
Developer Studio 2006

Delphi for Microsoft Win32
Delphi for the Microsoft .NET Framework
C++Builder for Microsoft Win32
C#Builder for the Microsoft .NET Framework

For Windows

1

Borland Software Corporation 100 Enterprise Way Scotts Valley, California 95066-3249 www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance with the License Statement
and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of
this document does not give you any license to these patents.

Copyright 1997 2005 Borland Software Corporation. All rights reserved. All Borland brand and product names are
trademarks or registered trademarks of Borland Software Corporation in the United States and other countries. All
other marks are the property of their respective owners.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

October 2005

PDF

2

Developer Studio 2006 (Common)
Getting Started

What's Developer Studio 2006? .. 21
What's New in Developer Studio 2006 .. 23
Tour of the IDE .. 27
Starting a Project ... 33
Code Editor .. 37
Getting Started with Together .. 41

About Together ... 43
Help on Help .. 45

Managing the Development Life Cycle
Managing the Development Cycle Overview ... 49
Using Source Control .. 51

Using the StarTeam Integration ... 53
Managing Requirements with CaliberRM .. 57
Designing User Interfaces ... 59
Together Features Overview ... 61

Modeling Overview ... 63
Together Project Overview ... 65
Namespace and Package Overview .. 67
Together Diagram Overview .. 69
Supported UML Specifications ... 71
Model Element Overview ... 73
Annotation Overview .. 75
Shortcut Overview .. 77
Diagram Format Overview .. 79
Diagram Layout Overview .. 81
Hyperlinking Overview .. 83
LiveSource Overview ... 85
Transformation to Source Code Overview ... 87
OCL Support Overview .. 89
Patterns Overview .. 91
Refactoring Overview ... 93
Quality Assurance Facilities Overview ... 95
Documentation Generation Facility Overview .. 97
Import and Export Overview ... 99
Interoperability Overview .. 101

Compiling, Building, and Running Applications ... 103
Refactoring Applications .. 105

Refactoring Overview ... 107
Symbol Rename Overview (Delphi, C#, C++) .. 109
Extract Method Overview (Delphi) .. 111
Extract Resource String (Delphi) .. 113
Declare Variable and Declare Field Overview (Delphi) .. 115
Find References Overview (Delphi, C#, C++) .. 119
Change Parameters Overview (Delphi) .. 121
Sync Edit Mode (Delphi, C#, C++) ... 123
Undoing a Refactoring (Delphi, C#) ... 125

Testing Applications .. 127
Unit Testing Overview .. 129
DUnit Overview ... 131
NUnit Overview ... 135

3

Localizing Applications .. 141
Debugging Applications ... 143

Overview of Debugging .. 145
Overview of Remote Debugging .. 147

Deploying Applications .. 149

Procedures

Getting Started Procedures
Adding and Removing Files ... 153
Adding Components to a Form .. 155
Adding References .. 157
Adding Templates to the Object Repository .. 159
Configuring Together ... 161
Copying References to a Local Path ... 163
Creating a Component Template .. 165
Creating a Project .. 167
Customizing the Form ... 169
Customizing the Tool Palette ... 171
Customizing Toolbars .. 173
Docking Tool Windows .. 175
Exploring .NET Assembly Metadata .. 177
Exploring Windows Type Libraries .. 179
Finding Items on the Tool Palette .. 181
Installing Custom Components .. 183
Installing More Computer Languages .. 185
Renaming Files Using the Project Manager .. 187
Saving Desktop Layouts .. 189
Setting Component Properties .. 191
Setting Dynamic Properties .. 193
Setting Project Options .. 195
Setting Properties and Events ... 197
Setting The IDE To Mimic Delphi 7 ... 199
Setting Tool Preferences ... 201
Using Design Guidelines with VCL Components .. 203
Using Online Help .. 205
Using To-Do Lists .. 207
Writing Event Handlers .. 209

CaliberRM Procedures
Adding a Document Reference ... 211
Adding a Table into a Requirement Description .. 213
Adding an Image to a Requirement Description .. 215
Assigning an Owner to a Requirement .. 217
Assigning Responsible Users .. 219
Choosing a CaliberRM Baseline .. 221
Choosing a CaliberRM Project .. 223
Creating a CaliberRM Requirement .. 225
Creating CaliberRM Traces ... 227
Deleting a CaliberRM Requirement ... 229
Displaying Requirement Numbers ... 231
Editing a Requirement ... 233
Editing a Requirement Description .. 235
Editing a Requirement Name .. 237

4

Editing Requirement Priority .. 239
Editing Requirement Status ... 241
Find a Requirement by ID .. 243
Launching CaliberRM Estimate Professional .. 245
Logging On To CaliberRM ... 247
Modifying CaliberRM Traceability Links .. 249
Moving a Requirement .. 251
Posting a New Requirement Discussion Message .. 253
Refreshing Discussion Messages ... 255
Replying to a Discussion Message .. 257
Requirement History .. 259
Requirement Validation ... 261
Specifying Requirement Comment Format ... 263
Updating Requirement Comments .. 265
Viewing a CaliberRM Project Description .. 267
Viewing CaliberRM Custom Tabs .. 269
Viewing CaliberRM Requirement Type Information .. 271

Compiling and Building Procedures
Building Packages ... 273
Finding References ... 275
Linking Delphi Units Into an Application .. 277
Previewing and Applying Refactoring Operations ... 279
Renaming a Symbol .. 281
Setting Project Options .. 195
Using Build Configurations .. 285

Debugging Procedures
Adding a Watch ... 287
Attaching to a Running Process .. 289
Debugging Remote Applications ... 291
Debugging VCL for .NET Source Code ... 293
Displaying Expanded Watch Information ... 295
Establishing a Connection for Remote Debugging .. 297
Finding References ... 275
Inspecting and Changing the Value of Data Elements .. 301
Installing a Debugger on a Remote Machine .. 303
Modifying Variable Expressions .. 305
Preparing a Project for Debugging ... 307
Preparing Files for Remote Debugging ... 309
Previewing and Applying Refactoring Operations ... 279
Refactoring Code ... 313
Renaming a Symbol .. 281
Resolving Internal Errors ... 319
Setting and Modifying Source Breakpoints ... 321
Setting the Search Order for Debug Symbol Tables ... 325
Using Tooltips During Debugging .. 327

Deploying Applications
Building Packages ... 273
Linking Delphi Units Into an Application .. 277

Editing Code Procedures
Creating Code Templates .. 333
Customizing Code Editor ... 335
Finding References ... 275

5

Previewing and Applying Refactoring Operations ... 279
Recording a Keystroke Macro ... 341
Refactoring Code ... 313
Renaming a Symbol .. 281
Using Bookmarks .. 349
Using Class Completion .. 351
Using Code Folding ... 353
Using Code Insight .. 355
Using Code Templates .. 357
Using Sync Edit ... 359
Using the History Manager .. 361

Localization Procedures
Adding Languages to a Project ... 365
Editing Resource Files in the Translation Manager ... 367
Setting the Active Language for a Project ... 369
Setting Up the External Translation Manager .. 371
Updating Resource Modules ... 373
Using the External Translation Manager ... 375

Source Control Procedures
StarTeam: Adding Files ... 377
StarTeam: Checking In Files ... 379
StarTeam: Checking Out Files .. 381
StarTeam: Committing Projects ... 383
StarTeam: Comparing File Revisions .. 385
StarTeam: Configuring the Integration .. 387
StarTeam: Editing the Active Process Item ... 389
StarTeam: Finding Files in the Repository .. 391
StarTeam: Launching the Client .. 393
StarTeam: Locking and Unlocking Files .. 395
StarTeam: Merging Source Files ... 397
StarTeam: Migrating Projects from the SCC Interface to the StarTeam Integration 399
StarTeam: Placing Projects and Project Groups ... 401
StarTeam: Pulling Projects and Project Groups .. 403
StarTeam: Removing Files .. 405
StarTeam: Reverting Files ... 407
StarTeam: Updating Projects .. 409

Together Diagram Procedures
Adding a Conditional Block .. 411
Adding a Member to a Container ... 413
Aligning Model Elements ... 415
Annotating a Diagram .. 417
Assigning an Element Stereotype ... 419
Associating a Lifeline with a Classifier ... 421
Associating a Message Link with a Method ... 423
Associating a Transition or a State with an Activity ... 425
Associating an Object with a Classifier .. 427
Branching Message Links ... 429
Browsing a Diagram with Overview Pane ... 431
Changing Appearance of Compartments .. 433
Changing Appearance of Interfaces .. 435
Changing Diagram Notation .. 437
Changing Type of a Link .. 439
Closing a Diagram ... 441

6

Converting Between UML 1.5 Sequence and Collaboration Diagrams ... 443
Copying and Pasting an Execution or Invocation Specification ... 445
Copying and Pasting Model Elements ... 447
Creating a Browse-Through Sequence ... 449
Creating a Deferred Event ... 451
Creating a Delegation Connector .. 453
Creating a Diagram ... 455
Creating a Guard Condition for a Transition .. 457
Creating a History Element .. 459
Creating a Link with Bending Points .. 461
Creating a Member for a State .. 463
Creating a Multiple Transition .. 465
Creating a Pin .. 467
Creating a Port .. 469
Creating a Referenced Part ... 471
Creating a Self-Transition .. 473
Creating a Sequence or Communication Diagram from an Interaction ... 475
Creating a Shortcut .. 477
Creating a Simple Link .. 479
Creating a Single Model Element .. 481
Creating a State ... 483
Creating a State Invariant .. 485
Creating an Activity for a State .. 487
Creating an Association Class ... 489
Creating an Extension Point .. 491
Creating an Inner Classifier ... 493
Creating an Internal Structure for a Node .. 495
Creating an Internal Transition .. 497
Creating Multiple Elements .. 499
Deleting a Diagram .. 501
Designing a UML 1.5 Activity Diagram .. 503
Designing a UML 1.5 Component Diagram ... 505
Designing a UML 1.5 Deployment Diagram .. 507
Designing a UML 1.5 Statechart Diagram ... 509
Designing a UML 2.0 Activity Diagram .. 511
Designing a UML 2.0 Component Diagram ... 513
Designing a UML 2.0 Deployment Diagram .. 515
Designing a UML 2.0 Sequence or Communication Diagram ... 517
Designing a UML 2.0 State Machine Diagram .. 519
Designing Use Case Hierarchy ... 521
Exporting a Diagram to an Image .. 523
Grouping Actions into an Activity ... 525
Hiding and Showing Model Elements .. 527
Hyperlinking Diagrams .. 529
Instantiating a Classifier .. 531
Laying Out a Diagram Automatically ... 533
Linking Another Interaction from an Interaction Diagram .. 535
Moving Model Elements .. 537
Printing a Diagram ... 539
Putting Diagram Files Under Version Control .. 541
Renaming a Diagram ... 543
Rerouting a Link .. 545
Resizing Model Elements .. 547
Searching Diagrams .. 549
Searching Source Code for Usages .. 551

7

Selecting Model Elements ... 553
Specifying Entry and Exit Actions .. 555
Using a Class Diagram as a View ... 557
Using Drag-and-Drop .. 559
Using Grid and Other Appearance Options ... 561
Using the UML in Color Profile .. 563
Using View Filters .. 565
Working with a Collaboration Use ... 567
Working with a Combined Fragment ... 569
Working with a Complex State .. 571
Working with a Constructor ... 573
Working with a Field .. 575
Working with a Provided or Required Interface ... 577
Working with a Relationship .. 579
Working with a Tie Frame .. 581
Working with a UML 1.5 Message ... 583
Working with a UML 2.0 Message ... 585
Working with an Instance Specification ... 587
Working with an Interface .. 589
Working with an Object Flow or a Control Flow ... 591
Working with User Properties .. 593
Zooming a Diagram ... 595

Together Documentation Generation Procedures
Configuring the Documentation Generation Facility .. 597
Generating Project Documentation ... 599

Together Object Constraint Language (OCL) Procedures
Creating a Guard Condition for a Transition .. 457
Creating a State ... 483
Creating a State Invariant .. 485
Creating an OCL Constraint .. 607
Editing an OCL Expression ... 609
Showing and Hiding an OCL Constraint .. 611
Working with a Combined Fragment ... 569

Together Pattern Procedures
Adding Participants to the Patterns as First Class Citizens ... 615
Assigning Patterns to Shortcuts .. 617
Copying and Pasting Shortcuts, Folders or Pattern Trees .. 619
Creating a Folder ... 621
Creating a Link by Pattern ... 623
Creating a Model Element by Pattern .. 625
Creating a Pattern ... 627
Creating a Shortcut to a Pattern .. 629
Creating a Virtual Pattern Tree .. 631
Deleting Patterns as First Class Citizens from the Model ... 633
Deleting shortcuts, folders or pattern trees .. 635
Editing Properties .. 637
Exporting a Pattern .. 639
Importing a Legacy Pattern ... 641
Opening the Pattern Organizer .. 643
Saving Changes in the Pattern Registry .. 645
Sharing Patterns .. 647
Sorting Patterns .. 649
Using the Pattern Organizer .. 651

8

Using the Pattern Registry ... 653
Using the Stub Implementation Pattern ... 655

Together Project Procedures
Activating Together Support for Projects ... 659
Creating a Project .. 661
Exporting a Project to XMI Format .. 663
Importing a Project Created in TCC or TAR .. 665
Importing a Project Created in TVS, TEC, TJB, or TPT .. 667
Importing a Project in IBM Rational Rose (MDL) Format .. 669
Importing a Project in XMI Format ... 671
Opening an Existing Project for Modeling ... 673
Sharing a Project Between TCC/TAR and Developer Studio 2006 ... 675
Synchronizing the Model View, Diagram View, and Source Code .. 679
Transforming a Design Project to Source Code .. 681
Troubleshooting a Model ... 683
Working with a Namespace or a Package ... 685
Working with a Referenced Project ... 687

Together Quality Assurance Procedures
Creating a Metrics Chart .. 689
Exporting Audit Results ... 691
Printing Audit Results .. 693
Running Audits .. 695
Running Metrics ... 697
Viewing Audit Results .. 699
Viewing Metric Results .. 701
Working with a Set of Audits .. 703
Working with a Set of Metrics .. 705

Together Refactoring Procedures
Refactoring: "Safe Delete" ... 707
Refactoring: Changing Parameters .. 709
Refactoring: Creating Inline Variables ... 711
Refactoring: Extracting Interfaces ... 713
Refactoring: Extracting Method .. 715
Refactoring: Extracting Superclass ... 717
Refactoring: Introducing Fields .. 719
Refactoring: Introducing Variables .. 721
Refactoring: Moving Members ... 723
Refactoring: “Pull Members Up" and “Push Members Down” ... 725

Unit Test Procedures
Building Tests .. 727

9

10

Developer Studio 2006 for .NET
Building Applications with the ECO framework

Introduction .. 733
Overview of the ECO framework .. 735
ECO Modeling Tools Overview .. 739
Working with the ECO Service API .. 743
Working with ECO Handles .. 749
Working with ECO Subscriptions ... 755

Using State Machines with the ECO framework .. 759
Modeling Behavior with State Machines .. 761
Using Substates with the ECO framework ... 767

Object Constraint Language (OCL) and ECO Action Language ... 775
Overview of the Object Constraint Language ... 777
Using ECO Action Language ... 783

Using the ECO framework with Multi-Client Applications .. 785
The ECO framework and ASP.NET ... 787
Using the ECO Framework in Multi-Client Applications ... 789

Custom OR Mapping ... 793
Custom ECO Object-Relational Mapping Files .. 795
Custom OR Mapping with Auto-Increment Columns .. 799
Custom OR Mapping with BLOB Tables .. 801
Custom OR Mapping with Objects stored in multiple tables, with multiple keys 803
Custom OR Mapping with Singlelink and Compound Keys ... 805
Custom OR Mapping Using Type Discriminator Columns ... 807

Building Web Applications with ASP.NET
ASP.NET Overview ... 811
Borland DB Web Controls Overview ... 815
DB Web Controls Navigation API Overview .. 817
Working with DataViews .. 819
Working with WebDataLink Interfaces ... 821
Using DB Web Controls in Master-Detail Applications .. 823
Using XML Files with DB Web Controls .. 825
DB Web Control Wizard Overview .. 827
Deploying ASP.NET Applications .. 835

Building Web Services with ASP.NET
ASP.NET Web Services Overview .. 839
Web Services Protocol Stack .. 843
ASP.NET Web Services Support .. 845

Building Applications with Windows Forms
Windows Forms Overview ... 849
Deploying Windows Forms Applications ... 851

Building Applications with VCL.NET Components
VCL for .NET Overview ... 855
Porting VCL Applications ... 859
Language Issues in Porting VCL Applications to Developer Studio 2006 ... 861

Building Database Applications with ADO.NET
ADO.NET Overview ... 877
Borland Data Providers for Microsoft .NET ... 881
BDP.NET Data Types .. 885

11

BDP.NET Component Designers .. 889
Stored Procedure Overview .. 893
VCL for .NET Database Technologies .. 895

dbExpress Components overview .. 897
dbGo Components Overview ... 899
BDP Connection Pooling Overview .. 901

Getting Started with InterBase Express ... 903
Deploying Database Applications for the .NET Framework .. 909

Building Applications with Unmanaged Code
Using COM Interop in Managed Applications .. 913
Using Platform Invoke with Developer Studio 2006 .. 919
Virtual Library Interfaces .. 929
Using DrInterop ... 931
Deploying COM Interop Applications ... 933

Building Reports for .NET Applications
Using Rave Reports in Developer Studio 2006 ... 937

Procedures

ASP.NET Procedures
Adding Aggregate Values with DBWebAggregateControl ... 941
Adding Web References in ASP.NET Projects ... 943
Binding Columns in the DBWebGrid ... 947
Building an Application with DB Web Controls .. 949
Building an ASP.NET "Hello World" Application .. 951
Building an ASP.NET Application .. 953
Building an ASP.NET Database Application ... 955
Converting HTML Elements to Server Controls .. 959
Creating a Briefcase Application with DB Web Controls ... 961
Creating a Virtual Directory ... 963
Creating an XML File for DB Web Controls ... 965
Creating Metadata for a DataSet ... 967
Debugging and Updating ASP.NET Applications .. 969
Generating HTTP Messages in ASP.NET ... 971
Modifying Database Connections .. 973
Porting a Delphi for Win32 Web Service Client Application to Delphi for .NET ... 979
Setting Permissions for XML File Use ... 983
Setting Up a Cassini Web Server .. 985
Troubleshooting ASP.NET Applications .. 987
Using the ASP.NET Deployment Manager .. 991
Using the DB Web Control Wizard .. 995
Using the HTML Tag Editor ... 997
Working with ASP.NET User Controls ... 999

Database Procedures
Adding a New Connection to the Data Explorer .. 1001
Adding Aggregate Values with DBWebAggregateControl ... 941
Adding an BDP Reconcile Error dialog to your BDP Application ... 1005
Binding Columns in the DBWebGrid ... 947
Browsing a Database in the Data Explorer .. 1009
Building a Database Application that Resolves to Multiple Tables .. 1011
Building a Distributed Database Application .. 1013

12

Building a Windows Forms Database Application ... 1017
Building an Application with DB Web Controls .. 949
Building an ASP.NET Database Application ... 955
Creating a Briefcase Application with DB Web Controls ... 961
Creating an XML File for DB Web Controls ... 965
Creating Database Projects from the Data Explorer ... 1031
Creating Metadata for a DataSet ... 967
Creating Table Mappings .. 1035
Executing SQL in the Data Explorer .. 1037
Handling Errors in Table Mapping ... 1039
Migrating Data Between Databases .. 1041
Modifying Connections in the Data Explorer ... 1043
Modifying Database Connections .. 973
Passing Parameters in a Database Application .. 1051
Using Standard DataSets .. 1055
Using the Command Text Editor ... 1059
Using the Connection Editor Designer .. 1061
Using the Data Adapter Designer .. 1063
Using the Data Adapter Preview .. 1065
Using the DB Web Control Wizard .. 995
Using Typed DataSets ... 1069

ECO Framework Procedures
Adding a Derived Association End to an ECO Class Diagram .. 1073
Adding a Derived Attribute to an ECO Class ... 1075
Adding a Guard Expression to a State Transition ... 1077
Adding a PersistenceMapperClient to an ECO Space .. 1079
Adding a PersistenceMapperSharer to an ECO Space ... 1081
Adding a Reference to an ECO Package in a DLL .. 1083
Adding a Region to a State .. 1085
Adding a Trigger Method to an ECO Class ... 1087
Adding an ECO Enabled Windows Form to a Project ... 1089
Adding an ECO UML Package to a Project ... 1091
Adding an Effect to a State Transition ... 1093
Adding and Configuring a Connection Handle on an ECO Space .. 1095
Adding Columns and Nestings to an ECO Handle .. 1097
Adding Entry and Exit Actions to a State ... 1099
Adding States and Substates to an ECO State Machine Diagram .. 1101
Building Applications with the ECO Framework .. 1103
Configuring a PersistenceMapperMultiDb Component ... 1105
Configuring an OclVariables Component .. 1107
Configuring the Persistence Method of an ECO Space .. 1111
Converting an ECO framework Project to Developer Studio 2006 .. 1113
Creating a New ECO Space Subclass .. 1115
Creating a New ECO Windows Forms Application .. 1117
Creating a PersistenceMapperProvider ... 1119
Creating an Association Class on an ECO Class Diagram ... 1121
Creating an ECO ASP.NET Application .. 1123
Creating an ECO framework State Machine Diagram ... 1125
Creating an ECO Package in a DLL .. 1127
Creating an Empty InterBase Database .. 1129
Creating an Event Derived Column ... 1131
Deploying an ECO framework Application .. 1133
Deriving an Attribute in Source Code .. 1135
Generating a Model and OR Mapping from an Existing Database .. 1139

13

Implementing a Subclass of SubscriberAdapterBase ... 1141
Regenerating and Updating ECO Source Code .. 1145
Selecting ECO UML Packages .. 1147
Using a Custom Object-Relational Mapping File ... 1149
Using the ECO Space Designer .. 1151
Using the Expression Editor to Build OCL and ECO Action Language Expressions 1153
Using the PersistenceMapperProvider Designer ... 1155

Interoperable Applications Procedures
Adding a Reference to a COM Server ... 1157
Adding an ActiveX Control to the Tool Palette .. 1159
Installing Janeva Compilers in the Tools Menu ... 1161

VCL for .NET Procedures
Building a VCL Forms Application ... 1163
Building a VCL Forms dbExpress.NET Database Application .. 1165
Building a VCL Forms Hello World Application ... 1167
Building a VCL.NET Forms ADO.NET Database Application ... 1169
Building an Application with XML Components ... 1171
Building VCL Forms Applications With Graphics ... 1175
Creating a New VCL.NET Component .. 1177
Creating Actions in a VCL Forms Application .. 1179
Displaying a Bitmap Image in a VCL Forms Application ... 1181
Drawing a Rounded Rectangle in a VCL Forms Application ... 1183
Drawing Rectangles and Ellipses in a VCL Forms Application ... 1185
Drawing Straight Lines In a VCL Forms Application .. 1187
Importing .NET Controls to VCL.NET .. 1189
Placing a Bitmap Image in a Control in a VCL Forms Application ... 1191
Using ActionManager to Create Actions in a VCL Forms Application ... 1193

Web Services Procedures
Accessing an ASP.NET "Hello World" Web Services Application ... 1195
Adding Web References in ASP.NET Projects ... 943
Building an ASP.NET "Hello World" Web Services Application ... 1201
Porting a Delphi for Win32 Web Service Client Application to Delphi for .NET ... 979

Windows Forms Procedures
Building a Windows Forms Application ... 1207
Building a Windows Forms Database Application ... 1017
Building a Windows Forms Hello World Application .. 1213
Building Windows Forms Menus ... 1215
Passing Parameters in a Database Application .. 1051

14

Developer Studio 2006 for Win32
Building Windows Applications with Win32 Forms

Windows Overview .. 1223

Building Web Applications with WebSnap
Win32 Web Applications Overview .. 1227

Building Web Services with Win32 Applications
Web Services Overview .. 1231

Building Database Applications for the Win32 Platform
dbGo Overview .. 1235
dbExpress Components .. 1237
BDE Overview ... 1239
Getting Started with InterBase Express ... 1241

Building Applications with VCL Components
VCL Overview .. 1249

Building Interoperable Applications
Building COM Applications .. 1255

Build Configurations
Managing C++ Build Configurations .. 1263

Debugging C++ Applications with CodeGuard Error Reporting
CodeGuard Overview .. 1265
CodeGuard Errors ... 1267

Access Errors ... 1267
Resource Errors ... 1268
Exception Errors ... 1271
Function Failure Errors ... 1273

CodeGuard Warnings .. 1275
String Comparison Warnings ... 1275
Memory Block Comparison Warnings .. 1275
Pathname Merging and Splitting Warnings .. 1275

Building Reports for Win32 Applications
Using Rave Reports in Developer Studio 2006 ... 1279

Procedures

CodeGuard Procedures
Using CodeGuard .. 1283

Database Procedures
Accessing Schema Information ... 1285
Configuring TSQL Connection ... 1287
Connecting to Databases with TDatabase .. 1289
Connecting to the Application Server using DataSnap Components .. 1291
Debugging dbExpress Applications using TSQLMonitor ... 1293
Executing the Commands using TSQLDataSet .. 1295
Fetching the Data using TSQLDataSet ... 1297

15

Managing Database Sessions Using TSession ... 1299
Specifying the Data to Display using TSQLDataSet .. 1301
Specifying the Provider using TLocalConnection or TConnectionBroker .. 1303
Using BDE ... 1305
Using DataSnap .. 1307
Using dbExpress ... 1309
Using TBatchMove .. 1311
Using TQuery .. 1313
Using TSimpleDataSet .. 1315
Using TSimpleObjectBroker .. 1317
Using TSQLQuery ... 1319
Using TSQLStoredProc ... 1321
Using TSQLTable .. 1323
Using TStoredProc .. 1325
Using TTable ... 1327
Using TUpdateSQL to Update a Dataset .. 1329

Interoperable Applications Procedures
Using COM Wizards .. 1331

Reporting Procedures
Adding Rave Reports to Developer Studio 2006 ... 1333

VCL Procedures
Adding and Sorting Strings .. 1335
Avoiding Simultaneous Thread Access to the Same Memory ... 1337
Building a Multithreaded Application ... 1339
Building a VCL Forms "Hello world" Application .. 1341
Building a VCL Forms ADO Database Application .. 1343
Building a VCL Forms Application ... 1345
Building a VCL Forms Application with Decision Support Components .. 1347
Building a VCL Forms dbExpress Database Application ... 1351
Building a VCL Forms MDI Application Using a Wizard .. 1353
Building a VCL Forms MDI Application Without Using a Wizard ... 1355
Building a VCL Forms SDI Application .. 1359
Building a VCL Forms Web Browser Application .. 1361
Building a Windows "Hello World" Application ... 1363
Building a Windows Application ... 1365
Building an Application with XML Components ... 1367
Building Application Menus ... 1371
Building VCL Forms Applications With Graphics ... 1373
Copying a Complete String List ... 1375
Copying Data From One Stream To Another .. 1379
Creating a New VCL Component .. 1381
Creating a VCL Form Instance Using a Local Variable ... 1383
Creating a VCL Forms ActiveX Active Form ... 1385
Creating Actions in a VCL Forms Application .. 1387
Creating Strings ... 1389
Defining the Thread Object .. 1391
Deleting Strings ... 1395
Displaying a Bitmap Image in a VCL Forms Application ... 1399
Displaying a Full View Bitmap Image in a VCL Forms Application .. 1401
Displaying an Auto-Created VCL Form ... 1403
Drawing a Polygon in a VCL Forms Application .. 1405
Drawing a Rounded Rectangle in a VCL Forms Application ... 1407
Drawing Rectangles and Ellipses in a VCL Forms Application ... 1409

16

Drawing Straight Lines In a VCL Forms Application .. 1411
Dynamically Creating a VCL Modal Form ... 1413
Dynamically Creating a VCL Modeless Form .. 1415
Handling Exceptions .. 1417
Initializing a Thread ... 1419
Iterating Through Strings in a List ... 1421
Placing A Bitmap Image in a Control in a VCL Forms Application .. 1425
Reading a String and Writing It To a File ... 1427
Renaming Files .. 1429
Using ActionManager to Create Actions in a VCL Forms Application ... 1431
Using the Main VCL Thread .. 1433
Waiting for Threads ... 1435
Writing Cleanup Code ... 1439
Writing the Thread Function .. 1441

WebSnap Procedures
Building a WebSnap "Hello World" Application ... 1443
Building a WebSnap Application ... 1445
Debugging a WebSnap Application using the Web Application Debugger ... 1447

17

Concepts

General

18

Getting Started
The Developer Studio 2006 integrated development environment (IDE) provides many tools and features to help
you build powerful applications quickly. Not all features and tools are available in all editions of Developer Studio
2006. For a list of features and tools included in your edition, refer to the feature matrix on http://www.borland.com/
delphi.

In This Section
What's Developer Studio 2006?
Provides a product overview and describes the Developer Studio 2006 tools for managing the development
life cycle.

What's New in Developer Studio 2006
Introduces key new features and functionality in the product.

Tour of the IDE
Describes the various IDE elements.

Starting a Project
Describe the parts of a project and provides a list of projects supported in Developer Studio 2006.

Code Editor
Describes the features of the Developer Studio 2006 Code Editor.

Help on Help
Explains how information is organized in the online Help and lists additional developer resources.

Procedures

19

20

What's Developer Studio 2006?
Developer Studio 2006 is an integrated development environment (IDE) for building Delphi, Delphi for .NET, C#,
and C++ applications. The Developer Studio 2006 IDE provides a comprehensive set of tools that streamline and
simplify the development life cycle. The tools available in the IDE depend on the edition of Developer Studio 2006
you are using. The following sections briefly describe these tools.

Defining Requirements
Developer Studio 2006 provides an interface to Borland CaliberRM, a Web-based requirements definition and
management system designed to help control the product development process. Within the IDE, you can access
CaliberRM to collaborate on project requirements and ensure that your applications meets end-user needs.

Modeling Applications
Modeling can help you can improve the performance, effectiveness, and maintainability of your applications by
creating a detailed visual design before you ever write a line of code. Developer Studio 2006 provides UML-based
class diagramming tools and a framework of Enterprise Core Objects (ECO) to help you create model-
powered .NET applications.

Designing User Interfaces
The Developer Studio 2006 visual designer surface lets you create graphical user interfaces by dragging and
dropping components from the Tool Palette to a form. Using the designers, you can create VCL Forms, Windows
Forms, Web Forms, and HTML pages.

Generating and Editing Code
Developer Studio 2006 auto-generates much of your application code as soon as you begin a project. To help you
complete the remaining application logic, the text-based Code Editor provides features such as refactoring,
synchronized editing, code completion, recorded keystroke macros, and custom key mappings. Syntax highlighting
and code folding make your code easier to read and navigate.

Compiling, Debugging, and Deploying Applications
Within the IDE, you can set compiler options, compile and run your application, and view compiler messages. The
integrated Borland .NET and Borland Win32 debuggers help you find and fix runtime and logic errors, control program
execution, and step through code to watch variables and modify data values. The Developer Studio 2006 ASP.NET
Deployment Manager can assist you in copying the files required by your ASP.NET application to a web server.
Additionally, the .NET Framework includes several utilities to help you prepare applications for deployment.
Developer Studio 2006 includes InstallShield Express for creating Windows Installer setups.

Controlling Access and Tracking Changes to Code
Source control systems enable team development by controlling access and tracking changes to source code and
other files. Developer Studio 2006 provides a full-featured, direct integration with StarTeam, Borland's automated
change and software configuration management system. Within the Developer Studio 2006 IDE, you can perform
common source control tasks, such as file check in, check out, and synchronization.

21

The .NET Framework
The Microsoft .NET Framework provides the foundation for building and running .NET applications. The Framework
includes the common language runtime and class library. The common language runtime manages the execution
of code and provides services, such as memory management and cross-language integration, that simplify the
development process. The class library is a collection of reusable, object-oriented components for developing .NET
applications that take advantage of the common language runtime services.

Developer Studio 2006 makes the entire Framework class library available in the IDE to help you develop .NET
applications. Developer Studio 2006 enhances the Framework in the following areas:

The Developer Studio 2006 Borland Data Providers for .NET provide access to InterBase, Oracle, DB2
Universal, and Microsoft SQL Server databases.
Several database utilities assist in performing tasks such as connecting to databases, browsing and editing
databases, and executing SQL queries.
The .NET Menu Designers simplify the creation of main menus and context menus on Windows Forms.

22

What's New in Developer Studio 2006
Developer Studio 2006 provides key new features for developing Delphi, Delphi for .NET, C#, and C++ applications

C++ Personality
Developer Studio 2006 provdes support for developing C++ applications. The following key features are available
for only the C++ personality:

Build configurations: You can create and quickly switch between multiple build configurations, which store
sets of command-line options for build tools such as the compiler and linker.
Build events: You can specify commands to execute at certain points in the build by righ-clicking a buildable
file in the Project Manager and choosing Build Events.
CodeGuard integration: CodeGuard, a tool that provides runtime debugging for C++ applications, has tighter
integration with Developer Studio 2006.
Dinkumware runtime libraries: Dinkumware runtime libraries are provided for enhanced conformance to
ANSI/ISO C++ standards.

IDE
New Memory Manager: This relncludes a new memory manager that significantly improves start-up time,
runtime speed, and hyperthreading performance.
Improved Speed for Several Features: The Search | Find Uses/Import Namespace, Find Class, and Change
Parameters features all have significant performance improvements in this release.
Change Parameters Refactoring: You can add, remove, or change the ordering of method parameters using
this refactoring. Change parameters refactoring is available for Delphi for Win32 and Delphi for .NET.
Message view: The Message view automatically scrolls to display new items.
Project Repository improvements: You can now add a starter project, demo, template, or other frequently
used file to the Object Repository, which causes it to become available on the New menu.

Form Designer
Design Guidelines: When you move components on a form, design guidelines appear and help you align
components.
Form Positioner: This new view appears in the lower-right corner of the Form Designer. You can expand this
view and quickly reposition the runtime position of the form.

Code Editor
New code templates: Code templates provide a means of automating the task of typing frequently used code
structures. Developer Studio 2006 provides a library of templates for every supported language, and you can
add other new templates by choosing File New Other Other Files Code Template.
Surround templates: You can right-click a selected a block of code and choose Surround to view a list of
possible templates with which to surround your code.
Live templates editing: When you add a code template to your source code, you can TAB through fields and
insert points to quickly populate the template with logic.

23

Block completion: Block closures are automatically added as needed when you edit code.
Method navigation: You can quickly navigate between methods in your source code using a series of hotkeys.
CTRL+ALT+UP and CTRL+ALT+DOWN move to the previous and next method, respectively. CTRL+ALT+HOME and
CTRL+ALT+END move to the first and last methods in the source, respectively. CTRL+ALT+Q^L toggles class lock,
which causes method navigation to apply to only the current class.
Improved Code Editor gutter: The Code Editor gutter is now more readable and less cluttered.
Diff highlighting: Yellow highlights appear in the Code Editor gutter next to lines modified since your last save.
Green highlights appear next to lines that have been modified and saved in the current editing session.
Close all other pages: You can close all other pages by right-clicking a page tab and choosing Close All Other
Pages.

Debugger
Remote debugging: Remote debugging is now available for native Win32 applications, managed applications,
and ASP.NET applications.
Symbol table management: You can now specify the order in which symbols tables are loaded for a particular
module that you are debugging. You can also limit the search to specific symbol tables, which can speed up
the debugging process.
Expandable watches: You can now inspect the values of members within a watched object, as well as elements
within an object. Expanded tooltips are available for watched objects.
CPU view: In the CPU view, you can now select multiple items and copy them to the clipboard..
Sort by load order: In the Module view, modules can now be sorted by their load order.
Close implicitly opened files: The debugger now closes any files it automatically opens in a debugging
session.

ECO Framework
ECO State Machines: The addition of ECO state machine diagrams allow you to model the behavior of classes.
ECO state machine diagrams support entry and exit actions, transition effects, OCL guard expressions, and
concurrent state machines.
ECO Action Language: ECO Action Language is an extension of the Object Constraint Language (OCL) that
allows side-effects. You can use ECO Action Language on state machine diagrams to completely specify
behavior on the diagram itself, rather than writing code.
OCL Expression Editor: The OCL Expression Editor is now available from both the ECO WinForm designer,
and on ECO UML diagrams.
Reverse and Wrap an Existing Database with ECO: The ECO space designer now contains a tool to help
you create an ECO model from an existing database. This wizard steps you through the process of selecting a
database and customizing the OR mapping.

Modeling
Together UML Tools: New diagram types and code constructs such as interfaces, enumerations and structures
may be created from the Model view. The following diagrams and constructs are available: Class diagram, Use
case diagram, Sequence diagram, Collaboration diagram, State chart diagram, Activity diagram, Component
diagram, Deployment diagram, Class, Interface, Structure, Enumeration, Delegate, Namespace, Object,
Constraint, Note.

24

Together Engine: The core engine has been rewritten to provide increased speed and stability

ASP.NET Web Development
Show referenced assemblies: The Deployment Manager can now show all assemblies referenced by the
current project.
Adding external files: You can easily choose the external files that you want to deploy using the External
Files dialog box.
Markup source preservation: When you edit a markup document using the MSHTML control, the IDE now
preserves whitespace, user-specified tag and attribute formatting, and closing tags.
Change default layout: You can now change the default layout in the Design Editor to be Grid Layout or
Flow Layout. Choose Tools Options HTML/ASP.NET Options to change the default layout.
Cassini:Developer Studio 2006 provides better support for the Cassini debugging web server. A pre-built server
is included with the IDE.

Database
Many changes have been made to improve support for database application development in Developer Studio 2006.

dbExpress

dbExpress Unicode support: The MSSQL driver now supports unicode.
ConnectionString property: The ConnectionString property in dbExpress lets you pass all database options
and connection information using a single connection string.
Customizable decimal separator: You can now specify the decimal separator.
MSSQL Return values: Support for dbExpress MSSQL return values from Stored Procedures has been added.
TSQLQuery support: Support for TQSLQuery OUT and INOUT parameters has been added.

BDP.NET Updates

Connection pooling support: You can now use connection pooling to decrease connection time by using a
connection from an existing pool. Connection pooling options are available on the Connections Editor dialog
box.
Reconcile Error Dialog: When an error occurs during a database Delete, Insert or Update operation, the
Reconcile Error dialog box lets you to decide which data source to use, whether to abort the operation
completely or to continue on with the next update.

General database features

Support for MySQL 4.0.24 BDP Provider
Customizable SQL type mapping for Data Migration
QuoteObjects support for CREATE/ALTER/DROP in ISQLSchemaCreate
Related Objects and ForeignKey support in ISQLExtendedMetaData (for ORACLE, Interbase, MSSQL, and
Sybase)

25

Support for the following Oracle 9i data types: TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP
WITH LOCAL TIME ZONE, INTERVAL YEAR TO MONTH, and INTERVAL DAY TO SECOND

VCL`
New components: The following new components have been added to the Visual Component Library:

TTrayIcon
TGridPanel
TFlowPanel

New classes: The following new classes have been added:

TCustomTransparentControl
TMargins
TPadding

Delphi Language Enhancements
Records: The following support has been added for record types:

Operator overloading
Non-virtual method declaration
Regular instance methods
Constructors with non-empty parameter lists
Static methods and properties

Note: Destructors in records are not permitted.

StarTeam Integration
Search: The StarTeam integration has been enhanced to include access to the Borland Search feature.
Visual Diff / Merge: You can now use the Visual Diff and Visual Merge features from the embedded StarTeam
client, even if you do not have the standalone StarTeam client installed.

CaliberRM Integration
Integration: You can log on to the CaliberRM server directly from the IDE. Once you are logged on, you can
use the CaliberRM requirements management features to add, remove, or update requirements.
Linking requirements to source code files: You can link a requirement directly to source code files within the
IDE.

26

Tour of the IDE
When you start Developer Studio 2006, the integrated development environment (IDE) launches and displays
several tools and menus. The IDE helps you visually design user interfaces, set object properties, write code, and
view and manage your application in various ways.

The default IDE desktop layout includes some of the most commonly used tools. You can use the View menu to
display or hide certain tools. You can also customize and save the desktop layouts that work best for you.

The tools available in the IDE depend on the edition of Developer Studio 2006 you are using and include the

Welcome Page
Accessibility Options
Forms
Form Designer
Tool Palette
Object Inspector
Object Repository
Project Manager
Data Explorer
Structure View
History Manager
Code Editor

The following sections describe each of these tools.

Welcome Page
When you open Developer Studio 2006, the Welcome Page appears with a number of links to developer resources,
such as product-related articles, training, and online Help. As you develop projects, you can quickly access them
from the list recent projects at the top of the page. If you close the Welcome Page, you can reopen it by
choosing View Welcome Page.

Accessibility Options
The IDE's main menu supports MS Active Accessibility (MSAA). This means that you can use the Windows
accessibility tools from the Start Menu viaAll Programs Accessories Accessibility.

Forms
Typically, a form represents a window or HTML page in a user interface. At design-time, a form is displayed on the
Designer surface. You add components from the Tool Palette to a form to create your user interface.

Developer Studio 2006 provides several types of forms, as described in the following sections. Select the form that
best suits your application design, whether it’s a Web application that provides business logic functionality over the
Web, or a Windows application that provides processing and high-performance content display. To switch between
the Designer and Code Editor, click their associated tabs below the IDE.

To access forms, choose File New Other.

27

Windows Forms
Use Windows Forms to build native Windows applications that run in a managed environment. You use the .NET
classes to build Windows clients which presents two major advantages—it allows application clients to use features
unavailable to browser clients, and it leverages the .NET Framework infrastructure. Windows Forms present a
programming model that takes advantage of a unified .NET Framework (for security and dynamic application
updates, for instance) and the richness of GUI Windows clients. You use Windows controls, such as buttons, list
boxes, and text boxes, to build your Windows applications.

To access a Windows Form, choose File New Other Delphi for .NET Projects Windows Forms
Application.

ASP.NET Web Forms
Use ASP.NET Web Forms to create applications that can be accessed from any Web browser on any platform. You
use the .NET classes to create a ASP.NET Web Forms application. The form consists of the visual representation
of the HTML, the actual HTML, and a code-behind file.

To access an ASP.NET Web Form, choose File New Other Delphi for .NET Projects ASP.NET Web
Application.

VCL Forms
Use VCL Forms to create applications that use VCL.NET components to run in the .NET Framework. You use the
Borland Visual Component Library for .NET classes to create a VCL Forms application.

VCL Forms are especially useful if you want to port an existing Delphi application containing VCL controls to
the .NET environment, or if you are already familiar with the VCL and prefer to use it.

To access a VCL Forms, choose File New Other Delphi for .NET Projects VCL Forms Application.

Form Designer
The Form Designer, or Designer, is displayed automatically when you are using a form. The appearance and
functionality of the Designer depends on the type of form you are using. For example, if you are using an ASP.NET
Web Form, the Designer will display an HTML tag editor. To access the Designer, click the Design tab at the bottom
of the IDE.

Visual Components
Visual components appear on the form at design-time and are visible to the end user at runtime. They include such
things as buttons, labels, toolbars, and listboxes.

Form Preview
A preview icon at the bottom right of the Designer (for VCL Forms) shows the positioning of your form as it will appear
on the screen at runtime. This allows you to position the forms of your application in relation to each other as you
design them.

HTML Designer
Use the HTML Designer to view and edit ASP.NET Web Forms or HTML pages. This Designer provides a Tag
Editor for editing HTML tags alongside the visual representation of the form or page. You can also use the Object
Inspector to edit properties of the visible items on the HTML page and to display the properties of any current HTML
tag in the Tag Editor. A combo box located above the Tag Editor lets you display and edit SCRIPT tags.

To create a new HTML file, choose File New Other Web Documents HTML Page.

28

Nonvisual Components and the Component Tray
Nonvisual components are attached to the form, but they are only visible at design-time; they are not visible to end
users at runtime. You can use nonvisual components as a way to reuse groups of database and system objects or
isolate the parts of your application that handle database connectivity and business rules.

When you add an nonvisual component to a form, they are displayed in the component tray at the bottom of the
Designer surface. The component tray lets you distinguish between visual and nonvisual components.

Design Guidelines
If you are creating components for a form, you can register an object type and then indicate various points on or
near a component's bounds that are "alignment" points. These "alignment" points are vertical or horizontal lines that
cut across a visual control's bounds.

When you have the alignment points in place, you can supply UI guideline information so that each component will
adhere to rules such as distance between controls, shortcuts, focus labels, tab order, maximum number of items
(listboxes, menus), etc. In this way, the Form Designer can assist the Code Developer in adhering to established UI
guidelines.

If the Snap to Grid option is enabled, and Use Designer Guidelines is also enabled, the designer guidelines will take
precedence. This means that if a grid point is within the tolerance of the new location and a guideline is also within
that distance away, then the control will snap to the guideline instead of the grid position, even if the guideline does
not fall on the grid position. The snap tolerance is determined by the grid size. Even if the Snap to Grid and Show
Grid options are disabled, the Designer will still use the grid size in determining the tolerance.

This feature is currently only available in VCL and VCL.NET only (This includes C++). Winforms does not yet have
this feature. See the link at the end of this topic for more information about setting Designer Guidelines.

Tool Palette
The Tool Palette contains items to help you develop your application. The items displayed depend on the current
view. For example, if you are viewing a form on the Designer, the Tool Palette displays components that are
appropriate for that form. You can double-click a control to add it to your form. If you are viewing code in the Code
Editor, the Tool Palette displays code segments that you can add to your application.

Customized Components
In addition to the components that are installed with Developer Studio 2006, you can add customized or third party
components to the Tool Palette and save them in their own category.

Component Templates
You can create templates that are made up of one or more components. After arranging components on a form,
setting their properties, and writing code for them, you can save them as a component template. Later, by selecting
the template from the Tool Palette, you can place the preconfigured components on a form in a single step; all
associated properties and event-handling code are added to your project at the same time. You can reposition the
components independently, reset their properties, and create or modify event handlers for them just as if you had
placed each component in a separate operation.

Object Inspector
The Object Inspector lets you set designtime properties and create event handlers for components. This provides
the connection between your application’s visual appearance and the code that makes the application run. The
Object Inspector contains two tabs: Properties and Events.

Use the Properties tab to change physical attributes of your components. Depending on your selection, some
category options let you enter values in a text box while others require you to select values from a drop-down box.

29

For Boolean operations, you toggle between True or False. After you change your components’ physical attributes,
you create event handlers that control how the components function.

Use the Events tab to specify the event of a specific object you select. If there is an existing event handler, use the
drop-down box to select it. By default, some options in the Object Inspector are collapsed. To expand the options,
click the plus sign (+) next to the category.

Certain nonvisual components, for example, the Borland Data Providers, allow quick access to editors such as the
Connection Editor and Command Text Editor. You can access these editors in the Designer Verb area at the
bottom of the Object Inspector. To open the editors, point your cursor over the name of the editor until your cursor
changes into a hand and the editor turns into a link. Alternatively, you can right-click the nonvisual component, scroll
down to its associated editor and select it. Note that not all nonvisual components have associated editors. In addition
to editors, this area can also display hyperlinks to show custom component editors, launch a web page and show
dialog boxes.

Object Repository
To simplify development, Developer Studio 2006 offers pre-designed templates, forms, and other items that you can
access and use in your application.

Inside the Object Repository
The Object Repository contains items that address the types of applications you can develop. It contains templates,
forms, and many others items. You can create projects such as class library, control library, console applications,
HTML pages, and many others by accessing the available templates.

The Object Repository is accessible by choosing File New Other. A New Items dialog box appears, displaying
the contents of the Object Repository . You can also edit or remove existing objects from the Object Repository
by right-clicking the Object Repository to view your editing options.

Object Repository Templates
You can add your own objects to the Object Repository as templates to reuse or share with other developers.
Reusing objects lets you build families of applications with common user interfaces and functionality to reduce
development time and improve quality.

You can add a starter project, demo, template, or other useful file to the Repository, and then make it available
through the New menu. Choose Project Add to Repository. Select your file. Now when you select the File
New command, you can choose the file you just added and work with a new copy of it.

Project Manager
A project is made up of several application files. The Project Manager lets you view and organize your project files
such as forms, executables, assemblies, objects and library files. Within the Project Manager, you can add, remove,
and rename files. You can also combine related projects to form project group, which you can compile at the same
time.

Add References
You can integrate your legacy COM servers and ActiveX controls into managed applications by adding references
to unmanaged DLLs to your project, and then browse the types just as you would with managed assemblies. Choose
Project Add Reference to integrate your legacy COM servers or ActiveX controls. Alternatively, right-click the
Reference folder in the Project Manager and click Add Reference. You can add other .NET assemblies, COM/
ActiveX components, or type libraries using the Add Reference feature.

30

Copy References to a Local Path
During runtime, assemblies must be in the output path of the project or in the Global Assembly Cache (GAC) for
deployment. In the Project Manager, you can right-click an assembly and use the Copy Local setting to copy the
reference to the local output path. Follow these guidelines to determine whether a reference must be copied.

If the reference is to an assembly created in another project, select the Copy Local setting.
If the assembly is in the GAC, do not select the Copy Local setting.

Add Web References
You can quickly add a Web Reference to your client application and access the Web Service you want to use. When
you add a Web Reference, you are importing a WSDL document into your client application, which describes a
particular Web Service. Once you imported the WSDL document, Developer Studio 2006 generates all the interfaces
and class definitions you need for calling that Web Service. To use the Add Web Reference feature, from your
Project Manager, right-click the Web Services node.

Data Explorer
The Data Explorer lets you browse database server-specific schema objects including tables, fields, stored
procedure definitions, triggers, and indexes. Using the context menus, you can create and manage database
connections. You can also drag and drop data from a data source to most forms to build your database application
quickly.

Structure View
The Structure View shows the hierarchy of source code or HTML displayed in the Code Editor, or components
displayed on the Designer. When displaying the structure of source code or HTML, you can double-click an item to
jump to its declaration or location in the Code Editor. When displaying components, you can double-click a
component to select it on the form.

If your code contains syntax errors, they are displayed in the Errors folder in the Structure View. You can double-
click an error to locate its source in the Code Editor.

You can control the content and appearance of the Structure View by choosing Tools Options Environment
Options Explorer and changing the settings.

History Manager
The History Manager lets you see and compare versions of a file, including multiple backup versions, saved local
changes, and the buffer of unsaved changes for the active file. If the current file is under version control, all types
of revisions are available in the History Manager. The History Manager is displayed to the right of the Code tab
and contains the following tabbed pages:

The Contents page displays current and previous versions of the file.
The Diff page displays differences between selected versions of the file.
The Info page displays all labels and comments for the active file.

You can use the History Manager toolbar to refresh revision information, revert a selected version to the most
current version, and synchronize scrolling between the source viewers in the Contents or Diff pages and the Code
Editor.

31

Code Editor
The Code Editor provides a convenient way to view and modify your source code. It is a full-featured, customizable,
UTF8 editor that provides refactoring, automatic backups, Code Insight, syntax highlighting, multiple undo capability,
context-sensitive Help, Code Templates, Smart Block Completion, Find Class, Find Unit/Import Namespace, and
more. Choose the Code Editor link in the section below to view descriptions for each of these Code Editor features.

32

Starting a Project
A project is a collection of files that is used to create a target application. This collection of files consists of the files
you include and modify directly, such as source code files and resources, and other files that Developer Studio 2006
maintains to store project settings, such as the .bdsproj project file. Projects are created at design time, and they
produce the project target files (.exe, .dll, .bpl, etc.) when you compile the project.To assist in the development
process, the Object Repository offers many pre-designed templates, forms, files, and other items that you can use
to create applications.

To create a project, click New from the Welcome Page and select the type of application you want to create, or
choose File New Other. To open an existing project, click Project from the Welcome Page or choose File
 Open Project.

This section includes information about

Types of projects
Working with unmanaged code

Type of Projects
Depending on the edition of Developer Studio 2006 that you are using, you can create traditional Windows
applications, ASP.NET Web applications, ADO.NET database applications, Web Services applications, and many
others. Developer Studio 2006 also supports assemblies, custom components, multi-threading, and COM. For a list
of the features and tools included in your edition, refer to the feature matrix on either the Borland Delphi web page
or the Borland C#Builder web page.

Windows Applications
You can create Windows applications using Windows Forms to provide processing and high-performance content
display. In addition to traditional uses for Windows applications, a Windows application can be used with constructs
from the newer .NET framework. For instance, a Windows application can function as a front end to an ADO.NET
database.

ASP.NET Web Applications
You can create Web applications using ASP.NET Web Forms to provide Web access to databases and Web
Services. Web Forms provide the user interface for Web applications and consist of HTML, server controls, and
application logic in code-behind files. Developer Studio 2006 lets you drag and drop components and provides in-
place HTML editing.

In addition to drag and drop components and visual designers, Borland provides an easy way to create application
menus and submenus. The .NET Menu Designers MainMenu and ContextMenu are components that work like
editors to let you visually design menus and quickly code their functionality.

ASP.NET Web Services Applications
You can create Web Services applications that deliver content, such as HTML pages or XML documents, over the
Web. Web Services is an internet-based integration methodology that allows applications to connect through the
Web and exchange information using standard messaging protocols.

Developer Studio 2006 simplifies the creation of Web Services by providing methods for creating a SOAP Server
application. The .asmx and .dll files are created automatically and you can test the Web Service within the IDE,
without writing a client application for it.

33

When writing a client application that uses, or consumes, a published Web Service, you can use the UDDI Browser
to locate and import WSDL that describes the Web Service into your client application.

VCL.NET Applications
You can use VCL Forms to create a .NET Windows application that uses components from the VCL.NET framework.

Developer Studio 2006 simplifies the task of building .NET-enabled applications by supporting VCL components that
have been augmented to run on the .NET Framework. This eliminates the need for you to create custom components
to provide standard VCL component capabilities. This makes the process of porting Win32 applications to .NET
much simpler and more reliable.

Database Applications
Whether your application uses Windows Forms, Web Forms, or VCL Forms, Developer Studio 2006 has several
tools that make it easy to connect to a database, browse and edit a database, execute SQL queries, and display
live data at design time.

The ADO.NET framework data providers let you access MS SQL, Oracle, and ODBC and OLE DB-accessible
databases. The Borland Data Providers (BDP.NET) let you access MS SQL, Oracle, DB2, and InterBase databases.
You can connect to any of these data sources, expose their data in datasets, and use SQL commands to manipulate
the data. Using BDP.NET provides the following advantages:

Portable code that's written once and connects to any supported database.
Open architecture that allows you to provide support for additional database systems.
Logical data types that map easily to .NET native types.
Consistent data types that map across databases, where applicable.
Unlike OLE DB, there is no need for a COM/Interop layer.

When using VCL Forms and the VCL.NET framework components, you can extend database support even further
by using the BDE.NET, dbExpress.NET, and Midas Client for .NET connection technologies.

Model-Driven Applications
Modeling is a term used to describe the process of software design. Developing a model of a software system is
roughly equivalent to an architect creating a set of blueprints for a large development project. Like a set of blueprints,
a model not only depicts the system as a whole, but also allows you to focus in on specifics such as structural and
behavioral details. Abstracted away from any particular programming language (and at some levels, even from
specific technology), the model allows all participants in the development cycle to communicate in the same
language.

Borland's Model Driven Architecture (MDA) describes an approach to software engineering where the modeling tools
are completely integrated within the development environment itself. The MDA is designed around Borland’s
Enterprise Core Objects (ECO) framework. The ECO framework is a set of interface, classes, and custom attributes
that provide the communication conduit between your application and the modeling-related features of the IDE.

The ECO features include:

Automatic mapping of the model classes, with their attributes and relationships, to a relational schema.
Automatic evolution of schema when the model changes.
Specification of the persistence backend. You can choose to store objects in a relational database or in an XML
file.
Design-time structural validation of the model and its Object Constraint Language (OCL) expressions.
Runtime validation of the OCL expressions.

34

An event mechanism that allows you to receive notifications whenever objects are added, changed, or removed.

Developer Studio 2006 IDE leverages the ECO framework to provide an integrated surface on which to develop your
application model. The IDE and its modeling surface features include:

Creating model-driven applications as a new kind of project.
Creating class diagrams, and manipulating model elements (packages, and classes) directly on the surface.
Adding, removing, and changing class attributes and methods on the class diagram.
Two-way updating between source code and the modeling surface. Changes in source code are reflected in
the graphical depiction, and vice versa.
Two-way navigating between model elements and source code. You can navigate from the graphical depiction
of a model element directly to its corresponding source code. Similarly, you can navigate from a modeled class
in source code directly to its graphical diagram on the modeling surface.
Exporting and importing models using XMI 1.1.

Note: Not all modeling features are available in all editions of Developer Studio 2006. To determine the modeling
features supported in your product edition, refer to the feature matrix on either the Borland Delphi web page
or the Borland C#Builder web page.

Assemblies
An assembly is a logical package, much like a DLL file, that consists of manifests, modules, portable executable
(PE) files, and resources (.html, .jpeg, .gif) and is used for deployment and versioning. An application can have one
or more assemblies that are referenced by one or more applications, depending on whether the assemblies reside
in an application directory or in a global assembly cache (GAC).

Additional Projects
In addition to the project types described above, Developer Studio 2006 provides templates to create class libraries,
control libraries, console applications, Visual Basic applications, reports, text files, and more. These templates are
stored in the Object Repository and you can access them by choosing File New Other.

Unmanaged Code and COM/Interop
Unmanaged code refers to applications that do not target the .NET Framework Common Language Runtime (CLR).
COM/Interop is a .NET service that allows seamless interoperation between managed and unmanaged code. The
COM/Interop service allows you to leverage existing COM servers and ActiveX controls in your .NET applications,
and expose .NET components in legacy unmanaged applications. The Developer Studio 2006 IDE includes tools to
help you integrate your legacy COM servers and ActiveX controls into managed applications. Additionally, you can
add references to unmanaged DLLs to your project, and then browse the types contained, just as you would with
managed assemblies.

35

36

Code Editor
The Code Editor is a full-featured, customizable, UTF8 editor that provides syntax highlighting, multiple undo
capability, and context-sensitive Help for language elements.

As you design the user interface for your application, Developer Studio 2006 generates the underlying code. When
you modify object properties, your changes are automatically reflected in the source files.

Because all of your programs share common characteristics, Developer Studio 2006 auto-generates code to get
you started. You can think of the auto-generated code as an outline that you can examine to create your program.

Note: If you are using WinForms, do not modify the auto-generated code for the InitializeComponents method. Doing
so will cause your form to disappear when you click the Design tab.

The Code Editor provides the following features to help you write code:

Change Bars
Code Insight
Sync Edit
Code Completion
Code Browsing
Help Insight
Code Templates
Code Folding
To-Do Lists
Keystroke Macros
Bookmarks
Block comments

Change Bars
When you make changes to your code with the Code Editor in Developer Studio 2006, the left margin of the Code
Editor will display a yellow change bar to indicate that changes have been made after the last Save operation. You
can customize the change bars to display in other colors.

Code Insight
Code Insight refers to a subset of features embedded in the Code Editor (such as Code Parameter Hints, Code
Hints, Help Insight, Code Completion, Class Completion, Block Completion, and Code Browsing) that aid in the code
writing process. These features help identify common statements you wish to insert into your code, and assist you
in the selection of properties and methods. Some of these features are described in more detail in the sub-sections
below.

To invoke Code Insight, press CTRL+SPACE while using the Code Editor. A pop-up window displays a list of symbols
that are valid at the cursor location.

To enable and configure Code Insight features, choose Tools Options and click Code Insight.

When you're using the Delphi Language, the pop-up window filters out all interface method declarations that are
referred to by property read or write clauses. The window displays only properties and stand-alone methods declared
in the interface type. Code insight supports WM_xxx, CM_xxx, and CN_xxx message methods based on like named
constants from all units in the uses clause.

37

Code Parameter Hints
Displays a hint containing argument names and types for method calls. Available between the parenthesis of a call
i.e. ShowMessage (|);

You can invode Code Parameter Hints by pressing CTRL+SHIFT+SPACE.

Code Hints
Display a hint containing information about the symbol such as type, file and line # declared at.

You can display Code Hints by hovering the mouse over an identifier in your code, while working in the Code Editor.

Note: Code Hints only work when you have disabled the Help Insight feature.

Help Insight
Help Insight displays a hint containing information about the symbol such as type, file, line # declared at, and any
XML documentation associated with the symbol (if available).

Invoke Help Insight by hovering the mouse over an identifier in your code, while working in the Code Editor. You
can also invoke Help Insight by pressing CTRL+SHIFT+H.

Code Completion
The Code Completion feature displays a drop-down list of available symbols at the current cursor location. You
invoke Code Completion for your specific language in the following way:

Delphi — CTRL + SPACE + .

C# — CTRL + SPACE + .

C++ — CTRL + SPACE + —>

Class Completion
Class completion simplifies the process of defining and implementing new classes by generating skeleton code for
the class members that you declare. By positioning the cursor within a class declaration in the interface section of
a unit and pressing CTRL+SHIFT+C, any unfinished property declarations are completed. For any methods that require
an implementation, empty methods are added to the implementation section. They are also on the editor context
menu.

Block Completion
When you press ENTER while working in the Code Editor and there is a block of code that is incorrectly closed, the
Code Editor enters the closing block token at the next available empty line after the current cursor position. For
instance, if you are using the Code Editor with the Delphi language, and you type the token begin and then press
ENTER, the Code Editor automatically completes the statement so that you now have: begin end; . This feature also
works for the C# and C++ languages.

Code Browsing
While using the Code Editor to edit a VCL Form application, you can hold down the CTRL key while passing the
mouse over the name of any class, variable, property, method, or other identifier. The mouse pointer turns into a
hand and the identifier appears highlighted and underlined; click on it, and the Code Editor jumps to the declaration
of the identifier, opening the source file, if necessary. You can do the same thing by right-clicking on an identifier
and choosing Find Declaration.

38

Code browsing can find and open only units in the project Search path or Source path, or in the product Browsing
or Library path. Directories are searched in the following order:

1 The project Search path (Project Options Directories/Conditionals).
2 The project Source path (the directory in which the project was saved).
3 The global Browsing path (Tools Options Library).
4 The global Library path (Tools Options Library).

The Library path is searched only if there is no project open in the IDE.

Code Navigation
The sections below describe features that you can use to navigate through your code while you are using the Code
Editor.

Method Hopping
You can navigate between methods using a series of editor hotkeys. You can also lock the hopping to occur only
within the methods of the current class. For example, if class lock is enabled and you are in a method of TComponent,
then hopping is only available within the methods of TComponent.

The keyboard shortcuts for Method Hopping are as follows:

CTRL+Q^L - toggles class lock
CTRL+ALT+UP - moves to the top of the current method, or the previous method
CTRL+ALT+DOWN - moves to the net method
CTRL+ALT+HOME - first method in source
CTRL+ALT+END - last method in source
CTRL+ALT+MOUSE_WHEEL - scrolls through methods

Finding Classes
Allows you to find classes (using C# regular expressions). Use theSearch Find Classes command to see a list
of available classes that you can select. After you choose one, the IDE navigates to its declaration.

Finding Units
Depending on which language you are programming in, you can use a refactoring feature to locate namespaces or
units. If you are using C#, you can use the Use the Import Namespace command to import namespaces into your
code. If you are using the Delphi language, you can use the Find Unit command to locate and add units to your
code file. For code that is written using the .NET framework, the Assembly Browser will open if the expression is not
found. The Assembly Browser will allow you to browse for a type. The Find Type window allows regular expressions.

Code Templates
Code Templates allow you to have a dictionary of pre-written code, which can be inserted into your programs while
you're working with the Code Editor. This reduces the amount of typing that you must do on a daily basis.

Use the links at the end of this topic to learn more about creating and using Code Templates.

39

Code Folding
Code folding lets you collapse sections of code to create a hierarchical view of your code and to make it easier to
read and navigate. The collapsed code is not deleted, but hidden from view. To use code folding, click the plus and
minus signs next to the code.

To-Do Lists
A To-Do List records tasks that need to be completed for a project. After you add a task to the To-Do List, you can
edit the task, add it to your code as a comment, indicate that it has been completed, and then remove it from the
list. You can filter the list to display only those tasks that interest you.

Keystroke Macros
You can record a series of keystrokes as a macro while editing code. After you record a macro, you can play it back
to repeat the keystrokes during the current IDE session. Recording a macro replaces the previously recorded macro.

Bookmarks
Bookmarks provide a convenient way to navigate long files. You can mark a location in your code with a bookmark
and jump to that location from anywhere in the file. You can use up to ten bookmarks, numbered 0 through 9, within

a file. When you set a bookmark, a book icon is displayed in the left gutter of the Code Editor.

Block Comments
You can comment a section of code by selecting the code in the Code Editor and pressing CTRL+/ (slash). Each
line of the selected code is prefixed with // and will be ignored by the compiler. Pressing CTRL+/ will add or remove
the slashes, based on whether the first line of the code is prefixed with //. When using the Visual Studio or Visual
Basic key mappings, use CTRL+K+C to add and remove comment slashes.

40

Getting Started with Together
This section contains in introduction to modeling with Borland Together.

The two sample projects are designed to help you explore Together features while working with projects. Some of
the special features include: UML modeling, patterns, generating project documentation.

In This Section
About Together
Provides a brief introduction to the feature set of Together. Use Together for building a UML model of your
application.

41

42

About Together
Welcome to Borland® Together®, the award-winning, design-driven environment for modeling applications.
Together includes features such as support for UML 2.0, OCL, patterns, Quality Assurance audits and metrics,
source code refactoring and generation, IBM Rational Rose (MDL) format import, XMI format import and export, and
automated documentation generation.

A key feature of Together, LiveSource™, keeps your Together diagrams synchronized with your source code in the
Developer Studio 2006 Editor.

Together is an integral part of a complete ALM (Application Lifecycle Management) solution provided by Borland
Software Corporation. This version of Together is a part of the new generation of the Borland’s ALM solution named
SDO (Software Delivery Optimization). SDO is Borland’s vision and strategy for transforming software delivery to
an incorporated and disciplined approach that aligns teams, technology and process to maximize the business value
of software.

