302

Installing a Debugger on a Remote Machine

To debug a project on a machine that does not have Developer Studio 2006 installed, you must install the remote
debugger executable files. You can install these files either directly from the installation disk or by copying them from
a machine that has Developer Studio 2006 installed.

To install the remote debugger

1 Use the installation disk if it is available.
2 Use files from the machine that has the IDE installed if the installation disk is not available.

To install the remote debugger from the installation disk

1 Insert the installation disk into the remote machine.
2 Choose Install Remote Debugger.
3 Follow the instructions provided by the wizard.

To install the remote debugger if the installation disk is not available

1 Create a directory on the remote machine for the installation files.
2 Locate the following files on the local machine:

rmtdbg100.exe
bccide.dll
bordbk100.dll
bordbk100N.dlI
comp32x.dll
dbkpro100.dll
DCC100.DLL
DCC100IL.DLL
Borland.dbkasp.dll

By default, all of these files are in C:\Program Files\Borland\BDS\4.0\Bin.

3 Copy the files from your local machine to the directory you created on the remote machine.

4 On the remote computer, register bordbk100.dIl and bordbk100n.dllby running the regsvr32.exe registration
utility. For example, on Windows XP, enter C:\Windows\System32\regsvr32.exe bordbk100.dll at the command
prompt, then enter C:\Windows\System32\regsvr32.exe bordbk100n.dlII.

5 If you are debugging an ASP.NET application, copy Borland.dbkasp.dll to the Instal\GlobalAssemblyCache
directory on the remote machine.

If you are debugging an ASP.NET application, register the Borland.dbkasp.dll in the GlobalAssemblyCache using
the Microsoft .NET gacutil.exe utility. For example, on Windows XP with Microsoft .NET Framework SDK, enter
C:\Program Files\Microsoft. NET\SDK\v1.1\Bin\gacutil Borland.dbkasp.dll.

303

304

Modifying Variable Expressions

After you have evaluated a variable or data structure item, you can modify its value. When you modify a value through
the debugger, the modification is effective for the program run only. Changes you make through the Evaluate/
Modify dialog box do not affect your source code or the compiled program. To make your change permanent, you
must modify your source code in the Code Editor, then recompile your program.

To change the value of an expression

1 Choose Run F Evaluate/Modify.

2 Specify the expression in the Expression edit box.
To modify a component property, specify the property name, for example, this.buttonl.Height or
Self.buttonl.Height.

3 Enter a value in the New Value edit box.

The expression must evaluate to a result that is assignment-compatible with the variable you want to assign it
to. Typically, if the assignment would cause a compile or runtime error, it is not a legal modification value.

4 Choose Modify.
The new value is displayed in the Result box.

You cannot undo a change to a variable after you choose Modify. To restore a value, however, you can enter
the previous value in the Expression box and modify the expression again.

Note: You can change individual variables or elements of arrays and data structures, but you cannot change the
contents of an entire array or data structure with a single expression.

Warning: Modifying values (especially pointer values and array indexes), can have undesirable effects because

you can overwrite other variables and data structures. Use caution whenever you modify program values
from the debugger.

305

306

Preparing a Project for Debugging

While most debugging options are set on by default, you can use the following procedures to review and change
those options. There are both general IDE options and project specific options. The project specific options vary
based on the active project type, for example, Delphi, Delphi .NET, or C#.

To activate the integrated debugger

1 Choose Tools k Options k Debugger Options.

2 Select the Integrated Debugging option.

3 Click OK.

4 Optionally review the settings on the other debugging pages.

To set debug options

1 Choose Project ¥ Options.
2 Review the debugging options on the various pages of the Project Options dialog box.

In particular, review the following pages: Compiler, Linker, Directories/Conditionals, Version Info, and
Debugger. Note that not all pages are available for all project types. For example, the Version Info page is only
displayed for Delphi Win32 projects.

3 Click OK.

307

308

Preparing Files for Remote Debugging

Executable files and symbol files must be copied to the remote machine after they are compiled. You must set the
correct options on your local machine in order to generate these files.

To prepare files for debugging on a remote machine

1 Open the project on your local machine.
2 Choose Project k Options Fk Linker and verify that the Include remote debug symbols option is checked.

This directs the compiler to generate a symbol file. The following extensions are used in symbol files (for Delphi
projects):

Language Debug symbol file extension

Delphi for Win32 .rsm

Delphi for .NET .rsm and .pdb
C++ tds
C# .pdb

3 Compile the project on your local machine.

4 Copy the executable files and symbol files for the project to the remote machine.

5 Choose Run F Load Process

6 Specify the directory into which you copied the symbol files in the Debug symbols search path field.
7 Click OK.

309

310

Previewing and Applying Refactoring Operations

You can preview most refactoring operations in the Refactoring pane. Some refactorings occur immediately and
allow no preview. You might want to use the preview feature when you first begin to perform refactoring operations.
The preview shows you how the refactoring engine evaluates and applies refactoring operations to various types of
symbols and other refactoring targets. Previewing is set as the default behavior. When you preview a refactoring
operation, the engine gathers refactoring information in a background thread and fills in the information as the
information is collected.

If you apply a refactoring operation right away, it is performed in a background thread also, but a modal dialog blocks
the Ul activity. If the refactoring engine encounters an error during the information gathering phase of the operation,
it will not apply the refactoring operation. The engine only applies the refactoring operation if it finds no errors during
the information gathering phase.

To preview a refactoring operation
Open a project.
Locate a symbol name in the Code Editor.

Select the symbol name.
Right-click to display the context menu.

a h WN =

Select Refactoring ¥ Rename 'symbol type' where symbol type is one of the valid types, such as method,
variable, or field.

This displays the Rename Symbol dialog.
6 Type a new name in the New name text box.
7 Select the View references before refactoring check box.
8 Click OK.

This displays a hierarchical list of the potentially refactored items, in chronological order as they were found. You
can jump to each item in the Code Editor.

Note: If you want to remove an item from the refactoring operation, select the item and click the Delete
Refactoring icon in the toolbar.

To jump to a refactoring target from the Message Pane

1 Expand any of the nodes that appear in the Message Pane.
2 Click on the target refactoring operation that you would like to view in the Code Editor.
3 Make any changes you would like in the Code Editor.

Warning: If you change an item in the Code Editor, the refactoring operation is prevented. You need
to reapply the refactoring after making changes to any files during the process, while the
Message Pane contains refactoring targets.

To apply refactorings

1 Open a project.
2 Locate a symbol name in the Code Editor.
3 Select the symbol name.

311

4 Right-click to display the context menu.

5 Select Refactoring ¥ Rename 'symbol type' where symbol type is one of the valid types, such as method,
variable, or field.

This displays the Rename Symbol dialog.
6 Type a new name in the New name text box.
7 Click OK.

As long as the View references before refactoring check box is not selected, the refactoring occurs
immediately.

Warning: If the refactoring engine encounters errors, the refactoring is not applied. The errors are
displayed in the Message Pane.

312

Refactoring Code

Refactoring refers to the capability to make structural changes to your code without changing the functionality of the
code. Code can often be made more compact, more readable, and more efficient through selective refactoring
operations. Developer Studio 2006 provides a set of refactoring operations that can help you re-architect your code
in the most effective and efficient manner possible.

Refactoring operations are available for Delphi, C#, and C++. However, the refactorings for C# and C++ are limited
in number. You can access the refactoring commands from the Refactoring menu or from a right-click context menu
while in the Code Editor.

The Undo capability is available for all refactoring operations. Some operations can be undone using the
standard Undo (CTRL+Z) menu command, while the rename refactorings provide a specific Undo feature.

To rename a symbol

1 In the Code Editor, click the identifier to be renamed.

The identifier can be a method, variable, field, class, record, struct, interface, type, or parameter name.
2 From either the main menu or the Code Editor context menu, choose Refactor k¥ Rename.
3 In the Rename dialog box, enter the new identifier in the New Name field.

4 |eave View references before refactoring checked. If this option is unchecked, the refactoring is applied
immediately, without a preview of the changes.

5 Click OK.
The Refactorings dialog box displays every occurrence of the identifier to be changed.

6 Review the proposed changes in the Refactorings dialog box and use the Refactor button at the top of the
dialog box to perform all of the refactorings listed. Use the Remove Refactoring button to remove the selected
refactoring from the dialog box.

To declare a variable

1 In the Code Editor, click anywhere in a variable name that has not yet been declared.

Note: Any undeclared variable will be highlighted with a red wavy underline by Error Insight.

2 From either the main menu or the Code Editor context menu, choose Refactor k Declare Variable.
If the variable has already been declared in the same scope, the command is not available.

3 Fill in the Declare New Variable dialog box as needed.
4 Click OK.

The variable declaration is added to the procedure, based on the values you entered in the Declare New
Variable dialog box.

To declare a field

1 In the Code Editor, click anywhere in a field name that has not yet been declared.

2 From either the main menu or the Code Editor context menu, choose Refactor ¥ Declare Field.
3 Fillin the Declare New Field dialog box as needed.

4 Click OK.

313

The new field declaration is added to the type section of your code, based on the values you entered in the Declare
New Field dialog box.

Note: If the new field conflicts with an existing field in the same scope, the Refactorings dialog box is displayed,
prompting you to correct the conflict before continuing.

To create a method from a code fragment

1 In the Code Editor, select the code fragment to be extracted to a method.

2 From either the main menu or the Code Editor context menu, choose Refactor ¥ Extract Method.
The Extract Method dialog box is displayed.

3 Enter a name for the method in the New method name field, or accept the suggested name.

4 Review the code in the Sample extracted code window.

5 Click OK.

Developer Studio 2006 moves the extracted code outside of the current method, determines the needed parameters,
generates local variables if necessary, determines the return type, and replaces the original code fragment with a
call to the new method.

To convert a string constant to a resource string (for the Delphi language only)

1 In the Code Editor, select the quoted string to be converted to a resource string, for example, in the following
code, insert the cursor into the constant Hello World:

procedure foo;
begin

writelLn ('Hello World');
end;

2 From either the main menu or the Code Editor context menu, choose Refactor k Extract Resource String.

Note: You can also use the shift+Ctrl+L keyboard shortcut.
The Extract Resource String dialog box is displayed.
3 Enter a name for the resource string or accept the suggested name (the str, followed by the string).
4 Click OK.

The resourcestring keyword and the resource string are added to the implementation section of your code, and
the original string is replaced with the new resource string name.

resourcestring
strHelloWorld = 'Hello World';

procedure foo;
begin

writeLn (StrHelloWorld) ;
end.

To find and add a namespace or unit to the uses clause

1 Inthe Code Editor, click anywhere in a the variable name whose unit you want to add to the uses clause (Delphi)
or the namespace you want to add to the using clause (C#).

314

2 From either the main menu or the Code Editor context menu, choose Refactor ¥ Find Unit.
The Find Unit dialog box displays a selection list of applicable Delphi units.

Note: If you are coding in C#, the dialog box is called the Use Namespace dialog box.

3 Select the unit or namespace that you want to add to the uses or using clause in the current scope.
You can select as many units or namespaces as you want.

4 If you are coding in Delphi, choose where to insert the reference, either in the interface section or in the
implementation section.

Note: This choice is not relevant for C# and so the selection is not available when refactoring C# code.

5 Click OK.

The uses or using clause is updated with the selected units or namespaces.

315

316

Renaming a Symbol

You can rename symbols if the original declaration symbol is in your project, or if a project depended upon by your
project contains the symbol and is in the same open project group. You can also rename error symbols.

To rename a symbol

1 Select the symbol name in the Code Editor.
2 Right-click to display the drop-down context menu.

3 Select Refactoring F Rename 'symbol type' ' symbol name' where symbol type is either method, variable,
or field, and symbol name is the actual name of the selected symbol.

This displays the Rename dialog box.
4 Enter the new name in the New Name text box.

5 If you want to preview the changes to your project files, select the View References Before Refactoring check
box.

Note: The menu commands are context-sensitive. If you select a method, the command will read

Rename Method method name where method name is the actual name of the method you
have selected. This context-sensitivity holds true for all other object types, as well.

317

318

Resolving Internal Errors

The error message, Internal Error: X1234 indicates that the compiler has encountered a condition, other than a
syntax error, that it cannot successfully process.

Tip: Internal error numbers indicate the file and line number in the compiler where the error occurred. This
information may help Technical Support services track down the problem. Be sure to record this information
and include it with your internal error description.

To resolve an internal error

1 If the error occurs immediately after you have modified code in the editor, go back to the place where you made
your changes and make a note of what was changed.

2 If you can undo or comment out the change and then recompile your application successfully, it is possible that
the programming construct that you introduced exposed a problem with the compiler. If so, follow the procedure
on reviewing code below.

If the problem still exists

1 Delete all of the .dcuil files associated with your project.
2 Close your project completely using File ¥ Close All.
3 Reopen your project.
This will clear the unit cache maintained in the IDE. Alternatively, you can close the IDE and restart.

4 Another option is to try and recompile your application using the Project k Build option so that the compiler will
regenerate all of your dcuils.

5 If the error is still present, exit the IDE and try to compile your application using the command line version of the
compiler (dccil.exe) from a command prompt. This will remove the unit caching of the IDE from the picture and
could help to resolve the problem.

Review your code at the last modification point

1 If the problem still exists, go back to the place where you last made modifications to your file and review the code.

Typically, most internal errors can be reproduced with only a few lines of code and frequently the code involves
syntax or constructs that are rather unusual or unexpected. If this is the case, try modifying the code to do the
same thing in a different way. For example, if you are typecasting a value, try declaring a variable of the cast
type and do an assignment first.

begin
if Integer(b) = 100 then...

end;
var

a: Integer;
begin

a :=
if a
end;

’

[en

100 then...

Here is an example of unexpected code that you can correct to resolve the error:

319

var
A : Integer;
begin
{ Below the second cast of A to Int64 is unnecessary; removing it can avoid the Internal
Error. }
if Int64 (Int64 (A))=0 then
end;

2 In this case, the second cast of A to an Int64 is unnecessary and removing it corrects the error. If the problem
seems to be awhile...do loop, try using a for. . .do loop instead. Although this does not actually solve the
problem, it may help you to continue work on your application.

If this resolves the problem, it does not mean that either while loops or for loops are broken but more likely it
means that the manner in which you wrote your code was unexpected.

3 Once you have identified the problem, we ask that you create the smallest possible test case that still reproduces
the error and submit it to Borland.

Other techniques for resolving internal errors

1 If error seems to be on code contained within a while. . .do loop try using a for. . .do loop instead or vice
versa.

2 If it uses a nested function or procedure (a procedure/function contained within a procedure/function) try
unnesting them.

3 If it occurs on a typecast look for alternatives to typecasting like using a local variable of the type you need.
4 If the problem occurs within a with statement try removing the with statement altogether.
5 Try turning off compiler optimizations under Project Options ¥ Compiler.

When all else fails

1 Typically, there are many different ways to write any single piece of code. You can try and resolve an internal
error by changing the code. While this may not be the best solution, it may help you to continue to work on your
application. If this resolves the problem, it does not mean that either while loops or for loops are broken but
perhaps that the manner in which you have written your code was unexpected and therefore resulted in an error.

2 Ifyou've tried your code on the latest release of the compiler and it is still reproducible, create the smallest possible
test case that will still reproduce the error and submit it to Borland. If it is not reproducible on the latest version,
it is likely that the problem has already been fixed.

Configuring the IDE to avoid internal errors

1 Create a single directory where all of your .dcpil files (precompiled package files) are placed.

For example, create a directory called C:\DCPIL and under Tools Environment Options select the Library tab
and set the DCPIL output directory to C:\DCPIL. This setting will help ensure that the .dcpil files the compiler
generates are always up-to-date. This is useful when you move a package from one directory to another. You
can create a .dcuil directory on a per-project basis using Project Options k Directories/Conditionals k

Unit output directory.

2 The key is to use the most up-to-date versions of your .dcuil and .dcpil files. Otherwise, you may encounter
internal errors that are easily avoidable.

320

Setting and Modifying Source Breakpoints

Breakpoints pause program execution at a certain location or when a particular condition occurs. You can set
breakpoints in the Code Editor before and during a debugging session. During a debugging session, any line of
code that is eligible for a breakpoint is marked with a blue dot . in the left gutter of the Code Editor.

To set a breakpoint
1 Click the left gutter of the Code Editor next to the line of code where you want to pause execution.

2 Choose Run ¥k Add Breakpoint k Source Breakpoint to display the Add Source Breakpoint dialog box.

Tip: To widen the Code Editor gutter, choose Tools k Options Fk Editor Options k Display and
increase the Gutter width option.

3 Fill in the appropriate values and click OK.
The following icons are used to represent breakpoints in the Code Editor gutter.

Icon Description
The breakpoint is valid and enabled. The debugger is inactive.

The breakpoint is valid and enabled. The debugger is active.

The breakpoint is invalid and enabled. The breakpoint is set at an invalid location, such as a comment, a blank line, or
invalid declaration.

The breakpoint is valid and disabled. The debugger is inactive.

The breakpoint is valid and disabled. The debugger is active.

&0 8 ae

&3 The breakpoint is invalid and disabled. The breakpoint is set at an invalid location.
Breakpoints are displayed in the Breakpoint List window.

To modify a breakpoint

1 Right-click the breakpoint icon and choose Breakpoint Properties.
2 Set the options in the Source Breakpoint Properties dialog box to modify the breakpoint.

For example, you can set a condition, create a breakpoint group, or determine what action occurs when execution
reaches the breakpoint.

3 Click Help for more information about the options on the dialog box.
4 Click OK.

To create a breakpoint group

1 Right-click the breakpoint icon and choose Breakpoint Properties.

2 Enter a group name in the Group field, or select a name from the drop down list box to add the breakpoint to an
existing group.

3 Click OK.

321

To enable or disable a breakpoint or breakpoint group
1 Right-click the breakpoint icon in the Code Editor or in the Breakpoint List window and choose Enabled to
toggle between enabled and disabled.

2 To enable or disable all breakpoints, right-click a blank area (not on a breakpoint) in the Breakpoint List window
and choose Enable All or Disable All.

3 To enable or disable a breakpoint group, right-click a blank area (not on a breakpoint) in the Breakpoint List
window and choose Enable Group or Disable Group.

Tip: Press the Ctrl key while clicking a breakpoint in the Code Editor to toggle between enabled and disabled.

Disabling a breakpoint or breakpoint group prevents it from pausing execution, but retains the breakpoint settings,
so that you can enable it later.

To create a conditional breakpoint

1 Choose Run F Add Breakpoint ¥ Source Breakpoint to display the Add Source Breakpoint dialog box.
2 In the Line number field, enter the line in the Code Editor where you want set the breakpoint.

Tip: To pre-fill the Line number field, click a line in the Code Editor prior to opening the Add Source
Breakpoint dialog box.

3 In the Condition field, enter a conditional expression to be evaluated each time this breakpoint is encountered
during program execution.

4 Click OK.
Conditional breakpoints are useful when you want to see how your program behaves when a variable falls into a
certain range or what happens when a particular flag is set.

If the conditional expression evaluates to true (or not zero), the debugger pauses the program at the breakpoint
location. If the expression evaluates to false (or zero), the debugger does not stop at the breakpoint location.

To associate actions with a breakpoint

1 Choose Run k Add Breakpoint k Source Breakpoint to display the Add Source Breakpoint dialog box.

Tip: You can also right-click the breakpoint icon and choose Breakpoint Properties to display the
Source Breakpoint Properties dialog box.

2 Click Advanced to display additional options at the bottom the dialog box.

3 Check the actions that you want to occur when the breakpoint is encountered.
For example, you can specify an expression to be evaluated and write the result of the evaluation to the Event
Log.

4 Click OK.

To change the color of the text at the execution point and breakpoints

1 Choose Tools k Options k Editor Options k Color.
2 |n the code sample window, select the appropriate language tab.

For example, to change the breakpoint color for Developer Studio 2006 code, select the Developer Studio 2006
tab.

322

3 Scroll the code sample window to display the execution and breakpoint icons in the left gutter of the window.
4 Click anywhere on the execution point or breakpoint line that you want to change.

5 Use the Foreground Color and Background Color drop-down lists to change the colors associated with the
selected execution point or breakpoint.

6 Click OK.

323

324

Setting the Search Order for Debug Symbol Tables

Symbol tables are used internally during debugging. By default, Developer Studio 2006 locates and uses all symbol
tables available. However, you can control the order in which these symbol tables are searched. You can also limit
the search to specific symbol tables, which can speed up the debugging process.

The extensions for symbol table files vary by personality.
m Delphi Win32, does not use external symbol files because the compiler holds the symbols tables in memory.
However, if you are debugging a remote application, you must generate symbol files with the .RSM extension.
m Delphi.NET, VB.NET and C# symbol files use the .PDB extension.

m C++ symbol files use the .TDS extension. However, if debug information is contained in the PE file, external
symbol tables are not used.

To set the order in which symbol tables are searched

1 Specify the general project search path.

2 Specify the global path for all projects.

3 Specify the language-specific path for the project.
4 Specify the language-specific global path.

To specify the general project search path

1 Choose Project ¥ Options ¥ Debugger ¥ Symbol Tables.

2 In the Debug symbols search path field, type or navigate to the path to the symbols table that you want the
debugger to use.

Note: If you want to limit the search to specific symbol tables, proceed to the next step. If you want
the debugger to search all paths, click OK to finish specifying the general project search path.

3 Uncheck the Load all symbols check box.
4 Click New.
The Add Symbol Table Search Path dialog displays.

5 Enter the name of the module you are debugging and one or more paths that contain the symbol table for that
module.

If you specify multiple paths, use a semicolon to separate them.

6 Click OK.

The Add Symbol Table Search Path dialog closes and the module and path you added are displayed in the
table.

Note: You can use this list to specify modules and paths that the debugger is to avoid searching by
using a blank path and checking the Load symbols for unspecified modules check box.

7 Click OK.

To specify the global path for all projects (for Delphi and C++ only)
1 Choose Tools k Options k Debugger Options F Borland Debuggers.

325

2 In the Debug symbols search path field, type or navigate to the path to the symbols table that you want the
debugger to use.

3 Click OK.

To specify the language-specific path for the project

1 Choose Project ¥ Options F Directories/Conditionals .

The Directories/Conditionals page contains four fields in which you can specify a path for Win32 and .NET
symbol tables. They are searched in the following order during debugging:

Search path

Package output directory

DCP output directory

A WO DN =

Output directory

N

In each of these fields, type or navigate to the path to the symbols table that you want the debugger to use.
3 Click OK.

To specify global paths
1 Choose Tools F Options k Delphi Options F Library (Win32 or NET).

Depending on the language, the Library page contains two or three fields in which you can specify a path for
Win32 and .NET symbol tables. They are searched in the following order during debugging:

1 Browsing path

2 DCP output directory (not used for C++)

3 Package output directory

2 In each of these fields, type or navigate to the path to the symbols table that you want the debugger to use.
3 Click OK.

326

Using Tooltips During Debugging

When you debug an application, you can display the values of members within a watched object whose type is a
complex data object (such as a class, record, or array). These values display in the code editor window when you
expand a watched object. Additionally, you can expand the elements within an object, displaying its sub-elements
and their values. You can expand all levels in the object. Members are grouped by ancestor.

To expand tooltips during debugging

1 Create a new VCL for Win32 application or open an existing application.
2 Choose Project k Options k Compiler and verify that the Use debug DCUs option is selected.

3 Choose Tools k Options k Editor Options Fk Code Insight and verify that the Tooltip expression
evaluation option is selected.

4 Choose Run F Step Over.

Tip: Alternatively, press F8.

This opens the Code page of the main source file for the project.
5 Choose Run k Step Over again.

This initializes the project.
6 Move the cursor over the Application keyword.

This displays the tooltip in a single block.
7 Click the + next to the Application keyword within the tooltip.

The tooltip expands to a scrollable box that contains each child property and its value. The + appears next to
each property that has one or more child properties. You can expand any member to display properties and
values hierarchically within the tooltip.

327

Deploying Applications

328

Building Packages

You can create packages in Developer Studio 2006 and include them in your projects.

To create a new package
1 File ¥ New k Other to display the New Items object gallery.

2 Depending on your type of project, select either the Delphi Projects node, the Delphi for .NET Projects node,
or the C++Builder Projects node.

3 Double-click the Package icon.

This creates a new empty package and makes an entry for it in the Project Manager, along with two folders:
one marked Contains and one marked Requires.

Note: If you want to add required files to the package, you must add compiled packages (.dcpil, .dll)
to the Required folder. Add uncompiled code files (.pas, .cpp, .h) to the Contains folder.

Select the package name in the Project Manager.

Right-click to display the drop-down context menu and choose Add to display the Add dialog box.
Browse to locate the file or files you want to add.

Select one or more files, and click Open.

Click OK.

This adds the selected files to the package.

0 N o o »

9 Choose Project F Build <Package Name> to build the package.

To add a package to a project

Choose File ¥ New k Other ¥ VCL Forms Application.
Select the project name in the Project Manager.
Right-click to display the drop-down context menu.
Choose Add.

Browse to locate a package file.

Select the file and click Open.

Click OK.

This adds the package to the project.

N O g A WODN -

8 Choose Project k Build <Project Name> to build the project.

To add a component package to the Tool Palette
1 Choose Components F Installed .NET Components.
2 Click the .NET VCL Components tab.
3 Click Add.
4 Locate the package file you want to add to the Tool Palette.
5 Click Open.
This displays the available components from the package.
6 Click OK.

329

The components appear in the Tool Palette.

330

Linking Delphi Units Into an Application

When compiling an application that references a Delphi-produced assembly, you can link the Delphi units for that
assembly into your application. The compiler will link in the binary DCUIL files, which will eliminate the need to
distribute the assembly with your application.

To link in a Delphi unit

1 With your application open in the IDE, choose Project ¥ Add Reference.

2 In the Add Reference dialog box, select a Delphi-produced assembly DLL from the list of .NET assemblies and
click the Add Reference button.

If the assembly you want to link to is not in the list, use the Browse button to find and select it.

3 Click OK.
The assembly is listed in the References node of the Project Manager.

4 In the Project Manager, right-click the assembly and choose Link in Delphi Units.
The menu command is disabled if the reference is not a Delphi-produced assembly.

In the Object Inspector, the corresponding Link Units property is set to True.

5 Choose Project ¥ Compile to compile the application.

331

Editing Code Procedures

332

Creating Code Templates

While using the Code Editor, you can add your favorite code constructs to the Template Manager to create a library
of the templates you use most often.

To add a Code Template using the Menu Commands:
1 While you are working in the Code Editor, choose File ¥ New k Other Files and then select the Code
Template icon.

2 Fill in the template name, description, author, and code language attributes. Then type in the code for your
template between the </[CDATA[]]> tag and the </code> tag.

Note: The Name and Language fields in the template are required.

3 Choose the Save command from the File pull-down menu in the Code Editor (or type CTRL + S). Your new
template now appears in the IDE tree of the Template Manager window. It is saved, by default, in the Documents
and Settings\.....\X.X(release number)\code_templates directory.

To add a Code Template using the Template Manager window:

1 In the Code Editor, choose View F Templates.

2 In the Template Manager window, click the New button. This will put an XML outline for a code template in the
Code Editor main window. You can also select code in the Editor before you click the New button.

3 Fill in the template name, description, author, and code language attributes. Then type in the code for your
template between the <!/[CDATA[]]> tag and the </code> tag.

Note: The Name and Language fields in the template are required.

4 Choose the Save command from the File pull-down menu in the Code Editor (or type CTRL + S). Your new
template now appears in the IDE tree of the Template Manager window. It is saved, by default, in the Documents
and Settings\.....\X.X(release number)\code templates directory.

333

334

Customizing Code Editor

Borland Developer Studio 2006 lets you customize your Code Editor by using the available settings to modify
keystroke mappings, fonts, margin widths, colors, syntax highlighting, and indentation styles.

To customize general Code Editor options

1 Choose Tools k Options.

2 Click Editor Options.

3 Select any of the customization options and make modifications.
4 Click OK to apply the modifications to the Code Editor.

335

336

Finding References

The Find References refactoring feature helps you locate any connections between a file containing a symbol you
intend to rename and other files where that symbol also appears. A preview allows you to decide how you want the
refactoring to operate on specific targets or on the group of references as a whole.

To create a Find References list

1 Open a project.
2 Select an identifier in the Code Editor.
3 Choose Search F Find References.

Note: You can also invoke Find References with the keyboard shortcut Shift+Ctrl+Enter.

4 Double-click a node in the window to go to that location in the Code Editor.

Note: If you continue to perform Find References operations without clearing the results, the new
results are appended in chronological order to the existing results in the window.

To clear results from the Find References window

1 Select a single reference or a node.

Note: No matter which you select, you get the same results. The entire node will be cleared.
2 Click the Refactor Delete icon X at the top of the Find References window, to delete the selected item and

any item in that result set.

Note: Deleting items from the Find References window does not delete them from your actual code files or your
project.

To clear all results from the Find References window
1 Select any item in the window.

2 Click the Remove All References icon '@ at the top of the Find References window.
This action clears all results from the window.

Note: Deleting items from the Find References window does not delete them from your actual code files or your
project.

337

338

Previewing and Applying Refactoring Operations

You can preview most refactoring operations in the Refactoring pane. Some refactorings occur immediately and
allow no preview. You might want to use the preview feature when you first begin to perform refactoring operations.
The preview shows you how the refactoring engine evaluates and applies refactoring operations to various types of
symbols and other refactoring targets. Previewing is set as the default behavior. When you preview a refactoring
operation, the engine gathers refactoring information in a background thread and fills in the information as the
information is collected.

If you apply a refactoring operation right away, it is performed in a background thread also, but a modal dialog blocks
the Ul activity. If the refactoring engine encounters an error during the information gathering phase of the operation,
it will not apply the refactoring operation. The engine only applies the refactoring operation if it finds no errors during
the information gathering phase.

To preview a refactoring operation
Open a project.
Locate a symbol name in the Code Editor.

Select the symbol name.
Right-click to display the context menu.

a h WN =

Select Refactoring ¥ Rename 'symbol type' where symbol type is one of the valid types, such as method,
variable, or field.

This displays the Rename Symbol dialog.
6 Type a new name in the New name text box.
7 Select the View references before refactoring check box.
8 Click OK.

This displays a hierarchical list of the potentially refactored items, in chronological order as they were found. You
can jump to each item in the Code Editor.

Note: If you want to remove an item from the refactoring operation, select the item and click the Delete
Refactoring icon in the toolbar.

To jump to a refactoring target from the Message Pane

1 Expand any of the nodes that appear in the Message Pane.
2 Click on the target refactoring operation that you would like to view in the Code Editor.
3 Make any changes you would like in the Code Editor.

Warning: If you change an item in the Code Editor, the refactoring operation is prevented. You need
to reapply the refactoring after making changes to any files during the process, while the
Message Pane contains refactoring targets.

To apply refactorings

1 Open a project.
2 Locate a symbol name in the Code Editor.
3 Select the symbol name.

339

4 Right-click to display the context menu.

5 Select Refactoring ¥ Rename 'symbol type' where symbol type is one of the valid types, such as method,
variable, or field.

This displays the Rename Symbol dialog.
6 Type a new name in the New name text box.
7 Click OK.

As long as the View references before refactoring check box is not selected, the refactoring occurs
immediately.

Warning: If the refactoring engine encounters errors, the refactoring is not applied. The errors are
displayed in the Message Pane.

340

Recording a Keystroke Macro

You can record a series of keystrokes as a macro while editing code. After you record a macro, you can play it back
to repeat the keystrokes during the current IDE session.

To record a macro

1 In the Code Editor, click the record macro button @ at the bottom of the code window to begin recording.
2 Type the keystrokes that you want to record.

3 When you have finished typing the keystroke sequence, click the stop recording button H .

4 To record another macro, repeat the previous steps.

Note: Recording a macro replaces the previously recorded macro.

The macro is now available to use during the current IDE session.

To run a macro

1 In the Code Editor, position the cursor in the code where you want to run the macro.

2 Click the macro playback button P to run the macro.
If the button is dimmed, no macro is available.

341

342

Refactoring Code

Refactoring refers to the capability to make structural changes to your code without changing the functionality of the
code. Code can often be made more compact, more readable, and more efficient through selective refactoring
operations. Developer Studio 2006 provides a set of refactoring operations that can help you re-architect your code
in the most effective and efficient manner possible.

Refactoring operations are available for Delphi, C#, and C++. However, the refactorings for C# and C++ are limited
in number. You can access the refactoring commands from the Refactoring menu or from a right-click context menu
while in the Code Editor.

The Undo capability is available for all refactoring operations. Some operations can be undone using the
standard Undo (CTRL+Z) menu command, while the rename refactorings provide a specific Undo feature.

To rename a symbol

1 In the Code Editor, click the identifier to be renamed.

The identifier can be a method, variable, field, class, record, struct, interface, type, or parameter name.
2 From either the main menu or the Code Editor context menu, choose Refactor k¥ Rename.
3 In the Rename dialog box, enter the new identifier in the New Name field.

4 |eave View references before refactoring checked. If this option is unchecked, the refactoring is applied
immediately, without a preview of the changes.

5 Click OK.
The Refactorings dialog box displays every occurrence of the identifier to be changed.

6 Review the proposed changes in the Refactorings dialog box and use the Refactor button at the top of the
dialog box to perform all of the refactorings listed. Use the Remove Refactoring button to remove the selected
refactoring from the dialog box.