The Together features are tightly integrated with the Developer Studio 2006 environment. When Together support
is activated, the following items are added or modified:

Diagram View
Model View
Object Inspector
Tool Palette

In addition, specific commands are added to the main menu and the context menus of the Project Manager and
Structure View.

The following offer additional assistance, information, and resources:

For information on how to use this Help system, see Help on Help
Borland Together Home Page
Borland Together Documentation
Borland Product Support
Borland Newsgroups

Not all features described in this Help system are available in all editions of the product.

43

44

Help on Help
This section includes information about the:

Developer Studio 2006 Help
Microsoft .NET Framework SDK Help
Borland Developer Support Services and Web Sites
Developer Studio 2006 Quick Start Guide
Typographic Conventions Used in the Help

Developer Studio 2006 Help
The Developer Studio 2006 Help includes conceptual overviews, procedural how-to's, and reference information,
allowing you to navigate from general to more specific information as needed.

Additionally, the persistent navigation panes in the Help window make it easier to locate and filter information. By
default, no filter is set, allowing you to view all of the installed Help. However, to narrow the focus when searching
the Help or using the index, use the Filter by: drop-down list on the Content, Search, and Index panes. To display
the navigation panes, use the View Navigation menu command.

Tip: When navigating to a topic by using a link from another topic, the context of the topic you are viewing might

not be obvious. To find the context of that topic within the Content pane, click the Sync Contents button
on the toolbar of the Borland Help viewer.

Conceptual Overviews
The conceptual overviews provide information about product architecture, components, and tools that simplify
development. If you are new to a particular area of development, such as modeling or ADO.NET, see the overview
topic at the beginning of each section in the online Help.

At the end of most of the overviews, you will find links to related, more detailed information. Icons are used to indicate
that a link leads to the .NET SDK, partner Help, or to a web site. The icons are explained later in this topic.

How-To Procedures
The how-to procedures provide step-by-step instructions. For development tasks that include several subtasks, there
are core procedures, which include the subtasks required to accomplish a larger task. If you are beginning a
development project and want to know what steps are involved, see the core procedure for the area you are working
on.

In addition to the core procedures, there are several single-task procedures.

All of the procedures are located under Procedures in the Content pane of the Help window. Additionally, most of
the conceptual overviews provide links to the pertinent procedures.

Reference Topics
The reference topics provides detailed information on subjects such as API elements, the Delphi language, and
compiler directives.

All of the reference topics are located under Reference in the Content pane of the Help window. Additionally, most
API references are underlined and link directly to the appropriate reference topic.

45

Context Sensitive F1 Help
Context sensitive Help is available throughout the IDE by selecting an item and pressing F1:

In the Code Editor, select and highlight the entire element, such as a namespace, keyword, or method
On a form Design tab, select the component
In the Messages window, select a message
Within IDE windows, such as the Project Manager or Model View, click within the window

Note: Pressing F1 on an element that is part of the VCL.NET framework displays the Developer Studio 2006 Help.
Pressing F1 on an element that is part of the .NET framework displays the Microsoft .NET Help.

Microsoft SDK Help
Developer Studio 2006 is distributed with the both the Microsoft .NET Framework SDK and the Microsoft Platform
SDK, which include extensive online Help. Where appropriate, the Developer Studio 2006 Help provides links to the
SDK online Help. Alternatively, you can access the SDK Help directly from the Content pane of this Help system.

Borland Developer Support Services and Web Site
Borland offers a variety of support options to meet the needs of its diverse developer community. To find out about
support, refer to www.borland.com/devsupport. From the web site, you can access many newsgroups where
developers exchange information, tips, and techniques. The site also includes a list of books, technical documents,
and Frequently Asked Questions (FAQ). Additionally, you can access the Borland Developer Network.

Developer Studio 2006 Quick Start Guide
The Developer Studio 2006Quick Start guide provides an overview of the Developer Studio 2006 development
environment to help you install and start using the product right away. The Quick Start guide is shipped along with
your product.

Typographic Conventions Used in the Help
The following typographic conventions are used throughout the Developer Studio 2006 online Help.

Typographic conventions
Convention Used to indicate

Monospace type Source code and text that you must type.

Boldface Reserved language keywords or compiler options, references to dialog boxes and tools.

Italics Developer Studio 2006 identifiers, such as variables or type names. Italicized text is also used for book
titles and to emphasize new terms.

KEYCAPS Keyboard keys, for example, the CTRL or ENTER key.

A link to Web resources.

An external link to Microsoft SDK documentation.

An external link to documentation provided by Borland partners.

46

Managing the Development Life Cycle
The application development life cycle involves designing, developing, testing, debugging, and deploying
applications. Developer Studio 2006 provides powerful tools to support this iterative process, including integrated
source control, form design tools, the Delphi for .NET compiler, an integrated debugging environment, and
installation and deployment tools.

In This Section
Managing the Development Cycle Overview
Provides a brief overview of the steps involved in managing the development cycle.

Using Source Control
Provides an overview of general source control concepts and specifics of the Developer Studio 2006 source
control capabilities.

Designing User Interfaces
Provides an overview of designing user interfaces with the Developer Studio 2006 designers.

Together Features Overview
Compiling, Building, and Running Applications
Provides an overview of compiling, building, and running applications in the IDE.

Localizing Applications
Describes the Translation Tools available with Developer Studio 2006.

Overview of Debugging
Provides general debugging information and describes the debugging tools available in Developer Studio
2006.

Deploying Applications
Provides information about deploying applications.

47

48

Managing the Development Cycle Overview
The development cycle as described here is a subset of Application Lifecycle Management (ALM), dealing
specifically with the part of the cycle that includes the implementation and control of actual development tasks. It
does not include such things as modeling applications. Developer Studio 2006 provides a framework of tools that
helps you manage and perform all of your development requirements.

These tools include:

Requirements management
Source control integration
User interface design
Code visualization capabilities
Project building, compilation, and debugging capabilities

Requirements Management
Developer Studio 2006 provides full integration with CaliberRM requirements management software. Using this
integration, you can add, remove, and update requirements for your software project within the Developer Studio
2006 IDE. This integration also enables you to create links between the requirement specification and the portions
of the code within your software project that fulfill the requirement.

Source Control Integration
Developer Studio 2006 provides a full-featured direct integration with Borland StarTeam. This integration allows you
to access your source control system in one of two ways:

Manage project files within the source control system from the Developer Studio 2006 IDE.
Invoke the source control system in a separate process.

Invoke the source control system in a separate process if you need to use specific features of that system, which
are not exposed in the Developer Studio 2006 IDE. The source control application appears in a separate window.

In most cases, you manage your project files from within the Developer Studio 2006 IDE. The integration provided
allows you to check-in, check-out, update, commit, and otherwise manage your source files using a simplified user
interface. The integration supports the level of multi-user capabilities provided by your specific source control system.

User Interface Design
Developer Studio 2006 provides a rich environment for designing a .NET user interface. In addition to the Windows
Form Designer, which includes a full set of visual components, the IDE gives you tools to build ASP.NET Web Forms,
along with a set of Web Controls. Developer Studio 2006 also includes a VCL.NET Forms design tool, which allows
you to build .NET applications using VCL components. The Designer offers a variety of alignment tools, font tools,
and visual components for building many types of applications, including MDI and SDI applications, tabbed dialogs,
and data aware applications.

Code Visualization
The Code Visualization feature of Developer Studio 2006 provides the means to document and debug your class
designs using a visual paradigm. As you load your projects and code files, you can use the Model View to get both
a hierarchical graphical view of all of the objects represented in your classes, as well as a UML-like model of your

49

application objects. This feature can help you visualize the relationships between objects in your application, and
can assist you in developing and implementing.

Build, Compile, Run, and Debug
Developer Studio 2006 provides a full-featured build and compile system, along with an integrated debugger. The
visual approach to building, compiling, and running your application makes the entire development process simpler
than in the past. Projects with subprojects and multiple source files can be compiled all together, which is called
building, or you can compile each project individually.

The integrated debugger allows you to set watches and breakpoints, and to step through, into, and over individual
lines of code. A set of debugger windows provides details on variables, processes, and threads, and lets you drill
down deeply into your code to find and fix errors.

50

Using Source Control
Borland's Developer Studio 2006 provides a full-featured direct integration with StarTeam, Borland's automated
change and software configuration management (SCM) system. This integration lets you access StarTeam's rich
feature set from within the IDE. The integration also provides some Developer Studio 2006-specific features to allow
you to easily check in and check out Developer Studio 2006 project source files and manage your work more easily.

Source Control Basics
Each source control system consists of one or more centralized repositories and a number of clients. A repository
is a database that contains not only the actual data files, but also the structure of each project you define.

Most source control systems adhere to a concept of a logical project, within which files are stored, usually in one or
more tree directory structures. A source control system project might contain one or many Developer Studio 2006
projects in addition to other documents and artifacts. The system also enforces its own user authentication or, very
often, takes advantage of the authentication provided by the underlying operating system. Doing so allows the source
control system to maintain an audit trail or snapshot of updates to each file. These snapshots are typically referred
to as diffs, for differences. By storing only the differences, the source control system can keep track of all changes
with minimal storage requirements. When you want to see a complete copy of your file, the system performs a merge
of the differences and presents you with a unified view. At the physical level, these differences are kept in separate
files until you are ready to permanently merge your updates, at which time you can perform a commit action.

This approach allows you and other team members to work in parallel, simultaneously writing code for multiple
shared projects, without the danger of an individual team member's code changes overwriting another's. Source
control systems, in their most basic form, protect you from code conflicts and loss of early sources. Most source
control systems give you the tools to manage code files with check-in and check-out capabilities, conflict
reconciliation, and reporting capabilities. Most systems do not include logic conflict reconciliation or build
management capabilities. For details about your particular source control system capabilities, refer to the appropriate
product documentation provided by your source control system vendor.

Commonly, source control systems only allow you to compare and merge revisions for text-based files, such as
source code files, HTML documents, and XML documents. The source control systems supported by Developer
Studio 2006 allow you to include binary files, such as images or compiled code, in the projects you place under
control. You cannot, however, compare or merge revisions of binary files. If you need to do more than store and
retrieve specific revisions of of these types of files, you might consider creating a manual system for keeping tracking
of the changes you make to binary files.

Repository Basics
Source control systems store copies of source files and difference files in some form of database repository. In some
systems, such as CVS or VSS, the repository is a logical structure that consists of a set of flat files and control files.
In other systems, the repositories are instances of a particular database management system (DBMS) such as
InterBase, Microsoft Access, MS SQL Server, IBM DB2, or Oracle.

Repositories are typically stored on a remote server, which allows multiple users to connect, check files in and out,
and perform other management tasks simultaneously. You need to make sure that you establish connectivity not
only with the server, but also with the database instance. Check with your network, system, and database
administrators to make sure your machine is equipped with the necessary drivers and connectivity software, in
addition to the client-side source control software.

Some source control systems allow you to create a local repository in which you can maintain a snapshot of your
projects. Over time the local image of your projects differs from the remote repository. You can establish a regular
policy for merging and committing changes from your local repository to the remote repository.

Generally, it is not safe to give each member of your team a separate repository on a shared project. If you are each
working on completely separate projects and you want to keep each project under source control locally, you can

51

use individual local repositories. You can also create these multiple repositories on a remote server, which provides
centralized support, backup, and maintenance.

Working with Projects
Source control systems, like development environments, use the project concept to organize and track groups of
related files. No matter which source control system you use, you create a project that maintains your file definitions
and locations. You also create projects in Developer Studio 2006 to organize the various assemblies and source
code files for any given application. Developer Studio 2006 stores the project parameters in a project file. You can
store this file in your source control system project, in addition to the various code files you create. You might share
your project file among all the developers on your team, or you might each maintain a separate project file. Most
source control systems consider development environment project files to be binary, whether they are actually binary
files or not. As a consequence, when you check a project file into a source control system repository, the source
control system overwrites older versions of the file with the newer one without attempting to merge changes. The
same is true when you pull a project, or check out the project file; the newer version of the project file overwrites the
older version without merging.

Working with Files
The file is the lowest-level object that you can manage in a source control system. Any code you want to maintain
under source control must be contained in a file. Most source control systems store files in a logical tree structure.
Some systems, such as CVS, actually use terms like branch, to refer to a directory level. You can create files in a
Developer Studio 2006 project and include them in your source control system, or you can pull existing files from
the source control system. You can put an entire directory into the source control system, then you can check out
individual files, multiple files, or entire subdirectory trees. Developer Studio 2006 gives you control over your files at
two levels—at the project level within Developer Studio 2006 and in the source control system, through the Developer
Studio 2006 interface to the source control system.

Note: The History View provides revision information for your local source files. The History View can be used to
track changes you make to files as you work on them in the Designer or the Code Editor.

52

Using the StarTeam Integration
Borland's StarTeam integration for Developer Studio 2006 provides direct access to StarTeam features and functions
from within the IDE. The StarTeam integration lets you use Developer Studio 2006 menus or embedded StarTeam
Client elements to manage access to projects and files stored in the server repository, to maintain an audit trail of
changes you make to the projects and files, and to resolve file revision conflicts.

The function and use of the StarTeam Client and the elements incorporated into Developer Studio 2006 are
documented in detail in the StarTeam User's Guide and the StarTeam Administrator's Guide. StarTeam is a powerful
tool, with comprehensive version control features and capabilities. We strongly recommend that you familiarize
yourself with the StarTeam documentation before using this integration. All StarTeam documentation is available
for download from the Borland web site at http://info.borland.com/techpubs/starteam/.

How Developer Studio 2006 Interacts with StarTeam

StarTeam consists of server and client components. On the server side, the StarTeam Server maintains a database
repository that captures a complete snapshot of the source files in your project and incremental changes (deltas or
differences) to those files. The StarTeam client is integrated seamlessly with Developer Studio 2006. You can place
projects into and pull projects out of your source control repository, and check in, check out, merge, and compare
files.

Note: The StarTeam integration for Developer Studio 2006 supports StarTeam 5.4, 6.0 and 2005 Servers.

StarTeam Client
The StarTeam integration for Developer Studio 2006 includes a StarTeam Client for the .NET Framework. You can
launch the full StarTeam Client, or view the client as embedded elements of the IDE. These embedded StarTeam
elements provide access to most of the commands and information available in the client's main window (also called
the Project View Window).

The StarTeam client provided with the Delphi integration can only be started from within Delphi. There are no
provisions for using StarTeam's command-line interface with the StarTeam integration for Delphi.

53

With the exception of the aforementioned items, the features supported by your StarTeam installation are supported
by the Developer Studio 2006 integration. For example, if you have StarTeam Standard, which does not support
tasks, requirements, or alternate property editors (APEs), the StarTeam integration for Developer Studio 2006 will
not support tasks, requirements, or APEs. If you have StarTeam Enterprise, which supports tasks, your StarTeam
integration will support tasks. If you have StarTeam Enterprise Advantage, your StarTeam integration will support
tasks, requirements, and APEs. For more information about StarTeam, including a feature matrix, see the StarTeam
product page on the Borland web site at http://www.borland.com/starteam/index.html.

Standard Version Control Support
The StarTeam integration provides support for standard version control operations. Using the integrated StarTeam
Client, you can perform the following operations:

Place and pull projects and project groups to and from a StarTeam repository
Commit changes for the entire project
Update the entire project with the latest revisions in the repository
Check individual files in and out from the repository
Add files to the StarTeam project
Lock files for exclusive editing
Compare two revisions of a file
Revert files back to a prior revision

Developer Studio 2006 provides access to these operations through the StarTeam menu on the main menu bar, or
through StarTeam context menus in the Project Manager.

Advanced Features
The integrated StarTeam Client lets you access advanced StarTeam features without leaving the development
environment. Some of these include:

Create and edit items other than files, such as change requests, requirements, tasks, and topics
Apply labels to a file, an item, a group of files, or a group of items
Establish process items and rules to help you link and track changes to your files

These features will help you assign and track responsibilities for tasks throughout your project. The client that can
be launched from within Developer Studio 2006 provides even more features and functions for managing your files
and projects, such as the ability to generate reports and charts, and administer user accounts and servers.

Developer Studio 2006 Features
Some features and behaviors of the StarTeam integration are specific to Developer Studio 2006. Beyond the
embedded client, the most obvious of these is the support for Developer Studio 2006 projects and project groups.
The StarTeam integration provides commands for placing, pulling, and updating Developer Studio 2006 projects
and project groups, as well as for committing changes to all files in a project. Additionally, the integration provides
quick access to StarTeam commands through context menus in the Project Manager.

The StarTeam integration works together with the Developer Studio 2006History Manager to display both local and
StarTeam version information for the active file. You can use the History Manager to compare the contents of your
current working file with revisions of the file in the StarTeam repository. You can also revert the contents of your
working file to any StarTeam revision.

The StarTeam integration supports file renaming and deleting. When you rename or delete a file in your project, the
StarTeam integration will automatically carry out the changes on the repository when you commit the project.

54

Similarly, if a team member has renamed or deleted files, and committed the changes, the changes are carried out
in your local project when you update the project. This capability prevents loss of revision information when a file is
renamed or moved.

Note: If the file renaming or deletions made in your local project conflict with changes made by another team
member in the StarTeam Client, you must manually resolve the pending renaming or deletion of files. The
Pending Renames/Deletes dialog box (StarTeam Pending Renames/Deletes) lets you commit any
pending local file renames or deletions to the repository or cancel the pending operations.

When the Structure View displays the folder hierarchy for your StarTeam project, the Structure View includes a
toolbar with the following features:

A drop-down list of paths to the folders you've previously selected. Choose a path from the drop-down list to go
to that StarTeam folder in the current hierarchy. The most recently selected folder sorts to the top.
A Refresh button. Click this button to update the information in the current tree.
A button for selecting which node in the folder hierarchy to show as the root folder, the project or the view. This
button is available when the project and view are not at the same level.

55

56

Managing Requirements with CaliberRM
CaliberRM is a requirements management system that enables teams to fully define, manage and communicate
changing requirements for software development projects. The integrated CaliberRM client provides direct access
to features and functions from within theDeveloper Studio 2006 IDE. After you log in to CaliberRM through Developer
Studio 2006, you can display and update data that is stored on the CaliberRM server. This data is accessible through
both the integrated CaliberRM client and the Windows CaliberRM client. The Windows CaliberRM client is
documented in detail in the CaliberRM User Guide. All CaliberRM documentation is available for download from the
Borland web site at http://info.borland.com/techpubs/caliber_rm/.

The integration of CaliberRM into Developer Studio 2006 provides additional features not available from the
standalone CaliberRM application.

Direct logon to the CaliberRM server
Linking between requirements and source code

Using the Integrated CaliberRM Client
CaliberRM consists of a client and a server component. An enhanced version of the client is available directly within
the Developer Studio 2006 IDE. If you are logged on to the CaliberRM server, you can display the project
requirements within the IDE. If you are not logged on, the logon screen displays.

Note: The CaliberRM integration for Developer Studio 2006 uses the CaliberRM 2005 Server, which is only
available for Windows 2000 and Windows NT. See the CaliberRM Installation Guide for a complete list of
system requirements and installation instructions for the server.

Logging On To the CaliberRM Server
You must log on to the CaliberRM server before you can display or update the requirements. You can log on to the
server directly from the Developer Studio 2006 IDE. Once you are logged on, the integrated CaliberRM client displays
in the bottom portion of the IDE.

Linking Between a Requirement and Source Code
You can select source code in your project and drag it into a requirement for your project. This creates a link that
appears in the Traceability tab for that requirement. When you click the link, the project opens to that source code
snippet.

57

58

Designing User Interfaces
A graphical user interface (GUI) consists of one or more windows that let users interact with your application. At
designtime, those windows are called forms. Developer Studio 2006 provides a designer for creating Windows
Forms, Web Forms, VCL Forms, and HTML pages. The Designer and forms help you create professional-looking
user interfaces quickly and easily.

Using the Designer
When you create a Windows, Web, or Web Services application, the IDE automatically displays the appropriate type
of form on the Design tab in the IDE. As you drop components, such as labels and text boxes, from the Tool
Palette on to the form, Developer Studio 2006 generates the underlying code to support the application. You can
use the Object Inspector to modify the properties of components and the form. The results of those changes appear
automatically in the source code on the Code tab. Conversely, as you modify code with Code Editor, the changes
you make are immediately reflected on the Design tab.

The Tool Palette provides dozens of controls to simplify the creation of Windows Forms, Web Forms, and HTML
pages. When creating a Windows Form, for example, you can use the MainMenu component to create a customized
main menu in minutes. After placing the component on a Windows Form, you type the main menu entries and
commands in the boxes provided. The ContextMenu component provides similar functionality for creating context
menus. There are also several dialog box components for commonly performed functions, such as opening and
saving files, setting fonts, selecting colors, and printing. Using these components saves time and provides a
consistent look and feel for the dialogs in your application.

As you design your user interface, you can undo and repeat previous changes to a form by choosing Edit
Undo and Edit Redo. When you are satisfied with the appearance of the form, you can lock the components and
form to prevent accidental changes by right-clicking the form and choosing Lock Controls.

Setting Designer Options
You can set options that effect the appearance and behavior of the Designer. For example, you can adjust the grid
settings, and the style of generated code and HTML. To set these options, choose Tools Options and then use
the Windows Form Designer and HTML Option dialog boxes.

Setting Designer Guidelines with VCL Components
You can use VCL or VCL.NET (with Delphi or C++) to setup components that are "aware" of their relation to other
components on a form. For instance, when you drop a component on a form, it will leave a certain amount of space
from the border of the form, depending on how the 'padding' property is set.

You can set properties to specify the distance between controls, shortcuts, focus labels, tab order, and maximum
number of items (listboxes, menus).

The Code Developer can then use these components to create forms. when the Use Designer Guidelines option is
enabled. If the Snap to Grid option is enabled, and Use Designer Guidelines is also enabled, the designer guidelines
will take precedence.

See the Creating Designer Guidelines link at the end of this topic, to view the procedure for setting these guidelines.

59

60

Together Features Overview
This section provides an overview of the features provided by Borland Together.

In This Section

61

Modeling Overview
Describes what modeling with Together means in general.

Together Project Overview
Describes the Together projects.

Namespace and Package Overview
Describes Together namespaces and packages.

Together Diagram Overview
Describes the Together UML diagram.

Supported UML Specifications
Describes supported UML specifications.

Model Element Overview
Describes the model elements.

Annotation Overview
Describes the feature for annotating UML diagrams.

Shortcut Overview
Describes the shortcuts on UML diagrams.

Diagram Format Overview
Describes the UML diagram format.

Diagram Layout Overview
Describes the algorithms available to lay out UML diagrams.

Hyperlinking Overview
Describes the hyperlinking feature.

LiveSource Overview
Describes the LiveSource feature.

Transformation to Source Code Overview
Describes the transformation to source code feature.

OCL Support Overview
Describes support for Object Constraint Language.

Patterns Overview
Describes support for design patterns.

Refactoring Overview
Describes the concept of refactoring and introduces the refactoring operations included in Developer Studio
2006.

Quality Assurance Facilities Overview
Describes the Quality Assurance facilities.

Documentation Generation Facility Overview
Describes the documentation generation feature.

Import and Export Overview
Describes the import and export features.

Interoperability Overview
Describes the interoperability with other versions of Together.

62

Modeling Overview
Effective modeling with Together simplifies the development stage of your project. Smooth integration to Developer
Studio 2006 provides developers with easy transition from models to source code.

The primary objective of modeling is to organize and visualize the structure and components of software intensive
systems. Models visually represent requirements, subsystems, logical and physical elements, and structural and
behavioral patterns.

While contemporary software practices stress the importance of developing models, Together extends the benefits
inherent to modeling by fully synchronizing diagrams and source code.

63

64

Together Project Overview
Work in Together is done in the context of a project. A project is a logical structure that holds all resources required
for your work. Together works with the following project types: design and implementation, and multiple project
formats.

It is up to you to define which directories, archives, and files should be included in your project. You can set up project
properties when the project is being created, and modify them further, using the Object Inspector.

65

66

Namespace and Package Overview
A namespace is an element in a model that contains a set of named elements that can be identified by name.

A project consists of one or more namespaces (or packages). A namespace and a package are almost synonyms:
the term “namespace” is used for implementation projects, the term “package” is used for design projects.

A namespace (or a package) is like a box where you put diagrams and model elements. Contents of a namespace
(package) can be displayed on a special type of the Class diagram.

Each project contains the default namespace (or package) just after its creation.

67

68

Together Diagram Overview
Diagrams can be thought of as graphs with vertices and edges that are arranged according to a certain algorithm.

Each diagram belongs to a certain diagram type (for example, UML 2.0 Class Diagram). A set of model elements
available for use on a diagram depends on the diagram type.

Diagrams exist within the context of a namespace (or a package). You have to create or open a project or project
group before creating a new diagram. When Together support is activated, the project-level package diagram is
created by default. You can create the various UML diagrams in the project.

In addition to the standard properties of diagrams and their elements, you can create user properties, represented
by the Name-Value pair.

69

70

Supported UML Specifications
The Object Management Group’s Unified Modeling Language (UML) is a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of distributed object systems.

Together supports UML to help you specify, visualize, and document models of your software systems, including
their structure and design.

Refer to UML documentation for the detailed information about UML semantics and notation. The UML (version):
Superstructure document defines the user level constructs required for UML. It is complemented by the UML
(version): Infrastructure document which defines the foundational language constructs required for UML. The two
complementary specifications constitute a complete specification for the UML modeling language.

UML 1.5 and UML 2.0
The set of available diagrams depends on your project type.

For design projects, both UML 1.5 and 2.0 are supported.

For implementation projects, UML 1.5 is only supported.

The version of UML is selected when a project is created. It cannot be changed later.

UML In Color
“UML In Color” is an optional profile to support the modeling in color methodology. Color modeling makes it possible
to analyze a problem domain and easily spot certain classes during analysis. Together supports the use of the four
main groups of the color-modeling stereotypes:

Role
MomentInterval, Mi-detail
Party, Place, Thing
Description

For each of these stereotypes you can choose a specific color to make your model more understandable at a glance.
Note that the other stereotypes do not have associated colors.

See also "Java Modeling in Color with UML: Enterprise Components and Process" by Coad, Lefebvre and De Luca.

71

72

Model Element Overview
Model element is any component of your model that you can put on a diagram.

Model elements include nodes and links between them.

A set of available model elements depends on a current diagram type. Available model elements are displayed in
the Tool Palette.

A link can have a label. You can move a label to any point of the link line.

73

74

Annotation Overview
The Tool Palette for UML diagram elements displays note and note link buttons for all UML diagrams. Use these
elements to place annotation nodes and their links on the diagram.

Notes can be free floating or you can draw a note link to some other element to show that a note pertains specifically
to it.

You can attach a note link to another link.

The text of notes linked to class diagram elements does not appear in the source code.

75

76

Shortcut Overview
A shortcut is a representation of an existing node element placed on the same or a different diagram.

Shortcuts facilitate reuse of elements, make it possible to display library classes on diagrams, and demonstrate
relationships between the diagrams within the model.

You can create a shortcut to an element of any other project in the current project group. You can create a shortcut
to an inner class or interface of another classifier. It is also possible to add a shortcut to an element from project
References, including binary (.dll, .exe) files.

The small special symbol appears over a node to indicate a shortcut. It appears only if this node belongs to a different
namespace or package.

Select a shortcut on your diagram and choose Navigate To Element on the context menu to navigate to the source
element in the Model View.

77

78

Diagram Format Overview
Together stores diagrams in an XML-based format with the extension .txv(diagram) under the
ModelSupport_%PROJECTNAME% ModelSupport folder of a project.

These files contain information about diagram elements such as layout, background color, stereotypes, and so on.

For example, the (name).txvcls file corresponds to a class diagram. All products that provide modeling (Borland
Together for Visual Studio .NET, Borland Together ControlCenter, Borland Together Architect, Borland Together
Edition for Eclipse, and Borland Together for JBuilder) support the same diagram format, which makes the diagrams
compatible across the product line. You can copy and reuse diagrams created in the different products.

The diagram elements in fact belong to the parent default package (namespace) files (default.txaPackage).
These files contain all the information about the elements and their properties, while the diagram files contain
information about locations and dimensions of elements.

This version of Together uses the format with embedded model elements (created as filemates).

79

80

Diagram Layout Overview
You can customize diagram notation in several ways.

Together enables you to manage simple or complex diagrams with automated layout features that optimize the
diagram layout for viewing or printing. Nodes and links on a diagram are arranged according to a certain algorithm.

It is also possible to adjust their arrangement manually.

There are several diagram layout algorithms available:

Autoselect: several algorithms can be available for each diagram type. This option analyzes internal information
of each algorithm, and selects the one that best suits the current diagram type. If autoselect: Each of the layout
algorithms contains internal information about the types of diagrams it will work with and the numeric
characteristics for the final quality of the produced layout when applied to each applicable diagram type. Several
algorithms can be available for the same diagram type. The autoselect option uses such internal information
and picks the best algorithm for the current diagram type.
Hierarchical: this type of algorithm is most suitable to analyze hierarchical structure (for example study
inheritance relationships). The Hierarchical algorithm originates from the Sugiyama algorithm. The algorithm
draws the UML diagram hierarchically according to the preferences that you select.
Together: algorithm applicable to all types of diagrams. It includes the layout options used in version 6.1 of
Together ControlCenter and Together Edition for JBuilder.
Tree: the algorithm draws a tree diagram in a tree layout. The algorithm draws the given graph in a tree layout
according to its maximum spanning tree.
Orthogonal: simple structural algorithm is used when hierarchy is not important. The Orthogonal algorithm uses
heuristics to distribute diagram nodes among a lattice.
Spring Embedder: Spring Embedder are force-directed layout algorithms that model the input graph as a
system of forces and try to find a minimum energy configuration of this system. All edges are drawn as straight
lines. This type of layout is especially suitable for projects with numerous diagram elements based on large
amount of source code. When you lay out a graph according to the Spring Embedder layout algorithm, the
program will simulate the graph as a physical model (masses and springs) and subject it to physical forces. The
unnecessarily-long edges will be the most tense, and will try to contract the most. When the nodes and edges
have been balanced, you will have a geometric representation of the graph.

Each algorithm has a set of specific options defined in the Together (level) Diagram Layout category of
the Options dialog window.

81

82

Hyperlinking Overview
You can create hyperlinks from diagrams or diagram elements to other system artifacts and browse directly to them.

Why use hyperlinking?
Use hyperlinks for the following purposes:

Link diagrams that are generalities or overviews to specifics and details.
Create browse sequences leading through different but related views in a specific order; create hierarchical
browse sequences.
Link descendant classes to ancestors; browse hierarchies.
Link diagrams or elements to standards or reference documents or generated documentation.
Facilitate collaboration among team members.

Create a hyperlink from an existing diagram or one of its elements to any other diagram or diagram element in the
project, or create a new diagram that will be hyperlinked to the current diagram.

You can also create hyperlinks from your diagrams to external documents such as files or URLs. For most users,
such hyperlinking will probably take the form of documents on a LAN or document server or URLs on the company
intranet. However, you can also easily link to online information such as newsgroups or discussion forums. If it is
available online, you can link to it.

Hyperlink types
You can create hyperlinks to:

An existing diagram or diagram element anywhere in the project group
A new diagram (it will be created on-the-fly)
A document or file on a local or remote storage device
A URL on your company intranet or the Internet

83

84

LiveSource Overview
LiveSource™ is the key feature of Together that keeps your model and source code in sync. That is why it applies
to implementation projects only.

When a Class diagram is created in an implementation project, it is immediately synchronized with the
implementation code. When you change a Class diagram, Together updates the corresponding source code.

Together allows you to synchronize different aspects of your project in several ways.

Use the Reload command to refresh the Together model from the source code.

About MDA
Together supports the OMG’s Model Driven Architecture (MDA) initiative.

MDA is an evolving conceptual architecture for a set of industry-wide technology specifications that will support a
model-driven approach to software development.

MDA is supported by UML, XMI, and other technologies.

Doc comment properties
Some properties that are defined for the model elements and members in the Object Inspector, are presented in
the source code as language-specific doc comments. In particular, these properties are: author, since, version,
stereotype, associates, and so on. When such comments are encountered in the source code, they are reverse
engineered to model properties.

Doc comments are presented as XML tags, preceeded by /// (for C# projects).

So doing, if the properties of an element are presented in the legacy format and one of these properties is changed
to the new format '<property> value</property>, all the other properties are also converted.

85

86

Transformation to Source Code Overview
Together enables you to generate source code based on a language-neutral design project.

About transformation to source code
You can generate source code from the class diagrams of your design project and add this source code to a project
in one of the supported languages. The target implementation project must already exist in the same project group.

Alternatively, you can import source code from an external design project into your current implementation project.

Name mapping
You can force Together to generate different names for your model elements in the source code. For example, you
can have ClassItem in your source code for the Class1 element in your model.

This feature is especially useful, if your model names are not English. You can use names in Japanese and other
languages on your diagrams, but keep names in Latin alphabet in your code.

If you enable this feature, the file codegen_map.xml is created in the model support folder of the source design
project. You can edit it with any XML or text editor. This file contains a mapping table, where each entry (model
element) has two names: one for the source design project (attribute name), and another one for the destination
implementation project (attribute alias). There are several sections in this file: Class, Attribute, Operation and
Package for UML 1.5 projects, and Class and Package for UML 2.0 projects. Attributes name must be unique for all
entries in a section.

You can optionally create an XML file with the same name and structure in a folder of any package.

Then, if you transform your project to source code and the name mapping feature is enabled, Together searches
for the codegen_map.xml file for each model element. If the file is absent for a current package, Together searches
in a parent package, and so on.

Note: If you add a new element to your model later and then transform the project to source code, Together adds
a new entry for this item to the corresponding codegen_map.xml file. The existing entries are not changed.

87

88

OCL Support Overview

About OCL
The Object Constraint Language (OCL) is a textual language, especially designed for use in the context of
diagrammatic languages such as the UML. OCL was added to UML, as it turned out a visual diagram-based language
is limited in its expressiveness.

OCL 2.0 is the newest version of the OMG’s constraint language to accompany their suit of Object Oriented modelling
languages.

The use of OCL as an accompanying constraint and query language for modelling with these languages is essential.

Note: Portions of this product include the Object Constraint Language Library, courtesy of Kent University, United
Kingdom. See http://www.cs.kent.ac.uk/projects/ocl/

OCL constraint and expression

OCL constraint
The Tool Palette on some types of diagrams (for example, UML 2.0 Class Diagram) contains buttons that enable
you to create OCL constraints as design elements on diagrams, and link these constraints with the desired context.

You can show or hide constraint elements for the better presentation of your diagrams.

OCL support for constraints provides error highlighting. The text of the constraint is validated when the constraint is
linked to its context. The valid constraints are displayed in the regular font; invalid constraints, or OCL expressions
with syntax errors, are displayed in a red font.

Constrained elements are marked with the decorators. The decorators are small icons attached to the context
elements of constraints. If a constraint is valid the decorator is green; otherwise the decorator is red. If the constraints
are concealed, you can still monitor the validity of constraints by means of the decorators.

Any OCL constraint contains an OCL expression.

OCL expression
For OCL expressions without object constraints (expressions as properties of other nodes), no validation is
performed since no valid OCL context can be set for these elements.

Supported diagram types
OCL is supported for the following diagram types:

Diagram types with OCL support
Diagram type Version of UML How support is provided

Class (class, namespace, package) UML 1.5, 2.0 Creating object constraints is supported.

Interaction (Sequence and Communication) UML 2.0 State invariant constraints for lifelines and constraints for the
operands of the combined fragments as OCL expressions.

State Machine UML 2.0 Guard conditions of transitions as OCL expressions.

89

Use Case UML 2.0 Pre- and post-condition constraints for the behavior associated
with the use cases as OCL expressions. For example, an
interaction chosen as a behavior.

90

Patterns Overview
Patterns provide software developers with powerful reuse facilities. Rather than trying to tackle each design problem
from the very outset, you can use the predefined patterns supplied with Together. The hierarchy of patterns is defined
in the Pattern Registry. You can manage and logically arrange your patterns using the Pattern Organizer.

Patterns are intended to:

Create frequently used elements
Modify existing elements
Implement useful source code constructions or project groups in your model

Pattern Registry
The Pattern Registry defines the virtual hierarchy of patterns. You can create virtual folders and group the patterns
logically to meet your specific requirements. All operations with the contents of the Pattern Registry are performed
in the Pattern Organizer and synchronized with the Pattern Registry.

Pattern Organizer
The Pattern Organizer enables you to logically organize patterns (using virtual trees, folders and shortcuts), and
view and edit the pattern properties. You will be working with shortcuts, not with the actual patterns. Because of this,
shortcuts to the same pattern may be included in several folders.

Code templates
Together supports code templates as a way to provide backward compatibility with the legacy Together
ControlCenter projects. You can copy the folders with your legacy source code templates to the Patterns subfolder
of your Together installation directory, and use these templates to create elements in implementation projects.

Code templates are text files with the language-specific extensions that use macros to be substituted with real values
when the templates are applied. Therefore, code templates can be regarded as forms ready for "filling in" for a
specific instance. A code template consists of a template file containing source code, and a properties file that
contains macro descriptions and their default values.

Code templates are stored in the Patterns\templates directory of your Together installation using the following
structure:

/<language>/<category>/<template name>

where <category> is CLASS, LINK or MEMBER. Each <template_name> folder contains the following files:

%Name%.<ext>
<template_name>,properties (optional)

Design patterns
A design pattern is an XML file that contains a sequence of statements or actions, required to create entities and
links and set their properties. Each statement creates either one model element or one link between the model
elements.

In addition to creating new elements, you can use design patterns to add members to a container element. The
pattern that you are applying to the specified container element should have its Use Existent property set as True.

91

You can then apply the pattern to the container element you want to modify. For example, if you want to add several
methods stored in a class as pattern to an existing class, then you have to apply that pattern to the diagram where
that class exists.

The design patterns are stored as XML files in the Patterns directory of your Together installation.

Patterns as First Class Citizens
A First Class Citizen (FCC) pattern is a specific type of design pattern that contains information about the pattern
name and the role of each participant. When applied to a diagram, FCC patterns create their own entities and display
on the diagram with links to the created entities. Such patterns enable further modification by means of adding new
participants.

Patterns as First Class Citizens are represented by GoF patterns.

A pattern is displayed on a diagram as an oval with the pattern name and an expandable list of participants. Each
participant is connected with the pattern oval by a link, labeled with the participant's role.

FCC patterns generate source code, but the oval FCC pattern elements do not. The entities created by patterns are
stored in the diagram files.

Stub implementation pattern
When you create an inheritance link between a class and another abstract class or interface, the methods and
members are not automatically added to the child class. This problem is solved using the Stub implementation
pattern. You can also create an implementation link and stub implementation in one step by using the Implementation
link and stub pattern.

If the destination of a link is an interface, the pattern makes the class-source implement that interface, and creates
in a class the stubs for all of the methods found in the interface and all of its parent interfaces.

If the destination link is an abstract class, this pattern makes the class-source extend the class-destination, and
makes stubs for all of the constructors found in the class-destination. These constructor stubs call the corresponding
constructors in the class-destination.

You can find the Implementation link and stub pattern in the Pattern Wizard by clicking the Link by Pattern or Node
by Pattern buttons in the Tool Palette, or by using the Create by Pattern context menu for a class.

The Implementation link and stub pattern creates the following members of interfaces and abstract classes:

Methods
Functions
Subroutines
Properties
Indexers
Events

92

Refactoring Overview
Together provides extensive support for refactoring your implementation projects.

Refactoring means rewriting existing source code with the intent of improving its design rather than changing its
external behavior. The focus of refactoring is on the structure of the source code, changing the design to make the
code easier to understand, maintain, and modify.

The refactoring features provided by Together affect both source code and model. As a result, your project is
consisting after refactoring, even if it includes UML diagrams.

The primary resource book on refactoring is Refactoring - Improving the Design of Existing Code by Martin Fowler
(Addison - Wesley, 1999).

93

94

Quality Assurance Facilities Overview
Together provides audits and metrics as Quality Assurance features to unobtrusively help you enforce company
standards and conventions, capture real metrics, and improve what you do. Although audits and metrics are similar
in that they both analyze your code, they serve different purposes.

Audits and metrics are run as separate processes. Because the results of these two processes are different in nature,
Together provides different features for interpreting and organizing the results. Note that some of the features and
procedures described in this section apply to both audits and metrics while some are specific to one or the other.

Audits
When you run audits, you select specific rules to which your source code should conform. The results display only
the violations of those rules so that you can examine each problem and decide whether to correct the source code.
Together provides a wide variety of audits to choose from, ranging from design issues to naming conventions, along
with descriptions of what each audit looks for and how to fix violations. You can create, save, and reuse sets of audits
to run. Together ships with a predefined saved audit set (current.adt) and you can create your own custom sets
of audits to use.

Warning: This feature is available for implementation projects only.

Metrics
Metrics evaluate object model complexity and quantify your code. It is up to you to examine the results and decide
whether they are acceptable. Metrics results can highlight parts of code that need to be redesigned, or they can be
used for creating reports and for comparing the overall impact of changes in a project.

Together supports a wide range of metrics. See the descriptions of available metrics in the Metrics dialog window.

You can define, save, and reuse sets of metrics.

Along with the full set of metrics, Together provides tips for using metrics and interpreting results.

Warning: This feature is available for implementation projects only.

Bar chart
Metrics results can also be viewed graphically. Two graphic views allow you to summarize metrics results: bar charts
and Kiviat charts. Both charts are invoked from the context menu of the table. Use the Kiviat chart for rows and the
bar chart for columns.

The bar chart displays the results of a selected metric for all packages, classes, and/or operations.

The bar color reflects conformance to the limiting values of the metric in reference:

Green represents values that fall within the permissible range.
Red represents values that exceed the upper limit.
Blue represents values that are lower than the minimal permissible value.
A thin vertical red line represents the upper limit and a thin vertical blue line represents the lower limit.

Kiviat chart
Use the Kiviat chart for rows and the bar chart for columns.

95

The Kiviat chart demonstrates the analysis results of the currently selected class or package for all the metrics that
have predefined limiting values. The metrics results are arranged along the axes that originate from the center of
the graph.

Each axis has a logarithmic scale with the logarithmic base being the axis metric upper limit so that all upper limit
values are equidistant from the center. In this way, limits and values are displayed using the following notation:

Upper limits are represented by a red circle. Any points outside the red circle violate the upper limit.
Lower limits are represented by blue shading, showing that any points inside the blue area violate the lower
limit. Note that blue shading does not show up in areas of the graph with lower limits of 1 or 0.

As the mouse cursor hovers over the chart, the Visual Studio status bar displays information about the metrics or
metrics values that correspond to the tick marks.

The actual metrics show up in the form of a star with metric values drawn as points.
Green points represent acceptable values.
Blue points represent values below the lower limit.
Red points represent values exceeding the upper limit.
Scale marks are displayed as clockwise directional ticks perpendicular to the Kiviat ray.
Lower limit labels are displayed as counterclockwise directional blue ticks perpendicular to the Kiviat ray.

Sets of audits and metrics
Both Audits and Metrics dialog boxes display the set of all available audits and metrics. When you open a project,
a default subset is active. Active audits and metrics are indicated by checkmarks. If you open the desired dialog and
click Start, all of the active audits/metrics are processed.

You will not want to run every audit or metric in the default active set every time, but rather some specific subset.
Together enables you to create saved sets of active audits and metrics that can be loaded and processed as you
choose. To do that, use the Load Set and Save Set buttons on the toolbar of the Audits and Metrics dialog windows.
You can always restore the default active set using the Set Defaults button in the Audits dialog. Refer to the Audits
dialog for description of controls.

Use the default active audits set or any saved set as the basis for creating a new saved set. By default, audit sets
are saved in the QA folder under the Together installation.

96

Documentation Generation Facility Overview
This feature automatically generates documentation for your project. Use this feature to illustrate you programme
with the documentation in the HTML format. You can update this automatically generated documentation when your
project changes, or edit this documentation manually afterwards.

Documentation files
All the documentation that Together generates is written to a single directory that you specify in the Output folder
of the Generate HTML dialog box. By default, the generated documentation opens in your external web browser.
The browser opens with a frameset to display the generated documentation. If you choose not to open the
documentation immediately, you can open it later using the index.html file found on the root of the documentation
directory specified in the Generate HTML dialog box.

HTML documentation frames
The HTML documentation contains three frames:

Diagram frame, when Include diagrams option is turned on
Project and Overview frame, when Include navigation tree option is turned on
PackageList and PackageOverview frame, when Include navigation tree option is turned off
Documentation frame

You can click the Project tab in the lower left frame and expand the nodes in the project tree view. Notice that clicking
a class name in the Project tab opens the documentation in the lower right pane (the Documentation frame). When
you select a diagram in the Project tab, it opens in the Diagram frame. Elements in the Diagram frame are
hyperlinked to the Documentation frame. If you select an element in the Diagram frame, its contents are displayed
in the Documentation frame.

The Documentation frame displays the documentation of your source code and diagrams, and includes everything
you would expect when generating HTML documentation. The top of the Documentation frame contains a
navigation bar for browsing your project documentation.

The Project tab contains a tree representation of the project. Expand the nodes to reveal individual diagrams and
elements. Clicking a class or interface opens the related documentation in the Documentation frame.

97

98

Import and Export Overview
You can share model information with other systems by importing and exporting model information, or by sharing
project files:

Import and export features
Feature Description

Exporting diagrams to images You can save diagrams in several formats, including:

Bitmap image (BMP)

Enhanced windows metafile (EMF)

Graphics interchange (GIF)

JPEG file interchange (JPG)

W3C portable network graphics (PNG)

Tag image file (TIFF)

Windows metafile (WMF)

Importing IBM Rational Rose (MDL) models It is possible to convert models designed in IBM Rational Rose 2003 to the
format of Together. The following file formats are supported: .mdl, .
ptl, .cat, and .sub.

For import, you create a new design UML 1.5 project based on the IBM
Rational Rose project.

Importing from XMI

Exporting to XMI

XMI (XML Metadata Interchange) enables the exchange of metadata
information. Using XMI, you can exchange models across languages and
applications. For example, if you have a modeling project created with a
tool other than Together, you can import it to Together as an XMI file for
extension or as the basis of a new project. Likewise, you can export
Together projects for use in other applications. The result in each case is
a single, portable .xml file.

Together supports UML 1.3 Unisys XMI interchange for 8 types of UML
diagrams.

This feature is available for design projects that comply with the UML 1.5
specification.

Importing from other versions of Together See Interoperability Overview

Export a Quality Assurance metric chart to image Create a chart and then export it to image.

99

100

Interoperability Overview
This version of Together supports compatibility with other versions. This compatibility is based on the common
diagram format, which enables you to reuse models created in the different editions of Together:

Borland Together ControlCenter (TCC)
Borland Together Architect (TAR)
Borland Together for Microsoft Visual Studio .NET (TVS)
Borland Together for Eclipse (TEC)
Borland Together for JBuilder (TJB)
Borland Together Designer 2005 and Borland Together Developer 2005, for PrimeTime (TPT)

101

102

Compiling, Building, and Running Applications
As you develop your application, you can compile, build, and run the application in the IDE. While all three operations
can produce either an executable (.exe) or an assembly (.dll), they differ slightly in behavior:

Compiling a project compiles the files in the current project that have changed since the last build and any files
that depend on them. It does not execute the application.
Building a project compiles all of the source code in the current project, regardless of whether any source code
has changed. Building is useful when you are unsure which files have changed, or if you have changed project
or compiler options.
Running a project compiles any changed source code and, if the compile is successful, executes your
application, allowing you to use and test it in the IDE.

Use the commands on the Project and Run menus to compile, build, and run your project.

Compiler Options
You can set many of the compiler options for a project by choosing Project Options and selecting the
Compiler page. Most of the options on the Compiler page correspond to a compiler option and are described in
the online Help for that page.

For Visual Basic and C# projects, you can save compiler options as an option set. This lets you quickly change
options based on your development activity. For example, you can set compiler options specific to debugging your
project, and then change the option set when you are done debugging it.

If you need to specify additional compiler options, you can invoke the compiler from the command line. For a complete
list of the Delphi compiler options and information about running the Delphi compiler from the command line, see
Delphi Language Guide in the Content pane. For a complete list of the C# compiler options and information about
running the C# compiler from the command line, see the .NET Framework SDK online Help.

As you compile your project, you can display the current compiler options in the Messages window. Choose Tools
 Options Environment Options and select the Show command line option. The next time you compile a
project, the command used to compile the project and the response file will displayed in the Messages window. The
response file lists the compiler options and the files to be compiled.

Compiler Status and Information
You can display compiler information in the IDE during and after compilation. You can request that a status dialog
be displayed each time you compile a project by choosing Tools Option Environment Options and checking
the Show Compiler Progress check box.

After you compile a project, you can display information about it by choosing Project Information. The resulting
Information dialog box displays the number of lines of source code compiled, the byte size of your code and data,
the stack and file sizes, and the compile status of the project.

Compiler Errors
As you compile a project, compiler messages are displayed in the Messages window. For an explanation of a
message, select the message and press F1.

103

104

Refactoring Applications
Refactoring is a technique you can use to restructure and modify your code in such a way that the intended behavior
of your code stays the same. Developer Studio 2006 provides a number of refactoring features that allow you to
streamline, simplify, and improve both performance and readability of your application code.

In This Section
Refactoring Overview
Describes the concept of refactoring and introduces the refactoring operations included in Developer Studio
2006.

Symbol Rename Overview (Delphi, C#, C++)
Describes the rename feature.

Refactoring Code
Describes how to use the refactoring features in Developer Studio 2006.

Previewing and Applying Refactoring Operations
Describes how to preview and apply refactoring operations.

Sync Edit Mode (Delphi, C#, C++)
Describes Sync Edit Mode.

Extract Method Overview (Delphi)
Describes the Extract Method refactoring.

Find References Overview (Delphi, C#, C++)
Describes the Find References refactoring feature.

Declare Variable and Declare Field Overview (Delphi)
Describes the concepts of declaring variables and fields through refactoring.

Extract Resource String (Delphi)
Describes the refactoring feature Extract Resource String.

Finding References
Describes how to use the Find References features.

Undoing a Refactoring (Delphi, C#)
Describes the Undo refactoring operation.

Finding Units and Using Namespaces (Delphi, C#)
Describes the refactoring feature that allows you to locate namespaces or units.

105

106

Refactoring Overview
Refactoring is a technique you can use to restructure and modify your existing code in such a way that the intended
behavior of your code stays the same. Refactoring allows you to streamline, simplify, and improve both performance
and readability of your application code.

Each refactoring operation acts upon one specific type of identifier. By performing a number of successive
refactorings, you build up a large transformation of the code structure, and yet, because each refactoring is limited
to a single type of object or operation, the margin of error is small. You can always back out of a particular refactoring,
if you find that it gives you an unexpected result. Each refactoring operation has its own set of constraints. For
example, you cannot rename symbols that are imported by the compiler. These are described in each of the specific
refactoring topics.

Developer Studio 2006 includes a refactoring engine that evaluates and executes the refactoring operation. The
engine also displays a preview of what changes will occur in a refactoring pane that appears at the bottom of the
Code Editor. The potential refactoring operations are displayed as tree nodes, which can be expanded to show
additional items that might be affected by the refactoring, if they exist. Warnings and errors also appear in this pane.
You can access the refactoring tools from the Main menu and from context-sensitive drop down menus.

Developer Studio 2006 provides the following refactoring operations:

Symbol Rename (Delphi, C#, C++)
Extract Method (Delphi)
Declare Variable and Field (Delphi)
Sync Edit Mode (Delphi, C#)
Find References (Delphi, C#, C++)
Extract Resourcestring (Delphi)
Find Unit (Delphi)
Use Namespace (C#)
Undo (Delphi, C#)
Change Parameters (Delphi)

107

108

Symbol Rename Overview (Delphi, C#, C++)
Renames identifiers and all references to the target identifier. You can rename an identifier if the original declaration
identifier is in your project or in a project your project depends on, in the Project Group. You can also rename an
identifier if it is an error identifier, for instance, an undeclared identifier or type.

The refactoring engine enforces a few renaming rules:

You cannot rename an identifier to a keyword.
You cannot rename an identifier to the same identifier name unless its case differs.
You cannot rename an identifier from within a dependent project when the project where the original declaration
identifier resides is not open.
You cannot rename symbols imported by the compiler.
You cannot rename an overridden method when the base method is declared in a class that is not in your project.
If an error results from a refactoring, the engine cannot apply the change. For example, you cannot rename an
identifier to a name that already exists in the same declaration scope. If you still want to rename your identifier,
you need to rename the identifier that already has the target name first, then refresh the refactoring. You can
also redo the refactoring and select a new name. The refactoring engine traverses parent scopes, searching
for an identifier with the same name. If the engine finds an identifier with the same name, it issues a warning.

Rename Method
Renaming a method, type, and other objects is functionally the same as renaming an identifier. If you select a
procedure name in the Code Editor, you can rename it. If the procedure is overloaded, the refactoring engine
renames only the overloaded procedure and only calls to the overloaded procedure. An example of this rule follows:

procedure Foo; overload;
procedure Foo(A:Integer); overload;
Foo();
Foo;
Foo(5);

If you rename the first procedure Foo in the preceding code block, the engine renames the first, third, and fourth items.

If you rename an overridden identifier, the engine renames all of the base declarations and descendent declarations,
which means the original virtual identifier and all overridden symbols that exist. An example of this rule follows:

TFoo = class
 procedure Foo; virtual;
end;

TFoo2 = class(TFoo)
 procedure Foo; override;
end;

TFoo3 = class(TFoo)
 procedure Foo; override;
end;

TFoo4 = class(TFoo3)
 procedure Foo; override;
end;

Performing a rename operation on Foo renames all instances of Foo shown in the preceding code sample.

109

110

Extract Method Overview (Delphi)
Use the Extract Method refactoring operation to change a code fragment into a method whose name describes the
purpose of the method. The Extract Method feature analyzes any highlighted code. If that code is not extractable to
a method, the refactoring engine warns you. If the method can be refactored, the refactoring engine creates a new
method outside of the current method. The refactoring engine then determines any parameters, generates local
variables, determines the return type, and prompts the user for a new name. The refactoring engine inserts a method
call to the new method in the location of the old method.

There are certain limitations to the extract method refactoring. They include:

Cannot extract expressions, only statements.
Cannot extract statements that include a call to inherited in Delphi.
Cannot extract statements that are contained within a with statement.
Cannot extract statements that call a local procedure or function.

If you select an expression and choose the Extract Method command, your selection will be expanded to include
the entire statement. If the expression in your statement is used as a result, the extracted code returns a function
result in place of the expression.

111

112

Extract Resource String (Delphi)
Extracting resource strings helps centralize string definitions which can then be more easily translated, if necessary.
You can extract string values to resource strings that are defined in the resourcestring section of your code file. If
there is no resourcestring section in your code, the refactoring engine creates one following either the
implementation keyword or the uses list.

You cannot create a resource string from the following elements:

Constants. For example, const A = 'abcdefg'; cannot be extracted to a resource string.

Constants in Parameters. For example, in MyProc(A, B:Integer; C: string='test'); the string
cannot be extracted to a resource string.
Resource Strings. For example, resourcestring A = 'test'; is already a resource string.

113

114

Declare Variable and Declare Field Overview (Delphi)
You can use the Refactoring feature to create variables and fields. This feature allows you to create and declare
variables and fields while coding without planning ahead. This topic includes information about:

Declare Variable
Initial Type Suggestion
Declare Field

Declare Variable
You can create a variable when you have an undeclared identifier that exists within a procedure block scope. This
feature gives you the capability to select an undeclared identifier and create a new variable declaration with a simple
menu selection or keyboard shortcut. When you invoke the Declare Variable dialog, the dialog contains a suggested
name for the variable, based on the selection itself. If you choose to name the variable something else, the operation
succeeds in creating the variable, however, the undeclared identifier symbol (Error Insight underlining) remains.

Variable names must conform to the language rules for an identifier. In Delphi, the variable name:

Cannot be a keyword.
Cannot contain a space.
Cannot be the same as a reserved word, such as if or begin.
Must begin with a Unicode alphabetic character or an underscore, but can contain Unicode alphanumeric
characters or underscores in the body of the variable name.
In the Delphi language, the type name can also be the keyword string.

Note: The .NET SDK recommends against using leading underscores in identifiers, as this pattern is reserved for
system use.

Note: On the dialog that appears when you choose to declare a variable, you can set or decline to set an initial
value for the variable.

Initial Type Suggestion
The refactoring engine attempts to suggest a type for the variable that it is to create. The engine evaluates binary
operations of the selected statement and uses the type of the sum of the child operands as the type for the new
variable. For example, consider the following statement:

myVar := x + 1;

The refactoring engine automatically assumes the new variable myVar should be set to type Integer, provided x is
an Integer.

Often, the refactoring engine can infer the type by evaluating a statement. For instance, the statement If foo
Then... implies that foo is a Boolean. In the example If (foo = 5) Then... the expression result is a Boolean.
Nonetheless, the expression is a comparison of an ordinal (5) and an unknown type (foo). The binary operation
indicates that foo must be an ordinal.

Declare Field
You can declare a field when you have an undeclared identifier that exists within a class scope. Like the Declare
Variable feature, you can refactor a field you create in code and the refactoring engine will create the field declaration

115

for you in the correct location. To perform this operation successfully, the field must exist within the scope of its
parent class. This can be accomplished either by coding the field within the class itself, or by prefixing the field name
with the object name, which provides the context for the field.

The rules for declaring a field are the same as those for declaring a variable:

Cannot be a keyword.
Cannot contain a space.
Cannot be the same as a reserved word, such as if or begin.
Must begin with a Unicode alphabetic character or an underscore, but can contain Unicode alphanumeric
characters or underscores in the body of the field name.
In the Delphi language, the type name can also be the keyword string.

Note: Leading underscores on identifiers are reserved in .NET for system use.

You can select a visibility for the field. When you select a visibility that is not private or strict private, the refactoring
engine performs the following operations:

Searches to find all child classes.
Searches each child class to find the field name.
Displays a red error item if the field name conflicts with a field in a descendant class.
You cannot apply the refactoring if it conflicts with an existing item name.

Sample Refactorings
The following examples show what will happen when declaring variables and fields using the refactoring feature.

Consider the following code:

TFoo = class
private
 procedure Foo1;
end;
...

implementation

procedure TFoo.Foo1;
begin
 FTestString := 'test'; // refactor TestString, assign field
end;

Assume you apply a Declare Field refactoring. This would be the result:

TFoo = class
private
 FTestString: string;
 procedure Foo1;
end;

If you apply a Declare Variable refactoring instead, the result is:

116

procedure TFoo.Foo1;
var // added by refactor
 TestString: string; // added by refactor
begin
 TestString := 'test'; // added by refactor
 TestString := 'whatever';
end;

117

118

Find References Overview (Delphi, C#, C++)
Sometimes, you may not want to change code, but want to find references to a particular identifier. The refactoring
engine provides Find References, Find Local References, and Find Declaration Symbol commands.

Both Find References and Find Local References commands provide you with a hierarchical list in a separate
Find References window, showing you all occurrences of a selected reference. If you choose the Find
References command, you are presented with a treeview of all references to your selection in the entire project. If
you want to see local references only, meaning those in the active code file, you can select the Find Local
References command from the Search menu. If you want to find the original declaration within the active Delphi
code file, you can use the Find Declaration Symbol command. The Find Declaration Symbol command is only
valid in Delphi and does not apply to C#.

Sample Refactoring
The following sample illustrates how the Find References refactoring will proceed:

1 TFoo = class
2 loc_a: Integer; // Find references on loc_a finds only
3 procedure Foo1; // this line (Line 2) and the usage
4 end; // in TFoo.Foo1 (Line 15)

5 var
6 loc_a: string; // Find references on loc_a here
 // finds only this line (Line 6) and
 // the usage in procedure Foo (Line11)
7 implementation

8 {$R *.nfm}

9 procedure Foo;
10 begin
11 loc_a := 'test';
12 end;

13 procedure TFoo.Foo1;
14 begin //
15 loc_a:=1;
16 end;

119

120

Change Parameters Overview (Delphi)
Adding or removing a parameter from a function is a commonly performed and tedious programming task. Developer
Studio 2006 provides the Change Parameters refactoring to automate this task. You can use Change
Parameters to add, remove, and rearrange function parameters.

To use this refactoring, select a function name in the Code Editor and choose Refactor Change Params.

When you use the Change Parameters refactoring, the following function signature conflicts can occur:

A descendant class contains an override for the function you are refactoring. When you refactor the function,
any functions that override the refactored function will also be refactored.
A descendent class contains an overloaded version of the function that has the same signature as the refactored
version. When you refactor the function, the overload is changed to an override.
A descendent class has an overridden method that matches the original signature. When you refactor the
function, the override is changed to an overload.

Note: If you remove a parameter, you need to manually remove any method code that uses the removed parameter.

121

122

Sync Edit Mode (Delphi, C#, C++)
Sync Edit mode allows you to change all occurrences of an identifier when you change one instance of that identifier.
When you enter Sync Edit mode, you can tab to each highlighted identifier in your current Code Editor window. If
you change an identifier that appears elsewhere in the file, all occurrences transform to whatever you type, character
by character.

123

124

Undoing a Refactoring (Delphi, C#)
The refactoring engine takes advantage of a versioning mechanism, known as local striping, to allow you to undo
renames in source code files. The IDE records the current timestamp of each file included in the current refactoring
changeset. The timestamp corresponds to a specific local revision of the file. When you select the undo command,
the IDE copies the local backup file that matches that timestamp back over the refactored file.

The important point to understand is that any changes that you make to the files after the refactoring will also be
rolled back when you perform an Undo. Before the Undo is applied, you will get a warning message confirming that
you want to apply the Undo. Applying the Undo reverts changes back to before the refactoring was originally applied
in all modified files. You will lose any changes made in those files since the refactoring was originally applied.

Undo performs local striping only for Rename because Rename is the only refactoring operation that affects multiple
files.

If you want to undo Extract Method, Declare Field, or Declare Variable refactorings, use Ctrl-z (regular Undo) in the
Code Editor, or the Undo button in the Refactoring window, which accomplishes the same thing.

125

126

Testing Applications
Unit testing is an integral part of building reliable applications. The following topics discuss unit testing features
included in Developer Studio 2006.

In This Section
Unit Testing Overview
Describes the integration of DUnit and NUnit in Developer Studio 2006.

Building Tests
Describes how to build tests with Unit Test Wizards.

127

128

Unit Testing Overview
Developer Studio 2006 integrates two open-source testing frameworks, DUnit and NUnit, that allow you to build and
run automated test cases for your Delphi and C# applications. These frameworks simplify the process of building
tests for classes and methods in your application. Using unit testing in combination with refactoring can improve
your application stability. Testing a standard set of tests every time a small change is made throughout the code
makes it more likely that you will catch any problems early in the development cycle.

The testing frameworks are both based on the JUnit test framework and share much of the same functionality.

This topic includes the following information:

What Gets Installed.
Test Projects.
Test Cases.
Test Fixtures.

What Gets Installed
Both products are installed during the complete Developer Studio 2006 installation. DUnit is installed by default,
however, you can choose not to install NUnit or you can choose to install NUnit to a non-default location.

DUnit
DUnit gets installed automatically by the Developer Studio 2006 installer. You can find many DUnit resources in the
\source\DUnit directory, under your primary installation directory. These resources include documentation and test
examples.

When using DUnit, at a minimum you usually include at least one test case and one or more test fixtures. Test cases
typically include one or more assertion statements to verify the functionality of the class being tested.

DUnit is licensed under the Mozilla Public License 1.0 (MPL).

NUnit
During the install process, you will be prompted to install NUnit. You can change the default location of the installation,
or you can accept the default, which installs NUnit into C:\Program Files\NUnit V2.x, where x is a point release
number.. The installation directory includes a number of resources including documentation and example tests.

NUnit is the name of the .NET testing framework and can be used with both Delphi for .NET and C# projects. There
are some subtle but important differences between the way NUnit and DUnit work. For example, NUnit does not link
in .dcu files, as DUnit does.

When using NUnit, at a minimum, you usually include at least one test case and one or more test fixtures. Test cases
typically include one or more assertion statements to verify the functionality of the class being tested.

Test Projects
A test project encapsulates one or more test cases and is represented by a node in the IDE Project Manager. You
can create a test project before creating test cases. Once you have a test project that is associated with a code
project, you can add test cases to the test project. Developer Studio 2006 provides a Test Project Wizard to help
you build a test project.

129

Test Cases
Every class that you want to test must have a corresponding test class. You define a test case as a class in order
to instantiate test objects, which makes the tests easier to work with. You implement each test as a method that
corresponds to one of the methods in your application. More than one test can be included in a test case. The ability
to group and combine tests into test cases and test cases into test projects is what sets a test case apart from simple
forms of testing, such as using print statements or evaluating debugger expressions. Each test case and test project
is reusable and rerunnable, and can be automated through the use of shell scripts or console commands.

Generally, you should create your tests in a separate project from the source file project. That way, you do not have
to go through the process of removing your tests from your production application. Developer Studio 2006 provides
a Test Case Wizard to help you build test cases. You can add test cases directly into the same project as your
source file, however, doing so increases the size of your project. You can also conditionally compile your test cases
out of production code by using IFDEF statements around the test case code.

Test Fixtures
The term test fixture refers to the combination of multiple test cases, which test logically related functionality. You
define test fixtures in your test case. Typically, you will instantiate your objects, initialize variables, set up database
connection, and perform maintenance tasks in the SetUp and TearDown sections. As long as your tests all act upon
the same objects, you can include a number of tests in any given test fixture.

130

DUnit Overview
DUnit is an open-source unit test framework based on the JUnit test framework. The DUnit framework allows you
to build and execute tests against Delphi Win32 applications. The Developer Studio 2006 integration of DUnit allows
you to test both Delphi Win32 and Delphi .NET applications.

Each testing framework provides its own set of methods for testing conditions. The methods represent common
assertions. You can also create your own custom assertions. You will be able to use the provided methods to test
a large number of conditions.