To declare a variable

1 In the Code Editor, click anywhere in a variable name that has not yet been declared.

Note: Any undeclared variable will be highlighted with a red wavy underline by Error Insight.

2 From either the main menu or the Code Editor context menu, choose Refactor k Declare Variable.
If the variable has already been declared in the same scope, the command is not available.

3 Fill in the Declare New Variable dialog box as needed.
4 Click OK.

The variable declaration is added to the procedure, based on the values you entered in the Declare New
Variable dialog box.

To declare a field

1 In the Code Editor, click anywhere in a field name that has not yet been declared.

2 From either the main menu or the Code Editor context menu, choose Refactor ¥ Declare Field.
3 Fillin the Declare New Field dialog box as needed.

4 Click OK.

343

The new field declaration is added to the type section of your code, based on the values you entered in the Declare
New Field dialog box.

Note: If the new field conflicts with an existing field in the same scope, the Refactorings dialog box is displayed,
prompting you to correct the conflict before continuing.

To create a method from a code fragment

1 In the Code Editor, select the code fragment to be extracted to a method.

2 From either the main menu or the Code Editor context menu, choose Refactor ¥ Extract Method.
The Extract Method dialog box is displayed.

3 Enter a name for the method in the New method name field, or accept the suggested name.

4 Review the code in the Sample extracted code window.

5 Click OK.

Developer Studio 2006 moves the extracted code outside of the current method, determines the needed parameters,
generates local variables if necessary, determines the return type, and replaces the original code fragment with a
call to the new method.

To convert a string constant to a resource string (for the Delphi language only)

1 In the Code Editor, select the quoted string to be converted to a resource string, for example, in the following
code, insert the cursor into the constant Hello World:

procedure foo;
begin

writelLn ('Hello World');
end;

2 From either the main menu or the Code Editor context menu, choose Refactor k Extract Resource String.

Note: You can also use the shift+Ctrl+L keyboard shortcut.
The Extract Resource String dialog box is displayed.
3 Enter a name for the resource string or accept the suggested name (the str, followed by the string).
4 Click OK.

The resourcestring keyword and the resource string are added to the implementation section of your code, and
the original string is replaced with the new resource string name.

resourcestring
strHelloWorld = 'Hello World';

procedure foo;
begin

writeLn (StrHelloWorld) ;
end.

To find and add a namespace or unit to the uses clause

1 Inthe Code Editor, click anywhere in a the variable name whose unit you want to add to the uses clause (Delphi)
or the namespace you want to add to the using clause (C#).

344

2 From either the main menu or the Code Editor context menu, choose Refactor ¥ Find Unit.
The Find Unit dialog box displays a selection list of applicable Delphi units.

Note: If you are coding in C#, the dialog box is called the Use Namespace dialog box.

3 Select the unit or namespace that you want to add to the uses or using clause in the current scope.
You can select as many units or namespaces as you want.

4 If you are coding in Delphi, choose where to insert the reference, either in the interface section or in the
implementation section.

Note: This choice is not relevant for C# and so the selection is not available when refactoring C# code.

5 Click OK.

The uses or using clause is updated with the selected units or namespaces.

345

346

Renaming a Symbol

You can rename symbols if the original declaration symbol is in your project, or if a project depended upon by your
project contains the symbol and is in the same open project group. You can also rename error symbols.

To rename a symbol

1 Select the symbol name in the Code Editor.
2 Right-click to display the drop-down context menu.

3 Select Refactoring F Rename 'symbol type' ' symbol name' where symbol type is either method, variable,
or field, and symbol name is the actual name of the selected symbol.

This displays the Rename dialog box.
4 Enter the new name in the New Name text box.

5 If you want to preview the changes to your project files, select the View References Before Refactoring check
box.

Note: The menu commands are context-sensitive. If you select a method, the command will read

Rename Method method name where method name is the actual name of the method you
have selected. This context-sensitivity holds true for all other object types, as well.

347

348

Using Bookmarks

You can mark a location in your code with a bookmark and jump directly to it from anywhere in the file. You can set
up to ten bookmarks. Bookmarks are preserved when you save the file and available when you reopen the file in
the Code Editor.

To set a bookmark

1 In the Code Editor, right-click the line of code where you want to set a bookmark.
The Code Editor context menu is displayed.

2 Choose Toggle Bookmarks ¥ Bookmark n, where n is a number from 0 to 9.

A bookmark icon |i is displayed in the left gutter of the Code Editor.

Tip: To set a bookmark using the shortcut keys, press CTRL+SHIFT and a number from 0 to 9.

To jump to a bookmark

1 In the Code Editor, right-click to display the context menu.
2 Choose GoTo Bookmarks F Bookmark n, where n is a number from 0 to 9.

Tip: To jump to a bookmark using the shortcut keys, press CTRL and the number of the bookmark. For example,
CTRL+1 will jump you to the line of code set at bookmark 1.

To remove a bookmark

1 In the Code Editor, right-click to display the context menu.
2 Choose Toggle Bookmarks F Bookmark n, where n is the number of the bookmark you want to remove.
The bookmark icon is removed from the left gutter of the Code Editor.

Tip: To remove all bookmarks from a file, choose Clear Bookmarks.

349

350

Using Class Completion

Class completion automates the definition of new classes by generating skeleton code for Delphi class members
that you declare.

To use class completion

1 In the Code Editor, declare a class in the interface section of a unit.
For example, you might enter the following:
type TMyButton = class (TButton)
property Size: Integer;

procedure DoSomething;
end;

2 Right-click on the class declaration and choose Complete Class at Cursor.

You can also invoke Class Completion by placing the cursor within the class declaration and
pressing CTRL+SHIFT+C.

Tip:

Class Completion automatically adds the read and write specifiers to the declarations for any properties that require
them, and then adds skeleton code in the implementation section for each class method.

Tip: You can also use class completion to fill in interface declarations for methods that you define in the
implementation section.

After invoking class completion, the sample code above appears as follows:

type TMyButton = class (TButton)
private
FSize: Integer;
procedure SetSize (const Value: Integer);

published
property Size: Integer read FSize write set Size;

procedure DoSomething;
end;

The following skeleton code is added to the implementation section:

{ TMyButton }

procedure TMyButton.DoSomething;
begin

end;

procedure TMyButton.SetSize (const Value: Integer);
begin

FSize := Value;
end;

If your declarations and implementations are sorted alphabetically, class completion maintains their sorted order.
Otherwise, new routines are placed at the end of the implementation section of the unit and new declarations are

placed in private sections at the beginning of the class declaration.

351

Tip: The Finish Incomplete Properties option on the Tools ¥ Options k Explorer page determines whether
class completion completes property declarations.

352

Using Code Folding

Code folding lets you collapse (hide) and expand (show) your code to make it easier to navigate and read. Developer
Studio 2006 generates code that contains code folding regions, but you can add your own regions as needed.

To collapse and expand code

1 In the Code Editor, click the minus (-) sign to the left of a code block to collapse the code.
2 Click the plus (+) sign to expand the code block.

Tip: To turn off code folding for the current edit session, press and hold Ctrl+Shift, and then K, and then O. To collapse
the nearest code block, press and hold Ctrl+Shift, and then K, and E. To expand the nearest code block, press
and hold Ctri+Shift, and then K, and U. To expand all code, press and hold Ctrl+Shift and then press K, and A.

To add a code folding region

1 In the Code Editor, use the following preprocessor directives to surround a block of code:

[Delphi]
{$region 'Optional text that appears when the code block is folded'}

{Sendregion}

[C#]
Sregion Optional text that appears when the code block is folded

Sendregion

The region is marked with a minus (-) sign.

2 Click the minus sign to collapse the region.

353

354

Using Code Insight

Code Insight (sometimes referred to as Code Completion) is a set of features in the Code Editor and the HTML
Tag Editor that provide code completion, display code parameter lists, and show tool tips for expressions and
symbols.

The hint window list box filters out all interface method declarations that are referred to by property read or write
clauses. The list box displays only properties and stand-alone methods declared in the interface type.

To enable Code Insight

1 Choose Tools k Options.
The Options dialog box appears.
2 Under Editor Options, select Code Insight.
3 Review and set the options and color preferences as needed.
4 Click OK.

To use Code completion

1 Choose Tools k Options.
The Options dialog box appears.
2 Select Code Insight and enable Code Completion.

3 Inthe Code Editor, type an object or class name followed by a dot (.) to display a list of types, properties, methods,
and events, if you are using the Delphi or C# languages. Or, if you are using the C++ language, type the name
of a variable that represents a pointer to a class instance and then press Ctrl + Space to display the properties,
methods, and events available in the class.

4 Select the one appropriate for the class and press ENTER.

Code Insight Examples

1 Ifyou're using the C++ language, type the name of a variable that represents a pointer to a class instance followed
by Cirl + Space to display the properties, methods, and events available in the class. To invoke code completion
for a pointer type, the pointer must first be de-referenced.

For example, type: self.

2 If you're using the C++ language, type an arrow (->) for a pointer to an object. You can also type the name of
non-pointer types followed by a period (.) to see its list of inherited and virtual properties, methods, and events.

For example, type:

var test: TRect;

begin
test.

3 Type an assignment operator or the beginning of an assignment statement and press Ctrl + Space to display a list
of possible values for the variable.

4 Type a procedure, function, or method call and press Cirl + Space to display the method and it's list of arguments.

355

5 Type a record to display a list of fields. (This is the same as Step 1, but uses records instead of classes.)

To use Code parameters
1 Choose Tools k Options.
The Options dialog box appears.

2 Select Code Insight and enable the Code parameters check box.
3 In the Code Editor, type a method name and an open parenthesis to display the method arguments.

To use ToolTip expression evaluation
1 Choose Tools k Options.
The Options dialog box appears.

2 Select Code Insight and check the ToolTip expression evaluation check box.

3 On the Code Editor, point the mouse cursor to any variable to display its current value while your program has
paused during debugging.

To use ToolTip symbol insight

1 Choose Tools k Options.
The Options dialog box appears.

2 Select Code Insight and check the ToolTip symbol insight check box.
3 In the Code Editor, point the mouse cursor to any identifier to display its declaration while editing your code.

356

Using Code Templates

Code templates are reusable code statements that are accessible from the Code Editor. You can insert pre-defined
code segments into your code or add your own code snippets to the Template window.

Note: If a template has one or more jump points that are editable, it will automatically enter SyncEdit mode when
you are inserting it into your code. The jump points allow you to navigate between different areas of the
template, using the Tab key and SHIFT+Tab keys. Pressing ESC, Enter,(or pressing theTab key) from the last
jump point exits SyncEdit mode and puts the Code Editor back into regular edit mode. See the link at the
end of this topic for more information about SyncEdit.

To insert an existing Code Template into your code:

1 In the Code Editor, choose View F Templates .

2 Expand the tree in the Template Manager for the language you are using, by clicking the plus sign in front of
language name.

3 Put the cursor at the place in your code where you want to add the template.
4 Choose the template you want to use in the Template Manager window.
5 Click the Execute button in the Template Manager window.

After you have inserted a template, you will probably need to fill in data, variables, methods, or other information
that is specific to your code. You can use the Code Completion feature with some of the templates, as described
below.

To use Code Completion with your template:

1 When you are at a jump point in your template, invoke the Code Completion window by pressing the Ctrl +
Space keys.

There are two ways to surround your code with a template. Use the procedure below that best fits your working style.

To Surround text with a template using the mouse:

1 Select the code in the Code Editor that you want the template to surround.

2 Click the right mouse button and choose the Surround command. This will give you a choice of 'surround-able'
templates.

3 Choose a template from the list.

To Surround text with a template using the Template Manager window:

1 In the Code Editor, choose View F Templates.

2 Expand the tree in the Template Manager for the language you are using, by clicking the plus sign in front of
language name.

3 Choose the template you want to use in the Template Manager window.
4 Select the code in the Code Editor that you want the template to surround.
5 Click the Execute button in the Template Manager window.

357

358

Using Sync Edit

The Sync Edit feature lets you simultaneously edit indentical identifiers in selected code. For example, in a procedure
that contains three occurrences of 1abel1, you can edit just the first occurrence and all the other occurrences will

change automatically.

To use Sync Edit

1
2

In the Code Editor, select a block of code that contains indentical identifiers.

Click the Sync Edit Mode icon % that appears in the left gutter.

The first indentical identifier is highlighted and the others are outlined. The cursor is positioned on the first
identifier. If the code contains multiple sets of indentical identifiers, you can press TAB to move between each
identifier in the selection.

Begin editing the first identifier. As you change the identifier, the same change is performed automatically on the
other identifiers.

By default, the identifier is replaced. To change the identifier without replacing it, use the arrow keys before you
begin typing.

When you have finished changing the identifiers, you can exit Sync Edit mode by clicking the Sync Edit Mode
icon, or by pressing theEsc key.

Note: Sync Edit determines indentical identifiers by matching text strings; it does not analyze the identifiers. For

example, it does not distinguish between two like-named identifiers of different types in different scopes.
Therefore, Sync Edit is intended for small sections of code, such as a single method or a page of text. For
changing larger sections of code, consider using refactoring.

359

360

Using the History Manager

The History Manager lets you view and compare versions of a file, including multiple backup versions, saved local
changes, and the edit buffer of unsaved changes. If you are using the StarTeam integration with Developer Studio
2006, the History Manager also provides version information for your local source files.

For simplicity, the following procedures uses a small text file to introduce the functionality of the History Manager.
However, the History Manager is available for most files, including source code and HTML files.

To create and display file versions in the Contents page

Choose Tools k Options k Editor Options page and verify that the Create Backup Files option is checked.
Choose File ¥ New k Other k Other Files ¥ Text and click OK to display a blank text file in the Code Editor.
On line one of the file, type First line of text and save the file using any name and location.

On line two, type Second line of text and save the file.

a A WODN -

On line three, type Third line of text and save the file.
There are now three versions of the file stored in the current directory in a hidden directory named __history.

6 Click the History tab, which is next to the Code tab.

The revision list at the top of the Contents tab displays three versions of the file. The first version is named ~1~,
the second is named ~2~, and the current version is named File. The source viewer at the bottom of the tab
displays the source for the selected version.

7 Select the different versions to display their source in the source viewer.

8 Click the Code tab to return to the Code Editor and on line four of the file, type Fourth line of text but
do not save the file.

Your change is stored in the editor buffer, but not saved to the file.

9 Review the following toolbar and icon descriptions and then use the next procedure to compare the file versions
that you just created.

Tip: To sort a column on any page of the History Manager, click the column heading.

The toolbar at the top of the History Manager contains the following buttons. Not all buttons are available on all
pages of the History Manager.

Button Description

Refresh revision info updates the revision list to include unsaved changes to the file.

iﬁ Revert to previous revision makes the selected version the current version and is available on the Contents and
Info pages.

Reverting a prior version deletes any unsaved changes in the editor buffer.

Synchronize scrolling synchronizes scrolling in the Contents and Diff pages and the Code Editor. It matches the
line of text that contains the cursor with the nearest matching line of text in the other view. If there is no matching text
in that region of the file, it matches line numbers.

EIE; Go to next difference repositions the source on the Diff page to the next block of different code.

EE Go to previous difference repositions the source on the Diff page to the previous block of different code.

361

Follow text movement locates the same line in the source viewer when switching between views.

Tip: The toolbar button functions are also available of the right-click context menus of the History Manager pages.
The following icons are used to represent file versions in the revision lists.

Icon Description

The latest saved file version.
A backup file version.

The file version that is in the buffer and includes unsaved changes.

A file version that is stored in a version control repository.

2 < JRONE 7 JYTP

A file version that you have checked out from a version control respository.

To compare file versions using the Diff page

1 Using the file that you created in the previous procedure, click the History tab.
2 Click the Diff tab at the bottom of the History Manager.

The Differences From and To panes at the top of the page shows the file versions that you can compare. At
the bottom of the page, source lines that were deleted are highlighted and marked with a minus sign (-). Lines
that were added are highlighted and marked with a plus sign (+). The highlighting colors depend on the Code
Editor colors.

3 Select the different file versions in both the Differences From pane and the To pane to see the results in source
viewer.

To make a prior file version the current version

1 Using the file from the previous procedures, click the Contents tab.

2 [
Right-click the ~2~ version of the file and select Revert, or click the 'ﬁ toolbar button.
The Confirm dialog box indicates that reverting the file will lose any unsaved changes in the buffer.

3 Click Yes on Confirm dialog box.
The ~2~ version becomes the current version.

4 Return to the Code Editor and save the change.

Tip: The Revert command is also available on the Info page.

362

Localization Procedures

363

364

Adding Languages to a Project

You can add languages to your project by using the Satellite Assembly Wizard (.NET) or Resource DLL
Wizard (Win32). For each language that you add, the wizard generates a resource module project in your project
group. Each resource module project is given an extension based on the language’s locale.

To add a language to a project

1 Save and build your project.
2 With your project open in the IDE, choose Project ¥ Languages ¢ Add.

Alternatively, you can choose either File ¥ New k Other k Delphi for .NET Projects k Satellite Assembly
Wizard for a .NET application or File ¥ New k Other k Delphi Projects ¥ Resource DLL Wizard for a Win32
application.

The wizard is displayed.

3 Make sure your project is selected in the list that appears in the dialog and then click Next.
4 Click the check box next to the languages that you want to add to your project and then click Next.
5 Review the directory path information that the wizard will use for the language’s resource modules.

Tip: To change the path, click the path, and then click the ellipsis (...) button to browse to a different
directory.

When you are satisfied with the path information, click Next.

6 If no satellite assembly for the language exists yet, Create New appears in the Update Mode column. Click Next.

If a resource module exists for the language in the directory you have specified, click in the Update Mode column
to select Update or Overwrite. Choose Update to keep and modify the existing satellite assembly project.
Choose Overwrite to create a new, empty project and to delete the old project and any translations it contains.
Click Next.

7 Review the summary of what the wizard will do and click Finish to create or update the resource modules for
the languages you have selected.

If the wizard asks to generate a .drcil (.NET) or .drc (Win32) file, click Yes. Any project that uses its own resource
strings (instead of previously compiled .rc files) needs a .drcil or .drc file.

If you are sure that no new files are needed (because your project does not introduce any resource strings of its
own), select Skip drcil files that are not found in the final dialog. This prevents the wizard from generating, or
asking to generate, files.

8 Click Yes to compile. Click OK to save your project group.

The generated projects contain untranslated copies of the resource strings in your original project. By default, the
Translation Manager is displayed, enabling you to begin translating the resource files.

To remove a language from a project

1 Open your project.

2 Select Project ¢ Languages F Remove.

3 Check the languages that you want to remove and then click Next.
4 Click Finish.

The wizard removes the selected resource module from your project file, but does not delete the assemblies, the
source of the assemblies, or the directories in which they reside.

365

To restore a language to a project

1 Choose Project ¥ Languages F Add to start the Satellite Assembly Wizard or Resource DLL Wizard.
2 Specify the directory path of the old resource module in the appropriate dialog.
3 In the Update Mode column, select Update.

If a resource module already exists for the language (in the directory you have specified), click in the Update
Mode column to select Update or Overwrite. Choose Update to keep and modify the existing assembly project.
Choose Overwrite to create a new, empty project and to delete the old project and any translations it contains.

4 Click Finish.

366

Editing Resource Files in the Translation Manager

After you have added languages to your project by using the Satellite Assembly Wizard or Resource DLL
Wizard, you can use the Translation Manager to view and edit your resource files. You can edit resource strings
directly, add translated strings to the Translation Repository, or get strings from the Translation Repository.

To edit resource strings

1 Open a project that includes languages.
2 Choose View F Translation Manager k Translation Editor.
3 Expand the project tree view to display the resource files that you want to edit.

Tip: Use the expand and collapse icons on the toolbar above the tree view.

4 Click the resource file you want to edit. The resource strings in the file are displayed in a grid in the right pane.

5 Click the field that you want to edit and type the new text directly in the grid, right-click the field and choose
Edit to edit the string in a dialog box, or click the Multi-line editor icon on the toolbar above the grid.

6 Optionally, enter a comment in the Comment field.
7 Optionally, set the translation status for the string by using the drop-down list in the Status field.
8 Click the Save Translation icon on the toolbar above the grid to update the resource file.

Tip: To display the original form or translated form, click the Show original form and Show translated form icons
in the toolbar above the grid.

To add a resource string to the Translation Repository

1 After editing a resource string in the Translation Manager, right-click the string that you want to add to the
Translation Repository.

2 Choose Repository k Add strings to repository.

The resource string is added to the Translation Repository and can be viewed by closing the Translation Manager
and choosing Tools k Translation Repository.

To get a resource string from the Translation Repository

1 In the Translation Manager, click the Workspace tab.

2 Expand the project tree view to display the resource files that you want to edit. The .resx files are listed under
the .NET Resources node.

The .nfm files are listed under the Forms node.
3 Click the resource file you want to edit.
The resource strings in the file are displayed in a grid in the right pane.
4 Right-click the field that you want to update and choose Repository k Get strings from repository.

If the Translation Repository contains only one translation that matches the selected source string, it copies that
translation into the target language column. If the Repository contains more than one match for the selected
resource, its default behavior is to retrieve the first matching translation it finds.

367

Tip: To change this behavior, close the Transaction Manager and choose Tools F Translation Tools
Options, click the Repository tab, and change the Multiple Find Action setting.

To open the resource file in a text editor

1 In the Translation Manager, click the Project tab.

2 Click the Files tab.

3 Double-click the resource file that you want to update.
The file opens in a text editor.

4 Change the file as needed and save it.

Tip: To change the text editor used by the Translation Manager, choose Tools F Translation Tools
Options and change executable file specified in the External Editor field.

368

Setting the Active Language for a Project

After adding languages to your project with the Satellite Assembly Wizard or the Resource DLL Wizard, the base
language module is loaded when you choose Run k Run. However, you can load a different language module by
setting the active language for the project.

To set the active language

1 In the IDE, recompile the resource module for the language you want to use.
2 Choose Project k Languages F Set Active.

The Set Active Language wizard displays a list of the languages in the project. The base language appears in
angle brackets at the top of the language list, for example, <English (United States)>.

3 Select a language from the list and click Finish.

369

370

Setting Up the External Translation Manager

If you do not have the Developer Studio 2006 IDE, you can use the External Translation Manager (ETM) to localize
an application. To use ETM, the developer must provide you with the required ETM files and project files.

Note: The Microsoft .NET Framework must be installed on your computer before you install ETM.

To set up and register the ETM files

1 Obtain the following ETM files from the developer.

By default these files are in either the Program Files\Borland\BDS\4.0\Bin or the Windows\system32 directory
on the developer's computer.

Note: If the developer chose to install only the Delphi for Win32 personality of Developer Studio 2006,
the files marked with an asterisk (*) will not available on the developer's computer.

Borland.Delphi.dll *
Borland.Globalization.dll *
Borland.ITE.d1ll *
Borland.ITE.FormDesigner.dll *
Borland.SCI.dll *
Borland.Vecl.dll *
Borland.VclRtl.dll *
Borland.VeclX.dll *
designide90.bpl

dfm90.bpl
DotnetCoreAssemblies90.bpl *
etm.exe

IDECtrls90.bpl
itecore90.bpl
itedotnet90.bpl *

rc90.bpl

ResX90.bpl *

rt190.bpl

vcl90.bpl

vclactnband90.bpl
vclide90.bpl

vclx90.bpl

xmlrtl190.bpl

nfmrtl190.bpl *

2 Create a directory, such as C:\ETM.
3 Copy the ETM files from the developer into the directory.
4 Open ETM.
From Windows Explorer, double-click etm.exe. From the command line, enter etm.exe.
5 Choose Tools F Options k Packages.
6 Click the Add button to display the Open dialog box.
7 Navigate to the directory that contains the ETM files.
Make sure that the Files of type filter is set to Designtime packages (dcl*.bpl).

©

Select all of the designtime packages in the directory and click OK.

371

The designtime packages are registered and you can now begin using ETM.

To set up the project to be translated

1 Obtain a zipped translation kit of the project to be translated from the developer. The kit should include the
following:

m a satellite assembly or resource DLL for each language to be translated
m the .bdsproj project file generated by using File ¥ Save as in the ETM project
m the standalone translation repository (*.tmx) files

2 Unzip the translation kit into a directory of your choice.

372

Updating Resource Modules
When you add an additional resource, such as a button on a form, you must update your resource modules to reflect
your changes.

To update resource modules
1 Save and build your project. If you are using the ETM, reopen the saved project.
2 Update the resource modules:

m In the IDE, choose Project k Languages F Update Localized Projects.
m In ETM, choose Project kB Run Updaters (or press F9) or click the Files tab and then click the Run
Updaters button (F9).

3 After updating in the internal Translation Manager, rebuild each resource module project by opening the project
in the IDE and choosing Project ¥ Compile.

To simplify this process, you can maintain all the projects, along with the application itself, in a

single project group that can be compiled from the Project Manager by choosing Project k

Compile All.

Tip:

373

374

Using the External Translation Manager

Translators who do not have the Developer Studio 2006 IDE can use the External Translation Manager (ETM) instead
of the Translation Manager. The steps for using the ETM are similar to those for the internal Translation Manager.

Note: ETM must be set up and operational on your computer before using the following procedure. See in the link
listed at the end of this topic for details.

To run the ETM

1 To run the ETM from the command line, enter: etm.exe [files]
where [files] is the optional project group file or the project files.

2 To run the ETM from Windows Explorer, double-click etm.exe

To localize an application using the ETM

1 In ETM, chooseFile ¥ Open and open the project to be translated.
2 Click the Workspace tab.
3 Expand the project tree view to display the resource files that you want to edit.

Tip: Use the expand and collapse icons on the toolbar above the tree view.

4 Click the unit file that you want to edit. The resource strings in the file are displayed in a grid in the right pane.
5 Click the field that you want to edit and do one of the following:

m type the new text directly in the grid
m right-click the field and choose Edit to edit the string in a dialog box
m click the Multi-line editor icon on the toolbar above the grid

6 Optionally, enter a comment in the Comment field.
7 Optionally, set the translation status for the string by using the drop-down list in the Status field.
8 Click the Save Translation icon on the toolbar above the grid to update the resource file.

After you have finished the translations, you can send the translated files back to the developer to add to the project.

To remove languages from your project

1 Open your project.
2 On the Languages tab, uncheck the check box for the language you want to remove.
3 Click the Files tab and click the Run Updaters button.

ETM removes the selected assemblies or DLLs from your project, but it does not delete them, the source of them,
or the directories they reside in.

375

Source Control Procedures

376

StarTeam: Adding Files

You can place new files in your project under version control by adding them to StarTeam. When you add a file,
StarTeam logs your comments for the file and sets version control properties, such as lock status and revision label.

To add a file to StarTeam

1 Create a new file or open an existing file in Developer Studio 2006.
2 Choose StarTeam k Add.

Note: This menu item is available only for the active file. To add any file in the project to StarTeam,
right-click the file in the Project manager and select StarTeam k Add.

If the file has not been saved, the Save File As dialog box displays. When the file has been saved, the Add
Files dialog box displays.

3 Enter a description of the changes made to the file in the Summary Comment text box.
This step is optional.

4 Click the Options tab at the bottom of the dialog box.

5 Choose a lock status for the file.
The lock status lets other team members know whether or not you are working on the files.

m Unlocked indicates you do not intend to make changes.
m Exclusive indicates you intend to make changes to these files, and prevents others from checking the files in.

m Non-Exclusive indicates you are working on the files, and may possibly make changes, but other users can alter
and check in the files.

6 Choose additional options in this dialog box, if appropriate. For information about these options, see the StarTeam
Add File topic.

7 Click OK.

The new file is checked into the StarTeam repository. The status of the StarTeam operation is displayed in the
StarTeam Messages window.

Tip: To add all new source files in a Developer Studio 2006 project to StarTeam in a single operation, choose
StarTeam F Commit Project.

377

378

StarTeam: Checking In Files

When you check in a file, StarTeam creates a new revision of that file. StarTeam archives either the entire file or
differences between it and the last revision.

To check in the active file

1

Choose StarTeam k Check In.
The StarTeam Check In dialog box displays.

Tip: You can also right-click the file in the Project Manager and chooseStarTeam F Check In.

Enter a description of the changes made to the file in the Comment text box.
This step is optional but recommended.

Tip: To enter a different comment for each file, click the Detail Comment button and enter a
description.

Click the Options tab at the bottom of the dialog box.

4 Choose the lock status.

By default, the lock status is set to Keep current, which indicates that the checkin will not change the lock status
of the file.

Choose additional options in this dialog box, if appropriate. For information about these options, see the StarTeam
Check In topic.
Click OK.

The file is checked into the StarTeam repository. The status of the operation is displayed in the StarTeam
Messages window.

Tip: If you have made changes to multiple files, you can check in all files by choosing StarTeam #
Commit Project.

For some types of files, Developer Studio 2006 automatically generates an associated file in the same module to
store resources. For example, when you create a VCL Forms application for the .NET Framework, Developer Studio
2006 generates a unit file (such as Unit1.pas) and the associated form (Unit1.nfm) file in the same module. The
associated form file is maintained by Developer Studio 2006 as you make changes to the unit file. The StarTeam
integration treats these paired files specially. If you check in the unit file, StarTeam checks to see if the associated
form file has been modified. If the form file has been modified, StarTeam will automatically check in both files.

379

380

StarTeam: Checking Out Files

When you check out a file, StarTeam copies the requested revision of that file to the appropriate working folder. If
a copy of that file is already in the working folder, it is overwritten unless the working file appears to be more recent
than the checked in revision. In that case, you are asked to confirm the check out.

Note: If file renaming or deletions made in your local project conflict with changes made by another team member
in the StarTeam Client, you must manually resolve the pending renaming or deletion of files. Choose
StarTeam F Pending Renames/Deletes to open the Pending Renames/Deletes dialog box and commit
any pending local file renames or deletions to the repository or cancel the pending operations.

To check out files

1 Choose StarTeam k Check Out.
The StarTeam Check Out dialog box opens to the File List tab.

Tip: You can also right-click a file in the Project Manager and choose StarTeam Bk Check Out.

2 Verify that the check boxes next to the files to be checked out are checked.

3 Click the Options tab at the bottom of the dialog box and choose additional options, if appropriate. For information
about these options, see the StarTeam Check Out topic.

This step is optional, but recommended.
4 Click OK.

5 If the check out operation encounters unsynchronized changes between files you already have on your working
system and those that you are checking out, resolve the conflicts that appear in the Synchronization dialog box.

381

382

StarTeam: Committing Projects

Committing a project saves any changes to the project and its source files, creating new revisions of these files in
the repository. If files have been added to or removed from your Developer Studio 2006 project, the project in the
repository will reflect these changes when you commit the project.

To commit a project

1

Choose StarTeam k Commit Project.

If files have been added to the project, the StarTeam Commit Files dialog box displays. If you have not added
new files, the Check In dialog box displays. Proceed to the appropriate step.

Fill in the information in the Commit Files dialog box.

This step is optional, but recommended. For information about options in this dialog, see the StarTeam Add
Files topic.

3 Click OK to close the Commiit Files dialog box.

4 Specify the checkin conditions in the Check In dialog box.

This step is optional, but recommended. For information about options in this dialog, see the StarTeam Check
In Files topic.

Click OK.

Any new files are added and any modified project source files are checked into the StarTeam repository. The
status of the StarTeam operation displays in the StarTeam Messageswindow.

383

384

StarTeam: Comparing File Revisions

There are several ways of comparing the contents of file revisions in the StarTeam integration for Developer Studio
2006. You can compare a working version of a file with its latest revision in the repository. You can compare any
two revisions of a file in the repository. You can also compare the contents of any two files in the repository. The
following procedures describe how to compare the contents of file revisions using the Visual Diff comparison utility.

Note: You can use the Alternate Applications dialog box to configure the integrated StarTeam Client to use a
different comparison utility. To open the Alternate Applications dialog box, choose StarTeam F Options
F Personal Options and click Alternate Applications on the File page of the Personal Options dialog box.

To compare the active working file with the latest revision in the repository

1 Choose StarTeam F Difference.

The file comparison application opens, displaying the tip revision of the file on the left and the working version
on the right. Differences between the files appear in a different color. Under some circumstances, the latest
checked in version may contain changes made by other team members.

2 To return to the IDE, choose File k Exit.

Tip: The StarTeam file revisions show up in the History Manager. The History Manager lets you compare any
two revisions of a file, including any revision of the file in the StarTeam repository, locally saved revisions, and
the current content of the file in the editor buffer. File comparison in the History Manager does not rely on any
external file comparison tools.

To compare the contents of any two files in the repository

1 Choose StarTeam F View Client to open the embedded client.

Tip: Alternatively, choose StarTeam F Launch Client to open the standalone StarTeam Client.

2 Locate and select the two files you want to compare.
3 Right-click the selection, and choose Compare Contents from the context menu.

The file comparison application opens, displaying the tip revision of the file on the left and the working version
on the right. Differences between the files appear in a different color. Under some circumstances, the latest
checked in version may contain changes made by other team members.

4 To return to the IDE or the StarTeam Client, choose File F Exit.

385

386

StarTeam: Configuring the Integration

In addition to the configuration tasks you can perform with the StarTeam Client, the StarTeam integration lets you
manage StarTeam associations for your Developer Studio 2006 projects, and set personal preferences for StarTeam
behavior. The StarTeam integration lets you manage the StarTeam connection properties for Developer Studio 2006
projects with the Manage Associations dialog box. Using the Manage Associations dialog box, you can view and
modify the StarTeam Server, project, and view associated with your Developer Studio 2006 project. You can also
disassociate your project from StarTeam.