This topic includes information about:

Building DUnit Tests.
DUnit Functions.
DUnit Test Runners.

Building DUnit Tests
Every DUnit test implements a class of type TTestCase. The following sample Delphi Win32 program defines two
functions that perform simple addition and subtraction:

unit CalcUnit;

interface

type

{ TCalc }

 TCalc = class
 public
 function Add(x, y: Integer): Integer;
 function Sub(x, y: Integer): Integer;
 end;

implementation

{ TCalc }

function TCalc.Add(x, y: Integer): Integer;
begin
 Result := x + y;
end;

function TCalc.Sub(X, Y: Integer): Integer;
begin
 Result := x + y;
end;

end.

The following example shows the test case skeleton file that you need to modify to test the two functions, Add and
Sub, in the preceding code.

unit TestCalcUnit;

131

interface

uses
 TestFramework, CalcUnit;
type
 // Test methods for class TCalc
 TestTCalc = class(TTestCase)
 strict private
 aTCalc: TCalc;
 public
 procedure SetUp; override;
 procedure TearDown; override;
 published
 procedure TestAdd;
 procedure TestSub;
 end;

implementation

procedure TestTCalc.SetUp;
begin
 aTCalc := TCalc.Create;
end;

procedure TestTCalc.TearDown;
begin
 aTCalc := nil;
end;

procedure TestTCalc.TestAdd;
var
 _result: System.Integer;
 y: System.Integer;
 x: System.Integer;
begin
 _result := aTCalc.Add(x, y);
 // TODO: Add testcode here
end;

procedure TestTCalc.TestSub;
var
 _result: System.Integer;
 y: System.Integer;
 x: System.Integer;
begin
 _result := aTCalc.Sub(x, y);
 // TODO: Add testcode here
end;

initialization
 // Register any test cases with the test runner
 RegisterTest(TestTCalc.Suite);
end.

DUnit Functions
DUnit provides a number of functions that you can use in your tests.

132

Function Description

Check Checks to see if a condition was met.

CheckEquals Checks to see that two items are equal.

CheckNotEquals Checks to see if items are not equal.

CheckNotNull Checks to see that an item is not null.

CheckNull Checks to see that an item is null.

CheckSame Checks to see that two items have the same value.

EqualsErrorMessage Checks to see that an error message emitted by the application matches a specified error message.

Fail Checks that a routine fails.

FailEquals Checks to see that a failure equals a specified failure condition.

FailNotEquals Checks to see that a failure condition does not equal a specified failure condition.

FailNotSame Checks to see that two failure conditions are not the same.

NotEqualsErrorMessage Checks to see that two error messages are not the same.

NotSameErrorMessage Checks that one error message does not match a specified error message.

For more information on the syntax and usage of these and other DUnit functions, see the DUnit help files in \source
\dunit\doc.

DUnit Test Runners
A test runner allows you to run your tests without impacting your application. The DUnit test project you create is
your test runner. You can indicate the TextTestRunner to output test results to the console. The GUI test runner
displays your results interactively in a GUI window right in the IDE. The results are color-coded to highlight which
tests succeeded and which failed.

The GUI test runner is very useful when actively developing unit tests or the code you are testing. The GUI test
runner displays a green bar over a test that completes successfully, a red bar over a test that fails, and a yellow bar
over a test that is skipped.

The DUnit console/text test runner is useful when you need to run completed code and tests from automated build
scripts.

133

134

NUnit Overview
NUnit is an open-source unit test framework based on the JUnit test framework. The NUnit framework allows you
to build and execute tests against .NET Framework applications. The Developer Studio 2006 integration of NUnit
allows you to test both Delphi for .NET and C# applications.

This topic includes information about:

Building NUnit Tests.
NUnit Asserts.
NUnit Test Runners.

Building NUnit Tests
Each testing framework provides its own set of methods for testing conditions. The methods support common
assertions. You can also create your own custom assertions. You will be able to use the provided methods to test
a large number of conditions.

If you want to create tests for an application, you can first create a Test Project. The Test Project contains the Test
Case files, which contain one or more tests. A test case is analogous to a class. Each test is analogous to a method.
Typically, you might build one test for each method in your application. You can test each method in your application
classes to make sure that the method performs the task you expect.

When you create a Test Project and add a Test Case to it, Developer Studio 2006 builds two template files: a test
project template, which contains the attributes needed to compile the test project into an assembly, and a test case
template, which contains the basic structure of the test case. The Test Case Wizard generates a skeleton test method
for each method in the class being tested. This includes local variable declarations for each of the parameters to the
method being called. You will need to write the code required to setup the parameters for the call (in SetUp) and the
appropriate call to verify the return values or other state that is appropriate following the call (in TearDown).

The following example shows a small C# program that performs simple addition and subtraction:

[C#]
using System;

namespace CSharpCalcLib
{
 /// <summary>
 /// Simple Calculator Library
 /// </summary>
 public class Calc
 {
 public int Add(int x, int y)
 {
 return x + y;
 }

 public int Sub(int x, int y)
 {
 return x + y;
 }
 }
}

The following example shows the test case skeleton file that you need to modify to test the two methods, Add and
Sub, in the preceding code.

135

[Delphi]
namespace TestCalc
{
 using System;
 using System.Collections;
 using System.ComponentModel;
 using System.Data;
 using NUnit.Framework;
 using CSharpCalcLib;

 // Test methods for class Calc
 [TestFixture]
 public class TestCalc
 {

 private Calc aCalc;

 [SetUp]
 public void SetUp()
 {
 aCalc = new Calc();
 }

 [TearDown]
 public void TearDown()
 {
 aCalc = null;
 }

 [Test]
 public void TestAdd()
 {
 int x;
 int y;
 int returnValue;
 // TODO: Setup call parameters
 returnValue = aCalc.Add(x, y);
 // TODO: Validate return value
 }

 [Test]
 public void TestSub()
 {
 int x;
 int y;
 int returnValue;
 // TODO: Setup call parameters
 returnValue = aCalc.Sub(x, y);
 // TODO: Validate return value
 }
 }
}

Note: Each test method is automatically decorated with the [Test] attribute in C# projects. In addition, in C# the test
methods are defined as functions returning void.

The following example shows a small Delphi for .NET program that performs simple addition and subtraction:

136

unit CalcUnit;

// .Net Version

interface

type

{ TCalc }

 TCalc = class
 public
 function Add(x, y: Integer): Integer;
 function Sub(x, y: Integer): Integer;
 end;

implementation

{ TCalc }

function TCalc.Add(x, y: Integer): Integer;
begin
 Result := x + y;
end;

function TCalc.Sub(X, Y: Integer): Integer;
begin
 Result := x + y;
end;

end.

The following example shows the test case skeleton file that you need to modify to test the two functions, Add and
Sub, in the preceding code.

unit TestCalcUnit;

interface

uses
 NUnit.Framework, CalcUnit;

type
 // Test methods for class TCalc
 [TestFixture]
 TestTCalc = class
 strict private
 FCalc: TCalc;
 public
 [SetUp]
 procedure SetUp;
 [TearDown]
 procedure TearDown;
 published
 [Test]
 procedure TestAdd;
 [Test]
 procedure TestSub;
 end;

137

implementation

procedure TestTCalc.SetUp;
begin
 FCalc := TCalc.Create;
end;

procedure TestTCalc.TearDown;
begin
 FCalc := nil;
end;

procedure TestTCalc.TestAdd;
var
 ReturnValue: Integer;
 y: Integer;
 x: Integer;
begin
 // TODO: Setup call parameters
 ReturnValue := FCalc.Add(x, y);
 // TODO: Validate return value
end;

procedure TestTCalc.TestSub;
var
 ReturnValue: Integer;
 y: Integer;
 x: Integer;
begin
 // TODO: Setup call parameters
 ReturnValue := FCalc.Sub(x, y);
 // TODO: Validate return value
end;

end.

Note: In Delphi for .NET the test methods are defined as procedures.

Each test method must:

be public
be a procedure for Delphi for .NET or a function with a void return type for C#
take no arguments

Setup
Use the SetUp procedure to initialize variables or otherwise prepare your tests prior to running. For example, this is
where you would set up a database connection, if needed by the test.

TearDown
The TearDown method can be used to clean up variable assignments, clear memory, or perform other maintenance
tasks on your tests. For example, this is where you would close a database connection.

138

NUnit Asserts
NUnit provides a number of asserts that you can use in your tests.

Function Description Syntax

AreEqual Checks to see that two items are equal. Assert.AreEqual(expected, actual [, string
message])

IsNull Checks to see that an item is null. Assert.IsNull(object [, string message])
IsNotNull Checks to see that an item is not null. Assert.IsNotNull(object [, string message])
AreSame Checks to see that two items are the same. Assert.AreSame(expected, actual [, string

message])
IsTrue Checks to see that an item is True. Assert.IsTrue(bool condition [, string message])
IsFalse Checks to see that an item is False. Assert.IsFalse(bool condition [, string message])
Fail Fails the test. Assert.Fail([string message])

You can use multiple asserts in any test method. This collection of asserts should test the common functionality of
a given method. If an assert fails, the entire test method fails and any other assertions in the method are ignored.
Once you fix the failing test and rerun your tests, the other assertions will be executed, unless one of them fails.

NUnit Test Runners
A test runner allows you to run your tests without impacting your application. If you use the console test runner, it
directs the output to the console. If you use the GUI test runner, you can see the results interactively in a GUI non-
modal window right in the IDE. The results are color-coded to highlight which tests succeeded and which failed.

NUnit includes two test runners:

NUnitConsole.exe
NUnitGUI.exe

The GUI test runner is very useful when actively developing unit tests or the code you are testing. The GUI test
runner displays a green bar over a test that completes successfully, a red bar over a test that fails, and a yellow bar
over a test that is skipped.

The NUnit console test runner is useful when you need to run completed code and tests from automated build scripts.
If you want to redirect the output to a file, use the redirection command parameter. The following example shows
how to redirect test results to a TestResult.txt text file:

 nunit-console nunit.tests.dll /out:TestResult.txt

Note: You may need to set the path to your host application in the Project Options dialog. Set the Host Application
property to the location of the test runner you want to use.

139

140

Localizing Applications
Developer Studio 2006 includes a suite of Translation Tools to facilitate localization and development of .NET and
Win32 applications for different locales. The Translation Tools include the following:

Satellite Assembly Wizard (for .NET)
Resource DLL Wizard (for Win32)
Translation Manager
Translation Repository

The Translation Tools are available for Delphi VCL Forms applications (both .NET and Win32), and Win32 console
applications, packages, and DLLs. You can access the Translation Tools configuration options by choosing Tools
 Options Translation Tools Options.

The Wizards
Before you can use the Translation Manager or Translation Repository, you must add languages to your project by
running either the Satellite Assembly Wizard for .NET projects or the Resource DLL Wizard for Win32 projects. The
Satellite Assembly Wizard creates a .NET satellite assembly for each language you add. The Resource DLL Wizard
creates a Win32 resource DLL for each language. For simplicity, this documentation uses the term resource
module to refer to either a satellite assembly or a resource DLL.

While running either wizard, you can include extra files, such as .resx or .rc files, that are not normally part of a
project. You can add new resource modules to a project at any time. If you have multiple projects open in the IDE,
you can process several at once.

You can also use the wizards to remove languages from a project and restoring languages to a project.

Translation Manager
After resource modules have been added to your project, you can use the Translation Manager to view and edit VCL
forms and resource strings. After modifying your translations, you can update all of your application’s resource
modules.

The External Translation Manager (ETM) is a version of the Translation Manager that you can set up and use without
the IDE. ETM has the same functionality as the Translation Manager, with some additional menus and toolbars.

Translation Repository
The Translation Repository provides a database for translations that can be shared across projects, by different
developers. While working in the Translation Manager, you can store translated strings in the Repository and retrieve
translated strings from the Repository.

By default, each time your assemblies are updated, they will be populated with translations for any matching strings
that exist in the Repository. You can also access the Repository directly, through its own interface, to find, edit, or
delete strings.

The Translation Repository stores data in XML format. By default, the file is named default.tmx and is located in the
Developer Studio 2006\bin directory.

Files Generated by the Translation Tools
The files generated by the Translation Tools include the following:

141

File extension Description

.nfn (.NET)

.dfn (Win32)

The Translation Tools maintain a separate file for each form in your application and each target language.
These files contain the data (including translated strings) that you see in the Translation Manager.

.resx (.NET) The Satellite Assembly Wizard uses the compiler-generated .drcil file to create an .resx file for each target
language. These .resx files contain special comments that are used by the Translation Tools.

.rc (Win32) The Resource DLL Wizard uses the compiler-generated .drc file to create an .resx file for each target language.
These .resx files contain special comments that are used by the Translation Tools.

.tmx The Translation Repository stores data in an .tmx file. You can maintain more than one repository by saving
multiple .tmx files.

.bdsproj The External Translation Manager lists the assemblies (languages) and resources to be translated into
a .bdsproj project file. When third-party translators add and remove languages from a project, they can save
these changes in an .bdsproj file, which they return to the developer.

Note: You should not edit any of these files manually.

142

Debugging Applications
Many of the same techniques are used for debugging applications in different environments. Developer Studio 2006
provides an integrated debugging environment that enables you to debug Win32 application and .NET applications.
In addition, you can use the debugger to debug an application running on a remote machine that does not have
Developer Studio 2006 installed.

In This Section
Overview of Debugging
Provides general debugging information and describes the debugging tools available in Developer Studio
2006.

Overview of Remote Debugging
Provides an overview of debugging an application on a remote machine that does not have the IDE installed.

143

144

Overview of Debugging
Developer Studio 2006 includes both the Borland .NET Debugger and Borland Win32 Debugger. The IDE
automatically uses the appropriate debugger based on the active project type. Cross-platform debugging within a
project group is supported and, where possible, the debuggers share a common user interface.

The integrated debuggers let you find and fix both runtime errors and logic errors in your Developer Studio 2006
application. Using the debuggers, you can step through code, set breakpoints and watches, and inspect and modify
program values. As you debug your application, the debug windows are available to help you manage the debug
session and provide information about the state of your application.

Stepping Through Code
Stepping through code lets you run your program one line of code at a time. After each step, you can examine the
state of the program, view the program output, modify program data values, and continue executing the next line of
code. The next line of code does not execute until you tell the debugger to continue.

The Run menu provides the Trace Into and Step Over commands. Both commands tell the debugger to execute
the next line of code. However, if the line contains a function call, Trace Into executes the function and stops at the
first line of code inside the function. Step Over executes the function, then stops at the first line after the function.

Evaluate/Modify
The Evaluate/Modify functionality allows you to evaluate an expression. You can also modify a value for a variable
and insert that value into the variable. The Evaluate/Modify functionality is customized for the language you are
using. For a C++ project, the Evaluate/Modify dialog accepts only C++ expressions. For a C# project, the Evaluate/
Modify dialog accepts only C# expressions. For a Delphi project, the Evaluate/Modify dialog accepts only Delphi
expressions.

Breakpoints
Breakpoints pause program execution at a certain point in the program or when a particular condition occurs. You
can then use the debugger to view the state of your program, or step over or trace into your code one line or machine
instruction at a time. The debugger supports three types of breakpoints. Source breakpoints pause execution at a
specified location in your source code. Address breakpoints pause execution at a specified memory address. Data
breakpoints allow you to pause execution when memory at a particular address changes.

Note: Data breakpoints are available only for the Win32 debugger.

Watches
Watches lets you track the values of program variables or expressions as you step over or trace into your code. As
you step through your program, the value of the watch expression changes if your program updates any of the
variables contained in the watch expression.

Debug Windows
The following debug windows are available to help you debug your program. By default, most of the windows are
displayed automatically when you start a debugging session. You can also view the windows individually by using
the View Debug Windows sub-menu.

145

Each window provides one or more right-click context menus. The F1 Help for each window provides detailed
information about the window and the context menus.

Debug Window Description

Breakpoint List Displays all of the breakpoints currently set in the Code Editor or CPU window.

Call Stack Displays the current sequence of function calls.

Watch List Displays the current value of watch expressions based on the scope of the execution point.

Local Variables Displays the current function’s local variables, enabling you to monitor how your program updates the values
of variables as the program runs.

Modules Displays processes under control of the debugger and the modules currently loaded by each process. It
also provides a hierarchical view of the namespaces, classes, and methods used in the application.

Threads Status Displays the status of all processes and threads of execution that are executing in each application being
debugged. This is helpful when debugging multi-threaded applications.

Event Log Displays messages that pertain to process control, breakpoints, output, threads, and module.

CPU Displays the low-level state of your program, including the assembly instructions for each line of source
code and the contents of certain registers.

FPU Displays the contents of the Floating-point Unit and SSE registers in the CPU.

Remote Debugging
Remote debugging lets you debug an application running on a remote computer. Your computer must be connected
to the remote computer through TCP/IP and the remote debugger must be installed on the remote machine. After
you create and copy the required application files to the remote computer, you can connect to that computer and
begin debugging.

146

Overview of Remote Debugging
Remote debugging enables you to debug one or more applications on a remote machine when the IDE is running
only on your local machine. This allows debugging on a machine where it is impractical to install the entire IDE and
rebuild a project. Remote debugging is useful for applications that run differently on your local machine than on an
end user's machine.

The Remote Debugger Executable
The remote debugger executable is named rmtdbg100.exe. The executable and its supporting files must be present
on the remote machine. The easiest way to install the executable is directly from the Developer Studio 2006
installation disk. However, if the installation disk is not available, you can copy the required files from a machine that
has the full Developer Studio 2006 IDE installed.

Local and Remote Files
Three types of files are involved in remote debugging:

Source files
Executable files
Symbol files

Source files are compiled using the IDE on the local machine. The executable files and symbol files produced after
compilation must be copied to the remote machine.

Source Files
When you debug a project on a remote machine, the source files for the project must be open on the local machine.
The source files display in the editor window to show a program's current execution point. You do not use source
files on the remote machine.

Executable Files
Executable files are the .dll files and .exe files that are mapped into the application's address space. You generate
these files on the local machine, then copy them to the remote machine.

147

Symbol Files
Symbol files are generated on the local machine at compile time. These are used by the debugger to get information
such as the mapping of machine instructions to source line numbers or the names and types of variables declared
in the source files. The extension for the symbol files depends on the language, as shown in the following table:

Language Debug symbol file extension

Delphi for Win32 .rsm

Delphi for .NET .rsm and .pdb

C++ .tds

C# .pdb

You must set up specific options to generate symbol files on the local machine, then copy the files to the remote
machine.

Local and Remote Machines
To use remote debugging, you must be able to log on to the remote machine and you must have write access to at
least one directory.

Note: The remote debugger does not provide a mechanism for interacting with an application on the remote
machine. If you need to interact with the application, you must establish a remote desktop connection.

148

Deploying Applications
After you have written, tested, and debugged your application, you can make it available to others by deploying it.
Depending on the size and complexity of the application, you can package it as one or more assemblies, as
compressed cabinet (.cab) files, or in an installer program format (such as .msi). After the application is packaged,
you can distribute it by using XCOPY, FTP, as a download, or with an installer program.

This sections includes the following general topics:

Deploying .NET Applications
Deploying Win32 Applications
Using Installation Programs
Redistributing Developer Studio 2006 Files
Redistributing Third Party Software

For additional information about deploying specific types of applications, refer to the list of links at the end of this topic.

Deploying .NET Applications
Assuming that the target computer already has the .NET Framework installed on it, deploying a simple application
that consists of a single executable is as easy as copying the .exe file to the target computer. You don't need to
register the application and deleting the application files effectively uninstalls it.

Applications That Include Shared Assemblies
If your application includes an assembly that will be shared by other applications, you will need to uniquely identify
the assembly with a strong name and then install it in the Global Assembly Cache (GAC). The strong name consists
of the assembly's text name, version number, optional culture information, and the public key and digital signature
to ensure uniqueness. The .NET Framework SDK provides command line utilities for creating a public/private key
(sn.exe), assigning a strong name (al.exe), and installing an assembly in the GAC (gacutil.exe). For more information
about these utilities, see the Framework SDK online Help.

Deploying VCL.NET Applications
When building applications that use the VCL .NET framework, the way you build the application determines what
files you need to distribute with it. If you build the application by compiling VCL for .NET units directly into the program
executable file, the application will have external dependencies only on the .NET Framework.

However, if you build the application by compiling the application to have external references to VCL for .NET
assemblies, the application will have external dependencies on the .NET Framework, the Borland.Delphi.dll, and
whatever Developer Studio 2006 packages you have added to the project references, for example, Borland.VclRtl.
dll or Borland.Vcl.dll.

Deploying ASP.NET Applications
Developer Studio 2006 includes the ASP.NET Deployment Manager to assist you in deploying ASP.NET
applications. You can use it to deploy to a remote computer by using a share or an FTP connection, or to your local
computer. When you add a Deployment Manager to your project, an XML file (.bdsdeploy) is added to the project
directory and a Deploy tab is added to the IDE. You provide destination and connection information on the
Deploy tab and optionally modify the suggested list of files to copy, then the Deployment Manager copies the files
to the deployment destination.

Redistributing the .NET Framework
If you plan to deploy your application to a computer that does not have the .NET Framework installed on it, you will
need to redistribute and install the .NET Framework with your application. Microsoft provides a redistributable

149

installer called dotnetfx.exe, which contains the common language runtime and .NET Framework components
required to run .NET applications. For more information about dotnetfx.exe, see the .NET Framework SDK online
Help.

Before Deploying a C# Application
Typically, while developing a C# application, you compile it with debugging information to facilitate testing. When
you create a new project, it uses the default Debug option set, which creates the executable files and the program
database file (.pdb) for debugging in the project\bin\Debug directory.

When you are ready to deploy the C# application, you can compile it using the default or a user-defined Release
option set to create an optimized version of the application in the project\bin\Release directory. The optimized
application is smaller, faster, and more efficient. To change the Debug/Release option sets, choose Project
Options.

Deploying Win32 Applications
For information on deploying Win32 applications, refer to the Deploying Win32 Applications link at the end of this
topic.

Using Installation Programs
For complex applications that consist of multiple files, you can use an installation program. Installation programs
perform various tasks, such as copying executable and supporting files to the target computer and making Windows
registry entries.

Setup toolkits, such as InstallShield Express, automate the process of creating installation programs, often without
the need to write any code. InstallShield Express is based on Windows Installer (MSI) technology and can be installed
from the Developer Studio 2006 installation CD. After installing it, refer to the online InstallShield online Help for
information about using the product.

Redistributing Developer Studio 2006 Files
Many of the files associated with Developer Studio 2006 applications are subject to redistribution limitations or cannot
be redistributed at all. Refer to the following documents for the legal stipulations regarding the redistribution of these
files.

File Description

deploy.htm Contains deployment considerations for each edition of Developer Studio 2006.

license.txt Addresses legal rights and obligations concerning Developer Studio 2006.

readme.htm Contains last minute information about Developer Studio 2006, possibly including information that could affect
the redistribution rights for Developer Studio 2006 files.

These files are located, by default, at C:\Program Files\Borland\BDS\4.0.

Redistributing Third Party Software
The redistribution rights for third party software, such as components, utilities, and helper applications, are governed
by the vendor that supplies the software. Before you redistribute any third party software with your Developer Studio
2006 application, consult the third party vendor or software documentation for information regarding redistribution.

150

Procedures

151

Getting Started Procedures

152

Adding and Removing Files
You can add and remove a variety of file types to your projects.

To add a file to a project
1 Choose Project Add to Project.

The Add to Project dialog box appears.

2 Select a file to add and click Open.
The file appears below the Project.exe node of the Project Manager.

To remove a file from a project
1 Choose Project Remove From Project.

A Remove From Project dialog box appears.

2 Select the file or files you want to remove and click OK.

153

154

Adding Components to a Form

To add components to a form
1 On the Tool Palette, select a visual or nonvisual component.
2 Double-click the component to place it on the form or drag the component onto the form.

If you add a nonvisual component to the form, the component tray appears at the bottom of the Designer surface.

3 Repeat steps 1 and 2 to add additional components.
4 Use the dotted grid on the form to align your components.

155

156

Adding References
You can integrate your legacy COM servers and ActiveX controls into managed applications by adding references
to unmanaged DLLs to your project, and then browse the types just as you would with managed assemblies.

To add references
1 From the main menu, choose Project Add Reference.

The Add Reference dialog box appears.

2 Select either a legacy COM type library or ActiveX control to integrate into your managed application.
3 Click Add Reference.

The reference is added to the text box.

4 Click OK.

Tip: You can also right-click the References folder in the Project Manager, and choose Add
Reference.

157

158

Adding Templates to the Object Repository
You can add your own objects to the Object Repository as templates to reuse or share with other developers.
Reusing objects lets you build families of applications with common user interfaces and functionality to reduce
development time and improve quality.

To add a template to the Object Repository
1 Save your project.
2 Choose Project Add to Repository.
3 Enter the project name, description, and author information in the dialog box.
4 Click Browse to select an icon to represent the project you saved.
5 Click OK.

159

160

Configuring Together
Together is flexibly configurable. Use the Options dialog window to tune modeling features to best fit your
requirements.

The Options dialog window provides a number of diagram customization settings. You can configure the appearance
and layout of the diagrams, specify font properties, member format, and level of detail.

To configure Together settings:
1 On the main menu, choose Tools Options.
2 In the Options dialog window, expand the Together category.
3 Select the desired option level.
4 For the Project and Diagram option levels, choose the project or diagram where the configuration changes should

apply. To do that, click the chooser buttons in the corresponding fields and select the desired project or diagram
from the model.

5 Click the desired subcategory.
6 Edit configuration options as required.
7 Click OK to apply changes and close the dialog window.

You can make configuration options final at a certain parent level and disable any changes on the lower levels:

To disable configuration changes:
1 On the main menu, choose Tools Options.
2 Click the Together category to expand it.
3 Select the required sub-category (default, project group or project).
4 Check the Disable sublevels option.

161

162

Copying References to a Local Path
During runtime, assemblies must be in the output path of the project or in the GAC for deployment. If your project
contains a reference to an object that is not in one of the two locations, the reference must be copied to the appropriate
output path.

To a copy reference to a local path
1 In the Project Manager, right-click an assembly DLL in the References folder.
2 Set the Copy Local option to copy the file to the output directory.

Note: The IDE maintains the Copy Local setting until you change it.

163

164

Creating a Component Template
You can save selected, preconfigured components on the current form as a reusable component template accessible
from the Tool Palette.

To create a component template
1 Place and arrange components on a form.
2 In the Object Inspector, set the component properties and events as desired.
3 Select the components that you want to save as a component template. To select several components, drag the

mouse over them.

Tip: To select all of the components on the form, choose Edit Select All.

Gray handles appear at the corners of each selected component.

4 Choose Component Create Component Template.
The Create Component Template dialog box appears.

5 Specify a name, a Tool Palette category, and an icon for the template.
6 Click OK.

Your new template appears immediately on the Tool Palette, in the category that you specified.

To use a component template
1 Display the form to which you want to add the components from the component template.
2 On the Tool Palette, double-click the component template icon.

The components in the component template are added to the form, along with their preconfigured properties and
events. You can reposition the components independently, reset their properties, and create or modify event
handlers for them, just as if you had placed each component in a separate operation.

To delete a component template
1 On the Tool Palette, right-click the component template to display a context menu.
2 Choose the Delete [template name] Button command.

The component template is deleted immediately from the Tool Palette.

165

166

Creating a Project

To add a new project
1 Choose Project Add New Project.

The New Items dialog box appears.

2 Select a project and click OK.
The project is added to the Project Manager.

To add an existing project
1 Choose Project Add Existing Project.

The Open Project dialog box appears.

2 Select an existing project to add and click Open.

167

168

Customizing the Form

To customize the form
1 Choose Tools Options.
2 From the Options dialog box, click Windows Forms Designer.
3 Enable or disable the snap to grid and show grid features by selecting and deselecting the check boxes.
4 Choose one of the bracing styles.
5 Click OK.

Tip: The changes will affect only forms created after these options are changed. To change the settings for existing
forms, set the GridSize, DrawGrid, and SnapToGrid properties of the form.

169

170

Customizing the Tool Palette

To arrange individual components
1 Click the component.
2 Drag the component anywhere within the Tool Palette.

To arrange an entire category of components
1 Click a category name .
2 Drag the category anywhere within the Tool Palette.
3 Release your mouse button to place the category in the desired location.

To add additional categories
1 Right-click the Tool Palette.
2 Choose the Add New Category command.

The Create a new Category dialog box appears.

3 Enter a name for the category in the New Category Name text box.
4 Click OK.

The new category appears at the bottom of the Tool Palette.

171

172

Customizing Toolbars

To arrange your toolbars
1 Click the grab bar on the left side of any toolbar.
2 Drag the toolbar to another location or onto your desktop.

To delete icons from the toolbar
1 Choose View Toolbars Customize.
2 From the toolbar, not the Customize dialog box, drag the tool from the toolbar until its icon displays an X and

then release the mouse button.
3 When completed, click Close.

To add icons to the toolbar
1 Choose View Toolbars Customize.
2 Click the Commands tab.
3 In the Categories list, select a category to view its tool icons.
4 From the Commands list, drag the selected icon onto the toolbar of your choice.
5 When completed, click Close.

173

174

Docking Tool Windows
The Auto-Hide feature lets you undock and hide tool windows, such as the Object Inspector, Tool Palette, and
Project Manager, but still have access to them.

To use Auto-Hide to hide your tools
1 Click the push pin in the upper right corner of a tool window.

The tool window is replaced by one or more tabs at the outer edge of the IDE window.

2 To display the tool window, position the cursor over the tab.
The tool window slides into view.

3 To slide the tool window out of view, move the cursor away from the tool window.
4 To redock the tool window, click the push pin until it points down.

To dock the tools with one another
1 Click the tool window title bar and drag the window into another tool window.
2 Select a location to drop the tool window and release the mouse button.

To undock the tools from one another
1 Click the tool window title bar and drag the window away from the other tool window.
2 Select a location to drop the tool window and release the mouse button.

175

176

Exploring .NET Assembly Metadata
You can open and explore the namespaces and types contained with a .NET assembly. The assembly metadata is
displayed in a Windows Explorer-style presentation, with a left pane containing a tree of the namespaces and types
within the assembly. The right pane displays specific information on the selected item in the tree. The Call Graph
tab shows you a list of the methods called by the selected method, as well as a list of the methods that call the
selected method.

To inspect a .NET assembly
1 Choose File Open.
2 In the Open dialog box, from the Files of type drop-down list, select Assembly Metadata.
3 Navigate to the folder where the .NET assembly is located. Select the assembly and click Open.

You can open multiple .NET assemblies in the metadata explorer. Each open assembly is displayed in the tree in
the left-pane; the top-level node for a .NET assembly is denoted by the icon.

To close a particular .NET assembly, right-click on the top-level icon and select Close.

Using the Call Graph tab
1 Select a method node in the left pane.
2 Select the Call Graph tab.

The top half of the Call Graph tab shows you a list of methods that call the method you selected in the left pane.

The bottom half of the Call Graph tab shows you the methods called by the method you selected in the left pane.

Methods that exist in the same assembly as the currently selected method will appear as clickable links, and are
displayed in blue underlined text. Clicking on a link will cause that method to become selected in the tree in the
left-hand pane.

Tip: You can use the Browser buttons on the toolbar to navigate backwards and forwards to previously
selected items in the left pane.

177

178

Exploring Windows Type Libraries
You can open and inspect the interfaces and other types contained within a Windows type library. The type library
contents are displayed in a Windows Explorer-style presentation, with a left pane containing a tree of the interface
and type definitions within the type library. The right pane displays specific information on the selected item in the
tree. The Type Library Explorer can open a .TLB file, as well as OCX controls, and .DLL and .EXE files that have
type libraries as embedded resources.

To Inspect a Windows Type Library
1 Choose File Open.
2 In the Open dialog box, from the Files of type drop-down list, select Type Library.

This sets the file filter to display files with extensions of .TLB, .OLB, .OCX, .DLL, and .EXE.

3 Navigate to the folder where the type library is located.
4 Select the file and click Open.

You can open multiple type libraries in the explorer. Each open type library is displayed in the tree in the left pane;
the top-level node for a type library is denoted by the icon.

To close a particular type library, right-click on the top-level icon and select Close.

179

180

Finding Items on the Tool Palette

To find items on the Tool Palette
1 Click anywhere on the Tool Palette and start typing the name of the item that you want to find.

The Tool Palette is filtered to display only those item names that match what you are typing. The characters that
you have typed appear in bold in the item names.

2 Double-click an item to perform the default action for that item. For example, double-clicking a component adds
it to your form, whereas double-clicking a code snippet adds it to your code.

3

To remove the search filter from the Tool Palette, click the filter icon .

181

182

Installing Custom Components

To install custom components
1 Choose Component Installed .NET Components.
2 Click Select an Assembly.
3 Navigate to the folder containing the component assembly.

Alternatively, you can enter the name of the full path to the assembly in the File Name field.

4 Select the assembly.
5 Click Open.

The Installed .NET Components dialog box displays the components from the assembly.

6 Verify that the components you want to install on the Tool Palette are checked.
7 Click OK.

183

184

Installing More Computer Languages
If you have installed Developer Studio 2006 with only one or two computer languages (Delphi, C#, C++), and you
later decide to add a language that was not originally installed, follow the steps below.

To add more computer languages to your IDE:
1 Choose Start Settings Control Panel Add or Remove Programs.
2 Select Developer Studio 2006
3 Click the Change button.
4 When the Installation Wizard comes up, it will ask you if you want to Modify, Repair, or Remove the program.

Select the Modify radio button.
5 Follow the rest of the steps in the Installation Wizard to choose the languages that you want to add.
6 Click the Finish button.

185

186

Renaming Files Using the Project Manager
Renaming a file changes the name of the file in both the Project Manager and on disk.

To rename a file
1 In the Project Manager, right-click the file that you want to rename.

The context menu is displayed.

2 Choose Rename.
3 Enter the new name for the file.

If the file has associated files that appear as child nodes in the Project Manager tree, those files are automatically
renamed.

187

188

Saving Desktop Layouts
You can switch between multiple desktop layouts. Choose a layout from the drop-down list box located on the
Desktop toolbar. Additionally, you can save your desktop or debug desktop layouts as default.

To save a desktop layout
1 Choose View Desktops Save Desktop.
2 Enter the name of the desktop in the Save Desktop dialog box.
3 Click OK.

To set a debug desktop layout
1 Choose View Desktops Set Debug Desktop.
2 Select a debug desktop layout.
3 Click OK.

189

190

Setting Component Properties
After you place your components on your Designer, set their properties using the Object Inspector. By setting a
component’s properties, you can change the way a component appears and behaves in your application. Because
properties appear during designtime, you have more control over a component’s properties and can easily modify
them without having to write additional code.

To set component properties
1 On the Object Inspector, click the Properties tab.
2 Set the component properties by entering values in the text box or through an editor.

Boolean properties like True and False can be toggled.

191

192

Setting Dynamic Properties
Many of the .NET Framework objects support dynamic properties. Dynamic properties provide a way to change
property values without recompiling an application. The dynamic properties and their values are stored in a
configuration file, along with the application's executable file. Changing a property value in the configuration file
causes the change to take effect the next time the applications runs. Dynamic properties are useful for changing an
application after it has been deployed.

To set a dynamic property in the Object Inspector
1 In a form on the Design tab, click the object for which you want to set dynamic properties.
2 In the Object Inspector, expand (DynamicProperties) and click (Advanced). If the object does not support

dynamic properties, (DynamicProperties) is not displayed.

Tip: If the Object Inspector is arranged by category, (DynamicProperties) is displayed under
Configurations.

3 Click the ellipsis (...) button next to (Advanced) to display the Dynamic Properties dialog box.
This dialog lists all of the properties that can be stored in the configuration file.

4 Select the properties you want to store in the configuration file.
5 Optionally, you can override the default key name listed in the Key mapping field.
6 Click OK.

The dynamic properties are marked with an icon in the Object Inspector.

Developer Studio 2006 creates an XML file named app.config (for a Windows application) or Web.config (for a
Web application) in the project directory. This file lists the dynamic properties and their current values.

7 Compile the application.
Developer Studio 2006 creates a file named <projectname>.exe.config (for a Windows application) or
<projectname>.dll.config (for a Web application) in the same directory as the application's executable or DLL file.

To change a dynamic property value in the configuration file
1 In the directory that contains the application's executable or DLL file, locate the configuration file.
2 Open the file in a text editor.
3 Locate the add key= statement for the property to be changed and edit the value.
4 Save your changes and close the file.

The next time the application runs, the changed property value will be in effect.

193

194

Setting Project Options
You can manage application and compiler options for your project. Making changes to your project only affects the
current project. However, you can also save your selections as the default settings for new projects.

To change compiler options
1 Choose Project Options.

The Options dialog box appears.

2 Select Compiler and set your options to modify how you want your program to compile.
3 Click OK.

To change application options
1 Choose Project Options.

The Options dialog box appears.

2 Select Application and specify a title and extension for your application.
3 Click OK.

To change debugger options
1 Choose Project Options.

The Options dialog box appears.

2 Use the Debugger page to pass command-line parameters to your application, specify a host executable for
testing a DLL, or load an executable into the debugger.

3 Use the Environment Block page to indicate which environment variables are passed to your application while
you are debugging it.

4 Click OK.

195

196

Setting Properties and Events
Properties, methods, and events are attributes of a component.

To set object properties
1 On your form, click once on the object to select it.
2 In the Object Inspector, click the Properties tab.
3 Select the property that you want to change and either enter a value in the text box, select a value from the drop-

down list, or click the ellipsis (...) next to the text box to use the associated property editor, depending on which
update technique is available for the property.

To set an event handler
1 On your form, click once on the object to select it.
2 On the Object Inspector, click the Events tab.
3 If an event handler already exists, select it from the drop-down box. Otherwise, double-click the event to switch

to Code view.
4 Type the code you want to execute when the event occurs.

197

198

Setting The IDE To Mimic Delphi 7
Use this procedure to set the IDE to mimic Delphi 7 or C++Builder, where each pane is its own window.

To turn off the Embedded Designer layout
1 Choose Tools Options Environment Options VCL Designer.
2 Uncheck Embedded Designer.
3 Click OK.
4 Restart Developer Studio 2006 for the change to take effect.

199

200

Setting Tool Preferences
You can customize the appearance and behavior of many tools and features, such as the Object Inspector, Code
Editor, and integrated debugger.

To set tool preferences
1 Choose Tools Options.
2 Review the options in each tool category and customize the settings to suit your needs.
3 Click OK.

201

202

Using Design Guidelines with VCL Components
You can use VCL or VCL.NET (with Delphi or C++) to setup components that are "aware" of their relation to other
components on a form. You can set properties to specify the distance between controls, shortcuts, focus labels, tab
order, and maximum number of items (listboxes, menus).

To see and use the design guidelines:
1 Register an object type.
2 Indicate various points on or near a component's bounds that are "alignment" points. These "alignment" points

are vertical or horizontal lines that cut across a visual control's bounds.
3 Supply UI guideline information so that each component will adhere to rules such as distance between controls,

shortcuts, focus labels, tab order, maximum number of items (listboxes, menus),

Your new Error Reconcile Form will display four columns in the upper portion of the window, and six radio buttons
in the bottom portion of the window. The following table describes each of the columns.

Component Default Value when 'Use Design Guidelines' is Set

Alignment The names of the columns of the table in which an error has occurred.

Margins Bottom = 3, Left = 3, Right = 3, Right = 3, Top = 3

Padding The last update that was saved to the Server. (This represents what the row contains on the server.)

203

204

Using Online Help

To get assistance while you work, do one of the following:
1 To see a description of what any screen element does in any opened dialog box, press F1 or click Help.
2 To see a relevant help topic for a pane, view, Tool Palette icon or another element, press F1.
3 To open the Table of Contents for online help, choose Help Borland Help on the main menu to see the

Contents tab.
4 To search for specific topics and terms, use the Index tab.
5 If you have questions about Developer Studio 2006, visit Borland Technical Support at http://support.

borland.com.

To filter help information, do the following:
1 To filter out the unnecessary books and topics from the Table of Contents and Index, choose one of the following

filters in the Filtered by list box:

Developer Studio 2006 for .NET
Developer Studio 2006 for Win32
and so on

2 If a topic provides information that can be relevant to one or another Developer Studio 2006 feature set, you can
show or hide the desired contents within a topic using the filter button.

205

206

Using To-Do Lists
A to-do list records and displays tasks that need to be completed for a project.

To create a to-do list and add an item to it
1 Choose View To-Do List.
2 In the To-Do List dialog box, right-click and choose Add.
3 In the Add To-Do Item dialog box, enter a description of the task and adjust the other fields as necessary.
4 Click OK.

To add a to-do list item as a comment in code
1 In the Code Editor, position your cursor where you want to add the comment.
2 Right-click and choose Add To-Do List Item.
3 In the Add To-Do Item dialog box, select the item that you want to add.
4 Click OK.

The item is added as a comment to your code, beginning with the word TODO.

To mark a to-do list item as completed
1 Choose View To-Do List.
2 In the To-Do List dialog box, check the check box next to the item to indicate completion.

The item remains in the list, but the text is crossed out. If the item was added as a comment to code, the comment
is updated to indicate DONE instead of TODO.

To filter the items in a to-do list
1 Choose View To-Do List.
2 Right-click the To-Do List dialog box and choose Filter.
3 Choose either Categories, Owner, or Item types, depending on which you want to filter.
4 In the Filter To-Do List dialog box, uncheck the items that you want to hide in the to-do list.
5 Click OK.

The to-do list is redisplayed, with the filtered items hidden. The status bar at the bottom of the To-Do List dialog
box indicates how many items are hidden due to filtering.

To delete an item from a to-do list
1 Choose View To-Do List.
2 In the To-Do List dialog box, select the item to delete.
3 Right-click and choose Delete.

The item is removed from the to-do list. If the item was added as a comment to code, the comment is also
removed.

207

208

Writing Event Handlers
Your source code usually responds to events that might occur to a component at runtime, such as a user clicking a
button or choosing a menu command. The code that responds to an occurrence is called an event handler. The
event handler code can modify property values and call methods.

To write an event handler
1 On your form, click the component for which you want to write an event handler.
2 To create the default event for the component, double-click the component on the form.

To choose another event for the component, click the Events tab in the Object Inspector, locate the event, and
double-click its text box.

The Code Editor appears.

3 Type the code that will execute when the event occurs at runtime.

209

CaliberRM Procedures

210

Adding a Document Reference
Document references provide additional information for a requirement. You can add additional information as a text
reference for a requirement, or add a web reference for the requirement.

To add a document reference for a requirement
1 Select the requirement to add a reference to.
2 Click the References tab. The tab is displayed.
3 Click New Text or New Web, depending on what to create.
4 In the pane at the bottom of the tab, enter the information for the reference. To view a web reference, double-

click the web reference.
5 Click Save to save the changes or Cancel Changes to cancel the changes.
6 To remove a reference, select the reference and click Remove.

211

212

Adding a Table into a Requirement Description

To add a table to a requirement description
1 Select the requirement whose description in which to add a table.
2 Place your cursor where to insert the table and click Insert Image. The Open dialog box displays.
3 Indicate how many rows and columns to add.
4 Indicate the width and height, in pixels or as a percentage of the window.
5 Indicate how to align the table, the border width, the size of the cell padding (the amount of space between the

contents of a table cell and the inside edges of a table cell; adding extra padding can prevent tables, especially
large ones, from looking dense and crowded), and the size of the space between cells.

6 Click OK to add the table, or Cancel to cancel the addition.
To delete the table, place your cursor at a corner of the table until you get a cross-arrow icon, then right-click and
select Cut.

213

214

Adding an Image to a Requirement Description

To add an image to a requirement description
1 Select the requirement in which to add an image.
2 Place your cursor where to insert the image and click Insert Image. The Open dialog box displays.
3 Enter the name of the file or navigate to locate the pictureto insert.
4 When you have found the file, click Open. The image is inserted.
5 Click Save to save the change, or Cancel Save to cancel the change.

215

216

Assigning an Owner to a Requirement
The default Owner is the user who created the requirement. You may assign the requirement to someone else, but
you may not be able to modify it again after it is saved if you do not have security privileges to do so.

To edit requirement status
1 Select the requirement with the owner to change.
2 Click the Details tab. The tab displays.
3 From the Owner drop-down box, select an owner.
4 Click Save to save the changes, or Cancel Changesto cancel the changes.

217

218

Assigning Responsible Users
Users that are accountable for the completion of a requirement are assigned responsibility for that requirement.
Typically, several individuals are assigned to each requirement. For example, the business analyst who created the
requirement is assigned, as well as a developer, tester and manager. When requirements are changed, the users
assigned to them are notified in order to keep development on track.

To assign responsible users to a requirement
1 Select the requirement.
2 Click the Responsibilities tab. The tab displays project groups and member selection boxes.
3 Click the plus (+) or minus (-) sign to the left of a group/member name to expand or collapse a list. A gray check

box next to a group indicates that at least one member of that group has been selected.
4 To select all members of a group, select the check box to the left of that group. To select only certain members

of a group, select the check box to the left of each member you want to assign.
5 Click Save to save the changes, or Cancel Changesto cancel the changes.
6 To unassign a user, select the check box next to the user's name.

219

220

Choosing a CaliberRM Baseline

To choose a CaliberRM baseline
1 Click the Baseline drop-down arrow.
2 Select the baseline from the list.

221

222

Choosing a CaliberRM Project

To choose a CaliberRM project
1 Click the Project drop-down arrow.
2 Select a project from the list.

223

224

Creating a CaliberRM Requirement

To create a CaliberRM requirement
1 Click one of the following buttons to determine the placement of the new requirement:

Create Requirement: Creates a new requirement as a child of the currently selected requirement.
Insert Above: Creates a new requirement at the same hierarchical level and before the currently selected
requirement.
Insert Below: Creates a new requirement at the same hierarchical level and after the currently selected
requirement.

A new requirement is created in the tree.

2 On each tab, enter information about the requirement.
3 After you have entered all requirement information, click Save to save the requirement or Cancel Save to cancel

the creation.

225

226

Creating CaliberRM Traces
Changing an object, whether it is a requirement, a test step, or a section of source code, can potentially require
changes in other elements of the project. Requirement traceability is supported to allow you to see relationships
between requirements and other related development and testing information. Linking related objects together helps
to ensure that changes are implemented correctly at all levels.

To create a CaliberRM trace
1 Open the application to trace to or from a CaliberRM requirement.
2 Select View CaliberRM Requirements.
3 Log on to CaliberRM.
4 Select the requirement to trace to or from.
5 Click the file that contains the code to trace.
6 Click the Code tab.
7 Go to the line to trace.
8 Right-click and select Requirements Trace To or Trace From.

The trace appears on the Traceability tab for the requirement.

227

228

Deleting a CaliberRM Requirement

To delete a CaliberRM Requirement
1 Select the requirement to delete.
2 Click Delete Requirement

The Confirmation dialog box displays.

3 Click Yes to delete the requirement, or No to cancel the deletion.

Warning: You cannot recover a requirement once it is deleted.

229

230

Displaying Requirement Numbers
Each requirement within a project has two different numbers associated with it. One is the hierarchical number, which
is determined by the requirement’s placement within the project tree or hierarchy. The hierarchical number changes
as requirements are added, moved or deleted. The other number associated with each requirement is its unique
serial (or ID) number. The serial number generally does not change, regardless of the requirement’s position within
a requirement type, but it will change if you move a requirement to a different type. It is not reused if the requirement
is deleted. Serial numbers are composed of the requirement type tag and a number. For example, Business
Requirement types may have the tag “BR.” Serial numbers for Business Requirement types may have the “BR” tag
as a prefix for the serial number.

To display requirement numbers
1 To display the requirement hierarchical numbers, click Hierarchical Numbers. The hierarchical numbers appear

in the requirement list.
2 To display the requirement serial numbers, click Serial Numbers. The serial numbers appear in the requirement

list.

231

232

Editing a Requirement

To edit a requirement
1 Select the requirement to edit.
2 Click the tab that contains the information you want to edit.
3 Make the changes.
4 Click Save to save the changes, or Cancel Save to cancel the changes.

233

234

Editing a Requirement Description
You can edit the fonts and styles, add bullets and numbering, adjust the indentation, and choose a foreground color
for requirement descriptions.

To edit a requirement description
1 Select the requirement.
2 Select the text to change.
3 To change the font:

Select a font style in the Font Name box.
Select the font size in the Font Size box.
Select Bold to make the text bold.
Select Italics to make the text italic.
Select Underline to underline the text.

4 Click Left Justify, Center Justify or Right Justify to change the justification.
5 Click Numbered list or Bullets to add numbers or bullets to the text.
6 Click Foreground Color, then select a color to select a foreground color.
7 Click OK.
8 Click Save to save your changes, or Cancel Changes to cancel the changes.

235

236

Editing a Requirement Name

To edit a requirement name
1 Select the requirement.
2 Click the Details tab. The tab is displayed.
3 Type the new name or make changes to the name procedure in the Requirement Name field.
4 Click Save to save the changes, or Cancel Changesto cancel the changes.

237

238

Editing Requirement Priority

To edit requirement status
1 Select the requirement with the status to change.
2 Click the Details tab. The tab displays.
3 From the Priority drop-down box, select the priority.
4 Click Save to save the changes, or Cancel Changes to cancel the changes.

239

240

Editing Requirement Status

To edit requirement status
1 Select the requirement.
2 Click the Details tab. The tab displays.
3 From the Status drop-down box, select the status you want.
4 Click Save to save the changes, or Cancel Changesto cancel the changes.

241

242

Find a Requirement by ID

To search for a requirement
1 Click Find Requirement by ID.
2 Enter the ID number in the Find What field.
3 Click Find to search for the requirement or Cancel to cancel the search.

243

244

Launching CaliberRM Estimate Professional
CaliberRM Estimate Professional allows you to generate project planning estimates.

To launch CaliberRM Estimate Professional
1 Click CaliberRM Estimate Professional.
2 Check the check box if you want to transfer effort data from CaliberRM.
3 Select the appropriate option button for building a hierarchy.
4 Select the appropriate option button for naming tasks.
5 Click OK.
6 Select a project.
7 Click OK.

CaliberRM Estimate Professional is launched and calculates initial effort and schedule estimates for the entire
project, based on pre-defined calibration parameters.

245

246

Logging On To CaliberRM
Before you can view or update requirements in CaliberRM, you must log on to the server that contains the data for
your project.

To log on to CaliberRM
1 Select View CaliberRM Requirements.
2 Type the name of the server that hosts the project you are working on.
3 Type your user name and password for the server.
4 Click Logon.

To log off from CaliberRM, click Log Off.

To refresh CaliberRM server data, click Refresh.

Tip: You can also press F5 to refresh data.

247

248

Modifying CaliberRM Traceability Links
You can remove a CaliberRM traceability link, make a link suspect or go to a requirement.

To modify trace link information
1 Select a requirement.
2 Click the Traceability tab.
3 Right-click an object in the Traces From or Trace To window.

The following options appear in the pop-up menu.

Remove Traceability: Deletes the trace.
Make Suspect: Makes the link a suspect link. If a link is already suspect, this option is Clear Suspect.
Go To: Navigates to the Traceability tab of the requirement you have selected.

4 Select an option from the list.

249

250

Moving a Requirement

To move a requirement
1 Select the requirement you want to move.
2 Drag the requirement to a new location, or click Move Requirement Up or Move Requirement Down.

251

252

Posting a New Requirement Discussion Message
Project teams can provide feedback on requirements and projects through the Discussion feature. This collaborative
feature enables team members to enter and reply to comments to help define, refine and prioritize requirements.

To post a new requirement discussion message
1 Select the requirement to post a message to.
2 Click the Discussion tab. The tab displays.
3 Click Post New. The New Message dialog box displays.
4 Type a subject for the message.
5 Type the message text, then click Send. The message is posted and is displayed on the Discussion tab.

253

254

Refreshing Discussion Messages
Project teams can provide feedback on requirements and projects through the Discussion feature. This collaborative
feature enables team members to enter and reply to comments to help define, refine and prioritize requirements.

When you select a requirement's Discussion tab, its discussion list contains all current messages. However, if a
message is added while you are in the Discussion tab, you may not automatically receive that message.

To refresh a requirement discussion message
1 Select the requirement with the discussion to refresh.
2 Click the Discussion tab.
3 Click Refresh.

255

256

Replying to a Discussion Message
Project teams can provide feedback on requirements and projects through the Discussion feature. This collaborative
feature enables team members to enter and reply to comments to help define, refine and prioritize requirements.

To reply to a requirement discussion message
1 Select the requirement to post a reply to.
2 Click the Discussion tab. The tab displays.
3 Select the message to reply to.
4 Click Reply . The New Reply Message dialog box displays.
5 Type the message text.
6 Click Send.

The message is posted and is displayed on the Discussion tab.

257

258

Requirement History
A history record for each requirement is maintained. The history record assigns revision numbers and keeps a list
of changes for each revision. All changes made to a requirement, including changes to specific attributes, the
requirement description, status, priority and more are recorded in the requirement’s history.

To view the history of a requirement
1 Select the requirement and click the History tab.

The history record is made up of two parts: the Revisions list and the Changes list. The upper window contains
the Revisions list. Each entry in the revisions list contains the following fields:

Rev #: When a change is made, the revision number is automatically updated. The change may cause a major
or minor revision number change. An administrator determines this when attributes types are defined.
Date/time: The date and time the change was made.
Changed by: The userid or name of the person who made the change.
Comment: If a supporting comment is entered at the time the change is saved, it is displayed here.

2 Select a change in the list to see all details about a particular change. The bottom window displays a list of
changes for the revision selected in the upper window. Entries in the change list contain the following fields:

Attribute: the changed field
Changed from: the original data
Changed to: the new data

259

260

Requirement Validation
When you create a requirement, it is often helpful for testers to know how to verify that the requirement is implemented
properly. Therefore, you can enter in a validation procedure for each requirement if you want. The validation
procedure is “free form,” meaning the procedure can be any form you want, from a paragraph to a numbered list of
steps.

To define the requirement validation procedure
1 Select the requirement.
2 Click the Validation tab. The tab displays.
3 Type the validation procedure in the Validation Procedure field.
4 Click Save to save the changes, or Cancel Changes to cancel the changes.

261

262

Specifying Requirement Comment Format

To specify the format for requirement comments
1 Create an application or open an existing one.
2 Login to CaliberRM.
3 Select a requirement.
4 Click Requirement Commenting Format.
5 Select a format.
6 Click Save to save the changes, or Cancel Changes to cancel the changes

263

264

Updating Requirement Comments
If you have added a requirement comment to source code and another user updates that requirement, you can
update the comment in your code.

To update a requirement comment
1 Open the project containing requirement comments to update.
2 Click View CaliberRM Requirements.
3 Log on to CaliberRM.
4 Click on the file that contains the requirement comment.
5 Locate the requirement comment.
6 Place your cursor in the comment and right-click.
7 Select Requirements Update Requirement Comments.

The requirement information is updated.

265

266

Viewing a CaliberRM Project Description

To view a CaliberRM project description
1 In the Project list, select the project from the list.
2 Select the project in the requirements tree list.

The description displays in the Project Info window.

267

268

Viewing CaliberRM Custom Tabs
Custom tabs provide you a way to customize attributes and requirement information specific to your organization.

To view CaliberRM custom tabs
1 Select the requirement with the custom tab to view.
2 Select the custom tab.

The tab displays user-defined attributes for the requirement.

3 If necessary, make edits to the attributes.
4 Click Save save the changes, or Cancel Save to cancel the changes.

269

270

Viewing CaliberRM Requirement Type Information
You can view the name, tag and description of a CaliberRM requirement type and assigned custom tabs.

To view CaliberRM requirement type information
1 Select the desired Requirement Type in the requirements tree list.

The information is displayed.

2 Select the Custom Tabs tab to view assigned custom tabs and attributes assigned.

271

Compiling and Building Procedures

272

Building Packages
You can create packages in Developer Studio 2006 and include them in your projects.

To create a new package
1 File New Other to display the New Items object gallery.
2 Depending on your type of project, select either the Delphi Projects node, the Delphi for .NET Projects node,

or the C++Builder Projects node.
3 Double-click the Package icon.

This creates a new empty package and makes an entry for it in the Project Manager, along with two folders:
one marked Contains and one marked Requires.

Note: If you want to add required files to the package, you must add compiled packages (.dcpil, .dll)
to the Required folder. Add uncompiled code files (.pas, .cpp, .h) to the Contains folder.

4 Select the package name in the Project Manager.
5 Right-click to display the drop-down context menu and choose Add to display the Add dialog box.
6 Browse to locate the file or files you want to add.
7 Select one or more files, and click Open.
8 Click OK.

This adds the selected files to the package.

9 Choose Project Build <Package Name> to build the package.

To add a package to a project
1 Choose File New Other VCL Forms Application.
2 Select the project name in the Project Manager.
3 Right-click to display the drop-down context menu.
4 Choose Add.
5 Browse to locate a package file.
6 Select the file and click Open.
7 Click OK.

This adds the package to the project.

8 Choose Project Build <Project Name> to build the project.

To add a component package to the Tool Palette
1 Choose Components Installed .NET Components.
2 Click the .NET VCL Components tab.
3 Click Add.
4 Locate the package file you want to add to the Tool Palette.
5 Click Open.

This displays the available components from the package.

6 Click OK.

273

The components appear in the Tool Palette.

274

Finding References
The Find References refactoring feature helps you locate any connections between a file containing a symbol you
intend to rename and other files where that symbol also appears. A preview allows you to decide how you want the
refactoring to operate on specific targets or on the group of references as a whole.

To create a Find References list
1 Open a project.
2 Select an identifier in the Code Editor.
3 Choose Search Find References.

Note: You can also invoke Find References with the keyboard shortcut Shift+Ctrl+Enter.

4 Double-click a node in the window to go to that location in the Code Editor.

Note: If you continue to perform Find References operations without clearing the results, the new
results are appended in chronological order to the existing results in the window.

To clear results from the Find References window
1 Select a single reference or a node.

Note: No matter which you select, you get the same results. The entire node will be cleared.

2 Click the Refactor Delete icon at the top of the Find References window, to delete the selected item and
any item in that result set.

Note: Deleting items from the Find References window does not delete them from your actual code files or your
project.

To clear all results from the Find References window
1 Select any item in the window.
2 Click the Remove All References icon at the top of the Find References window.

This action clears all results from the window.

Note: Deleting items from the Find References window does not delete them from your actual code files or your
project.

275

276

Linking Delphi Units Into an Application
When compiling an application that references a Delphi-produced assembly, you can link the Delphi units for that
assembly into your application. The compiler will link in the binary DCUIL files, which will eliminate the need to
distribute the assembly with your application.

To link in a Delphi unit
1 With your application open in the IDE, choose Project Add Reference.
2 In the Add Reference dialog box, select a Delphi-produced assembly DLL from the list of .NET assemblies and

click the Add Reference button.
If the assembly you want to link to is not in the list, use the Browse button to find and select it.

3 Click OK.
The assembly is listed in the References node of the Project Manager.

4 In the Project Manager, right-click the assembly and choose Link in Delphi Units.
The menu command is disabled if the reference is not a Delphi-produced assembly.

In the Object Inspector, the corresponding Link Units property is set to True.

5 Choose Project Compile to compile the application.

277

278

Previewing and Applying Refactoring Operations
You can preview most refactoring operations in the Refactoring pane. Some refactorings occur immediately and
allow no preview. You might want to use the preview feature when you first begin to perform refactoring operations.
The preview shows you how the refactoring engine evaluates and applies refactoring operations to various types of
symbols and other refactoring targets. Previewing is set as the default behavior. When you preview a refactoring
operation, the engine gathers refactoring information in a background thread and fills in the information as the
information is collected.

If you apply a refactoring operation right away, it is performed in a background thread also, but a modal dialog blocks
the UI activity. If the refactoring engine encounters an error during the information gathering phase of the operation,
it will not apply the refactoring operation. The engine only applies the refactoring operation if it finds no errors during
the information gathering phase.

To preview a refactoring operation
1 Open a project.
2 Locate a symbol name in the Code Editor.
3 Select the symbol name.
4 Right-click to display the context menu.
5 Select Refactoring Rename 'symbol type' where symbol type is one of the valid types, such as method,

variable, or field.
This displays the Rename Symbol dialog.

6 Type a new name in the New name text box.
7 Select the View references before refactoring check box.
8 Click OK.

This displays a hierarchical list of the potentially refactored items, in chronological order as they were found. You
can jump to each item in the Code Editor.

Note: If you want to remove an item from the refactoring operation, select the item and click the Delete
Refactoring icon in the toolbar.

To jump to a refactoring target from the Message Pane
1 Expand any of the nodes that appear in the Message Pane.
2 Click on the target refactoring operation that you would like to view in the Code Editor.
3 Make any changes you would like in the Code Editor.

Warning: If you change an item in the Code Editor, the refactoring operation is prevented. You need
to reapply the refactoring after making changes to any files during the process, while the
Message Pane contains refactoring targets.

To apply refactorings
1 Open a project.
2 Locate a symbol name in the Code Editor.
3 Select the symbol name.

279

4 Right-click to display the context menu.
5 Select Refactoring Rename 'symbol type' where symbol type is one of the valid types, such as method,

variable, or field.
This displays the Rename Symbol dialog.

6 Type a new name in the New name text box.
7 Click OK.

As long as the View references before refactoring check box is not selected, the refactoring occurs
immediately.

Warning: If the refactoring engine encounters errors, the refactoring is not applied. The errors are
displayed in the Message Pane.

280

Renaming a Symbol
You can rename symbols if the original declaration symbol is in your project, or if a project depended upon by your
project contains the symbol and is in the same open project group. You can also rename error symbols.

To rename a symbol
1 Select the symbol name in the Code Editor.
2 Right-click to display the drop-down context menu.
3 Select Refactoring Rename 'symbol type' ' symbol name' where symbol type is either method, variable,

or field, and symbol name is the actual name of the selected symbol.
This displays the Rename dialog box.

4 Enter the new name in the New Name text box.
5 If you want to preview the changes to your project files, select the View References Before Refactoring check

box.

Note: The menu commands are context-sensitive. If you select a method, the command will read
Rename Method method name where method name is the actual name of the method you
have selected. This context-sensitivity holds true for all other object types, as well.

281

282

Setting Project Options
You can manage application and compiler options for your project. Making changes to your project only affects the
current project. However, you can also save your selections as the default settings for new projects.

To change compiler options
1 Choose Project Options.

The Options dialog box appears.

2 Select Compiler and set your options to modify how you want your program to compile.
3 Click OK.

To change application options
1 Choose Project Options.

The Options dialog box appears.

2 Select Application and specify a title and extension for your application.
3 Click OK.

To change debugger options
1 Choose Project Options.

The Options dialog box appears.

2 Use the Debugger page to pass command-line parameters to your application, specify a host executable for
testing a DLL, or load an executable into the debugger.

3 Use the Environment Block page to indicate which environment variables are passed to your application while
you are debugging it.

4 Click OK.

283

284

Using Build Configurations
Note: Build configurations are available in only the C++ personality.

To create and use a new build configuration
1 Create a new build configuration.
2 Change build configuration settings.
3 Activate the build configuration.

To create a new build configuration
1 Choose Project Build Configurations.

The Build Configurations dialog box appears.

2 Click New or select an existing build configuration and click Copy.
The New Build Configuration dialog box appears.

3 Enter the name and output directory and the new build configuration and click OK.

The new build configuration now appears in the Build Configurations drop-down list on the Project Options dialog
box.

To change build configuration settings
1 Choose Project Options.

The Project Options dialog box appears.

2 Choose the build configuration you want to work with from the Build Configurations drop-down list.
3 Select a page that provides options for a build tool, such as C++ Compiler.
4 Change settings on build tool options pages.

Note: If you are working with a build configuration other than All Configurations, some options might
appear in blue. Options appear in blue when they override the value set in All Configurations.

5 Click OK.

To activate a build configuration
1 Choose Project Build Configurations.

The Build Configurations dialog box appears.

2 Select the build configuration you want to activate and click Activate.
(active) is appended to the build configuration you selected.

3 Click OK.

The build configuration you activated will now be used when you build your project.

285

Debugging Procedures

286

Adding a Watch
Add a watch to track the values of program variables or expressions as you step over or trace into code. Each time
program execution pauses, the debugger evaluates all the items listed on the Active tab (or ActiveWatchGroup) in
the Watch List window and updates their displayed values.

You can organize watches into groups. When you add a watch group, a new tab is added to the Watch List window
and all watches associated with that group are shown on that tab. When a group tab is displayed, only the watches
in that group are evaluated during debugging. By grouping watches, you can also prevent out-of-scope expressions
from slowing down stepping.

To add a watch
1 Choose Run Add Watch to display the Watch Properties dialog box.
2 In the Expression field, enter the expression you want to watch.

An expression consists of constants, variables, and values contained in data structures, combined with language
operators. Almost anything you can use as the right side of an assignment operator can be used as a debugging
expression, except for variables not accessible from the current execution point.

3 Optionally, enter a name in the Group Name field to create the watch in a new group, or select a group name
from the list of previously defined groups.

4 Specify other options as needed (click Help on the Watch Properties dialog for a description of the options).
For example, you can request the debugger to evaluate the watch, even if doing so causes function calls, by
selecting the Allow Function Calls option.

5 Click OK.

The watch is added to the Watch List window.

287

288

Attaching to a Running Process
You can attach to a process that is running on your computer or on a remote computer. This is useful for debugging
a program that was not created with Developer Studio 2006.

To attach to a running process
1 Choose Run Attach to Process to display the Attach to Process dialog box.
2 Select either Borland .NET Debugger or Borland Win32 Debugger from the Debugger drop-down list,

depending on whether you want to attach to a .NET or Win32 process.
The list of Running Processes is refreshed to display the appropriate processes. For Win32 processes, you
can also check Show System Processes to include system processes in the list.

3 If the process is running on a remote computer, enter the name the computer in the Remote Machine field

Note: The remote debug server must be running on the remote computer.

4 Select a process from the list of Running Processes.
5 If you do not want the process to pause after you have attached to it, uncheck Pause After Attach.
6 Click Attach.

289

290

Debugging Remote Applications
Remote debugging lets you debug a Developer Studio 2006 application running on a remote computer. Once the
remote debug server is running on the remote computer, you can use Developer Studio 2006 to connect to that
computer and begin debugging.

Use the following set of procedures to debug an application running on a remote machine
1 Enable debugging on a machine without the full IDE installation. For details on this procedure, see

Installing a Debugger on a Remote Machine
2 Connect the local machine to the remote machine. For details on this procedure, see

Establishing a Connection for Remote Debugging
3 Generate program files to be copied to the remote machine. For details on this procedure, see

Preparing Files for Remote Debugging

291

292

Debugging VCL for .NET Source Code
To debug VCL for .NET source code, you must set certain project options that are not needed when debugging other
types of applications. The options are off by default and must be specifically set.

To enable options for debugging VCL for .NET source code
1 Open a VCL for .NET project.
2 Choose Project Options Compiler.
3 Check the Use debug DCUILs check box.
4 Click OK.
5 Select any Borland-produced assembly under References in the Project Manager.
6 Right-click the assembly and choose Link in Delphi Units.

This sets the Link Units property to True in the Object Inspector.

7 Repeat the previous two steps for each Borland assembly that you want to debug.

You are now able to debug VCL for .NET source code.

Tip: You can use this procedure to debug VCL for .NET assemblies produced by a third party if the debug DCUILs
for those assemblies are available.

293

294

Displaying Expanded Watch Information
When you debug an application, you can inspect the values of members within a watched object whose type is a
complex data object (such as a class, record, or array). These values display in the Watch List window when you
expand a watched object. Additionally, you can expand the elements within an object, displaying its sub-elements
and their values. You can expand all levels in the object. Members are grouped by ancestor.

To display expanded watch information in the Watch List window
1 Set a breakpoint on a valid source line within your project.

A breakpoint icon displays in the gutter next to the selected line.

2 Choose Run Add Watch to add a watch for an object in your application.
The watch displays in the Watch List window.

3 Choose Run Run to begin running the program. If needed, use the feature of the program that will cause it to
run to the breakpoint you set.
The IDE automatically switches to the Debug layout and the program stops at the breakpoint.

4 Click the + next to the name of the object that you added to the watch list.
The names and values of elements of the watched object display in the Watch List window.

295

296

Establishing a Connection for Remote Debugging
You must establish a TCP/IP connection between the local and remote machines in preparation for remote
debugging. This connection uses multiple ports that are chosen dynamically by Windows. The remote debug server
listens on one port, and a separate port is opened for each application that is being debugged. A firewall that only
allows connections to the listening port will prevent the remote debugger from working.

Note: If the remote machine uses the firewall included with Windows XP service pack 2, you will receive a message
asking whether Borland remote debugging service should be allowed. You must indicate that this is allowed.

Warning: The connection between Developer Studio 2006 and the remote debug server is a simple TCP/IP socket,
with neither encryption nor authentication support. Therefore, the remote debug server should not be run
on a computer that can be accessed over the network by untrusted clients.

To connect the local machine and the remote machine
1 Ensure that the remote debugger is installed on the remote machine.
2 Ensure that the executable files and symbol files (.tds. .rsm and .pdb) have been copied to the remote machine.
3 On the remote machine, start rmtdbg100.exe with the -listen argument.
rmtdbg100.exe -listen
This starts the remote debugger's listener and directs it to wait for a connection from your host machine's IDE.

4 On the local machine, choose Run Attach to Process.
This displays the Attach to Process dialog.

5 Specify the host name or TCP/IP address for the remote machine, then click Refresh.
A list of processes running on the remote machine is displayed. This verifies the connectivity between the local
and remote machines.

6 On the local machine, choose Run Load Process Remote.
This displays the Remote page of the Load Process dialog.

7 In the Remote path field, specify the full path for the directory on the remote machine into which you copied the
executable files and symbol files. The name of the executable must be included.
For example, if you are debugging a program1.exe, and you copy this to a directory named RemoteDebugFiles
\Program1 on the remote machine, specify

C:\RemoteDebugFiles\Program1\program1.exe.

8 In the Remote host field, specify the host name or TCP/IP address for the remote machine.
9 Click the Load button.

This connects the IDE on the local machine to the debugger on the remote machine.

Once this connection is established, you can use the IDE on the local machine to debug the application as it runs
on the remote machine.

Note: You cannot interact directly with the remote application through the remote debugger. For interactive
debugging, you can establish a remote desktop connection.

297

298

Finding References
The Find References refactoring feature helps you locate any connections between a file containing a symbol you
intend to rename and other files where that symbol also appears. A preview allows you to decide how you want the
refactoring to operate on specific targets or on the group of references as a whole.

To create a Find References list
1 Open a project.
2 Select an identifier in the Code Editor.
3 Choose Search Find References.

Note: You can also invoke Find References with the keyboard shortcut Shift+Ctrl+Enter.

4 Double-click a node in the window to go to that location in the Code Editor.

Note: If you continue to perform Find References operations without clearing the results, the new
results are appended in chronological order to the existing results in the window.

To clear results from the Find References window
1 Select a single reference or a node.

Note: No matter which you select, you get the same results. The entire node will be cleared.

2 Click the Refactor Delete icon at the top of the Find References window, to delete the selected item and
any item in that result set.

Note: Deleting items from the Find References window does not delete them from your actual code files or your
project.

To clear all results from the Find References window
1 Select any item in the window.
2 Click the Remove All References icon at the top of the Find References window.

This action clears all results from the window.

Note: Deleting items from the Find References window does not delete them from your actual code files or your
project.

299

300

Inspecting and Changing the Value of Data Elements
The Debug Inspector lets you inspect data elements by automatically formatting the type of data it is displaying.
The Debug Inspector is especially useful for examining compound data objects, such as arrays and linked lists.
Because you can inspect individual items displayed in the Debug Inspector, you can perform a walkthrough of
compound data objects by opening a Debug Inspector on a component of the compound object.

Note: The Debug Inspector is only available when the process is stopped in the debugger.

To inspect a data element directly from the Code Editor
1 In the Code Editor, place the insertion point on the data element that you want to inspect.
2 Right-click and choose Debug Inspect to display the Debug Inspector.

To inspect a data element from the menu
1 Choose Run Inspect to display the Inspect dialog box.
2 In the Inspect dialog box, type the expression you want to inspect.
3 Click OK.

The Debug Inspector is displayed.

Unlike watch expressions, the scope of a data element in the Debug Inspector is fixed at the time you evaluate it.
If you use the Inspect command from the Code Editor, the debugger uses the location of the insertion point to
determine the scope of the expression you are inspecting. This makes it possible to inspect data elements that are
not within the current scope of the execution point.

If you use Run Inspect, the data element is evaluated within the scope of the execution point.

If the execution point is in the scope of the expression you are inspecting, the value appears in the Debug
Inspector. If the execution point is outside the scope of the expression, the value is undefined and the Debug
Inspector becomes blank.

To view members of the object you are inspecting
1 Click the Data tab to view strings, boolean values, and other values for such things as variable name, expression,

and owner.

Tip: If you want to see the hexadecimal representation of a string, sub-inspect the string value in the
Debug Inspector.

2 Click the Methods tab to view all of the methods that are members of the object's class.

Tip: If you want to see the return type for any method, select the method and look at the status bar
of the Debug Inspector, where the syntax line for the method, including the return type is
displayed.

3 Click the Properties tab to view all of the properties for the active object.
4 Click any property name to see its type displayed in the status bar of the Debug Inspector.
5 Click the question mark (?) icon to see the actual value for that property at this point of the execution of the

application.

301

To change the value of a data element
1 In the Debug Inspector, select a data element that has an ellipsis (…) next to it.

The ellipsis indicates that the data element can be modified.

2 Click the ellipsis (…), or right-click the element and choose Change.
3 Type a new value, then click OK.

To inspect local variable values
1 While running in Debug mode, double-click any variable that appears in the Local Variables window.

This displays the Debug Inspector for that local variable.

302

Installing a Debugger on a Remote Machine
To debug a project on a machine that does not have Developer Studio 2006 installed, you must install the remote
debugger executable files. You can install these files either directly from the installation disk or by copying them from
a machine that has Developer Studio 2006 installed.

To install the remote debugger
1 Use the installation disk if it is available.
2 Use files from the machine that has the IDE installed if the installation disk is not available.

To install the remote debugger from the installation disk
1 Insert the installation disk into the remote machine.
2 Choose Install Remote Debugger.
3 Follow the instructions provided by the wizard.

To install the remote debugger if the installation disk is not available
1 Create a directory on the remote machine for the installation files.
2 Locate the following files on the local machine:

rmtdbg100.exe
bccide.dll
bordbk100.dll
bordbk100N.dll
comp32x.dll
dbkpro100.dll
DCC100.DLL
DCC100IL.DLL
Borland.dbkasp.dll

By default, all of these files are in C:\Program Files\Borland\BDS\4.0\Bin.

3 Copy the files from your local machine to the directory you created on the remote machine.
4 On the remote computer, register bordbk100.dll and bordbk100n.dllby running the regsvr32.exe registration

utility. For example, on Windows XP, enter C:\Windows\System32\regsvr32.exe bordbk100.dll at the command
prompt, then enter C:\Windows\System32\regsvr32.exe bordbk100n.dll.

5 If you are debugging an ASP.NET application, copy Borland.dbkasp.dll to the Install\GlobalAssemblyCache
directory on the remote machine.
If you are debugging an ASP.NET application, register the Borland.dbkasp.dll in the GlobalAssemblyCache using
the Microsoft .NET gacutil.exe utility. For example, on Windows XP with Microsoft .NET Framework SDK, enter
C:\Program Files\Microsoft.NET\SDK\v1.1\Bin\gacutil Borland.dbkasp.dll.

303

304

Modifying Variable Expressions
After you have evaluated a variable or data structure item, you can modify its value. When you modify a value through
the debugger, the modification is effective for the program run only. Changes you make through the Evaluate/
Modify dialog box do not affect your source code or the compiled program. To make your change permanent, you
must modify your source code in the Code Editor, then recompile your program.

To change the value of an expression
1 Choose Run Evaluate/Modify.
2 Specify the expression in the Expression edit box.

To modify a component property, specify the property name, for example, this.button1.Height or
Self.button1.Height.

3 Enter a value in the New Value edit box.
The expression must evaluate to a result that is assignment-compatible with the variable you want to assign it
to. Typically, if the assignment would cause a compile or runtime error, it is not a legal modification value.

4 Choose Modify.
The new value is displayed in the Result box.

You cannot undo a change to a variable after you choose Modify. To restore a value, however, you can enter
the previous value in the Expression box and modify the expression again.

Note: You can change individual variables or elements of arrays and data structures, but you cannot change the
contents of an entire array or data structure with a single expression.

Warning: Modifying values (especially pointer values and array indexes), can have undesirable effects because
you can overwrite other variables and data structures. Use caution whenever you modify program values
from the debugger.

305

306

Preparing a Project for Debugging
While most debugging options are set on by default, you can use the following procedures to review and change
those options. There are both general IDE options and project specific options. The project specific options vary
based on the active project type, for example, Delphi, Delphi .NET, or C#.

To activate the integrated debugger
1 Choose Tools Options Debugger Options.
2 Select the Integrated Debugging option.
3 Click OK.
4 Optionally review the settings on the other debugging pages.

To set debug options
1 Choose Project Options.
2 Review the debugging options on the various pages of the Project Options dialog box.

In particular, review the following pages: Compiler, Linker, Directories/Conditionals, Version Info, and
Debugger. Note that not all pages are available for all project types. For example, the Version Info page is only
displayed for Delphi Win32 projects.

3 Click OK.

307

308

Preparing Files for Remote Debugging
Executable files and symbol files must be copied to the remote machine after they are compiled. You must set the
correct options on your local machine in order to generate these files.

To prepare files for debugging on a remote machine
1 Open the project on your local machine.
2 Choose Project Options Linker and verify that the Include remote debug symbols option is checked.

This directs the compiler to generate a symbol file. The following extensions are used in symbol files (for Delphi
projects):

Language Debug symbol file extension

Delphi for Win32 .rsm

Delphi for .NET .rsm and .pdb

C++ .tds

C# .pdb

3 Compile the project on your local machine.
4 Copy the executable files and symbol files for the project to the remote machine.
5 Choose Run Load Process
6 Specify the directory into which you copied the symbol files in the Debug symbols search path field.
7 Click OK.

309

310

Previewing and Applying Refactoring Operations
You can preview most refactoring operations in the Refactoring pane. Some refactorings occur immediately and
allow no preview. You might want to use the preview feature when you first begin to perform refactoring operations.
The preview shows you how the refactoring engine evaluates and applies refactoring operations to various types of
symbols and other refactoring targets. Previewing is set as the default behavior. When you preview a refactoring
operation, the engine gathers refactoring information in a background thread and fills in the information as the
information is collected.

If you apply a refactoring operation right away, it is performed in a background thread also, but a modal dialog blocks
the UI activity. If the refactoring engine encounters an error during the information gathering phase of the operation,
it will not apply the refactoring operation. The engine only applies the refactoring operation if it finds no errors during
the information gathering phase.

To preview a refactoring operation
1 Open a project.
2 Locate a symbol name in the Code Editor.
3 Select the symbol name.
4 Right-click to display the context menu.
5 Select Refactoring Rename 'symbol type' where symbol type is one of the valid types, such as method,

variable, or field.
This displays the Rename Symbol dialog.

6 Type a new name in the New name text box.
7 Select the View references before refactoring check box.
8 Click OK.

This displays a hierarchical list of the potentially refactored items, in chronological order as they were found. You
can jump to each item in the Code Editor.

Note: If you want to remove an item from the refactoring operation, select the item and click the Delete
Refactoring icon in the toolbar.

To jump to a refactoring target from the Message Pane
1 Expand any of the nodes that appear in the Message Pane.
2 Click on the target refactoring operation that you would like to view in the Code Editor.
3 Make any changes you would like in the Code Editor.

Warning: If you change an item in the Code Editor, the refactoring operation is prevented. You need
to reapply the refactoring after making changes to any files during the process, while the
Message Pane contains refactoring targets.

To apply refactorings
1 Open a project.
2 Locate a symbol name in the Code Editor.
3 Select the symbol name.

311

4 Right-click to display the context menu.
5 Select Refactoring Rename 'symbol type' where symbol type is one of the valid types, such as method,

variable, or field.
This displays the Rename Symbol dialog.

6 Type a new name in the New name text box.
7 Click OK.

As long as the View references before refactoring check box is not selected, the refactoring occurs
immediately.

Warning: If the refactoring engine encounters errors, the refactoring is not applied. The errors are
displayed in the Message Pane.

312

Refactoring Code
Refactoring refers to the capability to make structural changes to your code without changing the functionality of the
code. Code can often be made more compact, more readable, and more efficient through selective refactoring
operations. Developer Studio 2006 provides a set of refactoring operations that can help you re-architect your code
in the most effective and efficient manner possible.

Refactoring operations are available for Delphi, C#, and C++. However, the refactorings for C# and C++ are limited
in number. You can access the refactoring commands from the Refactoring menu or from a right-click context menu
while in the Code Editor.

The Undo capability is available for all refactoring operations. Some operations can be undone using the
standard Undo (CTRL+Z) menu command, while the rename refactorings provide a specific Undo feature.

To rename a symbol
1 In the Code Editor, click the identifier to be renamed.

The identifier can be a method, variable, field, class, record, struct, interface, type, or parameter name.

2 From either the main menu or the Code Editor context menu, choose Refactor Rename.
3 In the Rename dialog box, enter the new identifier in the New Name field.
4 Leave View references before refactoring checked. If this option is unchecked, the refactoring is applied

immediately, without a preview of the changes.
5 Click OK.

The Refactorings dialog box displays every occurrence of the identifier to be changed.

6 Review the proposed changes in the Refactorings dialog box and use the Refactor button at the top of the
dialog box to perform all of the refactorings listed. Use the Remove Refactoring button to remove the selected
refactoring from the dialog box.

To declare a variable
1 In the Code Editor, click anywhere in a variable name that has not yet been declared.

Note: Any undeclared variable will be highlighted with a red wavy underline by Error Insight.

2 From either the main menu or the Code Editor context menu, choose Refactor Declare Variable.
If the variable has already been declared in the same scope, the command is not available.

3 Fill in the Declare New Variable dialog box as needed.
4 Click OK.

The variable declaration is added to the procedure, based on the values you entered in the Declare New
Variable dialog box.

To declare a field
1 In the Code Editor, click anywhere in a field name that has not yet been declared.
2 From either the main menu or the Code Editor context menu, choose Refactor Declare Field.
3 Fill in the Declare New Field dialog box as needed.
4 Click OK.

313

The new field declaration is added to the type section of your code, based on the values you entered in the Declare
New Field dialog box.

Note: If the new field conflicts with an existing field in the same scope, the Refactorings dialog box is displayed,
prompting you to correct the conflict before continuing.

To create a method from a code fragment
1 In the Code Editor, select the code fragment to be extracted to a method.
2 From either the main menu or the Code Editor context menu, choose Refactor Extract Method.

The Extract Method dialog box is displayed.

3 Enter a name for the method in the New method name field, or accept the suggested name.
4 Review the code in the Sample extracted code window.
5 Click OK.

Developer Studio 2006 moves the extracted code outside of the current method, determines the needed parameters,
generates local variables if necessary, determines the return type, and replaces the original code fragment with a
call to the new method.

To convert a string constant to a resource string (for the Delphi language only)
1 In the Code Editor, select the quoted string to be converted to a resource string, for example, in the following

code, insert the cursor into the constant Hello World:

procedure foo;
begin
 writeLn('Hello World');
end;

2 From either the main menu or the Code Editor context menu, choose Refactor Extract Resource String.

Note: You can also use the Shift+Ctrl+L keyboard shortcut.
The Extract Resource String dialog box is displayed.

3 Enter a name for the resource string or accept the suggested name (the Str, followed by the string).
4 Click OK.

The resourcestring keyword and the resource string are added to the implementation section of your code, and
the original string is replaced with the new resource string name.

resourcestring
 strHelloWorld = 'Hello World';

procedure foo;
begin
 writeLn(StrHelloWorld);
end.

To find and add a namespace or unit to the uses clause
1 In the Code Editor, click anywhere in a the variable name whose unit you want to add to the uses clause (Delphi)

or the namespace you want to add to the using clause (C#).

314

2 From either the main menu or the Code Editor context menu, choose Refactor Find Unit.
The Find Unit dialog box displays a selection list of applicable Delphi units.

Note: If you are coding in C#, the dialog box is called the Use Namespace dialog box.

3 Select the unit or namespace that you want to add to the uses or using clause in the current scope.

You can select as many units or namespaces as you want.

4 If you are coding in Delphi, choose where to insert the reference, either in the interface section or in the
implementation section.

Note: This choice is not relevant for C# and so the selection is not available when refactoring C# code.

5 Click OK.

The uses or using clause is updated with the selected units or namespaces.

315

316

Renaming a Symbol
You can rename symbols if the original declaration symbol is in your project, or if a project depended upon by your
project contains the symbol and is in the same open project group. You can also rename error symbols.

To rename a symbol
1 Select the symbol name in the Code Editor.
2 Right-click to display the drop-down context menu.
3 Select Refactoring Rename 'symbol type' ' symbol name' where symbol type is either method, variable,

or field, and symbol name is the actual name of the selected symbol.
This displays the Rename dialog box.

4 Enter the new name in the New Name text box.
5 If you want to preview the changes to your project files, select the View References Before Refactoring check

box.

Note: The menu commands are context-sensitive. If you select a method, the command will read
Rename Method method name where method name is the actual name of the method you
have selected. This context-sensitivity holds true for all other object types, as well.

317

318

Resolving Internal Errors
The error message, Internal Error: X1234 indicates that the compiler has encountered a condition, other than a
syntax error, that it cannot successfully process.

Tip: Internal error numbers indicate the file and line number in the compiler where the error occurred. This
information may help Technical Support services track down the problem. Be sure to record this information
and include it with your internal error description.

To resolve an internal error
1 If the error occurs immediately after you have modified code in the editor, go back to the place where you made

your changes and make a note of what was changed.
2 If you can undo or comment out the change and then recompile your application successfully, it is possible that

the programming construct that you introduced exposed a problem with the compiler. If so, follow the procedure
on reviewing code below.

If the problem still exists
1 Delete all of the .dcuil files associated with your project.
2 Close your project completely using File Close All.
3 Reopen your project.

This will clear the unit cache maintained in the IDE. Alternatively, you can close the IDE and restart.

4 Another option is to try and recompile your application using the Project Build option so that the compiler will
regenerate all of your dcuils.

5 If the error is still present, exit the IDE and try to compile your application using the command line version of the
compiler (dccil.exe) from a command prompt. This will remove the unit caching of the IDE from the picture and
could help to resolve the problem.

Review your code at the last modification point
1 If the problem still exists, go back to the place where you last made modifications to your file and review the code.

Typically, most internal errors can be reproduced with only a few lines of code and frequently the code involves
syntax or constructs that are rather unusual or unexpected. If this is the case, try modifying the code to do the
same thing in a different way. For example, if you are typecasting a value, try declaring a variable of the cast
type and do an assignment first.

begin
 if Integer(b) = 100 then...
end;
var
 a: Integer;
begin
 a := b;
 if a = 100 then...
end;

Here is an example of unexpected code that you can correct to resolve the error:

319

var
 A : Integer;
begin
 { Below the second cast of A to Int64 is unnecessary; removing it can avoid the Internal
Error. }
 if Int64(Int64(A))=0 then
end;

2 In this case, the second cast of A to an Int64 is unnecessary and removing it corrects the error. If the problem
seems to be a while...do loop, try using a for...do loop instead. Although this does not actually solve the
problem, it may help you to continue work on your application.
If this resolves the problem, it does not mean that either while loops or for loops are broken but more likely it
means that the manner in which you wrote your code was unexpected.

3 Once you have identified the problem, we ask that you create the smallest possible test case that still reproduces
the error and submit it to Borland.

Other techniques for resolving internal errors
1 If error seems to be on code contained within a while...do loop try using a for...do loop instead or vice

versa.
2 If it uses a nested function or procedure (a procedure/function contained within a procedure/function) try

unnesting them.
3 If it occurs on a typecast look for alternatives to typecasting like using a local variable of the type you need.
4 If the problem occurs within a with statement try removing the with statement altogether.
5 Try turning off compiler optimizations under Project Options Compiler.

When all else fails
1 Typically, there are many different ways to write any single piece of code. You can try and resolve an internal

error by changing the code. While this may not be the best solution, it may help you to continue to work on your
application. If this resolves the problem, it does not mean that either while loops or for loops are broken but
perhaps that the manner in which you have written your code was unexpected and therefore resulted in an error.

2 If you've tried your code on the latest release of the compiler and it is still reproducible, create the smallest possible
test case that will still reproduce the error and submit it to Borland. If it is not reproducible on the latest version,
it is likely that the problem has already been fixed.

Configuring the IDE to avoid internal errors
1 Create a single directory where all of your .dcpil files (precompiled package files) are placed.

For example, create a directory called C:\DCPIL and under Tools Environment Options select the Library tab
and set the DCPIL output directory to C:\DCPIL. This setting will help ensure that the .dcpil files the compiler
generates are always up-to-date. This is useful when you move a package from one directory to another. You
can create a .dcuil directory on a per-project basis using Project Options Directories/Conditionals
Unit output directory.

2 The key is to use the most up-to-date versions of your .dcuil and .dcpil files. Otherwise, you may encounter
internal errors that are easily avoidable.

320

Setting and Modifying Source Breakpoints
Breakpoints pause program execution at a certain location or when a particular condition occurs. You can set
breakpoints in the Code Editor before and during a debugging session. During a debugging session, any line of
code that is eligible for a breakpoint is marked with a blue dot in the left gutter of the Code Editor.

To set a breakpoint
1 Click the left gutter of the Code Editor next to the line of code where you want to pause execution.
2 Choose Run Add Breakpoint Source Breakpoint to display the Add Source Breakpoint dialog box.

Tip: To widen the Code Editor gutter, choose Tools Options Editor Options Display and
increase the Gutter width option.

3 Fill in the appropriate values and click OK.

The following icons are used to represent breakpoints in the Code Editor gutter.

Icon Description

The breakpoint is valid and enabled. The debugger is inactive.

The breakpoint is valid and enabled. The debugger is active.

The breakpoint is invalid and enabled. The breakpoint is set at an invalid location, such as a comment, a blank line, or
invalid declaration.

The breakpoint is valid and disabled. The debugger is inactive.

The breakpoint is valid and disabled. The debugger is active.

The breakpoint is invalid and disabled. The breakpoint is set at an invalid location.

Breakpoints are displayed in the Breakpoint List window.

To modify a breakpoint
1 Right-click the breakpoint icon and choose Breakpoint Properties.
2 Set the options in the Source Breakpoint Properties dialog box to modify the breakpoint.

For example, you can set a condition, create a breakpoint group, or determine what action occurs when execution
reaches the breakpoint.

3 Click Help for more information about the options on the dialog box.
4 Click OK.

To create a breakpoint group
1 Right-click the breakpoint icon and choose Breakpoint Properties.
2 Enter a group name in the Group field, or select a name from the drop down list box to add the breakpoint to an

existing group.
3 Click OK.

321

To enable or disable a breakpoint or breakpoint group
1 Right-click the breakpoint icon in the Code Editor or in the Breakpoint List window and choose Enabled to

toggle between enabled and disabled.
2 To enable or disable all breakpoints, right-click a blank area (not on a breakpoint) in the Breakpoint List window

and choose Enable All or Disable All.
3 To enable or disable a breakpoint group, right-click a blank area (not on a breakpoint) in the Breakpoint List

window and choose Enable Group or Disable Group.

Tip: Press the Ctrl key while clicking a breakpoint in the Code Editor to toggle between enabled and disabled.

Disabling a breakpoint or breakpoint group prevents it from pausing execution, but retains the breakpoint settings,
so that you can enable it later.

To create a conditional breakpoint
1 Choose Run Add Breakpoint Source Breakpoint to display the Add Source Breakpoint dialog box.
2 In the Line number field, enter the line in the Code Editor where you want set the breakpoint.

Tip: To pre-fill the Line number field, click a line in the Code Editor prior to opening the Add Source
Breakpoint dialog box.

3 In the Condition field, enter a conditional expression to be evaluated each time this breakpoint is encountered
during program execution.

4 Click OK.

Conditional breakpoints are useful when you want to see how your program behaves when a variable falls into a
certain range or what happens when a particular flag is set.

If the conditional expression evaluates to true (or not zero), the debugger pauses the program at the breakpoint
location. If the expression evaluates to false (or zero), the debugger does not stop at the breakpoint location.

To associate actions with a breakpoint
1 Choose Run Add Breakpoint Source Breakpoint to display the Add Source Breakpoint dialog box.

Tip: You can also right-click the breakpoint icon and choose Breakpoint Properties to display the
Source Breakpoint Properties dialog box.

2 Click Advanced to display additional options at the bottom the dialog box.
3 Check the actions that you want to occur when the breakpoint is encountered.

For example, you can specify an expression to be evaluated and write the result of the evaluation to the Event
Log.

4 Click OK.

To change the color of the text at the execution point and breakpoints
1 Choose Tools Options Editor Options Color.
2 In the code sample window, select the appropriate language tab.

For example, to change the breakpoint color for Developer Studio 2006 code, select the Developer Studio 2006
tab.

322

3 Scroll the code sample window to display the execution and breakpoint icons in the left gutter of the window.
4 Click anywhere on the execution point or breakpoint line that you want to change.
5 Use the Foreground Color and Background Color drop-down lists to change the colors associated with the

selected execution point or breakpoint.
6 Click OK.

323

324

Setting the Search Order for Debug Symbol Tables
Symbol tables are used internally during debugging. By default, Developer Studio 2006 locates and uses all symbol
tables available. However, you can control the order in which these symbol tables are searched. You can also limit
the search to specific symbol tables, which can speed up the debugging process.

The extensions for symbol table files vary by personality.

Delphi Win32, does not use external symbol files because the compiler holds the symbols tables in memory.
However, if you are debugging a remote application, you must generate symbol files with the .RSM extension.
Delphi.NET, VB.NET and C# symbol files use the .PDB extension.
C++ symbol files use the .TDS extension. However, if debug information is contained in the PE file, external
symbol tables are not used.

To set the order in which symbol tables are searched
1 Specify the general project search path.
2 Specify the global path for all projects.
3 Specify the language-specific path for the project.
4 Specify the language-specific global path.

To specify the general project search path
1 Choose Project Options Debugger Symbol Tables.
2 In the Debug symbols search path field, type or navigate to the path to the symbols table that you want the

debugger to use.

Note: If you want to limit the search to specific symbol tables, proceed to the next step. If you want
the debugger to search all paths, click OK to finish specifying the general project search path.

3 Uncheck the Load all symbols check box.
4 Click New.

The Add Symbol Table Search Path dialog displays.

5 Enter the name of the module you are debugging and one or more paths that contain the symbol table for that
module.
If you specify multiple paths, use a semicolon to separate them.

6 Click OK.
The Add Symbol Table Search Path dialog closes and the module and path you added are displayed in the
table.

Note: You can use this list to specify modules and paths that the debugger is to avoid searching by
using a blank path and checking the Load symbols for unspecified modules check box.

7 Click OK.

To specify the global path for all projects (for Delphi and C++ only)
1 Choose Tools Options Debugger Options Borland Debuggers.

325

2 In the Debug symbols search path field, type or navigate to the path to the symbols table that you want the
debugger to use.

3 Click OK.

To specify the language-specific path for the project
1 Choose Project Options Directories/Conditionals .

The Directories/Conditionals page contains four fields in which you can specify a path for Win32 and .NET
symbol tables. They are searched in the following order during debugging:

1 Search path
2 Package output directory
3 DCP output directory
4 Output directory

2 In each of these fields, type or navigate to the path to the symbols table that you want the debugger to use.
3 Click OK.

To specify global paths
1 Choose Tools Options Delphi Options Library (Win32 or NET).

Depending on the language, the Library page contains two or three fields in which you can specify a path for
Win32 and .NET symbol tables. They are searched in the following order during debugging:

1 Browsing path
2 DCP output directory (not used for C++)
3 Package output directory

2 In each of these fields, type or navigate to the path to the symbols table that you want the debugger to use.
3 Click OK.

326

Using Tooltips During Debugging
When you debug an application, you can display the values of members within a watched object whose type is a
complex data object (such as a class, record, or array). These values display in the code editor window when you
expand a watched object. Additionally, you can expand the elements within an object, displaying its sub-elements
and their values. You can expand all levels in the object. Members are grouped by ancestor.

To expand tooltips during debugging
1 Create a new VCL for Win32 application or open an existing application.
2 Choose Project Options Compiler and verify that the Use debug DCUs option is selected.
3 Choose Tools Options Editor Options Code Insight and verify that the Tooltip expression

evaluation option is selected.
4 Choose Run Step Over.

Tip: Alternatively, press F8.

This opens the Code page of the main source file for the project.

5 Choose Run Step Over again.
This initializes the project.

6 Move the cursor over the Application keyword.
This displays the tooltip in a single block.

7 Click the + next to the Application keyword within the tooltip.
The tooltip expands to a scrollable box that contains each child property and its value. The + appears next to
each property that has one or more child properties. You can expand any member to display properties and
values hierarchically within the tooltip.

327

Deploying Applications

328

Building Packages
You can create packages in Developer Studio 2006 and include them in your projects.

To create a new package
1 File New Other to display the New Items object gallery.
2 Depending on your type of project, select either the Delphi Projects node, the Delphi for .NET Projects node,

or the C++Builder Projects node.
3 Double-click the Package icon.

This creates a new empty package and makes an entry for it in the Project Manager, along with two folders:
one marked Contains and one marked Requires.

Note: If you want to add required files to the package, you must add compiled packages (.dcpil, .dll)
to the Required folder. Add uncompiled code files (.pas, .cpp, .h) to the Contains folder.

4 Select the package name in the Project Manager.
5 Right-click to display the drop-down context menu and choose Add to display the Add dialog box.
6 Browse to locate the file or files you want to add.
7 Select one or more files, and click Open.
8 Click OK.

This adds the selected files to the package.

9 Choose Project Build <Package Name> to build the package.

To add a package to a project
1 Choose File New Other VCL Forms Application.
2 Select the project name in the Project Manager.
3 Right-click to display the drop-down context menu.
4 Choose Add.
5 Browse to locate a package file.
6 Select the file and click Open.
7 Click OK.

This adds the package to the project.

8 Choose Project Build <Project Name> to build the project.

To add a component package to the Tool Palette
1 Choose Components Installed .NET Components.
2 Click the .NET VCL Components tab.
3 Click Add.
4 Locate the package file you want to add to the Tool Palette.
5 Click Open.

This displays the available components from the package.

6 Click OK.

329

The components appear in the Tool Palette.

330

Linking Delphi Units Into an Application
When compiling an application that references a Delphi-produced assembly, you can link the Delphi units for that
assembly into your application. The compiler will link in the binary DCUIL files, which will eliminate the need to
distribute the assembly with your application.

To link in a Delphi unit
1 With your application open in the IDE, choose Project Add Reference.
2 In the Add Reference dialog box, select a Delphi-produced assembly DLL from the list of .NET assemblies and

click the Add Reference button.
If the assembly you want to link to is not in the list, use the Browse button to find and select it.

3 Click OK.
The assembly is listed in the References node of the Project Manager.

4 In the Project Manager, right-click the assembly and choose Link in Delphi Units.
The menu command is disabled if the reference is not a Delphi-produced assembly.

In the Object Inspector, the corresponding Link Units property is set to True.

5 Choose Project Compile to compile the application.

331

Editing Code Procedures

332

Creating Code Templates
While using the Code Editor, you can add your favorite code constructs to the Template Manager to create a library
of the templates you use most often.

To add a Code Template using the Menu Commands:
1 While you are working in the Code Editor, choose File New Other Files and then select the Code

Template icon.
2 Fill in the template name, description, author, and code language attributes. Then type in the code for your

template between the <![CDATA[]]> tag and the </code> tag.

Note: The Name and Language fields in the template are required.

3 Choose the Save command from the File pull-down menu in the Code Editor (or type CTRL + S). Your new
template now appears in the IDE tree of the Template Manager window. It is saved, by default, in the Documents
and Settings\.....\X.X(release number)\code_templates directory.

To add a Code Template using the Template Manager window:
1 In the Code Editor, choose View Templates.
2 In the Template Manager window, click the New button. This will put an XML outline for a code template in the

Code Editor main window. You can also select code in the Editor before you click the New button.
3 Fill in the template name, description, author, and code language attributes. Then type in the code for your

template between the <![CDATA[]]> tag and the </code> tag.

Note: The Name and Language fields in the template are required.

4 Choose the Save command from the File pull-down menu in the Code Editor (or type CTRL + S). Your new
template now appears in the IDE tree of the Template Manager window. It is saved, by default, in the Documents
and Settings\.....\X.X(release number)\code_templates directory.

333

334

Customizing Code Editor
Borland Developer Studio 2006 lets you customize your Code Editor by using the available settings to modify
keystroke mappings, fonts, margin widths, colors, syntax highlighting, and indentation styles.

To customize general Code Editor options
1 Choose Tools Options.
2 Click Editor Options.
3 Select any of the customization options and make modifications.
4 Click OK to apply the modifications to the Code Editor.

335

336

Finding References
The Find References refactoring feature helps you locate any connections between a file containing a symbol you
intend to rename and other files where that symbol also appears. A preview allows you to decide how you want the
refactoring to operate on specific targets or on the group of references as a whole.

To create a Find References list
1 Open a project.
2 Select an identifier in the Code Editor.
3 Choose Search Find References.

Note: You can also invoke Find References with the keyboard shortcut Shift+Ctrl+Enter.

4 Double-click a node in the window to go to that location in the Code Editor.

Note: If you continue to perform Find References operations without clearing the results, the new
results are appended in chronological order to the existing results in the window.

To clear results from the Find References window
1 Select a single reference or a node.

Note: No matter which you select, you get the same results. The entire node will be cleared.

2 Click the Refactor Delete icon at the top of the Find References window, to delete the selected item and
any item in that result set.

Note: Deleting items from the Find References window does not delete them from your actual code files or your
project.

To clear all results from the Find References window
1 Select any item in the window.
2 Click the Remove All References icon at the top of the Find References window.

This action clears all results from the window.

Note: Deleting items from the Find References window does not delete them from your actual code files or your
project.

337

338

Previewing and Applying Refactoring Operations
You can preview most refactoring operations in the Refactoring pane. Some refactorings occur immediately and
allow no preview. You might want to use the preview feature when you first begin to perform refactoring operations.
The preview shows you how the refactoring engine evaluates and applies refactoring operations to various types of
symbols and other refactoring targets. Previewing is set as the default behavior. When you preview a refactoring
operation, the engine gathers refactoring information in a background thread and fills in the information as the
information is collected.

If you apply a refactoring operation right away, it is performed in a background thread also, but a modal dialog blocks
the UI activity. If the refactoring engine encounters an error during the information gathering phase of the operation,
it will not apply the refactoring operation. The engine only applies the refactoring operation if it finds no errors during
the information gathering phase.

To preview a refactoring operation
1 Open a project.
2 Locate a symbol name in the Code Editor.
3 Select the symbol name.
4 Right-click to display the context menu.
5 Select Refactoring Rename 'symbol type' where symbol type is one of the valid types, such as method,

variable, or field.
This displays the Rename Symbol dialog.

6 Type a new name in the New name text box.
7 Select the View references before refactoring check box.
8 Click OK.

This displays a hierarchical list of the potentially refactored items, in chronological order as they were found. You
can jump to each item in the Code Editor.

Note: If you want to remove an item from the refactoring operation, select the item and click the Delete
Refactoring icon in the toolbar.

To jump to a refactoring target from the Message Pane
1 Expand any of the nodes that appear in the Message Pane.
2 Click on the target refactoring operation that you would like to view in the Code Editor.
3 Make any changes you would like in the Code Editor.

Warning: If you change an item in the Code Editor, the refactoring operation is prevented. You need
to reapply the refactoring after making changes to any files during the process, while the
Message Pane contains refactoring targets.

To apply refactorings
1 Open a project.
2 Locate a symbol name in the Code Editor.
3 Select the symbol name.

339

4 Right-click to display the context menu.
5 Select Refactoring Rename 'symbol type' where symbol type is one of the valid types, such as method,

variable, or field.
This displays the Rename Symbol dialog.

6 Type a new name in the New name text box.
7 Click OK.

As long as the View references before refactoring check box is not selected, the refactoring occurs
immediately.

Warning: If the refactoring engine encounters errors, the refactoring is not applied. The errors are
displayed in the Message Pane.

340

Recording a Keystroke Macro
You can record a series of keystrokes as a macro while editing code. After you record a macro, you can play it back
to repeat the keystrokes during the current IDE session.

To record a macro
1 In the Code Editor, click the record macro button at the bottom of the code window to begin recording.
2 Type the keystrokes that you want to record.
3 When you have finished typing the keystroke sequence, click the stop recording button .
4 To record another macro, repeat the previous steps.

Note: Recording a macro replaces the previously recorded macro.

The macro is now available to use during the current IDE session.

To run a macro
1 In the Code Editor, position the cursor in the code where you want to run the macro.
2 Click the macro playback button to run the macro.

If the button is dimmed, no macro is available.

341

342

Refactoring Code
Refactoring refers to the capability to make structural changes to your code without changing the functionality of the
code. Code can often be made more compact, more readable, and more efficient through selective refactoring
operations. Developer Studio 2006 provides a set of refactoring operations that can help you re-architect your code
in the most effective and efficient manner possible.

Refactoring operations are available for Delphi, C#, and C++. However, the refactorings for C# and C++ are limited
in number. You can access the refactoring commands from the Refactoring menu or from a right-click context menu
while in the Code Editor.

The Undo capability is available for all refactoring operations. Some operations can be undone using the
standard Undo (CTRL+Z) menu command, while the rename refactorings provide a specific Undo feature.

To rename a symbol
1 In the Code Editor, click the identifier to be renamed.

The identifier can be a method, variable, field, class, record, struct, interface, type, or parameter name.

2 From either the main menu or the Code Editor context menu, choose Refactor Rename.
3 In the Rename dialog box, enter the new identifier in the New Name field.
4 Leave View references before refactoring checked. If this option is unchecked, the refactoring is applied

immediately, without a preview of the changes.
5 Click OK.

The Refactorings dialog box displays every occurrence of the identifier to be changed.

6 Review the proposed changes in the Refactorings dialog box and use the Refactor button at the top of the
dialog box to perform all of the refactorings listed. Use the Remove Refactoring button to remove the selected
refactoring from the dialog box.

To declare a variable
1 In the Code Editor, click anywhere in a variable name that has not yet been declared.

Note: Any undeclared variable will be highlighted with a red wavy underline by Error Insight.

2 From either the main menu or the Code Editor context menu, choose Refactor Declare Variable.
If the variable has already been declared in the same scope, the command is not available.

3 Fill in the Declare New Variable dialog box as needed.
4 Click OK.

The variable declaration is added to the procedure, based on the values you entered in the Declare New
Variable dialog box.

To declare a field
1 In the Code Editor, click anywhere in a field name that has not yet been declared.
2 From either the main menu or the Code Editor context menu, choose Refactor Declare Field.
3 Fill in the Declare New Field dialog box as needed.
4 Click OK.

343

The new field declaration is added to the type section of your code, based on the values you entered in the Declare
New Field dialog box.

Note: If the new field conflicts with an existing field in the same scope, the Refactorings dialog box is displayed,
prompting you to correct the conflict before continuing.

To create a method from a code fragment
1 In the Code Editor, select the code fragment to be extracted to a method.
2 From either the main menu or the Code Editor context menu, choose Refactor Extract Method.

The Extract Method dialog box is displayed.

3 Enter a name for the method in the New method name field, or accept the suggested name.
4 Review the code in the Sample extracted code window.
5 Click OK.

Developer Studio 2006 moves the extracted code outside of the current method, determines the needed parameters,
generates local variables if necessary, determines the return type, and replaces the original code fragment with a
call to the new method.

To convert a string constant to a resource string (for the Delphi language only)
1 In the Code Editor, select the quoted string to be converted to a resource string, for example, in the following

code, insert the cursor into the constant Hello World:

procedure foo;
begin
 writeLn('Hello World');
end;

2 From either the main menu or the Code Editor context menu, choose Refactor Extract Resource String.

Note: You can also use the Shift+Ctrl+L keyboard shortcut.
The Extract Resource String dialog box is displayed.

3 Enter a name for the resource string or accept the suggested name (the Str, followed by the string).
4 Click OK.

The resourcestring keyword and the resource string are added to the implementation section of your code, and
the original string is replaced with the new resource string name.

resourcestring
 strHelloWorld = 'Hello World';

procedure foo;
begin
 writeLn(StrHelloWorld);
end.

To find and add a namespace or unit to the uses clause
1 In the Code Editor, click anywhere in a the variable name whose unit you want to add to the uses clause (Delphi)

or the namespace you want to add to the using clause (C#).

344

2 From either the main menu or the Code Editor context menu, choose Refactor Find Unit.
The Find Unit dialog box displays a selection list of applicable Delphi units.

Note: If you are coding in C#, the dialog box is called the Use Namespace dialog box.

3 Select the unit or namespace that you want to add to the uses or using clause in the current scope.

You can select as many units or namespaces as you want.

4 If you are coding in Delphi, choose where to insert the reference, either in the interface section or in the
implementation section.

Note: This choice is not relevant for C# and so the selection is not available when refactoring C# code.

5 Click OK.

The uses or using clause is updated with the selected units or namespaces.

345

346

Renaming a Symbol
You can rename symbols if the original declaration symbol is in your project, or if a project depended upon by your
project contains the symbol and is in the same open project group. You can also rename error symbols.

To rename a symbol
1 Select the symbol name in the Code Editor.
2 Right-click to display the drop-down context menu.
3 Select Refactoring Rename 'symbol type' ' symbol name' where symbol type is either method, variable,

or field, and symbol name is the actual name of the selected symbol.
This displays the Rename dialog box.

4 Enter the new name in the New Name text box.
5 If you want to preview the changes to your project files, select the View References Before Refactoring check

box.

Note: The menu commands are context-sensitive. If you select a method, the command will read
Rename Method method name where method name is the actual name of the method you
have selected. This context-sensitivity holds true for all other object types, as well.

347

348

Using Bookmarks
You can mark a location in your code with a bookmark and jump directly to it from anywhere in the file. You can set
up to ten bookmarks. Bookmarks are preserved when you save the file and available when you reopen the file in
the Code Editor.

To set a bookmark
1 In the Code Editor, right-click the line of code where you want to set a bookmark.

The Code Editor context menu is displayed.

2 Choose Toggle Bookmarks Bookmark n, where n is a number from 0 to 9.

A bookmark icon is displayed in the left gutter of the Code Editor.

Tip: To set a bookmark using the shortcut keys, press CTRL+SHIFT and a number from 0 to 9.

To jump to a bookmark
1 In the Code Editor, right-click to display the context menu.
2 Choose GoTo Bookmarks Bookmark n, where n is a number from 0 to 9.

Tip: To jump to a bookmark using the shortcut keys, press CTRL and the number of the bookmark. For example,
CTRL+1 will jump you to the line of code set at bookmark 1.

To remove a bookmark
1 In the Code Editor, right-click to display the context menu.
2 Choose Toggle Bookmarks Bookmark n, where n is the number of the bookmark you want to remove.

The bookmark icon is removed from the left gutter of the Code Editor.

Tip: To remove all bookmarks from a file, choose Clear Bookmarks.

349

350

Using Class Completion
Class completion automates the definition of new classes by generating skeleton code for Delphi class members
that you declare.

To use class completion
1 In the Code Editor, declare a class in the interface section of a unit.

For example, you might enter the following:

type TMyButton = class(TButton)
 property Size: Integer;
 procedure DoSomething;
end;

2 Right-click on the class declaration and choose Complete Class at Cursor.

Tip: You can also invoke Class Completion by placing the cursor within the class declaration and
pressing CTRL+SHIFT+C.

Class Completion automatically adds the read and write specifiers to the declarations for any properties that require
them, and then adds skeleton code in the implementation section for each class method.

Tip: You can also use class completion to fill in interface declarations for methods that you define in the
implementation section.

After invoking class completion, the sample code above appears as follows:

type TMyButton = class(TButton)
 private
 FSize: Integer;
 procedure SetSize(const Value: Integer);
 published
 property Size: Integer read FSize write set_Size;
 procedure DoSomething;
end;

The following skeleton code is added to the implementation section:

{ TMyButton }

procedure TMyButton.DoSomething;
begin

end;

procedure TMyButton.SetSize(const Value: Integer);
begin
 FSize := Value;
end;

If your declarations and implementations are sorted alphabetically, class completion maintains their sorted order.
Otherwise, new routines are placed at the end of the implementation section of the unit and new declarations are
placed in private sections at the beginning of the class declaration.

351

Tip: The Finish Incomplete Properties option on the Tools Options Explorer page determines whether
class completion completes property declarations.

352

Using Code Folding
Code folding lets you collapse (hide) and expand (show) your code to make it easier to navigate and read. Developer
Studio 2006 generates code that contains code folding regions, but you can add your own regions as needed.

To collapse and expand code
1 In the Code Editor, click the minus (-) sign to the left of a code block to collapse the code.
2 Click the plus (+) sign to expand the code block.

Tip: To turn off code folding for the current edit session, press and hold Ctrl+Shift, and then K, and then O. To collapse
the nearest code block, press and hold Ctrl+Shift, and then K, and E. To expand the nearest code block, press
and hold Ctrl+Shift, and then K, and U. To expand all code, press and hold Ctrl+Shift and then press K, and A.

To add a code folding region
1 In the Code Editor, use the following preprocessor directives to surround a block of code:

[Delphi]
{$region 'Optional text that appears when the code block is folded'}
.
.
.
{$endregion}

[C#]
$region Optional text that appears when the code block is folded
.
.
.
$endregion

The region is marked with a minus (-) sign.

2 Click the minus sign to collapse the region.

353

354

Using Code Insight
Code Insight (sometimes referred to as Code Completion) is a set of features in the Code Editor and the HTML
Tag Editor that provide code completion, display code parameter lists, and show tool tips for expressions and
symbols.

The hint window list box filters out all interface method declarations that are referred to by property read or write
clauses. The list box displays only properties and stand-alone methods declared in the interface type.

To enable Code Insight
1 Choose Tools Options.

The Options dialog box appears.

2 Under Editor Options, select Code Insight.
3 Review and set the options and color preferences as needed.
4 Click OK.

To use Code completion
1 Choose Tools Options.

The Options dialog box appears.

2 Select Code Insight and enable Code Completion.
3 In the Code Editor, type an object or class name followed by a dot (.) to display a list of types, properties, methods,

and events, if you are using the Delphi or C# languages. Or, if you are using the C++ language, type the name
of a variable that represents a pointer to a class instance and then press Ctrl + Space to display the properties,
methods, and events available in the class.

4 Select the one appropriate for the class and press ENTER.

Code Insight Examples
1 If you're using the C++ language, type the name of a variable that represents a pointer to a class instance followed

by Ctrl + Space to display the properties, methods, and events available in the class. To invoke code completion
for a pointer type, the pointer must first be de-referenced.
For example, type: self.

2 If you're using the C++ language, type an arrow (->) for a pointer to an object. You can also type the name of
non-pointer types followed by a period (.) to see its list of inherited and virtual properties, methods, and events.
For example, type:

var test: TRect;
:
:
begin
test.

3 Type an assignment operator or the beginning of an assignment statement and press Ctrl + Space to display a list
of possible values for the variable.

4 Type a procedure, function, or method call and press Ctrl + Space to display the method and it's list of arguments.

355

5 Type a record to display a list of fields. (This is the same as Step 1, but uses records instead of classes.)

To use Code parameters
1 Choose Tools Options.

The Options dialog box appears.

2 Select Code Insight and enable the Code parameters check box.
3 In the Code Editor, type a method name and an open parenthesis to display the method arguments.

To use ToolTip expression evaluation
1 Choose Tools Options.

The Options dialog box appears.

2 Select Code Insight and check the ToolTip expression evaluation check box.
3 On the Code Editor, point the mouse cursor to any variable to display its current value while your program has

paused during debugging.

To use ToolTip symbol insight
1 Choose Tools Options.

The Options dialog box appears.

2 Select Code Insight and check the ToolTip symbol insight check box.
3 In the Code Editor, point the mouse cursor to any identifier to display its declaration while editing your code.

356

Using Code Templates
Code templates are reusable code statements that are accessible from the Code Editor. You can insert pre-defined
code segments into your code or add your own code snippets to the Template window.

Note: If a template has one or more jump points that are editable, it will automatically enter SyncEdit mode when
you are inserting it into your code. The jump points allow you to navigate between different areas of the
template, using the Tab key and SHIFT+Tab keys. Pressing ESC, Enter,(or pressing theTab key) from the last
jump point exits SyncEdit mode and puts the Code Editor back into regular edit mode. See the link at the
end of this topic for more information about SyncEdit.

To insert an existing Code Template into your code:
1 In the Code Editor, choose View Templates .
2 Expand the tree in the Template Manager for the language you are using, by clicking the plus sign in front of

language name.
3 Put the cursor at the place in your code where you want to add the template.
4 Choose the template you want to use in the Template Manager window.
5 Click the Execute button in the Template Manager window.

After you have inserted a template, you will probably need to fill in data, variables, methods, or other information
that is specific to your code. You can use the Code Completion feature with some of the templates, as described
below.

To use Code Completion with your template:
1 When you are at a jump point in your template, invoke the Code Completion window by pressing the Ctrl +

Space keys.

There are two ways to surround your code with a template. Use the procedure below that best fits your working style.

To Surround text with a template using the mouse:
1 Select the code in the Code Editor that you want the template to surround.
2 Click the right mouse button and choose the Surround command. This will give you a choice of 'surround-able'

templates.
3 Choose a template from the list.

To Surround text with a template using the Template Manager window:
1 In the Code Editor, choose View Templates.
2 Expand the tree in the Template Manager for the language you are using, by clicking the plus sign in front of

language name.
3 Choose the template you want to use in the Template Manager window.
4 Select the code in the Code Editor that you want the template to surround.
5 Click the Execute button in the Template Manager window.

357

358

Using Sync Edit
The Sync Edit feature lets you simultaneously edit indentical identifiers in selected code. For example, in a procedure
that contains three occurrences of label1, you can edit just the first occurrence and all the other occurrences will
change automatically.

To use Sync Edit
1 In the Code Editor, select a block of code that contains indentical identifiers.
2

Click the Sync Edit Mode icon that appears in the left gutter.
The first indentical identifier is highlighted and the others are outlined. The cursor is positioned on the first
identifier. If the code contains multiple sets of indentical identifiers, you can press TAB to move between each
identifier in the selection.

3 Begin editing the first identifier. As you change the identifier, the same change is performed automatically on the
other identifiers.
By default, the identifier is replaced. To change the identifier without replacing it, use the arrow keys before you
begin typing.

4 When you have finished changing the identifiers, you can exit Sync Edit mode by clicking the Sync Edit Mode
icon, or by pressing theEsc key.

Note: Sync Edit determines indentical identifiers by matching text strings; it does not analyze the identifiers. For
example, it does not distinguish between two like-named identifiers of different types in different scopes.
Therefore, Sync Edit is intended for small sections of code, such as a single method or a page of text. For
changing larger sections of code, consider using refactoring.

359

360

Using the History Manager
The History Manager lets you view and compare versions of a file, including multiple backup versions, saved local
changes, and the edit buffer of unsaved changes. If you are using the StarTeam integration with Developer Studio
2006, the History Manager also provides version information for your local source files.

For simplicity, the following procedures uses a small text file to introduce the functionality of the History Manager.
However, the History Manager is available for most files, including source code and HTML files.

To create and display file versions in the Contents page
1 Choose Tools Options Editor Options page and verify that the Create Backup Files option is checked.
2 Choose File New Other Other Files Text and click OK to display a blank text file in the Code Editor.
3 On line one of the file, type First line of text and save the file using any name and location.
4 On line two, type Second line of text and save the file.
5 On line three, type Third line of text and save the file.

There are now three versions of the file stored in the current directory in a hidden directory named __history.

6 Click the History tab, which is next to the Code tab.
The revision list at the top of the Contents tab displays three versions of the file. The first version is named ~1~,
the second is named ~2~, and the current version is named File. The source viewer at the bottom of the tab
displays the source for the selected version.

7 Select the different versions to display their source in the source viewer.
8 Click the Code tab to return to the Code Editor and on line four of the file, type Fourth line of text but

do not save the file.
Your change is stored in the editor buffer, but not saved to the file.

9 Review the following toolbar and icon descriptions and then use the next procedure to compare the file versions
that you just created.

Tip: To sort a column on any page of the History Manager, click the column heading.

The toolbar at the top of the History Manager contains the following buttons. Not all buttons are available on all
pages of the History Manager.

Button Description

Refresh revision info updates the revision list to include unsaved changes to the file.

Revert to previous revision makes the selected version the current version and is available on the Contents and
Info pages.

Reverting a prior version deletes any unsaved changes in the editor buffer.

Synchronize scrolling synchronizes scrolling in the Contents and Diff pages and the Code Editor. It matches the
line of text that contains the cursor with the nearest matching line of text in the other view. If there is no matching text
in that region of the file, it matches line numbers.

Go to next difference repositions the source on the Diff page to the next block of different code.

Go to previous difference repositions the source on the Diff page to the previous block of different code.

361

Follow text movement locates the same line in the source viewer when switching between views.

Tip: The toolbar button functions are also available of the right-click context menus of the History Manager pages.

The following icons are used to represent file versions in the revision lists.

Icon Description

The latest saved file version.

A backup file version.

The file version that is in the buffer and includes unsaved changes.

A file version that is stored in a version control repository.

A file version that you have checked out from a version control respository.

To compare file versions using the Diff page
1 Using the file that you created in the previous procedure, click the History tab.
2 Click the Diff tab at the bottom of the History Manager.

The Differences From and To panes at the top of the page shows the file versions that you can compare. At
the bottom of the page, source lines that were deleted are highlighted and marked with a minus sign (–). Lines
that were added are highlighted and marked with a plus sign (+). The highlighting colors depend on the Code
Editor colors.

3 Select the different file versions in both the Differences From pane and the To pane to see the results in source
viewer.

To make a prior file version the current version
1 Using the file from the previous procedures, click the Contents tab.
2

Right-click the ~2~ version of the file and select Revert, or click the toolbar button.
The Confirm dialog box indicates that reverting the file will lose any unsaved changes in the buffer.

3 Click Yes on Confirm dialog box.
The ~2~ version becomes the current version.

4 Return to the Code Editor and save the change.

Tip: The Revert command is also available on the Info page.

362

Localization Procedures

363

364

Adding Languages to a Project
You can add languages to your project by using the Satellite Assembly Wizard (.NET) or Resource DLL
Wizard (Win32). For each language that you add, the wizard generates a resource module project in your project
group. Each resource module project is given an extension based on the language’s locale.

To add a language to a project
1 Save and build your project.
2 With your project open in the IDE, choose Project Languages Add.

Alternatively, you can choose either File New Other Delphi for .NET Projects Satellite Assembly
Wizard for a .NET application or File New Other Delphi Projects Resource DLL Wizard for a Win32
application.

The wizard is displayed.

3 Make sure your project is selected in the list that appears in the dialog and then click Next.
4 Click the check box next to the languages that you want to add to your project and then click Next.
5 Review the directory path information that the wizard will use for the language’s resource modules.

Tip: To change the path, click the path, and then click the ellipsis (...) button to browse to a different
directory.

When you are satisfied with the path information, click Next.

6 If no satellite assembly for the language exists yet, Create New appears in the Update Mode column. Click Next.
If a resource module exists for the language in the directory you have specified, click in the Update Mode column
to select Update or Overwrite. Choose Update to keep and modify the existing satellite assembly project.
Choose Overwrite to create a new, empty project and to delete the old project and any translations it contains.
Click Next.

7 Review the summary of what the wizard will do and click Finish to create or update the resource modules for
the languages you have selected.
If the wizard asks to generate a .drcil (.NET) or .drc (Win32) file, click Yes. Any project that uses its own resource
strings (instead of previously compiled .rc files) needs a .drcil or .drc file.

If you are sure that no new files are needed (because your project does not introduce any resource strings of its
own), select Skip drcil files that are not found in the final dialog. This prevents the wizard from generating, or
asking to generate, files.

8 Click Yes to compile. Click OK to save your project group.

The generated projects contain untranslated copies of the resource strings in your original project. By default, the
Translation Manager is displayed, enabling you to begin translating the resource files.

To remove a language from a project
1 Open your project.
2 Select Project Languages Remove.
3 Check the languages that you want to remove and then click Next.
4 Click Finish.

The wizard removes the selected resource module from your project file, but does not delete the assemblies, the
source of the assemblies, or the directories in which they reside.

365

To restore a language to a project
1 Choose Project Languages Add to start the Satellite Assembly Wizard or Resource DLL Wizard.
2 Specify the directory path of the old resource module in the appropriate dialog.
3 In the Update Mode column, select Update.

If a resource module already exists for the language (in the directory you have specified), click in the Update
Mode column to select Update or Overwrite. Choose Update to keep and modify the existing assembly project.
Choose Overwrite to create a new, empty project and to delete the old project and any translations it contains.

4 Click Finish.

366

Editing Resource Files in the Translation Manager
After you have added languages to your project by using the Satellite Assembly Wizard or Resource DLL
Wizard, you can use the Translation Manager to view and edit your resource files. You can edit resource strings
directly, add translated strings to the Translation Repository, or get strings from the Translation Repository.

To edit resource strings
1 Open a project that includes languages.
2 Choose View Translation Manager Translation Editor.
3 Expand the project tree view to display the resource files that you want to edit.

Tip: Use the expand and collapse icons on the toolbar above the tree view.

4 Click the resource file you want to edit. The resource strings in the file are displayed in a grid in the right pane.
5 Click the field that you want to edit and type the new text directly in the grid, right-click the field and choose

Edit to edit the string in a dialog box, or click the Multi-line editor icon on the toolbar above the grid.
6 Optionally, enter a comment in the Comment field.
7 Optionally, set the translation status for the string by using the drop-down list in the Status field.
8 Click the Save Translation icon on the toolbar above the grid to update the resource file.

Tip: To display the original form or translated form, click the Show original form and Show translated form icons
in the toolbar above the grid.

To add a resource string to the Translation Repository
1 After editing a resource string in the Translation Manager, right-click the string that you want to add to the

Translation Repository.
2 Choose Repository Add strings to repository.

The resource string is added to the Translation Repository and can be viewed by closing the Translation Manager
and choosing Tools Translation Repository.

To get a resource string from the Translation Repository
1 In the Translation Manager, click the Workspace tab.
2 Expand the project tree view to display the resource files that you want to edit. The .resx files are listed under

the .NET Resources node.
The .nfm files are listed under the Forms node.

3 Click the resource file you want to edit.
The resource strings in the file are displayed in a grid in the right pane.

4 Right-click the field that you want to update and choose Repository Get strings from repository.
If the Translation Repository contains only one translation that matches the selected source string, it copies that
translation into the target language column. If the Repository contains more than one match for the selected
resource, its default behavior is to retrieve the first matching translation it finds.

367

Tip: To change this behavior, close the Transaction Manager and choose Tools Translation Tools
Options, click the Repository tab, and change the Multiple Find Action setting.

To open the resource file in a text editor
1 In the Translation Manager, click the Project tab.
2 Click the Files tab.
3 Double-click the resource file that you want to update.

The file opens in a text editor.

4 Change the file as needed and save it.

Tip: To change the text editor used by the Translation Manager, choose Tools Translation Tools
Options and change executable file specified in the External Editor field.

368

Setting the Active Language for a Project
After adding languages to your project with the Satellite Assembly Wizard or the Resource DLL Wizard, the base
language module is loaded when you choose Run Run. However, you can load a different language module by
setting the active language for the project.

To set the active language
1 In the IDE, recompile the resource module for the language you want to use.
2 Choose Project Languages Set Active.

The Set Active Language wizard displays a list of the languages in the project. The base language appears in
angle brackets at the top of the language list, for example, <English (United States)>.

3 Select a language from the list and click Finish.

369

370

Setting Up the External Translation Manager
If you do not have the Developer Studio 2006 IDE, you can use the External Translation Manager (ETM) to localize
an application. To use ETM, the developer must provide you with the required ETM files and project files.

Note: The Microsoft .NET Framework must be installed on your computer before you install ETM.

To set up and register the ETM files
1 Obtain the following ETM files from the developer.

By default these files are in either the Program Files\Borland\BDS\4.0\Bin or the Windows\system32 directory
on the developer's computer.

Note: If the developer chose to install only the Delphi for Win32 personality of Developer Studio 2006,
the files marked with an asterisk (*) will not available on the developer's computer.

Borland.Delphi.dll *
Borland.Globalization.dll *
Borland.ITE.dll *
Borland.ITE.FormDesigner.dll *
Borland.SCI.dll *
Borland.Vcl.dll *
Borland.VclRtl.dll *
Borland.VclX.dll *
designide90.bpl
dfm90.bpl
DotnetCoreAssemblies90.bpl *
etm.exe
IDECtrls90.bpl
itecore90.bpl
itedotnet90.bpl *
rc90.bpl
ResX90.bpl *
rtl90.bpl
vcl90.bpl
vclactnband90.bpl
vclide90.bpl
vclx90.bpl
xmlrtl90.bpl
nfmrtl90.bpl *

2 Create a directory, such as C:\ETM.
3 Copy the ETM files from the developer into the directory.
4 Open ETM.

From Windows Explorer, double-click etm.exe. From the command line, enter etm.exe.

5 Choose Tools Options Packages.
6 Click the Add button to display the Open dialog box.
7 Navigate to the directory that contains the ETM files.

Make sure that the Files of type filter is set to Designtime packages (dcl*.bpl).

8 Select all of the designtime packages in the directory and click OK.

371

The designtime packages are registered and you can now begin using ETM.

To set up the project to be translated
1 Obtain a zipped translation kit of the project to be translated from the developer. The kit should include the

following:

a satellite assembly or resource DLL for each language to be translated
the .bdsproj project file generated by using File Save as in the ETM project
the standalone translation repository (*.tmx) files

2 Unzip the translation kit into a directory of your choice.

372

Updating Resource Modules
When you add an additional resource, such as a button on a form, you must update your resource modules to reflect
your changes.

To update resource modules
1 Save and build your project. If you are using the ETM, reopen the saved project.
2 Update the resource modules:

In the IDE, choose Project Languages Update Localized Projects.
In ETM, choose Project Run Updaters (or press F9) or click the Files tab and then click the Run
Updaters button (F9).

3 After updating in the internal Translation Manager, rebuild each resource module project by opening the project
in the IDE and choosing Project Compile.

Tip: To simplify this process, you can maintain all the projects, along with the application itself, in a
single project group that can be compiled from the Project Manager by choosing Project
Compile All.

373

374

Using the External Translation Manager
Translators who do not have the Developer Studio 2006 IDE can use the External Translation Manager (ETM) instead
of the Translation Manager. The steps for using the ETM are similar to those for the internal Translation Manager.

Note: ETM must be set up and operational on your computer before using the following procedure. See in the link
listed at the end of this topic for details.

To run the ETM
1 To run the ETM from the command line, enter: etm.exe [files]

where [files] is the optional project group file or the project files.

2 To run the ETM from Windows Explorer, double-click etm.exe

To localize an application using the ETM
1 In ETM, chooseFile Open and open the project to be translated.
2 Click the Workspace tab.
3 Expand the project tree view to display the resource files that you want to edit.

Tip: Use the expand and collapse icons on the toolbar above the tree view.

4 Click the unit file that you want to edit. The resource strings in the file are displayed in a grid in the right pane.
5 Click the field that you want to edit and do one of the following:

type the new text directly in the grid
right-click the field and choose Edit to edit the string in a dialog box
click the Multi-line editor icon on the toolbar above the grid

6 Optionally, enter a comment in the Comment field.
7 Optionally, set the translation status for the string by using the drop-down list in the Status field.
8 Click the Save Translation icon on the toolbar above the grid to update the resource file.