If you have files in your project that are located on a path that isn't under the directory containing your Developer
Studio 2006 project, you must map this non-relative path to a folder in the StarTeam repository before you can check
in the files. The Manage Non-relative Working Paths dialog box lets you map non-relative paths to StarTeam
folders in the repository. This dialog box is opened from the Manage Associations dialog box by clicking the Manage
Non-relative Paths button.

StarTeam also lets you set personal options that suit your work style. The Personal Options dialog box can be
accessed from within the IDE. Personal options apply to the currently logged-on user on a given workstation.

Note: In order to map non-relative paths for your project, your Developer Studio 2006 project must not be stored
in the root folder of a view. You can use the StarTeam Associations dialog box to remap your local working
path to a child folder.

To manage StarTeam associations for your projects

1 Choose StarTeam F Manage Associations.
2 If you need to alter a StarTeam association, click Edit.
This opens the StarTeam Associations dialog box.

3 Select a server from the StarTeam Server drop-down list. If the StarTeam Server you want to use does not
appear on the list, click the Servers button to add a new server or change the properties of an existing server.

Note: If you have not previously logged on, the Log On dialog box requests a user name and
password when you select a server.

4 Select the StarTeam project that contains your Developer Studio 2006 project from the Project Name drop-down
list.

5 Select an existing view from the View path drop-down list.

Note: A view defines the files and folders that can be accessed for a given project.

6 Click OK to close the StarTeam Associations dialog box.

The StarTeam Associations dialog box will list the StarTeam associations (server, project, view, and folder
path) and indicate that your project is associated.

To manage a non-relative path
1 Choose StarTeam F Manage Associations.
This opens the StarTeam Associations dialog box.

2 Click the Manage Non-relative Paths button.

This opens the Manage Non-relative Working Paths dialog box, which lets you map the non-relative local
working path to a folder in the StarTeam repository.

387

Note: The Manage Non-relative Working Paths dialog box opens automatically when you attempt
to check in a file with a non-relative path.

3 Click Add, browse to and select the local (non-relative) folder that you want to map, and click OK.

The Select A StarTeam Folder dialog box appears. This dialog box lets you select a folder to which you can
map. If necessary, you can create child folders in the dialog box.

4 Select a StarTeam folder for storing files from a given non-relative path, and click OK.

Note: The folder for files in non-relative paths must be outside the root folder path for the Developer
Studio 2006 project. For example, if your local working path for your Developer Studio 2006
project is C:\Borland Studio Projects\Project1 and it maps to the folder path BDS\Project1 in
View1 in the repository, then any files in non-relative paths cannot be mapped to View1\BDS
\Project1 or its child folders. Therefore, if you add a file, logo.bmp that is stored locally in C:
\images, you cannot map the working path to BDS\Project1\images or any other folder beneath
BDS\Project1, but you can map it to BDS\images.

5 Click Close to close the Manage Non-relative Working Paths dialog box.

6 Click Close to close the StarTeam Associations dialog box.

Once you have mapped the non-relative path, files that are part of your project and located in this local working
path can be checked in to StarTeam.

To modify personal options

1 Open a project that is under StarTeam control.
2 Choose StarTeam F Personal Options.
The Personal Options dialog box appears. The StarTeam Personal Options dialog box contains the following
pages:
m Workspace: lets you specify confirmation requirements for version control operations, display options, and other
parameters that apply to the behavior and appearance of StarTeam item in the workspace.

m StarTeamMPX Server: lets you enable support for StarTeamMPX Server for the active project and subsequently
opened projects.

m File: lets you set checkout options, locking options, merging options, end-of-line options, default file status
repository settings, and alternate applications for editing, merging, or comparing files.

m Change Request: lets you set system tray notification parameters and locking options for change requests.
m Requirement: lets you set system tray notification parameters and locking options for requirements.

m Task: lets you set system tray notification parameters and locking options for tasks.

m Topic: lets you set system tray notification parameters and locking options for topics.

The StarTeam Personal Options dialog box can also be opened in the StarTeam client. Refer to the StarTeam
User's Guide for additional information on setting personal options.

Note: StarTeamMPX Server is a part of StarTeam Enterprise Advantage, but it can be purchased

separately with StarTeam Standard and StarTeam Enterprise. For more information, refer to
the StarTeamMPX Server Administrator’s Guide.

3 After you have set your personal options, click OK to close the dialog box.

388

StarTeam: Editing the Active Process Item

Selecting an active process item is a convenience that can save you time as you add files or check them in later.
The active process item becomes the default selection for a process item in the Add Files and Check In dialog
boxes. Within Developer Studio 2006, you can set a process item as the active process item, using the embedded
client or from within the standalone StarTeam Client.

To set the active process item
1 Choose StarTeam k View Client to open the embedded client or choose StarTeam k Launch Client to open
the standalone StarTeam Client.
The steps for setting the active process item are the same for the embedded client and the standalone client.

2 In the upper pane of the project view window, select the process item (change request, requirement, or task) you
want to set as the active process item.

3 Right-click the process item, and choose Set Active Process Item from the context menu.

Note: Setting a second active process item clears the first. There is also a Clear Active Process Item command on
the Change Request, Requirement, and Task menus, but you will probably never use it. You do not have to
use the active process item while adding files or checking them in. The active process item becomes the
default selection for a process item, but you can select another appropriate item.

To edit the active process item

1 Choose StarTeam Fk Active Process Item

2 Alternatively, locate and double-click the active process item in either the embedded client or the standalone
client.

Note: Depending on how your team has set up StarTeam, you may see a different dialog box called an alternate
property editor (APE). APEs are created with StarTeam Extensions. Refer to the StarTeam Extensions User's
Guide for more information about APEs and workflow processes.

389

390

StarTeam: Finding Files in the Repository

The StarTeam integration includes a Find command to help you quickly locate files in the StarTeam repository.

To find the active working file

1 Choose StarTeam F Find.
This opens the embedded StarTeam Client, and highlights the file that is active in the Code Editor.

2 Alternatively, right-click a file in the Project Manager, and choose StarTeam F Find.
This opens the embedded StarTeam Client, and highlights the selected file.

391

392

StarTeam: Launching the Client

The StarTeam integration for Developer Studio 2006 includes a StarTeam Client for the .NET Framework. Although
most of the features and information provided by the client are available from within the IDE, you can launch the
client (StarTeam Bk Launch Client) and use it as a standalone application. The standalone client provides some
additional capability for managing StarTeam projects and views, and administering user accounts and servers.

To launch and use the StarTeam Client

1 Choose StarTeam F Launch Client.

The client opens the StarTeam project associated with the active Developer Studio 2006 project, and selects the
project's root folder.

2 Perform source code control operations or administrative tasks as needed.
The StarTeam Client can be used even after the IDE has been closed.

393

394

StarTeam: Locking and Unlocking Files

File locking is a way to inform other developers that you are revising a file (exclusive lock) or thinking about revising
it (non-exclusive lock). File locking can be specified when files are checked in and out, and when they are added.
The following procedure describes how to use the StarTeam menu on the menu bar to lock the active file. Files can
also be locked and unlocked using the StarTeam context menu in the Project Manager.

To lock or unlock the active working file

1 Choose StarTeam Fk Lock/Unlock.
The Set My Lock Status dialog box appears.

2 Select a lock status option:

m Unlocked—removes your exclusive or non-exclusive lock on the file

m Exclusive—prevents others from creating a new revision of this file except you (until you release the lock or
someone breaks your lock)
m Non-exclusive—indicates that you are working on the file and may possibly make changes to it

Depending on your privileges regarding a selected file, you may be able to break another team member's lock
on it.

3 To break a lock, check the Break Existing Lock check box.
4 Click OK.

Note: Depending on your personal options (StarTeam k Personal Options), you may have unlocked files that
are marked read-only. This prevents you from inadvertently making changes to files that you have not locked.

395

396

StarTeam: Merging Source Files

The StarTeam integration for Developer Studio 2006 helps you avoid merge conflicts by requiring you to update
when necessary before checking in changes. If merge conflicts do occur when you attempt to merge a file, StarTeam
and Developer Studio 2006 alert you to the conflict, and provide a means to reconcile the merge conflicts.

If you attempt to check in or checkout a file that is not based on the tip revision of the file, StarTeam asks if you want
to merge it with the tip revision. The following procedure describes how to use the Visual Merge utility to merge file
contents. File merging is not supported for the checkin operation, so you must check out a file to merge it with your
working file. When the merge is completed the resulting modified file revision may be checked in.

By default, StarTeam opens the merge utility only when there are conflicts between the two revisions of the file. You
can change this behavior to open the merge utility for all merge conditions on the File page of the Personal
Options dialog box (StarTeam F Personal Options).

Note: The StarTeam Client provided with Developer Studio 2006 does not include the Visual Merge utilitiy for

merging revisions of files. This utility is available with the StarTeam Windows Client, and if you have the

StarTeam Windows Client installed, the StarTeam integration will use this utility by default. Alternatively, you
can use the Alternate Applications dialog box to configure the integrated StarTeam Client to use a different
merge utility. To open the Alternate Applications dialog box, choose StarTeam k Personal Options and

box, and click the Alternate Applications button on the File page of the Personal Options dialog box.

To merge a file on checkout

1

Choose StarTeam F Check Out.
The StarTeam Check Out dialog box appears.

Specify any checkout conditions and advanced options, and click OK.
If a merge is required, StarTeam displays a dialog box asking if you want to merge the file now.

Click Yes to start the merge.
The merge application opens.

Resolve all conflicts and apply or remove any other changes as needed.
Visual Merge lets you quickly search for and resolve conflicts and differences between the two file revisions.

When you have resolved all conflicts, choose File k Exit to close Visual Merge and return to the IDE.
StarTeam tells you whether you have resolved all conflicts and asks if you wish to save the file.

click Yes to replace your working file with the merged file.
The file status will change from Merge to Modified. The file is now ready to check in to StarTeam.

397

398

StarTeam: Migrating Projects from the SCC Interface to the
StarTeam Integration

If you have projects that you manage with the StarTeam SCC interface, you can associate these files with the
StarTeam integration to take better advantage of the powerful features and functions provided by the StarTeam
Client. This procedure will disassociate the project from the StarTeam SCC interface. The StarTeam revision history

is retained for your project files.

Tip: You need to know the name of the StarTeam Server, project, and folder in which your project is stored to
complete the migration to the StarTeam interface. You can get this information quickly by opening the project
and launching the StarTeam Client through the SCC interface (Tools ¥ Team k Run Scc Application). The
title bar at the top of the StarTeam main window shows the server configuration that contains the currently
displayed project view along with the the StarTeam project name and the view name.

To associate an SCC controlled project with the StarTeam integration

1 Open the project in Developer Studio 2006.

2 Choose StarTeam k Manage Associations.

This opens the Manage Associations dialog box, which lets you associate your Developer Studio 2006 project
with a StarTeam Server, project, and folder.

3 Click the Edit button to re-establish a connection to the StarTeam Server.

This opens the StarTeam Associations dialog box.

4 In the StarTeam Associations dialog box, fill in the following fields:

Field

StarTeam Server

Project Name

View Path

Folder Path

Logged In User Name

Local Working Path

Description

Specifies the StarTeam Server where the project is stored. Select a server from the
StarTeam Server drop-down list. If the StarTeam Server you want to use does not appear
on the list, click the Servers button to add a new server or change the properties of an
existing server. If you have not previously logged on, the Log On dialog box requests a
user name and password when you select a server.

The name of the StarTeam Project in the repository. Select the StarTeam project that
contains your Developer Studio 2006 project from the Project Name drop-down list.

Each StarTeam project has at least one view, and may have multiple views. A view defines
the files and folders that can be accessed for a given project. Select an existing view from
the View Path drop-down list.

By default, the folder path is set to the project's root folder. To choose a different folder,
click the ellipsis (...) button, and select the directory.

This is the user name used to log on to the selected StarTeam Server. This field is not
editable.

This is the path to the local directory containing your project. This field should not require
editing.

5 After you have made your selections, click OK to close the StarTeam Associations dialog box.

The Manage Associations dialog box will list the StarTeam associations (server, project, view, and folder path)
and indicate that your project is associated.

6 Click Close to close the Manage Associations dialog box.

399

The project is automatically committed. StarTeam changes the file extension for the StarTeam SCC interface

configuration file from <projectfilename>.cdp to <projectfilename>.cdp.saved to disassociate the project from the
SCC interface.

The project is now associated with the StarTeam integration.

400

StarTeam: Placing Projects and Project Groups

StarTeam integration in Developer Studio 2006 lets you place projects and project groups into StarTeam. This places
the source files from the project into the StarTeam repository and establishes a tip revision for the files. Placing a
project into a StarTeam enables version control of that project and makes the project accessible to other team
members.

To place a project into StarTeam

1 Choose StarTeam k Place Project or StarTeam k Place Group.

Note: If you have not saved your project or project group, you are required to save it before continuing.
When your project or project group is saved locally, the StarTeam Association dialog box
displays. This dialog box lets you specify the details for placing your project or project group
into StarTeam.

2 Select a StarTeam server from the list in the StarTeam Association dialog box.
The project will be stored on the selected server.

Note: If the server you want to use does not appear on the list, click the Servers button to add a new
server or change the properties of an existing server. When you select a server, the Log On
dialog box requests a user name and password. See your StarTeam administrator for your
server logon name.

3 Select a StarTeam project from the Project Name list, or click New to create a new StarTeam project.

Note: When you click New, the New Project dialog box displays. Use this dialog box to specify a
project name and the default working folder. The StarTeam project name must be unique. The
directory specified in the Default Working Folder field is used as the default target directory
when the project is pulled from StarTeam.

4 Select a view from the View path list.

A view defines the files and folders that can be accessed for a given project. If you created a new StarTeam
project, there is only one view, and it has the same name as the project. You can create additional views after
the project has been placed into StarTeam

5 Click OK.
The Add Files dialog box displays.

6 Fill in the information in the Add Files dialog box.
This step is optional but recommended. For information about this dialog box, see the StarTeam Add Files topic.
7 Click OK.

The project source files are checked into the StarTeam repository. The status of the StarTeam operation displays
in the StarTeam Messages window.

401

402

StarTeam: Pulling Projects and Project Groups

Pulling a project from a repository configures your connection to that project in the repository and deposits the project
in your own workspace. In a team environment, it connects you to the network of users who can make changes in
that project.

To pull a project or a project group

1 Choose StarTeam k Pull.
The Pull Group Or Project From StarTeam dialog box displays.

Note: If none of the StarTeam Servers in your server list match the server address of the server
configuration used to check in the project or project group, you are asked if you want to indicate
a specific server to use for this server address.

2 Choose the server where the project is stored from the StarTeam Server list.

3 Select the project to be pulled from Project name menu.
4 Click Browse next to the Local working path field.

Note: In most cases you should not use the default value for the Local working path field. The default
value is based on the default working folder specified by the team member who placed the
project into StarTeam.

5 Navigate to a new or existing empty local directory to store the project.
This directory will become the local workspace for the project.

6 Specify additional options in the Pull Group Or Project From StarTeam dialog box, if appropriate.
For information about these options, see the Pull Group or Project from StarTeam topic.

7 Click OK to pull.

The project or project group is pulled from the repository. The status of the StarTeam operation is displayed in
the StarTeam Messages window.

403

404

StarTeam: Removing Files

When you remove a file from your Developer Studio 2006 project, StarTeam removes the file from the repository
when you commit your project.

To remove files from StarTeam control

1 Open the Developer Studio 2006 project containing the files you want to remove.
2 Choose Project ¥ Remove From Project
A Remove From Project dialog box appears.
3 Select the file or files you want to remove and click OK.
4 Choose File ¥ Save All to save the project.
5 Choose StarTeam k Commit Project to remove the files from the StarTeam repository.

When another team member updates his project (StarTeam k Update Project), the files will be removed from
his local project.

Note: This does not delete files from the local working path.

405

406

StarTeam: Reverting Files

Using the StarTeam integration, there are a number of options for reverting your source file to a previous revision
from the repository.

Warning: Reverting to a prior revision deletes any unsaved changes in the editor buffer.

To revert a file to the latest revision in the repository

1 Choose StarTeam F Revert.

This discards any changes in the editor buffer for the active file, and reverts it back to the most recent revision
of the file in the repository.

2 Alternatively, you can right-click a file in the Project Manager and choose StarTeam k Revert.

Note: The StarTeam file revisions show up in the History Manager. The History Manager lets you revert a file
back to any revision of the file in the StarTeam repository. You can also revert a file back to a locally saved
revision of the file.

407

408

StarTeam: Updating Projects

When you update a project, StarTeam updates your project's source files with the latest revisions from the repository.
If files have been added to or removed from Developer Studio 2006, your local project will also reflect these changes.
If a file is in a merge state, StarTeam asks if you want to merge the changes.

Note: If file renaming or deletions made in your local project conflict with changes made by another team member
in the StarTeam Client, you must manually resolve the pending renaming or deletion of files. The Pending
Renames/Deletes dialog box (StarTeam F Pending Renames/Deletes) lets you commit any pending local
file renames or deletions to the repository or cancel the pending operations.

To update a project

1 Choose StarTeam F Update Project.

StarTeam updates your project source files and the project file with the latest revisions from the repository. If files
have been added to or removed from the project, the local project is updated to reflect these changes. If any files
are in a merge state, StarTeam asks if you want to merge the files.

2 If you have afile in a merge state, click Yes to merge the changes or click No to leave the working file unchanged.
If you click Yes, the StarTeam merge utility opens.

1 Resolve all conflicts and apply or remove any other changes as needed.
2 When you have resolved all conflicts, choose File ¥ Exit to close Visual Merge and return to the IDE.

3 StarTeam tells you whether you have resolved all conflicts and asks if you wish to save the file. click Yes to
replace your working file with the merged file.

If you click No, the local working file is not updated, and the file remains in a merge state.

409

Together Diagram Procedures

410

Adding a Conditional Block

Note: If the control structure requires a condition, you can enter the condition with the in-place editor, or you can
enter it using the Condition field in the Object Inspector.

To add a statement block to the activation bar:

1 In the Tool Palette, click the Conditional Block button.
2 Click the target activation bar.

Alternatively:

1 Right-click an activation bar on a sequence diagram.
2 Choose Add k¥ Conditional Block on the context menu.

To set the type of the conditional block (if, for, and so on):

1 Open the Object Inspector.
2 Click the drop-down arrow for your choices.

411

412

Adding a Member to a Container

You can add members to class diagram elements (containers) by using the respective context menu for the diagram
element in the Diagram or Model Views or available shortcut keys to add members to a class diagram container
element.

To add a member to a container:

1 Right-click the container (class, interface, and so on).
2 Choose Add ¥k (Member_type), where, Member_type, is defined in the table above.

Tip: You can also use keyboard shortcuts to add fields and methods to a container allowing such
members. Click CTRL+W (for fields) and CTRL+M (for methods, functions).

3 You can edit the member using the in-place editor, Object Inspector, or source code editor.

Result: The new member is placed in the compartment of the container in the sort order for the elements in your
diagrams. You can set the sort order in the Options dialog window.

Tip: If a container already has members, you can right-click the existing member to create an additional member
using the context menu. You can also select the member, and press INSERT.

413

414

Aligning Model Elements

You can automatically rearrange all or selected model elements on a diagram.

To align model elements on a diagram:

1 Select several nodes or inner classifiers on a diagram.
2 Right-click and choose Alignment k (algorithm) on the context menu. The following algorithms are available:

m Top

m Bottom
m Rigth

m Left

m Center X
m CenterY

415

416

Annotating a Diagram

Use the following actions to annotate a diagram:

1 Draw an annotation
2 Draw an annotation link
3 Type comments

To draw an annotation:
1 In the Diagram View, you can:

m Hyperlink the note to another diagram or element.
m Edit the text when its in-place editor is active.
m Edit the properties of a note using Object Inspector.
m Add an existing note from one diagram to another diagram using a shortcut. (Select Add Fk Shortcuts from
any diagram context menu.)
In the Object Inspector for the note, you can:

m Edit the text.
m Change the foreground and background colors.
m Change the text-only property.

To draw an annotation link:

1 Click the Note Link button on the Tool Palette.
2 |n the Diagram View, click the source element.
3 Drag the link to the destination element.

4 Drop when the second element is highlighted.

Tip: You can use the Object Inspector to view both the client and supplier sides of the link.

To type comments:

1 To enter comments in the source code, use the Comment fields (Author, Since, Version) in the Object
Inspector for the class.

2 You can also enter source code comments directly into the code using the Editor.

417

418

Assigning an Element Stereotype

You can assign a stereotype in the diagram by using the in-place editor, or by using the Object Inspector.

Use the following techniques to specify a stereotype:

1 Assign a stereotype by using the in-place editor
2 Assign a stereotype by using the Object Inspector

To assign a stereotype by using the in-place editor:

1 Double-click the stereotype name to activate the in-place editor.
2 Enter the new name.
3 Press Enter.

To assign a stereotype by using the Object Inspector:

1 Select a class on your diagram.
2 In the Object Inspector, select the Stereotype field.

3 Click the value editor button and choose the required stereotype from the combo box. Alternatively, type the
stereotype name.

Result: The stereotype name is displayed in angle brackets in the class node.

419

420

Associating a Lifeline with a Classifier

To associate a lifeline with a classifier:

1 Select a lifeline on an Interaction diagram.

2 Right-click the lifeline and select Choose k Type... on the context menu. The Choose represented connectable
element's type dialog box opens.

3 Choose a classifier to be associated with the lifeline from the tree of available model elements.
4 Click OK.

421

422

Associating a Message Link with a Method

Message links can be associated with the methods of the recipient class. The methods can be selected from the list
of existing ones or can be created. This is done by two commands provided by the message context menu: Add
and Choose method.

You can use the Operation field in the Object Inspector to rename the method. A dialog box appears asking if you
want to create a new method or rename the old one.

Use the following techniques to associate a message link with a method (operation):

1 Create a new method for an existing message link
2 Associate an existing method with a message link
3 Unlink a method

To create a new method for an existing message link:

1 Create a message link between two objects. The recipient object must instantiate a class.

2 On the context menu of the message link, choose Add. The submenu provides the choice of Method,
Constructor or Destructor.

Note: Destructors are available for classes in C# projects only.

3 From the submenu, choose the required operation type.

Tip: If the recipient object does not instantiate a class, the Add command is not available on the context menu.

If the recipient object is associated with an interface, only methods can be associated with the message link.

Result: The new operation is created in the class of the recipient object. The message link is labeled with the
operation name, according to the operation type:

If a Method is selected, the label is Method<n> () :return type.
If a Constructor is selected, the label is <Classname> () in C# projects projects.

If a Destructor is selected, the label is ~<Classname> (). The Destructor option is disabled in the submenu of
the Add command.

You can use the Operation field in the Object Inspector to create a new method in the classifier. For example, in
the Operation field, you can enter method name (parameter types) :return type. Entering

parameter types is optional. If the method does not exist in the class, a dialog opens prompting you to create it.
If the method already exists in the class, the message link is automatically set for that method.

To associate an existing method with a message link:

1 Create a message link between two objects. The recipient object must instantiate a class.

2 On the context menu of the message link, select Choose method. The submenu displays the list of operations
of the recipient class.

3 If you cannot find the required operation in the list, click More to reveal the next 20 methods (including inherited
operations) of the recipient class.

4 Select the required operation.

423

Result: The associated operation is selected from the list of available methods, constructor, or destructor.

If you choose to associate a different classifier for an object that is already instantiated with a classifier, all of the
message links where the Operation property has been set are automatically saved as text unless the method
signature matches another method signature within the newly-linked classifier.

To unlink a method:

1 Select the message link.
2 On the context menu of the message link, choose Unlink method.

Result: An association between the message link and the operation is removed. However, the operation is preserved
in the recipient class.

If you unlink a classifier from an object and that object has incoming message links where the Operation property
is set to a method of the unlinked classifier, a dialog opens prompting you to unlink the method from the message
link or save it as text. Choosing the option to save as text places the Operation property in quotation marks and the
operation displays in red on the diagram. The intent of this feature is to help users to preserve all of the signatures
of any methods that have been linked to the message links. Upon instantiating the object with a class again, you
can delete the quotation marks. This will open a dialog box prompting you to create the method if it does not exist
in the linked classifier. A dialog box does not open if the signature of the method matches an existing method in the
classifier.

424

Associating a Transition or a State with an Activity

You can associate an activity (created on some UML 2.0 Activity Diagram) with a state (on entering the state, while
doing the state activity, and on exiting the state), or with a transition between states.

To associate a transition with an activity:

1 Select a transition or a state on a UML 2.0 State Machine diagram.

2 Under the General node of the Object Inspector, click the Effect (for a transition) or Do activity, Entry or
Exit (for a state) field.

3 Click the chooser button to open the Choose Activity dialog box.
4 In the model treeview, locate the desired activity.
5 Click OK.

Tip: Once a guard condition or effect are specified in the Object Inspector, you can further edit them in the diagram
by double-clicking the expression to activate the in-place editor.

425

426

Associating an Object with a Classifier

In the sequence or collaboration diagram you can create associations between objects (located on an interaction
diagram) and classifiers (located on some class diagram). Instantiated classes for an object can be selected from
the model, or the classes can be created and added to the model.

Note that an object can instantiate classifiers that belong to the various source-code projects within a single project
group, when such projects are referenced from the project in question.

The range of available classifiers depends on the project type:

m Design projects: classes, interfaces
m C# implementation projects: classes, interfaces, structures

To associate an object with an existing classifier:

1 Select an object.
2 On the context menu of the object, select Choose class.

3 The submenu displays the list of available classifiers. If you cannot find the required classifier in the list, click
More to reveal the model tree view.

4 In the Choose Type to Instantiate dialog box that opens, select a classifier from the model and click OK.

Tip: Alternatively, use the Object Inspector. Click the Instantiates field and select the classifier from the model.
Result: The object displays the fully qualified path to the instantiated classifier.

Tip: To associate an object with a classifier from a different project, add this project as a referenced one.

To create a new classifier for an existing object:

1 Select an object.
2 On the context menu, choose Add.
3 From the submenu, choose the desired classifier type.

Result: A new classifier is added to the model. A shortcut for the new classifier appears on the interaction diagram
in question, connected with the object by a dependency link.

To unlink an object:

1 Select an object.
2 On the context menu of the object choose Unlink class.

Result: The association is removed, but the classifier is preserved in the model.

To navigate between classifiers and objects:

1 Select the object on the diagram.

427

2 Right-click and choose Synchronize Model View on the context menu to move focus to this classifier in the
Model View, or choose Go to Class Definition to open this classifier in the source code (for implementation
projects).

To create a shortcut to a classifier on an interaction diagram:

1 On the diagram, select an object that instantiates a classifier.
2 Right-click and choose Import class on the context menu.

Result: A shortcut to the instantiated classifier is added to the diagram.

428

Branching Message Links

Branching messages that start from the same location on the lifeline.

To branch a message link with the previous one:

1 Select a message link on the sequence or collaboration diagram.
2 Right-click the message link and choose Branching ¥ With previous on the context menu.

To remove branching:

1 Select the message link to remove branching from.
2 Right-click the message link and choose Branching k¥ None on the context menu.

429

430

Browsing a Diagram with Overview Pane

To open the Overview pane:

1 Open a diagram and click the Overview button. The pane expands to show a thumbnail image of the current
diagram.

2 Click the shaded area and drag it. This is a convenient way to scroll around the diagram.

3 Resize the Overview pane by clicking the upper-left corner of the pane and dragging it.
4 Close the Overview pane by clicking the diagram.

431

432

Changing Appearance of Compartments

You can collapse or expand compartments for the different members of class, interface, namespace, enum, and
structure (C# projects only) elements. By default, the compartments for these elements are displayed on the diagram
as a straight line. You can use the Options dialog window to set viewing preferences for compartment controls.
Adding compartment controls is particularly useful when you have large container elements with content that does
not need to be visible at all times.

To collapse or expand compartments:

1 Select the class (or interface) on the diagram.
2 Click the “+” or “-” in the left corner of the compartment.

To view the compartment controls:

1 Open the Options dialog window.
2 Select the Together k (level) ¥ Diagram k Appearance k Nodes category.
3 In this category, edit the Show compartments as line field.

433

434

Changing Appearance of Interfaces

To show an interface as a circle sing the context menu:

1 Right-click the interface element in the Diagram or Model Views.
2 Choose Show as circle.

Tip: This menu item works as a toggle. Right-click again and choose Show as circle to show the interface element
as a rectangle.

Note: Interfaces shown as small circles do not show their members in the Diagram View. Use the Model View to
view the members.

To show an interface as a circle using the Object Inspector:

1 Select the interface element in the Diagram or Model Views.
2 Press F4 to open the Object Inspector.
3 Set the Circle view property as True.

Tip: Choose False for the Circle view property to show the interface element as a rectangle.

435

436

Changing Diagram Notation

Use the following techniques to change diagram notation:

1 Choose one of the two possible appearances for interfaces. Interfaces can be represented as rectangles or small
circles ("lollipops").

2 In UML 2.0 projects, you can change notation of interfaces to "ball and socket".
3 Adjust appearance options, including selection between UML or language formats.

Tip: Notation options are included in the Diagram F Appearance category of Together options.

4 Use the UML In Color profile.
5 Use stereotypes.

437

438

Changing Type of a Link

Use the following techniques to change the type of a link:

1 Set the link type by using the Object Inspector
2 Set the link type by using the context menu

To set the link type by using the Object Inspector:

1 Choose View | Object Inspector if the Object Inspector is not open.
2 Select a link on the diagram. The properties for the link appear in the Object Inspector.
3 In the Object Inspector, select the Type field.

4 Click the drop-down arrow and select the appropriate property from the list. Your available choices are
association, aggregation, or composition.

To set the link type by using the context menu:

1 Right-click a link on the diagram.
2 Choose Link Type on the context menu.

439

440

Closing a Diagram

To close a diagram:

1 Switch to the Diagram View.
2 Click the cross icon to close the current view.

Note: Closing a diagram in the Diagram View does not remove it from your project.

441

442

Converting Between UML 1.5 Sequence and Collaboration
Diagrams

You can convert between sequence and collaboration diagrams. However, when you create a new diagram, you
must specify that it is either a sequence diagram or a collaboration diagram.

To convert between sequence and collaboration diagrams:

1 Right-click the diagram background.

2 [If the diagram is a sequence diagram, choose Show as Collaboration on the context menu. If the diagram is a
collaboration diagram, choose Show as Sequence.

3 Repeat this process to switch back and forth.
After you convert from a sequence diagram to a collaboration diagram for the first time, or if you have added new

objects to the sequence diagram between conversions, it is recommended that you perform a full layout on the
collaboration diagram.

443

444

Copying and Pasting an Execution or Invocation Specification

Clipboard operations are supported for the execution and invocation specifications.

To copy and paste an execution or invocation specification:

1 Cut, Copy, and Paste commands are available on the context menu of an execution specification and invocation
specification. It is possible to copy or move these elements within the same diagram or to another diagram.

2 When an execution or invocation specification is copied, it means that the entire branch of messages is copied
also. Pasting the clipboard contents to a target lifeline results in changing the message numbers according to
the numbering of messages in the target lifeline.

3 If you paste an invocation or execution specification to another diagram, the entire outgoing bunch of messages
will be pasted also, with all the respective lifelines. If the target diagram does not contain lifelines for this execution
specification, they will be created automatically.

Tip: Itis also possible to move and copy message branches using the drag-and-drop technique. To move an
execution or invocation specification, drag-and-drop it to the target location. To create a copy, drag-and-drop
while holding the CTRL key down.

445

446

Copying and Pasting Model Elements

The move and copy operations are performed by drag-and-drop, context menu commands, or keyboard shortcut
keys.

Note: You can move or copy an entire diagram. In this case, all elements addressed on this diagram are not copied,
and a new diagram contains shortcuts to these elements.

To copy an element:

1 Select the element or elements to be copied.
2 Do any of the following:

m Right-click and choose Copy on the context menu
m Press CTRL+C on the keyboard

3 Do any of the following:

m Right-click the target location and choose Paste on the context menu
m Select the target location and press CTRL+V

447

448

Creating a Browse-Through Sequence

The hyperlinking feature of Together allows you to create browse-through sequences comprised of any number of
use case or any other diagrams.

To create a browse-through sequence:

1 You can link entire diagrams at one level of detail to the next diagram up or down in a sequence of increasing
granularity, or you can link from key use cases or actors to the next diagram. By browsing the hyperlink sequence,
you can follow the relationships between the use case diagrams.

2 Together does not confine hyperlinking to such sequences, however. You can use hyperlinking to link diagrams
and elements based on your requirements. For example, you can create a hierarchical browse-through sequence
of use case diagrams, creating hyperlinks within the diagrams that follow a specific actor through all use cases
that reference the actor.

449

450

Creating a Deferred Event

You can add a deferred event to a state element.
To create a deferred event:

1 Select the desired state or activity element on the diagram or in the Model View.
2 Right-click the element, and select Add k Deferred Event on the context menu.

451

452

Creating a Delegation Connector

To create a delegation connector:

1 Right-click an interface and choose New k Delegation connector from the context menu.
2 In the Choose Destination dialog box that opens, select the target interface from the Model or Favorites.
3 Click OK.

453

454

Creating a Diagram

When you create a new diagram, the Diagram View presents an empty background. You place the various model
elements on the background and draw relationship links between them according to the requirements of your model.