After you have finished the translations, you can send the translated files back to the developer to add to the project.

To remove languages from your project
1 Open your project.
2 On the Languages tab, uncheck the check box for the language you want to remove.
3 Click the Files tab and click the Run Updaters button.

ETM removes the selected assemblies or DLLs from your project, but it does not delete them, the source of them,
or the directories they reside in.

375

Source Control Procedures

376

StarTeam: Adding Files
You can place new files in your project under version control by adding them to StarTeam. When you add a file,
StarTeam logs your comments for the file and sets version control properties, such as lock status and revision label.

To add a file to StarTeam
1 Create a new file or open an existing file in Developer Studio 2006.
2 Choose StarTeam Add.

Note: This menu item is available only for the active file. To add any file in the project to StarTeam,
right-click the file in the Project manager and select StarTeam Add.

If the file has not been saved, the Save File As dialog box displays. When the file has been saved, the Add
Files dialog box displays.

3 Enter a description of the changes made to the file in the Summary Comment text box.
This step is optional.

4 Click the Options tab at the bottom of the dialog box.
5 Choose a lock status for the file.

The lock status lets other team members know whether or not you are working on the files.

Unlocked indicates you do not intend to make changes.
Exclusive indicates you intend to make changes to these files, and prevents others from checking the files in.
Non-Exclusive indicates you are working on the files, and may possibly make changes, but other users can alter
and check in the files.

6 Choose additional options in this dialog box, if appropriate. For information about these options, see the StarTeam
Add File topic.

7 Click OK.
The new file is checked into the StarTeam repository. The status of the StarTeam operation is displayed in the
StarTeam Messages window.

Tip: To add all new source files in a Developer Studio 2006 project to StarTeam in a single operation, choose
StarTeam Commit Project.

377

378

StarTeam: Checking In Files
When you check in a file, StarTeam creates a new revision of that file. StarTeam archives either the entire file or
differences between it and the last revision.

To check in the active file
1 Choose StarTeam Check In.

The StarTeam Check In dialog box displays.

Tip: You can also right-click the file in the Project Manager and chooseStarTeam Check In.

2 Enter a description of the changes made to the file in the Comment text box.
This step is optional but recommended.

Tip: To enter a different comment for each file, click the Detail Comment button and enter a
description.

3 Click the Options tab at the bottom of the dialog box.
4 Choose the lock status.

By default, the lock status is set to Keep current, which indicates that the checkin will not change the lock status
of the file.

5 Choose additional options in this dialog box, if appropriate. For information about these options, see the StarTeam
Check In topic.

6 Click OK.
The file is checked into the StarTeam repository. The status of the operation is displayed in the StarTeam
Messages window.

Tip: If you have made changes to multiple files, you can check in all files by choosing StarTeam
Commit Project.

For some types of files, Developer Studio 2006 automatically generates an associated file in the same module to
store resources. For example, when you create a VCL Forms application for the .NET Framework, Developer Studio
2006 generates a unit file (such as Unit1.pas) and the associated form (Unit1.nfm) file in the same module. The
associated form file is maintained by Developer Studio 2006 as you make changes to the unit file. The StarTeam
integration treats these paired files specially. If you check in the unit file, StarTeam checks to see if the associated
form file has been modified. If the form file has been modified, StarTeam will automatically check in both files.

379

380

StarTeam: Checking Out Files
When you check out a file, StarTeam copies the requested revision of that file to the appropriate working folder. If
a copy of that file is already in the working folder, it is overwritten unless the working file appears to be more recent
than the checked in revision. In that case, you are asked to confirm the check out.

Note: If file renaming or deletions made in your local project conflict with changes made by another team member
in the StarTeam Client, you must manually resolve the pending renaming or deletion of files. Choose
StarTeam Pending Renames/Deletes to open the Pending Renames/Deletes dialog box and commit
any pending local file renames or deletions to the repository or cancel the pending operations.

To check out files
1 Choose StarTeam Check Out.

The StarTeam Check Out dialog box opens to the File List tab.

Tip: You can also right-click a file in the Project Manager and choose StarTeam Check Out.

2 Verify that the check boxes next to the files to be checked out are checked.
3 Click the Options tab at the bottom of the dialog box and choose additional options, if appropriate. For information

about these options, see the StarTeam Check Out topic.
This step is optional, but recommended.

4 Click OK.
5 If the check out operation encounters unsynchronized changes between files you already have on your working

system and those that you are checking out, resolve the conflicts that appear in the Synchronization dialog box.

381

382

StarTeam: Committing Projects
Committing a project saves any changes to the project and its source files, creating new revisions of these files in
the repository. If files have been added to or removed from your Developer Studio 2006 project, the project in the
repository will reflect these changes when you commit the project.

To commit a project
1 Choose StarTeam Commit Project.

If files have been added to the project, the StarTeam Commit Files dialog box displays. If you have not added
new files, the Check In dialog box displays. Proceed to the appropriate step.

2 Fill in the information in the Commit Files dialog box.
This step is optional, but recommended. For information about options in this dialog, see the StarTeam Add
Files topic.

3 Click OK to close the Commit Files dialog box.
4 Specify the checkin conditions in the Check In dialog box.

This step is optional, but recommended. For information about options in this dialog, see the StarTeam Check
In Files topic.

5 Click OK.
Any new files are added and any modified project source files are checked into the StarTeam repository. The
status of the StarTeam operation displays in the StarTeam Messageswindow.

383

384

StarTeam: Comparing File Revisions
There are several ways of comparing the contents of file revisions in the StarTeam integration for Developer Studio
2006. You can compare a working version of a file with its latest revision in the repository. You can compare any
two revisions of a file in the repository. You can also compare the contents of any two files in the repository. The
following procedures describe how to compare the contents of file revisions using the Visual Diff comparison utility.

Note: You can use the Alternate Applications dialog box to configure the integrated StarTeam Client to use a
different comparison utility. To open the Alternate Applications dialog box, choose StarTeam Options
 Personal Options and click Alternate Applications on the File page of the Personal Options dialog box.

To compare the active working file with the latest revision in the repository
1 Choose StarTeam Difference.

The file comparison application opens, displaying the tip revision of the file on the left and the working version
on the right. Differences between the files appear in a different color. Under some circumstances, the latest
checked in version may contain changes made by other team members.

2 To return to the IDE, choose File Exit.

Tip: The StarTeam file revisions show up in the History Manager. The History Manager lets you compare any
two revisions of a file, including any revision of the file in the StarTeam repository, locally saved revisions, and
the current content of the file in the editor buffer. File comparison in the History Manager does not rely on any
external file comparison tools.

To compare the contents of any two files in the repository
1 Choose StarTeam View Client to open the embedded client.

Tip: Alternatively, choose StarTeam Launch Client to open the standalone StarTeam Client.

2 Locate and select the two files you want to compare.
3 Right-click the selection, and choose Compare Contents from the context menu.

The file comparison application opens, displaying the tip revision of the file on the left and the working version
on the right. Differences between the files appear in a different color. Under some circumstances, the latest
checked in version may contain changes made by other team members.

4 To return to the IDE or the StarTeam Client, choose File Exit.

385

386

StarTeam: Configuring the Integration
In addition to the configuration tasks you can perform with the StarTeam Client, the StarTeam integration lets you
manage StarTeam associations for your Developer Studio 2006 projects, and set personal preferences for StarTeam
behavior. The StarTeam integration lets you manage the StarTeam connection properties for Developer Studio 2006
projects with the Manage Associations dialog box. Using the Manage Associations dialog box, you can view and
modify the StarTeam Server, project, and view associated with your Developer Studio 2006 project. You can also
disassociate your project from StarTeam.

If you have files in your project that are located on a path that isn't under the directory containing your Developer
Studio 2006 project, you must map this non-relative path to a folder in the StarTeam repository before you can check
in the files. The Manage Non-relative Working Paths dialog box lets you map non-relative paths to StarTeam
folders in the repository. This dialog box is opened from the Manage Associations dialog box by clicking the Manage
Non-relative Paths button.

StarTeam also lets you set personal options that suit your work style. The Personal Options dialog box can be
accessed from within the IDE. Personal options apply to the currently logged-on user on a given workstation.

Note: In order to map non-relative paths for your project, your Developer Studio 2006 project must not be stored
in the root folder of a view. You can use the StarTeam Associations dialog box to remap your local working
path to a child folder.

To manage StarTeam associations for your projects
1 Choose StarTeam Manage Associations.
2 If you need to alter a StarTeam association, click Edit.

This opens the StarTeam Associations dialog box.

3 Select a server from the StarTeam Server drop-down list. If the StarTeam Server you want to use does not
appear on the list, click the Servers button to add a new server or change the properties of an existing server.

Note: If you have not previously logged on, the Log On dialog box requests a user name and
password when you select a server.

4 Select the StarTeam project that contains your Developer Studio 2006 project from the Project Name drop-down
list.

5 Select an existing view from the View path drop-down list.

Note: A view defines the files and folders that can be accessed for a given project.

6 Click OK to close the StarTeam Associations dialog box.
The StarTeam Associations dialog box will list the StarTeam associations (server, project, view, and folder
path) and indicate that your project is associated.

To manage a non-relative path
1 Choose StarTeam Manage Associations.

This opens the StarTeam Associations dialog box.

2 Click the Manage Non-relative Paths button.
This opens the Manage Non-relative Working Paths dialog box, which lets you map the non-relative local
working path to a folder in the StarTeam repository.

387

Note: The Manage Non-relative Working Paths dialog box opens automatically when you attempt
to check in a file with a non-relative path.

3 Click Add, browse to and select the local (non-relative) folder that you want to map, and click OK.
The Select A StarTeam Folder dialog box appears. This dialog box lets you select a folder to which you can
map. If necessary, you can create child folders in the dialog box.

4 Select a StarTeam folder for storing files from a given non-relative path, and click OK.

Note: The folder for files in non-relative paths must be outside the root folder path for the Developer
Studio 2006 project. For example, if your local working path for your Developer Studio 2006
project is C:\Borland Studio Projects\Project1 and it maps to the folder path BDS\Project1 in
View1 in the repository, then any files in non-relative paths cannot be mapped to View1\BDS
\Project1 or its child folders. Therefore, if you add a file, logo.bmp that is stored locally in C:
\images, you cannot map the working path to BDS\Project1\images or any other folder beneath
BDS\Project1, but you can map it to BDS\images.

5 Click Close to close the Manage Non-relative Working Paths dialog box.
6 Click Close to close the StarTeam Associations dialog box.

Once you have mapped the non-relative path, files that are part of your project and located in this local working
path can be checked in to StarTeam.

To modify personal options
1 Open a project that is under StarTeam control.
2 Choose StarTeam Personal Options.

The Personal Options dialog box appears. The StarTeam Personal Options dialog box contains the following
pages:

Workspace: lets you specify confirmation requirements for version control operations, display options, and other
parameters that apply to the behavior and appearance of StarTeam item in the workspace.
StarTeamMPX Server: lets you enable support for StarTeamMPX Server for the active project and subsequently
opened projects.
File: lets you set checkout options, locking options, merging options, end-of-line options, default file status
repository settings, and alternate applications for editing, merging, or comparing files.
Change Request: lets you set system tray notification parameters and locking options for change requests.
Requirement: lets you set system tray notification parameters and locking options for requirements.
Task: lets you set system tray notification parameters and locking options for tasks.
Topic: lets you set system tray notification parameters and locking options for topics.

The StarTeam Personal Options dialog box can also be opened in the StarTeam client. Refer to the StarTeam
User's Guide for additional information on setting personal options.

Note: StarTeamMPX Server is a part of StarTeam Enterprise Advantage, but it can be purchased
separately with StarTeam Standard and StarTeam Enterprise. For more information, refer to
the StarTeamMPX Server Administrator’s Guide.

3 After you have set your personal options, click OK to close the dialog box.

388

StarTeam: Editing the Active Process Item
Selecting an active process item is a convenience that can save you time as you add files or check them in later.
The active process item becomes the default selection for a process item in the Add Files and Check In dialog
boxes. Within Developer Studio 2006, you can set a process item as the active process item, using the embedded
client or from within the standalone StarTeam Client.

To set the active process item
1 Choose StarTeam View Client to open the embedded client or choose StarTeam Launch Client to open

the standalone StarTeam Client.
The steps for setting the active process item are the same for the embedded client and the standalone client.

2 In the upper pane of the project view window, select the process item (change request, requirement, or task) you
want to set as the active process item.

3 Right-click the process item, and choose Set Active Process Item from the context menu.

Note: Setting a second active process item clears the first. There is also a Clear Active Process Item command on
the Change Request, Requirement, and Task menus, but you will probably never use it. You do not have to
use the active process item while adding files or checking them in. The active process item becomes the
default selection for a process item, but you can select another appropriate item.

To edit the active process item
1 Choose StarTeam Active Process Item
2 Alternatively, locate and double-click the active process item in either the embedded client or the standalone

client.

Note: Depending on how your team has set up StarTeam, you may see a different dialog box called an alternate
property editor (APE). APEs are created with StarTeam Extensions. Refer to the StarTeam Extensions User's
Guide for more information about APEs and workflow processes.

389

390

StarTeam: Finding Files in the Repository
The StarTeam integration includes a Find command to help you quickly locate files in the StarTeam repository.

To find the active working file
1 Choose StarTeam Find.

This opens the embedded StarTeam Client, and highlights the file that is active in the Code Editor.

2 Alternatively, right-click a file in the Project Manager, and choose StarTeam Find.
This opens the embedded StarTeam Client, and highlights the selected file.

391

392

StarTeam: Launching the Client
The StarTeam integration for Developer Studio 2006 includes a StarTeam Client for the .NET Framework. Although
most of the features and information provided by the client are available from within the IDE, you can launch the
client (StarTeam Launch Client) and use it as a standalone application. The standalone client provides some
additional capability for managing StarTeam projects and views, and administering user accounts and servers.

To launch and use the StarTeam Client
1 Choose StarTeam Launch Client.

The client opens the StarTeam project associated with the active Developer Studio 2006 project, and selects the
project's root folder.

2 Perform source code control operations or administrative tasks as needed.
The StarTeam Client can be used even after the IDE has been closed.

393

394

StarTeam: Locking and Unlocking Files
File locking is a way to inform other developers that you are revising a file (exclusive lock) or thinking about revising
it (non-exclusive lock). File locking can be specified when files are checked in and out, and when they are added.
The following procedure describes how to use the StarTeam menu on the menu bar to lock the active file. Files can
also be locked and unlocked using the StarTeam context menu in the Project Manager.

To lock or unlock the active working file
1 Choose StarTeam Lock/Unlock.

The Set My Lock Status dialog box appears.

2 Select a lock status option:

Unlocked—removes your exclusive or non-exclusive lock on the file
Exclusive—prevents others from creating a new revision of this file except you (until you release the lock or
someone breaks your lock)
Non-exclusive—indicates that you are working on the file and may possibly make changes to it

Depending on your privileges regarding a selected file, you may be able to break another team member's lock
on it.

3 To break a lock, check the Break Existing Lock check box.
4 Click OK.

Note: Depending on your personal options (StarTeam Personal Options), you may have unlocked files that
are marked read-only. This prevents you from inadvertently making changes to files that you have not locked.

395

396

StarTeam: Merging Source Files
The StarTeam integration for Developer Studio 2006 helps you avoid merge conflicts by requiring you to update
when necessary before checking in changes. If merge conflicts do occur when you attempt to merge a file, StarTeam
and Developer Studio 2006 alert you to the conflict, and provide a means to reconcile the merge conflicts.

If you attempt to check in or checkout a file that is not based on the tip revision of the file, StarTeam asks if you want
to merge it with the tip revision. The following procedure describes how to use the Visual Merge utility to merge file
contents. File merging is not supported for the checkin operation, so you must check out a file to merge it with your
working file. When the merge is completed the resulting modified file revision may be checked in.

By default, StarTeam opens the merge utility only when there are conflicts between the two revisions of the file. You
can change this behavior to open the merge utility for all merge conditions on the File page of the Personal
Options dialog box (StarTeam Personal Options).

Note: The StarTeam Client provided with Developer Studio 2006 does not include the Visual Merge utilitiy for
merging revisions of files. This utility is available with the StarTeam Windows Client, and if you have the
StarTeam Windows Client installed, the StarTeam integration will use this utility by default. Alternatively, you
can use the Alternate Applications dialog box to configure the integrated StarTeam Client to use a different
merge utility. To open the Alternate Applications dialog box, choose StarTeam Personal Options and
box, and click the Alternate Applications button on the File page of the Personal Options dialog box.

To merge a file on checkout
1 Choose StarTeam Check Out.

The StarTeam Check Out dialog box appears.

2 Specify any checkout conditions and advanced options, and click OK.
If a merge is required, StarTeam displays a dialog box asking if you want to merge the file now.

3 Click Yes to start the merge.
The merge application opens.

4 Resolve all conflicts and apply or remove any other changes as needed.
Visual Merge lets you quickly search for and resolve conflicts and differences between the two file revisions.

5 When you have resolved all conflicts, choose File Exit to close Visual Merge and return to the IDE.
StarTeam tells you whether you have resolved all conflicts and asks if you wish to save the file.

6 click Yes to replace your working file with the merged file.
The file status will change from Merge to Modified. The file is now ready to check in to StarTeam.

397

398

StarTeam: Migrating Projects from the SCC Interface to the
StarTeam Integration
If you have projects that you manage with the StarTeam SCC interface, you can associate these files with the
StarTeam integration to take better advantage of the powerful features and functions provided by the StarTeam
Client. This procedure will disassociate the project from the StarTeam SCC interface. The StarTeam revision history
is retained for your project files.

Tip: You need to know the name of the StarTeam Server, project, and folder in which your project is stored to
complete the migration to the StarTeam interface. You can get this information quickly by opening the project
and launching the StarTeam Client through the SCC interface (Tools Team Run Scc Application). The
title bar at the top of the StarTeam main window shows the server configuration that contains the currently
displayed project view along with the the StarTeam project name and the view name.

To associate an SCC controlled project with the StarTeam integration
1 Open the project in Developer Studio 2006.
2 Choose StarTeam Manage Associations.

This opens the Manage Associations dialog box, which lets you associate your Developer Studio 2006 project
with a StarTeam Server, project, and folder.

3 Click the Edit button to re-establish a connection to the StarTeam Server.
This opens the StarTeam Associations dialog box.

4 In the StarTeam Associations dialog box, fill in the following fields:

Field Description

StarTeam Server Specifies the StarTeam Server where the project is stored. Select a server from the
StarTeam Server drop-down list. If the StarTeam Server you want to use does not appear
on the list, click the Servers button to add a new server or change the properties of an
existing server. If you have not previously logged on, the Log On dialog box requests a
user name and password when you select a server.

Project Name The name of the StarTeam Project in the repository. Select the StarTeam project that
contains your Developer Studio 2006 project from the Project Name drop-down list.

View Path Each StarTeam project has at least one view, and may have multiple views. A view defines
the files and folders that can be accessed for a given project. Select an existing view from
the View Path drop-down list.

Folder Path By default, the folder path is set to the project's root folder. To choose a different folder,
click the ellipsis (…) button, and select the directory.

Logged In User Name This is the user name used to log on to the selected StarTeam Server. This field is not
editable.

Local Working Path This is the path to the local directory containing your project. This field should not require
editing.

5 After you have made your selections, click OK to close the StarTeam Associations dialog box.
The Manage Associations dialog box will list the StarTeam associations (server, project, view, and folder path)
and indicate that your project is associated.

6 Click Close to close the Manage Associations dialog box.

399

The project is automatically committed. StarTeam changes the file extension for the StarTeam SCC interface
configuration file from <projectfilename>.cdp to <projectfilename>.cdp.saved to disassociate the project from the
SCC interface.

The project is now associated with the StarTeam integration.

400

StarTeam: Placing Projects and Project Groups
StarTeam integration in Developer Studio 2006 lets you place projects and project groups into StarTeam. This places
the source files from the project into the StarTeam repository and establishes a tip revision for the files. Placing a
project into a StarTeam enables version control of that project and makes the project accessible to other team
members.

To place a project into StarTeam
1 Choose StarTeam Place Project or StarTeam Place Group.

Note: If you have not saved your project or project group, you are required to save it before continuing.
When your project or project group is saved locally, the StarTeam Association dialog box
displays. This dialog box lets you specify the details for placing your project or project group
into StarTeam.

2 Select a StarTeam server from the list in the StarTeam Association dialog box.
The project will be stored on the selected server.

Note: If the server you want to use does not appear on the list, click the Servers button to add a new
server or change the properties of an existing server. When you select a server, the Log On
dialog box requests a user name and password. See your StarTeam administrator for your
server logon name.

3 Select a StarTeam project from the Project Name list, or click New to create a new StarTeam project.

Note: When you click New, the New Project dialog box displays. Use this dialog box to specify a
project name and the default working folder. The StarTeam project name must be unique. The
directory specified in the Default Working Folder field is used as the default target directory
when the project is pulled from StarTeam.

4 Select a view from the View path list.
A view defines the files and folders that can be accessed for a given project. If you created a new StarTeam
project, there is only one view, and it has the same name as the project. You can create additional views after
the project has been placed into StarTeam

5 Click OK.
The Add Files dialog box displays.

6 Fill in the information in the Add Files dialog box.
This step is optional but recommended. For information about this dialog box, see the StarTeam Add Files topic.

7 Click OK.
The project source files are checked into the StarTeam repository. The status of the StarTeam operation displays
in the StarTeam Messages window.

401

402

StarTeam: Pulling Projects and Project Groups
Pulling a project from a repository configures your connection to that project in the repository and deposits the project
in your own workspace. In a team environment, it connects you to the network of users who can make changes in
that project.

To pull a project or a project group
1 Choose StarTeam Pull.

The Pull Group Or Project From StarTeam dialog box displays.

Note: If none of the StarTeam Servers in your server list match the server address of the server
configuration used to check in the project or project group, you are asked if you want to indicate
a specific server to use for this server address.

2 Choose the server where the project is stored from the StarTeam Server list.
3 Select the project to be pulled from Project name menu.
4 Click Browse next to the Local working path field.

Note: In most cases you should not use the default value for the Local working path field. The default
value is based on the default working folder specified by the team member who placed the
project into StarTeam.

5 Navigate to a new or existing empty local directory to store the project.
This directory will become the local workspace for the project.

6 Specify additional options in the Pull Group Or Project From StarTeam dialog box, if appropriate.
For information about these options, see the Pull Group or Project from StarTeam topic.

7 Click OK to pull.
The project or project group is pulled from the repository. The status of the StarTeam operation is displayed in
the StarTeam Messages window.

403

404

StarTeam: Removing Files
When you remove a file from your Developer Studio 2006 project, StarTeam removes the file from the repository
when you commit your project.

To remove files from StarTeam control
1 Open the Developer Studio 2006 project containing the files you want to remove.
2 Choose Project Remove From Project

A Remove From Project dialog box appears.

3 Select the file or files you want to remove and click OK.
4 Choose File Save All to save the project.
5 Choose StarTeam Commit Project to remove the files from the StarTeam repository.

When another team member updates his project (StarTeam Update Project), the files will be removed from
his local project.

Note: This does not delete files from the local working path.

405

406

StarTeam: Reverting Files
Using the StarTeam integration, there are a number of options for reverting your source file to a previous revision
from the repository.

Warning: Reverting to a prior revision deletes any unsaved changes in the editor buffer.

To revert a file to the latest revision in the repository
1 Choose StarTeam Revert.

This discards any changes in the editor buffer for the active file, and reverts it back to the most recent revision
of the file in the repository.

2 Alternatively, you can right-click a file in the Project Manager and choose StarTeam Revert.

Note: The StarTeam file revisions show up in the History Manager. The History Manager lets you revert a file
back to any revision of the file in the StarTeam repository. You can also revert a file back to a locally saved
revision of the file.

407

408

StarTeam: Updating Projects
When you update a project, StarTeam updates your project's source files with the latest revisions from the repository.
If files have been added to or removed from Developer Studio 2006, your local project will also reflect these changes.
If a file is in a merge state, StarTeam asks if you want to merge the changes.

Note: If file renaming or deletions made in your local project conflict with changes made by another team member
in the StarTeam Client, you must manually resolve the pending renaming or deletion of files. The Pending
Renames/Deletes dialog box (StarTeam Pending Renames/Deletes) lets you commit any pending local
file renames or deletions to the repository or cancel the pending operations.

To update a project
1 Choose StarTeam Update Project.

StarTeam updates your project source files and the project file with the latest revisions from the repository. If files
have been added to or removed from the project, the local project is updated to reflect these changes. If any files
are in a merge state, StarTeam asks if you want to merge the files.

2 If you have a file in a merge state, click Yes to merge the changes or click No to leave the working file unchanged.
If you click Yes, the StarTeam merge utility opens.

1 Resolve all conflicts and apply or remove any other changes as needed.
2 When you have resolved all conflicts, choose File Exit to close Visual Merge and return to the IDE.
3 StarTeam tells you whether you have resolved all conflicts and asks if you wish to save the file. click Yes to

replace your working file with the merged file.

If you click No, the local working file is not updated, and the file remains in a merge state.

409

Together Diagram Procedures

410

Adding a Conditional Block
Note: If the control structure requires a condition, you can enter the condition with the in-place editor, or you can

enter it using the Condition field in the Object Inspector.

To add a statement block to the activation bar:
1 In the Tool Palette, click the Conditional Block button.
2 Click the target activation bar.

Alternatively:
1 Right-click an activation bar on a sequence diagram.
2 Choose Add Conditional Block on the context menu.

To set the type of the conditional block (if, for, and so on):
1 Open the Object Inspector.
2 Click the drop-down arrow for your choices.

411

412

Adding a Member to a Container
You can add members to class diagram elements (containers) by using the respective context menu for the diagram
element in the Diagram or Model Views or available shortcut keys to add members to a class diagram container
element.

To add a member to a container:
1 Right-click the container (class, interface, and so on).
2 Choose Add (Member_type), where, Member_type, is defined in the table above.

Tip: You can also use keyboard shortcuts to add fields and methods to a container allowing such
members. Click CTRL+W (for fields) and CTRL+M (for methods, functions).

3 You can edit the member using the in-place editor, Object Inspector, or source code editor.

Result: The new member is placed in the compartment of the container in the sort order for the elements in your
diagrams. You can set the sort order in the Options dialog window.

Tip: If a container already has members, you can right-click the existing member to create an additional member
using the context menu. You can also select the member, and press INSERT.

413

414

Aligning Model Elements
You can automatically rearrange all or selected model elements on a diagram.

To align model elements on a diagram:
1 Select several nodes or inner classifiers on a diagram.
2 Right-click and choose Alignment (algorithm) on the context menu. The following algorithms are available:

Top
Bottom
Rigth
Left
Center X
Center Y

415

416

Annotating a Diagram

Use the following actions to annotate a diagram:
1 Draw an annotation
2 Draw an annotation link
3 Type comments

To draw an annotation:
1 In the Diagram View, you can:

Hyperlink the note to another diagram or element.
Edit the text when its in-place editor is active.
Edit the properties of a note using Object Inspector.
Add an existing note from one diagram to another diagram using a shortcut. (Select Add Shortcuts from
any diagram context menu.)

In the Object Inspector for the note, you can:

Edit the text.
Change the foreground and background colors.
Change the text-only property.

To draw an annotation link:
1 Click the Note Link button on the Tool Palette.
2 In the Diagram View, click the source element.
3 Drag the link to the destination element.
4 Drop when the second element is highlighted.

Tip: You can use the Object Inspector to view both the client and supplier sides of the link.

To type comments:
1 To enter comments in the source code, use the Comment fields (Author, Since, Version) in the Object

Inspector for the class.
2 You can also enter source code comments directly into the code using the Editor.

417

418

Assigning an Element Stereotype
You can assign a stereotype in the diagram by using the in-place editor, or by using the Object Inspector.

Use the following techniques to specify a stereotype:
1 Assign a stereotype by using the in-place editor
2 Assign a stereotype by using the Object Inspector

To assign a stereotype by using the in-place editor:
1 Double-click the stereotype name to activate the in-place editor.
2 Enter the new name.
3 Press Enter.

To assign a stereotype by using the Object Inspector:
1 Select a class on your diagram.
2 In the Object Inspector, select the Stereotype field.
3 Click the value editor button and choose the required stereotype from the combo box. Alternatively, type the

stereotype name.

Result: The stereotype name is displayed in angle brackets in the class node.

419

420

Associating a Lifeline with a Classifier

To associate a lifeline with a classifier:
1 Select a lifeline on an Interaction diagram.
2 Right-click the lifeline and select Choose Type... on the context menu. The Choose represented connectable

element's type dialog box opens.
3 Choose a classifier to be associated with the lifeline from the tree of available model elements.
4 Click OK.

421

422

Associating a Message Link with a Method
Message links can be associated with the methods of the recipient class. The methods can be selected from the list
of existing ones or can be created. This is done by two commands provided by the message context menu: Add
and Choose method.

You can use the Operation field in the Object Inspector to rename the method. A dialog box appears asking if you
want to create a new method or rename the old one.

Use the following techniques to associate a message link with a method (operation):
1 Create a new method for an existing message link
2 Associate an existing method with a message link
3 Unlink a method

To create a new method for an existing message link:
1 Create a message link between two objects. The recipient object must instantiate a class.
2 On the context menu of the message link, choose Add. The submenu provides the choice of Method,

Constructor or Destructor.

Note: Destructors are available for classes in C# projects only.

3 From the submenu, choose the required operation type.

Tip: If the recipient object does not instantiate a class, the Add command is not available on the context menu.

If the recipient object is associated with an interface, only methods can be associated with the message link.

Result: The new operation is created in the class of the recipient object. The message link is labeled with the
operation name, according to the operation type:

If a Method is selected, the label is Method<n> ():return_type.

If a Constructor is selected, the label is <Classname>() in C# projects projects.

If a Destructor is selected, the label is ~<Classname>(). The Destructor option is disabled in the submenu of
the Add command.

You can use the Operation field in the Object Inspector to create a new method in the classifier. For example, in
the Operation field, you can enter method_name(parameter_types):return_type. Entering
parameter_types is optional. If the method does not exist in the class, a dialog opens prompting you to create it.
If the method already exists in the class, the message link is automatically set for that method.

To associate an existing method with a message link:
1 Create a message link between two objects. The recipient object must instantiate a class.
2 On the context menu of the message link, select Choose method. The submenu displays the list of operations

of the recipient class.
3 If you cannot find the required operation in the list, click More to reveal the next 20 methods (including inherited

operations) of the recipient class.
4 Select the required operation.

423

Result: The associated operation is selected from the list of available methods, constructor, or destructor.

If you choose to associate a different classifier for an object that is already instantiated with a classifier, all of the
message links where the Operation property has been set are automatically saved as text unless the method
signature matches another method signature within the newly-linked classifier.

To unlink a method:
1 Select the message link.
2 On the context menu of the message link, choose Unlink method.

Result: An association between the message link and the operation is removed. However, the operation is preserved
in the recipient class.

If you unlink a classifier from an object and that object has incoming message links where the Operation property
is set to a method of the unlinked classifier, a dialog opens prompting you to unlink the method from the message
link or save it as text. Choosing the option to save as text places the Operation property in quotation marks and the
operation displays in red on the diagram. The intent of this feature is to help users to preserve all of the signatures
of any methods that have been linked to the message links. Upon instantiating the object with a class again, you
can delete the quotation marks. This will open a dialog box prompting you to create the method if it does not exist
in the linked classifier. A dialog box does not open if the signature of the method matches an existing method in the
classifier.

424

Associating a Transition or a State with an Activity
You can associate an activity (created on some UML 2.0 Activity Diagram) with a state (on entering the state, while
doing the state activity, and on exiting the state), or with a transition between states.

To associate a transition with an activity:
1 Select a transition or a state on a UML 2.0 State Machine diagram.
2 Under the General node of the Object Inspector, click the Effect (for a transition) or Do activity, Entry or

Exit (for a state) field.
3 Click the chooser button to open the Choose Activity dialog box.
4 In the model treeview, locate the desired activity.
5 Click OK.

Tip: Once a guard condition or effect are specified in the Object Inspector, you can further edit them in the diagram
by double-clicking the expression to activate the in-place editor.

425

426

Associating an Object with a Classifier
In the sequence or collaboration diagram you can create associations between objects (located on an interaction
diagram) and classifiers (located on some class diagram). Instantiated classes for an object can be selected from
the model, or the classes can be created and added to the model.

Note that an object can instantiate classifiers that belong to the various source-code projects within a single project
group, when such projects are referenced from the project in question.

The range of available classifiers depends on the project type:

Design projects: classes, interfaces
C# implementation projects: classes, interfaces, structures

To associate an object with an existing classifier:
1 Select an object.
2 On the context menu of the object, select Choose class.
3 The submenu displays the list of available classifiers. If you cannot find the required classifier in the list, click

More to reveal the model tree view.
4 In the Choose Type to Instantiate dialog box that opens, select a classifier from the model and click OK.

Tip: Alternatively, use the Object Inspector. Click the Instantiates field and select the classifier from the model.

Result: The object displays the fully qualified path to the instantiated classifier.

Tip: To associate an object with a classifier from a different project, add this project as a referenced one.

To create a new classifier for an existing object:
1 Select an object.
2 On the context menu, choose Add.
3 From the submenu, choose the desired classifier type.

Result: A new classifier is added to the model. A shortcut for the new classifier appears on the interaction diagram
in question, connected with the object by a dependency link.

To unlink an object:
1 Select an object.
2 On the context menu of the object choose Unlink class.

Result: The association is removed, but the classifier is preserved in the model.

To navigate between classifiers and objects:
1 Select the object on the diagram.

427

2 Right-click and choose Synchronize Model View on the context menu to move focus to this classifier in the
Model View, or choose Go to Class Definition to open this classifier in the source code (for implementation
projects).

To create a shortcut to a classifier on an interaction diagram:
1 On the diagram, select an object that instantiates a classifier.
2 Right-click and choose Import class on the context menu.

Result: A shortcut to the instantiated classifier is added to the diagram.

428

Branching Message Links
Branching messages that start from the same location on the lifeline.

To branch a message link with the previous one:
1 Select a message link on the sequence or collaboration diagram.
2 Right-click the message link and choose Branching With previous on the context menu.

To remove branching:
1 Select the message link to remove branching from.
2 Right-click the message link and choose Branching None on the context menu.

429

430

Browsing a Diagram with Overview Pane

To open the Overview pane:
1 Open a diagram and click the Overview button. The pane expands to show a thumbnail image of the current

diagram.
2 Click the shaded area and drag it. This is a convenient way to scroll around the diagram.
3 Resize the Overview pane by clicking the upper-left corner of the pane and dragging it.
4 Close the Overview pane by clicking the diagram.

431

432

Changing Appearance of Compartments
You can collapse or expand compartments for the different members of class, interface, namespace, enum, and
structure (C# projects only) elements. By default, the compartments for these elements are displayed on the diagram
as a straight line. You can use the Options dialog window to set viewing preferences for compartment controls.
Adding compartment controls is particularly useful when you have large container elements with content that does
not need to be visible at all times.

To collapse or expand compartments:
1 Select the class (or interface) on the diagram.
2 Click the “+” or “-” in the left corner of the compartment.

To view the compartment controls:
1 Open the Options dialog window.
2 Select the Together (level) Diagram Appearance Nodes category.
3 In this category, edit the Show compartments as line field.

433

434

Changing Appearance of Interfaces

To show an interface as a circle sing the context menu:
1 Right-click the interface element in the Diagram or Model Views.
2 Choose Show as circle.

Tip: This menu item works as a toggle. Right-click again and choose Show as circle to show the interface element
as a rectangle.

Note: Interfaces shown as small circles do not show their members in the Diagram View. Use the Model View to
view the members.

To show an interface as a circle using the Object Inspector:
1 Select the interface element in the Diagram or Model Views.
2 Press F4 to open the Object Inspector.
3 Set the Circle view property as True.

Tip: Choose False for the Circle view property to show the interface element as a rectangle.

435

436

Changing Diagram Notation

Use the following techniques to change diagram notation:
1 Choose one of the two possible appearances for interfaces. Interfaces can be represented as rectangles or small

circles ("lollipops").
2 In UML 2.0 projects, you can change notation of interfaces to "ball and socket".
3 Adjust appearance options, including selection between UML or language formats.

Tip: Notation options are included in the Diagram Appearance category of Together options.

4 Use the UML In Color profile.
5 Use stereotypes.

437

438

Changing Type of a Link

Use the following techniques to change the type of a link:
1 Set the link type by using the Object Inspector
2 Set the link type by using the context menu

To set the link type by using the Object Inspector:
1 Choose View | Object Inspector if the Object Inspector is not open.
2 Select a link on the diagram. The properties for the link appear in the Object Inspector.
3 In the Object Inspector, select the Type field.
4 Click the drop-down arrow and select the appropriate property from the list. Your available choices are

association, aggregation, or composition.

To set the link type by using the context menu:
1 Right-click a link on the diagram.
2 Choose Link Type on the context menu.

439

440

Closing a Diagram

To close a diagram:
1 Switch to the Diagram View.
2 Click the cross icon to close the current view.

Note: Closing a diagram in the Diagram View does not remove it from your project.

441

442

Converting Between UML 1.5 Sequence and Collaboration
Diagrams
You can convert between sequence and collaboration diagrams. However, when you create a new diagram, you
must specify that it is either a sequence diagram or a collaboration diagram.

To convert between sequence and collaboration diagrams:
1 Right-click the diagram background.
2 If the diagram is a sequence diagram, choose Show as Collaboration on the context menu. If the diagram is a

collaboration diagram, choose Show as Sequence.
3 Repeat this process to switch back and forth.

After you convert from a sequence diagram to a collaboration diagram for the first time, or if you have added new
objects to the sequence diagram between conversions, it is recommended that you perform a full layout on the
collaboration diagram.

443

444

Copying and Pasting an Execution or Invocation Specification
Clipboard operations are supported for the execution and invocation specifications.

To copy and paste an execution or invocation specification:
1 Cut, Copy, and Paste commands are available on the context menu of an execution specification and invocation

specification. It is possible to copy or move these elements within the same diagram or to another diagram.
2 When an execution or invocation specification is copied, it means that the entire branch of messages is copied

also. Pasting the clipboard contents to a target lifeline results in changing the message numbers according to
the numbering of messages in the target lifeline.

3 If you paste an invocation or execution specification to another diagram, the entire outgoing bunch of messages
will be pasted also, with all the respective lifelines. If the target diagram does not contain lifelines for this execution
specification, they will be created automatically.

Tip: It is also possible to move and copy message branches using the drag-and-drop technique. To move an
execution or invocation specification, drag-and-drop it to the target location. To create a copy, drag-and-drop
while holding the CTRL key down.

445

446

Copying and Pasting Model Elements
The move and copy operations are performed by drag-and-drop, context menu commands, or keyboard shortcut
keys.

Note: You can move or copy an entire diagram. In this case, all elements addressed on this diagram are not copied,
and a new diagram contains shortcuts to these elements.

To copy an element:
1 Select the element or elements to be copied.
2 Do any of the following:

Right-click and choose Copy on the context menu
Press CTRL+C on the keyboard

3 Do any of the following:

Right-click the target location and choose Paste on the context menu
Select the target location and press CTRL+V

447

448

Creating a Browse-Through Sequence
The hyperlinking feature of Together allows you to create browse-through sequences comprised of any number of
use case or any other diagrams.

To create a browse-through sequence:
1 You can link entire diagrams at one level of detail to the next diagram up or down in a sequence of increasing

granularity, or you can link from key use cases or actors to the next diagram. By browsing the hyperlink sequence,
you can follow the relationships between the use case diagrams.

2 Together does not confine hyperlinking to such sequences, however. You can use hyperlinking to link diagrams
and elements based on your requirements. For example, you can create a hierarchical browse-through sequence
of use case diagrams, creating hyperlinks within the diagrams that follow a specific actor through all use cases
that reference the actor.

449

450

Creating a Deferred Event
You can add a deferred event to a state element.

To create a deferred event:
1 Select the desired state or activity element on the diagram or in the Model View.
2 Right-click the element, and select Add Deferred Event on the context menu.

451

452

Creating a Delegation Connector

To create a delegation connector:
1 Right-click an interface and choose New Delegation connector from the context menu.
2 In the Choose Destination dialog box that opens, select the target interface from the Model or Favorites.
3 Click OK.

453

454

Creating a Diagram
When you create a new diagram, the Diagram View presents an empty background. You place the various model
elements on the background and draw relationship links between them according to the requirements of your model.

To create a diagram:
1 In the Model View, right-click the target project.

Tip: Alternatively, you can use the shortcut CTRL+SHIFT+D.

2 Select the target namespace (package) either in the Diagram View or in the Model View. If you do not select a
custom namespace (package), Together adds a new diagram to the default one.

3 Choose Add Other Diagram on the context menu.
4 In the Add New Diagram dialog box, choose the Diagrams tab.
5 Select the diagram type.
6 In the Name field, enter a name for the new diagram.
7 Click OK.

Result: The new diagram opens in a new tab in the Editor Window. You can use the Object Inspector to view and
edit the diagram properties.

To create a new diagram, use can also use the Hyperlink To New diagram command on the context menu of
the Model View or the Diagram View.

You can create a new logical class diagram using the context menu of the root node for your project, or by using the
context menu of a namespace element in the Model View. Choose either Add Class Diagram or Add Other
Diagram. Choosing the latter command opens the Add New Diagram dialog box. When you place a class, interface,
or namespace on a logical class diagram, Together generates the corresponding source code or descendent
namespace in the namespace where this class diagram is located.

455

456

Creating a Guard Condition for a Transition

To create a guard condition for a transition:
1 Select a transition in the diagram.
2 Under the General node of the Object Inspector, click the Guard field.
3 Type the condition expression and apply changes.

457

458

Creating a History Element

To create a history element for a state:
1 In the target state on a state diagram, select the target region where history needs to be added.
2 Choose Shallow History or Deep History on the diagram Tool Palette.
3 Click the target region.

459

460

Creating a Link with Bending Points
If your diagram is densely populated, you can draw bent links between the source and target elements to avoid other
elements that are in the way.

To create a link with bending points:
1 Click the link button on the Tool Palette.
2 Click the source element.
3 Drag the link line, clicking the diagram background each time you want to create a section of the link. Sections

on a link lie between two blue bullets. The bullets display whenever you select the link on the diagram.
4 Click the destination element to terminate the link.

Tip: Once you have created a link, you can add bending points to it. Select the link on the diagram, and then drag
the link to the desired position. The figure below demonstrates this technique.

461

462

Creating a Member for a State

To create a member for a state:
1 Open the Diagram View.
2 Right-click an existing state and choose Add (member) on the context menu.

The following members are available:

Internal transaction
Entry point
Exit point
Region

463

464

Creating a Multiple Transition

To create a multiple transition (a fork or a join):
1 Identify the states involved. If necessary, place all of the states on the diagram first and arrange as desired.
2 On the diagram Tool Palette choose the fork or join button.
3 Place either a horizontal or vertical fork or join on the diagram.
4 Resize as needed.
5 On the diagram Tool Palette, choose the transition button.
6 Draw links from the source state(s) to the fork/join node, and from the fork/join node to the target state(s).

465

466

Creating a Pin

To add an input pin, output pin, or value pin, do one of the following:
1 Right-click an action.
2 Choose New Input Pin (or: Output Pin, or: Value Pin) on the context menu.

Result: The created pin is added to the target action as a square. Note that the pins are attached to their actions,
and can be only dragged along the action borders.

Alternatively:
1 Open the Tool Palette.
2 Choose the appropriate button, and click the target action.

467

468

Creating a Port

To create a port:
1 Choose the port icon on the Tool Palette.
2 Click the target class or part.
3 Create as many ports as required.

469

470

Creating a Referenced Part

To create a referenced part:
1 Open the Diagram View.
2 Do one of the following:

Use the referenced part button on the diagram Tool Palette.
Right-click a target container and choose New Referenced part on the context menu.
Select a part, open the Model View, and check the option aggregated by reference.

471

472

Creating a Self-Transition

To create a self-transition:
1 Draw a transition from the state or activity element and drag the link away from the element.
2 Drag the link back to the element and drop it.

Alternatively:
1 Draw a transition between two activities (or states).
2 Drag the opposite end of the link line back to the desired activity (or state).

473

474

Creating a Sequence or Communication Diagram from an
Interaction

To create a sequence or a communication diagram from an interaction:
1 In the Model View, choose an Interaction element.
2 Right-click the Interaction node and choose Open with Sequence diagram 2.0 or Open with Communication

diagram 2.0.

Results: If such diagram is missing, it will be created. Then this diagram opens in the Diagram View.

475

476

Creating a Shortcut
You can create a shortcut to a model element on the diagram background by using three methods:

By opening Add Shortcuts dialog box from the Diagram View
By copying and pasting a shortcut from the Model View
By choosing Add Shortcuts on the Model View context menu

Use the following techniques to create a shortcut:
1 Create a shortcut by using the Add Shortcuts dialog window
2 Create a shortcut by using drag-and-drop
3 Create a shortcut by copying and pasting
4 Create a shortcut by using the Model View context menu

To create a shortcut by using the Add Shortcuts dialog window:
1 Right-click the diagram background.
2 Choose Add Shortcuts on the context menu.

Tip: You can also use CTRL+SHIFT+M to open the Edit shortcuts dialog window.

3 In the Edit shortcuts dialog window, choose the required element from the tree view of available contents.
4 Click Add to place the selected element to the list of the existing or ready to add elements.
5 When the list of ready to add elements is complete, click OK.

To create a shortcut by using drag-and-drop:
1 Select the element in the Model View.
2 Drag-and-drop the element onto the diagram.

To create a shortcut by copying and pasting:
1 In the Model View, right-click the element to be added to the current diagram as a reference.
2 Choose Copy on the context menu.
3 Right-click the target diagram and choose Paste Shortcut on the context menu.

Tip: You can also copy an element from one diagram and paste it in another diagram as a shortcut.

To create a shortcut by using the Model View context menu:
1 Open the diagram where the shortcut will be added.
2 In the Model View, select the element to be added to the current diagram as a shortcut.

477

3 Right-click the element in the Model View, and choose Add as Shortcut on the context menu.

478

Creating a Simple Link
In a design project, you can create a link to another node, or a shortcut of an element of the same or another design
project (these projects must be of the same UML version).

In an implementation project, you can create a link to another node or a shortcut of an element of the same project.

To create a simple link between two nodes:
1 On the diagram Tool Palette, click the button for the type of link you want to draw in the diagram. The button

stays down.
2 Click the source element.
3 Drag to the destination element and drop when the second element is highlighted.

479

480

Creating a Single Model Element

To create a single model element:
1 Open a target diagram in the Diagram View.
2 Choose Tool Palette from the View menu.
3 Choose the UML [diagram type] tab in the Tool Palette to view available model elements.
4 On the Tool Palette, click the icon for the element you want to place on the diagram. The button stays down.

Tip: Icons are identified with labels.

5 Click the diagram background in the place where you want to create the new element. This creates the new
element and activates the in-place editor for its name.

Tip: Alternatively, you can right-click the diagram background and choose Add on the context menu. The submenu
displays all of the basic elements that can be added to the diagram, and the Shortcuts command.

481

482

Creating a State

To create a state:
1 Using the Tool Palette buttons: On the diagram Tool Palette, choose to create a state node. Click an appropriate

place on your diagram.
Alternatively:

Using the context menu of the diagram: Right-click the diagram background. Select Add State on the context
menu.

Note: You can place a state inside of the existing state. It is possible to hide individual states. For
example, you might want to hide the content of composite states for better understanding of
the whole diagram.

2 When a new state is placed on a diagram, you can use the Object Inspector to adjust its properties, including:

Configure standard properties of the element.
In the State Invariant field, select the language of the expression from the Language list box. The possible
options are OCL and plain text.
In the Properties page, configure the behavior of the state by setting or viewing the following additional
properties:

Field Description

Composite Set to True if there is one or more regions in this state (not editable)

Orthogonal Set to True if there are two or more regions in this state (not editable)

Simple Set to True if there are no regions in this state (not editable)

Do activity Specify the activity to be performed during execution of the current state by using the Object
Inspector. This activity may be selected from any Activity diagram of the project

Entry Specify the activity to be performed when the current state starts executing by using the Object
Inspector. This activity may be selected from any Activity diagram of the project

Exit Specify the activity to be performed when the current state finishes executing by using the Object
Inspector. This activity may be selected from any Activity diagram of the project

In the edit field below the list box enter the OCL expression for this state.

483

484

Creating a State Invariant

To create a state invariant as an OCL comment:
1 On the diagram Tool Palette, choose the state invariant button.
2 Click the target lifeline or execution specification.

Tip: Alternatively, use the Add State invariant command on the context menu of a lifeline or an
execution specification.

3 In the Object Inspector of the state invariant, select the General node.
4 In the Invariant kind field, choose OCL expression from the drop-down list. The shape of the state invariant

diagram element changes to braces.
5 In the OCL invariant node that adds to the Property Browser, select the language of the comment from the

Language drop-down list. The possible options are OCL and plain text.
6 Type the text and apply changes.

To connect a state invariant to a state:
1 On the diagram Tool Palette, choose the state invariant button.
2 Click the target lifeline or execution specification.
3 In the Object Inspector of the state invariant, select the General node.
4 In the Invariant kind field, choose States/Regions from the drop-down list.
5 In the States/Regions field, click the chooser button.
6 In the Choose States and/or Regions dialog box, select the desired states and/or regions from the model, using

the Add button.
7 Click OK when ready.

Tip: Alternatively, type the state or region name. If the state or region belongs to a different package,
specify its fully-qualified name.

485

486

Creating an Activity for a State

To create an activity for a state:
1 Open the Diagram View.
2 Right—click a state and choose Add Activity on the context menu.

Result: A new activity is created inside of a state.

487

488

Creating an Association Class

To create an association class:
1 On the diagram Tool Palette, select the association class button.
2 Click the diagram background. This adds a regular class icon for the association class, connected with the

diamond icon.
3 Create participant classes.
4 Using the association end button, connect the n-ary association with the participant classes.

Result: The source code of an association class contains appropriate tags for the association class itself, and for
each of the association end classes.

To delete an association class:
1 Right-click an association end link, association class, or connector.
2 Choose Delete Association Class on the context menu.

Result: The whole association class construct is deleted from the diagram.

489

490

Creating an Extension Point

To create an extension point:
1 Right-click the use case element.
2 Choose Add Extension Point on the context menu.
3 Type in a name.

491

492

Creating an Inner Classifier
This section includes instructions for adding inner classifiers to classes (including Windows classes, such as
Windows forms, Inherited forms, User Controls and so on), structures, and modules (collectively, containers) in
implementation projects.

You can add inner classifiers to class diagram elements (containers) using the respective context menu for the
diagram element in the Diagram or Model Views. You can also select a classifier in the Tool Palette and click the
container element in the Diagram View to add the inner classifier to the container element.

Note: Structure elements are available for implementation projects only.

Tip: You can use drag-and-drop or clipboard operations to remove an inner classifier from the container element.

To create an inner classifier by Using the context menu:
1 Right-click the container element.
2 Choose Add (Inner_classifier_type), where (Inner_classifer_type) is defined in the table above.

Using cut, copy, and paste:
1 Use the clipboard operations to either cut or copy an existing classifier.
2 Select the container element.
3 Use the clipboard operations to paste the selected classifier into the container element.

Using drag-and-drop:
1 Select an existing classifier in the Diagram View.
2 Drag-and-drop it onto a pre-existing container in the Diagram View. A blue border highlights the location that

Together recognizes as a valid destination for dropping the inner classifier.

493

494

Creating an Internal Structure for a Node

To create an internal structure for a node:
1 Choose the part icon on the diagram Tool Palette.
2 Click the valid container (class or collaboration).
3 Repeat these steps to create as many participants as needed.

Tip: Choose the part icon on the diagram Tool Palette while holding down the CTRL key. Each click
on a valid container produces a new part.

4 Link the collaborating parts by connectors.
5 Use the Object Inspector to set up the properties of the part.

495

496

Creating an Internal Transition

To create an internal transition:
1 Select the desired state or activity element on the diagram or in the Model View.
2 Right-click the element, and select Add Internal Transition on the context menu.

497

498

Creating Multiple Elements
You can place several elements of the same type on a diagram without returning to the Tool Palette or by using the
diagram context menu. Each element will have a default name that can be edited with the in-place editor or in the
Object Inspector.

To create multiple elements:
1 Holding down the CTRL key, click the Tool Palette button for the element you want to create (the button stays

down). Release the CTRL key.
2 Click the desired location on the diagram background. The new element is placed on the diagram at the point

where you click.
3 Click the next location on the diagram background. The next new element is placed on the diagram.
4 Repeat the previous step until you have the desired number of elements of that type.
5 To stop multiple element creation, click the Pointer Tool Palette button or press the ESC key to deselect the

element after closing the in-place editor of the last inserted element.

Tip: After making a selection on the Tool Palette or doing the first of a multi-draw or multi-placement operation,
you can cancel the operation by clicking the Pointer button on the Tool Palette or by pressing the ESC key.

499

500

Deleting a Diagram
Warning: The project automatically created default diagram for a namespace (package) cannot be deleted.

To delete a diagram:
1 In the Model View, select the diagram to be deleted.
2 On the context menu, choose Delete.
3 Confirm deletion, if required.

Result: The diagram is deleted from the project.

501

502

Designing a UML 1.5 Activity Diagram
Use the following tips and techniques when you design a UML 1.5 Activity Diagram.

To design a UML 1.5 Activity Diagram, follow this general procedure:
1 Create one or more swimlanes. You can place several swimlanes on a single diagram, or create a separate

diagram for each.

Warning: You cannot create nested swimlanes.

2 Create one or more activities. You can place several activities on a single swimlane, or create a separate
swimlane for each.

Warning: You cannot create nested activities.

3 For convenient browsing, first model the main flow. Next, cover branching, concurrent flows, and object flows.

Tip: Use separate diagrams as needed and then hyperlink them.

4 Create Start, End, Signal Receipt, and Signal Sending elements for your swimlanes.
If your activity have several Start points, they can be used simultaneously.

5 Create object nodes. You do not link object nodes to classes on your Class Diagrams. However, you can use
hyperlinks for better understanding of your diagrams.

6 Create state nodes for your swimlanes.

Tip: You can create nested states.

7 Optionally, create a History node.
8 Connect nodes by links.
9 You can optionally create shortcuts to related elements of other diagrams.

503

504

Designing a UML 1.5 Component Diagram
Following are tips and techniques that you can use when working with UML 1.5 Component Diagrams. It can be
convenient to start creation of a model with Component Diagrams if you are modeling a large system. For example,
a distributed, client-server software system, with numerous interconnected modules. You use Component Diagrams
for modeling a logical structure of your system, while you use Deployment Diagrams for modeling a physical
structure.

To design a UML 1.5 Component Diagram, follow this general procedure:
1 Create a hierarchy of Subsystems.

Tip: You can create nested Subsystems.

2 Create a hierarchy of Components. The largest component can be the whole system or its major part (for exam
ple, server application, IDE, service).

Tip: You can create nested component nodes. There are two methods for creating a nested
component node:

You can select an existing component and add a child component inside.

Alternatively, you can create two separate components and connect them with an Association-
Composition link.

3 Create interfaces. Each component can have an interface.
4 Draw links between elements.
5 You can optionally create shortcuts to related elements of other diagrams.

505

506

Designing a UML 1.5 Deployment Diagram
Use the following tips and techniques when you design a UML 1.5 Deployment Diagram. It can be convenient to
start creation of a model with Deployment Diagrams if you are modeling a large system that is comprised of multiple
modules, especially if these modules reside on different computers. You use Deployment Diagrams for modeling a
physical structure of your system, while you use Component Diagrams for modeling a logical structure.

To design a UML 1.5 Deployment Diagram, follow this general procedure:
1 Create a hierarchy of Nodes.

Tip: You can create nested Nodes.

2 Create a hierarchy of Components. The largest component can be the whole system or its major part (for exam
ple, server application, IDE, service).

Tip: You can create nested Components. There are two methods for creating a nested component:

You can select an existing component and add a child component inside.

Alternatively, you can create two separate components and connect them with an Association-
Composition link.

3 Represent how Components resides on Nodes. You can represent this in two ways:

Use a supports link between the component and node. The supports link is a dependency link with the stereotype
field set to support.
Graphically nest the Component within the Node.

4 Optionally, create Objects.
5 Create Interfaces. Each component can have an interface.
6 Indicate a temporary relationship between a Component and Node. Objects and components can migrate from

one component instance to another component instance, and respectively from one node instance to another
node instance. In such a case, the object (component) will be on its component (node) only temporarily. To
indicate this, use the dependency relationship with a becomes stereotype.

7 You can optionally create shortcuts to related elements of other diagrams.

507

508

Designing a UML 1.5 Statechart Diagram
Following are tips and techniques that you can use when working with UML 1.5 Statechart Diagram.

To design a UML 1.5 Statechart Diagram, follow this general procedure:
1 Сreate Start and End points.
2 Create main states and substates.

Tip: You can create nested states.

3 Create transitions.
4 Create history nodes.
5 You can optionally create shortcuts to related elements of other diagrams.

To create entry and exit actions:
1 Create an internal transition in the desired state.
2 Double-click the internal transition to enable in-place editing.
3 Rename using the following syntax: stereotype/actionName(argument)

For example: exit/setState(idle)

Alternatively, create an internal transition and set the event name, event arguments, and action expression properties
using the Object Inspector for the internal transition.

509

510

Designing a UML 2.0 Activity Diagram
Use the following tips and techniques when you design a UML 2.0 Activity Diagram. Usually you create Activity
Diagrams after State Machine Diagrams.

To design a UML 2.0 Activity Diagram, follow this general procedure:
1 Create one or more activities. You can place several activities on a single diagram, or create a separate diagram

for each.

Warning: You cannot create nested activities.

2 Usually activities are linked to states or transitions on State Machine Diagrams. Switch to your State Machine
Diagrams and associate the activities you just created with states and transitions.

Tip: After that you can find that some more activities must be created, or the same activity can be
used in several places.

3 Switch back to the Activity Diagram. Think about flows in your activities. You can have an object flow (for
transferring data), a control flow, both or even several flows in each activity.

4 Create starting and finishing points for every flow. Each flow can have the following starting points:

Initial node
Activity parameter (for object flow)
Accept event action
Accept time event action

Each flow finishes with a Activity Final or Flow Final node.

If your activity has several starting points, they can be used simultaneously.

5 Create object nodes. You do not link object nodes to classes on your Class Diagrams. However, you can use
hyperlinks for better understanding of your diagrams.

6 Create action nodes for your flows. Flows can share actions.

Warning: You cannot create nested actions.

7 For object flows, add pins to actions. Connect actions and pins by flow links.
8 Add pre- and postconditions. You can create plain text or OCL conditions.
9 You can optionally create shortcuts to related elements of other diagrams.

To add an activity parameter to an activity:
1 In the Tool Palette, press the Activity Parameter button.
2 Click the target activity.

Or:

Choose Add Activity Parameter on the activity context menu.

Result: An Activity Parameter node is added to the activity as a rectangle. Note that the activity parameter node is
attached to its activity. You can only move the node along the activity borders.

511

Note: Activity parameters cannot be connected by control flow links.

512

Designing a UML 2.0 Component Diagram
Following are tips and techniques that you can use when working with UML 2.0 Component Diagrams. It can be
convenient to start creation of a model with Component Diagrams if you are modeling a large system. For example,
a distributed, client-server software system, with numerous interconnected modules. You use Component Diagrams
for modeling a logical structure of your system, while you use Deployment Diagrams for modeling a physical
structure.

To design a UML 2.0 Component Diagram, follow this general procedure:
1 Create a hierarchy of components. The largest component can be the whole system or its major part (for example,

server application, IDE, service).

Tip: You can create nested component nodes. There are two methods for creating a nested
component node:

You can select an existing component and add a child component inside.

Alternatively, you can create two separate components and connect them with an Association-
Composition link.

2 In the hierarchy of components, you can end up by adding concrete classes and instance specifications. You
can create them on a Component Diagram directly, or create them on a Class Diagram and put shortcuts on a
Component Diagram.

3 Create interfaces. Each component can have a provided interface and a required interface.
4 Optionally, create artifacts. Usually, you describe physical artifacts of your system on Deployment Diagrams. But

if some component is closely connected with its physical store, add and link an artifact to a Component Diagram.

Tip: You can create nested artifacts.

5 Optionally, create ports for your components. You can attach a port to a component and link it with several classes
or components inside. In this case, when a message arrives, this port decides which class must handle it.

6 Draw links between elements.
7 You can optionally create shortcuts to related elements of other diagrams.

513

514

Designing a UML 2.0 Deployment Diagram
Use the following tips and techniques when you design a UML 2.0 Deployment Diagram. It can be convenient to
start creation of a model with Deployment Diagrams if you are modeling a large system that is comprised of multiple
modules, especially if these modules reside on different computers. You use Deployment Diagrams for modeling a
physical structure of your system, while you use Component Diagrams for modeling a logical structure.

To design a UML 2.0 Deployment Diagram, follow this general procedure:
1 Create a hierarchy of execution environments, devices, and nodes. Execution environments usually represent

software environment used to execute your system, such as an operating system. Devices usually represent
hardware equipment, such as a printer, a hard disk, or a computer. Nodes represent the rest of physical entities,
such as a file.

Tip: You can create nested execution environments, devices, and nodes. For example, you can add
a node inside of an execution environment, or a node inside of a device.

2 Create artifacts.
3 Create deployment and instance specifications. By doing this, you arrange physical locations of objects and other

entities of your system.
4 Add operations to artifacts.
5 Once an operation is added, you can define its properties in the Object Inspector, which includes parameters,

stereotype, multiplicity and more.
6 You can optionally create shortcuts to related elements of other diagrams.

To deploy an artifact to a target node:
1 In the diagram Tool Palette, choose the deployment button.
2 Click the artifact to be deployed. The valid source is denoted by a solid frame.
3 Drag-and-drop the deployment link to a target node. The valid target is denoted by a solid frame.

To define parameters of an operation:
1 Select the desired operation in an artifact.
2 In the Object Inspector, expand the General node and choose Parameters field.
3 Click the chooser button to open Add/Remove Parameters dialog box.
4 Click Add. This creates an entry in the parameters list.
5 Enter the parameter's name, type multiplicity, default value, and direction. Note that parameter type can be

selected from the list of pre-defined types, or from the model.
6 Using the Add and Remove buttons, create the list of parameters.
7 Click OK when ready.

515

516

Designing a UML 2.0 Sequence or Communication Diagram
Use the following tips and techniques when you design a UML 2.0 Sequence or Communication Diagrams. Usually
you create Interaction Diagrams after Class Diagrams.

Whenever an interaction diagram is created, the corresponding interaction is added to the project. Interactions are
represented as nodes in the Model View.

Note: Presentation of an interaction in the Model View depends on the view type defined in the Model View options
on the default or project group levels. If model-centric mode is selected, an interaction is shown both under
its package node and diagram node. If diagram-centric mode is selected, an interaction is shown under the
diagram node only.

Note: You can view an interaction in two ways: as a Sequence Diagram, or as a Communication Diagram. So doing,
any actions performed with either view are automatically reflected in the other views. Thus, adding or deleting
an element in an interaction results in the modification of the corresponding interaction diagram, and vice
versa. An interaction diagram contains a reference to the underlying interaction.

Note: Unlike UML 1.5, it is not possible to switch a diagram that already exists from sequence to communication
and vice versa. However, it is possible to create a Sequence Diagram and a Communication Diagram based
on the same interaction.

To design a UML 2.0 Sequence Diagram, follow this general procedure:
1 Create an interaction use
2 Navigate to a referenced interaction
3 Associate a lifeline with a referenced element
4 Associate a lifeline with a type
5 Define decomposition for a lifeline
6 Repeat the steps to create all required interactions
7 Link the created lifelines by using messages

To create an interaction use:
1 In the diagram Tool Palette, choose the Interaction Use button.
2 Click on the target lifeline.

Tip: Alternatively, use the Add command on the lifeline context menu in the Diagram View or Model
View.

3 In the Object Inspector for the newly created interaction use, choose the Properties tab.
4 In the interaction name field, click the chooser button.

Tip: Alternatively, just type in the interaction name.

5 In the Choose Referenced Interaction dialog box, select the desired interaction from the project or Favorites,
and click OK.

An interaction use is initially created attached to a lifeline. Further it can be expanded over several lifelines, detached
from and reattached to lifelines.

517

To navigate to a referenced interaction:
1 Right-click on an interaction use that refers to another interaction.
2 On the context menu, choose Select.
3 Choose the desired destination on the submenu.

To associate a lifeline with a referenced element:
1 Make sure that your project contains the referenced elements that should be represented by the lifelines.
2 Select the desired lifeline in the Model View or the Diagram View.
3 In the Object Inspector, select the represents field.
4 Click the chooser button.
5 In the Choose Represented Connectable Element dialog box, select the desired part from the project or

Favorites.
6 Click OK.

To associate a lifeline with a type:
1 Select the desired lifeline in the Model View or the Diagram View.
2 In the Object Inspector, select the type field.
3 Click the chooser button.
4 In the Choose Represented Connectable Element's type dialog box, select the class that defined the type

from the project or Favorites.
5 Click OK.

To define decomposition for a lifeline:
1 Select the desired lifeline in the Model View or the Diagram View.
2 In the Object Inspector, select the decomposition field.
3 Click the chooser button.
4 In the Choose Referenced Interaction dialog box, select the desired interaction from the project or Favorites.
5 Click OK.

Tip: Decomposition, type, stereotype, and referenced element properties are also reflected in the
corresponding Communication diagram.

518

Designing a UML 2.0 State Machine Diagram
Following are tips and techniques that you can use when working with UML 2.0 State Machine Diagram.

To design a UML 2.0 State Machine Diagram, follow this general procedure:
1 Create initial and final nodes.
2 Create main states and substates.
3 Create regions.
4 Create entry and exit points.
5 Create pins.
6 Create transitions.
7 Create history nodes.
8 You can optionally create shortcuts to related elements of other diagrams.

519

520

Designing Use Case Hierarchy
Use case diagrams typically represent the context of a system and system requirements.

To design use case hierarchy:
1 Usually, you begin at a high level and specify the main use cases of the system.
2 Next, you determine the main system use cases at a more granular level. As an example, a "Conduct Business"

use case can have another level of detail that includes use cases such as "Enter Customers" and "Enter Sales."
3 Once you have achieved the desired level of granularity, it is useful to have a convenient method of expanding

or contracting the use cases to grasp the scope and relationships of the system's use case views.

521

522

Exporting a Diagram to an Image

To export a diagram to an image:
1 Place the focus on the diagram you want export in the Diagram View.
2 Choose File Export Diagram to Image on the main menu.
3 Click the drop-down arrow to preview and adjust the zoom settings of the diagram image.
4 Click Save. The file browser dialog box opens.
5 Browse for a location where you wish to save the image.
6 Enter a name. By default, the image file takes on the name given to the diagram in Developer Studio 2006.
7 Select an image format.
8 Click Save.

523

524

Grouping Actions into an Activity

Use the following techniques to group actions into an activity:
1 Use the Tool Palette buttons
2 Use drag and drop
3 Use the context menu of the activity element

Use the Tool Palette buttons:
1 In the diagram Tool Palette, choose to create an activity node.
2 Choose the action button, and click the target activity.

Use drag and drop:
1 Place an action element on the diagram background.
2 Drag and drop the new action on top of an existing activity.

Use the context menu of the activity element:
1 Right-click the target activity.
2 Select New Action on the context menu.

525

526

Hiding and Showing Model Elements
You can control the visibility of elements on a diagram by using the Hide command (available on the context menu
for individual diagram elements), and the Show/Hide command (available on the diagram context menu).

To hide by using one of the following methods:
1 Open the Diagram View.
2 Do one of the following:

Select the element on the diagram, right-click and choose Hide on the context menu.
Select multiple elements on the diagram using CTRL+Click or by lassoing, and select Hide from the context menu.
Right-click the diagram background and choose Hide/Show on the context menu. The Show Hidden dialog box
opens, as discussed below.

To show or hide diagram elements using the Show Hidden dialog box:
1 Right-click the diagram and choose Show/Hide on the context menu. The Show Hidden dialog box opens.
2 Select the element(s) that you wish to hide from the Diagram Elements list.
3 To add elements in the Diagram Elements list to the Hidden Elements list, do one of the following:

Double-click the element .
Click the element once and click Add.
Select multiple elements using CTRL+Click and click Add.

4 To remove items from the Hidden Elements list do one of the following:

Double-click the element.
Click the element once and click Remove.
Select multiple elements using CTRL+Click and click Remove.
To remove all items from the Hidden Elements list, click Remove All.

5 Click OK to close the dialog box.

527

528

Hyperlinking Diagrams
Select Hyperlinks from the diagram context menu to create, view, remove, and browse hyperlinks.

Use the following techniques to create a hyperlink:
1 Create a hyperlink to an existing diagram or element
2 Сreate a hyperlink to a new diagram
3 Сreate a hyperlink to an external URL or file
4 Browse hyperlinks
5 Remove a hyperlink

To create a hyperlink to an existing diagram or element:
1 Open an existing diagram or create a new diagram from which to create the hyperlink.
2 Select the element that you want to link to another diagram or element.
3 To link the entire diagram, click the diagram background to deselect all elements.

Note: Do not select the actual namespace in the Model View to create a hyperlink. Rather, expand
the namespace node, and select the desired diagram.

4 Right-click and choose Hyperlinks Edit. The Edit Hyperlinks dialog window (Selection Manager) opens.
5 Select the Model Elements tab to view the pane containing a tree view of the available project contents in the

Solution.
6 Select the desired diagram or element from the list, and click Add.
7 For element selection, expand diagram nodes in the Model Elements tab.
8 To remove an element from the selected list, select the element and click Remove.
9 Click OK to close the dialog box and create the link.

To create a hyperlink to a new diagram:
1 Open a diagram in the Diagram View, or select it in the Model View.
2 On the context menu, choose Hyperlinks To New Diagram.
3 In the Add New Diagram dialog box, select the diagram type, enter the diagram name and click OK.

To create a hyperlink to an external URL or file:
1 Open an existing diagram or create a new diagram from which to create the hyperlink.
2 Select the element that you wish to link to the external document.

To link the entire diagram, click the diagram background to deselect all elements.

3 Right-click and choose Hyperlinks Edit. The Edit Hyperlinks dialog box opens.
4 Select the External Documents tab to view the Recently used Documents list which contains a list of previously

selected files or URLs.
5 To add a file to the Recently used Documents list:

1 Click Browse. The Open file dialog box opens.

529

2 Navigate to the desired file and click Open.

6 To add a URL to the Recently used Documents list:

1 Click URL.
2 In the dialog box that opens, enter the appropriate URL and click OK.

Tip: You can create a hyperlink to an external document by entering a relative URL path.

7 To remove an element from the selected list, select the element and click Remove.
8 To clear the Recently used Documents list, click Clear.

Note: Items added to the Recently used Documents list are not specific to a single project or project
group.

9 Click OK to close the dialog box and create the link.

To browse hyperlinks:
1 To view hyperlinks to a diagram, element or external document, right-click on the diagram background or element,

and choose Hyperlinks from the context menu. All hyperlinks created appear under the Hyperlinks submenu. On
a diagram, all names of diagram elements that are hyperlinked are displayed in blue font. When you select a link
from the submenu, the respective element appears selected in the Diagram View.

2 Once you have defined hyperlinks for a selected diagram or element, use the context menus to browse to the
linked resources.

Note: Browsing to a linked diagram opens it in the Diagram View or makes it the current diagram if
already open.

Browsing to a linked element causes its parent diagram to open or become current,
and the diagram scrolls to the linked element and selects it.

To remove a hyperlink:
1 Open the diagram that displays the link you want to remove.
2 Choose Hyperlinks Edit from the diagram or element context menu. The Edit Hyperlinks dialog box opens.
3 In the selected list on the right of the dialog, click the hyperlink that you wish to remove.
4 Click Remove.
5 Click OK to close the dialog box.

Note: To remove a hyperlink from a specific element, select the element first. Then choose Hyperlinks Edit on
the context menu.

530

Instantiating a Classifier
In a UML 1.5 design project, you can create an object that instantiates a class or interface from the same or another
UML 1.5 design project or any implementation project in the same project group. In an implementation project, you
can create an object that instantiates a class or interface from the same project or some UML 1.5 design project or
a referenced project. You can create such links by using the Object Inspector or by using Dependency links to
shortcuts.

To instantiate a classifier:
1 On a UML 1.5 class diagram, choose an object.
2 In the Object Inspector, choose the Instantiates field.
3 Click the Chooser button. The Choose Type to Instantiate dialog box opens.
4 In this dialog box, choose a classifier (class or interface).

Tip: Alternatively, draw a Dependency link from this object to a classifier or its shortcut.

531

532

Laying Out a Diagram Automatically

To lay out a diagram by using one of the algorithms:
1 Right-click the diagram background.
2 From the context menu, select Layout, and choose a command from the submenu.

There are several Layout commands on the Layout submenu:

Do Full Layout: Sets the layout of all elements according to the layout algorithm defined for the current diagram.
Layout for Printing:Sets the layout of all elements using the Together algorithm, regardless of the option
selected on any level.
Route All Links:Streamlines the links removing bending points.
Optimize Sizes: Enlarges or shrinks all elements on the diagram to the optimal size.

Note: Individual diagram elements also have the Route Links and Optimize Size layout commands
on their respective context menus. The Route Links command streamlines the links removing
any bending points. The Optimize Size command enlarges or shrinks the element to the optimal
size, leaving enough space for its label and any sub elements it may contain.

Tip: To enable layout of the inner substructure in diagrams, check the Recursive option ((level) | Diagram | Layout
| General) in the Options dialog window.

To set up the diagram layout:
1 On the main menu choose Tools | Options.
2 On the desired level, select Together | (level) | Diagram | Layout category.
3 Expand the node for the desired algorithm.
4 Specify the algorithm-specific options (if any) and apply changes.

Result: you can observe results of layout tuning when apply one of the Layout commands to the diagram.

The context menu available in the Diagram View provides access to the automated layout optimization features in
Together.

533

534

Linking Another Interaction from an Interaction Diagram

To link another interaction from an interaction diagram:
1 Open an Interaction diagram.
2 Right-click the diagram background and choose Add Shortcut on the context menu.
3 Add a shortcut to another interaction in your project.

535

536

Moving Model Elements
Create your own layout by selecting and moving single or multiple diagram elements.

You can:

Select a single element and drag it to a new position.
Select multiple elements and change their location.
Manually reroute links.

Note: If you drag an element outside the borders of the Diagram View, the diagram automatically scrolls to follow
the dragging.

Tip: Manual layouts are saved when you close a diagram or project and restored when you next open it. Manual
layouts are not preserved when you run one of the auto-layout commands (Do Full Layout or Optimize Sizes).

To move an element:
1 Select the element or elements to be moved.
2 Drag-and-drop the selection to the target location.

Tip: Right-click and use Cut and Paste. Use the keyboard shortcuts for Cut (CTRL+X), Copy (CTRL+C), and Paste
(CTRL+V) operations.

537

538

Printing a Diagram
You can print diagrams separately or as a group, or print all diagrams in the project.

To print a diagram:
1 With the diagram in focus in the Diagram View, choose File Print from the main menu. The Print diagram

dialog box opens.
2 In the Print Diagrams list box, specify the scope of diagrams to be printed:

Active diagram: To print the currently selected diagram.
Active with neighbors: To print the current diagram and the other diagrams of the same project.
All opened: To print all diagrams currently opened in the Diagram view.
All in model: To print all diagrams within a project group.

3 In the Print zoom field, specify the zoom factor.
4 If necessary, adjust the page and printer settings:

Click the Print list box and choose Print dialog box to select the target printer.
Use the Options dialog window (Together (level) Diagram Print options) to set up the paper size,
orientation, and margins.

Tip: Click Preview to open the preview pane. Use the Preview zoom slider, or Auto Preview zoom check box, as
required.

539

540

Putting Diagram Files Under Version Control
Together enables you to put your model under the source control in the same way as the other project resources.

The diagram elements in fact belong to the parent default package (namespace) files (default.txaPackage).
Thus, if editing of a diagram results in adding or deleting elements and changing their properties, you have to check
in or check out both diagram file and the corresponding default.txaPackage file. If editing only changed the
sizes and placement of elements, it is enough to check in or check out the diagram file. To avoid unsynchronized
and ambiguous results, each user in a team that works with the same project, should check out and lock the whole
project exclusively.

You can use the History command to compare changes in diagram files.

Warning: This topic describes the source control actions with regards to modeling. For the detailed information
about source control, refer to the relevant Developer Studio 2006 and source control provider
documentation.

To put diagram files under version control:
1 Make sure that an integration with a supported source control system is installed on your computer. Source

control commands are only enabled when a supported integration is installed.
2 Make sure that your project (project group) is added to the source control.
3 Apply the source control commands to the diagram files by using:

StarTeam menu. This menu contains commands that enable you to add Together diagram files to your source
control repository. You can check in, check out, get, exclude, undo check out of, and compare diagram files.
The Project Manager context menu. The context menu commands enable the same actions, and moreover,
provide the only way to check in and check out the entire project or project group, and work with the default
package or namespace files.

Note: When a project (project group) is added to source control, the Diagram View and the Project Manager show
icons that reflect the status of each model element under source control.

To exclude files from version control:
1 Open the diagram in the Diagram View.
2 Choose StarTeam. The menu command applies to the diagram that is open in the Diagram View and has the

current focus.

To check in and check out a project or a project group:
1 Open the Project Manager.
2 Right-click the project or project group node.
3 Choose Check in (Recursive) or Check Out on the context menu.

To check in and check out diagrams:
1 Open the diagram in the Diagram View, and choose StarTeam Check Out on the main menu. The Source

Control Provider Check out dialog box opens.

541

Tip: To retrieve a read-only copy of the latest version of the diagram, choose StarTeam ??? on
the main menu.

2 Click Check out.
3 After you have finished working with the diagram file, choose StarTeam Check In on the main menu.
4 The Source Control Provider Check in dialog box opens.
5 Click Check in.

Using the Check in command locks the diagram. Diagram elements in the locked diagrams display small lock
symbols. You can still edit the locked diagrams, check-out dialog box being automatically invoked on the first attempt
to edit or add/remove elements. After that the diagram becomes unlocked.

To undo check out:
1 If you check out a diagram and do not make any changes to it, use the Undo Checkout command. Using this

command cancels your check out and removes the writable version of the file from your working folder. The most
recent version of your diagram file in the source control repository is copied over your local copy, and if you have
made any changes to the local copy since you last checked out the file, they are lost.

2 Open the diagram in the Diagram View.
3 Choose StarTeam Revert. The menu command applies to the diagram that is open in the Diagram View and

has the current focus.

To compare diagram versions:
1 Open the diagram in the Diagram View.

Warning: To track differences in the versions of a default package file, select the corresponding
default.txaPackage node in the Project Manager.

2 Choose StarTeam Compare Contents on the main menu. A dialog box opens.
3 Select a version from the list, and click Diff. The Visual Diff window opens.

542

Renaming a Diagram
Warning: The project namespace (package) automatically created diagram cannot be renamed.

To rename a diagram:
1 In the Object Inspector, double-click the diagram name to initiate the inline editor.
2 Enter a new name.
3 Press Enter.

Alternatively:
1 Select the diagram in the Model View.
2 Press F2 or right-click and choose Rename on the context menu.
3 Enter a new name.
4 Press Enter.

Result: The diagram is renamed.

543

544

Rerouting a Link

To reroute a link:
1 Select a link.
2 Drag and drop the client of supplier end of the link to the desired destination object.
3 To change direction of the link, click a place on the link where you want to reroute the link.
4 Drag the line. Together automatically reshapes the link the way you want.

Tip: Model elements have the Layout Route All Links command on diagram context menus.

545

546

Resizing Model Elements
Diagram elements can be resized automatically or manually. When new items are added to an element that has
never been manually resized, the element automatically grows to enclose the new items.

To resize an element manually:
1 Click an element. The selected element is highlighted with bullets.
2 Drag one of the bullets in the desired direction.

When the element contents change, for example, when members are added or deleted, and the element size is too
small to display all members, scroll bars are displayed to the right of compartments.

To optimize a node element size:
1 Right-click an element.
2 Choose Layout Optimize Size.

To optimize the elements on an entire diagram:
1 Right-click the diagram background.
2 Choose Layout Optimize Size.

547

548

Searching Diagrams
Together enables you to use the Find and Replace facilities provided by the Developer Studio 2006 to locate model
elements on model diagrams.

To search diagrams:
1 Choose Search (search command) to use the find and replace facilities provided by the Developer Studio

2006.
2 You can find the specified string in the specified scope. The function supports case sensitivity, searching for

whole words or substrings, using wildcards and regular expressions.
3 Browse the search results.

549

550

Searching Source Code for Usages
In addition to the diagram search facility, Together enables you to track how an element or member is used in a
source-code project. The Search for Usages dialog box enables you to find the references to, and overrides of, the
elements and members in implementation projects.

The Search for usages command is available on the context menu of an element in a diagram or in the Model
View. Note that Search for usages is not available for the design projects.

To search source code for element usages:
1 Right-click an element or a namespace and choose Search for Usages on the context menu. The dialog box

opens with the selected element specified in the section Element to search.
2 In the Options section, check the following options as required:

Usages of elements
Usages of members
Usages of Declared Classes
Implementations
Overriding
Include usings/imports
Skip self

3 Click Search.

The search results are displayed in a tab in the Search for Usages window as a tree view, each node containing all
usages of an element in a certain class. Note that each new search adds its own tab to the window.

The Search for Usages window provides a toolbar with the buttons that enable you to expand or collapse the treeview
nodes, and repeat the search in the selected tab with the same settings.

The context menu of a search results tab provides the following commands:

Command

Close

Close all

Close all but this

551

552

Selecting Model Elements
Most manipulations with diagram elements and links involve dragging the mouse or executing context menu
commands on the selected elements.

To select a model element:
1 Open the Diagram View.
2 On a diagram:

Click any element in the diagram to select it.
To select multiple elements, hold down the CTRL key and click each element individually.
Click the background and drag a lasso around an area to select all the elements it contains.
For elements containing members, click on a member to select it.
To select all elements on a diagram, press CTRL+A. Alternatively, right-click the diagram background and choose
Select All on the context menu.

553

554

Specifying Entry and Exit Actions
You can create entry and exit actions as nodes, or as stereotyped internal transitions.

To specify entry and exit actions using the in-place editor:
1 Create an internal transition in the desired state.
2 Double-click the internal transition to enable in-place editing.
3 Rename the internal transition using the following syntax:

stereotype/actionName(argument)

For example:

exit/setState(idle)

To specify entry and exit actions using internal transitions:
1 Create the internal transition.
2 Set the event name, event arguments, and action expression properties using the Object Inspector for the

internal transition.

555

556

Using a Class Diagram as a View
Class diagrams can also be used to create subviews of the project.

To use a class diagrams as a view:
1 Create a new class diagram.
2 Create shortcuts to the original diagram to easily and quickly build subset views for easier management.

Tip: Using this feature, you can create views of distributed classes into one diagram, with Together automatically
displaying any relationships that the gathered classes may have with each other.

Note: In implementation projects, changes made here also update the source code, keeping diagram and source
code in sync.

557

558

Using Drag-and-Drop
Drag-and-drop applies to the members as well as to the node elements. You can move or copy members (methods,
fields, properties, and so on) by using drag-and-drop in the Diagram View or in the Model View.

Drag-and-drop functionality from the Model View to the Diagram View and within the Model View works as follows:

Selecting an element in the Model View and using drag-and-drop to place the element onto the diagram creates
a shortcut.
Using drag-and-drop while pressing the SHIFT key moves the element to the selected container.
Using drag-and-drop while pressing the CTRL key copies the element to the selected container.

Tip: You can also change the origin and destination for links on your diagrams using drag-and-drop.

To move a link to a new destination:
1 Select a link in the Diagram View.
2 Hover the cursor over the destination arrow.
3 Drag the arrow and drop it on the new destination. If the destination element is not in view, drag the link in the

appropriate direction, and the diagram will scroll with you.

Tip: Follow the same instructions to move the link source to an allowable location.

559

560

Using Grid and Other Appearance Options
You can optionally display or hide a design grid on the diagram background and have elements “snap” to the nearest
grid coordinate when you place or move them. The grid is configured in the Diagram Appearance options dialog
window.

To show grid:
1 Open Options dialog window.
2 Choose the Together Diagram Appearance category, Grid group.
3 Adjust the options.

Note: Grid display and snap are enabled by default.

561

562

Using the UML in Color Profile

To enable or disable the “UML in color” profile:
1 In the Options dialog window, open the Together (level) Diagram Appearance category.

Tip: You can enable or disable it on for the project group, project, or diagram level.

2 Set the Enable UML in color option to True to enable the profile.
3 Optionally, adjust colors used by the profile.
4 Close the Options dialog window.

To draw UML nodes in colors:
1 Select or create a classifier.
2 Open the Object Inspector.
3 Assign a stereotype that is supported by the “UML in color” profile (for example, role).

Result: The classifier changes its color according to the settings in the Options dialog window.

563

564

Using View Filters
For global control over the diagram view, you can use the filters in the Options dialog window.

To enable, disable view filters:
1 Choose Tools Options on the main menu.
2 Click the Together folder.
3 Under the (level) Diagram node, select View Filters.

Note: The filters shown in the Options dialog window are global filters. To specifically filter classes, you can set the
Show members property to False.

To filter classes:
1 In the Options dialog window, View Filters page, click the Show members field.
2 Click the drop-down arrow and select False.
3 Click OK.

This results in disabling the members, and the inner classifiers (classes, delegates, enumerations, interfaces, and
structures).

Since inner classifiers are treated as members of the container element, the following filters do not filter inner
classifiers:

View filter

Show classes

Show delegates

Show enumerations

Show interfaces

Show structures

Note: Code-specific elements are available in implementation projects only.

565

566

Working with a Collaboration Use

To create a collaboration use:
1 On the diagram Tool Palette, choose the Collaboration Use button.
2 Click the target container.
3 Specify the name of the Collaboration Use.

To link to a collaboration type:
1 Select a Collaboration Use element.
2 Specify the type of Collaboration Use using one of the following methods:

In the type field of the Collaboration Use in the Object Inspector, click the chooser button, and select the
collaboration, which the Collaboration Use instantiates, from the Model or Favorites.
Next to the name of the Collaboration Use, insert a colon and the name of the collaboration, which the
Collaboration Use instantiates.

Result: The type of collaboration use is indicated next to its name.

To unlink from a collaboration type:
1 Right-click the Collaboration Use that has a certain type assigned.
2 On the context menu, choose Unlink Collaboration.

To bind with a role (part):
1 On the diagram Tool Palette, choose the Role Binding button.
2 If you hover the mouse over the client collaboration use, the valid client is highlighted with a black ellipse.
3 Drag-and-drop the role binding link to the supplier part. The valid target is highlighted.
4 Type the role name and press Enter to close the in-place editor.

If a collaboration use is associated with a collaboration that contains parts (roles), you can bind them with the parts
(roles) of another classifier.

To bind the roles (parts) of the different classifiers via the collaboration use:
1 Create a collaboration use and define its type.
2 Create one or more parts in the collaboration that represents the type.
3 Right-click the target collaboration use and choose Bind new role on its context menu.
4 In the Select Destination dialog box that opens, choose the role to be bound in the target classifier.

Result: A role link is created from the collaboration use to the role in the target classifier. The role link is now marked
with the name of the role selected in the collaboration.

Note: Each role can be used for binding only once. With the next invocation of the Bind new role command, the list
of available roles no longer displays the ones previously used.

567

To define an owner:
1 Right-click a collaboration use and choose Object Inspector on its context menu.
2 In the owning classifier field of the Object Inspector, click the chooser button.
3 In the Select Owning Classifier dialog box, navigate to the owner class or collaboration and click OK.

Result: A link is created between the owner as supplier, and the collaboration use as the client. The link is marked
with the label <<represents>>.

568

Working with a Combined Fragment

To create a combined fragment:
1 Choose the combined fragment button in the diagram Tool Palette, and click on the target lifeline.
2 In the Type Chooser dialog box that opens, choose the desired operator from the list of available operators.

Alternatively, you can also create a combined fragment using the context menu of the Model View, or Diagram View.

To do this, choose the desired lifeline or execution specification in the Model View, or in the Diagram View. On the
context menu of the selection, choose Add Combined Fragment. This adds a combined fragment to the target
location.

Result: the combined fragment is added to the target lifeline or execution specification. Each new combined fragment
has different color, to tell it from the other combined fragments within the same cluster of nested frames.

To create a nested operator:
1 Select the desired combined fragment.
2 In the Operators field of the Object Inspector, click the chooser button. Edit Combined Fragment Operators

dialog box opens.
3 In the Edit operator combobox, select the desired operator. If a certain operator enables parameters, enter the

parameter values in the adjacent field. Use commas as delimiters.
4 Click Add button. A new line displays below the existing entry in the list of operators, and in the descriptor of the

combined fragment.
5 Use Add and Remove buttons to make up the desired list of the nested operators. Use Up and Down buttons

to specify the proper order of nested operators.
6 Click Done to apply changes.

Result: the nested operators are listed in the descriptor of the combined fragment in the specified order.

You can create the nested combined fragments by placing a new combined fragment node inside of an existing one.
So doing, each new node is displayed in a different color. The colors are selected at random. You can work with the
inner frames same way as with the outer frames: move along a lifeline, spread them over several lifelines, detach
and tie frames. Note that drawing a message link from a frame automatically expands it, together with its outer
frames, if any.

To create an operand:
1 Select the desired combined fragment in the Model View or in the Diagram View.
2 On the context menu of the combined fragment, choose Add Interaction operand.
3 In the Interaction constraint node select the language to be used for describing constraint. To do this, click the

Language drop-down list and choose OCL or plain text.
4 Type the constraint expression.
5 Add as many operands as required.
6 Apply changes.

Result: a new operand is created. Constraint text is displayed in the operand section of the combined fragment.

569

570

Working with a Complex State
The techniques in this section pertain to models of particularly complex composite states and substates.

You can resize the main state. You can also create a substate by drawing a state diagram within another state
diagram and indicating start, end, and history states as well as transitions.

Create a composite state by nesting one or more levels of states within one state. You can also place start/end states
and a history state inside of a state, and draw transitions among the contained substates.

Use the following techniques to create a composite (nested) state:
1 Create a nested substate using drag-and-drop
2 Сreate a nested substate using the context menu of the state element

To create a nested substate using drag-and-drop:
1 Place a state element on the diagram background.
2 Drag a new state on top of an existing state.
3 Drop a new state.

To create a nested substate using the context menu of the state element:
1 Right-click the state (region) that will be the container.
2 Select Add State on the context menu.

Tip: You can nest multiple levels of substates inside one state. For especially complex substate modeling, however,
you can find it more convenient to create different diagrams, model each of the substate levels individually,
and then hyperlink the diagrams sequentially.

Using the Shortcuts command on the context menu of the diagram, you can reuse existing elements in other
state diagrams. Right-click the diagram and choose Add > Shortcuts, navigate within the pane containing the
tree view of the available project contents for the project group to the existing diagram, and select its elements,
states, histories, forks, and/or joins.

Tip: Using the context menu of the state element, you can also create all of the other subelements that a state can
contain.

Tip: Only one History element can be created within one state.

571

572

Working with a Constructor
You can create as many constructors in a class as needed.

In design projects, a constructor is created as an operation with the <<constructor>> stereotype.

In implementation projects, each new constructor is created with its unique set of parameters. In addition to creating
parameters automatically, you can define the custom set of parameters, using the Object Inspector.

Tip: You can move, copy and paste constructors and destructors between the container classes same way as the
other members.

To define the constructor parameters (implementation projects only):
1 Select the desired constructor in a class.
2 In the Object Inspector, click the Params field.
3 In the text field, type the list of parameters in the former type name. Use comma as a delimiter.

573

574

Working with a Field
This topic applies to implementation projects only.

In the source code, it is possible to declare several fields in one line. This notation is represented in diagram as a
number of separate entries in the Fields section if a class icon. However, you can rename the fields, change
modifiers, set initial values and so on, all modifications being applied to the respective field in the diagram icon. Also
you can copy and move such fields in diagram (using context menu commands or drag-and-drop), and the pasted
field appears in the target container separately.

To rename a field:
1 Choose a field.
2 Enter the new name in the in-place editor of the Diagram View or Model View, Name text field in the Object

Inspector or the source code editor.

To define the visibility modifier:
1 Choose a field.
2 Enter the visibility symbol in the in-place editor in the Diagram View, or select one from the Visibility combobox

in the Object Inspector, or edit in the source code editor.

To define the stereotype of a field:
1 Choose a field.
2 Use the in-place editor in the Diagram View, or stereotype combobox of the Object Inspector or the source

code editor.

To define modifiers, initial values, associated objects and so on:
1 Choose a field.
2 Use the Object Inspector or the source code editor.

So doing, the model and the source code are kept in sync.

575

576

Working with a Provided or Required Interface

To create a provided interface:
1 Create class and interface node elements using the and Tool Palette buttons.
2 On the diagram Tool Palette, click the provided interface button.
3 Click the client class and drag the mouse to the interface node.

To create a required interface:
1 Create class and interface node elements using the and Tool Palette buttons.
2 On the diagram Tool Palette, click the required interface button.
3 Click the client class and drag the mouse to the interface node.

577

578

Working with a Relationship
You can change the type of an association link.

To draw an association link:
1 Use the association link button on the UML Class Diagram Tool Palette to draw association links between

diagram elements.
2 The Object Inspector enables you to set the link type (association, aggregation, or composition) and the

cardinality of the client and supplier.
3 You can also set the link type using the right-click menu of the link. When you create an association link, Together

defines a field in the client class (the start of the link).

To set the directed property of an association link:
1 Choose View | Object Inspector if the Object Inspector is not open.
2 Select a link on the diagram. The properties for the link appear in the Object Inspector.
3 In the Object Inspector, select the Directed field.
4 Click the drop-down arrow and select the Directed property (True or False) from the list.

579

580

Working with a Tie Frame

To spread a frame to several lifelines:
1 In the diagram Tool Palette, choose the Tie Frame button.
2 Click the desired interaction use or combined fragment.
3 Drag-and-drop on the target lifeline.

Result: The frame expands to the target lifeline and is attached to it with a dot.

581

582

Working with a UML 1.5 Message
This section describes techniques for working with messages in Sequence and Collaboration diagrams. Although
the two diagram types are equivalent, the techniques for dealing with messages differ.

In a Collaboration diagram, all messages between the two objects are displayed as a generic link line, and a list of
messages is created above it. The link line is present as long as there is at least one message between the objects.
Messages display in time-ordered sequence from top to bottom of the messages list. In addition to the message
links, you can add links that show association and aggregation relationships. These links do not display if you view
the diagram as a sequence diagram.

When you draw messages between objects in a sequence diagram, each message is represented by its own link
line. Messages in sequence diagrams have more editable properties than messages in collaboration diagrams.

Use the following techniques for messages:
1 Сreate a self message
2 Reorder a message link
3 Specify creation of an object with a message
4 Specify destruction of an object with a message
5 Specifying a return link by using the Tool Palette (Toolbox)
6 Specify a return link by using the Object Inspector (Properties Window)

To create a self message:
1 Click the Self Message button on the Tool Palette.
2 For a Sequence diagram, click the lifeline of the object at the point where you want the message to appear.

Clicking the object places the message-to-self first on the lifeline.
For a Collaboration diagram, click the object.

To reorder a message link:
1 Open a diagram.
2 To reorder messages, perform one of the following actions:

Drag message links up and down the object lifeline in the Diagram View. Reordering automatically updates the
message link numbers.
Change the Sequence Number field in the Object Inspector.
In the Diagram View, use the in-place editor to change the sequence number.

To specify creation of an object with a message:
1 Select a message link in the Sequence diagram.
2 In the Object Inspector of the message link, click the Creation field.
3 Choose True from the list box.

583

Result: The message link points to the recipient object icon rather than to its lifeline. The created object moves
downward along the lifeline to show that it exists at a point later in time from its creator.

By default, the Creation property is set to False in the Properties Window.

To specify destruction of an object with a message:
1 Select a message link in the Sequence diagram.
2 In the Object Inspector of the message link, click the Destruction field.
3 Choose True from the list box.

Result: The object is destroyed.

By default, the Destruction property is set to False in the Object Inspector.

To specifying a return link by using the Tool Palette (Toolbox):
1 Click the Return link button in the Tool Palette.
2 On the sequence diagram, click the object lifeline element at the supplier end of the message link to draw the

return link.

To specify a return link by using the Object Inspector (Properties Window):
1 Select the message link on the sequence diagram.
2 Choose View | Object Inspector on the main menu or press F4.
3 In the Object Inspector, click the drop-down arrow for the Return Arrow field and select True.

584

Working with a UML 2.0 Message
This section describes techniques for working with messages in sequence and communication diagrams. Although
the two diagram types are equivalent, the techniques for dealing with messages differ.

Use the following technique for UML 2.0 messages:
1 Show or hide reply message
2 Nest messages
3 Create a message from a lifeline back to itself
4 Create a message link that corresponds to an operation call

To show or hide reply message:
1 Select a call message in an interaction diagram.
2 In the Link tab of the Object Inspector, check or clear show reply message.

To nest messages:
1 You can nest messages by originating message links from an execution specification. The nested message

inherits the numbering of the parent message. For example, if the parent message has the number 1, its first
nested message is 1.1.

2 It is also possible to create message links back to the parent execution specifications.

To create a message from a lifeline back to itself:
1 Click the Message button on the Tool Palette.
2 In a Sequence diagram, click twice the lifeline in the place where you want this message to appear.

In a Communication diagram, click twice the lifeline anywhere.

To create a message link that corresponds to an operation call:
1 Create an interaction.
2 Create a message link between two lifelines in the interaction.
3 Open the Link tab of the message link Object Inspector.
4 In the signature field, click the browse button.
5 In the Model or Favorites, select the desired operation.
6 Click OK.

The message link is named according to the name of the operation.

585

586

Working with an Instance Specification
You can instantiate a classifier using the Object Inspector or the in-place editor.

Use the following techniques with an instance specification:
1 Instantiate a classifier using the Object Inspector
2 Instantiate a classifier using the in-place editor
3 Define the features of an instance specification
4 Add a slot to an instance specification element
5 Associate a slot with a structural feature
6 Set the slot value
7 Define the slot stereotype

To instantiate a classifier using the Object Inspector:
1 Select an instance specification in your diagram.
2 In the General node of the Object Inspector, select the instantiates field.
3 Click the chooser button.
4 In the Choose Class or Interface for Type dialog box, select the classifiers from the available contents, using

the Add and Remove buttons.
5 Click OK when ready.

To instantiate a classifier using the in-place editor:
1 Select an instance specification in your diagram.
2 Press F2 to open the in-place editor. Alternatively, click twice on the instance specification name.
3 Type the name of an existing classifier, delimited by a colon, next to the instance specification name. For exam

ple, InstanceSpecifcation1:Class1.
4 Press Enter.

To define the features of an instance specification:
1 Insert slots into an instance specification element.
2 Associate the slots with the attributes of the instantiated classifiers.
3 Set value, and define the slot stereotype.

To add a slot to an instance specification element:
1 Add an instance specification element to your diagram.
2 Right-click the instance specification element on your diagram and choose New Slot on the context menu.

587

To associate a slot with a structural feature:
1 Select a slot in an instance specification element.
2 Expand the General node of the Object Inspector.
3 In the defining feature field, click the chooser button.
4 In the Choose Attribute for Defining Feature dialog box, select the desired attribute and click OK.

To set the slot value:
1 Choose a slot.
2 Do one of the following:

In the Object Inspector of the slot, type the desired string in the value field.
Invoke the in-place editor for the slot and type the value next to the slot name, delimited by a equal sign.

To define the slot stereotype:
1 In the Object Inspector of the slot, expand the General node.
2 In the Stereotype filed, enter the stereotype value.

588

Working with an Interface

To create an interface:
1 Create a class and an interface node elements using the and Tool Palette buttons.
2 On the diagram Tool Palette, click the generalization link button.
3 Click the client class and drag the mouse cursor to the interface node.

To hide an interface:
1 Select an interface.
2 Right-click and choose Object Inspector on its context menu.
3 Expand the View node.
4 Check the invisible option.

You can hide all interfaces by disabling the Show Interfaces view filter.

589

590

Working with an Object Flow or a Control Flow
You can create control flow or object flow as an ordinary link between the two node elements. The valid nodes are
highlighted when the link is established.

You can scroll to the target element if it is out of direct reach, or you can use the context menu command to avoid
scrolling.

There are certain limitations stipulated by UML 2.0 specifications:

Object flow link must have an object at least on one of its ends.
It is impossible to connect two actions with an object flow except through an output pin on the source action.
Control flow link may not connect objects and/or activity parameters.

Use the following techniques with an object flow or a control flow:
1 Create a flow
2 Сreate a fork or a join
3 Сreate a decision or a merge

To create a flow:
1 Right-click the source element of the flow.
2 On the context menu, choose Add Control Flow or Add Object Flow. The Choose Destination dialog

box opens.
3 In the Choose Destination dialog box, select the target and click OK. Note that the OK button is only enabled

when the valid target is selected.

To create a fork or a join:
1 Identify the actions involved. If necessary, place all of the actions on the diagram first. Lay them out as desired.
2 Place either a fork or a join on the diagram. Resize as needed.
3 If depicting multiple sources, draw control flow from each of the source actions to the join, and from the join to

the target action. If depicting multiple targets, draw control flow from the source action to the fork, and from the
fork to each of the target actions.

To create a decision or a merge:
1 Identify the actions involved. If necessary, place all of the actions on the diagram first. Lay them out as desired.
2 Place either a decision or a merge on the diagram. Resize as needed.
3 If merging multiple actions, draw control flow from each of the source actions to the merge, and from the merge

to the target action. If making a decision, draw control flow from the source action to the decision, and from the
decision to each of the target actions.

591

592

Working with User Properties
User properties are created by means of the User Properties command. The User Properties command is available
on the context menus of the diagrams and diagram elements both in the Diagram View and the Model View. Once
created, the user properties can be viewed and edited in the Object Inspector under the User Properties category.

To create user properties:
1 In the Diagram View or the Model View, select the desired diagram or model element.
2 On the context menu, choose User Properties.
3 In the Add/Remove user properties dialog box, click the Add button. A new entry, consisting of the Name and

Value fields, is added to the properties list.
4 In the new entry, enter the property name and value.
5 Using the Add and Remove buttons, make up the list of user properties.
6 Click OK when ready.

Result: The User Properties category appears in the Object Inspector.

593

594

Zooming a Diagram
Use the diagram context menu to obtain the required magnification in the Diagram View.

To specify the magnification in the Diagram View:
1 Right-click the diagram background.
2 Select Zoom on the context menu.
3 Choose a command from the submenu.

595

Together Documentation Generation
Procedures

596

Configuring the Documentation Generation Facility
To define the documentation title, header, footer and other specific settings, use the Options dialog window.

Descriptions of the options are provided in the Options dialog window. You can also find their descriptions in this
online help.

To configure the documentation generation facility:
1 On the main menu, choose Tools Options Together (level) Generate Documentation.
2 Under the General category, enter the documentation title, window title, header, and footer.
3 Set the User Internal Browser option to choose to open the generated documentation in an external browser or

in the Developer Studio 2006 internal browser. By default, documentation opens in your external browser.
4 Under the Include category, select the visibility modifiers for classes and members to be included in the generated

documentation.
5 Under the Navigation category, set up the options for generating navigation bar, index, class hierarchy, and help

link.

597

598

Generating Project Documentation

To generate project documentation:
1 Select project name, namespace or diagram in the Model View.
2 Select Tools Generate Documentation on the main menu. Alternatively, right-click the selection and choose

Generate Documentation on the context menu.
3 In the Generate Documentation dialog box that opens, select your preferred Scope and Options settings.
4 Click OK to generate documentation. By default, the Generate Documentation wizard creates documentation for

your entire project.

599

Together Object Constraint Language
(OCL) Procedures

600

Creating a Guard Condition for a Transition

To create a guard condition for a transition:
1 Select a transition in the diagram.
2 Under the General node of the Object Inspector, click the Guard field.
3 Type the condition expression and apply changes.

601

602

Creating a State

To create a state:
1 Using the Tool Palette buttons: On the diagram Tool Palette, choose to create a state node. Click an appropriate

place on your diagram.
Alternatively:

Using the context menu of the diagram: Right-click the diagram background. Select Add State on the context
menu.

Note: You can place a state inside of the existing state. It is possible to hide individual states. For
example, you might want to hide the content of composite states for better understanding of
the whole diagram.

2 When a new state is placed on a diagram, you can use the Object Inspector to adjust its properties, including:

Configure standard properties of the element.
In the State Invariant field, select the language of the expression from the Language list box. The possible
options are OCL and plain text.
In the Properties page, configure the behavior of the state by setting or viewing the following additional
properties:

Field Description

Composite Set to True if there is one or more regions in this state (not editable)

Orthogonal Set to True if there are two or more regions in this state (not editable)

Simple Set to True if there are no regions in this state (not editable)

Do activity Specify the activity to be performed during execution of the current state by using the Object
Inspector. This activity may be selected from any Activity diagram of the project

Entry Specify the activity to be performed when the current state starts executing by using the Object
Inspector. This activity may be selected from any Activity diagram of the project

Exit Specify the activity to be performed when the current state finishes executing by using the Object
Inspector. This activity may be selected from any Activity diagram of the project

In the edit field below the list box enter the OCL expression for this state.

603

604

Creating a State Invariant

To create a state invariant as an OCL comment:
1 On the diagram Tool Palette, choose the state invariant button.
2 Click the target lifeline or execution specification.

Tip: Alternatively, use the Add State invariant command on the context menu of a lifeline or an
execution specification.

3 In the Object Inspector of the state invariant, select the General node.
4 In the Invariant kind field, choose OCL expression from the drop-down list. The shape of the state invariant

diagram element changes to braces.
5 In the OCL invariant node that adds to the Property Browser, select the language of the comment from the

Language drop-down list. The possible options are OCL and plain text.
6 Type the text and apply changes.

To connect a state invariant to a state:
1 On the diagram Tool Palette, choose the state invariant button.
2 Click the target lifeline or execution specification.
3 In the Object Inspector of the state invariant, select the General node.
4 In the Invariant kind field, choose States/Regions from the drop-down list.
5 In the States/Regions field, click the chooser button.
6 In the Choose States and/or Regions dialog box, select the desired states and/or regions from the model, using

the Add button.
7 Click OK when ready.

Tip: Alternatively, type the state or region name. If the state or region belongs to a different package,
specify its fully-qualified name.

605

606

Creating an OCL Constraint

To create an object constraint and link it with the context:
1 In the Class/package diagram Tool Palette, choose the Constraint button and click the diagram background.

The note element appears with the OCL editor activated.
2 Type the constraint expression.
3 Close the OCL editor.
4 In the diagram Tool Palette, choose the button, and link the constraint node with the respective design element.

Tip: The constrained attribute should actually exist in the context. Otherwise the constraint will be
marked as invalid.

Alternatively, follow these steps:
1 In the Model View or in the diagram, right-click an element for which a constraint should be created.
2 Choose Constraints.
3 In the Add / Remove constraints dialog box, click Add.
4 Enter the constraint:

In the Name field, enter the constraint name.
In the Language field, choose OCL or text from the list box.
In the Constraint field, enter the constraint text.

5 Add as many constrains as needed.
6 Click OK when ready.

607

608

Editing an OCL Expression

To activate the OCL Editor:
1 Double-click a constraint element or OCL property, or select a constraint element and press F2. The OCL Editor

window opens.
2 Edit an expression.
3 Use the green button to apply changes and close the OCL Editor. Use the red button to discard changes and

close the OCL Editor.

609

610

Showing and Hiding an OCL Constraint

To hide an individual constraint:
1 Right-click a constraint in the diagram.
2 Choose Hide.

To hide multiple constraints:
1 Right-click the diagram background.
2 Choose Show/Hide.
3 In the Show Hidden dialog box, select the desired constraints in the Diagram Elements list.
4 Click Add.

To reveal the hidden constraints:
1 Right-click the diagram background.
2 Choose Show/Hide.
3 In the Show Hidden dialog box, select the desired constraints in the Hidden list.
4 Click Remove.

611

612

Working with a Combined Fragment

To create a combined fragment:
1 Choose the combined fragment button in the diagram Tool Palette, and click on the target lifeline.
2 In the Type Chooser dialog box that opens, choose the desired operator from the list of available operators.

Alternatively, you can also create a combined fragment using the context menu of the Model View, or Diagram View.

To do this, choose the desired lifeline or execution specification in the Model View, or in the Diagram View. On the
context menu of the selection, choose Add Combined Fragment. This adds a combined fragment to the target
location.

Result: the combined fragment is added to the target lifeline or execution specification. Each new combined fragment
has different color, to tell it from the other combined fragments within the same cluster of nested frames.

To create a nested operator:
1 Select the desired combined fragment.
2 In the Operators field of the Object Inspector, click the chooser button. Edit Combined Fragment Operators

dialog box opens.
3 In the Edit operator combobox, select the desired operator. If a certain operator enables parameters, enter the

parameter values in the adjacent field. Use commas as delimiters.
4 Click Add button. A new line displays below the existing entry in the list of operators, and in the descriptor of the

combined fragment.
5 Use Add and Remove buttons to make up the desired list of the nested operators. Use Up and Down buttons

to specify the proper order of nested operators.
6 Click Done to apply changes.

Result: the nested operators are listed in the descriptor of the combined fragment in the specified order.

You can create the nested combined fragments by placing a new combined fragment node inside of an existing one.
So doing, each new node is displayed in a different color. The colors are selected at random. You can work with the
inner frames same way as with the outer frames: move along a lifeline, spread them over several lifelines, detach
and tie frames. Note that drawing a message link from a frame automatically expands it, together with its outer
frames, if any.

To create an operand:
1 Select the desired combined fragment in the Model View or in the Diagram View.
2 On the context menu of the combined fragment, choose Add Interaction operand.
3 In the Interaction constraint node select the language to be used for describing constraint. To do this, click the

Language drop-down list and choose OCL or plain text.
4 Type the constraint expression.
5 Add as many operands as required.
6 Apply changes.

Result: a new operand is created. Constraint text is displayed in the operand section of the combined fragment.

613

Together Pattern Procedures

614

Adding Participants to the Patterns as First Class Citizens
Patterns as First Class Citizens are represented by the GoF patterns. When such patterns are applied, the elements
are created with the standard number of participants. However, you can add allowed participants to the existing
pattern object. If you add participants, links between the pattern object and the new participants are created.

To add a participant to a GoF pattern:
1 Select the oval pattern element in the Diagram View or Model View
2 Right-click on the pattern element choose Add from the context menu. The submenu presents the list of allowed

participants.
3 Choose the required participant from the submenu.
4 In the Pattern Action Wizard, specify the name of the new participant, and click OK.

Tip: If the participant with the specified name already exists, it is reused.

615

616

Assigning Patterns to Shortcuts
You can associate a pattern with one or more shortcuts, located in the various virtual folders.

To assign a pattern to a shortcut:
1 In the Virtual pattern trees section of the Pattern Organizer, select the desired shortcut.
2 Right-click and choose Assign Pattern. The Pattern Registry opens.
3 In the Pattern Registry, select the pattern to be assigned to the selected shortcut, and click OK.
4 In the Properties section of thePattern Organizer, edit the shortcut name and visibility as required
5 Save the changes.

617

618

Copying and Pasting Shortcuts, Folders or Pattern Trees

To copy and paste a folder or a shortcut:
1 In the Virtual pattern trees section, select a shortcut, folder or pattern tree to be copied.
2 Right-click the node and choose Copy on the context menu.

Tip: Alternatively, press CTRL+C

3 Right-click the destination node and choose Paste on the context menu.
Alternatively, press CTRL+V

4 Save changes.

619

620

Creating a Folder
Use virtual folders to logically organize patterns in the pattern trees.

To create a new folder:
1 In the Pattern Organizer, select the target node in the Virtual pattern trees section.
2 Right-click this node and choose New Folder. The New Folder node is added.
3 In the Properties section, edit the Name and Visible fields as required.

621

622

Creating a Link by Pattern
Together makes it easy for you to apply patterns when creating links. To create links during modeling, you can use
the Link by Pattern button in the diagram Tool Palette. The Link by Pattern button launches the Pattern
Wizard dialog displaying the available patterns.

To create a link by pattern:
1 Click the Link by Pattern button in the diagram Tool Palette. The button stays down.
2 Click the source element on the diagram.
3 Drag to the destination element and drop when the second element is highlighted. The Pattern Wizard opens.
4 In the Pattern Wizard window, select the pattern that you want to apply for the new link, define its properties and

click Finish.

623

624

Creating a Model Element by Pattern
You can apply patterns explicitly using the Node by Pattern button in the Tool Palette or by using the right-click
menu command Create by Pattern. Whenever you create an element on a diagram using one of the toolbar buttons,
you are applying a default pattern that is connected to the selected button.

To create model elements by pattern:
1 On the diagram Tool Palette, choose the Node by Pattern button.
2 Click the container, where you want to add an element by pattern. This can be either the diagram background

or a node element. Pattern Wizard opens.

Tip: Alternatively, right-click the target container and choose Create by Pattern on the context menu.

3 In the Pattern Wizard select the desired pattern, modify its properties and click OK.

625

626

Creating a Pattern
You can use existing diagram elements as the basis to create custom patterns. The newly created patterns are
stored in the Pattern Registry. They become visible in the pattern tree of the Pattern Organizer and can be used
to generate design elements in diagrams.

To create a pattern:
1 Select one or more elements on a diagram.
2 Right-click and choose Save as Pattern on the context menu of the selection. The Create Pattern Wizard opens.
3 On the General page of the wizard enter the following information:

In the File field specify the target XML file name.
In the Name field specify the name of the new pattern.
Optionally, enter the pattern description in the Description field
Optionally, check Create Pattern Object check box. Selecting this option allows you to use your pattern as a
First Class Citizen. This means that an oval pattern element will display on your diagrams when applying the
pattern.
Click Next.

4 On the Pattern Parameters page of the wizard:

Use the in-line editor to modify the parameters as required.
Set the Use Existent property for the pattern. If this value is checked, existing elements on the diagram are
reused when you apply the pattern. This means that whenever you apply a pattern, a new element is not created
if there is an element with the same name and metatype in the target container . If you clear theUse Existent
property, then new elements are created.
Click Next.

5 In the Select tree folder page that displays the current patterns structure, choose the target folder, and click OK.

Result: The new pattern is added to the specified folder. This pattern is visible in the pattern tree and can be used
to generate design elements.

627

628

Creating a Shortcut to a Pattern
In the Pattern Organizer you are working with shortcuts, not with the actual patterns. Because of this, shortcuts to
the same pattern may be included in several folders.

To create a new shortcut to a pattern:
1 In the Pattern Organizer, select the topmost target node.
2 Right-click this node and choose New Shortcut. The Pattern Registry opens.
3 In the Pattern Registry, select the pattern to be assigned to the new shortcut, and click OK
4 When the Pattern Organizer prompts you to save changes in the Pattern Registry, click Yes.

629

630

Creating a Virtual Pattern Tree
The Pattern Organizer enables you to logically organize patterns using virtual trees, folders and shortcuts. Under
a tree node you can create virtual folders and shortcuts to patterns.

To create a new pattern tree:
1 In the Pattern Organizer, select the topmost Patterns node.
2 Right-click this node and choose New Pattern Tree. The New Pattern Tree node is added.
3 In the Properties section, edit the Name and Visible fields as required.

631

632

Deleting Patterns as First Class Citizens from the Model
You can delete elements of the patterns as First Class Citizens (GoF patterns), using both the Diagram View and
the Model View. If you delete elements, they are removed from the diagram and from the model.

To delete a GoF pattern with participants:
1 In the Diagram View or Model View, select the oval pattern element to be deleted.
2 On the context menu of the selection, choose the Delete with Participants command.
3 Confirm deletion.

633

634

Deleting shortcuts, folders or pattern trees

To delete a node from the Pattern Organizer:
1 In the Virtual pattern trees section, select a shortcut, folder or pattern tree to be deleted.
2 Right-click the node and choose Delete on the context menu.

Alternatively, press DELETE key

3 Save changes.

635

636

Editing Properties
Properties of the virtual trees, folders and shortcuts are displayed in the properties section of the Pattern
Organizer. Using the toolbar buttons, you can choose the properties presentation: in expandable nodes, or in
alphabetical order. The Name and Visible properties are editable. Changes are applied when the edited field looses
the focus, or the Enter key is pressed. The node name in the tree view changes accordingly.

To edit properties of a tree, shortcut or folder:
1 Select a node in the Virtual pattern trees section.
2 In the Properties section, edit the Name property, using the text field.
3 In the Properties section, edit the Visible property, using the drop-down list.

Tip: The Visible property applies to shortcuts only. If Visible is set to Visible, the shortcut is displayed
in the Pattern Wizard. Otherwise, it is not visible. If a folder does not contain any visible shortcuts,
it is also hidden in the Pattern Wizard.

4 Save changes.

637

638

Exporting a Pattern
You can create patterns and export them to the specified location.

To export a pattern:
1 In the Pattern Organizer window, expand the pattern tree and locate the folder to be exported.
2 Right-click the selected folder and choose Export folder.
3 In the Select path to export dialog box, navigate to the desired location, and click Save.

639

640

Importing a Legacy Pattern
You can reuse patterns created in the different versions of Together. Upon starting Together, the available storage
is scanned for patterns, and all the encountered patterns are included in the Pattern Registry. However, they are
not available for usage unless you manually create shortcuts to these patterns in the Pattern Organizer.

To reuse a custom pattern, follow this general procedure:
1 Copy your legacy patterns to the folder that stores patterns in your product installation folder.
2 After the product startup, Pattern Registry automatically registers all available patterns.
3 Open the Pattern Organizer,
4 In the Pattern Organizer window:

Locate the target folder for the patterns in question, or create a new folder.
Create a new shortcut.
Assign the desired pattern to this shortcut.

5 Save changes.

641

642

Opening the Pattern Organizer
The Pattern Organizer enables you to logically organize patterns (using virtual trees, folders and shortcuts), and
view and edit the pattern properties.

To open the Pattern Organizer:
1 On the main menu, choose Tools Pattern Organizer.
2 Result: The Pattern Organizer window opens.

643

644

Saving Changes in the Pattern Registry
If you have changed the contents of the Pattern Registry using the Pattern Organizer (created new shortcuts,
exported or created shared folders), these changes are synchronized with the Registry automatically. When you
close the Pattern Organizer, you are prompted to save changes. Each time you start Together, the contents of the
available storage is scanned for patterns. The contents of the registry is synchronized with the actual availability of
the pattern folders. If you have made changes to the patterns outside the Organizer, these changes will be
synchronized when Together is started.

To save changes in the Pattern Registry:
1 In the Pattern Organizer click Close button. The dialog window opens prompting you to save changes in the

pattern registry.
2 Click Yes to confirm.

Tip: Alternatively, open the Pattern Registry dialog, and click Synchronize.

645

646

Sharing Patterns
You can store patterns in the shared locations, to facilitate team development. The Pattern Organizer enables
access to the shared patterns if the paths to these patterns are included in the list of Shared Pattern Roots. being
included in the list, patterns from the shared location become visible in the Custom Patterns node of the patterns tree.

To create shared patterns:
1 Export the desired patterns to a shared location.
2 In the Pattern Organizer, click Edit Shared Patterns Roots. Shared Patterns Roots dialog opens.
3 In the List of Shared Patterns Roots, click Add. Select Shared Pattern Tree dialog opens.
4 In the Select Shared Pattern Tree dialog locate the folder that contains the desired patterns, select the
Shortcut Registry.xml file and click Open. The path is added to the list of shared pattern roots.

5 Edit the list using Add and Remove buttons.
6 Click OK when ready.

647

648

Sorting Patterns
While working with the Pattern Organizer, the logical trees, folders, and shortcuts may be displayed in an arbitrary
order. You can sort nodes alphabetically within the container node, using the Sort Folder command.

To sort patterns the Pattern Organizer:
1 In the Virtual pattern trees section, select the node to be sorted.
2 Right-click the node and choose Sort Folder on the context menu.
3 Save changes.

649

650

Using the Pattern Organizer
The Pattern Organizer enables you to:

Create logical pattern trees and folders
Create shortcuts to patterns
Assign patterns to shortcuts
Copy, paste and delete trees, folders and shortcuts
Save changes in the Pattern Registry

651

652

Using the Pattern Registry
The Pattern Registry is only available from the Pattern Organizer context menu, when you create a new shortcut,
or assign a pattern to a shortcut. In the Pattern Registry you can filter patterns by category, metaclass, diagram type,
language or status of registration.

To open the Pattern Registry, do one of the following:

Right-click a folder and choose New shortcut.
Right-click a pattern shortcut and choose Assign Pattern.

To filter patterns in the Pattern Registry:
1 In the Filters section of the Pattern Registry dialog window, click the attribute to filter the patterns.
2 Select the desired value from the drop-down list.

653

654

Using the Stub Implementation Pattern

To create an inheritance link with stub implementation using the Link by Pattern button:
1 Click the Link by Pattern button in the Tool Palette.
2 Click the source class and drag-and-drop the link to the destination class or interface. The Pattern Wizard dialog

opens.
3 In the Pattern Wizard, expand the Standard folder and select Implementation link and stub.
4 Click OK to complete the stub implementation. The inheritance link is created and the stubs for the inherited

methods are generated in the source class.

To create an inheritance link with stub implementation using the Node by Pattern button:
1 Click the Node by Pattern button in the Tool Palette.
2 Select the source class on the diagram. The Pattern Wizard opens.
3 In the Pattern Wizard, expand the Standard folder, and select Implementation link and stub.
4 In the Pattern Properties pane on the right of the Pattern Wizard, click the information button to the right of the

Supplier field. The Select Supplier dialog opens.
5 Select the destination class or interface from the treeview of available contents and click Ok.
6 Click OK to complete the stub implementation and close the Pattern Wizard. The inheritance link is created and

the stubs for the inherited methods are generated in the source class.

To create an inheritance link with stub implementation using the Create by Pattern context
menu:
1 Right-click the source class on the diagram and choose Create by Pattern from the context menu. The Pattern

Wizard opens.
2 In the Pattern Wizard, expand the Standard folder and select Implementation link and stub.
3 In the Pattern Properties pane on the right of the Pattern Wizard, click the information button to the right of the

Supplier field. The Select Supplier dialog opens.
4 Select the destination class or interface from the treeview of available contents and click Ok.
5 Click OK to complete the stub implementation and close the Pattern Wizard. The inheritance link is created and

the stubs for the inherited methods are generated in the source class.

Note: You can find the Stub implementation pattern on the context menu of classes that inherit from an interface
or an abstract class. This pattern is also available in the Pattern Wizard by clicking the Node by Pattern button
in the Tool Palette, or by using the Create by Pattern context menu for a class. Use the Stub implementation
pattern if you already have an inheritance/generalization link drawn on the diagram and you want to copy the
methods to the source class.

To create a stub implementation using the class context menu:
1 Right-click a class that inherits from an interface or an abstract class.
2 Choose Stub Implementation from the context menu.

655

To create a stub implementation using the Node by Pattern button:
1 Click the Node by Pattern button in the Tool Palette.
2 Select the source class on the diagram. The Pattern Wizard opens.
3 In the Pattern Wizard, expand the Standard folder, and select Stub implementation.
4 Click OK to complete the stub implementation and close the Pattern Wizard. The stubs for the inherited methods

are generated in the source class.

To create a stub implementation using the Create by Pattern context menu:
1 Right-click the source class on the diagram and choose Create by Pattern from the context menu. The Pattern

Wizard opens.
2 In the Pattern Wizard, expand the Standard folder, and select Stub implementation.
3 Click OK to complete the stub implementation and close the Pattern Wizard. The stubs for the inherited methods

are generated in the source class.

656

Together Project Procedures

657

658

Activating Together Support for Projects
This topic describes how to activate Together support for a project individually.

Tip: You can also force Together to activate support automatically for all new or currently open projects by adjusting
General options.

To activate Together support follow these steps:
1 Switch to a desired project or project group.
2 Choose Project Together Support on the main menu.

Tip: Alternatively, choose Together Support from the project node context menu in the Project
Manager or Structure View.

Result: The Model Support dialog box opens showing the list of projects within the current project group.

3 In the Model Support dialog box, check the flags for those projects where you need modeling.
4 Click OK.

Result: The Model View displays the models for each of the selected projects. In the Project Manager,
ModelSupport_%PROJECTNAME% ModelSupport folder is added to each of the selected projects.

To deactivate Together support, follow the above procedure, but uncheck the flags for those projects of a project
group that do not need modeling.

659

660

Creating a Project

To create a Together project:
1 On the main menu, choose File New Other. The New Project dialog box opens.
2 From the Project Types pane, choose the desired project category.
3 From the Templates pane, choose the desired project template.
4 Enter the project name, location and other parameters as required by the New Project dialog box.
5 Click OK.
6 Follow the procedure provided by the New Project Wizard.
7 In the Project from MDL wizard, click the Add Folder button and choose the desired source folder from the file

system. Use the Remove and Remove all buttons to make up the list of model files.

Result: A project of the selected type is created in the specified location.

For design project, .bdsproj .tgproj file is created in the specified project root. The default package and diagram
are created.

For implementation project, if Together support is enabled, .bdsproj file is created in the specified project root,
the default namespace and diagram are created.

661

662

Exporting a Project to XMI Format

To export a project to XMI format:
1 In the Model View, right-click the root project node, and choose Export Project to XMI, or choose File Export

Project to XMI on the main menu. The XMI Export dialog box opens.
2 In the Select XMI Type groupbox, select the xml/uml version you wish the file to support. You can select from

the available XMI Type choices:

XMI for UML 1.3 (Unisys Extension)
XMI for UML 1.3 (Unisys Extension, Recommended for TCC), default value
XMI for UML 1.3 (Unisys Extension, Recommended for IBM Rational Rose)

3 Click the drop-down arrow to select an appropriate XMI encoding requirement. The default value is UTF-8.
4 Specify the export destination. You can include the path as well as the name of the file (.xml) which will be created,

or you can accept the default: (project folder)\out\xmi\(project name).xml
5 Click Export. If the destination directory does not exist, a confirmation dialog asks if you want to create it.
6 Click Yes.

Result: The created XML file is added to the specified location.

663

664

Importing a Project Created in TCC or TAR
You can use the following steps to migrate your existing Together ControlCenter diagrams and source code to
Developer Studio 2006.

To make it possible to use the Together ControlCenter models in Developer Studio 2006, Together ControlCenter
supports the packaging namespace organization for C# projects. This means that you can optionally require
automatic settings of namespaces for C# classifiers in the Together ControlCenter Options dialog window. When
pasting a class to a package (no matter where this class was located before), its new instance appears in the
namespace declaration corresponding to the package name. The namespace name will be the same as the package
name, and files placed in the directory/package structure will have the corresponding namespaces in source code.

Warning: You cannot move packages because namespace organization will be violated. To put a package in a
different location, you must create a new package with the same name located in that new location, create
the necessary classes in it, then remove the old package.

Note: This example assumes the following:

You have already installed and activated Together support.

You have been working with your C# projects in Together ControlCenter 6.2 or Together
Architect with the packaging namespace organization activated (see below) so that your
source files are reflected in the appropriate namespaces in Developer Studio 2006.

To import a project, follow these steps:
1 Activating support for the packaging namespace organization
2 Setting up the project in Developer Studio 2006
3 Adding the Together ControlCenter file structure to the Developer Studio 2006 project
4 Viewing the Together ControlCenter project files in Developer Studio 2006

To configure TCC or TAR to automatically set namespaces for classifiers in
implementation projects:
1 Open your project in TCC or TAR.
2 Choose Tools Options Default level or Tools Options Project level.
3 In the left pane of the Options dialog window, expand the Source code C# node of the options tree view.
4 Check Set namespace for classes according to package name.
5 Click OK to apply the settings and close the dialog box.
6 Close the TCC (TAR) project.

To set up a project in Delphi:
1 Choose File New Other. The New Project dialog box opens.
2 From the project types, choose C# Projects .
3 From the templates, choose the appropriate one.
4 Click OK.
5 Enter the project name. Use the same name as your TCC (TAR) project.

665

6 Choose a location for your project. The actual location for the project is irrelevant, but you will need to remember
the location.

7 Click OK.

Result: The project is created and displayed in Developer Studio 2006.

To create the file structure:
1 Close the project in Developer Studio 2006.
2 Open Windows Explorer or any other file manager.
3 Navigate to your TCC or TAR project folder.
4 Copy the src folder from the TCC or TAR project folder to the Developer Studio 2006 project folder.
5 Open the diagrams folder in the TCC or TAR project and copy its contents to the ModelSupport_%
PROJECTNAME% ModelSupport folder in the Developer Studio 2006 project folder. Developer Studio 2006 uses
the ModelSupport_%PROJECTNAME% ModelSupport folder to save diagram files, TCC (TAR) uses the
diagrams folder by default.

To add the TCC or TAR source code items to the new project:
1 Switch to Developer Studio 2006.
2 From the main menu, choose File Reopen and select the newly created project from the list.
3 Open the Project Manager.
4 Choose the project root node.
5 Right-click and choose Add... on the context menu. The Add to Project dialog box opens.
6 In this dialog box, choose the first source file from the src folder and click OK.
7 Repeat the last steps for all source and modeling files.
8 Open the Model View.

Result: The Model View displays the TCC or TAR diagram and source files.

666

Importing a Project Created in TVS, TEC, TJB, or TPT
Together supports full backward compatibility with the previous version. You can open your old projects in the regular
way.

You can also import projects created in other editions of Together.

Warning: Diagrams in projects must be created in the common diagram
format .txv*. The legacy diagram format .df* is not supported.

Warning: Diagram elements must be embedded (created as filemates). Standalone design elements (SDE) are
not supported.

The general procedure for importing a project created in TVS, TEC, TJB, or TPT consists
of the following steps:
1 Creating a new project in Developer Studio 2006
2 Importing the model information into this project

To create a new project for import:
1 Choose File New Other on the main menu. The New Project dialog window opens.
2 Select the project template. Note that the project type should correspond to the type of the source project:

For a C# project, choose C# Projects (appropriate template).
For a UML 1.x design project, choose Design project UML 1.5 Design Project.
For a UML 2.x design project, choose Design project UML 2.0 Design Project.

3 Enter the project name.

Warning: The project name should be exactly equal to the source project name. Adjust the remainder
of the settings on your own.

4 Click OK to create a project.
5 Close the project when it is created.

To import the model information:
1 Open Windows Explorer or any other file manager.
2 Copy all model files including subfolders from the source project to the ModelSupport_%PROJECTNAME%
ModelSupport folder under your new project root. These files are located under diagrams, ModelSupport
or Model Folder directories, depending on the version of Together.

Note: For some projects these files are located in the same folders as the source code files. In this
case you will have to pick out the modeling files manually. Basically, you need all files
with .txv* and .txa* extensions.

3 If you have an implementation project and you need to keep your source code, copy it from the source project
to the new one keeping the folder structure.

667

4 Open the project in Developer Studio 2006. Open the Project Manager.
5 Choose the project root node.
6 Right-click and choose Add... on the context menu. The Add to Project dialog box opens.
7 In this dialog box, choose the first source file from the src folder and click OK.
8 Repeat the last steps for all source and modeling files.

Result: Developer Studio 2006 processes your files. When completed, the imported project is displayed in the
Model and Diagram Views.

668

Importing a Project in IBM Rational Rose (MDL) Format

To create a design project on the base of an IBM Rational Rose (MDL) project:
1 On the main menu, choose File New Other. The New Project dialog box opens.
2 From the Project Types pane, choose Design Project.
3 From the Templates pane, choose Convert from MDL template.
4 Enter the project name, location and other parameters as required by the New Project dialog box.
5 Click OK.
6 In the Project from MDL wizard, specify the source .mdl, .ptl, .cat, or .sub file using the Add button.
7 Specify the scale factor and conversion options.
8 Click Finish.