To create a diagram:

1 In the Model View, right-click the target project.

Tip: Alternatively, you can use the shortcut CTRL+SHIFT+D.

2 Select the target namespace (package) either in the Diagram View or in the Model View. If you do not select a
custom namespace (package), Together adds a new diagram to the default one.

3 Choose Add ¥ Other Diagram on the context menu.

4 In the Add New Diagram dialog box, choose the Diagrams tab.
5 Select the diagram type.

6 In the Name field, enter a name for the new diagram.

7 Click OK.

Result: The new diagram opens in a new tab in the Editor Window. You can use the Object Inspector to view and
edit the diagram properties.

To create a new diagram, use can also use the Hyperlink ¥ To New diagram command on the context menu of
the Model View or the Diagram View.

You can create a new logical class diagram using the context menu of the root node for your project, or by using the
context menu of a namespace element in the Model View. Choose either Add k¥ Class Diagram or Add k Other
Diagram. Choosing the latter command opens the Add New Diagram dialog box. When you place a class, interface,
or namespace on a logical class diagram, Together generates the corresponding source code or descendent
namespace in the namespace where this class diagram is located.

455

456

Creating a Guard Condition for a Transition

To create a guard condition for a transition:

1 Select a transition in the diagram.
2 Under the General node of the Object Inspector, click the Guard field.
3 Type the condition expression and apply changes.

457

458

Creating a History Element

To create a history element for a state:

1 In the target state on a state diagram, select the target region where history needs to be added.
2 Choose Shallow History or Deep History on the diagram Tool Palette.
3 Click the target region.

459

460

Creating a Link with Bending Points

If your diagram is densely populated, you can draw bent links between the source and target elements to avoid other
elements that are in the way.

To create a link with bending points:

1 Click the link button on the Tool Palette.
2 Click the source element.

3 Drag the link line, clicking the diagram background each time you want to create a section of the link. Sections
on a link lie between two blue bullets. The bullets display whenever you select the link on the diagram.

4 Click the destination element to terminate the link.

Tip: Once you have created a link, you can add bending points to it. Select the link on the diagram, and then drag
the link to the desired position. The figure below demonstrates this technique.

461

462

Creating a Member for a State

To create a member for a state:

1 Open the Diagram View.
2 Right-click an existing state and choose Add k (member) on the context menu.
The following members are available:

m Internal transaction
m Entry point

m Exit point

m Region

463

464

Creating a Multiple Transition

To create a multiple transition (a fork or a join):

1 Identify the states involved. If necessary, place all of the states on the diagram first and arrange as desired.
2 On the diagram Tool Palette choose the fork or join button.

3 Place either a horizontal or vertical fork or join on the diagram.

4 Resize as needed.

5 On the diagram Tool Palette, choose the transition button.

6 Draw links from the source state(s) to the fork/join node, and from the fork/join node to the target state(s).

465

466

Creating a Pin

To add an input pin, output pin, or value pin, do one of the following:

1 Right-click an action.
2 Choose New F Input Pin (or: Output Pin, or: Value Pin) on the context menu.

Result: The created pin is added to the target action as a square. Note that the pins are attached to their actions,
and can be only dragged along the action borders.

Alternatively:

1 Open the Tool Palette.
2 Choose the appropriate button, and click the target action.

467

468

Creating a Port

To create a port:

1 Choose the port icon on the Tool Palette.

2 Click the target class or part.
3 Create as many ports as required.

469

470

Creating a Referenced Part

To create a referenced part:

1 Open the Diagram View.
2 Do one of the following:

m Use the referenced part button on the diagram Tool Palette.
m Right-click a target container and choose New F Referenced part on the context menu.
m Select a part, open the Model View, and check the option aggregated by reference.

471

472

Creating a Self-Transition

To create a self-transition:

1 Draw a transition from the state or activity element and drag the link away from the element.
2 Drag the link back to the element and drop it.

Alternatively:

1 Draw a transition between two activities (or states).
2 Drag the opposite end of the link line back to the desired activity (or state).

473

474

Creating a Sequence or Communication Diagram from an
Interaction

To create a sequence or a communication diagram from an interaction:

1 In the Model View, choose an Interaction element.

2 Right-click the Interaction node and choose Open with Sequence diagram 2.0 or Open with Communication
diagram 2.0.

Results: If such diagram is missing, it will be created. Then this diagram opens in the Diagram View.

475

476

Creating a Shortcut
You can create a shortcut to a model element on the diagram background by using three methods:

m By opening Add Shortcuts dialog box from the Diagram View
m By copying and pasting a shortcut from the Model View
m By choosing Add Shortcuts on the Model View context menu

Use the following techniques to create a shortcut:

1 Create a shortcut by using the Add Shortcuts dialog window
2 Create a shortcut by using drag-and-drop

3 Create a shortcut by copying and pasting

4 Create a shortcut by using the Model View context menu

To create a shortcut by using the Add Shortcuts dialog window:

1 Right-click the diagram background.
2 Choose Add ¥ Shortcuts on the context menu.

Tip: You can also use CTRL+SHIFT+M to open the Edit shortcuts dialog window.

3 In the Edit shortcuts dialog window, choose the required element from the tree view of available contents.
4 Click Add to place the selected element to the list of the existing or ready to add elements.
5 When the list of ready to add elements is complete, click OK.

To create a shortcut by using drag-and-drop:

1 Select the element in the Model View.
2 Drag-and-drop the element onto the diagram.

To create a shortcut by copying and pasting:

1 In the Model View, right-click the element to be added to the current diagram as a reference.
2 Choose Copy on the context menu.
3 Right-click the target diagram and choose Paste Shortcut on the context menu.

Tip: You can also copy an element from one diagram and paste it in another diagram as a shortcut.

To create a shortcut by using the Model View context menu:

1 Open the diagram where the shortcut will be added.
2 In the Model View, select the element to be added to the current diagram as a shortcut.

477

3 Right-click the element in the Model View, and choose Add as Shortcut on the context menu.

478

Creating a Simple Link

In a design project, you can create a link to another node, or a shortcut of an element of the same or another design
project (these projects must be of the same UML version).

In an implementation project, you can create a link to another node or a shortcut of an element of the same project.

To create a simple link between two nodes:

1 On the diagram Tool Palette, click the button for the type of link you want to draw in the diagram. The button
stays down.

2 Click the source element.

3 Drag to the destination element and drop when the second element is highlighted.

479

480

Creating a Single Model Element

To create a single model element:

1 Open a target diagram in the Diagram View.

2 Choose Tool Palette from the View menu.

3 Choose the UML [diagram type] tab in the Tool Palette to view available model elements.

4 On the Tool Palette, click the icon for the element you want to place on the diagram. The button stays down.

Tip: Icons are identified with labels.

5 Click the diagram background in the place where you want to create the new element. This creates the new
element and activates the in-place editor for its name.

Tip: Alternatively, you can right-click the diagram background and choose Add on the context menu. The submenu
displays all of the basic elements that can be added to the diagram, and the Shortcuts command.

481

482

Creating a State

To create a state:
1 Using the Tool Palette buttons: On the diagram Tool Palette, choose to create a state node. Click an appropriate
place on your diagram.
Alternatively:

Using the context menu of the diagram: Right-click the diagram background. Select Add ¥ State on the context
menu.

Note: You can place a state inside of the existing state. It is possible to hide individual states. For
example, you might want to hide the content of composite states for better understanding of
the whole diagram.

2 When a new state is placed on a diagram, you can use the Object Inspector to adjust its properties, including:

m Configure standard properties of the element.

m In the State Invariant field, select the language of the expression from the Language list box. The possible
options are OCL and plain text.

m In the Properties page, configure the behavior of the state by setting or viewing the following additional

properties:

Field Description

Composite Set to True if there is one or more regions in this state (not editable)

Orthogonal Set to True if there are two or more regions in this state (not editable)

Simple Set to True if there are no regions in this state (not editable)

Do activity Specify the activity to be performed during execution of the current state by using the Object
Inspector. This activity may be selected from any Activity diagram of the project

Entry Specify the activity to be performed when the current state starts executing by using the Object
Inspector. This activity may be selected from any Activity diagram of the project

Exit Specify the activity to be performed when the current state finishes executing by using the Object

Inspector. This activity may be selected from any Activity diagram of the project

In the edit field below the list box enter the OCL expression for this state.

483

484

Creating a State Invariant

To create a state invariant as an OCL comment:

1 On the diagram Tool Palette, choose the state invariant button.
2 Click the target lifeline or execution specification.

Tip: Alternatively, use the Add k State invariant command on the context menu of a lifeline or an
execution specification.

3 In the Object Inspector of the state invariant, select the General node.

4 In the Invariant kind field, choose OCL expression from the drop-down list. The shape of the state invariant
diagram element changes to braces.

5 In the OCL invariant node that adds to the Property Browser, select the language of the comment from the
Language drop-down list. The possible options are OCL and plain text.

6 Type the text and apply changes.

To connect a state invariant to a state:

1 On the diagram Tool Palette, choose the state invariant button.

2 Click the target lifeline or execution specification.

3 In the Object Inspector of the state invariant, select the General node.

4 In the Invariant kind field, choose States/Regions from the drop-down list.
5 In the States/Regions field, click the chooser button.

6 Inthe Choose States and/or Regions dialog box, select the desired states and/or regions from the model, using
the Add button.

7 Click OK when ready.

Tip: Alternatively, type the state or region name. If the state or region belongs to a different package,
specify its fully-qualified name.

485

486

Creating an Activity for a State

To create an activity for a state:

1 Open the Diagram View.
2 Right—click a state and choose Add F Activity on the context menu.

Result: A new activity is created inside of a state.

487

488

Creating an Association Class

To create an association class:

1 On the diagram Tool Palette, select the association class button.

2 Click the diagram background. This adds a regular class icon for the association class, connected with the
diamond icon.

3 Create participant classes.
4 Using the association end button, connect the n-ary association with the participant classes.

Result: The source code of an association class contains appropriate tags for the association class itself, and for
each of the association end classes.

To delete an association class:

1 Right-click an association end link, association class, or connector.
2 Choose Delete Association Class on the context menu.

Result: The whole association class construct is deleted from the diagram.

489

490

Creating an Extension Point

To create an extension point:

1 Right-click the use case element.
2 Choose Add Fk Extension Point on the context menu.
3 Type in a name.

491

492

Creating an Inner Classifier

This section includes instructions for adding inner classifiers to classes (including Windows classes, such as
Windows forms, Inherited forms, User Controls and so on), structures, and modules (collectively, containers) in
implementation projects.

You can add inner classifiers to class diagram elements (containers) using the respective context menu for the
diagram element in the Diagram or Model Views. You can also select a classifier in the Tool Palette and click the
container element in the Diagram View to add the inner classifier to the container element.

Note: Structure elements are available for implementation projects only.

Tip: You can use drag-and-drop or clipboard operations to remove an inner classifier from the container element.

To create an inner classifier by Using the context menu:

1 Right-click the container element.
2 Choose Add F (Inner_classifier_type), where (Inner_classifer_type) is defined in the table above.

Using cut, copy, and paste:

1 Use the clipboard operations to either cut or copy an existing classifier.
2 Select the container element.
3 Use the clipboard operations to paste the selected classifier into the container element.

Using drag-and-drop:

1 Select an existing classifier in the Diagram View.

2 Drag-and-drop it onto a pre-existing container in the Diagram View. A blue border highlights the location that
Together recognizes as a valid destination for dropping the inner classifier.

493

494

Creating an Internal Structure for a Node

To create an internal structure for a node:

1 Choose the part icon on the diagram Tool Palette.
2 Click the valid container (class or collaboration).
3 Repeat these steps to create as many participants as needed.

Tip: Choose the part icon on the diagram Tool Palette while holding down the CTRL key. Each click
on a valid container produces a new part.

4 Link the collaborating parts by connectors.
5 Use the Object Inspector to set up the properties of the part.

495

496

Creating an Internal Transition

To create an internal transition:

1 Select the desired state or activity element on the diagram or in the Model View.
2 Right-click the element, and select Add F Internal Transition on the context menu.

497

498

Creating Multiple Elements

You can place several elements of the same type on a diagram without returning to the Tool Palette or by using the
diagram context menu. Each element will have a default name that can be edited with the in-place editor or in the
Object Inspector.

To create multiple elements:
1 Holding down the CTRL key, click the Tool Palette button for the element you want to create (the button stays
down). Release the CTRL key.

2 Click the desired location on the diagram background. The new element is placed on the diagram at the point
where you click.

3 Click the next location on the diagram background. The next new element is placed on the diagram.
4 Repeat the previous step until you have the desired number of elements of that type.

5 To stop multiple element creation, click the Pointer Tool Palette button or press the ESC key to deselect the
element after closing the in-place editor of the last inserted element.

Tip: After making a selection on the Tool Palette or doing the first of a multi-draw or multi-placement operation,
you can cancel the operation by clicking the Pointer button on the Tool Palette or by pressing the ESC key.

499

500

Deleting a Diagram

Warning: The project automatically created default diagram for a namespace (package) cannot be deleted.

To delete a diagram:

1 In the Model View, select the diagram to be deleted.
2 On the context menu, choose Delete.
3 Confirm deletion, if required.

Result: The diagram is deleted from the project.

501

502

Designing a UML 1.5 Activity Diagram

Use the following tips and techniques when you design a UML 1.5 Activity Diagram.

To design a UML 1.5 Activity Diagram, follow this general procedure:

1

Create one or more swimlanes. You can place several swimlanes on a single diagram, or create a separate
diagram for each.

Warning: You cannot create nested swimlanes.

Create one or more activities. You can place several activities on a single swimlane, or create a separate
swimlane for each.

Warning: You cannot create nested activities.

For convenient browsing, first model the main flow. Next, cover branching, concurrent flows, and object flows.

Tip: Use separate diagrams as needed and then hyperlink them.

Create Start, End, Signal Receipt, and Signal Sending elements for your swimlanes.
If your activity have several Start points, they can be used simultaneously.

Create object nodes. You do not link object nodes to classes on your Class Diagrams. However, you can use
hyperlinks for better understanding of your diagrams.

Create state nodes for your swimlanes.

Tip: You can create nested states.

7 Optionally, create a History node.

8 Connect nodes by links.

9 You can optionally create shortcuts to related elements of other diagrams.

503

504

Designing a UML 1.5 Component Diagram

Following are tips and techniques that you can use when working with UML 1.5 Component Diagrams. It can be
convenient to start creation of a model with Component Diagrams if you are modeling a large system. For example,
a distributed, client-server software system, with numerous interconnected modules. You use Component Diagrams
for modeling a logical structure of your system, while you use Deployment Diagrams for modeling a physical
structure.

To design a UML 1.5 Component Diagram, follow this general procedure:

1 Create a hierarchy of Subsystems.

Tip: You can create nested Subsystems.

2 Create a hierarchy of Components. The largest component can be the whole system or its major part (for exam
ple, server application, IDE, service).

Tip: You can create nested component nodes. There are two methods for creating a nested
component node:
You can select an existing component and add a child component inside.

Alternatively, you can create two separate components and connect them with an Association-
Composition link.

3 Create interfaces. Each component can have an interface.
4 Draw links between elements.
5 You can optionally create shortcuts to related elements of other diagrams.

505

506

Designing a UML 1.5 Deployment Diagram

Use the following tips and techniques when you design a UML 1.5 Deployment Diagram. It can be convenient to
start creation of a model with Deployment Diagrams if you are modeling a large system that is comprised of multiple
modules, especially if these modules reside on different computers. You use Deployment Diagrams for modeling a
physical structure of your system, while you use Component Diagrams for modeling a logical structure.

To design a UML 1.5 Deployment Diagram, follow this general procedure:

1 Create a hierarchy of Nodes.

Tip: You can create nested Nodes.

2 Create a hierarchy of Components. The largest component can be the whole system or its major part (for exam
ple, server application, IDE, service).

Tip: You can create nested Components. There are two methods for creating a nested component:
You can select an existing component and add a child component inside.

Alternatively, you can create two separate components and connect them with an Association-
Composition link.

3 Represent how Components resides on Nodes. You can represent this in two ways:
m Use a supports link between the component and node. The supports link is a dependency link with the stereotype
field set to support.
m Graphically nest the Component within the Node.

4 Optionally, create Obijects.
5 Create Interfaces. Each component can have an interface.

6 Indicate a temporary relationship between a Component and Node. Objects and components can migrate from
one component instance to another component instance, and respectively from one node instance to another
node instance. In such a case, the object (component) will be on its component (node) only temporarily. To
indicate this, use the dependency relationship with a becomes stereotype.

7 You can optionally create shortcuts to related elements of other diagrams.

507

508

Designing a UML 1.5 Statechart Diagram

Following are tips and techniques that you can use when working with UML 1.5 Statechart Diagram.

To design a UML 1.5 Statechart Diagram, follow this general procedure:
1 Create Start and End points.

2 Create main states and substates.

Tip: You can create nested states.

3 Create transitions.
4 Create history nodes.
5 You can optionally create shortcuts to related elements of other diagrams.

To create entry and exit actions:

1 Create an internal transition in the desired state.
2 Double-click the internal transition to enable in-place editing.
3 Rename using the following syntax: stereotype/actionName (argument)

For example: exit/setState (idle)

Alternatively, create an internal transition and set the event name, event arguments, and action expression properties
using the Object Inspector for the internal transition.

509

510

Designing a UML 2.0 Activity Diagram

Use the following tips and techniques when you design a UML 2.0 Activity Diagram. Usually you create Activity
Diagrams after State Machine Diagrams.

To design a UML 2.0 Activity Diagram, follow this general procedure:

1 Create one or more activities. You can place several activities on a single diagram, or create a separate diagram
for each.

Warning: You cannot create nested activities.

2 Usually activities are linked to states or transitions on State Machine Diagrams. Switch to your State Machine
Diagrams and associate the activities you just created with states and transitions.

Tip: After that you can find that some more activities must be created, or the same activity can be
used in several places.

3 Switch back to the Activity Diagram. Think about flows in your activities. You can have an object flow (for
transferring data), a control flow, both or even several flows in each activity.

4 Create starting and finishing points for every flow. Each flow can have the following starting points:

m Initial node

m Activity parameter (for object flow)
m Accept event action

m Accept time event action

Each flow finishes with a Activity Final or Flow Final node.

If your activity has several starting points, they can be used simultaneously.

5 Create object nodes. You do not link object nodes to classes on your Class Diagrams. However, you can use
hyperlinks for better understanding of your diagrams.

6 Create action nodes for your flows. Flows can share actions.

Warning: You cannot create nested actions.

7 For object flows, add pins to actions. Connect actions and pins by flow links.
8 Add pre- and postconditions. You can create plain text or OCL conditions.
9 You can optionally create shortcuts to related elements of other diagrams.

To add an activity parameter to an activity:

1 In the Tool Palette, press the Activity Parameter button.
2 Click the target activity.
Or:

Choose Add Fk Activity Parameter on the activity context menu.

Result: An Activity Parameter node is added to the activity as a rectangle. Note that the activity parameter node is
attached to its activity. You can only move the node along the activity borders.

511

Note: Activity parameters cannot be connected by control flow links.

512

Designing a UML 2.0 Component Diagram

Following are tips and techniques that you can use when working with UML 2.0 Component Diagrams. It can be
convenient to start creation of a model with Component Diagrams if you are modeling a large system. For example,
a distributed, client-server software system, with numerous interconnected modules. You use Component Diagrams
for modeling a logical structure of your system, while you use Deployment Diagrams for modeling a physical
structure.

To design a UML 2.0 Component Diagram, follow this general procedure:

1 Create a hierarchy of components. The largest component can be the whole system or its major part (for example,
server application, IDE, service).

Tip: You can create nested component nodes. There are two methods for creating a nested
component node:

You can select an existing component and add a child component inside.

Alternatively, you can create two separate components and connect them with an Association-
Composition link.

2 In the hierarchy of components, you can end up by adding concrete classes and instance specifications. You
can create them on a Component Diagram directly, or create them on a Class Diagram and put shortcuts on a
Component Diagram.

3 Create interfaces. Each component can have a provided interface and a required interface.

4 Optionally, create artifacts. Usually, you describe physical artifacts of your system on Deployment Diagrams. But
if some component is closely connected with its physical store, add and link an artifact to a Component Diagram.

Tip: You can create nested artifacts.

5 Optionally, create ports for your components. You can attach a port to a component and link it with several classes
or components inside. In this case, when a message arrives, this port decides which class must handle it.

6 Draw links between elements.
7 You can optionally create shortcuts to related elements of other diagrams.

513

514

Designing a UML 2.0 Deployment Diagram

Use the following tips and techniques when you design a UML 2.0 Deployment Diagram. It can be convenient to
start creation of a model with Deployment Diagrams if you are modeling a large system that is comprised of multiple
modules, especially if these modules reside on different computers. You use Deployment Diagrams for modeling a
physical structure of your system, while you use Component Diagrams for modeling a logical structure.

To design a UML 2.0 Deployment Diagram, follow this general procedure:

1

4

Create a hierarchy of execution environments, devices, and nodes. Execution environments usually represent
software environment used to execute your system, such as an operating system. Devices usually represent
hardware equipment, such as a printer, a hard disk, or a computer. Nodes represent the rest of physical entities,
such as a file.

Tip: You can create nested execution environments, devices, and nodes. For example, you can add
a node inside of an execution environment, or a node inside of a device.

Create artifacts.

Create deployment and instance specifications. By doing this, you arrange physical locations of objects and other
entities of your system.

Add operations to artifacts.

5 Once an operation is added, you can define its properties in the Object Inspector, which includes parameters,

6

stereotype, multiplicity and more.
You can optionally create shortcuts to related elements of other diagrams.

To deploy an artifact to a target node:

1
2
3

In the diagram Tool Palette, choose the deployment button.
Click the artifact to be deployed. The valid source is denoted by a solid frame.
Drag-and-drop the deployment link to a target node. The valid target is denoted by a solid frame.

To define parameters of an operation:

a Hh WO N =

Select the desired operation in an artifact.

In the Object Inspector, expand the General node and choose Parameters field.
Click the chooser button to open Add/Remove Parameters dialog box.

Click Add. This creates an entry in the parameters list.

Enter the parameter's name, type multiplicity, default value, and direction. Note that parameter type can be
selected from the list of pre-defined types, or from the model.

6 Using the Add and Remove buttons, create the list of parameters.
7 Click OK when ready.

515

516

Designing a UML 2.0 Sequence or Communication Diagram

Use the following tips and techniques when you design a UML 2.0 Sequence or Communication Diagrams. Usually
you create Interaction Diagrams after Class Diagrams.

Whenever an interaction diagram is created, the corresponding interaction is added to the project. Interactions are
represented as nodes in the Model View.

Note: Presentation of aninteraction in the Model View depends on the view type defined in the Model View options
on the default or project group levels. If model-centric mode is selected, an interaction is shown both under
its package node and diagram node. If diagram-centric mode is selected, an interaction is shown under the
diagram node only.

Note: You can view an interaction in two ways: as a Sequence Diagram, or as a Communication Diagram. So doing,
any actions performed with either view are automatically reflected in the other views. Thus, adding or deleting
an element in an interaction results in the modification of the corresponding interaction diagram, and vice
versa. An interaction diagram contains a reference to the underlying interaction.

Note: Unlike UML 1.5, it is not possible to switch a diagram that already exists from sequence to communication
and vice versa. However, it is possible to create a Sequence Diagram and a Communication Diagram based
on the same interaction.

To design a UML 2.0 Sequence Diagram, follow this general procedure:

1 Create an interaction use

2 Navigate to a referenced interaction

3 Associate a lifeline with a referenced element

4 Associate a lifeline with a type

5 Define decomposition for a lifeline

6 Repeat the steps to create all required interactions
7 Link the created lifelines by using messages

To create an interaction use:

1 In the diagram Tool Palette, choose the Interaction Use button.
2 Click on the target lifeline.

Tip: Alternatively, use the Add command on the lifeline context menu in the Diagram View or Model
View.

3 In the Object Inspector for the newly created interaction use, choose the Properties tab.
4 In the interaction name field, click the chooser button.

Tip: Alternatively, just type in the interaction name.

5 In the Choose Referenced Interaction dialog box, select the desired interaction from the project or Favorites,
and click OK.

An interaction use is initially created attached to a lifeline. Further it can be expanded over several lifelines, detached
from and reattached to lifelines.

517

To navigate to a referenced interaction:

1 Right-click on an interaction use that refers to another interaction.
2 On the context menu, choose Select.
3 Choose the desired destination on the submenu.

To associate a lifeline with a referenced element:

1 Make sure that your project contains the referenced elements that should be represented by the lifelines.
2 Select the desired lifeline in the Model View or the Diagram View.

3 In the Object Inspector, select the represents field.

4 Click the chooser button.

5 In the Choose Represented Connectable Element dialog box, select the desired part from the project or
Favorites.

6 Click OK.

To associate a lifeline with a type:

1 Select the desired lifeline in the Model View or the Diagram View.
2 In the Object Inspector, select the type field.
3 Click the chooser button.

4 In the Choose Represented Connectable Element's type dialog box, select the class that defined the type
from the project or Favorites.

5 Click OK.

To define decomposition for a lifeline:

1 Select the desired lifeline in the Model View or the Diagram View.

2 In the Object Inspector, select the decomposition field.

3 Click the chooser button.

4 In the Choose Referenced Interaction dialog box, select the desired interaction from the project or Favorites.
5 Click OK.

Tip: Decomposition, type, stereotype, and referenced element properties are also reflected in the
corresponding Communication diagram.

518

Designing a UML 2.0 State Machine Diagram

Following are tips and techniques that you can use when working with UML 2.0 State Machine Diagram.

To design a UML 2.0 State Machine Diagram, follow this general procedure:

Create initial and final nodes.
Create main states and substates.
Create regions.

Create entry and exit points.
Create pins.

Create transitions.

Create history nodes.

0 N OO G A WON =

You can optionally create shortcuts to related elements of other diagrams.

519

520

Designing Use Case Hierarchy

Use case diagrams typically represent the context of a system and system requirements.

To design use case hierarchy:

1 Usually, you begin at a high level and specify the main use cases of the system.

2 Next, you determine the main system use cases at a more granular level. As an example, a "Conduct Business
use case can have another level of detail that includes use cases such as "Enter Customers" and "Enter Sales."

3 Once you have achieved the desired level of granularity, it is useful to have a convenient method of expanding
or contracting the use cases to grasp the scope and relationships of the system's use case views.

521

522

Exporting a Diagram to an Image

To export a diagram to an image:

1 Place the focus on the diagram you want export in the Diagram View.

2 Choose File ¥ Export Diagram to Image on the main menu.

3 Click the drop-down arrow to preview and adjust the zoom settings of the diagram image.

4 Click Save. The file browser dialog box opens.

5 Browse for a location where you wish to save the image.

6 Enter a name. By default, the image file takes on the name given to the diagram in Developer Studio 2006.
7 Select an image format.

8 Click Save.

523

524

Grouping Actions into an Activity

Use the following techniques to group actions into an activity:

1 Use the Tool Palette buttons
2 Use drag and drop
3 Use the context menu of the activity element

Use the Tool Palette buttons:

1 In the diagram Tool Palette, choose to create an activity node.
2 Choose the action button, and click the target activity.

Use drag and drop:

1 Place an action element on the diagram background.
2 Drag and drop the new action on top of an existing activity.

Use the context menu of the activity element:

1 Right-click the target activity.
2 Select New F Action on the context menu.

525

526

Hiding and Showing Model Elements

You can control the visibility of elements on a diagram by using the Hide command (available on the context menu
for individual diagram elements), and the Show/Hide command (available on the diagram context menu).

To hide by using one of the following methods:

1 Open the Diagram View.
2 Do one of the following:
m Select the element on the diagram, right-click and choose Hide on the context menu.
m Select multiple elements on the diagram using CTRL+Click or by lassoing, and select Hide from the context menu.

m Right-click the diagram background and choose Hide/Show on the context menu. The Show Hidden dialog box
opens, as discussed below.

To show or hide diagram elements using the Show Hidden dialog box:

1 Right-click the diagram and choose Show/Hide on the context menu. The Show Hidden dialog box opens.

2 Select the element(s) that you wish to hide from the Diagram Elements list.
3 To add elements in the Diagram Elements list to the Hidden Elements list, do one of the following:

m Double-click the element .
m Click the element once and click Add.
m Select multiple elements using CTRL+Click and click Add.

4 To remove items from the Hidden Elements list do one of the following:

m Double-click the element.

m Click the element once and click Remove.

m Select multiple elements using CTRL+Click and click Remove.

m To remove all items from the Hidden Elements list, click Remove All.

5 Click OK to close the dialog box.

527

528

Hyperlinking Diagrams

Select Hyperlinks from the diagram context menu to create, view, remove, and browse hyperlinks.

Use the following techniques to create a hyperlink:

1 Create a hyperlink to an existing diagram or element
2 Create a hyperlink to a new diagram

3 Create a hyperlink to an external URL or file

4 Browse hyperlinks

5 Remove a hyperlink

To create a hyperlink to an existing diagram or element:

1 Open an existing diagram or create a new diagram from which to create the hyperlink.
2 Select the element that you want to link to another diagram or element.
3 To link the entire diagram, click the diagram background to deselect all elements.

Note: Do not select the actual namespace in the Model View to create a hyperlink. Rather, expand
the namespace node, and select the desired diagram.

4 Right-click and choose Hyperlinks k Edit. The Edit Hyperlinks dialog window (Selection Manager) opens.

(5]

Select the Model Elements tab to view the pane containing a tree view of the available project contents in the
Solution.

Select the desired diagram or element from the list, and click Add.
For element selection, expand diagram nodes in the Model Elements tab.
To remove an element from the selected list, select the element and click Remove.

© 00 N o

Click OK to close the dialog box and create the link.

To create a hyperlink to a new diagram:

1 Open a diagram in the Diagram View, or select it in the Model View.
2 On the context menu, choose Hyperlinks ¥ To New Diagram.
3 In the Add New Diagram dialog box, select the diagram type, enter the diagram name and click OK.

To create a hyperlink to an external URL or file:

1 Open an existing diagram or create a new diagram from which to create the hyperlink.
2 Select the element that you wish to link to the external document.

To link the entire diagram, click the diagram background to deselect all elements.
3 Right-click and choose Hyperlinks ¥ Edit. The Edit Hyperlinks dialog box opens.

4 Select the External Documents tab to view the Recently used Documents list which contains a list of previously
selected files or URLs.

5 To add a file to the Recently used Documents list:

1 Click Browse. The Open file dialog box opens.

529

N

Navigate to the desired file and click Open.

6 To add a URL to the Recently used Documents list:

—

Click URL.
In the dialog box that opens, enter the appropriate URL and click OK.

N

Tip: You can create a hyperlink to an external document by entering a relative URL path.

~

To remove an element from the selected list, select the element and click Remove.

=]

To clear the Recently used Documents list, click Clear.

Note: Iltems added to the Recently used Documents list are not specific to a single project or project
group.

9 Click OK to close the dialog box and create the link.

To browse hyperlinks:

1 Toview hyperlinks to a diagram, element or external document, right-click on the diagram background or element,
and choose Hyperlinks from the context menu. All hyperlinks created appear under the Hyperlinks submenu. On
a diagram, all names of diagram elements that are hyperlinked are displayed in blue font. When you select a link
from the submenu, the respective element appears selected in the Diagram View.

2 Once you have defined hyperlinks for a selected diagram or element, use the context menus to browse to the
linked resources.

Note: Browsing to a linked diagram opens it in the Diagram View or makes it the current diagram if
already open.

Browsing to a linked element causes its parent diagram to open or become current,
and the diagram scrolls to the linked element and selects it.

To remove a hyperlink:

1 Open the diagram that displays the link you want to remove.

2 Choose Hyperlinks k Edit from the diagram or element context menu. The Edit Hyperlinks dialog box opens.
3 In the selected list on the right of the dialog, click the hyperlink that you wish to remove.

4 Click Remove.

5 Click OK to close the dialog box.

Note: To remove a hyperlink from a specific element, select the element first. Then choose Hyperlinks F Edit on
the context menu.

530

Instantiating a Classifier

In a UML 1.5 design project, you can create an object that instantiates a class or interface from the same or another
UML 1.5 design project or any implementation project in the same project group. In an implementation project, you
can create an object that instantiates a class or interface from the same project or some UML 1.5 design project or
a referenced project. You can create such links by using the Object Inspector or by using Dependency links to
shortcuts.

To instantiate a classifier:

1 On a UML 1.5 class diagram, choose an object.

2 In the Object Inspector, choose the Instantiates field.

3 Click the Chooser button. The Choose Type to Instantiate dialog box opens.
4 In this dialog box, choose a classifier (class or interface).

Tip: Alternatively, draw a Dependency link from this object to a classifier or its shortcut.

531

532

Laying Out a Diagram Automatically

To lay out a diagram by using one of the algorithms:

1 Right-click the diagram background.
2 From the context menu, select Layout, and choose a command from the submenu.
There are several Layout commands on the Layout submenu:

m Do Full Layout: Sets the layout of all elements according to the layout algorithm defined for the current diagram.

m Layout for Printing:Sets the layout of all elements using the Together algorithm, regardless of the option
selected on any level.

m Route All Links:Streamlines the links removing bending points.
m Optimize Sizes: Enlarges or shrinks all elements on the diagram to the optimal size.

Note: Individual diagram elements also have the Route Links and Optimize Size layout commands
on their respective context menus. The Route Links command streamlines the links removing
any bending points. The Optimize Size command enlarges or shrinks the element to the optimal
size, leaving enough space for its label and any sub elements it may contain.

Tip: To enable layout of the inner substructure in diagrams, check the Recursive option ((level) | Diagram | Layout
| General) in the Options dialog window.

To set up the diagram layout:

1 On the main menu choose Tools | Options.

2 On the desired level, select Together | (level) | Diagram | Layout category.
3 Expand the node for the desired algorithm.

4 Specify the algorithm-specific options (if any) and apply changes.

Result: you can observe results of layout tuning when apply one of the Layout commands to the diagram.

The context menu available in the Diagram View provides access to the automated layout optimization features in
Together.

533

534

Linking Another Interaction from an Interaction Diagram

To link another interaction from an interaction diagram:

1 Open an Interaction diagram.
2 Right-click the diagram background and choose Add k Shortcut on the context menu.
3 Add a shortcut to another interaction in your project.

535

536

Moving Model Elements
Create your own layout by selecting and moving single or multiple diagram elements.
You can:

m Select a single element and drag it to a new position.
m Select multiple elements and change their location.
m Manually reroute links.

Note: If you drag an element outside the borders of the Diagram View, the diagram automatically scrolls to follow
the dragging.

Tip: Manual layouts are saved when you close a diagram or project and restored when you next open it. Manual
layouts are not preserved when you run one of the auto-layout commands (Do Full Layout or Optimize Sizes).

To move an element:

1 Select the element or elements to be moved.
2 Drag-and-drop the selection to the target location.

Tip: Right-click and use Cut and Paste. Use the keyboard shortcuts for Cut (CTRL+X), Copy (CTRL+C), and Paste
(CTRL+V) operations.

537

538

Printing a Diagram

You can print diagrams separately or as a group, or print all diagrams in the project.

To print a diagram:
1 With the diagram in focus in the Diagram View, choose File ¥ Print from the main menu. The Print diagram
dialog box opens.
2 In the Print Diagrams list box, specify the scope of diagrams to be printed:

m Active diagram: To print the currently selected diagram.

m Active with neighbors: To print the current diagram and the other diagrams of the same project.
m All opened: To print all diagrams currently opened in the Diagram view.

m All in model: To print all diagrams within a project group.

3 In the Print zoom field, specify the zoom factor.
4 If necessary, adjust the page and printer settings:

m Click the Print list box and choose Print dialog box to select the target printer.

m Use the Options dialog window (Together B (level) ¥ Diagram k Print options) to set up the paper size,
orientation, and margins.

Tip: Click Preview to open the preview pane. Use the Preview zoom slider, or Auto Preview zoom check box, as
required.

539

540

Putting Diagram Files Under Version Control
Together enables you to put your model under the source control in the same way as the other project resources.

The diagram elements in fact belong to the parent default package (namespace) files (default. txaPackage).
Thus, if editing of a diagram results in adding or deleting elements and changing their properties, you have to check
in or check out both diagram file and the corresponding default. txaPackage file. If editing only changed the
sizes and placement of elements, it is enough to check in or check out the diagram file. To avoid unsynchronized
and ambiguous results, each user in a team that works with the same project, should check out and lock the whole
project exclusively.

You can use the History command to compare changes in diagram files.

Warning: This topic describes the source control actions with regards to modeling. For the detailed information
about source control, refer to the relevant Developer Studio 2006 and source control provider
documentation.

To put diagram files under version control:

1 Make sure that an integration with a supported source control system is installed on your computer. Source
control commands are only enabled when a supported integration is installed.

2 Make sure that your project (project group) is added to the source control.
3 Apply the source control commands to the diagram files by using:
m StarTeam menu. This menu contains commands that enable you to add Together diagram files to your source
control repository. You can check in, check out, get, exclude, undo check out of, and compare diagram files.

m The Project Manager context menu. The context menu commands enable the same actions, and moreover,
provide the only way to check in and check out the entire project or project group, and work with the default
package or namespace files.

Note: When a project (project group) is added to source control, the Diagram View and the Project Manager show
icons that reflect the status of each model element under source control.

To exclude files from version control:

1 Open the diagram in the Diagram View.

2 Choose StarTeam. The menu command applies to the diagram that is open in the Diagram View and has the
current focus.

To check in and check out a project or a project group:

1 Open the Project Manager.
2 Right-click the project or project group node.
3 Choose Check in (Recursive) or Check Out on the context menu.

To check in and check out diagrams:

1 Open the diagram in the Diagram View, and choose StarTeam Check Out on the main menu. The Source
Control Provider Check out dialog box opens.

541

Tip: To retrieve a read-only copy of the latest version of the diagram, choose StarTeam k 2?7?72 on
the main menu.

2 Click Check out.

3 After you have finished working with the diagram file, choose StarTeam F Check In on the main menu.
4 The Source Control Provider Check in dialog box opens.

5 Click Check in.

Using the Check in command locks the diagram. Diagram elements in the locked diagrams display small lock
symbols. You can still edit the locked diagrams, check-out dialog box being automatically invoked on the first attempt
to edit or add/remove elements. After that the diagram becomes unlocked.

To undo check out:

1 If you check out a diagram and do not make any changes to it, use the Undo Checkout command. Using this
command cancels your check out and removes the writable version of the file from your working folder. The most
recent version of your diagram file in the source control repository is copied over your local copy, and if you have
made any changes to the local copy since you last checked out the file, they are lost.

2 Open the diagram in the Diagram View.

3 Choose StarTeam F Revert. The menu command applies to the diagram that is open in the Diagram View and
has the current focus.

To compare diagram versions:

1 Open the diagram in the Diagram View.

Warning: To track differences in the versions of a default package file, select the corresponding
default.txaPackage node in the Project Manager.

2 Choose StarTeam k Compare Contents on the main menu. A dialog box opens.
3 Select a version from the list, and click Diff. The Visual Diff window opens.

542

Renaming a Diagram

Warning: The project namespace (package) automatically created diagram cannot be renamed.

To rename a diagram:

1 In the Object Inspector, double-click the diagram name to initiate the inline editor.
2 Enter a new name.
3 Press Enter.

Alternatively:

1 Select the diagram in the Model View.

2 Press F2 or right-click and choose Rename on the context menu.
3 Enter a new name.

4 Press Enter.

Result: The diagram is renamed.

543

544

Rerouting a Link

To reroute a link:

1 Select a link.

2 Drag and drop the client of supplier end of the link to the desired destination object.

3 To change direction of the link, click a place on the link where you want to reroute the link.
4 Drag the line. Together automatically reshapes the link the way you want.

Tip: Model elements have the Layout ¥ Route All Links command on diagram context menus.

545

546

Resizing Model Elements

Diagram elements can be resized automatically or manually. When new items are added to an element that has
never been manually resized, the element automatically grows to enclose the new items.

To resize an element manually:

1 Click an element. The selected element is highlighted with bullets.
2 Drag one of the bullets in the desired direction.

When the element contents change, for example, when members are added or deleted, and the element size is too
small to display all members, scroll bars are displayed to the right of compartments.

To optimize a node element size:

1 Right-click an element.
2 Choose Layout ¥ Optimize Size.

To optimize the elements on an entire diagram:

1 Right-click the diagram background.
2 Choose Layout F Optimize Size.

547

548

Searching Diagrams

Together enables you to use the Find and Replace facilities provided by the Developer Studio 2006 to locate model
elements on model diagrams.

To search diagrams:

1 Choose Search F (search command) to use the find and replace facilities provided by the Developer Studio
2006.

2 You can find the specified string in the specified scope. The function supports case sensitivity, searching for
whole words or substrings, using wildcards and regular expressions.

3 Browse the search results.

549

550

Searching Source Code for Usages

In addition to the diagram search facility, Together enables you to track how an element or member is used in a
source-code project. The Search for Usages dialog box enables you to find the references to, and overrides of, the
elements and members in implementation projects.

The Search for usages command is available on the context menu of an element in a diagram or in the Model
View. Note that Search for usages is not available for the design projects.

To search source code for element usages:

1 Right-click an element or a namespace and choose Search for Usages on the context menu. The dialog box
opens with the selected element specified in the section Element to search.

2 In the Options section, check the following options as required:

m Usages of elements
Usages of members
Usages of Declared Classes

]
u
m Implementations
m Overriding

u

Include usings/imports
m Skip self

3 Click Search.
The search results are displayed in a tab in the Search for Usages window as a tree view, each node containing all
usages of an element in a certain class. Note that each new search adds its own tab to the window.

The Search for Usages window provides a toolbar with the buttons that enable you to expand or collapse the treeview
nodes, and repeat the search in the selected tab with the same settings.

The context menu of a search results tab provides the following commands:

Command
Close
Close all

Close all but this

551

552

Selecting Model Elements

Most manipulations with diagram elements and links involve dragging the mouse or executing context menu
commands on the selected elements.

To select a model element:

1 Open the Diagram View.
2 On a diagram:

m Click any element in the diagram to select it.

m To select multiple elements, hold down the CTRL key and click each element individually.

m Click the background and drag a lasso around an area to select all the elements it contains.
m For elements containing members, click on a member to select it.

m To select all elements on a diagram, press CTRL+A. Alternatively, right-click the diagram background and choose
Select All on the context menu.

553

554

Specifying Entry and Exit Actions

You can create entry and exit actions as nodes, or as stereotyped internal transitions.

To specify entry and exit actions using the in-place editor:

1 Create an internal transition in the desired state.
2 Double-click the internal transition to enable in-place editing.
3 Rename the internal transition using the following syntax:

stereotype/actionName (argument)

For example:

exit/setState (idle)

To specify entry and exit actions using internal transitions:

1 Create the internal transition.

2 Set the event name, event arguments, and action expression properties using the Object Inspector for the
internal transition.

555

556

Using a Class Diagram as a View

Class diagrams can also be used to create subviews of the project.

To use a class diagrams as a view:

1 Create a new class diagram.
2 Create shortcuts to the original diagram to easily and quickly build subset views for easier management.

Tip: Using this feature, you can create views of distributed classes into one diagram, with Together automatically
displaying any relationships that the gathered classes may have with each other.

Note: In implementation projects, changes made here also update the source code, keeping diagram and source
code in sync.

557

558

Using Drag-and-Drop

Drag-and-drop applies to the members as well as to the node elements. You can move or copy members (methods,
fields, properties, and so on) by using drag-and-drop in the Diagram View or in the Model View.

Drag-and-drop functionality from the Model View to the Diagram View and within the Model View works as follows:

m Selecting an element in the Model View and using drag-and-drop to place the element onto the diagram creates
a shortcut.

m Using drag-and-drop while pressing the SHIFT key moves the element to the selected container.
m Using drag-and-drop while pressing the CTRL key copies the element to the selected container.

Tip: You can also change the origin and destination for links on your diagrams using drag-and-drop.

To move a link to a new destination:

1 Select a link in the Diagram View.
2 Hover the cursor over the destination arrow.

3 Drag the arrow and drop it on the new destination. If the destination element is not in view, drag the link in the
appropriate direction, and the diagram will scroll with you.

Tip: Follow the same instructions to move the link source to an allowable location.

559

560

Using Grid and Other Appearance Options

You can optionally display or hide a design grid on the diagram background and have elements “snap” to the nearest
grid coordinate when you place or move them. The grid is configured in the Diagram Appearance options dialog

window.

To show grid:

1 Open Options dialog window.
2 Choose the Together ¥ Diagram k Appearance category, Grid group.

3 Adjust the options.

Note: Grid display and snap are enabled by default.

561

562

Using the UML in Color Profile

To enable or disable the “UML in color” profile:

1 In the Options dialog window, open the Together F (level) ¥ Diagram k Appearance category.

Tip: You can enable or disable it on for the project group, project, or diagram level.
2 Set the Enable UML in color option to True to enable the profile.

3 Optionally, adjust colors used by the profile.
4 Close the Options dialog window.

To draw UML nodes in colors:

1 Select or create a classifier.
2 Open the Object Inspector.
3 Assign a stereotype that is supported by the “UML in color” profile (for example, role).

Result: The classifier changes its color according to the settings in the Options dialog window.

563

564

Using View Filters

For global control over the diagram view, you can use the filters in the Options dialog window.

To enable, disable view filters:

1 Choose Tools F Options on the main menu.
2 Click the Together folder.
3 Under the (level) ¥ Diagram node, select View Filters.

Note: The filters shown in the Options dialog window are global filters. To specifically filter classes, you can set the
Show members property to False.

To filter classes:

1 In the Options dialog window, View Filters page, click the Show members field.
2 Click the drop-down arrow and select False.
3 Click OK.

This results in disabling the members, and the inner classifiers (classes, delegates, enumerations, interfaces, and
structures).
Since inner classifiers are treated as members of the container element, the following filters do not filter inner
classifiers:

View filter

Show classes

Show delegates

Show enumerations

Show interfaces

Show structures

Note: Code-specific elements are available in implementation projects only.

565

566

Working with a Collaboration Use

To create a collaboration use:

1 On the diagram Tool Palette, choose the Collaboration Use button.
2 Click the target container.
3 Specify the name of the Collaboration Use.

To link to a collaboration type:

1 Select a Collaboration Use element.
2 Specify the type of Collaboration Use using one of the following methods:
m In the type field of the Collaboration Use in the Object Inspector, click the chooser button, and select the
collaboration, which the Collaboration Use instantiates, from the Model or Favorites.

m Next to the name of the Collaboration Use, insert a colon and the name of the collaboration, which the
Collaboration Use instantiates.

Result: The type of collaboration use is indicated next to its name.

To unlink from a collaboration type:

1 Right-click the Collaboration Use that has a certain type assigned.
2 On the context menu, choose Unlink Collaboration.

To bind with a role (part):

1 On the diagram Tool Palette, choose the Role Binding button.

2 If you hover the mouse over the client collaboration use, the valid client is highlighted with a black ellipse.
3 Drag-and-drop the role binding link to the supplier part. The valid target is highlighted.

4 Type the role name and press Enter to close the in-place editor.

If a collaboration use is associated with a collaboration that contains parts (roles), you can bind them with the parts
(roles) of another classifier.

To bind the roles (parts) of the different classifiers via the collaboration use:

1 Create a collaboration use and define its type.

2 Create one or more parts in the collaboration that represents the type.

3 Right-click the target collaboration use and choose Bind new role on its context menu.

4 In the Select Destination dialog box that opens, choose the role to be bound in the target classifier.

Result: A role link is created from the collaboration use to the role in the target classifier. The role link is now marked
with the name of the role selected in the collaboration.

Note: Each role can be used for binding only once. With the next invocation of the Bind new role command, the list
of available roles no longer displays the ones previously used.

567

To define an owner:

1 Right-click a collaboration use and choose Object Inspector on its context menu.
2 In the owning classifier field of the Object Inspector, click the chooser button.
3 In the Select Owning Classifier dialog box, navigate to the owner class or collaboration and click OK.

Result: A link is created between the owner as supplier, and the collaboration use as the client. The link is marked
with the label <<represents>>.

568

Working with a Combined Fragment

To create a combined fragment:

1 Choose the combined fragment button in the diagram Tool Palette, and click on the target lifeline.
2 In the Type Chooser dialog box that opens, choose the desired operator from the list of available operators.

Alternatively, you can also create a combined fragment using the context menu of the Model View, or Diagram View.

To do this, choose the desired lifeline or execution specification in the Model View, or in the Diagram View. On the
context menu of the selection, choose Add ¥ Combined Fragment. This adds a combined fragment to the target
location.

Result: the combined fragment is added to the target lifeline or execution specification. Each new combined fragment
has different color, to tell it from the other combined fragments within the same cluster of nested frames.

To create a nested operator:

1 Select the desired combined fragment.

2 In the Operators field of the Object Inspector, click the chooser button. Edit Combined Fragment Operators
dialog box opens.

3 In the Edit operator combobox, select the desired operator. If a certain operator enables parameters, enter the
parameter values in the adjacent field. Use commas as delimiters.

4 Click Add button. A new line displays below the existing entry in the list of operators, and in the descriptor of the
combined fragment.

5 Use Add and Remove buttons to make up the desired list of the nested operators. Use Up and Down buttons
to specify the proper order of nested operators.

6 Click Done to apply changes.

Result: the nested operators are listed in the descriptor of the combined fragment in the specified order.

You can create the nested combined fragments by placing a new combined fragment node inside of an existing one.
So doing, each new node is displayed in a different color. The colors are selected at random. You can work with the
inner frames same way as with the outer frames: move along a lifeline, spread them over several lifelines, detach
and tie frames. Note that drawing a message link from a frame automatically expands it, together with its outer
frames, if any.

To create an operand:

1 Select the desired combined fragment in the Model View or in the Diagram View.
2 On the context menu of the combined fragment, choose Add F Interaction operand.

3 In the Interaction constraint node select the language to be used for describing constraint. To do this, click the
Language drop-down list and choose OCL or plain text.

4 Type the constraint expression.
5 Add as many operands as required.
6 Apply changes.

Result: a new operand is created. Constraint text is displayed in the operand section of the combined fragment.

569

570

Working with a Complex State

The techniques in this section pertain to models of particularly complex composite states and substates.

You can resize the main state. You can also create a substate by drawing a state diagram within another state
diagram and indicating start, end, and history states as well as transitions.

Create a composite state by nesting one or more levels of states within one state. You can also place start/end states
and a history state inside of a state, and draw transitions among the contained substates.

Use the following techniques to create a composite (nested) state:

1 Create a nested substate using drag-and-drop
2 Create a nested substate using the context menu of the state element

To create a nested substate using drag-and-drop:

1 Place a state element on the diagram background.
2 Drag a new state on top of an existing state.
3 Drop a new state.

To create a nested substate using the context menu of the state element:

1 Right-click the state (region) that will be the container.
2 Select Add ¥ State on the context menu.

Tip: You can nest multiple levels of substates inside one state. For especially complex substate modeling, however,
you can find it more convenient to create different diagrams, model each of the substate levels individually,
and then hyperlink the diagrams sequentially.

Using the Shortcuts command on the context menu of the diagram, you can reuse existing elements in other
state diagrams. Right-click the diagram and choose Add > Shortcuts, navigate within the pane containing the
tree view of the available project contents for the project group to the existing diagram, and select its elements,
states, histories, forks, and/or joins.

Tip: Using the context menu of the state element, you can also create all of the other subelements that a state can
contain.

Tip: Only one History element can be created within one state.

571

572

Working with a Constructor

You can create as many constructors in a class as needed.
In design projects, a constructor is created as an operation with the <<constructor>> stereotype.

In implementation projects, each new constructor is created with its unique set of parameters. In addition to creating
parameters automatically, you can define the custom set of parameters, using the Object Inspector.

Tip: You can move, copy and paste constructors and destructors between the container classes same way as the
other members.

To define the constructor parameters (implementation projects only):

1 Select the desired constructor in a class.
2 In the Object Inspector, click the Params field.

3 In the text field, type the list of parameters in the former type name. Use comma as a delimiter.

573

574

Working with a Field

This topic applies to implementation projects only.

In the source code, it is possible to declare several fields in one line. This notation is represented in diagram as a
number of separate entries in the Fields section if a class icon. However, you can rename the fields, change
modifiers, set initial values and so on, all modifications being applied to the respective field in the diagram icon. Also
you can copy and move such fields in diagram (using context menu commands or drag-and-drop), and the pasted
field appears in the target container separately.

To rename a field:

1 Choose a field.

2 Enter the new name in the in-place editor of the Diagram View or Model View, Name text field in the Object
Inspector or the source code editor.

To define the visibility modifier:

1 Choose a field.

2 Enter the visibility symbol in the in-place editor in the Diagram View, or select one from the Visibility combobox
in the Object Inspector, or edit in the source code editor.

To define the stereotype of a field:

1 Choose a field.

2 Use the in-place editor in the Diagram View, or stereotype combobox of the Object Inspector or the source
code editor.

To define modifiers, initial values, associated objects and so on:

1 Choose a field.
2 Use the Object Inspector or the source code editor.

So doing, the model and the source code are kept in sync.

575

576

Working with a Provided or Required Interface

To create a provided interface:

1 Create class and interface node elements using the and Tool Palette buttons.
2 On the diagram Tool Palette, click the provided interface button.
3 Click the client class and drag the mouse to the interface node.

To create a required interface:

1 Create class and interface node elements using the and Tool Palette buttons.
2 On the diagram Tool Palette, click the required interface button.
3 Click the client class and drag the mouse to the interface node.

577

578

Working with a Relationship

You can change the type of an association link.

To draw an association link:
1 Use the association link button on the UML Class Diagram Tool Palette to draw association links between
diagram elements.

2 The Object Inspector enables you to set the link type (association, aggregation, or composition) and the
cardinality of the client and supplier.

3 You can also set the link type using the right-click menu of the link. When you create an association link, Together
defines a field in the client class (the start of the link).

To set the directed property of an association link:

1 Choose View | Object Inspector if the Object Inspector is not open.

2 Select a link on the diagram. The properties for the link appear in the Object Inspector.
3 In the Object Inspector, select the Directed field.

4 Click the drop-down arrow and select the Directed property (True or False) from the list.

579

580

Working with a Tie Frame

To spread a frame to several lifelines:

1 In the diagram Tool Palette, choose the Tie Frame button.
2 Click the desired interaction use or combined fragment.
3 Drag-and-drop on the target lifeline.

Result: The frame expands to the target lifeline and is attached to it with a dot.

581

582

Working with a UML 1.5 Message

This section describes techniques for working with messages in Sequence and Collaboration diagrams. Although
the two diagram types are equivalent, the techniques for dealing with messages differ.

In a Collaboration diagram, all messages between the two objects are displayed as a generic link line, and a list of
messages is created above it. The link line is present as long as there is at least one message between the objects.
Messages display in time-ordered sequence from top to bottom of the messages list. In addition to the message
links, you can add links that show association and aggregation relationships. These links do not display if you view
the diagram as a sequence diagram.

When you draw messages between objects in a sequence diagram, each message is represented by its own link
line. Messages in sequence diagrams have more editable properties than messages in collaboration diagrams.

Use the following techniques for messages:

1 Create a self message

2 Reorder a message link

3 Specify creation of an object with a message

4 Specify destruction of an object with a message

5 Specifying a return link by using the Tool Palette (Toolbox)

6 Specify a return link by using the Object Inspector (Properties Window)

To create a self message:

1 Click the Self Message button on the Tool Palette.

2 For a Sequence diagram, click the lifeline of the object at the point where you want the message to appear.
Clicking the object places the message-to-self first on the lifeline.

For a Collaboration diagram, click the object.

To reorder a message link:

1 Open a diagram.
2 To reorder messages, perform one of the following actions:
m Drag message links up and down the object lifeline in the Diagram View. Reordering automatically updates the
message link numbers.
m Change the Sequence Number field in the Object Inspector.
m In the Diagram View, use the in-place editor to change the sequence number.

To specify creation of an object with a message:

1 Select a message link in the Sequence diagram.
2 In the Object Inspector of the message link, click the Creation field.
3 Choose True from the list box.

583

Result: The message link points to the recipient object icon rather than to its lifeline. The created object moves
downward along the lifeline to show that it exists at a point later in time from its creator.

By default, the Creation property is set to False in the Properties Window.

To specify destruction of an object with a message:

1 Select a message link in the Sequence diagram.
2 In the Object Inspector of the message link, click the Destruction field.
3 Choose True from the list box.

Result: The object is destroyed.

By default, the Destruction property is set to False in the Object Inspector.

To specifying a return link by using the Tool Palette (Toolbox):

1 Click the Return link button in the Tool Palette.

2 On the sequence diagram, click the object lifeline element at the supplier end of the message link to draw the
return link.

To specify a return link by using the Object Inspector (Properties Window):

1 Select the message link on the sequence diagram.
2 Choose View | Object Inspector on the main menu or press F4.
3 In the Object Inspector, click the drop-down arrow for the Return Arrow field and select True.

584

Working with a UML 2.0 Message

This section describes techniques for working with messages in sequence and communication diagrams. Although
the two diagram types are equivalent, the techniques for dealing with messages differ.

Use the following technique for UML 2.0 messages:

1 Show or hide reply message

2 Nest messages

3 Create a message from a lifeline back to itself

4 Create a message link that corresponds to an operation call

To show or hide reply message:

1 Select a call message in an interaction diagram.
2 In the Link tab of the Object Inspector, check or clear show reply message.

To nest messages:

1 You can nest messages by originating message links from an execution specification. The nested message
inherits the numbering of the parent message. For example, if the parent message has the number 1, its first
nested message is 1.1.

2 ltis also possible to create message links back to the parent execution specifications.

To create a message from a lifeline back to itself:

1 Click the Message button on the Tool Palette.
2 In a Sequence diagram, click twice the lifeline in the place where you want this message to appear.
In a Communication diagram, click twice the lifeline anywhere.

To create a message link that corresponds to an operation call:

1 Create an interaction.

2 Create a message link between two lifelines in the interaction.
3 Open the Link tab of the message link Object Inspector.

4 In the signature field, click the browse button.

5 In the Model or Favorites, select the desired operation.

6 Click OK.

The message link is named according to the name of the operation.

585

586

Working with an Instance Specification

You can instantiate a classifier using the Object Inspector or the in-place editor.

Use the following techniques with an instance specification:

1 Instantiate a classifier using the Object Inspector
2 Instantiate a classifier using the in-place editor

3 Define the features of an instance specification

4 Add a slot to an instance specification element

5 Associate a slot with a structural feature

6 Set the slot value

7 Define the slot stereotype

To instantiate a classifier using the Object Inspector:

1 Select an instance specification in your diagram.
2 In the General node of the Object Inspector, select the instantiates field.
3 Click the chooser button.

4 In the Choose Class or Interface for Type dialog box, select the classifiers from the available contents, using
the Add and Remove buttons.

5 Click OK when ready.

To instantiate a classifier using the in-place editor:

1 Select an instance specification in your diagram.
2 Press F2 to open the in-place editor. Alternatively, click twice on the instance specification name.

3 Type the name of an existing classifier, delimited by a colon, next to the instance specification name. For exam
ple, InstanceSpecifcationl:Classl.

4 Press Enter.

To define the features of an instance specification:

1 Insert slots into an instance specification element.
2 Associate the slots with the attributes of the instantiated classifiers.
3 Set value, and define the slot stereotype.

To add a slot to an instance specification element:

1 Add an instance specification element to your diagram.
2 Right-click the instance specification element on your diagram and choose New k Slot on the context menu.

587

To associate a slot with a structural feature:

1 Select a slot in an instance specification element.

2 Expand the General node of the Object Inspector.

3 In the defining feature field, click the chooser button.

4 In the Choose Attribute for Defining Feature dialog box, select the desired attribute and click OK.

To set the slot value:

1 Choose a slot.
2 Do one of the following:

m In the Object Inspector of the slot, type the desired string in the value field.
m Invoke the in-place editor for the slot and type the value next to the slot name, delimited by a equal sign.

To define the slot stereotype:

1 In the Object Inspector of the slot, expand the General node.
2 In the Stereotype filed, enter the stereotype value.

588

Working with an Interface

To create an interface:

1 Create a class and an interface node elements using the and Tool Palette buttons.
2 On the diagram Tool Palette, click the generalization link button.
3 Click the client class and drag the mouse cursor to the interface node.

To hide an interface:

1 Select an interface.

2 Right-click and choose Object Inspector on its context menu.
3 Expand the View node.

4 Check the invisible option.

You can hide all interfaces by disabling the Show Interfaces view filter.

589

590

Working with an Object Flow or a Control Flow

You can create control flow or object flow as an ordinary link between the two node elements. The valid nodes are
highlighted when the link is established.

You can scroll to the target element if it is out of direct reach, or you can use the context menu command to avoid
scrolling.

There are certain limitations stipulated by UML 2.0 specifications:

m Object flow link must have an object at least on one of its ends.
m It is impossible to connect two actions with an object flow except through an output pin on the source action.
m Control flow link may not connect objects and/or activity parameters.

Use the following techniques with an object flow or a control flow:

1 Create a flow
2 Create a fork or a join
3 Create a decision or a merge

To create a flow:

1 Right-click the source element of the flow.

2 On the context menu, choose Add F Control Flow or Add k Object Flow. The Choose Destination dialog
box opens.

3 In the Choose Destination dialog box, select the target and click OK. Note that the OK button is only enabled
when the valid target is selected.

To create a fork or a join:

1 Identify the actions involved. If necessary, place all of the actions on the diagram first. Lay them out as desired.
2 Place either a fork or a join on the diagram. Resize as needed.

3 If depicting multiple sources, draw control flow from each of the source actions to the join, and from the join to
the target action. If depicting multiple targets, draw control flow from the source action to the fork, and from the
fork to each of the target actions.

To create a decision or a merge:

1 Identify the actions involved. If necessary, place all of the actions on the diagram first. Lay them out as desired.
2 Place either a decision or a merge on the diagram. Resize as needed.

3 If merging multiple actions, draw control flow from each of the source actions to the merge, and from the merge
to the target action. If making a decision, draw control flow from the source action to the decision, and from the
decision to each of the target actions.

591

592

Working with User Properties

User properties are created by means of the User Properties command. The User Properties command is available
on the context menus of the diagrams and diagram elements both in the Diagram View and the Model View. Once
created, the user properties can be viewed and edited in the Object Inspector under the User Properties category.

To create user properties:

1 In the Diagram View or the Model View, select the desired diagram or model element.
2 On the context menu, choose User Properties.

3 In the Add/Remove user properties dialog box, click the Add button. A new entry, consisting of the Name and
Value fields, is added to the properties list.

4 In the new entry, enter the property name and value.
5 Using the Add and Remove buttons, make up the list of user properties.
6 Click OK when ready.

Result: The User Properties category appears in the Object Inspector.

593

594

Zooming a Diagram

Use the diagram context menu to obtain the required magnification in the Diagram View.

To specify the magnification in the Diagram View:

1 Right-click the diagram background.
2 Select Zoom on the context menu.
3 Choose a command from the submenu.

595

Together Documentation Generation
Procedures

596

Configuring the Documentation Generation Facility

To define the documentation title, header, footer and other specific settings, use the Options dialog window.

Descriptions of the options are provided in the Options dialog window. You can also find their descriptions in this
online help.

To configure the documentation generation facility:

1 On the main menu, choose Tools k Options k Together k (level) ¥ Generate Documentation.
2 Under the General category, enter the documentation title, window title, header, and footer.

3 Set the User Internal Browser option to choose to open the generated documentation in an external browser or
in the Developer Studio 2006 internal browser. By default, documentation opens in your external browser.

4 Under the Include category, select the visibility modifiers for classes and members to be included in the generated
documentation.

5 Under the Navigation category, set up the options for generating navigation bar, index, class hierarchy, and help
link.

597

598

Generating Project Documentation

To generate project documentation:

1 Select project name, namespace or diagram in the Model View.

2 Select Tools ¥ Generate Documentation on the main menu. Alternatively, right-click the selection and choose
Generate Documentation on the context menu.

3 In the Generate Documentation dialog box that opens, select your preferred Scope and Options settings.

4 Click OK to generate documentation. By default, the Generate Documentation wizard creates documentation for
your entire project.

599

Together Object Constraint Language
(OCL) Procedures

600

Creating a Guard Condition for a Transition

To create a guard condition for a transition:

1 Select a transition in the diagram.
2 Under the General node of the Object Inspector, click the Guard field.
3 Type the condition expression and apply changes.

601

602

Creating a State

To create a state:
1 Using the Tool Palette buttons: On the diagram Tool Palette, choose to create a state node. Click an appropriate
place on your diagram.
Alternatively:

Using the context menu of the diagram: Right-click the diagram background. Select Add ¥ State on the context
menu.

Note: You can place a state inside of the existing state. It is possible to hide individual states. For
example, you might want to hide the content of composite states for better understanding of
the whole diagram.

2 When a new state is placed on a diagram, you can use the Object Inspector to adjust its properties, including:

m Configure standard properties of the element.

m In the State Invariant field, select the language of the expression from the Language list box. The possible
options are OCL and plain text.

m In the Properties page, configure the behavior of the state by setting or viewing the following additional

properties:

Field Description

Composite Set to True if there is one or more regions in this state (not editable)

Orthogonal Set to True if there are two or more regions in this state (not editable)

Simple Set to True if there are no regions in this state (not editable)

Do activity Specify the activity to be performed during execution of the current state by using the Object
Inspector. This activity may be selected from any Activity diagram of the project

Entry Specify the activity to be performed when the current state starts executing by using the Object
Inspector. This activity may be selected from any Activity diagram of the project

Exit Specify the activity to be performed when the current state finishes executing by using the Object

Inspector. This activity may be selected from any Activity diagram of the project

In the edit field below the list box enter the OCL expression for this state.

603

604

Creating a State Invariant

To create a state invariant as an OCL comment:

1 On the diagram Tool Palette, choose the state invariant button.
2 Click the target lifeline or execution specification.

Tip: Alternatively, use the Add k State invariant command on the context menu of a lifeline or an
execution specification.

3 In the Object Inspector of the state invariant, select the General node.

4 In the Invariant kind field, choose OCL expression from the drop-down list. The shape of the state invariant
diagram element changes to braces.

5 In the OCL invariant node that adds to the Property Browser, select the language of the comment from the
Language drop-down list. The possible options are OCL and plain text.

6 Type the text and apply changes.

To connect a state invariant to a state:

1 On the diagram Tool Palette, choose the state invariant button.

2 Click the target lifeline or execution specification.

3 In the Object Inspector of the state invariant, select the General node.

4 In the Invariant kind field, choose States/Regions from the drop-down list.
5 In the States/Regions field, click the chooser button.