Result: A new design project is created in the specified location.

669

670

Importing a Project in XMI Format

To import a project in XMI format:
1 Open a diagram or have the project root node selected in the Model View.

Warning: The project must comply with the UML 1.5 specification.

2 In the Model View, right-click the root project node and choose Import Project from XMI, or choose File
Import Project from XMI on the main menu. The XMI Import dialog box opens.

3 Browse for the source file.
4 Click Import.

Tip: The recommended way to import a project from Together ControlCenter (TCC) or Together Architect (TAR) to
Developer Studio 2006 is to use the common diagram format.

You can import a model created with IBM Rational Rose directly.

671

672

Opening an Existing Project for Modeling
You can add modeling capabilities to an existing implementation project that was created without Together.

When you open a project subdirectory from the Model View or Diagram View, Together reverse engineers the
contents into a namespace diagram that shows the namespaces, classes, and interfaces and their interrelationships.

To open an existing implementation project for modeling:
1 Make sure that Together support is activated.
2 On the main menu, choose File Open Project.
3 In the Open Project dialog box, specify the project location.
4 Select the project or project group file.
5 Click OK.

Result: With Together support activated, opening existing implementation project automatically reverse engineers
the existing source code into class diagrams.

673

674

Sharing a Project Between TCC/TAR and Developer Studio 2006
This section focuses on sharing your model information between Developer Studio 2006 and Borland Together
ControlCenter (TCC) or Borland Together Architect (TAR) by using a C# project. You will create a set of diagrams
in Together ControlCenter and then refer to these diagrams in Developer Studio 2006.

Use the following general procedure for creating a shared project:
1 Setting up a C# project in Developer Studio 2006

To set up a C# project:
1 On the main menu, choose File New Other. The New Project dialog box opens.
2 From the project types, choose C# Projects .
3 From the templates, choose the appropriate one.
4 Click OK.
5 Enter ProjectRoot as the project name.
6 Choose a location for your project. The actual location for the project is irrelevant, but you will create your Together

ControlCenter project in the same location.
7 Click OK.

Result: The project is created and displayed in the Project Manager.

To create the folder hierarchy:
1 Navigate to the project folder by using Windows Explorer or any other file manager, and create a new folder

under it.
2 Enter src for the name of the new folder.
3 Create another folder under src.
4 Enter analysis for the name of the new folder.
5 Repeat the last steps and add another folder naming it requirements.
6 Save all changes and close the Developer Studio 2006 project. If prompted to save changes to the project, click

Yes.

The resulting folders created in Developer Studio 2006 will be used by TCC or TAR. The folder hierarchy begins
with a src folder.

To create a project in Together ControlCenter or Together Architect:
1 Run TCC or TAR.
2 A corresponding TCC or TAR project must be created to share the diagram files. Choose File New Project

Expert on the main menu.
3 On the first window of the New Project Expert:

Specify the project name. For this example, enter TCC_Project.

Specify the location of the project to match that of your project in Developer Studio 2006, ProjectRoot. For
example, the Developer Studio 2006 project, ProjectRoot, was created at the following location: C:
\Documents and Settings\User\My Documents\Borland Studio Projects\ProjectRoot C:
\Program Files\Microsoft Visual Studio .NET 2003\VC#\MyCSharpProjects

675

\ProjectRoot. The TCC or TAR project location should be the same as the Developer Studio 2006 project
location.
Choose C# for the Default language.
Choose New project for the project Creation Scenario.

4 Click Next to continue.
5 Select a path for the C# source files. Choose the src folder. For example, C:\Documents and Settings
\User\My Documents\Borland Studio Projects\ProjectRoot\src C:\Program Files
\Microsoft Visual Studio .NET 2003\VC#\MyCSharpProjects\ProjectRoot\src, and click
Next to continue.

6 Select No to separate diagram files. Unlike Together ControlCenter, Developer Studio 2006 enforces separation
between diagram files and source code.

7 Click Next to continue.
8 Select the ModelSupport_%PROJECTNAME% ModelSupport folder of the project root directory for the location

to store the diagram files. For example, C:\Documents and Settings\User\My Documents\Borland
Studio Projects\ProjectRoot\ModelSupport_ProjectRoot C:\Program Files\Microsoft
Visual Studio .NET 2003\VC#\MyCSharpProjects\ProjectRoot\ModelSupport.

9 Click Finish.

Result: The Model tab of the Explorer pane displays the project structure, and the Designer pane displays the two
project directories, analysis and requirements.

To configure Together ControlCenter to automatically set namespaces for classifiers:
1 Choose Tools Options Default level or Tools Options Project level.
2 In the left pane of the Options dialog window, expand the Source code (language) node of the options tree

view.
3 Check Set namespace for classes according to package name.

Note: To make it possible to share models between TCC (TAR) and Developer Studio 2006, TCC
(TAR) supports the packaging namespace organization for C# projects. This means that you
can optionally require automatic settings of namespaces for C# classifiers in the Options dialog
window in TCC (TAR).

When pasting a class into a package, no matter where this class was located
before, its new instance appears in the namespace declaration corresponding to
the package name. The namespace name will be the same as the package name,
and files placed in the directory/package structure will have the corresponding
namespaces in code.

4 Click OK to apply the settings and close the dialog box.

Warning: You cannot move packages. To move a package without violating namespace organization, create a
new package with the same name located in the new location, create the necessary classes in it, then
remove the old package.

To populate the analysis model:
1 In Together ControlCenter or Together Architect, double-click the analysis package in the Designer pane to open

the analysis diagram.

676

2 Using the toolbar on the left side of the Designer pane, click the Class button.
3 Click once in the Designer pane to add the class to the diagram. Accept the default name for the class, Class1.
4 Repeat step 3, and add another class to the diagram. Accept the default name for the class, Class2.

To populate the requirements model:
1 In Together ControlCenter or Together Architect, open the Model tab of the Explorer pane, double click the

requirements diagram to open it in the Designer pane.
2 Click the New Diagram button in the Designer pane toolbar. The New Diagram dialog box opens.
3 Select the Use Case diagram in the New Diagram dialog box.
4 Enter PlaceOrderUseCase in the Diagram name field.
5 Click OK. The PlaceOrderUseCase diagram opens in the Designer pane.
6 Using the toolbar on the left side of the Designer pane, click the Actor button.
7 Click once in the Designer pane to add an actor to the diagram. Accept the default name for the actor, Actor1.
8 Click the Use Case button.
9 Click once in the Designer pane to add the use case to the diagram. Accept the default name for the use

case, UseCase1.

Result: The diagrams are now complete and ready for use in Developer Studio 2006. The Model tab of the Explorer
pane displays the project structure.

To access the diagrams created with Together ControlCenter or Together Architect:
1 Save your project and close Together ControlCenter or Together Architect.
2 Switch to Developer Studio 2006.
3 From the main menu, choose File Recent Projects, and select the ProjectRoot from the list.
4 Add the newly added model elements by using the Project Manager.
5 The source files, Class1.cs and Class2.cs, were added while working in Together ControlCenter or Together

Architect.
6 Expand the src and analysis folders in the Project Manager. The Class1 and Class2 nodes are present.

The Model View updates and reflects the Class1 and Class2 source files in the analysis diagram. Now, changes
made to your diagrams in Developer Studio 2006 will appear on the diagrams when working in TCC or TAR.

Warning: When adding a source-generating element (such as a class or interface) to a namespace through a class
diagram in Together, Developer Studio 2006 physically adds the source-generating element to the project
root. Together does not control where Developer Studio 2006 places its source code files; however,
Together will display them correctly on the class diagram. Use the Project Manager and drag-and-drop
the source-generating element to the proper folder, so that when you work with the project in Together
ControlCenter or Together Architect, the source contents appear in the correct location.

677

678

Synchronizing the Model View, Diagram View, and Source Code
Together provides constant synchronization between different aspects of your project:

Model hierarchy, presented in the Model View
Model graphical representation in the Diagram View
Source code (for implementation projects)

Tip: You can also use the Reload function of the Model View to update an entire model, and the Refresh function
of the Diagram View.

You can navigate between the Model View, Diagram View, and source code by using the
following techniques:
1 Navigate to a diagram from the Model View to the Diagram View
2 Navigate to a model element from the Model View to the Diagram View
3 Navigate from the Diagram View to the Model View
4 Navigate from a lifeline to its classifier in the Model View or a Class diagram
5 Navigate from source code to the Model View
6 Navigate from the Model View or Diagram View to source code (for implementation projects)
7 Edit a synchronized element

To navigate to a diagram from the Model View to the Diagram View:
1 In the Model View, right-click the diagram node.
2 Choose Open Diagram.

Alternatively, double-click the diagram node in the Model View.

To navigate to a model element from the Model View to the Diagram View:
1 Select a model element in the Model View.
2 Right-click and choose Select on Diagram on the context menu.

Note: If this model element appears on several diagrams, choose a diagram on the submenu.

To navigate from the Diagram View to the Model View:
1 Right-click the selected element or diagram background in the Diagram View.
2 Choose Synchronize with Model View on the context menu.

To navigate from a lifeline to its classifier in the Model View or a Class diagram:
1 Right-click the selected lifeline on a UML 2.0 Sequence diagram in the Diagram View.
2 Choose Select Type in Model View to navigate to the classifier in the Model View,

Or:

679

Choose Select Type on Diagram to navigate to the classifier on a Class diagram in the Diagram View.

To navigate from source code to the Model View:
1 Right-click the line that contains the desired element.
2 On the context menu of the selection, choose Synchronize Model View.

Result: The corresponding element is highlighted in the Model View.

To navigate from the Model View or Diagram View to source code (for implementation
projects):
1 Right-click a model element or a node member.
2 Choose Go to definition on the context menu.

Note: This command is available for source code-generating elements.

Result: Source code of the element in question opens in the Editor tab. The corresponding definition is highlighted.

Tip: To open source code of an entire class or interface, double-click the element icon.

To edit a synchronized element:
1 Select an element in the Diagram View or Model View.
2 Edit the desired fields in the Object Inspector.

Note: Alternatively, invoke the in-line editor in the Diagram View or Model View.

Warning: Avoid using the Structure View or the Project Manager for modification of the model elements.

680

Transforming a Design Project to Source Code
This feature is available for UML 1.5 and UML 2.0 design projects.

To generate source code from a design project:
1 In the Model View, select a design project.
2 Right-click and choose Transform to source on the context menu.
3 In the Choose Destination Project dialog box, select the desired implementation project.
4 Check the Use name mapping files for code generation checkbox if required.
5 Click Transform.

Result: implementation code of the class diagrams that existed in the design project are added to the target language-
specific project. The diagrams are also added to the target project. The diagram roots are preserved.

To insert source code to an implementation project:
1 In the Model View, select an implementation project.
2 Right-click and choose Transform code from design project on the context menu.
3 In the Choose Source Project dialog box, select the desired design project.
4 Check the Use name mapping files for code generation checkbox if required.
5 Click Transform.

Result: implementation code of the class diagrams that existed in the design project are added to the target
implementation project. The diagrams are also added to the target project. The diagram roots are preserved.

681

682

Troubleshooting a Model
You can also reload your project from the source code.

Use the following techniques to troubleshoot your model:
1 Refresh a model
2 Reload a model
3 Fix a model

To refresh a model:
1 Open the Diagram View.
2 Press F6.

To reload a model:
1 Open the Model View.
2 Right-click the project root node and choose Reload on the context menu.

Note: Use the Reload command as a workaround for issues that might appear while making changes in Together
that cause some elements on the diagram to stop responding, or if you get errors from Together, such as,
<undefined value>.

Tip: Usually, when these problems occur, the elements also disappear from the Developer Studio 2006Structure
View and the corresponding source code is underlined in blue in the Developer Studio 2006 Editor. Together
cannot always properly handle such elements that become broken. To restore broken elements to a normal
state, it is necessary to edit the code in the text editor according to the recommendation shown in the Developer
Studio 2006 Editor. In these cases, it is best to refresh the model using Reload to prevent possible further
misbehavior.

To fix a model:
1 For interaction diagrams: regenerate them from the source code.
2 For all types of diagrams: check that none of the necessary elements are hidden.

683

684

Working with a Namespace or a Package
Namespaces are used in implementation projects, and packages in design projects.

Use the following techniques for a namespace or a package:
1 View a namespace or a package
2 Open a namespace or a package
3 Delete a namespace or a package
4 Rename a namespace or a package

To view a namespace or a package:
1 By default, a namespace element on a diagram displays the namespace contents.
2 You can use the context menu of a class or interface in a namespace to add fields and methods directly.

To open a namespace or a package:
1 Choose the Open Diagram command on the namespace diagram context menu.
2 You can also double-click the namespace element on the diagram.

To delete a namespace or a package:
1 Open the Diagram View or the Model View.
2 Choose Delete on its context menu.

Warning: Deleting a namespace also deletes all of its contents.

To rename a namespace or a package:
1 Open a project.
2 To rename a namespace, including changing the namespace name in all of its source files, do one of the following:

Choose Rename on the context menu of a namespace in the Diagram View or in the Model View
Invoke the in-place editor for the namespace element in the Diagram View or in the Model View
Edit the Name field in the Object Inspector

685

686

Working with a Referenced Project
Your project can have a binary library whose content you may want to display in your diagrams. For example, you
can show entities that reside in the MSCorLib.dll or other project references. Such resources exist for the project,
but Together does not include them in the generated HTML documentation for the project.

The Model View enables you to view class diagrams for references included in your projects. You can add references
to your project using the Project Manager.

To add a project to references:
1 In the Project Manager, expand the desired project node.
2 On the context menu of the References node, choose Add Reference.

Tip: Alternatively, choose Project Add Reference on the main menu.

3 In the Projects tab, select the projects to be referenced and click Select.
4 Click OK when ready.

Result: The Choose Type to Instantiate dialog box shows all referenced projects, making it possible to choose the
desired classifiers from the different projects.

To view a diagram of a referenced project:
1 Open or create a class diagram.
2 Right-click the diagram background and choose Add Shortcuts. The Edit Shortcuts dialog box opens and

displays the content available for the diagram and all content residing outside of the current namespace.
3 Choose the resource that you want to add from the tree view of available contents on the left of the dialog and

click Add >>.
4 Repeat until you have added all of the resources that you want to show on the diagram.
5 Click OK to close the dialog box.

Tip: If the Edit Shortcuts dialog box does not show the resource that you are looking for, it is probably not added
as a reference to your project. Choose Project Add Reference on the main menu to add a project reference.

To view the MsCorLib.dll (a standard DLL added automatically to your projects):
1 Expand the References node and the MsCorLib.dll node in the Model View.
2 Right-click the default diagram and choose Open Diagram.

The default diagram opens in the Diagram View. You can expand the Microsoft and System folders to view other
class diagrams as well.

687

Together Quality Assurance Procedures

688

Creating a Metrics Chart
You can create a chart in the Metric Results Pane.

Metrics charts are created in temporary files which are deleted when the charts are closed. However, you can save
graphical information in text files, export it to the desired graphical format, and include graphics in project.

To create a bar chart:
1 Select a column that contains the result for the desired metric.
2 Right-click and choose Bar Chart.

To create a Kiviat chart:
1 Select the row that contains the results for the desired element.
2 Right-click and choose Kiviat Chart.

To save a chart:
1 Right-click the chart tab and choose Save.
2 In the Save graph dialog box, navigate to the target location and click Save.

To export a chart to image:
1 Select the desired chart.
2 On the main menu, choose File | Export diagram to image.
3 In the Export diagram to image dialog, specify the zoom factor and image dimensions.
4 Click Save.

To add a chart to project:
1 Select the desired chart.
2 On the main menu, choose File | Move [chart name] to Project.
3 On the submenu, select a project within the current project group.

689

690

Exporting Audit Results
Export audit results to an XML or HTML file to share them with team members or review them later.

To save the audit results in a separate file:
1 Select the rows of the table that you want to save. Do not select anything if you want to print the entire list.
2 Click the Save button on the toolbar.
3 In the Save Audit Results dialog box that opens, choose the scope of the results to export using the Select

View list box:

All Results: If the results are grouped, choosing All Results prints a report for all groups in the current tabbed
page. If the results are not grouped, then all results export for the current tabbed page.
Active Group:If the results are grouped, you can select a group in the current tabbed page, and the generated
report contains the results from the selected group.
Selected Rows: You can select single or multiple rows in the audit results report view. Choosing Selected Rows
generates a report for such selections.

4 Each tabbed page can contain a list of audits (when the audits are ungrouped) or a group tree with a list of the
selected group (when the audits are grouped).

Note: Unless the results have been grouped using the Group by command, the Active Group option
is not enabled in the dialog box.

Tip: You can use CTRL+CLICK to select multiple rows.

5 In the Select Format list box, select the format for the exported file:

XML: Generates an XML-based report.
HTML: Generates an HTML-based report.

Selecting HTML format activates the following check boxes:

Add Description: This saves the audit descriptions in a separate folder with hyperlinks to the descriptions from
the results file.
Launch Browser: This option opens the generated HTML file in the default viewer.

6 Click Save to save the results in the specified location.

691

692

Printing Audit Results
You can print the entire table of audit violations, or select specific rows and columns.

Warning: This feature is available for implementation projects only.

To print the list of audit violations:
1 Select the rows of the table that you want to print. Do not select anything if you want to print the entire list.

Tip: You can select multiple rows using CTRL+CLICK.

2 Click the Print button on the Toolbar. The Print Audit dialog box opens.
3 Choose the scope of the results to print using the Select View list box:

All Results: If the results are grouped, choosing All Results prints a report for all groups in the current tabbed
page. If the results are not grouped, then all results print for the current tabbed page.
Active Group: If the results are grouped, you can select a group in the current tabbed page, and the printed
report contains the results from the selected group.
Selected Rows: You can select single or multiple rows in the audit results report view. Choosing Selected Rows
prints a report for such selections.

4 Each tabbed page can contain a list of audits (when the audits are ungrouped) or a group tree with a list of the
selected group (when the audits are grouped).

Note: Unless the results have been grouped using the Group by command, the Active Group option
is not enabled in the dialog window.

5 If desired, specify the print zoom factor in the Print zoom field, or check Fit to page if you want to print the results
on a single page. If Fit to page is checked, the Print zoom field is disabled.

6 If necessary, adjust the page and printer settings:

Click the Print list box, and choose the Print dialog box command to select the target printer.
Choose Tools Options and open Together (level) Diagram Print options to set up the paper size,
orientation, and margins.

Tip: Click the drop-down arrow to the right of the Preview option to open the preview pane. Use the
Preview zoom (auto) slider, or Auto preview zoom check box as required. Click the upward arrow
to the right of the Preview option to close the preview pane.

7 Click Print to open the system print dialog box, and send the file to the printer.

693

694

Running Audits
Audits automatically check for conformance to standard or user-defined style, maintenance, and robustness
guidelines. Before running audits, make sure that the code being audited is compilable. If your source code contains
errors, or some libraries and paths are not included, audits might produce inaccurate results.

Warning: This feature is available for implementation projects only.

To run audits:
1 Open an implementation project.
2 Open the Model View.
3 Right-click the project root node. QA Audits on the context menu. The Audits dialog window opens.
4 In this dialog window:

In the Scope list box, choose the code to run the set of audits on.
Model processes the entire project.
Selection processes only the specific classes, namespaces, or diagrams currently selected in the Diagram or
Model View.

Tip: If you have not selected any items in the Diagram or Model View, the Scope option defaults to
the entire project.

5 If you want to run audits on specific classes, namespaces, or diagrams, make sure you correctly select them
before you open the Audits dialog window.

6 Choose the audits to run. As you click an audit, the description for each audit is shown in the lower pane of the
dialog box.

7 For each audit, the severity level and other audit-specific options are displayed in the right-hand panel of the
Audits dialog box. Change the settings if necessary.

8 When you have selected your set of audits, click Start. The Operation in progress dialog box opens displaying
a status bar that indicates the progress completed. The status bar will display until the process finishes.

9 If necessary, click Cancel to abort the process.

Note: Audits run in the command thread, so you cannot edit the project while they are being
processed.

The Audits Results Pane opens automatically, displaying the results. In the results table, right-click any line to open
the context menu and use its commands to perform operations with the report.

695

696

Running Metrics
Before running metrics, make sure that the code being analyzed can be compiled. If your source code contains
errors or some libraries and paths are not included, metrics might produce inaccurate results.

Warning: This feature is available for implementation projects only.

To run metrics:
1 Open an implementation project.
2 Open the Model View.
3 Right-click the project root node. QA Metrics on the context menu. The Metrics dialog window opens.
4 In this dialog window:

In Scope, choose what to run metrics on: Model processes the entire project.
Selection processes only the specific classes, packages, or diagrams currently selected in the diagram or Model
View.

5 Choose the metrics you want to analyze. Each metric displays a description in the lower panel of the Metrics
dialog box.

Tip: If nothing is currently selected in the diagram or navigator view, the Selection scope is not
available. If you want to run metrics on specific classes, packages, or diagrams, make sure you
correctly select them before you open the Metrics dialog window.

6 For each metric there are settings for options such as limits and granularity in the right-hand panel of the Metrics
dialog box. Change the settings if necessary.

7 When you have selected your set of metrics, click Start.

Note: Metrics run in the command thread, so you cannot edit the project while they are being
processed.

Result: The Metrics Results Pane opens automatically displaying the results.

697

698

Viewing Audit Results
When viewing audit results, you can compare and organize items in the results report.

The results report is tightly connected with the diagram elements and the source code. Using the report, you can
navigate to the specific location of the violation.

Warning: This feature is available for implementation projects only.

Use the following techniques when viewing audit results:
1 Sort all the items according to the values for a specific column
2 Group items according to the current column
3 Navigate to the specific location of the violation

To sort all the items according to the values for a specific column:
1 Switch to the audit results table.
2 Click the column heading. The arrow in the heading displays whether sorting is ascending or descending.

To group items according to the current column:
1 Right-click the Audit results table and choose Group By. This enables you to organize the results by changing

the relationship of rows and columns.
2 To ungroup the results, right-click the table, and choose Ungroup.

To navigate to the specific location of the violation:
1 Select any element in the results report.
2 Choose Open on the context menu (or just double click the row) to navigate directly to the source code.

699

700

Viewing Metric Results

Use the following techniques when viewing metric results:
1 Sort results by column
2 Filter results
3 Update results
4 Navigate to the source code
5 View the metric description

To sort results by column:
1 Select the desired column in the metrics result table.
2 Click the column header to change the sorting order.

To filter results:
1 You can filter the displayed results to improve the meaningfulness of the results report.
2 Use the following toolbar buttons to show and hide elements:

Button

Namespaces

Classes

Methods

Child elements

To update results:
1 You can update or refresh the results table.
2 Use the following Tool Palette buttons:

Button Description

Refresh Recalculate the results that are currently displayed

Restart Open the Metrics dialog window, define new settings and start new metrics analysis.

To navigate to the source code:
1 Select the row in the results table that is of interest to you
2 Right-click and choose Open on the context menu to navigate directly to it in the source code.

701

To view the metric description:
1 Select the column in the results table that corresponds to the metrics of interest to you.
2 Right-click and choose Show description on the context menu.

702

Working with a Set of Audits

To create a set of audits:
1 On the main menu choose Tools Together QA Audits. The dialog window QA Audits opens.
2 Toolbar buttons in the dialog window provide commands for working with the sets of audits.
3 If you want to base your new saved set on the default set, click the Set default audit set button.
4 If you want to base it on a previously created custom set, click the Load set button, then choose the desired

saved .adt file.
5 Go through the individual audits and check those you want to include in the set, or clear those you do not want

to include.
6 Select all the items in a group by checking the group name.
7 When you complete your selection, click the Save set button, and specify the location and filename for new set

file.

To use a saved set of audits:
1 On the main menu choose Tools Together QA Audits. The dialog window QA Audits opens.
2 Click the Load Set button and choose the .adt file you want to use.
3 Click Start.

Tip: You might want to include the .adt files in your backup routine.

703

704

Working with a Set of Metrics

To create a set of metrics:
1 On the main menu choose Tools Together QA Metrics. The dialog window QA Metrics opens.
2 Toolbar buttons in the dialog window provide commands for working with the sets of metrics.
3 If you want to base your new saved set on the default set, click the Set default metric set button.
4 If you want to base it on a previously created custom set, click the Load set button, then choose the desired

saved .mts file.
5 Go through the individual metrics and check those you want to include in the set, or clear those you do not want

to include.
6 Select all the items in a group by checking the group name.
7 When you complete your selection, click the Save set button, and specify the location and filename for new set

file.

To use a saved set of metrics:
1 On the main menu choose Tools Together QA Metrics. The dialog window QA Metrics opens.
2 Click the Load set button and choose the .mts file you want to use.
3 Click Start.

Tip: You might want to include the .mts files in your backup routine.

705

Together Refactoring Procedures

706

Refactoring: "Safe Delete"

To safely delete an element:
1 Select the element to be deleted.
2 On the main menu, choose Refactoring Safe Delete

Tip: Alternatively, right-click on the element and choose Refactoring Safe Delete on the element's
context menu.

3 In the Safe Delete dialog box that reports the element to delete and any usages of that element:

If no usages are found, press Delete.
If usages are found, click View usages. The Refactoring window opens allowing you to review the refactoring
before committing to it. Click the Perform refactoring button to delete the element.

707

708

Refactoring: Changing Parameters

To change parameters, follow these steps:
1 Select method in the Diagram View, in the Model View or in the Editor.
2 Choose Refactoring Change Parameters from the main menu.

Tip: Alternatively, you can right-click and choose Refactoring Change Parameters on the context
menu.

3 In the resulting dialog, select parameter from the list and choose the desired action:

To add a new parameter, click Add, and specify the parameter name, type and default value.
To delete parameter, click Remove.
To rename parameter, click the Name field, and edit the parameter name using the in-place editor.

4 If applicable, check Refactor Ancestors.
5 Check Preview Usages if necessary.

If this option is checked when you click OK, the Refactoring window opens allowing you to review the refactoring
before committing to it. Click the Perform refactoring button to complete the changes. You can use the
Undo and Redo commands as necessary once you have performed the refactoring.
If this option is cleared when you click OK, the Refactoring window opens with the change completed. You can
use the Undo and Redo commands as necessary once you have performed the refactoring.

709

710

Refactoring: Creating Inline Variables

To create an inline variable:
1 Select the local variable in the Editor.
2 On the main menu, chooseRefactoring Inline variable

Tip: Alternatively, you can choose Refactoring Inline variable on the context menu.

The resulting dialog reports the number of variable occurrences that the Inline Variable command will be applied
to.

3 Click OK to complete refactoring.

Warning: The variable that you select for creating an inline variable, should not be updated later in the source code.
If it is, the following error message will display: "Variable index is accessed for writing."

For example, if you use the Inline Variable refactoring command on the local variable, index, shown below:

public void findIndex() {
 int index = 2;
 System.Console.Writeline("Index is: {0}", index);
 }

then the following refactoring occurs:

public void findIndex() {
 System.Console.Writeline("Index is: {0}", 2);
}

711

712

Refactoring: Extracting Interfaces
The following conditions should be met for extracting interfaces:

Only non-static methods can be extracted.
All methods in the extracted interface are public.
If the name specified for the new interface coincides with the name of an existing interface in the same
namespace, all the methods will be extracted into an existing interface.

To extract an interface:
1 Select one or more code elements (class, interface, field, method, event, property, or indexer) in the Diagram or

Model View.
2 On the main menu, chooseRefactoring Extract superclass

Tip: Alternatively, you can choose Refactoring Extract superclass on the context menu of the
selection.

3 In the Extract interface dialog, enter the name for the interface and designate its namespace, if applicable.
4 Specify the members to be used in the resulting superclass or interface by setting or clearing the respective

check-boxes.
5 Click OK. The Refactoring window opens allowing you to review the refactoring before committing to it.
6 Click the Perform refactoring button to complete the extraction.

713

714

Refactoring: Extracting Method

To extract a method:
1 In the Editor, open the class or interface containing the code fragment that you wish to extract.
2 Place the mouse cursor in the desired fragment of source code. Refactoring determines the beginning and the

end of the relevant statement.
3 On the main menu, choose Refactoring Extract Method

Tip: Alternatively, right-click the code fragment and choose Refactoring Extract Method on the
context menu.

4 In the dialog box that opens, specify the following information:

Name of the new method
Visibility (public, protected, private, internal, internal protected)
Header comment
Whether the method is Static.

5 Click OK to complete the extraction and create the new method.

When applying Extract Method, parameters and local variables in the selected code fragment become the
parameters of the new method.
The code fragment cannot contain a return statement of the original method. An error message displays if you
attempt to include a return statement in the code fragment.
The code fragment cannot modify more than one single local variable. An error message displays if you violate
this restriction.
If the selected code fragment is repeated in several locations, it is your responsibility to replace these fragments
in the appropriate locations with the proper method calls.

715

716

Refactoring: Extracting Superclass

To use the "Extract superclass" operation:
1 Select one or more code elements (class, interface, field, method, event, property, or indexer) in the Diagram or

Model View.
2 On the main menu, chooseRefactoring Extract superclass

Tip: Alternatively, you can choose Refactoring Extract superclass on the context menu of the
selection.

3 In the Extract superclass dialog, enter the name for the interface and designate its namespace, if applicable.
4 Specify the members to be used in the resulting superclass or interface by setting or clearing the respective

check-boxes. If applicable, indicate that a method is abstract in the extracted superclass.
5 Click OK. The Refactoring window opens allowing you to review the refactoring before committing to it.
6 Click the Perform refactoring button to complete the extraction.

717

718

Refactoring: Introducing Fields

To introduce a field:
1 Select expression in the Editor.
2 On the main menu, chooseRefactoring Introduce Field

Tip: Alternatively, you can choose Refactoring Introduce Field on the context menu.

3 In the resulting dialog, specify the following:

Name: Enter the name of the new field
Visibility: Using the list box, choose the visibility for the new field from public, protected, private, internal, or
internal protected.
Initialize: Choose where to initialize the new field. Using the list box, choose from Current method, Class
constructor(s), or Field declaration.

4 If applicable, check the Static and Replace all occurrences fields.
5 Click OK to complete the refactoring.

719

720

Refactoring: Introducing Variables

To introduce a new variable:
1 Select variable in the Editor.
2 On the main menu, chooseRefactoring Introduce Variable

Tip: Alternatively, you can choose Refactoring Introduce Variable on the context menu.

3 In the resulting dialog, specify the Name of the new variable. The new variable created is given the same type
as the original variable.

4 If desired, check Replace all occurrences. The Introduce Variable dialog indicates the number of occurrences
that it will replace with the new variable.

Note: The refactoring does not replace any occurrences of the variable prior to the point in the code
at which you selected to introduce the new variable.

721

722

Refactoring: Moving Members

To move a static member to a different class:
1 Select one or more static members in the Diagram View or Model View.
2 On the main menu choose Refactoring Move

Tip: Alternatively, right-click on the selection and choose Refactoring Move Members on the
context menu

3 In the Move Members dialog, use the Move Members field to select which static members to move. You can
deselect/select the static members by clearing/checking the check box next to the name of the member

4 Use the To field to enter the fully-qualified name for the target class where the selected code element or elements
will reside.

5 Click OK.

723

724

Refactoring: “Pull Members Up" and “Push Members Down”
Moving members assumes that the member is either moved to the target location being deleted from the original
location, or created in the target location being preserved on the original one.

To move a member:
1 Select member in the Diagram View or in the Model View.

Tip: In the editor, place the mouse cursor on the member name.

2 Choose Refactoring Pull Members Up/Push Members Down on the context menu or on the main menu.
3 In the resulting dialog box, specify additional information required to make the move.

In the top pane of the dialog box, check the members to be moved.
In the bottom pane of the dialog box, that shows the class hierarchy tree, select the target class.

4 Click OK.
5 In the Refactoring window that opens, review the refactoring before committing to it. Click the Perform

refactoring button to complete the move.

Tip: Moving members is more complicated than moving classes among namespaces, because class members
often contain references to each other. A warning message is issued when Pull Members Up or Push
Members Down has the potential for corrupting the syntax if the member being moved references other class
members. You can choose to move the class member and correct the resulting code manually.

725

Unit Test Procedures

726

Building Tests
The structure of a unit test is largely dependent on the functionality of the class and method you are testing. The
Unit Test Wizards can help you by providing a template of the test project, setup and teardown methods, and basic
tests. You will need to add the specific test logic to test a particular method. The following procedures describe how
to build your test projects and test cases. Follow these procedures in order. The test project must be built prior to
the test cases.

To build a test project
1 Choose File New Other.
2 Open the Unit Test folder.
3 Double-click the Test Project gallery item.

This starts the Test Project Wizard.

4 Enter the project name or accept the default name.
5 Enter the location or accept the default location.
6 Select the personality or accept the default.

By default, the personality is set to the same personality as the active project.

7 If you do not want the test project added to your project group, uncheck the Add to Project Group check box.
8 Click Next.
9 Choose the GUI or Console test runner, then click Finish.

The Test Project Wizard adds the necessary references to your project.

To build a test case
1 Click the Code tab for the file containing the classes you want to test.

This makes the file active in the Code Editor.

2 Choose File New Other.
3 Open the Unit Test folder.
4 Double-click the Test Case gallery item.

This starts the Test Case Wizard.

5 Choose a source file from the Source File drop down list.
All source files in your project are listed.

6 Select the classes and methods you want to build tests for, by checking or unchecking the check boxes next to
the class and method names, in the Available classes and methods list.

Note: You can deselect individual methods in the list. The wizard will build test templates for the
checked methods only. If you deselect a class, the wizard will not create test templates for any
of the methods in that class.

7 Click Next.
This displays the next page of the Test Case Wizard.

8 Fill in the appropriate details or accept the defaults.
9 Click Finish.

727

The wizard creates a test case file and creates a name for the file by prefixing the name of the active code file
with the word Test. For example, if your code file is named MyProgram, the test case file will be named
TestMyProgram.

To write a test case
1 Add code to the SetUp and TearDown methods, if needed.
2 Add asserts to the test methods.

To run the test case in the GUI Test Runner
1 Click the Code tab for the file containing the classes you want to run.
2 Choose Run Run.

The GUI Test Runner starts up immediately on execution of your application. The list of tests appears in the left
pane of the GUI Test Runner.

3 Select one or more tests.
4 Click the Run button.

The test results appear in the Test Results window. Any test highlighted with a green bar passed successfully.
Any test highlighted in red failed. Any test highlighted in yellow was skipped.

5 Review the test results.
6 Fix the bugs and rerun the tests.

728

Concepts

.NET

729

730

Building Applications with the ECO framework
The integrated modeling tools in Developer Studio 2006 tie together the processes of design and development. The
structure and behavioral modeling tools integrated into the IDE are based on industry standards such as the Universal
Modeling Language (UML) and the Object Constraint Language (OCL). The Enterprise Core Object (ECO)
framework leverages the .NET framework to make the model available at both designtime and runtime. This section
provides an overview of the ECO framework, and introduces basic concepts needed to work with the framework.

In This Section
Overview of the ECO framework
Describes architecture of the ECO framework.

ECO Modeling Tools Overview
Describes ECO UML modeling tools available in the Developer Studio 2006 IDE.

Working with the ECO Service API
Describes how to access the services provided by the ECO framework.

Working with ECO Handles
Defines the concept of a handle, and describes how they are used in the ECO framework.

Modeling Behavior with State Machines
Describes simple UML state machines and how they are used with the ECO framework.

Using Substates with the ECO framework
Describes how to use composite states, substates and regions with ECO state machine diagrams.

Overview of the Object Constraint Language
Describes the Object Constraint Language (OCL) in a high-level overview.

Using ECO Action Language
Describes the extensions provided by the ECO Action Language.

Working with ECO Subscriptions
Describes how to work with the ECO subscription mechanism.

The ECO framework and ASP.NET
Describes basic concepts required for understanding how to build an ECO ASP.NET application.

Using the ECO Framework in Multi-Client Applications
Describes the concepts and components used when writing multi-client ECO framework applications.

Custom ECO Object-Relational Mapping Files
Describes the format of the object-relational mapping file used by the ECO framework.

Building Applications with the ECO Framework
Describes the core processes of building an application using the ECO framework.

731

732

Introduction
These topics contain introductory material on working with the ECO framework.

In This Section
Overview of the ECO framework
Describes architecture of the ECO framework.

ECO Modeling Tools Overview
Describes ECO UML modeling tools available in the Developer Studio 2006 IDE.

Working with the ECO Service API
Describes how to access the services provided by the ECO framework.

Working with ECO Handles
Defines the concept of a handle, and describes how they are used in the ECO framework.

Working with ECO Subscriptions
Describes how to work with the ECO subscription mechanism.

733

734

Overview of the ECO framework
This topic gives an overview of the designtime and runtime features of the ECO framework.

Introduction to the ECO framework
The ECO framework is an object-relational mapping framework. Object-relational mapping is a process that abstracts
relational database concepts, and maps them to object-oriented programming concepts. In practical terms, the ECO
framework maps relational database rows to C# or Delphi for .NET objects, thereby relieving the programmer from
writing low-level SQL code.

To reduce the amount of manual coding even further, Developer Studio 2006 integrates the ECO framework with
TogetherLiveSource UML diagram tools. This allows you to specify both structure and behavior visually, using UML
class diagrams and UML state machine diagrams. Integration of UML designers with the ECO framework gives you
the ability to work with familiar object-oriented concepts, while the framework handles the mapping and storing of
objects in a relational database.

One unique feature of the ECO framework is that it adheres to the philosophy that models can be both
implemented and executed . A precisely described model contains enough information that much of the source code
needed to bring the model to life can be generated automatically, as opposed to being written by hand. This is the
difference between automatic implementation of a visually constructed model, and interpretation (and coding by
hand) of that model by a programmer.

Execution of the model means that the designtime support for creating the model carries through to runtime. A truly
design driven software engineering process includes support not only for creation of a model, but also for maintaining
and enforcing the integrity of the model at all phases of the application's lifetime.

ECO framework Terminology
The following list defines some important terminology that you will encounter throughout the ECO framework. These
terms and their related concepts are covered in more detail in separate topics. Please refer to the links below for
more information.

ECO space An object store that contains objects created during the lifetime of the
application. The ECO framework handles the mapping of object attributes,
storage, and retrieval in a relational database.

At runtime, the ECO Space contains all of the metadata of the model, plus
the instances of the classes in your model. Think of the ECO Space as an
instance of a model, much like an object is an instance of a class. The objects
contained in the ECO Space retain the domain properties (attributes and
operations) and relationships defined in the model.

Handle An opaque reference that binds to an object, or a collection of objects in an
ECO space.

Object Constraint Language (OCL) A formal language used to query the ECO space. An OCL expression returns
a single value, a single object, or a collection objects. An OCL expression
cannot alter the value of any object attribute.

ECO Action Language An extension of OCL that allows you to change the value of object attributes.
Service API The most commonly accessed runtime functionality of the ECO framework

is grouped into a namespace called Borland.Eco.Services. The
Borland.Eco.Services namespace defines a number of interfaces that
you will use to access and manipulate the objects in the ECO space. At
runtime, you obtain these interfaces by accessing properties of the ECO
space.

735

Designtime Functionality
It is helpful to understand how the ECO framework splits its functionality into designtime support and runtime support.
The following table shows designtime features, and briefly describes how you work with the feature within the IDE.

Designtime Feature IDE Interaction Notes

Model-oriented source code navigation Model View Choose View Model View to open the
Model View.

Object Store (ECO space) configuration ECO space designer All ECO projects contain an object store
called an ECO space.

When the ECO space source file is active
in the editor, click the design tab to open
the ECO space designer.

Model validation Validate model tool on the ECO space
designer

Click the Validate model tool button in
the ECO space designer to perform
model validation.

Structural design of the model ECO class diagram Create new diagrams using context
menus in the Model View.

Behavioral design of the model ECO state machine diagram Create new diagrams using context
menus in the Model View.

Object Constraint Language (OCL)
expression editor

ECO class diagram

ECO state machine diagram

ECO Winform designer

Most ECO components have properties
that are expressed using OCL. This
includes ECO class attributes,
association ends, and behavioral
features modeled on state machine
diagrams.

The OCL expression editor is a property
editor, opened from the Object
Inspector. It allows you to easily build
expressions to query and perform
operations on the ECO space.

Reverse engineer an existing relational
database, extracting classes and
associations, and wrapping them in ECO
source code

Reverse and wrap database tool on
the ECO space designer

Click the tool button in the ECO space
designer to start a wizard that configures
the ECO space and generates ECO
source code for an existing relational
database.

The reverse engineering wizard also
handles the case where data is stored
across multiple databases.

GUI design ECO Winform designer ECO framework applications use
standard .NET controls to display and edit
data.

Handle configuration ECO Winform designer Handles bind to objects in the ECO space
using OCL expressions.

In the ECO Winform designer, drop a
handle component on the form and
configure it using the OCL Expression
Editor.

Handles are bound to GUI controls using
standard .NET databinding technology.

736

Runtime Functionality
The following table shows the runtime functionality of the ECO framework

Runtime Feature Notes

Object persistence Access with the IPersistenceService interface in Borland.Eco.Services.

OCL queries and OCL expression evaluation Access with the IOCLService interface in Borland.Eco.Services.

Undo/Redo mechanism Access with the IUndoService interface in Borland.Eco.Services.

Subscription mechanism Accessed through the IOCLService interface and through classes defined in
the Borland.Eco.Subscription namespace.

Object version mechanism The ECO framework has support for saving multiple versions of an object.

Access this feature through the IVersionService interface in Borland.
Eco.Services.

Model introspection Access information about the model using interfaces defined in the Borland.
Eco.UmlRt namespace.

You can access the type system of the model through the TypeSystem property
of the EcoSpace class.

737

738

ECO Modeling Tools Overview
This topic describes the integration of the ECO framework with Developer Studio 2006:

ECO projects and code templates
Integration with the Model View, Tool Palette, and Object Inspector
Structural modeling with ECO UML class diagrams
Behavioral modeling with ECO state machine diagrams

Before reading this topic you should be familiar with ECO framework terminology discussed in the Overview of the
ECO framework. Please refer to the link below for more information.

ECO Modeling Tools in Developer Studio 2006
The ECO framework is tightly coupled with the TogetherLiveSource modeling tools. You can model structural
features using the ECO class diagram, and behavioral features using the ECO state machine diagram. The IDE
generates ECO-enabled source code as you work with the diagrams.

All of the capabilities of LiveSource are available in ECO projects, such as generation of diagrams from non-ECO
source code, navigation from the diagram to source code, layout tools, printing and exporting diagrams to images.
These tools all work through coordination between the Model View, Diagram Views, the Tool Palette, and the
Object Inspector.

ECO Projects and Code Templates
The IDE has code-generating templates to help you develop ECO applications. The following project creation
templates are available for Delphi or .NET and C# applications:

Template Purpose

ECO WinForms Application Creates an application with a default ECO space, a root ECO UML package, and
an ECO enabled Windows form.

ECO ASP.NET Web Application Creates an ASP.NET application with automatic ECO space pooling.

ECO ASP.NET Web Service Application Creates an ASP.NET web service with automatic ECO space pooling.

ECO Package in a DLL

ECO Package in package (Delphi for .NET)

Creates a project with a root ECO UML package, but no ECO space.

You can reference the ECO Package DLL in another project, to make the entire
model available for use in that application.

The following file creation templates are for use in existing ECO projects:

Template Purpose

ECO Enabled Windows Form Adds an ECO enabled Windows form to your project.

ECO Space Creates a new subclass of DefaultEcoSpace in your project.

ECO PersistenceMapperProvider Creates a new persistence mapper provider in your project.

A persistence mapper provider specifies the persistence mechanism and persistence
configuration for the application.

You can connect multiple ECO spaces to a single persistence mapper provider.

Code generated by these templates will include all of the necessary ECO-related .NET attributes and default interface
implementations.

739

Working with ECO in the Model View Window
Using the Model View window you can navigate your project based on the logical relationships between the classes
and other elements in source code. LiveSource scans source code and derives the elements, such as namespaces
and classes, and the relationships between them. Because it gives you an unfiltered view by design, LiveSource will
expose some implementation details behind the ECO framework.

On a LiveSource class diagram you will see ECO UML packages represented as classes within your project
namespace. On an ECO class diagram, you will see the true, logical representation of the UML package.

ECO UML packages appear under the root node of the project in the Model View (you can also nest packages within
other packages). The default name of a new ECO UML package is Package_N where N is an integer. In the Model
View, an ECO UML package node (and all ECO UML packages underneath it) is distinguished from a .NET
namespace node by its icon. The icon represents an ECO UML package.

You work with ECO and TogetherLiveSource using context menus, which are available on both the Model View and
on diagrams. The menus are context sensitive, so they automatically reflect only those operations that are valid on
the selected element. For example, if you right-click on a class in either the Model View or the diagram, the context
menu will contain choices for adding attributes and operations. These menu items would not be available if you right-
clicked on an ECO UML package; the context menu for a package contains its own set of menu items.

Once you have created a diagram in the Model View, you can also add elements to it by dragging them from the
Tool Palette.

You can set properties of any element by selecting it and editing its properties in the Object Inspector. You may
select the element either in the Model View, or on the diagram. As you work with elements in the Model View,
diagrams, and the Object Inspector, the IDE generates source code to implement the model.

Structural Modeling with the ECO Class Diagram
You draw the structural features of your model using the ECO class diagram. The ECO class diagram supports
these modeling features:

Creating ECO UML packages
Creating ECO classes
Drawing generalization (inheritance) links between classes
Drawing associations between classes
Attaching notes to diagram elements
Adding attributes and operations to classes

Class diagrams are created and opened from the Model View. Each ECO UML package has its own primary class
diagram with the same name as the package. The primary class diagram cannot be deleted. The primary class
diagram for a UML package always shows the entire contents of the package; it displays all of the sub-packages,
classes, and relationships that exist within that package. When you add a new class to a UML package it is
automatically represented on the primary class diagram.

You can also create secondary class diagrams within a ECO UML package, if you want to show a subset of the
classes within the package. New elements added to the package are not automatically added to secondary diagrams.
Secondary diagrams can be renamed and deleted.

Any UML elements added to a primary or secondary class diagram will be contained within the UML package that
owns the diagram. To show elements in other UML packages, you must create a shortcut to the element. You can
do this through the context menu of the class diagram. Shortcuts are displayed on the diagram with a small arrow
icon in their lower left corner. Once a shortcut has been created, you can add associations between it and the classes
in the UML package that owns the diagram.

740

Behavioral Modeling with the ECO State Machine Diagram
While the ECO class diagram allows you to model structure, the ECO state machine diagram allows you to model
behavior. The ECO state machine diagram supports these features:

Creating states and state transitions
Creating entry and exit actions to be performed on entering and leaving a state
Adding trigger methods to classes
Creating Effects, which are executed when a state transition occurs
Creating composite states
Modeling concurrent states by adding additional regions to a state

Please see the links below for more information on working with ECO state machine diagrams.

741

742

Working with the ECO Service API
This topic describes how to access the ECO framework service API. Code examples demonstrate how the services
are exposed through the application's ECO space, as well as how to call methods on an interface. The following
concepts are covered:

Service API Overview
Accessing the ECO Space
Accessing the Service API.

The Borland.Eco.Services Namespace

Each ECO service is declared in the Borland.Eco.Services namespace. Individual services are listed in the
table below.

Service API Overview
All programmatic access to the ECO framework is done through ECO services. ECO services make it easier to find
what you need by collating the substantial functionality of the framework into groups of logically related functions,
or interfaces. Each service interface is accessible as a property in the ECO space object of the application. When
you create a new ECO framework application using one of the Developer Studio 2006 wizards, the IDE defines an
ECO space class for you. The generated class contains property accessors that return an instance of the requested
interface. You then use that instance to call methods of the interface. The following is an example of an ECO space
class generated by the New ECO Windows Forms Application wizard. In the code, notice the read-only properties
that expose each interface.

[Delphi]
TProject10EcoSpace = class(Borland.Eco.Handles.DefaultEcoSpace)
 private
 procedure InitializeComponent;
 class var fTypeSystemProvider: ITypeSystemService;
 class var fTypeSystemProviderLock: Tobject;
 strict protected
 function GetTypeSystemProvider: ITypeSystemService; override;
 public

743

 constructor Create;
 class constructor Create;
 class function GetTypeSystemService: ITypeSystemService; static;
 procedure UpdateDatabase;
 function get_PersistenceService: IPersistenceService;
 property PersistenceService: IPersistenceService read get_PersistenceService;
 function get_DirtyListService: IDirtyListService;
 property DirtyListService: IDirtyListService read get_DirtyListService;
 function get_UndoService: IUndoService;
 property UndoService: IUndoService read get_UndoService;
 function get_TypeSystemService: ITypeSystemService;
 property TypeSystemService: ITypeSystemService read get_TypeSystemService;
 function get_OclService: IOclService;
 property OclService: IOclService read get_OclService;
 function get_ObjectFactoryService: IObjectFactoryService;
 property ObjectFactoryService: IObjectFactoryService
 read get_ObjectFactoryService;
 function get_VariableFactoryService: IVariableFactoryService;
 property VariableFactoryService: IVariableFactoryService
 read get_VariableFactoryService;
 end;

[C#]
public class Project10EcoSpace: Borland.Eco.Handles.DefaultEcoSpace
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;

 private void InitializeComponent()
 {
 }

 public Project10EcoSpace(): base()
 {
 InitializeComponent();
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose (bool disposing)
 {
 if (disposing)
 {
 Active = false;
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 private static ITypeSystemService typeSystemProvider;
 public static new ITypeSystemService GetTypeSystemService()
 {
 if (typeSystemProvider == null)
 lock(typeof(Project11EcoSpace))

744

 {
 if (typeSystemProvider == null)
 typeSystemProvider = MakeTypeService(typeof(Project11EcoSpace));
 }
 return typeSystemProvider;
 }
 protected override ITypeSystemService GetTypeSystemProvider()
 {
 return Project10EcoSpace.GetTypeSystemService();
 }
 //
 // Services
 //
 public IPersistenceService PersistenceService
 {
 get { return (IPersistenceService)GetEcoService(typeof(IPersistenceService)); }
 }
 public IDirtyListService DirtyListService
 {
 get { return (IDirtyListService)GetEcoService(typeof(IDirtyListService)); }
 }
 public IUndoService UndoService
 {
 get { return (IUndoService)GetEcoService(typeof(IUndoService)); }
 }
 public ITypeSystemService TypeSystemService
 {
 get { return (ITypeSystemService)GetEcoService(typeof(ITypeSystemService)); }
 }
 public IOclService OclService
 {
 get { return (IOclService)GetEcoService(typeof(IOclService)); }
 }
 public IObjectFactoryService ObjectFactoryService
 {
 get { return (IObjectFactoryService)GetEcoService(typeof
(IObjectFactoryService)); }
 }
 public IVariableFactoryService VariableFactoryService
 {
 get { return (IVariableFactoryService)GetEcoService(typeof
(IVariableFactoryService)); }
 }
 //
 // Misc helper functions
 //
 public void UpdateDatabase()
 {
 if ((PersistenceService != null) && (DirtyListService != null))
 {
 PersistenceService.UpdateDatabaseWithList(DirtyListService.AllDirtyObjects());
 }
 }
 }

745

Accessing the ECO Space
Every ECO framework application created by a Developer Studio 2006 wizard has a single instance of the generated
ECO space class. The ECO space instance is exposed as a property of the main form. Below is an example of the
EcoSpace property in a generated main form class:

[C#]
public Borland.Eco.Handles.EcoSpace EcoSpace
{
 get { return (Borland.Eco.Handles.EcoSpace)rhRoot.EcoSpace; }
 set { rhRoot.EcoSpace = value; }
}

[Delphi]

property EcoSpace: TProject10EcoSpace read get_EcoSpace;

When you add more ECO-enabled forms to your application using the ECO Enabled Windows Form wizard, the
IDE will generate a new form class with a constructor that takes an instance of an ECO space as a parameter. In
addition, and similar to the main form, each subsequent ECO enabled windows form you create with the wizard will
have its own EcoSpace property. The constructor initializes this property with the ECO space parameter. An ECO
application only has one instance of an ECO space, so the typical usage scenario is to pass the ECO space instance
from the main form to secondary forms when they are created. The following example creates a new ECO enabled
form in response to a button click on the main form:

[Delphi]
// TWinForm is the application's main form.
procedure TWinForm.Button1_Click(sender: System.Object; e: System.EventArgs);
var
 // TWinForm1 is a secondary form generated by the ECO Enabled Windows Form wizard.
 newForm: TWinForm1;
begin

 // Create the secondary form, passing the EcoSpace property to the secondary form's
constructor.
 newForm := TWinForm1.Create(EcoSpace);
 // ...
end;

[C#]

private void button1_Click(object sender, System.EventArgs e)
{
 // EcoWinForm is a secondary form generated by the ECO Enabled Windows Form wizard.
 EcoWinForm newForm;

 // Create the secondary form, passing the EcoSpace property to the secondary form's
constructor.
 newForm = new EcoWinForm(EcoSpace);
 //...
}

Accessing the Service API
The following code demonstrates various ways to call service API methods.

746

[C#]
private void button1_Click(object sender, System.EventArgs e)
{
 IUndoService undoService;

 // Get a reference to the ECO Undo Service.
 undoService = EcoSpace.UndoService;

 // Call the interface's StartUndoBlock method.
 undoService.StartUndoBlock("Undo_Block_1");

 // You can also call directly through the ECO space.
 EcoSpace.UndoService.StartTransaction();

 // ...

 undoService.CommitTransaction();

}

[Delphi]
procedure TWinForm.Button1_Click(sender: System.Object; e: System.EventArgs);
var
 undoService : IUndoService;
begin

 // Get a reference to the ECO Undo Service.
 undoService := EcoSpace.UndoService;

 // Call the interface's StartUndoBlock method.
 undoService.StartUndoBlock('Undo_Block_1');

 // You can also call directly through the ECO space.
 EcoSpace.UndoService.StartTransaction;

 // ..

 undoService.CommitTransaction;
end;

Other service interfaces and their methods can be called using a similar technique. Each ECO service interface and
its purpose is shown in the following table.

Interface Description
IStateService Allows you to discover whether a particular object or property in the ECO space

has been modified.
IPersistenceService Provides a consistent API for you to update objects in the ECO space, without

regard to the persistence mechanism.
IDirtyListService Allows you to retrieve a list of all modified objects, and to query the ECO space

to discover whether any objects have been modified.

An object is considered modified if it does not have the same state in memory
as in persistent storage.

IExtentService Allows you to query the ECO space for all instances of a certain class.
IObjectFactoryService Provides methods for you to create new instances of the classes in your model.

747

The IObjectFactoryService interface methods create new objects using their
type information. This approach is more generic than directly creating a new
object by calling the C# new method, or the Delphi Create method.

IVariableFactoryService Provides a programmatic interface for creating what are essentially
VariableHandle components.

Variables created with this service can be used directly with the IOclService.
ITypeSystemService Allows you to get the type system of the model, and to validate the model

programmatically.
IVersionService For domain classes that have been marked as versioned, this interface allows

you to get a specific version of an object from persistent storage.
IOclService and IOclTypeService These interfaces allow you to evaluate expressions in Object Query Language

(OCL).

IOclService is a descendent of IOclTypeService. Only the IOclService
interface is exposed through the ECO space.

IUndoService Allows you to create undo/redo blocks and transactions.
IExternalIdService Returns a globally unique ID for an ECO object, regardless of whether the

object has been saved in persistent storage.

This ID is only valid within the ECO space where the ID originated. This service
is intended primarily for use in ASP.NET applications.

748

Working with ECO Handles
This topic introduces the concept of ECO handles, and describes their usage in the ECO framework. Note that further
usage of the word handle always refers to an ECO handle. Before reading this topic you should have some familiarity
with the basics of building Object Constraint Language (OCL) expressions. In particular, the concept of evaluating
an OCL expression in a specific context.

Definition of a root handle and a rooted handle.
Chained evaluation of handles.
Usage of handles on the Tool Palette.
Programmatic access to the objects referenced by handles.

Handles in the ECO framework

The diagram shows the relationships between the various kinds of ECO handles.

Handles and Chained Evaluation
Every ECO framework application must have an instance of an ECO space. The ECO space contains both the model
definition, and the objects that are created while your application runs. Handles are a mechanism that enables you
to get hold of objects in the ECO space at runtime. A handle can represent either a single object, or a list of objects,
or a calculated value.

Note: The ECO Application wizard automatically declares an ECO space class, and generates code to create of
that class at runtime.

Handles are configured at designtime. Setting the properties of a handle at designtime determines the objects the
handle will attach to, or the value the handle will hold at runtime.

Handles are linked together to form a chain. The contextual instance of a particular handle is established by the
previous handle in the chain. There are two types of handles in the ECO framework:

Root handle: A root handle exists to establish an initial context for all the other handles in the chain.

749

Rooted handle: Evaluation of a rooted handle begins in the context established by the previous handle. The
previous handle can either be a root handle, or another rooted handle.

Handles represent objects and values, therefore, they are also the link between the ECO space and your application's
user interface. All ECO handles can be used as .NET data sources for GUI components. The ECO framework uses
standard .NET data binding mechanisms. Once you bind a GUI component to a handle, you can work with the
component the same way as you would if it were bound to any other kind of data source.

Root Handles
If rooted handles are the individual links in the chain, then a root handle is the spike that is hammered into the ground
to anchor the chain. The ground is your application's ECO space.

There are two important designtime properties of root handles that must be set to establish the initial context: the
EcoSpaceType property, and the StaticValueTypeName property.

The EcoSpaceType property points to your application's ECO space. The EcoSpaceType property gives the root
handle the type system of the model, and a link to the runtime world where objects live.

The StaticValueTypeName property determines the type of object to which the root handle will refer. This property
is used by the IDE during designtime to establish a context for the OCL Expression Editor. At runtime, the framework
will throw an exception if the root handle is ever set to reference an object that does not match the type set in the
StaticValueTypeName property.

At runtime, you can set the Element property of a root handle to refer to a specific object in the ECO space. Root
handles are the only handles that have a writable Element property. Evaluation of the rooted handles in the chain
begins with the object referenced by the root handle.

Rooted Handles
Rooted handles have a property called Expression. The Expression property is an OCL expression that, when
evaluated, produces an object, a set of objects, or an atomic element such as a specific attribute or a calculated
value. When we talk about evaluating rooted handles within a certain context, we are actually talking about the
context for the handle's OCL expression. The context begins at the root handle, and evolves through the chain of
rooted handles.

Types of Root Handles
There are two types of root handles you will encounter in the Enterprise Core Objects category on the Tool
Palette. These are the ReferenceHandle, and the VariableHandle classes.

ReferenceHandle
The ReferenceHandle is a concrete descendent of the RootHandle class. The EcoSpaceType property must be
configured at designtime to refer to your application's ECO space. The handle's StaticValueTypeName property
should also be configured, as this will provide additional designtime assistance in the OCL Expression Editor, as
well as runtime type checking on the handle's Element property.

Every form that needs access to the objects in the ECO space must have at least one instance of a ReferenceHandle.
The ECO Application wizard automatically generates a ReferenceHandle for the main form. The default name of
this ReferenceHandle is rhRoot. For secondary forms, the ECO Enabled Windows Form wizard generates a
ReferenceHandle, also having the default name rhRoot.

VariableHandle
Unlike a ReferenceHandle, a VariableHandle holds a value that does not exist in the ECO space. You configure a
VariableHandle with an ECO space and a StaticValueTypeName, however, a VariableHandle is typically not used

750

to reference objects of classes defined in the model. Instead, a VariableHandle holds values of atomic data types
such as the .NET type System.Int32. This is because a VariableHandle holds an indirect reference to the object,
unlike a ReferenceHandle, which holds the object directly.

A VariableHandle can be used as a data source for GUI components; they are typically used in conjunction with
OclVariables objects to create parameters for use in OCL expressions.

Types of Rooted Handles
There are two types of rooted handles you will encounter in the Enterprise Core Objects category of the Tool
Palette. These are the ExpressionHandle, and the OclPSHandle classes.

ExpressionHandle
An ExpressionHandle references an object or a list of objects through the evaluation of its OCL expression.

You must link the RootHandle property of an ExpressionHandle with either a root handle (an instance of a
ReferenceHandle or VariableHandle class), or another ExpressionHandle.

You configure the Expression property of the ExpressionHandle using the OCL Expression Editor. When you open
the OCL Expression Editor, the context of the expression (the type of the OCL keyword self) is determined by the
type of the result returned by the previous handle in the chain. If the previous handle is a root handle, the type is
determined from the StaticValueTypeName property. If it is another ExpressionHandle, the type is determined from
the Expression property of that handle.

OclPSHandle
Unlike an ExpressionHandle, an OclPSHandle is always executed against persistent storage, rather than data in
memory (i.e. in the ECO space). Therefore, the result of executing an OclPSHandle is a static snapshot of the
contents of persistent storage.

An OclPSHandle has a method called Execute. The handle's OCL expression is not evaluated until the Execute
method is called. Usually, you will call the Execute method in response to some event on a form, such as a button
click.

An OclPSHandle is typically used when the OCL expression has an intermediary part that results in a large number
of objects, and a subsequent part that filters the set down to a smaller number. For example, a call to
allInstances followed by a select statement.

The OCL expression is first mapped to a SQL query, which is then evaluated by the database. A select statement
in an OclPSHandle will therefore be able to take advantage of any indices defined within the database. With an
ExpressionHandle, the entire set of objects would be created and then processed in memory.

Since the OCL expression of an OclPSHandle is first mapped to SQL, there are some restrictions on OCL constructs
that you can use. The following operations and constructs are supported:

Navigation: You can freely access attributes and roles defined in the model. However, derived and non-
persistent attributes and roles cannot be used in the expression, since the database has no knowledge of them.
List operations: select, reject, allInstances, size, orderBy, minValue, maxvalue, average, sum,
exists, forall, notEmpty, isEmpty, and union are supported.

Boolean operators: =, <, >, <=, >=, <>, and, or, not, xor, sqlLike, sqlLikeCaseInsensitive are
supported.
Arithmetic operators: +, *, /, -, div, mod are supported.

Enum: Enumerated constants are supported.
Type operations: oclIsKindOf, oclIsTypeOf, oclAsType are supported.

751

Other operations: IsNull is supported.

The following operations and constructs are not supported:

Typecasting and metadata operations: TypeName, attributes, associationEnds, superTypes,
allSuperTypes, allSubClasses, oclType are not supported.

String, Date, and numeric conversion: subString, pad, postPad, formatNumeric, formatDateTime,
strToDate, strToTime, strToDateTime are not supported.

Operations relating to Object Versioning Extension: atTime, allInstancesAtTime, existing are not
supported.
List operations: count, includesAll, difference, including, excluding, symmetricDifference,
asSequence, asBag, asSet, append, prepend, subSequence, at, first, last, orderDescending,
sumTime are not supported.

Other operations: length, min, max, asString, allLoadedObjects, regExpMatch, inDateRange,
inTimeRange, constraints, collect, if, concat are not supported.

There are other restrictions on the OCL expressions used in a OclPSHandle:

Data types: At no point in the expression can there be a collection of attributes (e.g. Collection(String)).

TableMapping: Child mapped tables would complicate the questions generated by the translator since each
query must be posed to a number of tables. Currently, it is not possible to refer to attributes/roles that are stored
in child mapped tables.
Bags: In the OCL specifications, the expression Person.allInstances.home should result in a bag of
objects. Bags allow for multiple instances of the same object, so if two persons live in the same house, the
house would occur twice in the result. SQL, however, does not allow this when making joins, so the results of
such an implicit collect will be a set, and not a bag.

Using the Objects Referenced by Handles
Handles reference objects in the ECO space. A handle could therefore refer to a single object, a list of objects, or it
might hold calculated values. Regardless, every handle has a property called Element that you use to get the value
of the handle. Since the ECO framework has no knowledge of the types defined in your model, there are commonly
used code idioms that allow you to get from the ECO type (held by the handle) to a type defined in your model.

The handle's Element property gives back a reference to the ECO IElement interface. The method AsObject returns
the element as a .NET System.Object. From there, you can cast the object to a type defined in your model, as
shown in the following code. In the code, the variable rhPerson is a ReferenceHandle that has been set to refer to
an instance of a model class called Person.

[Delphi]

var
 E : Borland.Eco.ObjectRepresentation.IElement;
 O : System.Object;
 P : Person;
begin
 E := rhPerson.Element;
 O := E.AsObject;
 P := O as Person;
 P.DoSomething; // Now you can call methods and access attributes of the Person class.

 // This code could be abbreviated...

752

 P := (rhPerson.Element.AsObject) as Person;
 P.DoSomething;

 // Abbreviating even more...
 (rhPerson.Element.AsObject as Person).DoSomething;
end;

[C#]

Borland.Eco.ObjectRepresentation.IElement E;
System.Object O;
Person P;

 E = rhPerson.Element;
 O = E.AsObject();
 P = O as Person;
 P.DoSomething(); // Now you can call methods and access attributes of the Person class.

 // This code could be abbreviated...
 P = (rhPerson.Element.AsObject) as Person;
 P.DoSomething();

 // Abbreviating even more...
 (rhPerson.Element.AsObject as Person).DoSomething();

When the element referenced by the handle is a collection, you must first cast the Element property to the ECO
interface IObjectList. In the following code, the variable ehAllPersons is an ExpressionHandle. It is also assumed
the list returned by this expression contains at least three elements. The Expression property has been set to retrieve
all instances of the Person class from the ECO space.

[Delphi]

var
 L : Borland.Eco.ObjectRepresentation.IObjectList;
 O : System.Object;
 P : Person;

begin
 L := ehAllPersons.Element as IObjectList; // Cast the element to an IObjectList
 O := L[2].AsObject; // Retrieve the object at list index 2, and
cast it to a System.Object
 P := O as Person; // Cast the object to a Person
 P.DoSomething; // Access properties and methods of the Person
class.