6 Inthe Choose States and/or Regions dialog box, select the desired states and/or regions from the model, using
the Add button.

7 Click OK when ready.

Tip: Alternatively, type the state or region name. If the state or region belongs to a different package,
specify its fully-qualified name.

605

606

Creating an OCL Constraint

To create an object constraint and link it with the context:
1 In the Class/package diagram Tool Palette, choose the Constraint button and click the diagram background.
The note element appears with the OCL editor activated.
2 Type the constraint expression.
3 Close the OCL editor.
4 In the diagram Tool Palette, choose the button, and link the constraint node with the respective design element.

Tip: The constrained attribute should actually exist in the context. Otherwise the constraint will be
marked as invalid.

Alternatively, follow these steps:

1 In the Model View or in the diagram, right-click an element for which a constraint should be created.
2 Choose Constraints.

3 In the Add / Remove constraints dialog box, click Add.

4 Enter the constraint:

m In the Name field, enter the constraint name.
m In the Language field, choose OCL or text from the list box.
m In the Constraint field, enter the constraint text.

5 Add as many constrains as needed.
6 Click OK when ready.

607

608

Editing an OCL Expression

To activate the OCL Editor:
1 Double-click a constraint element or OCL property, or select a constraint element and press F2. The OCL Editor
window opens.

2 Edit an expression.
3 Use the green button to apply changes and close the OCL Editor. Use the red button to discard changes and
close the OCL Editor.

609

610

Showing and Hiding an OCL Constraint

To hide an individual constraint:

1 Right-click a constraint in the diagram.
2 Choose Hide.

To hide multiple constraints:

1 Right-click the diagram background.

2 Choose Show/Hide.

3 In the Show Hidden dialog box, select the desired constraints in the Diagram Elements list.
4 Click Add.

To reveal the hidden constraints:

1 Right-click the diagram background.

2 Choose Show/Hide.

3 In the Show Hidden dialog box, select the desired constraints in the Hidden list.
4 Click Remove.

611

612

Working with a Combined Fragment

To create a combined fragment:

1 Choose the combined fragment button in the diagram Tool Palette, and click on the target lifeline.
2 In the Type Chooser dialog box that opens, choose the desired operator from the list of available operators.

Alternatively, you can also create a combined fragment using the context menu of the Model View, or Diagram View.

To do this, choose the desired lifeline or execution specification in the Model View, or in the Diagram View. On the
context menu of the selection, choose Add ¥ Combined Fragment. This adds a combined fragment to the target
location.

Result: the combined fragment is added to the target lifeline or execution specification. Each new combined fragment
has different color, to tell it from the other combined fragments within the same cluster of nested frames.

To create a nested operator:

1 Select the desired combined fragment.

2 In the Operators field of the Object Inspector, click the chooser button. Edit Combined Fragment Operators
dialog box opens.

3 In the Edit operator combobox, select the desired operator. If a certain operator enables parameters, enter the
parameter values in the adjacent field. Use commas as delimiters.

4 Click Add button. A new line displays below the existing entry in the list of operators, and in the descriptor of the
combined fragment.

5 Use Add and Remove buttons to make up the desired list of the nested operators. Use Up and Down buttons
to specify the proper order of nested operators.

6 Click Done to apply changes.

Result: the nested operators are listed in the descriptor of the combined fragment in the specified order.

You can create the nested combined fragments by placing a new combined fragment node inside of an existing one.
So doing, each new node is displayed in a different color. The colors are selected at random. You can work with the
inner frames same way as with the outer frames: move along a lifeline, spread them over several lifelines, detach
and tie frames. Note that drawing a message link from a frame automatically expands it, together with its outer
frames, if any.

To create an operand:

1 Select the desired combined fragment in the Model View or in the Diagram View.
2 On the context menu of the combined fragment, choose Add F Interaction operand.

3 In the Interaction constraint node select the language to be used for describing constraint. To do this, click the
Language drop-down list and choose OCL or plain text.

4 Type the constraint expression.
5 Add as many operands as required.
6 Apply changes.

Result: a new operand is created. Constraint text is displayed in the operand section of the combined fragment.

613

Together Pattern Procedures

614

Adding Participants to the Patterns as First Class Citizens

Patterns as First Class Citizens are represented by the GoF patterns. When such patterns are applied, the elements
are created with the standard number of participants. However, you can add allowed participants to the existing
pattern object. If you add participants, links between the pattern object and the new participants are created.

To add a participant to a GoF pattern:

1 Select the oval pattern element in the Diagram View or Model View

2 Right-click on the pattern element choose Add from the context menu. The submenu presents the list of allowed
participants.

3 Choose the required participant from the submenu.

4 In the Pattern Action Wizard, specify the name of the new participant, and click OK.

Tip: If the participant with the specified name already exists, it is reused.

615

616

Assigning Patterns to Shortcuts

You can associate a pattern with one or more shortcuts, located in the various virtual folders.

To assign a pattern to a shortcut:

1 In the Virtual pattern trees section of the Pattern Organizer, select the desired shortcut.

2 Right-click and choose Assign Pattern. The Pattern Registry opens.

3 In the Pattern Registry, select the pattern to be assigned to the selected shortcut, and click OK.

4 In the Properties section of thePattern Organizer, edit the shortcut name and visibility as required
5 Save the changes.

617

618

Copying and Pasting Shortcuts, Folders or Pattern Trees

To copy and paste a folder or a shortcut:

1 In the Virtual pattern trees section, select a shortcut, folder or pattern tree to be copied.
2 Right-click the node and choose Copy on the context menu.

Tip: Alternatively, press CTRL+C

3 Right-click the destination node and choose Paste on the context menu.
Alternatively, press CTRL+V

4 Save changes.

619

620

Creating a Folder

Use virtual folders to logically organize patterns in the pattern trees.

To create a new folder:

1 In the Pattern Organizer, select the target node in the Virtual pattern trees section.
2 Right-click this node and choose New Folder. The New Folder node is added.
3 In the Properties section, edit the Name and Visible fields as required.

621

622

Creating a Link by Pattern

Together makes it easy for you to apply patterns when creating links. To create links during modeling, you can use
the Link by Pattern button in the diagram Tool Palette. The Link by Pattern button launches the Pattern
Wizard dialog displaying the available patterns.

To create a link by pattern:

1 Click the Link by Pattern button in the diagram Tool Palette. The button stays down.
2 Click the source element on the diagram.
3 Drag to the destination element and drop when the second element is highlighted. The Pattern Wizard opens.

4 In the Pattern Wizard window, select the pattern that you want to apply for the new link, define its properties and
click Finish.

623

624

Creating a Model Element by Pattern

You can apply patterns explicitly using the Node by Pattern button in the Tool Palette or by using the right-click
menu command Create by Pattern. Whenever you create an element on a diagram using one of the toolbar buttons,
you are applying a default pattern that is connected to the selected button.

To create model elements by pattern:

1 On the diagram Tool Palette, choose the Node by Pattern button.

2 Click the container, where you want to add an element by pattern. This can be either the diagram background
or a node element. Pattern Wizard opens.

Tip: Alternatively, right-click the target container and choose Create by Pattern on the context menu.

3 In the Pattern Wizard select the desired pattern, modify its properties and click OK.

625

626

Creating a Pattern

You can use existing diagram elements as the basis to create custom patterns. The newly created patterns are
stored in the Pattern Registry. They become visible in the pattern tree of the Pattern Organizer and can be used
to generate design elements in diagrams.

To create a pattern:

1 Select one or more elements on a diagram.
2 Right-click and choose Save as Pattern on the context menu of the selection. The Create Pattern Wizard opens.
3 On the General page of the wizard enter the following information:

m In the File field specify the target XML file name.
= In the Name field specify the name of the new pattern.
m Optionally, enter the pattern description in the Description field

m Optionally, check Create Pattern Object check box. Selecting this option allows you to use your pattern as a
First Class Citizen. This means that an oval pattern element will display on your diagrams when applying the
pattern.

m Click Next.

4 On the Pattern Parameters page of the wizard:

m Use the in-line editor to modify the parameters as required.

m Set the Use Existent property for the pattern. If this value is checked, existing elements on the diagram are
reused when you apply the pattern. This means that whenever you apply a pattern, a new element is not created
if there is an element with the same name and metatype in the target container . If you clear theUse Existent
property, then new elements are created.

m Click Next.

5 Inthe Select tree folder page that displays the current patterns structure, choose the target folder, and click OK.

Result: The new pattern is added to the specified folder. This pattern is visible in the pattern tree and can be used
to generate design elements.

627

628

Creating a Shortcut to a Pattern

In the Pattern Organizer you are working with shortcuts, not with the actual patterns. Because of this, shortcuts to
the same pattern may be included in several folders.

To create a new shortcut to a pattern:

1 In the Pattern Organizer, select the topmost target node.

2 Right-click this node and choose New Shortcut. The Pattern Registry opens.

3 In the Pattern Registry, select the pattern to be assigned to the new shortcut, and click OK

4 When the Pattern Organizer prompts you to save changes in the Pattern Registry, click Yes.

629

630

Creating a Virtual Pattern Tree

The Pattern Organizer enables you to logically organize patterns using virtual trees, folders and shortcuts. Under
a tree node you can create virtual folders and shortcuts to patterns.

To create a new pattern tree:

1 In the Pattern Organizer, select the topmost Patterns node.
2 Right-click this node and choose New Pattern Tree. The New Pattern Tree node is added.

3 In the Properties section, edit the Name and Visible fields as required.

631

632

Deleting Patterns as First Class Citizens from the Model

You can delete elements of the patterns as First Class Citizens (GoF patterns), using both the Diagram View and
the Model View. If you delete elements, they are removed from the diagram and from the model.

To delete a GoF pattern with participants:

1 In the Diagram View or Model View, select the oval pattern element to be deleted.
2 On the context menu of the selection, choose the Delete with Participants command.

3 Confirm deletion.

633

634

Deleting shortcuts, folders or pattern trees

To delete a node from the Pattern Organizer:

1 In the Virtual pattern trees section, select a shortcut, folder or pattern tree to be deleted.
2 Right-click the node and choose Delete on the context menu.
Alternatively, press DELETE key

3 Save changes.

635

636

Editing Properties

Properties of the virtual trees, folders and shortcuts are displayed in the properties section of the Pattern
Organizer. Using the toolbar buttons, you can choose the properties presentation: in expandable nodes, or in
alphabetical order. The Name and Visible properties are editable. Changes are applied when the edited field looses
the focus, or the Enter key is pressed. The node name in the tree view changes accordingly.

To edit properties of a tree, shortcut or folder:

1 Select a node in the Virtual pattern trees section.
2 In the Properties section, edit the Name property, using the text field.
3 In the Properties section, edit the Visible property, using the drop-down list.

Tip: The Visible property applies to shortcuts only. If Visible is set to Visible, the shortcut is displayed
in the Pattern Wizard. Otherwise, it is not visible. If a folder does not contain any visible shortcuts,
it is also hidden in the Pattern Wizard.

4 Save changes.

637

638

Exporting a Pattern

You can create patterns and export them to the specified location.

To export a pattern:

1 In the Pattern Organizer window, expand the pattern tree and locate the folder to be exported.
2 Right-click the selected folder and choose Export folder.
3 In the Select path to export dialog box, navigate to the desired location, and click Save.

639

640

Importing a Legacy Pattern

You can reuse patterns created in the different versions of Together. Upon starting Together, the available storage
is scanned for patterns, and all the encountered patterns are included in the Pattern Registry. However, they are
not available for usage unless you manually create shortcuts to these patterns in the Pattern Organizer.

To reuse a custom pattern, follow this general procedure:

1 Copy your legacy patterns to the folder that stores patterns in your product installation folder.
2 After the product startup, Pattern Registry automatically registers all available patterns.

3 Open the Pattern Organizer,

4 In the Pattern Organizer window:

m Locate the target folder for the patterns in question, or create a new folder.
m Create a new shortcut.
m Assign the desired pattern to this shortcut.

5 Save changes.

641

642

Opening the Pattern Organizer

The Pattern Organizer enables you to logically organize patterns (using virtual trees, folders and shortcuts), and
view and edit the pattern properties.

To open the Pattern Organizer:

1 On the main menu, choose Tools k Pattern Organizer.
2 Result: The Pattern Organizer window opens.

643

644

Saving Changes in the Pattern Registry

If you have changed the contents of the Pattern Registry using the Pattern Organizer (created new shortcuts,
exported or created shared folders), these changes are synchronized with the Registry automatically. When you
close the Pattern Organizer, you are prompted to save changes. Each time you start Together, the contents of the
available storage is scanned for patterns. The contents of the registry is synchronized with the actual availability of
the pattern folders. If you have made changes to the patterns outside the Organizer, these changes will be
synchronized when Together is started.

To save changes in the Pattern Registry:

1 In the Pattern Organizer click Close button. The dialog window opens prompting you to save changes in the
pattern registry.

2 Click Yes to confirm.

Tip: Alternatively, open the Pattern Registry dialog, and click Synchronize.

645

646

Sharing Patterns

You can store patterns in the shared locations, to facilitate team development. The Pattern Organizer enables
access to the shared patterns if the paths to these patterns are included in the list of Shared Pattern Roots. being
included in the list, patterns from the shared location become visible in the Custom Patterns node of the patterns tree.

To create shared patterns:

Export the desired patterns to a shared location.
In the Pattern Organizer, click Edit Shared Patterns Roots. Shared Patterns Roots dialog opens.
In the List of Shared Patterns Roots, click Add. Select Shared Pattern Tree dialog opens.

A WODN -

In the Select Shared Pattern Tree dialog locate the folder that contains the desired patterns, select the
Shortcut Registry.xml file and click Open. The path is added to the list of shared pattern roots.

[5)]

Edit the list using Add and Remove buttons.
6 Click OK when ready.

647

648

Sorting Patterns

While working with the Pattern Organizer, the logical trees, folders, and shortcuts may be displayed in an arbitrary
order. You can sort nodes alphabetically within the container node, using the Sort Folder command.

To sort patterns the Pattern Organizer:

1 In the Virtual pattern trees section, select the node to be sorted.
2 Right-click the node and choose Sort Folder on the context menu.

3 Save changes.

649

650

Using the Pattern Organizer
The Pattern Organizer enables you to:

m Create logical pattern trees and folders

m Create shortcuts to patterns

m Assign patterns to shortcuts

m Copy, paste and delete trees, folders and shortcuts
m Save changes in the Pattern Registry

651

652

Using the Pattern Registry

The Pattern Registry is only available from the Pattern Organizer context menu, when you create a new shortcut,
or assign a pattern to a shortcut. In the Pattern Registry you can filter patterns by category, metaclass, diagram type,
language or status of registration.

To open the Pattern Registry, do one of the following:

m Right-click a folder and choose New shortcut.
m Right-click a pattern shortcut and choose Assign Pattern.

To filter patterns in the Pattern Registry:

1 In the Filters section of the Pattern Registry dialog window, click the attribute to filter the patterns.
2 Select the desired value from the drop-down list.

653

654

Using the Stub Implementation Pattern

To create an inheritance link with stub implementation using the Link by Pattern button:

1 Click the Link by Pattern button in the Tool Palette.

2 Click the source class and drag-and-drop the link to the destination class or interface. The Pattern Wizard dialog
opens.

3 In the Pattern Wizard, expand the Standard folder and select Implementation link and stub.

4 Click OK to complete the stub implementation. The inheritance link is created and the stubs for the inherited
methods are generated in the source class.

To create an inheritance link with stub implementation using the Node by Pattern button:

1 Click the Node by Pattern button in the Tool Palette.
2 Select the source class on the diagram. The Pattern Wizard opens.
3 In the Pattern Wizard, expand the Standard folder, and select Implementation link and stub.

4 In the Pattern Properties pane on the right of the Pattern Wizard, click the information button to the right of the
Supplier field. The Select Supplier dialog opens.

5 Select the destination class or interface from the treeview of available contents and click Ok.

6 Click OK to complete the stub implementation and close the Pattern Wizard. The inheritance link is created and
the stubs for the inherited methods are generated in the source class.

To create an inheritance link with stub implementation using the Create by Pattern context
menu:

1 Right-click the source class on the diagram and choose Create by Pattern from the context menu. The Pattern
Wizard opens.
2 In the Pattern Wizard, expand the Standard folder and select Implementation link and stub.

3 In the Pattern Properties pane on the right of the Pattern Wizard, click the information button to the right of the
Supplier field. The Select Supplier dialog opens.

4 Select the destination class or interface from the treeview of available contents and click Ok.

5 Click OK to complete the stub implementation and close the Pattern Wizard. The inheritance link is created and
the stubs for the inherited methods are generated in the source class.

Note: You can find the Stub implementation pattern on the context menu of classes that inherit from an interface
or an abstract class. This pattern is also available in the Pattern Wizard by clicking the Node by Pattern button
in the Tool Palette, or by using the Create by Pattern context menu for a class. Use the Stub implementation
pattern if you already have an inheritance/generalization link drawn on the diagram and you want to copy the
methods to the source class.

To create a stub implementation using the class context menu:

1 Right-click a class that inherits from an interface or an abstract class.
2 Choose Stub Implementation from the context menu.

655

To create a stub implementation using the Node by Pattern button:

1 Click the Node by Pattern button in the Tool Palette.
2 Select the source class on the diagram. The Pattern Wizard opens.
3 In the Pattern Wizard, expand the Standard folder, and select Stub implementation.

4 Click OK to complete the stub implementation and close the Pattern Wizard. The stubs for the inherited methods
are generated in the source class.

To create a stub implementation using the Create by Pattern context menu:
1 Right-click the source class on the diagram and choose Create by Pattern from the context menu. The Pattern
Wizard opens.
2 In the Pattern Wizard, expand the Standard folder, and select Stub implementation.

3 Click OK to complete the stub implementation and close the Pattern Wizard. The stubs for the inherited methods
are generated in the source class.

656

Together Project Procedures

657

658

Activating Together Support for Projects

This topic describes how to activate Together support for a project individually.

Tip: You can also force Together to activate support automatically for all new or currently open projects by adjusting
General options.

To activate Together support follow these steps:

1 Switch to a desired project or project group.
2 Choose Project k Together Support on the main menu.

Tip: Alternatively, choose Together Support from the project node context menu in the Project
Manager or Structure View.

Result: The Model Support dialog box opens showing the list of projects within the current project group.

3 In the Model Support dialog box, check the flags for those projects where you need modeling.
4 Click OK.

Result: The Model View displays the models for each of the selected projects. In the Project Manager,
ModelSupport $PROJECTNAMES ModelSupport folder is added to each of the selected projects.

To deactivate Together support, follow the above procedure, but uncheck the flags for those projects of a project
group that do not need modeling.

659

660

Creating a Project

To create a Together project:

On the main menu, choose File ¥ New k Other. The New Project dialog box opens.

From the Project Types pane, choose the desired project category.

From the Templates pane, choose the desired project template.

Enter the project name, location and other parameters as required by the New Project dialog box.
Click OK.

Follow the procedure provided by the New Project Wizard.

In the Project from MDL wizard, click the Add Folder button and choose the desired source folder from the file
system. Use the Remove and Remove all buttons to make up the list of model files.

N O oA WODN -

Result: A project of the selected type is created in the specified location.

For design project, .bdsproj . tgproj file is created in the specified project root. The default package and diagram
are created.

For implementation project, if Together support is enabled, .bdspro7 file is created in the specified project root,
the default namespace and diagram are created.

661

662

Exporting a Project to XMI Format

To export a project to XMI format:
1 In the Model View, right-click the root project node, and choose Export Project to XMI, or choose File ¥ Export
Project to XMI on the main menu. The XMI Export dialog box opens.

2 In the Select XMI Type groupbox, select the xml/uml version you wish the file to support. You can select from
the available XMI Type choices:

m XMI for UML 1.3 (Unisys Extension)
m XMI for UML 1.3 (Unisys Extension, Recommended for TCC), default value
m XMI for UML 1.3 (Unisys Extension, Recommended for IBM Rational Rose)

3 Click the drop-down arrow to select an appropriate XMI encoding requirement. The default value is UTF-8.

4 Specify the export destination. You can include the path as well as the name of the file (.xml) which will be created,
or you can accept the default: (project folder) \out\xmi\ (project name) .xml

5 Click Export. If the destination directory does not exist, a confirmation dialog asks if you want to create it.
6 Click Yes.

Result: The created XML file is added to the specified location.

663

664

Importing a Project Created in TCC or TAR

You can use the following steps to migrate your existing Together ControlCenter diagrams and source code to
Developer Studio 2006.

To make it possible to use the Together ControlCenter models in Developer Studio 2006, Together ControlCenter
supports the packaging namespace organization for C# projects. This means that you can optionally require
automatic settings of namespaces for C# classifiers in the Together ControlCenter Options dialog window. When
pasting a class to a package (no matter where this class was located before), its new instance appears in the
namespace declaration corresponding to the package name. The namespace name will be the same as the package
name, and files placed in the directory/package structure will have the corresponding namespaces in source code.

Warning: You cannot move packages because namespace organization will be violated. To put a package in a
different location, you must create a new package with the same name located in that new location, create
the necessary classes in it, then remove the old package.

Note: This example assumes the following:
You have already installed and activated Together support.

You have been working with your C# projects in Together ControlCenter 6.2 or Together
Architect with the packaging namespace organization activated (see below) so that your
source files are reflected in the appropriate namespaces in Developer Studio 2006.

To import a project, follow these steps:

1 Activating support for the packaging namespace organization

2 Setting up the project in Developer Studio 2006

3 Adding the Together ControlCenter file structure to the Developer Studio 2006 project
4 Viewing the Together ControlCenter project files in Developer Studio 2006

To configure TCC or TAR to automatically set namespaces for classifiers in
implementation projects:

1 Open your project in TCC or TAR.

2 Choose Tools k Options k Default level or Tools F Options F Project level.

3 In the left pane of the Options dialog window, expand the Source code k C# node of the options tree view.
4 Check Set namespace for classes according to package name.

5 Click OK to apply the settings and close the dialog box.

6 Close the TCC (TAR) project.

To set up a project in Delphi:
1 Choose File ¥ New k Other. The New Project dialog box opens.
2 From the project types, choose C# Projects .
3 From the templates, choose the appropriate one.
4 Click OK.
5 Enter the project name. Use the same name as your TCC (TAR) project.

665

6 Choose a location for your project. The actual location for the project is irrelevant, but you will need to remember
the location.

7 Click OK.

Result: The project is created and displayed in Developer Studio 2006.

To create the file structure:

1 Close the project in Developer Studio 2006.

2 Open Windows Explorer or any other file manager.

3 Navigate to your TCC or TAR project folder.

4 Copy the src folder from the TCC or TAR project folder to the Developer Studio 2006 project folder.

5 Open the diagrams folder in the TCC or TAR project and copy its contents to the ModelSupport %
PROJECTNAMES Mode1Support folder in the Developer Studio 2006 project folder. Developer Studio 2006 uses
the ModelSupport $PROJECTINAMES ModelSupport folder to save diagram files, TCC (TAR) uses the
diagrams folder by default.

To add the TCC or TAR source code items to the new project:

Switch to Developer Studio 2006.

From the main menu, choose File ¥ Reopen and select the newly created project from the list.
Open the Project Manager.

Choose the project root node.

In this dialog box, choose the first source file from the src folder and click OK.

Repeat the last steps for all source and modeling files.

1
2
3
4
5 Right-click and choose Add... on the context menu. The Add to Project dialog box opens.
6
7
8 Open the Model View.

Result: The Model View displays the TCC or TAR diagram and source files.

666

Importing a Project Created in TVS, TEC, TJB, or TPT

Together supports full backward compatibility with the previous version. You can open your old projects in the regular
way.

You can also import projects created in other editions of Together.

Warning: Diagrams in projects must be created in the common diagram
format . txv*. The legacy diagram format . df* is not supported.

Warning: Diagram elements must be embedded (created as filemates). Standalone design elements (SDE) are
not supported.

The general procedure for importing a project created in TVS, TEC, TJB, or TPT consists
of the following steps:

1 Creating a new project in Developer Studio 2006

2 Importing the model information into this project

To create a new project for import:
1 Choose File ¥ New k Other on the main menu. The New Project dialog window opens.

2 Select the project template. Note that the project type should correspond to the type of the source project:

m For a C# project, choose C# Projects k (appropriate template).
m For a UML 1.x design project, choose Design project ¥ UML 1.5 Design Project.
m For a UML 2.x design project, choose Design project ¥ UML 2.0 Design Project.

3 Enter the project name.

Warning: The project name should be exactly equal to the source project name. Adjust the remainder
of the settings on your own.

4 Click OK to create a project.
5 Close the project when it is created.

To import the model information:

1 Open Windows Explorer or any other file manager.

2 Copy all model files including subfolders from the source project to the Mode1Support $PROJECTNAMES
ModelSupport folder under your new project root. These files are located under diagrams, ModelSupport
or Model Folder directories, depending on the version of Together.

Note: For some projects these files are located in the same folders as the source code files. In this
case you will have to pick out the modeling files manually. Basically, you need all files
with . txv* and . txa* extensions.

3 If you have an implementation project and you need to keep your source code, copy it from the source project
to the new one keeping the folder structure.

667

4 Open the project in Developer Studio 2006. Open the Project Manager.

5 Choose the project root node.

6 Right-click and choose Add... on the context menu. The Add to Project dialog box opens.
7 In this dialog box, choose the first source file from the src folder and click OK.

8 Repeat the last steps for all source and modeling files.

Result: Developer Studio 2006 processes your files. When completed, the imported project is displayed in the
Model and Diagram Views.

668

Importing a Project in IBM Rational Rose (MDL) Format

To create a design project on the base of an IBM Rational Rose (MDL) project:

1 On the main menu, choose File ¥ New Fk Other. The New Project dialog box opens.

2 From the Project Types pane, choose Design Project.

3 From the Templates pane, choose Convert from MDL template.

4 Enter the project name, location and other parameters as required by the New Project dialog box.

5 Click OK.

6 In the Project from MDL wizard, specify the source .md1, .ptl, .cat, or . sub file using the Add button.
7 Specify the scale factor and conversion options.

8 Click Finish.

Result: A new design project is created in the specified location.

669

670

Importing a Project in XMI Format

To import a project in XMI format:

1 Open a diagram or have the project root node selected in the Model View.

Warning: The project must comply with the UML 1.5 specification.

2 In the Model View, right-click the root project node and choose Import Project from XMI, or choose File ¥
Import Project from XMI on the main menu. The XMI Import dialog box opens.

3 Browse for the source file.
4 Click Import.

Tip: The recommended way to import a project from Together ControlCenter (TCC) or Together Architect (TAR) to

Developer Studio 2006 is to use the common diagram format.

You can import a model created with IBM Rational Rose directly.

671

672

Opening an Existing Project for Modeling

You can add modeling capabilities to an existing implementation project that was created without Together.

When you open a project subdirectory from the Model View or Diagram View, Together reverse engineers the
contents into a namespace diagram that shows the namespaces, classes, and interfaces and their interrelationships.

To open an existing implementation project for modeling:

1 Make sure that Together support is activated.

2 On the main menu, choose File ¥ Open Project.

3 In the Open Project dialog box, specify the project location.
4 Select the project or project group file.

5 Click OK.

Result: With Together support activated, opening existing implementation project automatically reverse engineers
the existing source code into class diagrams.

673

674

Sharing a Project Between TCC/TAR and Developer Studio 2006

This section focuses on sharing your model information between Developer Studio 2006 and Borland Together
ControlCenter (TCC) or Borland Together Architect (TAR) by using a C# project. You will create a set of diagrams
in Together ControlCenter and then refer to these diagrams in Developer Studio 2006.

Use the following general procedure for creating a shared project:
1 Setting up a C# project in Developer Studio 2006

To set up a C# project:

On the main menu, choose File ¥ New k Other. The New Project dialog box opens.
From the project types, choose C# Projects .

From the templates, choose the appropriate one.

Click OK.

Enter ProjectRoot as the project name.

O G A WODN -

Choose alocation for your project. The actual location for the projectis irrelevant, but you will create your Together
ControlCenter project in the same location.

7 Click OK.

Result: The project is created and displayed in the Project Manager.

To create the folder hierarchy:

1 Navigate to the project folder by using Windows Explorer or any other file manager, and create a new folder
under it.

2 Enter src for the name of the new folder.

3 Create another folder under src.

4 Enter analysis for the name of the new folder.

5 Repeat the last steps and add another folder naming it requirements.

6 Save all changes and close the Developer Studio 2006 project. If prompted to save changes to the project, click
Yes.

The resulting folders created in Developer Studio 2006 will be used by TCC or TAR. The folder hierarchy begins
with a src folder.

To create a project in Together ControlCenter or Together Architect:

1 Run TCC or TAR.

2 A corresponding TCC or TAR project must be created to share the diagram files. Choose File ¥ New Project
Expert on the main menu.

3 On the first window of the New Project Expert:

m Specify the project name. For this example, enter TCC_Project.

m Specify the location of the project to match that of your project in Developer Studio 2006, ProjectRoot. For
example, the Developer Studio 2006 project, ProjectRoot, was created at the following location: C:
\Documents and Settings\User\My Documents\Borland Studio Projects\ProjectRoot C:
\Program Files\Microsoft Visual Studio .NET 2003\VC#\MyCSharpProjects

675

\ProjectRoot. The TCC or TAR project location should be the same as the Developer Studio 2006 project
location.

m Choose C# for the Default language.
m Choose New project for the project Creation Scenario.

4 Click Next to continue.

5 Select a path for the C# source files. Choose the src folder. For example, C: \Documents and Settings
\User\My Documents\Borland Studio Projects\ProjectRoot\src C:\Program Files
\Microsoft Visual Studio .NET 2003\VC#\MyCSharpProjects\ProjectRoot\src, and click
Next to continue.

6 Select No to separate diagram files. Unlike Together ControlCenter, Developer Studio 2006 enforces separation
between diagram files and source code.

7 Click Next to continue.
8 Selectthe ModelSupport $PROJECTNAMES ModelSupport folder of the project root directory for the location
to store the diagram files. For example, C: \Documents and Settings\User\My Documents\Borland

Studio Projects\ProjectRoot\ModelSupport ProjectRoot C:\Program Files\Microsoft
Visual Studio .NET 2003\VC#\MyCSharpProjects\ProjectRoot\ModelSupport

9 Click Finish.

Result: The Model tab of the Explorer pane displays the project structure, and the Designer pane displays the two
project directories, analysis and requirements.

To configure Together ControlCenter to automatically set namespaces for classifiers:

1 Choose Tools k Options k¢ Default level or Tools k Options F Project level.

2 In the left pane of the Options dialog window, expand the Source code F (language) node of the options tree
view.

3 Check Set namespace for classes according to package name.

Note: To make it possible to share models between TCC (TAR) and Developer Studio 2006, TCC
(TAR) supports the packaging namespace organization for C# projects. This means that you

can optionally require automatic settings of namespaces for C# classifiers in the Options dialog
window in TCC (TAR).

When pasting a class into a package, no matter where this class was located
before, its new instance appears in the namespace declaration corresponding to
the package name. The namespace name will be the same as the package name,
and files placed in the directory/package structure will have the corresponding
namespaces in code.

4 Click OK to apply the settings and close the dialog box.

Warning: You cannot move packages. To move a package without violating namespace organization, create a
new package with the same name located in the new location, create the necessary classes in it, then
remove the old package.

To populate the analysis model:

1 In Together ControlCenter or Together Architect, double-click the analysis package in the Designer pane to open
the analysis diagram.

676

2
3
4

Using the toolbar on the left side of the Designer pane, click the Class button.
Click once in the Designer pane to add the class to the diagram. Accept the default name for the class, Class1.
Repeat step 3, and add another class to the diagram. Accept the default name for the class, Class2.

To populate the requirements model:

1

© 00 N o a b~ WO DN

In Together ControlCenter or Together Architect, open the Model tab of the Explorer pane, double click the
requirements diagram to open it in the Designer pane.

Click the New Diagram button in the Designer pane toolbar. The New Diagram dialog box opens.

Select the Use Case diagram in the New Diagram dialog box.

Enter PlaceOrderUseCase in the Diagram name field.

Click OK. The PlaceOrderUseCase diagram opens in the Designer pane.

Using the toolbar on the left side of the Designer pane, click the Actor button.

Click once in the Designer pane to add an actor to the diagram. Accept the default name for the actor, Actorl.
Click the Use Case button.

Click once in the Designer pane to add the use case to the diagram. Accept the default name for the use
case, UseCasel.

Result: The diagrams are now complete and ready for use in Developer Studio 2006. The Model tab of the Explorer
pane displays the project structure.

To access the diagrams created with Together ControlCenter or Together Architect:

1
2
3

Save your project and close Together ControlCenter or Together Architect.
Switch to Developer Studio 2006.
From the main menu, choose File ¥ Recent Projects, and select the ProjectRoot from the list.

4 Add the newly added model elements by using the Project Manager.

5 The sourcefiles,Classl.csandClass2.cs, were added while working in Together ControlCenter or Together

6

Architect.

Expand the src and analysis folders in the Project Manager. The Class1 and Class2 nodes are present.

The Model View updates and reflects the Class1 and Class?2 source files in the analysis diagram. Now, changes
made to your diagrams in Developer Studio 2006 will appear on the diagrams when working in TCC or TAR.

Warning: When adding a source-generating element (such as a class or interface) to a namespace through a class

diagram in Together, Developer Studio 2006 physically adds the source-generating element to the project
root. Together does not control where Developer Studio 2006 places its source code files; however,
Together will display them correctly on the class diagram. Use the Project Manager and drag-and-drop
the source-generating element to the proper folder, so that when you work with the project in Together
ControlCenter or Together Architect, the source contents appear in the correct location.

677

678

Synchronizing the Model View, Diagram View, and Source Code

Together provides constant synchronization between different aspects of your project:

m Model hierarchy, presented in the Model View
m Model graphical representation in the Diagram View
m Source code (for implementation projects)

Tip: You can also use the Reload function of the Model View to update an entire model, and the Refresh function
of the Diagram View.

You can navigate between the Model View, Diagram View, and source code by using the
following techniques:
1 Navigate to a diagram from the Model View to the Diagram View
Navigate to a model element from the Model View to the Diagram View
Navigate from the Diagram View to the Model View
Navigate from a lifeline to its classifier in the Model View or a Class diagram
Navigate from source code to the Model View
Navigate from the Model View or Diagram View to source code (for implementation projects)

N o o b~ ODN

Edit a synchronized element

To navigate to a diagram from the Model View to the Diagram View:

1 In the Model View, right-click the diagram node.
2 Choose Open Diagram.

Alternatively, double-click the diagram node in the Model View.

To navigate to a model element from the Model View to the Diagram View:

1 Select a model element in the Model View.
2 Right-click and choose Select on Diagram on the context menu.

Note: If this model element appears on several diagrams, choose a diagram on the submenu.

To navigate from the Diagram View to the Model View:

1 Right-click the selected element or diagram background in the Diagram View.
2 Choose Synchronize with Model View on the context menu.

To navigate from a lifeline to its classifier in the Model View or a Class diagram:
1 Right-click the selected lifeline on a UML 2.0 Sequence diagram in the Diagram View.

2 Choose Select ¥ Type in Model View to navigate to the classifier in the Model View,
Or:

679

Choose Select ¥ Type on Diagram to navigate to the classifier on a Class diagram in the Diagram View.

To navigate from source code to the Model View:

1 Right-click the line that contains the desired element.
2 On the context menu of the selection, choose Synchronize Model View.

Result: The corresponding element is highlighted in the Model View.

To navigate from the Model View or Diagram View to source code (for implementation
projects):

1 Right-click a model element or a node member.
2 Choose Go to definition on the context menu.

Note: This command is available for source code-generating elements.

Result: Source code of the element in question opens in the Editor tab. The corresponding definition is highlighted.

Tip: To open source code of an entire class or interface, double-click the element icon.

To edit a synchronized element:

1 Select an element in the Diagram View or Model View.
2 Edit the desired fields in the Object Inspector.

Note: Alternatively, invoke the in-line editor in the Diagram View or Model View.

Warning: Avoid using the Structure View or the Project Manager for modification of the model elements.

680

Transforming a Design Project to Source Code
This feature is available for UML 1.5 and UML 2.0 design projects.

To generate source code from a design project:

1 In the Model View, select a design project.

2 Right-click and choose Transform to source on the context menu.

3 In the Choose Destination Project dialog box, select the desired implementation project.
4 Check the Use name mapping files for code generation checkbox if required.

5 Click Transform.

Result: implementation code of the class diagrams that existed in the design project are added to the target language-
specific project. The diagrams are also added to the target project. The diagram roots are preserved.

To insert source code to an implementation project:

1 In the Model View, select an implementation project.

2 Right-click and choose Transform code from design project on the context menu.
3 In the Choose Source Project dialog box, select the desired design project.

4 Check the Use name mapping files for code generation checkbox if required.

5 Click Transform.

Result: implementation code of the class diagrams that existed in the design project are added to the target
implementation project. The diagrams are also added to the target project. The diagram roots are preserved.

681

682

Troubleshooting a Model

You can also reload your project from the source code.

Use the following techniques to troubleshoot your model:

1 Refresh a model
2 Reload a model
3 Fix a model

To refresh a model:

1 Open the Diagram View.
2 Press F6.

To reload a model:

1 Open the Model View.
2 Right-click the project root node and choose Reload on the context menu.

Note: Use the Reload command as a workaround for issues that might appear while making changes in Together
that cause some elements on the diagram to stop responding, or if you get errors from Together, such as,
<undefined wvalue>.

Tip: Usually, when these problems occur, the elements also disappear from the Developer Studio 2006Structure
View and the corresponding source code is underlined in blue in the Developer Studio 2006 Editor. Together
cannot always properly handle such elements that become broken. To restore broken elements to a normal
state, it is necessary to edit the code in the text editor according to the recommendation shown in the Developer
Studio 2006 Editor. In these cases, it is best to refresh the model using Reload to prevent possible further
misbehavior.

To fix a model:

1 For interaction diagrams: regenerate them from the source code.
2 For all types of diagrams: check that none of the necessary elements are hidden.

683

684

Working with a Namespace or a Package

Namespaces are used in implementation projects, and packages in design projects.

Use the following techniques for a namespace or a package:

1 View a namespace or a package

2 Open a namespace or a package

3 Delete a namespace or a package
4 Rename a namespace or a package

To view a namespace or a package:

1 By default, a namespace element on a diagram displays the namespace contents.
2 You can use the context menu of a class or interface in a namespace to add fields and methods directly.

To open a namespace or a package:

1 Choose the Open Diagram command on the namespace diagram context menu.
2 You can also double-click the namespace element on the diagram.

To delete a namespace or a package:

1 Open the Diagram View or the Model View.
2 Choose Delete on its context menu.

Warning: Deleting a namespace also deletes all of its contents.

To rename a namespace or a package:

1 Open a project.
2 Torename a namespace, including changing the namespace name in all of its source files, do one of the following:
m Choose Rename on the context menu of a namespace in the Diagram View or in the Model View

m Invoke the in-place editor for the namespace element in the Diagram View or in the Model View
m Edit the Name field in the Object Inspector

685

686

Working with a Referenced Project

Your project can have a binary library whose content you may want to display in your diagrams. For example, you
can show entities that reside in the MSCorLib.d11 or other project references. Such resources exist for the project,
but Together does not include them in the generated HTML documentation for the project.

The Model View enables you to view class diagrams for references included in your projects. You can add references
to your project using the Project Manager.

To add a project to references:

1 In the Project Manager, expand the desired project node.
2 On the context menu of the References node, choose Add Reference.

Tip: Alternatively, choose Project k¥ Add Reference on the main menu.

3 In the Projects tab, select the projects to be referenced and click Select.
4 Click OK when ready.

Result: The Choose Type to Instantiate dialog box shows all referenced projects, making it possible to choose the
desired classifiers from the different projects.

To view a diagram of a referenced project:

1 Open or create a class diagram.

2 Right-click the diagram background and choose Add Fk Shortcuts. The Edit Shortcuts dialog box opens and
displays the content available for the diagram and all content residing outside of the current namespace.

3 Choose the resource that you want to add from the tree view of available contents on the left of the dialog and
click Add >>.

4 Repeat until you have added all of the resources that you want to show on the diagram.
5 Click OK to close the dialog box.

Tip: If the Edit Shortcuts dialog box does not show the resource that you are looking for, it is probably not added
as areference to your project. Choose Project k¥ Add Reference on the main menu to add a project reference.

To view the MsCorLib.dll (a standard DLL added automatically to your projects):

1 Expand the References node and the MsCorLib.d11 node in the Model View.
2 Right-click the default diagram and choose Open Diagram.

The default diagram opens in the Diagram View. You can expand the Microsoft and System folders to view other
class diagrams as well.

687

Together Quality Assurance Procedures

688

Creating a Metrics Chart

You can create a chart in the Metric Results Pane.

Metrics charts are created in temporary files which are deleted when the charts are closed. However, you can save
graphical information in text files, export it to the desired graphical format, and include graphics in project.

To create a bar chart:

1 Select a column that contains the result for the desired metric.
2 Right-click and choose Bar Chart.

To create a Kiviat chart:

1 Select the row that contains the results for the desired element.
2 Right-click and choose Kiviat Chart.

To save a chart:

1 Right-click the chart tab and choose Save.
2 In the Save graph dialog box, navigate to the target location and click Save.

To export a chart to image:

1 Select the desired chart.

2 On the main menu, choose File | Export diagram to image.

3 In the Export diagram to image dialog, specify the zoom factor and image dimensions.
4 Click Save.

To add a chart to project:

1 Select the desired chart.
2 On the main menu, choose File | Move [chart name] to Project.
3 On the submenu, select a project within the current project group.

689

690

Exporting Audit Results

Export audit results to an XML or HTML file to share them with team members or review them later.

To save the audit results in a separate file:
1 Select the rows of the table that you want to save. Do not select anything if you want to print the entire list.
2 Click the Save button on the toolbar.

3 In the Save Audit Results dialog box that opens, choose the scope of the results to export using the Select
View list box:

m All Results: If the results are grouped, choosing All Results prints a report for all groups in the current tabbed
page. If the results are not grouped, then all results export for the current tabbed page.

m Active Group:lf the results are grouped, you can select a group in the current tabbed page, and the generated
report contains the results from the selected group.

m Selected Rows: You can select single or multiple rows in the audit results report view. Choosing Selected Rows
generates a report for such selections.

4 Each tabbed page can contain a list of audits (when the audits are ungrouped) or a group tree with a list of the
selected group (when the audits are grouped).

Note: Unless the results have been grouped using the Group by command, the Active Group option
is not enabled in the dialog box.

Tip: You can use CTRL+CLICK to select multiple rows.

5 In the Select Format list box, select the format for the exported file:

m XML: Generates an XML-based report.
m HTML: Generates an HTML-based report.

Selecting HTML format activates the following check boxes:

m Add Description: This saves the audit descriptions in a separate folder with hyperlinks to the descriptions from
the results file.
m Launch Browser: This option opens the generated HTML file in the default viewer.

6 Click Save to save the results in the specified location.

691

692

Printing Audit Results

You can print the entire table of audit violations, or select specific rows and columns.

Warning: This feature is available for implementation projects only.

To print the list of audit violations:

1 Select the rows of the table that you want to print. Do not select anything if you want to print the entire list.

Tip: You can select multiple rows using CTRL+CLICK.

2 Click the Print button on the Toolbar. The Print Audit dialog box opens.
3 Choose the scope of the results to print using the Select View list box:
m All Results: If the results are grouped, choosing All Results prints a report for all groups in the current tabbed
page. If the results are not grouped, then all results print for the current tabbed page.

m Active Group: If the results are grouped, you can select a group in the current tabbed page, and the printed
report contains the results from the selected group.

m Selected Rows: You can select single or multiple rows in the audit results report view. Choosing Selected Rows
prints a report for such selections.

4 Each tabbed page can contain a list of audits (when the audits are ungrouped) or a group tree with a list of the
selected group (when the audits are grouped).

Note: Unless the results have been grouped using the Group by command, the Active Group option
is not enabled in the dialog window.

5 If desired, specify the print zoom factor in the Print zoom field, or check Fit to page if you want to print the results
on a single page. If Fit to page is checked, the Print zoom field is disabled.

6 If necessary, adjust the page and printer settings:

m Click the Print list box, and choose the Print dialog box command to select the target printer.

m Choose Tools k Options and open Together F (level) ¥ Diagram F Print options to set up the paper size,
orientation, and margins.

Tip: Click the drop-down arrow to the right of the Preview option to open the preview pane. Use the
Preview zoom (auto) slider, or Auto preview zoom check box as required. Click the upward arrow
to the right of the Preview option to close the preview pane.

7 Click Print to open the system print dialog box, and send the file to the printer.

693

694

Running Audits

Audits automatically check for conformance to standard or user-defined style, maintenance, and robustness
guidelines. Before running audits, make sure that the code being audited is compilable. If your source code contains
errors, or some libraries and paths are not included, audits might produce inaccurate results.

Warning: This feature is available for implementation projects only.

To run audits:

1 Open an implementation project.
2 Open the Model View.
3 Right-click the project root node. QA Audits on the context menu. The Audits dialog window opens.

4 In this dialog window:

m In the Scope list box, choose the code to run the set of audits on.
m Model processes the entire project.

m Selection processes only the specific classes, namespaces, or diagrams currently selected in the Diagram or
Model View.

Tip: If you have not selected any items in the Diagram or Model View, the Scope option defaults to
the entire project.

5 If you want to run audits on specific classes, namespaces, or diagrams, make sure you correctly select them
before you open the Audits dialog window.

6 Choose the audits to run. As you click an audit, the description for each audit is shown in the lower pane of the
dialog box.

7 For each audit, the severity level and other audit-specific options are displayed in the right-hand panel of the
Audits dialog box. Change the settings if necessary.

8 When you have selected your set of audits, click Start. The Operation in progress dialog box opens displaying
a status bar that indicates the progress completed. The status bar will display until the process finishes.

9 If necessary, click Cancel to abort the process.

Note: Audits run in the command thread, so you cannot edit the project while they are being
processed.

The Audits Results Pane opens automatically, displaying the results. In the results table, right-click any line to open
the context menu and use its commands to perform operations with the report.

695

696

Running Metrics

Before running metrics, make sure that the code being analyzed can be compiled. If your source code contains
errors or some libraries and paths are not included, metrics might produce inaccurate results.

Warning: This feature is available for implementation projects only.

To run metrics:

1 Open an implementation project.
2 Open the Model View.
3 Right-click the project root node. QA Metrics on the context menu. The Metrics dialog window opens.

4 In this dialog window:

m In Scope, choose what to run metrics on: Model processes the entire project.

m Selection processes only the specific classes, packages, or diagrams currently selected in the diagram or Model
View.

5 Choose the metrics you want to analyze. Each metric displays a description in the lower panel of the Metrics
dialog box.

Tip: If nothing is currently selected in the diagram or navigator view, the Selection scope is not

available. If you want to run metrics on specific classes, packages, or diagrams, make sure you
correctly select them before you open the Metrics dialog window.

6 For each metric there are settings for options such as limits and granularity in the right-hand panel of the Metrics
dialog box. Change the settings if necessary.

7 When you have selected your set of metrics, click Start.

Note: Metrics run in the command thread, so you cannot edit the project while they are being
processed.

Result: The Metrics Results Pane opens automatically displaying the results.

697

698

Viewing Audit Results

When viewing audit results, you can compare and organize items in the results report.

The results report is tightly connected with the diagram elements and the source code. Using the report, you can
navigate to the specific location of the violation.

Warning: This feature is available for implementation projects only.

Use the following techniques when viewing audit results:

1 Sort all the items according to the values for a specific column
2 Group items according to the current column
3 Navigate to the specific location of the violation

To sort all the items according to the values for a specific column:

1 Switch to the audit results table.
2 Click the column heading. The arrow in the heading displays whether sorting is ascending or descending.

To group items according to the current column:

1 Right-click the Audit results table and choose Group By. This enables you to organize the results by changing
the relationship of rows and columns.

2 To ungroup the results, right-click the table, and choose Ungroup.

To navigate to the specific location of the violation:

1 Select any element in the results report.
2 Choose Open on the context menu (or just double click the row) to navigate directly to the source code.

699

700

Viewing Metric Results

Use the following techniques when viewing metric results:

1 Sort results by column

2 Filter results

3 Update results

4 Navigate to the source code
5 View the metric description

To sort results by column:

1 Select the desired column in the metrics result table.
2 Click the column header to change the sorting order.

To filter results:

1 You can filter the displayed results to improve the meaningfulness of the results report.
2 Use the following toolbar buttons to show and hide elements:

Button
Namespaces
Classes
Methods

Child elements

To update results:

1 You can update or refresh the results table.
2 Use the following Tool Palette buttons:

Button Description
Refresh Recalculate the results that are currently displayed
Restart Open the Metrics dialog window, define new settings and start new metrics analysis.

To navigate to the source code:

1 Select the row in the results table that is of interest to you
2 Right-click and choose Open on the context menu to navigate directly to it in the source code.

701

To view the metric description:

1 Select the column in the results table that corresponds to the metrics of interest to you.
2 Right-click and choose Show description on the context menu.

702

Working with a Set of Audits

To create a set of audits:

On the main menu choose Tools k Together ¥ QA Audits. The dialog window QA Audits opens.
Toolbar buttons in the dialog window provide commands for working with the sets of audits.
If you want to base your new saved set on the default set, click the Set default audit set button.

A WODN -

If you want to base it on a previously created custom set, click the Load set button, then choose the desired
saved . adt file.

5 Go through the individual audits and check those you want to include in the set, or clear those you do not want
to include.

6 Select all the items in a group by checking the group name.

7 When you complete your selection, click the Save set button, and specify the location and filename for new set
file.

To use a saved set of audits:

1 On the main menu choose Tools F Together k¥ QA Audits. The dialog window QA Audits opens.
2 Click the Load Set button and choose the . adt file you want to use.
3 Click Start.

Tip: You might want to include the . adt files in your backup routine.

703

704

Working with a Set of Metrics

To create a set of metrics:

On the main menu choose Tools k Together k QA Metrics. The dialog window QA Metrics opens.
Toolbar buttons in the dialog window provide commands for working with the sets of metrics.
If you want to base your new saved set on the default set, click the Set default metric set button.

A WODN -

If you want to base it on a previously created custom set, click the Load set button, then choose the desired
saved .mts file.

5 Go through the individual metrics and check those you want to include in the set, or clear those you do not want
to include.

6 Select all the items in a group by checking the group name.

7 When you complete your selection, click the Save set button, and specify the location and filename for new set
file.

To use a saved set of metrics:

1 On the main menu choose Tools k Together ¥ QA Metrics. The dialog window QA Metrics opens.
2 Click the Load set button and choose the .mts file you want to use.
3 Click Start.

Tip: You might want to include the .mts files in your backup routine.

705

Together Refactoring Procedures

706

Refactoring: "Safe Delete"

To safely delete an element:
1 Select the element to be deleted.

2 On the main menu, choose Refactoring k Safe Delete

Tip: Alternatively, right-click on the element and choose Refactoring F Safe Delete on the element's
context menu.
3 In the Safe Delete dialog box that reports the element to delete and any usages of that element:

m If no usages are found, press Delete.

m If usages are found, click View usages. The Refactoring window opens allowing you to review the refactoring
before committing to it. Click the Perform refactoring button to delete the element.

707

708

Refactoring: Changing Parameters

To change parameters, follow these steps:

1 Select method in the Diagram View, in the Model View or in the Editor.
2 Choose Refactoring Change Parameters from the main menu.

Tip: Alternatively, you can right-click and choose Refactoring Change Parameters on the context
menu.

3 In the resulting dialog, select parameter from the list and choose the desired action:

m To add a new parameter, click Add, and specify the parameter name, type and default value.
m To delete parameter, click Remove.
m To rename parameter, click the Name field, and edit the parameter name using the in-place editor.

4 |f applicable, check Refactor Ancestors.
5 Check Preview Usages if necessary.
m Ifthis option is checked when you click OK, the Refactoring window opens allowing you to review the refactoring

before committing to it. Click the Perform refactoring button to complete the changes. You can use the
Undo and Redo commands as necessary once you have performed the refactoring.

m If this option is cleared when you click OK, the Refactoring window opens with the change completed. You can
use the Undo and Redo commands as necessary once you have performed the refactoring.

709

710

Refactoring: Creating Inline Variables

To create an inline variable:

1 Select the local variable in the Editor.
2 On the main menu, chooseRefactoring k Inline variable

Tip: Alternatively, you can choose Refactoring F Inline variable on the context menu.

The resulting dialog reports the number of variable occurrences that the Inline Variable command will be applied
to.

3 Click OK to complete refactoring.

Warning: The variable that you select for creating an inline variable, should not be updated later in the source code.
If it is, the following error message will display: "Variable index is accessed for writing."

For example, if you use the Inline Variable refactoring command on the local variable, index, shown below:
public void findIndex () {
int index = 2;
System.Console.Writeline ("Index is: {0}", index);

then the following refactoring occurs:

public void findIndex () {
System.Console.Writeline ("Index is: {0}", 2);

}

711

712

Refactoring: Extracting Interfaces
The following conditions should be met for extracting interfaces:

m Only non-static methods can be extracted.
m All methods in the extracted interface are public.

m If the name specified for the new interface coincides with the name of an existing interface in the same
namespace, all the methods will be extracted into an existing interface.

To extract an interface:
1 Select one or more code elements (class, interface, field, method, event, property, or indexer) in the Diagram or
Model View.
2 On the main menu, chooseRefactoring F Extract superclass

Tip: Alternatively, you can choose Refactoring F Extract superclass on the context menu of the
selection.

3 In the Extract interface dialog, enter the name for the interface and designate its namespace, if applicable.

4 Specify the members to be used in the resulting superclass or interface by setting or clearing the respective
check-boxes.

5 Click OK. The Refactoring window opens allowing you to review the refactoring before committing to it.
6 Click the Perform refactoring button to complete the extraction.

713

714

Refactoring: Extracting Method

To extract a method:

1 In the Editor, open the class or interface containing the code fragment that you wish to extract.

2 Place the mouse cursor in the desired fragment of source code. Refactoring determines the beginning and the
end of the relevant statement.

3 On the main menu, choose Refactoring F Extract Method

Tip: Alternatively, right-click the code fragment and choose Refactoring k¥ Extract Method on the
context menu.

4 In the dialog box that opens, specify the following information:

m Name of the new method

m Visibility (public, protected, private, internal, internal protected)
m Header comment

m Whether the method is Static.

5 Click OK to complete the extraction and create the new method.

m When applying Extract Method, parameters and local variables in the selected code fragment become the
parameters of the new method.

m The code fragment cannot contain a return statement of the original method. An error message displays if you
attempt to include a return statement in the code fragment.

m The code fragment cannot modify more than one single local variable. An error message displays if you violate
this restriction.

m If the selected code fragment is repeated in several locations, it is your responsibility to replace these fragments
in the appropriate locations with the proper method calls.

715

716

Refactoring: Extracting Superclass

To use the "Extract superclass" operation:
1 Select one or more code elements (class, interface, field, method, event, property, or indexer) in the Diagram or
Model View.
2 On the main menu, chooseRefactoring k Extract superclass

Tip: Alternatively, you can choose Refactoring k Extract superclass on the context menu of the
selection.

3 In the Extract superclass dialog, enter the name for the interface and designate its namespace, if applicable.

4 Specify the members to be used in the resulting superclass or interface by setting or clearing the respective
check-boxes. If applicable, indicate that a method is abstract in the extracted superclass.

5 Click OK. The Refactoring window opens allowing you to review the refactoring before committing to it.
6 Click the Perform refactoring button to complete the extraction.

717

718

Refactoring: Introducing Fields

To introduce a field:
1 Select expression in the Editor.

2 On the main menu, chooseRefactoring F Introduce Field

Tip: Alternatively, you can choose Refactoring F Introduce Field on the context menu.

3 In the resulting dialog, specify the following:

m Name: Enter the name of the new field

m Visibility: Using the list box, choose the visibility for the new field from public, protected, private, internal, or
internal protected.

m Initialize: Choose where to initialize the new field. Using the list box, choose from Current method, Class
constructor(s), or Field declaration.

4 |f applicable, check the Static and Replace all occurrences fields.
5 Click OK to complete the refactoring.

719

720

Refactoring: Introducing Variables

To introduce a new variable:

1 Select variable in the Editor.
2 On the main menu, chooseRefactoring k Introduce Variable

Tip: Alternatively, you can choose Refactoring F Introduce Variable on the context menu.

3 In the resulting dialog, specify the Name of the new variable. The new variable created is given the same type
as the original variable.

4 If desired, check Replace all occurrences. The Introduce Variable dialog indicates the number of occurrences
that it will replace with the new variable.

Note: The refactoring does not replace any occurrences of the variable prior to the point in the code
at which you selected to introduce the new variable.

721

722

Refactoring: Moving Members

To move a static member to a different class:

1 Select one or more static members in the Diagram View or Model View.
2 On the main menu choose Refactoring ¢ Move

Tip: Alternatively, right-click on the selection and choose Refactoring k¥ Move Members on the
context menu

3 In the Move Members dialog, use the Move Members field to select which static members to move. You can
deselect/select the static members by clearing/checking the check box next to the name of the member

4 Use the To field to enter the fully-qualified name for the target class where the selected code element or elements
will reside.

5 Click OK.

723

724

Refactoring: “Pull Members Up" and “Push Members Down”

Moving members assumes that the member is either moved to the target location being deleted from the original
location, or created in the target location being preserved on the original one.

To move a member:

1 Select member in the Diagram View or in the Model View.

Tip: In the editor, place the mouse cursor on the member name.

2 Choose Refactoring k Pull Members Up/Push Members Down on the context menu or on the main menu.
3 In the resulting dialog box, specify additional information required to make the move.

m In the top pane of the dialog box, check the members to be moved.
m In the bottom pane of the dialog box, that shows the class hierarchy tree, select the target class.

4 Click OK.

5 In the Refactoring window that opens, review the refactoring before committing to it. Click the Perform
refactoring button to complete the move.

Tip: Moving members is more complicated than moving classes among namespaces, because class members
often contain references to each other. A warning message is issued when Pull Members Up or Push
Members Down has the potential for corrupting the syntax if the member being moved references other class
members. You can choose to move the class member and correct the resulting code manually.

725

Unit Test Procedures

726

Building Tests

The structure of a unit test is largely dependent on the functionality of the class and method you are testing. The
Unit Test Wizards can help you by providing a template of the test project, setup and teardown methods, and basic
tests. You will need to add the specific test logic to test a particular method. The following procedures describe how
to build your test projects and test cases. Follow these procedures in order. The test project must be built prior to
the test cases.

To build a test project

1
2
3

Choose File ¥ New Fk Other.

Open the Unit Test folder.

Double-click the Test Project gallery item.
This starts the Test Project Wizard.

4 Enter the project name or accept the default name.

5 Enter the location or accept the default location.

6 Select the personality or accept the default.

By default, the personality is set to the same personality as the active project.

7 If you do not want the test project added to your project group, uncheck the Add to Project Group check box.
8 Click Next.
9 Choose the GUI or Console test runner, then click Finish.

The Test Project Wizard adds the necessary references to your project.

To build a test case

1

Click the Code tab for the file containing the classes you want to test.
This makes the file active in the Code Editor.

2 Choose File ¥ New F Other.
3 Open the Unit Test folder.
4 Double-click the Test Case gallery item.

This starts the Test Case Wizard.

Choose a source file from the Source File drop down list.

All source files in your project are listed.

Select the classes and methods you want to build tests for, by checking or unchecking the check boxes next to
the class and method names, in the Available classes and methods list.

Note: You can deselect individual methods in the list. The wizard will build test templates for the
checked methods only. If you deselect a class, the wizard will not create test templates for any
of the methods in that class.

Click Next.
This displays the next page of the Test Case Wizard.

8 Fill in the appropriate details or accept the defaults.
9 Click Finish.

727

The wizard creates a test case file and creates a name for the file by prefixing the name of the active code file
with the word Test. For example, if your code file is named MyProgram, the test case file will be named
TestMyProgram.

To write a test case

1 Add code to the SetUp and TearDown methods, if needed.
2 Add asserts to the test methods.

To run the test case in the GUI Test Runner

1 Click the Code tab for the file containing the classes you want to run.
2 Choose Run F Run.

The GUI Test Runner starts up immediately on execution of your application. The list of tests appears in the left
pane of the GUI Test Runner.

3 Select one or more tests.
4 Click the Run button.

The test results appear in the Test Results window. Any test highlighted with a green bar passed successfully.
Any test highlighted in red failed. Any test highlighted in yellow was skipped.

5 Review the test results.
6 Fix the bugs and rerun the tests.

728

Concepts

.NET

729

730

Building Applications with the ECO framework

The integrated modeling tools in Developer Studio 2006 tie together the processes of design and development. The
structure and behavioral modeling tools integrated into the IDE are based on industry standards such as the Universal
Modeling Language (UML) and the Object Constraint Language (OCL). The Enterprise Core Object (ECO)
framework leverages the .NET framework to make the model available at both designtime and runtime. This section
provides an overview of the ECO framework, and introduces basic concepts needed to work with the framework.

In This Section
Overview of the ECO framework
Describes architecture of the ECO framework.

ECO Modeling Tools Overview
Describes ECO UML modeling tools available in the Developer Studio 2006 IDE.

Working with the ECO Service API
Describes how to access the services provided by the ECO framework.

Working with ECO Handles
Defines the concept of a handle, and describes how they are used in the ECO framework.

Modeling Behavior with State Machines
Describes simple UML state machines and how they are used with the ECO framework.

Using Substates with the ECO framework
Describes how to use composite states, substates and regions with ECO state machine diagrams.

Overview of the Object Constraint Language
Describes the Object Constraint Language (OCL) in a high-level overview.

Using ECO Action Language
Describes the extensions provided by the ECO Action Language.

Working with ECO Subscriptions
Describes how to work with the ECO subscription mechanism.

The ECO framework and ASP.NET
Describes basic concepts required for understanding how to build an ECO ASP.NET application.

Using the ECO Framework in Multi-Client Applications
Describes the concepts and components used when writing multi-client ECO framework applications.

Custom ECO Object-Relational Mapping Files
Describes the format of the object-relational mapping file used by the ECO framework.

Building Applications with the ECO Framework
Describes the core processes of building an application using the ECO framework.

731

732

Introduction

These topics contain introductory material on working with the ECO framework.

In This Section
Overview of the ECO framework
Describes architecture of the ECO framework.

ECO Modeling Tools Overview
Describes ECO UML modeling tools available in the Developer Studio 2006 IDE.

Working with the ECO Service API
Describes how to access the services provided by the ECO framework.

Working with ECO Handles
Defines the concept of a handle, and describes how they are used in the ECO framework.

Working with ECO Subscriptions
Describes how to work with the ECO subscription mechanism.

733

734

Overview of the ECO framework

This topic gives an overview of the designtime and runtime features of the ECO framework.

Introduction to the ECO framework

The ECO framework is an object-relational mapping framework. Object-relational mapping is a process that abstracts
relational database concepts, and maps them to object-oriented programming concepts. In practical terms, the ECO
framework maps relational database rows to C# or Delphi for .NET objects, thereby relieving the programmer from
writing low-level SQL code.

To reduce the amount of manual coding even further, Developer Studio 2006 integrates the ECO framework with
TogetherLiveSource UML diagram tools. This allows you to specify both structure and behavior visually, using UML
class diagrams and UML state machine diagrams. Integration of UML designers with the ECO framework gives you
the ability to work with familiar object-oriented concepts, while the framework handles the mapping and storing of
objects in a relational database.

One unique feature of the ECO framework is that it adheres to the philosophy that models can be both
implemented and executed . A precisely described model contains enough information that much of the source code
needed to bring the model to life can be generated automatically, as opposed to being written by hand. This is the
difference between automatic implementation of a visually constructed model, and interpretation (and coding by
hand) of that model by a programmer.

Execution of the model means that the designtime support for creating the model carries through to runtime. A truly
design driven software engineering process includes support not only for creation of a model, but also for maintaining
and enforcing the integrity of the model at all phases of the application's lifetime.

ECO framework Terminology

The following list defines some important terminology that you will encounter throughout the ECO framework. These
terms and their related concepts are covered in more detail in separate topics. Please refer to the links below for
more information.

ECO space An object store that contains objects created during the lifetime of the
application. The ECO framework handles the mapping of object attributes,
storage, and retrieval in a relational database.

At runtime, the ECO Space contains all of the metadata of the model, plus
the instances of the classes in your model. Think of the ECO Space as an
instance of a model, much like an object is an instance of a class. The objects
contained in the ECO Space retain the domain properties (attributes and
operations) and relationships defined in the model.

Handle An opaque reference that binds to an object, or a collection of objects in an
ECO space.

Object Constraint Language (OCL) A formal language used to query the ECO space. An OCL expression returns
a single value, a single object, or a collection objects. An OCL expression
cannot alter the value of any object attribute.

ECO Action Language An extension of OCL that allows you to change the value of object attributes.

Service API The most commonly accessed runtime functionality of the ECO framework
is grouped into a namespace called Borland.Eco.Services. The
Borland.Eco.Services hamespace defines a number of interfaces that
you will use to access and manipulate the objects in the ECO space. At
runtime, you obtain these interfaces by accessing properties of the ECO
space.

735

Designtime Functionality

Itis helpful to understand how the ECO framework splits its functionality into designtime support and runtime support.
The following table shows designtime features, and briefly describes how you work with the feature within the IDE.

Designtime Feature

Model-oriented source code navigation

Object Store (ECO space) configuration

Model validation

Structural design of the model

Behavioral design of the model

Object Constraint Language (OCL)
expression editor

Reverse engineer an existing relational
database, extracting classes and
associations, and wrapping them in ECO
source code

GUI design

Handle configuration

IDE Interaction

Model View

ECO space designer

Validate model tool on the ECO space
designer

ECO class diagram

ECO state machine diagram

ECO class diagram
ECO state machine diagram

ECO Winform designer

Reverse and wrap database tool on
the ECO space designer

ECO Winform designer

ECO Winform designer

736

Notes

Choose View F Model View to open the
Model View.

All ECO projects contain an object store
called an ECO space.

When the ECO space source file is active
in the editor, click the design tab to open
the ECO space designer.

Click the Validate model tool button in
the ECO space designer to perform
model validation.

Create new diagrams using context
menus in the Model View.

Create new diagrams using context
menus in the Model View.

Most ECO components have properties
that are expressed using OCL. This
includes ECO class attributes,
association ends, and behavioral
features modeled on state machine
diagrams.

The OCL expression editor is a property
editor, opened from the Object
Inspector. It allows you to easily build
expressions to query and perform
operations on the ECO space.

Click the tool button in the ECO space
designer to start a wizard that configures
the ECO space and generates ECO
source code for an existing relational
database.

The reverse engineering wizard also
handles the case where data is stored
across multiple databases.

ECO framework applications use
standard .NET controls to display and edit
data.

Handles bind to objects in the ECO space
using OCL expressions.

In the ECO Winform designer, drop a
handle component on the form and
configure it using the OCL Expression
Editor.

Handles are bound to GUI controls using
standard .NET databinding technology.

Runtime Functionality

The following table shows the runtime functionality of the ECO framework

Runtime Feature

Object persistence
OCL queries and OCL expression evaluation
Undo/Redo mechanism

Subscription mechanism

Object version mechanism

Model introspection

Notes

Access with the |PersistenceService interface in Borland.Eco.Services.
Access with the IOCLService interface in Borland.Eco.Services.
Access with the IlUndoService interface in Borland.Eco.Services.

Accessed through the IOCLService interface and through classes defined in
the Borland.Eco.Subscription namespace.

The ECO framework has support for saving multiple versions of an object.

Access this feature through the IVersionService interface in Borland.
Eco.Services.

Access information about the model using interfaces defined in the Borland.
Eco.UmlRt hamespace.

You can access the type system of the model through the TypeSystem property
of the EcoSpace class.

737

738

ECO Modeling Tools Overview
This topic describes the integration of the ECO framework with Developer Studio 2006:

m ECO projects and code templates

m Integration with the Model View, Tool Palette, and Object Inspector
m Structural modeling with ECO UML class diagrams

m Behavioral modeling with ECO state machine diagrams

Before reading this topic you should be familiar with ECO framework terminology discussed in the Overview of the
ECO framework. Please refer to the link below for more information.

ECO Modeling Tools in Developer Studio 2006

The ECO framework is tightly coupled with the TogetherLiveSource modeling tools. You can model structural
features using the ECO class diagram, and behavioral features using the ECO state machine diagram. The IDE
generates ECO-enabled source code as you work with the diagrams.

All of the capabilities of LiveSource are available in ECO projects, such as generation of diagrams from non-ECO
source code, navigation from the diagram to source code, layout tools, printing and exporting diagrams to images.
These tools all work through coordination between the Model View, Diagram Views, the Tool Palette, and the
Object Inspector.

ECO Projects and Code Templates
The IDE has code-generating templates to help you develop ECO applications. The following project creation
templates are available for Delphi or .NET and C# applications:

Template Purpose

ECO WinForms Application Creates an application with a default ECO space, a root ECO UML package, and
an ECO enabled Windows form.

ECO ASP.NET Web Application Creates an ASP.NET application with automatic ECO space pooling.
ECO ASP.NET Web Service Application Creates an ASP.NET web service with automatic ECO space pooling.
ECO Package in a DLL Creates a project with a root ECO UML package, but no ECO space.

ECO Package in package (Delphi for .NET) You can reference the ECO Package DLL in another project, to make the entire
model available for use in that application.

The following file creation templates are for use in existing ECO projects:

Template Purpose

ECO Enabled Windows Form Adds an ECO enabled Windows form to your project.

ECO Space Creates a new subclass of DefaultEcoSpace in your project.
ECO PersistenceMapperProvider Creates a new persistence mapper provider in your project.

A persistence mapper provider specifies the persistence mechanism and persistence
configuration for the application.

You can connect multiple ECO spaces to a single persistence mapper provider.

Code generated by these templates will include all of the necessary ECO-related .NET attributes and defaultinterface
implementations.

739

Working with ECO in the Model View Window

Using the Model View window you can navigate your project based on the logical relationships between the classes
and other elements in source code. LiveSource scans source code and derives the elements, such as namespaces
and classes, and the relationships between them. Because it gives you an unfiltered view by design, LiveSource will
expose some implementation details behind the ECO framework.

On a LiveSource class diagram you will see ECO UML packages represented as classes within your project
namespace. On an ECO class diagram, you will see the true, logical representation of the UML package.

ECO UML packages appear under the root node of the project in the Model View (you can also nest packages within
other packages). The default name of a new ECO UML package is Package N where N is an integer. In the Model
View, an ECO UML package node (and all ECO UML packages underneath it) is distinguished from a .NET
namespace node by its icon. The B3 icon represents an ECO UML package.

You work with ECO and TogetherLiveSource using context menus, which are available on both the Model View and
on diagrams. The menus are context sensitive, so they automatically reflect only those operations that are valid on
the selected element. For example, if you right-click on a class in either the Model View or the diagram, the context
menu will contain choices for adding attributes and operations. These menu items would not be available if you right-
clicked on an ECO UML package; the context menu for a package contains its own set of menu items.

Once you have created a diagram in the Model View, you can also add elements to it by dragging them from the
Tool Palette.

You can set properties of any element by selecting it and editing its properties in the Object Inspector. You may
select the element either in the Model View, or on the diagram. As you work with elements in the Model View,
diagrams, and the Object Inspector, the IDE generates source code to implement the model.

Structural Modeling with the ECO Class Diagram

You draw the structural features of your model using the ECO class diagram. The ECO class diagram supports
these modeling features:

m Creating ECO UML packages

m Creating ECO classes

m Drawing generalization (inheritance) links between classes
m Drawing associations between classes

m Attaching notes to diagram elements

m Adding attributes and operations to classes

Class diagrams are created and opened from the Model View. Each ECO UML package has its own primary class
diagram with the same name as the package. The primary class diagram cannot be deleted. The primary class
diagram for a UML package always shows the entire contents of the package; it displays all of the sub-packages,
classes, and relationships that exist within that package. When you add a new class to a UML package it is
automatically represented on the primary class diagram.

You can also create secondary class diagrams within a ECO UML package, if you want to show a subset of the
classes within the package. New elements added to the package are not automatically added to secondary diagrams.
Secondary diagrams can be renamed and deleted.

Any UML elements added to a primary or secondary class diagram will be contained within the UML package that
owns the diagram. To show elements in other UML packages, you must create a shortcut to the element. You can
do this through the context menu of the class diagram. Shortcuts are displayed on the diagram with a small arrow
icon in their lower left corner. Once a shortcut has been created, you can add associations between it and the classes
in the UML package that owns the diagram.

740

Behavioral Modeling with the ECO State Machine Diagram

While the ECO class diagram allows you to model structure, the ECO state machine diagram allows you to model
behavior. The ECO state machine diagram supports these features:

m Creating states and state transitions

m Creating entry and exit actions to be performed on entering and leaving a state

m Adding trigger methods to classes

m Creating Effects, which are executed when a state transition occurs

m Creating composite states

m Modeling concurrent states by adding additional regions to a state

Please see the links below for more information on working with ECO state machine diagrams.

741

742

Working with the ECO Service API

This topic describes how to access the ECO framework service API. Code examples demonstrate how the services
are exposed through the application's ECO space, as well as how to call methods on an interface. The following
concepts are covered:

m Service API Overview
m Accessing the ECO Space
m Accessing the Service API.

The Borland.Eco.Services Namespace

Borland.Eco.Services

ainberlacan uinterdace s wintedacan wintelacan aintedacan
IDiMyListService | IPersislencedervice || IUndoService ||WariableFactoryService |10bjectFaclioryServios

uinterfaces winterface s winterfaces uinterfaces
ITypeSystmService| | IExtentService | IExternallDService| |IOCLTypeService

| |
T

uinterface s sinterface s winterface s
IVersionSeriice 1Slate B arvice IDCLSarvice

Each ECO service is declared in the Borland.Eco.Services namespace. Individual services are listed in the
table below.

Service API Overview

All programmatic access to the ECO framework is done through ECO services. ECO services make it easier to find
what you need by collating the substantial functionality of the framework into groups of logically related functions,
or interfaces. Each service interface is accessible as a property in the ECO space object of the application. When
you create a new ECO framework application using one of the Developer Studio 2006 wizards, the IDE defines an
ECO space class for you. The generated class contains property accessors that return an instance of the requested
interface. You then use that instance to call methods of the interface. The following is an example of an ECO space
class generated by the New ECO Windows Forms Application wizard. In the code, notice the read-only properties
that expose each interface.

[Delphi]
TProjectl0EcoSpace = class (Borland.Eco.Handles.DefaultEcoSpace)
private
procedure InitializeComponent;
class var fTypeSystemProvider: ITypeSystemService;
class var fTypeSystemProviderLock: Tobject;
strict protected
function GetTypeSystemProvider: ITypeSystemService; override;
public

743

constructor Create;

class constructor Create;

class function GetTypeSystemService: ITypeSystemService; static;

procedure UpdateDatabase;

function get PersistenceService: IPersistenceService;

property PersistenceService: IPersistenceService read get PersistenceService;
function get DirtyListService: IDirtyListService;

property DirtyListService: IDirtylListService read get DirtyListService;
function get UndoService: IUndoService;

property UndoService: IUndoService read get UndoService;

function get TypeSystemService: ITypeSystemService;

property TypeSystemService: ITypeSystemService read get TypeSystemService;
function get OclService: IOclService;

property OclService: IOclService read get OclService;

function get ObjectFactoryService: IObjectFactoryService;

property ObjectFactoryService: IObjectFactoryService

read get ObjectFactoryService;

function get VariableFactoryService: IVariableFactoryService;
property VariableFactoryService: IVariableFactoryService

end;

[C#]

read get VariableFactoryService;

public class ProjectlOEcoSpace: Borland.Eco.Handles.DefaultEcoSpace

{

/// <summary>

/// Required designer variable.

/// </summary>

private System.ComponentModel.Container components = null;

private void InitializeComponent ()
{
}

public ProjectlOEcoSpace () : base()
{

InitializeComponent () ;

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose (bool disposing)
{
if (disposing)
{
Active = false;
if (components != null)
{

components.Dispose () ;

}

base.Dispose (disposing) ;

private static ITypeSystemService typeSystemProvider;
public static new ITypeSystemService GetTypeSystemService ()
{
if (typeSystemProvider == null)

lock (typeof (ProjectllEcoSpace))

744

if (typeSystemProvider == null)
typeSystemProvider = MakeTypeService (typeof (ProjectllEcoSpace)) ;
}
return typeSystemProvider;
}
protected override ITypeSystemService GetTypeSystemProvider ()
{
return ProjectlOEcoSpace.GetTypeSystemService () ;
}
//
// Services
//
public IPersistenceService PersistenceService
{
get { return (IPersistenceService)GetEcoService (typeof (IPersistenceService)); }
}
public IDirtyListService DirtyListService
{
get { return (IDirtyListService)GetEcoService (typeof (IDirtyListService)); }
}
public IUndoService UndoService
{
get { return (IUndoService)GetEcoService (typeof (IUndoService)); }
}
public ITypeSystemService TypeSystemService
{
get { return (ITypeSystemService)GetEcoService (typeof (ITypeSystemService)); }
}
public IOclService OclService
{
get { return (IOclService)GetEcoService (typeof (IOclService)); }
}
public IObjectFactoryService ObjectFactoryService
{
get { return (IObjectFactoryService)GetEcoService (typeof
(IObjectFactoryService)); }
}
public IVariableFactoryService VariableFactoryService
{
get { return (IVariableFactoryService)GetEcoService (typeof
(IVariableFactoryService)); }
}
//
// Misc helper functions
//
public void UpdateDatabase ()
{
if ((PersistenceService != null) && (DirtyListService != null))
{
PersistenceService.UpdateDatabaseWithList (DirtyListService.AllDirtyObjects()) ;
}

745

Accessing the ECO Space

Every ECO framework application created by a Developer Studio 2006 wizard has a single instance of the generated
ECO space class. The ECO space instance is exposed as a property of the main form. Below is an example of the
EcoSpace property in a generated main form class:

[C#]
public Borland.Eco.Handles.EcoSpace EcoSpace

{

get { return (Borland.Eco.Handles.EcoSpace)rhRoot.EcoSpace; }
set { rhRoot.EcoSpace = value; }

[Delphi]

property EcoSpace: TProjectlOEcoSpace read get EcoSpace;

When you add more ECO-enabled forms to your application using the ECO Enabled Windows Form wizard, the
IDE will generate a new form class with a constructor that takes an instance of an ECO space as a parameter. In

addition, and similar to the main form, each subsequent ECO enabled windows form you create with the wizard will
have its own EcoSpace property. The constructor initializes this property with the ECO space parameter. An ECO
application only has one instance of an ECO space, so the typical usage scenario is to pass the ECO space instance

from the main form to secondary forms when they are created. The following example creates a new ECO enabled
form in response to a button click on the main form:

[Delphi]

// TWinForm is the application's main form.

procedure TWinForm.Buttonl Click(sender: System.Object; e: System.EventArgs);

var
// TWinForml is a secondary form generated by the ECO Enabled Windows Form wizard.
newForm: TWinForml;

begin

// Create the secondary form, passing the EcoSpace property to the secondary form's
constructor.

newForm := TWinForml.Create (EcoSpace);
//

end;

[C#]

private void buttonl Click(object sender, System.EventArgs e)

{

// EcoWinForm is a secondary form generated by the ECO Enabled Windows Form wizard.
EcoWinForm newForm;

// Create the secondary form, passing the EcoSpace property to the secondary form's
constructor.

newForm = new EcoWinForm (EcoSpace) ;

Il

Accessing the Service API

The following code demonstrates various ways to call service APl methods.

746

[C#]
private void buttonl Click(object sender, System.EventArgs e)
{

IUndoService undoService;

// Get a reference to the ECO Undo Service.
undoService = EcoSpace.UndoService;

// Call the interface's StartUndoBlock method.
undoService.StartUndoBlock ("Undo Block 1");

// You can also call directly through the ECO space.
EcoSpace.UndoService.StartTransaction () ;

//

undoService.CommitTransaction () ;

[Delphi]
procedure TWinForm.Buttonl Click(sender: System.Object; e: System.EventArgs);
var
undoService : IUndoService;
begin

// Get a reference to the ECO Undo Service.
undoService := EcoSpace.UndoService;

// Call the interface's StartUndoBlock method.
undoService.StartUndoBlock ('Undo Block 1');

// You can also call directly through the ECO space.
EcoSpace.UndoService.StartTransaction;

//

undoService.CommitTransaction;
end;

Other service interfaces and their methods can be called using a similar technique. Each ECO service interface and
its purpose is shown in the following table.

Interface Description

IStateService Allows you to discover whether a particular object or property in the ECO space
has been modified.

IPersistenceService Provides a consistent API for you to update objects in the ECO space, without
regard to the persistence mechanism.

IDirtyListService Allows you to retrieve a list of all modified objects, and to query the ECO space

to discover whether any objects have been modified.

An object is considered modified if it does not have the same state in memory
as in persistent storage.
IExtentService Allows you to query the ECO space for all instances of a certain class.
IObjectFactoryService Provides methods for you to create new instances of the classes in your model.

747

IVariableFactoryService

ITypeSystemService
[VersionService

IOclService and IOcITypeService

IUndoService
IExternalldService

The 10bjectFactoryService interface methods create new objects using their
type information. This approach is more generic than directly creating a new
object by calling the C# new method, or the Delphi Create method.
Provides a programmatic interface for creating what are essentially
VariableHandle components.

Variables created with this service can be used directly with the 10clService.
Allows you to get the type system of the model, and to validate the model
programmatically.

For domain classes that have been marked as versioned, this interface allows
you to get a specific version of an object from persistent storage.

These interfaces allow you to evaluate expressions in Object Query Language
(OCL).

IOclService is a descendent of IOclTypeService. Only the 10clService
interface is exposed through the ECO space.

Allows you to create undo/redo blocks and transactions.

Returns a globally unique ID for an ECO object, regardless of whether the
object has been saved in persistent storage.

This ID is only valid within the ECO space where the ID originated. This service
is intended primarily for use in ASP.NET applications.

748

Working with ECO Handles

This topic introduces the concept of ECO handles, and describes their usage in the ECO framework. Note that further
usage of the word handle always refers to an ECO handle. Before reading this topic you should have some familiarity
with the basics of building Object Constraint Language (OCL) expressions. In particular, the concept of evaluating
an OCL expression in a specific context.

m Definition of a root handle and a rooted handle.

m Chained evaluation of handles.

m Usage of handles on the Tool Palette.

m Programmatic access to the objects referenced by handles.

Handles in the ECO framework

Borland.Eco.Handles

ElementHandle

g N

RootHandle RootedHandle

VAN VAN

FeferenceHandle| |VariableHandle OclPSHandle | [ExpressionHandle

The diagram shows the relationships between the various kinds of ECO handles.

Handles and Chained Evaluation

Every ECO framework application must have an instance of an ECO space. The ECO space contains both the model
definition, and the objects that are created while your application runs. Handles are a mechanism that enables you
to get hold of objects in the ECO space at runtime. A handle can represent either a single object, or a list of objects,
or a calculated value.

Note: The ECO Application wizard automatically declares an ECO space class, and generates code to create of
that class at runtime.

Handles are configured at designtime. Setting the properties of a handle at designtime determines the objects the
handle will attach to, or the value the handle will hold at runtime.

Handles are linked together to form a chain. The contextual instance of a particular handle is established by the
previous handle in the chain. There are two types of handles in the ECO framework:

m Root handle: A root handle exists to establish an initial context for all the other handles in the chain.

749

m Rooted handle: Evaluation of a rooted handle begins in the context established by the previous handle. The
previous handle can either be a root handle, or another rooted handle.

Handles represent objects and values, therefore, they are also the link between the ECO space and your application's
user interface. All ECO handles can be used as .NET data sources for GUI components. The ECO framework uses
standard .NET data binding mechanisms. Once you bind a GUI component to a handle, you can work with the
component the same way as you would if it were bound to any other kind of data source.

Root Handles

If rooted handles are the individual links in the chain, then a root handle is the spike that is hammered into the ground
to anchor the chain. The ground is your application's ECO space.

There are two important designtime properties of root handles that must be set to establish the initial context: the
EcoSpaceType property, and the StaticValueTypeName property.

The EcoSpaceType property points to your application's ECO space. The EcoSpaceType property gives the root
handle the type system of the model, and a link to the runtime world where objects live.

The StaticValueTypeName property determines the type of object to which the root handle will refer. This property
is used by the IDE during designtime to establish a context for the OCL Expression Editor. At runtime, the framework
will throw an exception if the root handle is ever set to reference an object that does not match the type set in the
StaticValueTypeName property.

At runtime, you can set the Element property of a root handle to refer to a specific object in the ECO space. Root
handles are the only handles that have a writable Element property. Evaluation of the rooted handles in the chain
begins with the object referenced by the root handle.

Rooted Handles

Rooted handles have a property called Expression. The Expression property is an OCL expression that, when
evaluated, produces an object, a set of objects, or an atomic element such as a specific attribute or a calculated
value. When we talk about evaluating rooted handles within a certain context, we are actually talking about the
context for the handle's OCL expression. The context begins at the root handle, and evolves through the chain of
rooted handles.

Types of Root Handles

There are two types of root handles you will encounter in the Enterprise Core Objects category on the Tool
Palette. These are the ReferenceHandle, and the VariableHandle classes.

ReferenceHandle

The ReferenceHandle is a concrete descendent of the RootHandle class. The EcoSpaceType property must be
configured at designtime to refer to your application's ECO space. The handle's StaticValueTypeName property
should also be configured, as this will provide additional designtime assistance in the OCL Expression Editor, as
well as runtime type checking on the handle's Element property.

Every form that needs access to the objects in the ECO space must have at least one instance of a ReferenceHandle.
The ECO Application wizard automatically generates a ReferenceHandle for the main form. The default name of
this ReferenceHandle is rhRoot. For secondary forms, the ECO Enabled Windows Form wizard generates a
ReferenceHandle, also having the default name rhRoot.

VariableHandle

Unlike a ReferenceHandle, a VariableHandle holds a value that does not exist in the ECO space. You configure a
VariableHandle with an ECO space and a StaticValueTypeName, however, a VariableHandle is typically not used

750

to reference objects of classes defined in the model. Instead, a VariableHandle holds values of atomic data types
such as the .NET type System. Int32. This is because a VariableHandle holds an indirect reference to the object,
unlike a ReferenceHandle, which holds the object directly.

A VariableHandle can be used as a data source for GUI components; they are typically used in conjunction with
OclVariables objects to create parameters for use in OCL expressions.

Types of Rooted Handles

There are two types of rooted handles you will encounter in the Enterprise Core Objects category of the Tool
Palette. These are the ExpressionHandle, and the OclPSHandle classes.

ExpressionHandle
An ExpressionHandle references an object or a list of objects through the evaluation of its OCL expression.

You must link the RootHandle property of an ExpressionHandle with either a root handle (an instance of a
ReferenceHandle or VariableHandle class), or another ExpressionHandle.

You configure the Expression property of the ExpressionHandle using the OCL Expression Editor. When you open
the OCL Expression Editor, the context of the expression (the type of the OCL keyword self) is determined by the
type of the result returned by the previous handle in the chain. If the previous handle is a root handle, the type is
determined from the StaticValueTypeName property. If it is another ExpressionHandle, the type is determined from
the Expression property of that handle.

OcIPSHandle

Unlike an ExpressionHandle, an OclPSHandle is always executed against persistent storage, rather than data in
memory (i.e. in the ECO space). Therefore, the result of executing an OclPSHandle is a static snapshot of the
contents of persistent storage.

An OclPSHandle has a method called Execute. The handle's OCL expression is not evaluated until the Execute
method is called. Usually, you will call the Execute method in response to some event on a form, such as a button
click.

An OclPSHandle is typically used when the OCL expression has an intermediary part that results in a large number
of objects, and a subsequent part that filters the set down to a smaller number. For example, a call to
allInstances followed by a select statement.

The OCL expression is first mapped to a SQL query, which is then evaluated by the database. A select statement
in an OclPSHandle will therefore be able to take advantage of any indices defined within the database. With an
ExpressionHandle, the entire set of objects would be created and then processed in memory.

Since the OCL expression of an OclPSHandle is first mapped to SQL, there are some restrictions on OCL constructs
that you can use. The following operations and constructs are supported:

m Navigation: You can freely access attributes and roles defined in the model. However, derived and non-
persistent attributes and roles cannot be used in the expression, since the database has no knowledge of them.

m List operations: select, reject,allInstances, size, orderBy,minValue, maxvalue, average, sum,
exists, forall, notEmpty, isEmpty, and union are supported.

m Boolean operators: =, <, >, <=, >=, <>, and, or, not, xor, sqlLike, sqlLikeCaselInsensitive are
supported.

m Arithmetic operators: +, *, /, -, div, mod are supported.
m Enum: Enumerated constants are supported.
m Type operations: oc1IsKindOf, oclIsTypeOf, oclAsType are supported.

751

m Other operations: TsNull is supported.

The following operations and constructs are not supported:

m Typecasting and metadata operations: TypeName, attributes, associationEnds, superTypes,
allSuperTypes, allSubClasses, oclType are not supported.

m String, Date, and numeric conversion: subString, pad, postPad, formatNumeric, formatDateTime,
strToDate, strToTime, strToDateTime are not supported.

m Operations relating to Object Versioning Extension: atTime, allInstancesAtTime, existing are not
supported.

m List operations: count, includesAll,difference, including, excluding, symmetricDifference,
asSequence, asBag, asSet, append, prepend, subSequence, at, first, last, orderDescending,
sumTime are not supported.

m Other operations: 1ength, min, max, asString, allLoadedObjects, regExpMatch, inDateRange,
inTimeRange, constraints, collect, if, concat are not supported.

There are other restrictions on the OCL expressions used in a OclPSHandle:

m Data types: At no point in the expression can there be a collection of attributes (e.g. Collection (String)).

m TableMapping: Child mapped tables would complicate the questions generated by the translator since each
query must be posed to a number of tables. Currently, it is not possible to refer to attributes/roles that are stored
in child mapped tables.

m Bags: In the OCL specifications, the expression Person.allInstances.home should result in a bag of
objects. Bags allow for multiple instances of the same object, so if two persons live in the same house, the
house would occur twice in the result. SQL, however, does not allow this when making joins, so the results of
such an implicit collect will be a set, and not a bag.

Using the Objects Referenced by Handles

Handles reference objects in the ECO space. A handle could therefore refer to a single object, a list of objects, or it
might hold calculated values. Regardless, every handle has a property called Element that you use to get the value
of the handle. Since the ECO framework has no knowledge of the types defined in your model, there are commonly
used code idioms that allow you to get from the ECO type (held by the handle) to a type defined in your model.

The handle's Element property gives back a reference to the ECO IElement interface. The method AsObject returns
the element as a .NET System.Object. From there, you can cast the object to a type defined in your model, as
shown in the following code. In the code, the variable rhPerson is a ReferenceHandle that has been set to refer to
an instance of a model class called Person.

[Delphi]

var
E : Borland.Eco.ObjectRepresentation.IElement;
O : System.Object;

P : Person;
begin
E := rhPerson.Element;
O := E.AsObject;
P := O as Person;
P.DoSomething; // Now you can call methods and access attributes of the Person class.

// This code could be abbreviated...

752

P := (rhPerson.Element.AsObject) as Person;
P.DoSomething;

// Rbbreviating even more...
(rhPerson.Element.AsObject as Person) .DoSomething;
end;

[C#]

Borland.Eco.ObjectRepresentation.IElement E;
System.Object O;

Person P;
E = rhPerson.Element;
O = E.AsObject ()
P = O as Person;
P.DoSomething () ; // Now you can call methods and access attributes of the Person class.

// This code could be abbreviated...
P = (rhPerson.Element.AsObject) as Person;
P.DoSomething () ;

// Abbreviating even more...
(rhPerson.Element.AsObject as Person) .DoSomething () ;

When the element referenced by the handle is a collection, you must first cast the Element property to the ECO
interface 10bjectList. In the following code, the variable ehAl1Persons is an ExpressionHandle. It is also assumed
the list returned by this expression contains at least three elements. The Expression property has been set to retrieve
all instances of the Person class from the ECO space.

[Delphi]

var
L : Borland.Eco.ObjectRepresentation.IObjectList;
O : System.Object;

P : Person;
begin

L := ehAllPersons.Element as IObjectList; // Cast the element to an IObjectList

O := L[2].AsObject; // Retrieve the object at list index 2, and
cast it to a System.Object

P := O as Person; // Cast the object to a Person

P.DoSomething; // BAccess properties and methods of the Person
class.

// This could be abbreviated...

L := ehAllPersons.Element as IObjectList;
P := (L[2].AsObject) as Person;
P.DoSomething;

// BAbbreviating even more...

P := (ehAllPersons.Element as IObjectList) [2] .AsObject as Person;
P.DoSomething;

end;

[C#]

Borland.Eco.ObjectRepresentation.IObjectList L;

753

System.Object O;
Person P;

L = ehAllPersons.Element as IObjectList; // Cast the element to an IObjectList

O = L[2].AsObject; // Retrieve the object at list index 2, and cast
it to a System.Object

P = O as Person; // Cast the object to a Person

P.DoSomething () ; // Access properties and methods of the Person class.

// This could be abbreviated...

L = ehAllPersons.Element as IObjectList;
P = (L[2].AsObject) as Person;
P.DoSomething () ;

// BAbbreviating even more...

P = (ehAllPersons.Element as IObjectList) [2] .AsObject as Person;
P.DoSomething () ;

754

Working with ECO Subscriptions

This topic describes how the ECO subscription mechanism is implemented, and how you work with it in your
applications. The following items are discussed:

m The ECO subscription mechanism.

m Two different types of subscriptions: Reevaluate and Resubscribe
m Using subscriptions with derived attributes.

m Using the SubscriberAdapterBase abstract class.

The ECO Subscription Mechanism

The ECO framework implements a publish and subscribe pattern to notify subscribers of changes to objects,
relations, and attributes.

Note: Objects, relations, and attributes are all implementers of the IElement interface.

The ECO handles that use OCL expressions, such as ExpressionHandle, are programmed to work with the
subscription mechanism. When you work entirely within the form designer, using the OCL Expression Editor to
configure handles on a form, you do not need to be aware of the inner workings of the subscription mechanism at all.

However, there are times when you will want to use the |OclService interface directly. For example, if you have a
component that is not aware of the .NET databinding mechanism (such as a status bar) and you want to display
values in this component, you will call the EvaluateAndSubscribe method of the I0clService interface. Another
example might be to display a special icon when changes have occurred, such as an email program might indicate
when unread messages have arrived. Again, you would use the EvaluateAndSubscribe method to accomplish this.
Finally, you might also encounter a case where the value of an attribute or column cannot be computed in OCL.

When using the IOclService directly, you must know the two different kinds of subscriptions to which you can respond.
When you need to compute a value in source code rather than in OCL, you must know how to place the two different
kinds of subscriptions.

Reevaluate and Resubscribe

Looking at the four overloaded IOCLService methods, EvaluateAndSubscribe, you can see that each one takes two
different subscriber parameters: reevaluateSubscriber, and resubscribeSubscriber.

IElement EvaluateAndSubscribe (IElement root, string expression, ISubscriber
reevaluateSubscriber, ISubscriber resubscribeSubscriber) ;

IElement EvaluateAndSubscribe (IElement root, IExternalVariablelList variablelList, string
expression, ISubscriber reevaluateSubscriber, ISubscriber resubscribeSubscriber) ;
IElement EvaluateAndSubscribe (IElement root, IClassifier rootType, string expression,
ISubscriber reevaluateSubscriber, ISubscriber resubscribeSubscriber);

IElement EvaluateAndSubscribe (IElement root, IClassifier rootType, IExternalVariableList
variablelList, string expression, ISubscriber reevaluateSubscriber, ISubscriber
resubscribeSubscriber) ;

These two parameters correspond to the two different kinds of subscriptions you can place: Reevaluate
subscriptions, and ReSubscribe subscriptions. The difference between them has to do with the impact any change
in the ECO space has on existing subscriptions. All changes will always cause a reevaluation to occur, so that
subscribers will be informed when they must reevaluate a particular data value. In addition to the reevaluation of
data, some changes in the ECO space also require additional subscriptions to be created. The difference between
the two kinds of subscriptions is illustrated in the following example.

755

You have a model that contains a Person class and a Building class. You have drawn an association between
these two classes such that a person can own zero or many buildings. In addition, you have an association between
a Building and a Person, such that a building can have zero or many residents (i.e. instances of the Person
class). These relationships are shown below.

FPerson residants owmedBuiding E!-uilding
1 On*

0.

At some point while your application is running, the ECO space contains one person object, and this person owns
two buildings. You have built the following OCL expression to retrieve all the residents in all the buildings owned by
a person:

self.ownedBuildings.residents

Note: In the expression, self is an object of type Person.

The purpose of the subscription mechanism is to allow you to keep all the components that display or use data
returned by this expression up to date.

The result of this OCL expression is shown in the diagram. The subscriptions automatically placed by the OCL
evaluator are marked with an asterisk.

ey
P! <
B ——

If a new Person is created and added to the list of residents for building B1, the result would be as shown:

B S
P
B, —

Adding a new person as a resident in an existing building changed the result set of our OCL expression, but it did
not impact the set of subscriptions itself. This kind of change would trigger only a reevaluate subscription. Adding a
new building with its own set of residents would result in the structure shown in the diagram below.

/|
s o

|
Py

a4
iy« s R v

|
P

756

|
ANAVAARN

-

The change not only affected the result set, but it caused a new subscription to be added as well. This kind of change
triggers both a reevaluate and a resubscribe subscription.

The rule of thumb is that if a change occurs in the last element of an OCL navigation (in this example, in the residents
relation) only the value needs to be reevaluated (a reevaluation is required). If a change occurs anywhere else in
the navigation (in this example, in the ownedBuildings relation), both the value and the subscriptions must be
reevaluated (a reevaluation and a resubscription are required).

Having two different subscribers allows you to take different actions when these two types of subscriptions occur.
When working with the EvaluateAndSubscribe method, you can pass a null value for either subscriber parameter if
you are notinterested in that kind of subscription. You can also pass the same subscriber to both parameters, causing
a minor impact in performance. A resubscription will be performed in those cases where only a reevaluation is
required.

Using Subscriptions with Derived Attributes

In some cases you will not be able to compute the value of a derived attribute in OCL. In these cases you must
implement a specific design pattern in your class so that the framework will be able to call your source code to get
the value of the attribute. For a derived attribute whose value is computed in source code, you must add a method
to your class with the following signature:

[Delphi]

function attributeNameDeriveAndSubscribe (reevaluateSubscriber : ISubscriber;
resubscribeSubscriber : ISubscriber) : System.Object;

[C#]

System.Object attributeNameDeriveAndSubscribe (ISubscriber reevaluateSubscriber, ISubscriber
resubscribeSubscriber) ;

You must replace attributeName with the name of the attribute you are deriving. For example, in our Person
class, if we wanted to derive the attribute called fullName in source code, we would implement the method

[Delphi]

function fullNameDeriveAndSubscribe (reevaluateSubscriber : ISubscriber;
resubscribeSubscriber : ISubscriber) : System.Object;

[C#]

757

System.Object fullNameDeriveAndSubscribe (ISubscriber reevaluateSubscriber, ISubscriber
resubscribeSubscriber) ;

Please refer to the procedure Deriving an Attribute in Source Code for an example of computing a value and placing
subscriptions in source.

Using the SubscriberAdapterBase Abstract Class

If you need to implement a component that responds to subscriptions, start by deriving a subclass of the ECO abstract
class, SubscriberAdapterBase. When you use SubscriberAdapt