 // This could be abbreviated...
 L := ehAllPersons.Element as IObjectList;
 P := (L[2].AsObject) as Person;
 P.DoSomething;

 // Abbreviating even more...
 P := (ehAllPersons.Element as IObjectList)[2].AsObject as Person;
 P.DoSomething;
end;

[C#]

Borland.Eco.ObjectRepresentation.IObjectList L;

753

System.Object O;
Person P;

 L = ehAllPersons.Element as IObjectList; // Cast the element to an IObjectList
 O = L[2].AsObject; // Retrieve the object at list index 2, and cast
it to a System.Object
 P = O as Person; // Cast the object to a Person
 P.DoSomething(); // Access properties and methods of the Person class.

 // This could be abbreviated...
 L = ehAllPersons.Element as IObjectList;
 P = (L[2].AsObject) as Person;
 P.DoSomething();

 // Abbreviating even more...
 P = (ehAllPersons.Element as IObjectList)[2].AsObject as Person;
 P.DoSomething();

754

Working with ECO Subscriptions
This topic describes how the ECO subscription mechanism is implemented, and how you work with it in your
applications. The following items are discussed:

The ECO subscription mechanism.
Two different types of subscriptions: Reevaluate and Resubscribe
Using subscriptions with derived attributes.
Using the SubscriberAdapterBase abstract class.

The ECO Subscription Mechanism
The ECO framework implements a publish and subscribe pattern to notify subscribers of changes to objects,
relations, and attributes.

Note: Objects, relations, and attributes are all implementers of the IElement interface.

The ECO handles that use OCL expressions, such as ExpressionHandle, are programmed to work with the
subscription mechanism. When you work entirely within the form designer, using the OCL Expression Editor to
configure handles on a form, you do not need to be aware of the inner workings of the subscription mechanism at all.

However, there are times when you will want to use the IOclService interface directly. For example, if you have a
component that is not aware of the .NET databinding mechanism (such as a status bar) and you want to display
values in this component, you will call the EvaluateAndSubscribe method of the IOclService interface. Another
example might be to display a special icon when changes have occurred, such as an email program might indicate
when unread messages have arrived. Again, you would use the EvaluateAndSubscribe method to accomplish this.
Finally, you might also encounter a case where the value of an attribute or column cannot be computed in OCL.

When using the IOclService directly, you must know the two different kinds of subscriptions to which you can respond.
When you need to compute a value in source code rather than in OCL, you must know how to place the two different
kinds of subscriptions.

Reevaluate and Resubscribe
Looking at the four overloaded IOCLService methods, EvaluateAndSubscribe, you can see that each one takes two
different subscriber parameters: reevaluateSubscriber, and resubscribeSubscriber.

IElement EvaluateAndSubscribe(IElement root, string expression, ISubscriber
reevaluateSubscriber, ISubscriber resubscribeSubscriber);
IElement EvaluateAndSubscribe(IElement root, IExternalVariableList variableList, string
expression, ISubscriber reevaluateSubscriber, ISubscriber resubscribeSubscriber);
IElement EvaluateAndSubscribe(IElement root, IClassifier rootType, string expression,
ISubscriber reevaluateSubscriber, ISubscriber resubscribeSubscriber);
IElement EvaluateAndSubscribe(IElement root, IClassifier rootType, IExternalVariableList
variableList, string expression, ISubscriber reevaluateSubscriber, ISubscriber
resubscribeSubscriber);

These two parameters correspond to the two different kinds of subscriptions you can place: Reevaluate
subscriptions, and ReSubscribe subscriptions. The difference between them has to do with the impact any change
in the ECO space has on existing subscriptions. All changes will always cause a reevaluation to occur, so that
subscribers will be informed when they must reevaluate a particular data value. In addition to the reevaluation of
data, some changes in the ECO space also require additional subscriptions to be created. The difference between
the two kinds of subscriptions is illustrated in the following example.

755

You have a model that contains a Person class and a Building class. You have drawn an association between
these two classes such that a person can own zero or many buildings. In addition, you have an association between
a Building and a Person, such that a building can have zero or many residents (i.e. instances of the Person
class). These relationships are shown below.

At some point while your application is running, the ECO space contains one person object, and this person owns
two buildings. You have built the following OCL expression to retrieve all the residents in all the buildings owned by
a person:

self.ownedBuildings.residents

Note: In the expression, self is an object of type Person.

The purpose of the subscription mechanism is to allow you to keep all the components that display or use data
returned by this expression up to date.

The result of this OCL expression is shown in the diagram. The subscriptions automatically placed by the OCL
evaluator are marked with an asterisk.

If a new Person is created and added to the list of residents for building B1, the result would be as shown:

Adding a new person as a resident in an existing building changed the result set of our OCL expression, but it did
not impact the set of subscriptions itself. This kind of change would trigger only a reevaluate subscription. Adding a
new building with its own set of residents would result in the structure shown in the diagram below.

756

The change not only affected the result set, but it caused a new subscription to be added as well. This kind of change
triggers both a reevaluate and a resubscribe subscription.

The rule of thumb is that if a change occurs in the last element of an OCL navigation (in this example, in the residents
relation) only the value needs to be reevaluated (a reevaluation is required). If a change occurs anywhere else in
the navigation (in this example, in the ownedBuildings relation), both the value and the subscriptions must be
reevaluated (a reevaluation and a resubscription are required).

Having two different subscribers allows you to take different actions when these two types of subscriptions occur.
When working with the EvaluateAndSubscribe method, you can pass a null value for either subscriber parameter if
you are not interested in that kind of subscription. You can also pass the same subscriber to both parameters, causing
a minor impact in performance. A resubscription will be performed in those cases where only a reevaluation is
required.

Using Subscriptions with Derived Attributes
In some cases you will not be able to compute the value of a derived attribute in OCL. In these cases you must
implement a specific design pattern in your class so that the framework will be able to call your source code to get
the value of the attribute. For a derived attribute whose value is computed in source code, you must add a method
to your class with the following signature:

[Delphi]

function attributeNameDeriveAndSubscribe(reevaluateSubscriber : ISubscriber;
resubscribeSubscriber : ISubscriber) : System.Object;

[C#]

System.Object attributeNameDeriveAndSubscribe(ISubscriber reevaluateSubscriber, ISubscriber
resubscribeSubscriber);

You must replace attributeName with the name of the attribute you are deriving. For example, in our Person
class, if we wanted to derive the attribute called fullName in source code, we would implement the method

[Delphi]

function fullNameDeriveAndSubscribe(reevaluateSubscriber : ISubscriber;
resubscribeSubscriber : ISubscriber) : System.Object;

[C#]

757

System.Object fullNameDeriveAndSubscribe(ISubscriber reevaluateSubscriber, ISubscriber
resubscribeSubscriber);

Please refer to the procedure Deriving an Attribute in Source Code for an example of computing a value and placing
subscriptions in source.

Using the SubscriberAdapterBase Abstract Class
If you need to implement a component that responds to subscriptions, start by deriving a subclass of the ECO abstract
class, SubscriberAdapterBase. When you use SubscriberAdapterBase, implement its abstract DoReceive method
to respond to the subscription.

Typically you will create a private utility class to implement a subclass of SubscriberAdapterBase.

Please refer to the procedure Implementing a Subclass of SubscriberAdapterBase for an example.

758

Using State Machines with the ECO framework
These topics describe how to work with ECO state machine diagrams.

In This Section
Modeling Behavior with State Machines
Describes simple UML state machines and how they are used with the ECO framework.

Using Substates with the ECO framework
Describes how to use composite states, substates and regions with ECO state machine diagrams.

759

760

Modeling Behavior with State Machines
This topic introduces the basic terminology of UML state machines, and how state machines are used to model
behavior in ECO framework applications.

The following concepts are discussed:

Definition of a state machine and its associated terminology
Attributes of a state and of state transitions
Performing activities in a state machine

Definition and Properties of a State Machine
During its lifetime, an object enters into many different conditions based on the values of its member variables. Each
individual condition is called a state. A state transition occurs when an object changes from one state to another.
State transitions occur in response to a trigger. In an ECO state machine diagram, the trigger is always a method
on the class. Trigger methods are designated by setting the Is Trigger property of the method to True in the
Object Inspector (the method may be selected in the Model View, or on the ECO class diagram).

The actions associated with a state transition typically set member variables and call other methods on the object,
thus taking the object from one state to another.

A state machine diagram shows the states and transitions of the object, together with their associated attributes
such as entry and exit actions, trigger events, and guard conditions. Modeling behavior with ECO framework state
machine diagrams allows you to concentrate on the business logic that drives your application, rather than on the
internal mechanics of setting member variables. The framework handles the mechanics; you handle the logic.

Properties of a State
States and state transitions have properties that you set using the Object Inspector. These properties describe the
behavior of the object from its creation to deletion. A state has these properties:

Name A text string that describes the state.
Entry and Exit actions Executable actions that are performed upon entry and exit from the state, respectively.

Entry and exit actions are written in ECO Action Language.

Properties of a State Transition
A state transition has these properties:

Effect An activity that occurs when the transition takes place. The effect of a state transition is written
in ECO Action Language.

Guard A Boolean expression that indicates whether the transition can occur or not. The guard written
in the Object Constraint Language (OCL). A guard with no OCL expression is called an empty
guard, and is always True.

Trigger A method that causes the state transition to occur. The trigger must be an operation on the
class holding the state machine. A trigger just an operation with its Is Trigger attribute set
to True. Since they are a structural feature of classes, triggers are added either on the Class
Diagram, or using the Model View.

Trigger parameters can be specified using the Object Inspector. The parameters of trigger
methods can be used in the guard expression of the transition.

761

Source (read only) The source state for the transition. When the transition occurs, the exit action of the client is
executed.

Target (read only) The destination state for the transition. When the transition occurs, the entry action of the
supplier state is executed.

Initial and Final States
All UML state machines must have one initial state. The initial state is a pseudostate, since the object is never actually
in the initial state. The initial state serves as the source for the outgoing transition that points to the true starting state
of the state machine. The initial state may have multiple outgoing transitions. These transitions may not have triggers,
but they may each have a guard. Exactly one of the guards must evaluate to True, so the state machine will start
in a defined state.

The final state is only of interest when a state machine is “finished” with its task. On an ECO state diagram, the final
state implies deletion of the object. In many cases ECO objects never enter a final state, so the final state is not
required on an ECO state diagram. The final state has an entry action attribute that you can use to perform final
operations. On transition to the final state, the order of execution is

Note: Object deletion occurs in the final state of the state machine as a whole, not in the final state of a region. See
the link below on using substates for more information.

1 Effect of the incoming transition to the final state
2 State change to the final state
3 Entry action of the final state
4 Object deletion

A Simple State Machine Diagram
The following simple state machine diagram illustrates the concepts discussed so far.

Activities in ECO framework State Machines
When a state transition occurs, the ECO framework performs activities associated with the source state, the transition
itself, and the target state. These activities are defined on the ECO state machine diagram, using ECO Action
Language.ECO Action Language is an extension of OCL that allows side-effects. Refer to the links below for more
information on ECO Action Language.

When the trigger of a state transition trigger is executed and the guard is true, the following activities will happen in
order:

1 The exit activity of the source state of the transition is executed.
2 The effect activity of the transition is executed.

762

3 The ECO framework sets the state of the object.
4 The entry activity of the target state of the transition is executed.

There are two exceptional cases that could occur when a trigger is called, as shown in the following table.

Case Action

More than one guard expression is true The framework throws an exception of type AmbiguousTransitionException.

All guard expressions are false The framework throws an exception of type NoTransitionException.

A Basic ECO State Machine
The following example of a simplified order entry system will tie together the basic concepts of ECO class diagrams
and ECO state machine diagrams.

The sample starts with two classes: Customer and Order. The figure shows an ECO class diagram with these two
classes. The Customer class contains a string for the customer name, and the Order class contains a reference
number. A Customer may have zero or many orders, as shown in the association.

The diagram shows three trigger methods on the Order class: Accept, Cancel and Ship. Trigger methods are
operations on the class that have their Is Trigger attribute set to true. Like all operations, triggers can take
parameters, which you specify on the Object Inspector. Trigger parameters may be used in ECO Action Language
activities. In the Order system, the Ship trigger takes one parameter, which is the waybill number.

The State attribute of the Order class is created automatically when you create a state machine diagram for the
class. The attribute is an ordinary attribute of the class, except its Is state attribute property is set to True.

Tracking the State of an Order
An ECO state machine diagram will be used to model the behavior of an Order object within the system. As shown
in the diagram, an Order has the following states

Open
Pending
Shipped
Cancelled

763

As shown in the diagram, each transition has an associated trigger method. A state transition occurs when you call
a trigger method on the object. For example, from the Open state, you may call the Accept trigger, or the Cancel
trigger to effect a transition to the Pending or Cancelled state, respectively. Once an Order has entered either the
Cancelled or Shipped state, there are no more transitions available. Therefore, the Cancelled and Shipped states
are effectively the final states of an Order.

Adding OCL Guards to the State Machine
A guard is a condition on a state transition. Guards are expressed in OCL, and must evaluate to a boolean value.
Like all state and state transition attributes, the guard expression is a property that you edit using the Object
Inspector. A guard with no expression always evaluates to true, meaning the transition will always occur when its
associated trigger method is called.

The next diagram shows a guard condition on the Accept trigger. The guard checks to see if there is a Customer
associated with the Order. If the Customer attribute of the Order is not a null value, the guard evaluates to True,
and the trigger is executed thus causing a transition to the Pending state.

Adding Activities to the State Machine
In addition to moving from one state to another, you can associate activities to be performed when:

A transition trigger is taken
A state is entered

764

A state is exited

Activities are executable actions that are written using ECO Action Language. ECO Action Language is an extension
of OCL that allows for side effects. To specify an activity for a transition, you add code to the effect attribute of the
transition. To specify activities for states, you add code to the entry and exit attributes of the state.

Every Order in the tracking system requires a waybill number, but this piece of information is not known until the
order is shipped. This requirement can be built directly into the model by using the Effect attribute of the Ship
transition. The next diagram shows the complete state machine for the Order system, with the Effect on the Ship
transition. Note the Effect is written in ECO Action Language, with the := operator assigning the value of the Waybill
parameter to the Reference attribute of the Order.

All of the procedures necessary to create this simple ECO state machine are referenced at the end of this topic.

765

766

Using Substates with the ECO framework
A state with no substates is called a simple state. A composite state is a state that contains nested states, or
substates. A composite state can contain either substates (sometimes called sequential, or disjoint substates), or
concurrent (orthogonal) substates. Using substates can greatly simplify complex state machine diagrams.

This topic discusses the following:

Regions and substates
Composite states and substates
Concurrent substates

Regions and Substates
Substates exist within regions of their composite state. The substates in a region may also have regions, which may
have their own substates. Multiple regions within a composite state are delineated by a dotted line.

The following diagram shows a simple state with one region.

The next diagram shows a composite state with one region containing substates.

The next diagram shows a composite state with two regions.

767

The relationship between regions and concurrent substates is explained below.

Composite States and Substates
Substates are a specialization of the composite state that contains them. Since the object is never actually in the
composite state, it is analogous to an abstract class. All of the substates within the composite state inherit the
transitions of the composite state. Only one substate can be active when the composite state is active. This is why
substates are sometimes called sequential, or disjoint. The composite state represents the condition where the object
is in any one of the substates contained within the composite state.

Substates can simplify the state machine when there are multiple transitions leading to the same state. Often, these
multiple transitions will each have the same trigger, guard, and effect. For example, this can happen where there
are multiple states and a cancel state. With simple state machines, you would have transitions leading out of each
state, to the cancel state.

The following diagram shows a state machine drawn on an Order class from a hypothetical order entry system.

768

The diagram shows a composite state called Active. The Active state contains one region with two substates called
Open, and Shippable. When an Order object enters the Active state, it immediately enters the initial state of the
nested state machine. In this case, the Order will enter the Open state.

There are two transitions out of the Active state. States inherit the transitions of their composite state, so given this
state machine, the transition to the Cancelled state can be reached by calling the Cancel trigger from either the
Open, or the Shippable state.

Concurrent Substates
Adding regions to a composite state allows you to create concurrent substates. The state machines in separate
regions are concurrent because they execute in parallel. The object is therefore in multiple states simultaneously.
On entering the composite state, the object enters the initial state of each of the state machines in the regions it
contains.

In the order tracking system, suppose an Order must pass certain checks before it is shipped. For example, suppose
the item referenced on the Order must be in stock, and the customer must pass a credit check. You could model
these checks with sequential substates, but concurrent substates help simplify the model.

The following diagram shows the enhanced Order state machine.

769

The following list describes notable points about the enhanced state machine diagram:

To model the two-phase order checking process, a composite state called Checking is introduced. The two
checks performed on an Order are represented in two regions within the Checking state. On calling the Close
trigger from the Open state, the Order object simultaneously enters the CheckingStock and CheckingCredit
substates.
A single, triggerless transaction leads out of the Checking composite state. When the final state is reached in
all regions, the triggerless transaction will be taken. In this case, the Order enters the Shippable state.
An OCL guard expression called Ok is used on the transitions Cancel and CreditCheck. These two transitions
will not be taken unless the guard evaluates to true.

Entry and Exit from Composite States
Composite states can be entered and exited in a variety of ways. Each case is unique in terms of whether an initial
or final state is required, and in the way entry and exit actions are called.

Entry into a Composite State
There are two cases of entry into a composite state.

770

The first case occurs when the target of the transition is the composite state itself, as illustrated in the following
diagram:

In this case the state machines in the regions of the composite state must all have an initial state. On entry to the
composite state, the object will be in the initial state of each region it contains.

The second case occurs when the target of a transition is a substate in a region of the composite state. This case
is illustrated in the following diagram:

In this case the state machine of the target substate does not require an initial state. On entry to the composite state,
the object will be in the target substate, and in the initial state of the other regions it contains.

Exit from a Composite State
There are three cases of exit from a composite state.

The first case occurs when a triggerless transition leads from the composite state itself, as illustrated in the following
diagram:

771

In this case each of the state machines in regions of the composite state must have a final state. The triggerless
transition will occur when the final state of each region is reached.

Note: You could have multiple triggerless transitions with OCL guard expressions. Exactly one of the guard
expressions must evaluate to true, otherwise an AmbiguousTransitionException is thrown.

The second case occurs when there is a transition leading from a substate to a state outside the composite state.
This case is illustrated in the following diagram:

As shown in the diagram, the transition must have a trigger. When the trigger is called, the composite state is exited.
The exit action of the currently active substate in each region is called, and then the exit action of the composite
state is called.

The third case occurs when a transition with a trigger leads from the composite state. This case is illustrated in the
following diagram:

772

When the trigger is called, the exit action of the currently active substate in each region is called, and then the exit
action of the composite state is called. The concurrent state machines of the composite state need not have reached
their final state when the trigger is called.

773

774

Object Constraint Language (OCL) and ECO Action Language
These topics describe the use of Object Constraint Language (OCL) and ECO Action Language with the ECO
framework.

In This Section
Overview of the Object Constraint Language
Describes the Object Constraint Language (OCL) in a high-level overview.

Using ECO Action Language
Describes the extensions provided by the ECO Action Language.

775

776

Overview of the Object Constraint Language
The Object Constraint Language (OCL) is a formal language used to express constraints in an unambiguous way.
Expressions written in OCL can return single values and collections of objects, but they do not alter the state of the
objects.

With the ECO framework, you can use OCL throughout the process of designing your application. OCL is available to:

Specify the values of derived attributes of classes.
Specify the values of derived association ends.
Specify constraints for your objects.
Configure ECO handles, specifying the values or objects to which the handles refer.
Evaluate dynamically built OCL queries and expressions at runtime.
Translate OCL queries to SQL to be efficiently executed in the database.

This topic presents a brief introduction to OCL. The official OCL specification in PDF form can be found at the Object
Management Group (OMG) website.

Establishing the Context of an OCL Expression
OCL expressions are evaluated in the context of a data type. Typically this type is a class declared in the model.
Within the expression, the keyword self refers to the instance of that data type. For example, given the expression:

self.Name

If the context is a class called Person, the self refers to an instance of the Person class. This OCL expression
returns the value of the Name attribute of the Person instance.

Knowing the context of the expression is particularly important when configuring ECO handles. Refer to the links
below for more information on working with ECO handles.

Note: OCL is a case-sensitive language. Language keywords are lowercase (or camel caps, starting with a
lowercase letter). Model elements must be capitalized as they appear in the model.

Predefined OCL Types
The OCL Specification includes four predefined, basic data types. These are:

Integer
Real
Boolean
String

In addition to these intrinsic types, OCL expressions can refer to any data type defined in the model. These additional
types can be either values or objects.

The OCL specification includes basic collection types.

Set Unordered, no duplicates
Sequence Ordered, no duplicates
Bag Unordered, duplicates allowed

777

The Basic Anatomy of an OCL Expression
An OCL expression consists of a context, and navigation from that context to the target value you are interested in.
For example, consider the following class diagram:

If the context is Teacher, the following are valid OCL expressions.

Expression Result

self.firstName Value of type string
self.lastName Value of type string
self.classRoomAssignment Value of type string
self.Courses Collection of Course objects (because the multiplicity of the association is 1..

*)

self.hireDate Results in a DateTime object

self.Courses.numberOfStudents Collection of integer values (one for each course)

self.Courses.numberOfStudents->sum Value of type integer (the total number of students in the courses taught by
the teacher)

Given the expression:

self.Instructor

If the context is Course, the expression results in a single instance of a Teacher (because the multiplicity of that
association is 1). If the multiplicity had been 0..1, the result would have been either an instance of Teacher, or a
null value.

The ECO framework handles navigation on NULL values differently than you might expect. Given the expression:

self.Instructor.firstName

In the context of a Course, this expression is valid and returns the name of the instructor if there is one, or an empty
string if the Course has no instructor.

Expressions are evaluated from left to right to get the type and value of the result.

OCL with Association Classes
You use the dot operator to navigate to an association class, the same way as navigating to an attribute or association
end. The difference is that you follow the dot with the name of the association class, starting with a lowercase letter.

Suppose the association above had an association class of type Room. If the context is Teacher, you could navigate
to the association class with the expression:

778

self.room

This expression would result in a collection of all the room assignments for all the courses to which the teacher is
assigned.

Similarly, you can navigate from an association class to either end of the association. Starting with a context of the
Room class, the following expressions are valid:

self.instructor
self.courses

Navigating from an association class always results in a single object.

Operations on Types
In OCL, types themselves have predefined operations that can be performed on them. Operations are defined on
both value types, and on collections. If the operation is specified on a basic type, use the dot to continue the
expression. If the operation is specified on a collection, use the -> operator to continue the expression.

For example, substring is a predefined OCL operation defined for the string type. The following expression returns
the number of characters in the firstName attribute:

self.firstName.substring(start,stop)

However, given the expression:

self.Courses->size()

In this expression, self.Courses results in a collection of all Course objects. The arrow operator is used instead
of the dot operator. The expression returns the number of elements in the collection.

Some operations take parameters. When this is the case, the parameter list is enclosed in parentheses. For
operations that do not take parameters, such as size, the OCL specification calls for parentheses with an empty
argument list. However, in ECO you can omit the empty parentheses.

Operations on Basic Types

The following table shows some of the operations defined by the OCL specification for the basic types.

Type Operations

Integer =, +, -, /, *
abs()
div(i: Integer)
mod(i: Integer)
max(i: Integer)
min(i: Integer)

Real =, <>, <, >, <=, >=
+, -, /, *
abs()
floor()
round()
max(r: Real)
min(r: Real)

779

Boolean =
or, xor, and, not

String =
length()

Note: The OCL specification defines the size() operation on strings. ECO uses the name length().

toUpper()
toLower()
subString(low: Integer, high: Integer)
concat(s: String)

Note: In ECO, the operator + is defined as a string concatenator.

For all types, the operators +, –, *, /<, >, <>, <=, >=, div, mod, and, or, xor, may be written using infix notation. The
following two expressions are equivalent:

a.+(b)
a + b

Perhaps the most common operation performed on a type is the allInstances operation. The allInstances operation
retrieves a collection of all instances of the given type. For example, given the expression:

Teacher.allInstances()

This expression results in a collection of all Teacher objects in the ECO space.

Operations on Meta Types

The following table shows other operations that are defined for all types.

Operation Result
typeName Returns the name of the type.
attributes Returns the set of attributes of the type.
associationEnds Returns the set of navigable association ends.
supertypes Returns the set of all direct supertypes.
allSuperTypes Returns the entire set of supertypes.
allSubClasses Returns the set of all subclasses defined on the type.

Other Type-related Operations

The following table shows some miscellaneous operations on types.

Operation Result
oclIsKindOf(aType) Returns true if the value is of the specified type or one of its subtypes.
oclIsTypeOf(aType) Returns true if the value is of the specified type exactly.
oclAsType(aType) Returns the same value, but typed as the specified type. A runtime exception is thrown

if the typecast fails.

780

Operations on Collections

The following table shows some of the common operations performed on collections. It is not an exhaustive list.

Operation Result
size() Returns the number of elements in the collection.
includes(object) Returns True if the collection contains the given object.
excludes(object) Returns True if the collection does not include the given object.
count(object) Returns the number of times object occurs in the collection.
isEmpty() Returns True if the collection is empty.
notEmpty() Returns True if the collection is not empty.

Iterators

There is a special construct in OCL called iterators. Iterators are defined for all collections, and behave different from
normal operations. For example:

Teacher.allInstances()->select(courses->size() > 2)

he above expression will iterate over all the teacher objects, and return a new collection with the teachers that fulfill
the condition in the select statement. Normally in an expression it is possible to omit the self keyword since this is
implicit. Inside an iteration the implicit variable is the loop-variable. The courses in the example will be applied to
an implicit variable of the type Teacher (regardless of the context of the expression). The following table shows the
various iterators in OCL.

Iterator Result
select(booleanexpr) Returns the collection of elements that yields True.
reject(booleanexpr) Returns the collection of elements that yields False.
orderBy(anyexpr) Returns the same set of elements but ordered according to the anyexpr.
orderDescending(anyexpr) Reverse order compared to previous.
forAll(booleanexpr) Returns True if all of the objects in the collection yields True.
exists(booleanexpr) Returns True if one of the object in the collection yields True.
collect Returns a collection if the values returned by the iteration expression.
iterate Generic iteration in the OCL specification , but not implemented in ECO.

Iterators can be nested as in this example:

Teacher.allInstances()->select(courses->exists(numberOfStudents > 2))

It is also possible to make the implicit iterator variable explicit:

Teacher.allInstances()->select(t | t.courses->size() > 2)

Here the variable t is introduced and used to reference the loop variable.

781

782

Using ECO Action Language
ECO Action Language is an extension of the Object Constraint Language (OCL). ECO Action Language allows all
the operations of OCL, with simple enhancements that produce side effects in the model. ECO Action Language is
used primarily on ECO state machine diagrams, where it is used to express entry and exit activities for states, and
the effect activity of state transitions.

ECO Action Language Operations
The following table shows the extensions provided by ECO Action Language.

Operation Purpose Example

:= Assignment operator self.FirstName :=
home.owners->first.
FirstName

; Statement separator.

The ; is not a statement terminator. A traili
ng ;results in a syntax error.

self.FirstName :=
home.owners->first.
FirstName;
self.LastName :=
home.owners->first.
LastName

create

delete

Object creation and deletion p := Person.create

p.delete

let
<variable>=<expression>
in <expression>

The let operation introduces a variable with
an initial value. The variable is then used in
one or more statements following the in
keyword.

When multiple statements follow the in
keyword, they are grouped in parentheses.
The statements must be separated with the
statement separator, ;.

let p=Person.create
in
(p.FirstName='Peter';
 p.LastName='Jones')

ECO Action Language supports the
following operations on lists:

clear
add
remove
removeAt

List operations use the corresponding
operation on the IElementList interface.

aPerson.ownedBuilding
s.clear
aPerson.ownedBuilding
s.add(home)
aPerson.ownedBuilding
s.remove(home)
aPerson.ownedBuilding
s.removeAt(3)

The ECO Action Language also allows calling methods (including triggers) defined on a class. To be callable by
ECO Action Language, each parameter of the method must be a value type, an instance of an ECO class, or an
array of either of these.

Note: The let operation does not have side effects. It is an ECO extension to OCL, and is available in the ECO
Action LanguageExpression Editor.

783

Using ECO Action Language
Like the OCL Expression Editor, the ECO Action Language Expression Editor is a property editor that is accessed
from the Object Inspector. The following table shows where ECO Action Language is available in the IDE:

Property IDE Location

Entry and Exit actions of states ECO state machine diagrams.

Select the state and access the Action Language Editor from the Object
Inspector.

Effect action of state transitions ECO state machine diagrams.

Select the state transition and access the Action Language Editor from the
Object Inspector.

Method body property of class methods ECO class diagrams.

Select the class and access the Action Language Editor from the Object
Inspector.

Action Expression property of button controls Select the button on the Windows Form designer and access the Action
Language Editor from the Object Inspector.

784

Using the ECO framework with Multi-Client Applications
These topics describe using the ECO framework in multi-client environments such as ASP.NET.

In This Section
The ECO framework and ASP.NET
Describes basic concepts required for understanding how to build an ECO ASP.NET application.

Using the ECO Framework in Multi-Client Applications
Describes the concepts and components used when writing multi-client ECO framework applications.

785

786

The ECO framework and ASP.NET
This topic describes the fundamental concepts of using the ECO framework with ASP.NET applications. You need
to have a good understanding of ASP.NET applications and ECO framework applications to fully understand the
content of this topic.

Requests, Sessions and Applications
To understand how the ECO framework works with ASP.NET applications, you must have a good understanding of
the ASP.NET concepts of requests, sessions, and applications:

A request can be either a page production or a web service call.
A session encompasses a series of requests.
An application is essentially a directory of related .aspx files.

The classes that serve each request are stateless. However, it is possible to cache state on the server. Caching can
be done either per session or for the entire application. The ECO framework and ASP.NET use both strategies.

The ECO Space Provider
The class that manages creation and releasing an ECO space is called EcoSpaceProvider.
ECOSpaceProvider is an abstract class and cannot be instantiated. It is declared for you by the ECO ASP.NET
Web Application and the ECO ASP.NET Web Service wizard. EcoSpaceProvider contains a property that sets
the session caching policy, and static methods to get and release an ECO space.

There is one EcoSpaceProvider class for an ECO ASP.NET application. The initial web page and all subsequent
web pages created by the ECO ASP.NET Page wizard contain an EcoSpace property that uses the
EcoSpaceProvider of the application.

Creating a new ECO space for each request would be expensive, so the ECO framework provides options. The
options for the session state caching policy are set by modifying the following line of code, which you will find in the
EcoSpaceProvider source file:

[C#]
private const EcoSpaceStrategyHandler.SessionStateMode sessionStateMode =
EcoSpaceStrategyHandler.SessionStateMode.Always;

[Delphi]
const
 MODE: EcoSpaceStrategyHandler.SessionStateMode =
EcoSpaceStrategyHandler.SessionStateMode.Always;

The following list shows the possible values and their meaning.

Value Meaning
Never Never cache the ECO space in the session state. Instead, return it to the pool. If pooling is not used,

release it. Any unsaved changes to the ECO space will be lost.
Always Keep a private ECO space in the session state for the duration of the session. When the session ends,

the ECO space will be returned to the pool. If pooling is not used it will be discarded.

The ECO space will always contain the objects used by the session, which may be more efficient than
getting one from the pool that could have different contents, but the disadvantage is that it ties up
resources much longer.

IfDirty Keep the ECO space in the session state if it contains dirty objects.

787

This mode allows applications to keep state over multiple requests.

Keeping ECO spaces in the session state ties up resources on the server. It is more efficient to write applications
to be stateless. Stateless applications can set SessionStateMode to Never.

Note: The code generated by the template for an ECO Web Service application does not use the session state
mode property. Instead, ECO web service applications use the methods
EcoSpaceProvider.GetSessionFreeEcoSpace and
EcoSpaceProvider.ReturnSessionFreeEcoSpace. These methods ensure that the web service is
always stateless.

ECO Space Pooling
You can configure the EcoSpaceProvider to maintain an application-wide pool of ECO spaces. ECO spaces are
then drawn from and returned to the pool. Each time an ECO space is drawn from the pool, the contents are
synchronized with a call to the Sync method of the IPersistenceService interface.

To maintain a pool, each ECO space must share the same PersistenceMapper. The PersistenceMapper can be
local (through a PersistenceMapperSharer component), or remote (through a PersistenceMapperClient component).

While the session state strategy affects the semantics of the entire application, ECO space pooling is a deployment
option. Pooling is controlled by two settings in the webconfig file.

Setting Description
MaxPool Setting MaxPool to an integer greater than zero will enable pooling of ECO spaces.
MaxAge Pooled ECO spaces will be discarded when they reach MaxAge seconds.

The following example webconfig file shows these two settings:

<!-- Application settings -->
<appSettings>
 <add key = "Borland.Eco.Web.MaxPool" value = "0" />
 <add key = "Borland.Eco.Web.MaxAge" value = "600" />
</appSettings>

788

Using the ECO Framework in Multi-Client Applications
The ECO framework can synchronize multiple ECO spaces connected to the same database. The changes written
to the database by one ECO space can be applied to the others. You need to be familiar with the ECO framework,
and with multi-client application technologies such as ASP.NET, and .NET Remoting to fully understand the content
of this topic.

This topic introduces the following concepts:

Shared persistence mappers
Sharing ECO spaces in-process and across process boundaries
Synchronization and conflict resolution

Shared Persistence Mappers
All ECO spaces that are to be synchronized must be connected to the same PersistenceMapper. The
PersistenceMapper components are both thread-safe and remotable. Set up your application for sharing persistence
mappers by adding a PersistenceMapperProvider (File New Other) and then adding components from
the Tool Palette to the ECO space.

The PersistenceMapperProvider component binds together a PersistenceMapper and its related components,
such as a BdpConnection component. The PersistenceMapperProvider component has its own design
surface. It is similar to the ECO space designer, but it only allows database creation and evolution. At runtime, the
PersistenceMapperProvider holds a single instance of the PersistenceMapper, so it can be shared by multiple
ECO spaces.

Note: Synchronization is only supported for the database persistence mapper components,
PersistenceMapperSqlServer, and PersistenceMapperBdp. Synchronization is not supported with the
PersistenceMapperXML component.

There are two ways to connect the ECO space to a PersistenceMapperProvider. The method you use depends
on whether all ECO spaces will be running in a single process or in multiple processes.

Using a Shared Persistence Mapper in a Single Process
ASP.NET applications that are deployed on a single server, and Windows Forms applications that create multiple
ECO space instances can share a persistence mapper in a single process. Place a PersistenceMapperSharer
component on the ECO space designer, and connect its MapperProviderType property to the
PersistenceMapperProvider.

Using a Shared Persistence Mapper in a Separate Process
The PersistenceMapperProvider component can be shared using standard .NET Remoting. To share ECO
spaces over process boundaries you use a PersistenceMapperClient on the ECO Space Designer.

The template for the PersistenceMapperProvider component generates a block of sample code that sets up
the remoting parameters. This code is initially commented out. You can uncomment the code and make adjustments
as necessary.

Sychronizing ECO Spaces
ECO spaces can be synchronized after they are configured to share a PersistenceMapper.

Synchronize ECO spaces by calling methods on the IPersistenceService interface. The simplest case is to call the
Sync method. When using the ECO framework with ASP.NET, Sync is automatically called whenever an ECO space

789

is retrieved from the pool. Sync always succeeds if the ECO space is clean. This is always the case for pooled ECO
spaces under ASP.NET.

Synchronization and Conflict Resolution
Conflicts can occur when synchronizing if optimistic locking fails or as a side-effect of reading.

An ECO space maintains an old value for all elements that have been fetched. The old value is the value that was
read from the database when the object was last fetched. For items that are modified, the ECO space maintains the
new value. A modification can be either creating or deleting an object, changing the value of an attribute, or modifying
an association.

A conflict occurs if the value in the database is different from the value maintained by the ECO space. Each time a
conflict occurs, it is registered in an internal list maintained by the ECO space. This list can be retrieved using the
IPersistenceService interface.

The call to RetrieveChanges will query the PersistenceMapper for any changes that might have occurred in other
ECO spaces, and record them as potential conflicts.

The list of all unresolved conflicts can be retrieved by calling the GetChanges method of the IPersistenceService
interface. GetChanges returns an array of IChange interface instances. The conflicts are resolved by looping over
each change in code, and marking the desired action in the Action property of the IChange interface. The Apply
method of the IChange interface can be called for each item in the list, or, the IPersistenceService method
ApplyChanges can be called to apply the actions all at once. For each change, the following actions are available

Action Meaning
Ignore No action will be performed; the change will be removed from the list.

This action should only be taken if you have handled the conflict in some other manner. For example,
by directly changing the object.

Discard The value in the ECO space will be marked as invalid.

The value will be reread from the database the next time it is accessed. If the value was dirty, the
new value will be discarded. This option is semantically identical to Reread.

Reread The value is reread from the database.

If the value was dirty, the modified value will be discarded.
Keep The ECO space will update its notion of the old value to the one currently in the database, but will

keep any modified value.

If the value is not modified Keep is identical to Reread.
Verify Verify that the potential conflict is a conflict by reading the value from the database.

This can happen if another user has modified parts of an object that are not loaded in this ECO
space, or if the ECO space has lost and reestablished contact with the persistence server. In this
case all loaded objects will be marked as potential conflicts.

Undecided No action is performed, and the change is left in the list.

This is the action set on any new changes discovered.

The Sync method of the IPersistenceService interface will resolve all changes where it is safe, for example, where
the element in question has not been modified. The example code below shows how a method like Sync could be
implemented.

[C#]
public void MySync(bool ReadNewValues)
{
 IChange[] Changes;
 Change: IChange;

790

 EcoSpace.PersistenceService.RetrieveChanges();
 Changes = EcoSpace.PersistenceService.GetChanges();
 foreach Change in Changes {
 if(!Change.IsDirectConflict) {
 if(ReadNewValues)
 Change.Action = ChangeActionKind.Reread;
 else
 Change.Action = ChangeActionKind.Discard;
 }
 }
 EcoSpace.PersistenceService.ApplyAll();
}

[Delphi]
procedure WebForm1.MySync(ReadNewValues: Boolean);
var
 Changes: ChangeArray;
 Change: IChange;
begin
 EcoSpace.PersistenceService.RetrieveChanges;
 Changes := EcoSpace.PersistenceService.GetChanges;
 for Change in Changes do
 if not Change.IsDirectConflict then
 if ReadNewValues then
 Change.Action := ChangeActionKind.Reread
 else
 Change.Action := ChangeActionKind.Discard;
 EcoSpace.PersistenceService.ApplyAll();
end;

791

792

Custom OR Mapping
These topics discuss the format of the ECO framework custom OR mapping file.

In This Section
Custom ECO Object-Relational Mapping Files
Describes the format of the object-relational mapping file used by the ECO framework.

Custom OR Mapping with Auto-Increment Columns
Describes an example of a custom OR mapping file that includes an auto-increment column.

Custom OR Mapping with BLOB Tables
Describes an example of a custom OR mapping file that stores BLOBs in the database.

Custom OR Mapping with Objects stored in multiple tables, with multiple keys
Describes an example of a custom OR mapping file that stores objects in multiple tables, and implements
multiple keys.

Custom OR Mapping with Singlelink and Compound Keys
Describes an example of a custom OR mapping file that includes a singlelink definition, and a class with a
compound key.

Custom OR Mapping Using Type Discriminator Columns
Describes an example of a custom OR mapping file that uses a type discriminator column.

793

794

Custom ECO Object-Relational Mapping Files
An object-relational (OR) mapping specifies how to map classes and relationships defined in the model to a relational
database schema. All models created with the ECO framework have a default OR mapping. The ECO Space
designer can generate and evolve a database schema specified by this default OR mapping.

If you work entirely within the IDE, using the class diagram surface to develop the model, creating and evolving the
database schema using the ECO Space designer, then you will never have to work with custom OR mapping files.
There might be situations where you want to develop the database schema yourself. Or, you might be working under
the restrictions imposed by a database administrator. The most common case is when you have an existing database
that you would like to use to build a model.

The ECO framework is capable of reverse engineering an existing database. The outcome of reverse engineering
is a set of classes with attributes and associations (contained within a single model package file), and a custom OR
mapping file, which is specified in XML.

This topic discusses the following:

Custom OR mapping file format.
Using custom OR mapping files with database schema evolution.

Custom OR Mapping File Format
You can produce a custom OR mapping file manually, or you can use the ECO Space Designer to reverse engineer
an existing schema. Reverse engineering a database is a complex procedure. The correct object-oriented classes
and relationships cannot always be inferred from the schema, and you might need to make manual modifications to
the XML mapping file.

XML Mapping File Specification
The following shows the specification of the XML file produced by the reverse engineering tools. The persistence
mapper components used by the ECO framework require the custom OR mapping file to adhere to this specification.

<Globals [ImplicitAliasInFeatures:bool] [ImplicitColumnInFeatures:bool]>?
</Globals>
<ORMapping>1
 <ClassDef Name:string>+
 <AliasDef Name:string Table:string [IsMainAlias:bool]
 [ExtentRequiresDiscriminator:bool]>*
 <KeyImpl Name:string [IsAutoInc:bool]>+
 <KeyColumn Name:string />+
 <DiscriminatorColumn Name:string />*
 <ConstantColumn Name:string Signature:string value:string/>*
 </KeyImpl>
 <DiscriminatorImpl Name:string Column:string/>
 </AliasDef>
 <KeyDef Name:string Signature:string [IsId:bool] KeyMapper:string/>*
 <DiscriminatorDef Name:string Signature:string />*
 <DiscriminatorValue: Name:string Value:string IsFinal:bool/>*
 <AttributeDef Name:string [Columns:string] [Alias:string] [AllowNULL:bool]
 [Length:int] />*
 <SingleLinkDef Name:string [Columns:string] [OrderColumn:string] [Alias:string]
 Key:string [IsConstrained:bool] />*
 </ClassDef>
 <Database Name:string>*
 <Table Name:string>+
 <Column Name:string AllowNULL:bool Type:string Length:int

795

 DefaultValue:string/>+
 <Index Name:string Columns:string IsUnique:bool IsCaseSensitive:bool IsPrimary:bool
 IsDescending:bool/>*
 </Table>
 </Database>
</ORMapping>

Legend:

“[]” indicates that an attribute is optional
“+” means that a node must occur at least once
“*” means that a node can occur zero or more times
“?” means that a node is optional
“1” means that a node must occur exactly once

XML Elements of Custom OR Mapping Files
From the specification, you can see that the mapping file defines each class in the model. There will be one
<ClassDef> node for each persistent class. The attributes and subnodes of <ClassDef> determine how instances
of the class are to be stored in the database.

The following are the individual elements of the OR mapping file:

Element Description
<Globals> Element Defines global attributes that apply to the entire mapping file.
<Classes> Element A top level node that groups all the classes defined in the OR mapping file.
<ClassDef> Element The storage characteristics of each class are contained within a

<ClassDef> element and its subnodes.
<AliasDef> Element For each class, you must specify a reference to the table or tables that will store

instances of the class. These table references are contained in <AliasDef>
elements. Multiple aliases can refer to the same table, if the same table stores
instances of multiple classes.

<KeyDef> Element

<KeyImpl> Element

<KeyColumn> Element

The keys that exist to identify each instance of the class are specified in
<KeyImpl>, <KeyColumn> and <KeyDef> nodes. Each <ClassDef> can
contain multiple keys, but exactly one of them must specify a key to be the ID.
The ID key is the unique identity of an object in the object layer. It is normally
also the primary key of the object in the database.

<ConstantColumn> Element A constant column is used if a column should always have the same value.
<DiscriminatorDef> Element

<DiscriminatorImpl> Element

<DiscriminatorValue> Element

<DiscriminatorColumn> Element

If a type discriminator is required, it is specified with <DiscriminatorImpl>,
<DiscriminatorValue>, <DiscriminatorColumn>, and
<DiscriminatorDef> elements. Type discriminators are required if, for
example, a class has any subclasses, or if unrelated classes stored in the same
table.

<AttributeDef> Element Each attribute of the class is specified in <AttributeDef> elements.
<SingleLinkDef> Element The <SingleLinkDef> element must be specified when the model requires

that a class has a singlelink relationship to another class.
<Database> Element In most cases, ECO will determine the database schema automatically if you

specify the <ClassDef> nodes.

In some cases, the <Classdef> nodes are not suffient, so it is possible to
explicitly specify the schema of the database with the <Database> element.

796

This is only required if the schema is to be generated in an empty database.
For normal data operations, this is never required.

There are properties that can be specified in both the <ClassDef> section and
the <Database> section: Attribute.Length / Column.Length, and
Attribute.AllowNULL/Column,AllowNULL.

The setting in the <Database> section will override the setting in the
<ClassDef> section.

The <AliasDef>, <KeyDef>, <DiscriminatorDef>, <AttributeDef>, and <SingleLinkDef> elements
are all inherited by subclasses in the custom OR mapping file. If a <ClassDef> element specifies a superclass,
that <ClassDef> will inherit all of the elements in its superclass.

Classes Stored in Multiple Tables
If a class is stored in more than one table, its <ClassDef> will have more than one <AliasDef> subnode defined
in the mapping file. Also note that the set of aliases for a class includes its own, and any aliases that are and inherited
from other classes.

It must be possible to “join” all aliases of a class (including the inherited aliases). This means that each alias must
have a <KeyImpl> node that refers to a key definition that is also present in some other alias. At least one alias
must implement a key that is marked with IsId="true".

Any alias that does not implement the ID key (the IsId attribute is not set to "true") must implement some key that
is implemented by one of other aliases.

Custom Object-Relational Map Files and Database Evolution
When using a custom mapping file, you must link the persistence mapper component on the ECO space to the
mapping file.

The built-in database evolution mechanism on the ECO Space designer must be able to find the old mapping file
(the mapping file prior to alterations) and the new mapping file.

797

798

Custom OR Mapping with Auto-Increment Columns
The following example describes a custom OR mapping file that includes an auto-increment column. Auto-increment
columns get their value from the database itself. The value generated by the database is guaranteed to be unique
within the table.

This example includes one class, called Product. The class has an attribute called ProdNum that stores its value
in an auto-increment column. The ProdNum column is also used as a key.

<ClassDef Name="Product">
 <AliasDef Name="Product_ALIAS" Table="Product" >
 <KeyImpl Name="ProdKey" IsAutoInc="true">
 <KeyColumn Name="ProdNum" />
 </KeyImpl>
 </AliasDef>
 <KeyDef Name="ProdKey" Signature="System.Int32" IsId="true"
 KeyMapper="AutoInc" />
 <AttributeDef Name="ProductNumber" Alias="Product_ALIAS" Columns="ProdNum"
 AllowNULL="False"/>
 <AttributeDef Name="Name" Alias="Product_ALIAS" Columns="Name"
 AllowNULL="False"/>
 <AttributeDef Name="Price" Alias="Product_ALIAS" Columns="Price"
 AllowNULL="False"/>
 <AttributeDef Name="Color" Alias="Product_ALIAS" Columns="Color"
 AllowNULL="False"/>
 </ClassDef>

Notice the <KeyImpl> node sets the IsAutoInc attribute to "true", indicating the table column used for the key is
an auto-increment column.

799

800

Custom OR Mapping with BLOB Tables
The following example describes a custom OR mapping file that stores BLOBs in the database. BLOBs, or Binary
Large Objects, consist of purely binary data, as the name implies. BLOBs are typically used to store images or
sounds in the database.

This example shows a class with two BLOB attributes. Some databases only allow a table to have a single BLOB
field, but with this mapping, you can store both BLOBs (or any BLOB in the model) in the same table.

First, define a main <AliasDef> in which to store the ImageId attribute and the Description. This alias is connected
to the ImageInfo table. Next, define two new aliases, both connected to the ImageData table. Both aliases use
the ImageId key. In addition to the KeyColumn, the aliases also specify a ConstantColumn called ImageType, with
different values (one value for the thumbnail and one for the full size photo). The ImageData table will have three
columns: ImageId, ImageType and BlobData.

<ClassDef Name="Image”>
 <AliasDef Name="Image_Main" Table="ImageInfo" IsMainAlias="true"
 ExtentRequiresDiscriminator="false">
 <KeyImpl Name="ImageId">
 <KeyColumn Name="ImageId" />
 </KeyImpl>
 </AliasDef>
 <AliasDef Name="ThumbAlias" Table="ImageData"
 ExtentRequiresDiscriminator="false">
 <KeyImpl Name="ImageId">
 <KeyColumn Name="ImageId" />
 <ConstantColumn Name="ImageType" Signature="System.String"
 Value=”Thumb” />
 </KeyImpl>
 </AliasDef>
 <AliasDef Name=" PhotoAlias" Table="ImageData"
 ExtentRequiresDiscriminator="false">
 <KeyImpl Name="ImageId">
 <KeyColumn Name="ImageId" />
 <ConstantColumn Name="ImageType" Signature="System.String"
 Value="Photo" />
 </KeyImpl>
 </AliasDef>
 <KeyDef Name="ImageId" Signature="System.Int32" IsId="true"
 KeyMapper="Attribute">
 <AttributeDef Name="ImageId" Alias="Image_Main" Columns="ImageId"
 AllowNULL="False"/>
 <AttributeDef Name="Description" Alias="Image_Main" Columns="Desc"
 AllowNULL="False" Length=255/>
 <AttributeDef Name="Photo" Alias="PhotoAlias" Columns="BlobData"
 AllowNULL="False"/>
 <AttributeDef Name="Thumb" Alias="ThumbAlias" Columns="BlobData"
 AllowNULL="False"/>
</ClassDef>

801

802

Custom OR Mapping with Objects stored in multiple tables, with
multiple keys
The following example describes a custom OR mapping file that stores objects in multiple tables, and implements
multiple keys.

This example shows how secondary tables can be joined either using the key that is marked as “IsId”, or by a
secondary key. The first <AliasDef> element implements both keys that are defined for the class Invoice. The
second <AliasDef> implements the ID key, and the third implements the secondary key.

It must be possible to link all of the aliases into one graph by pairing them together with shared key implementations.

<ClassDef Name="Invoice">
 <AliasDef Name="Invoice_ALIAS" Table="Invoice" IsMainAlias="True">
 <KeyImpl Name="InvoiceKey">
 <KeyColumn Name="InvoiceNumber" />
 </KeyImpl>
 <KeyImpl Name="SecondKey">
 <KeyColumn Name="SecondKey" />
 </KeyImpl>
 </AliasDef>
 <AliasDef Name="Invoice2_ALIAS" Table="Invoice_IdJoin">
 <KeyImpl Name="InvoiceKey">
 <KeyColumn Name="InvoiceNumber" />
 </KeyImpl>
 </AliasDef>
 <AliasDef Name="Invoice3_ALIAS" Table="Invoice_KeyJoin">
 <KeyImpl Name="SecondKey">
 <KeyColumn Name="SK" />
 </KeyImpl>
 </AliasDef>
 <KeyDef Name="InvoiceKey" Signature="System.Int32" IsId="true"
 KeyMapper="Attribute" />
 <KeyDef Name="SecondKey" Signature="System.Int32"
 KeyMapper="Attribute"/>
 <AttributeDef Name="InvoiceNumber" Alias="Invoice_ALIAS" Columns="InvoiceNumber"
 AllowNULL="False”/>
 <AttributeDef Name="MainAttr" Alias="Invoice_ALIAS" Columns="MainAttr"
 AllowNULL="False"/>
 <AttributeDef Name="Attr2" Alias="Invoice2_ALIAS" Columns="Attr2"
 AllowNULL="False"/>
 <AttributeDef Name="Attr3" Alias="Invoice3_ALIAS" Columns="Attr3"
 AllowNULL="False"/>
 <AttributeDef Name="SecondKey" Alias="Invoice_ALIAS" Columns="SecondKey"
 AllowNULL="False"/>
</ClassDef>

803

804

Custom OR Mapping with Singlelink and Compound Keys
The following example describes a custom OR mapping file that includes a singlelink definition, and a class with a
compound key.

In this example there are two classes: CEO and Company. The CEO class has two attributes, FirstName and
LastName, that are used as a compound key in the database. The two classes are related such that a Company
has exactly one CEO.

The XML required to define this relationship in the mapping file is shown below:

<ClassDef Name="CEO">
 <AliasDef Name="CEO_ALIAS" Table="CEO"
 ExtentRequiresDiscriminator="False">
 <KeyImpl Name=" CEOID">
 <KeyColumn Name="FName" />
 <KeyColumn Name="LName" />
 </KeyImpl>
 </AliasDef>
 <KeyDef Name="CEOID" Signature="System.String, System.String" IsId="true"
 KeyMapper="Attribute">
 <AttributeDef Name="FirstName" Alias="CEO_Alias" Columns="FName" AllowNULL="False"
 Length="10" />
 <AttributeDef Name="LastName" Alias="CEO_Alias" Columns="LName" AllowNULL="False"
 Length="10" />
</ClassDef>

<ClassDef Name="Company">
 <AliasDef Name="Company_Alias" Table="Company">
 <KeyImpl Name="CompanyId">
 <KeyColumn Name="CompId" />
 </KeyImpl>
 </AliasDef>
 <KeyDef Name="CompanyIdKey" Signature="System.Int32" IsId="true"
 KeyMapper="Attribute">
 <AttributeDef Name="CompanyId" Alias="Company_Alias" Columns="CompId"
 AllowNULL="False"/>
 <AttributeDef Name="Name" Alias="Company_Alias" Columns="Name" AllowNULL="False"
 Length="255" />
 <SingleLinkDef Name="CEO" Alias="Company_Alias" Columns="CEOFName,CEOLName"
 Key="CEO.CEOID" />
</ClassDef>

The compound key is specified in the <KeyDef> node of the CEO <ClassDef> element. The key implementation
(<KeyImpl>), shows that the key contains two columns, FName, and LName. These refer to column names in the
database.

The singlelink relationship is defined in the Company <ClassDef> element. The association's end is named "CEO".
The table columns that store the CEO data are CEOFName and CEOLName. The key is specified in the CEOID
<KeyDef> element, in the CEO <ClassDef>.

805

806

Custom OR Mapping Using Type Discriminator Columns
The following example describes a custom OR mapping file that uses a type discriminator column. Type discriminator
columns are required when a single table is used to store multiple classes. The type discriminator value is used to
distinguish one class from another.

In this example, two classes (Male and Female) are mapped to the same table (the Person table). An abstract
root class has been added to define the discriminator (it could also have been defined twice, once on each class,
like the ID key). Since the two classes are located in the same table, a discriminator is required to find the extent (i.
e. all instances) of the different classes.

By specifying the <AliasDef> attribute ExtentRequiresDiscriminator=”true”, the SQL for finding all
objects of type Male will change from

SELECT Id FROM Person

to

SELECT Id FROM Person WHERE Sex = 'M'

<ClassDef Name=”RootClass”>
 <DiscriminatorDef Name=“Sex” Signature=”System.Char”>
 <DiscriminatorValue Name=”Sex” Value=”X”>
 </ClassDef>

<ClassDef Name="Male" SuperClass=”RootClass”>
 <AliasDef Name="MaleAlias" Table="Person"
 ExtentRequiresDiscriminator=”true”>
 <KeyImpl Name="Id" IsAutoInc="true">
 <KeyColumn Name="Id" />
 </KeyImpl>
 <DiscriminatorImpl Name=”Sex” Column=”Sex”>
 </AliasDef>
 <KeyDef Name="Id" Signature="System.Int32" IsId="true"
 KeyMapper="AutoInc" />
 <DiscriminatorValue Name=”Sex” Value=”M”>
 <AttributeDef Name="Name" Alias="MaleAlias" Columns="Name"
 AllowNULL="False"/>
 <AttributeDef Name="Age" Alias="MaleAlias" Columns="Age"
 AllowNULL="False"/>
</ClassDef>

<ClassDef Name="Female" SuperClass=”RootClass”>
 <AliasDef Name="FemaleAlias" Table="Person"
 ExtentRequiresDiscriminator=”true”>
 <KeyImpl Name="Id" IsAutoInc="true">
 <KeyColumn Name="Id" />
 </KeyImpl>
 <DiscriminatorImpl Name=”Sex” Column=”Sex”>
 </AliasDef>
 <KeyDef Name="Id" Signature="System.Int32" IsId="true"
 KeyMapper="AutoInc" />
 <DiscriminatorValue Name=”Sex” Value=”F”>
 <AttributeDef Name="Name" Alias="FemaleAlias" Columns="Name"
 AllowNULL="False"/>

807

 <AttributeDef Name="Age" Alias="FemaleAlias" Columns="Age"
 AllowNULL="False"/>
</ClassDef>

808

Building Web Applications with ASP.NET
ASP.NET is the programming model for building Web applications using the .NET Framework. This section provides
the conceptual background for building ASP.NET applications using Developer Studio 2006. In addition to supporting
data access components within the .NET Framework, Developer Studio 2006 includes DB Web Controls. DB Web
Controls work with .NET Framework providers and Borland Data Providers for .NET (BDP.NET) to accelerate Web
application development.

In This Section
ASP.NET Overview
Introduces the ASP.NET architecture for building Web applications using Developer Studio 2006.

Building an ASP.NET Application
Describes the essential tasks for creating an ASP.NET application.

Borland DB Web Controls Overview
Introduces Borland DB Web Controls, a component framework for rapid application development in
ASP.NET using Borland data-aware controls.

Working with DataViews
Describes the DataView and issues regarding its use.

Using DB Web Controls in Master-Detail Applications
Covers details pertaining to master-detail relationships when using web controls in ASP.NET.

DB Web Controls Navigation API Overview
Describes Web DB Controls Navigation API.

DB Web Control Wizard Overview
Describes what you need to know to create DB Web Controls.

Using XML Files with DB Web Controls
Describes how to use XML files as a data source for DBWeb Controls.

Working with WebDataLink Interfaces
Describes the interfaces implemented by the DB Web Controls.

Deploying ASP.NET Applications
Provides general information about deploying ASP.NET applications.

809

810

ASP.NET Overview
ASP.NET is the .NET programming environment for building applications in HTML that run on the Web. This topic
provides introductory information about the major components of the ASP.NET architecture and explains how ASP.
NET integrates with other programming models in the .NET framework. This topic introduces:

ASP.NET Architecture
Web Forms
Data Access
Web Services
Designtime Features
Supported Web Servers
Sample Applications

ASP.NET Architecture

The major components of the ASP.NET architecture are Web Forms, ASP.NET server controls, code-behind logic
files, and compiled DLL files. Web Form pages contain HTML elements, text, and server controls. Code-behind files
contain application logic for the Forms page. Compiled DLL files render dynamic HTML on the web server.

Borland provides tools to simplify ASP.NET development. If you are familiar with rapid application development
(RAD) and object oriented programming (OOP) using properties, methods, and events, you will find the ASP.NET
model for building Web applications familiar.

Web Forms, Server Controls, and HTML Elements
Web Forms define the user interface for your Web application. Typically, a Web Form consists of a markup file
(.aspx) that provides the visual presentation and a code-behind file (.pas or .cs) that provides the program logic. The
code-behind file is compiled to a .dll and deployed to the server with the .aspx file. At runtime, the .aspx is compiled
and linked against the code-behind .dll. This enables you to change the .aspx file without recompiling the code-
behind file.

The Web Form .aspx file consists of ASP.NET server controls and static HTML elements. Server controls are
declared in your code and can be accessed programmatically through properties, methods, and event handlers.
They run on the web server and render HTML to send back to the client.

811

HTML elements are static, client-side controls; they are not, by default, programmatically accessible. However, they
are well suited for static text and images on a Web Form.

Data Access
Web Forms access data through ADO.NET. You can connect an ASP.NET application to an ADO.NET data source
by using the data components included in the .NET Framework or the Borland Data Provider (BDP.NET) components
included with Developer Studio 2006. BDP.NET components connect to a several industry standard databases.

The Borland DB Web Controls are data-aware components that simplify database development tasks. They work
with both the BDP.NET and .NET Framework data components. The DB Web Controls provide advanced
functionality and include grid, navigator, calendar, combobox, sound, and video components.

Web Services
Web Services provide application components to many distributed systems using XML-based messaging. A web
service can be as simple as an XML message updating values in a remote application or can be an integral part of
a sophisticated ASP.NET or ADO.NET application. Web Services and ASP.NET share a common .NET infrastructure
that allows for seamless integration.

Supported Web Servers
You can use Internet Information Services (IIS) 6 .0 and/or the Cassini web server while developing your ASP.NET
applications. IIS is a comprehensive, scalable web server and is included with Windows Server 2003. You can deploy
applications to a computer running IIS.

Cassini is a simpler, no cost web server, suitable for local development and testing, but not intended for application
deployment. Cassini can be downloaded from http://www.asp.net/Projects/Cassini/Download. Cassini is also
distributed with Developer Studio 2006 and available, by default, in the C:\Program Files\Borland\BDS\4.0\Demos
\Cassini directory.

You can use both IIS and Cassini on the same computer, provided you configure them to use different ports.

When you create an ASP.NET application, Developer Studio 2006 prompts you to specify the web server and location
for the application. You can set the default server and location for new applications, as well as the Cassini location
and port, on the Tools Options ASP.NET options page.

Designtime Features
Developer Studio 2006 provides several designtime features to help you accelerate the development of Web Forms,
HTML, and CSS files.

Editing HTML and CSS Files
Many of the Code Editor features are also available when editing HTML and CSS files. Code Completion (CTRL
+SPACE) and syntax highlighting are available for HTML and CSS files. Error Insight is available for HTML files and
highlights invalid HTML with a wavy red underline. If you position the mouse over the highlighted HTML, a hint window
is displayed indicating the probable cause of the error.

When using the visual Designer, the Tag Editor is displayed beneath the Designer, enabling you to view and edit
the corresponding markup language for the controls on the Designer. To set the Tag Editor and other HTML options,
choose Tools Options HTML Designer Options.

When displaying an HTML page, the internal HTML formatter automatically indents the HTML to improve readability.
Alternatively, you can use HTML Tidy, the standard formatting tool from www.w3c.org. You can use HTML Tidy as
needed to format the file and check for errors by choosing the Edit HTML Tidy menu commands. Alternatively,

812

you can set it as the default formatter, instead of the internal formatter. You can also define tags that HTML Tidy
would otherwise detect as invalid, such as those prefixed with asp:. To access the HTML Tidy options, choose
Tools Options HTML Tidy Options.

The Structure View displays a hierarchical tree view of the HTML tags in the active HTML page and is useful for
navigating large files. Double-clicking a node in the tree view positions the HTML file to the corresponding tag.

Designer Flow Layout and Grid Layout
When designing a Web Form, you can use either grid layout or flow layout for the Designer. In grid layout, controls
are arranged by absolute position and you can reposition them by dragging them on the form. An optional, visible
grid is also available to help you align controls. If you drag a control from the Tool Palette onto the Web Form, or if
you click the control on the Tool Palette and then click Web Form, the control is added using absolute positioning.

In flow layout, controls are arranged top to bottom on the Web Form, and you can reposition them by using the arrow
keys. If you double-click a control on the Tool Palette, it will be added to the Web Form in flow layout.

The layout for the Web Form is specified in Object Inspector by setting the Document PageLayout property, or in
the .aspx file with the <body ms_positioning="GridLayout"> tag.

The layout for an individual control can be changed by using the Absolute Layout button on the HTML
Design toolbar at the top of the Designer.

To permanently change the layout for new files created with Developer Studio 2006, you can edit the page.aspx
template file located at, by default, \BDS\4.0\Objrepos\DelphiDotNet.

Sample Applications
Developer Studio 2006 includes several ASP.NET sample applications in the Demos directory (located, by default,
at C:\Program Files\Borland\BDS\4.0\Demos). Many of the sample applications include a readme file that explains
the application and lists any prerequisites. Before you attempt to open a sample application in the IDE:

Check for a readme file in the application's directory and follow any set up instructions.
Create a virtual directory for the sample application to avoid resource cannot be found errors in the browser at
runtime (see the procedure listed at the end of this topic).

813

814

Borland DB Web Controls Overview
Borland DB Web Controls simplify database development tasks in combination with BDP.NET and .NET Framework
data access components. DB Web Controls are data-aware controls that provide advanced functionality, including
data-aware grid, navigator, calendar, combobox, and other popular components.

This section introduces:

DB Web Controls Architecture
Data-aware Components Advantages
Supported Data Access Components
DB Web Controls Namespace
ASP.NET Application Deployment with DB Web Controls

DB Web Controls Architecture
DB Web Controls are a set of visual and non-visual components that speed up the creation of ASP.NET applications
by providing drag-and-drop capabilities along with a powerful data source discovery mechanism. For the most part,
DB Web Controls are common GUI web controls for ASP.NET applications. The connector control, the
DBWebDataSource control, acts as a data-aware connector between the visual controls and the underlying data
source. In other words, the DBWebDataSource control acts as a conduit for the data that is stored in a data source
and the controls that display that data on your ASP.NET form. The DBWebDataSource control can reference both .
NET Framework ADO.NET and BDP.NET components. For example, the in-memory DataSet that is generated by
an ADO.NET adapter (such as the SQLDataAdapter) or by one of the BDP.NET adapters (such as the
BDPDataAdapter). Additionally, you can use the DBWebDataSource to link to other types of data source providers,
such as text files, arrays, or collections.

Data-Aware Components Advantages
Typically, when you create an ASP.NET application that features controls that expose data from an underlying data
source, such as a database, you need to manually configure the binding between the data source and the controls.
This means figuring out the syntax and parameters for each control that must be bound to the data source.

The major advantage of using DB Web Controls is that once you have connected one DBWebDataSource control
to your data source, all of the DB Web Controls on your ASP.NET page that reference the DBWebDataSource
automatically bind to the underlying data source. You do not need to add any code to accomplish the data binding.

DB Web Controls provide the following advantages over standard web controls:

Eliminates a need to call the WebControl.DataBind method. Normally, each ASP.NET control on the web form
requires that you add this call in the Page_Load routine or the control will not display data at runtime.
Provides a designtime view of the data.
Posts changes back to the DataSet automatically. Typically, ASP.NET controls require code to post back
changes.
Maintains current row position.
Manages change and row state automatically. This means that clients from different machines can operate
independently, without regard to the server-side state.

In addition to these general advantages, DB Web Controls provide the following specific advantages:

The DBWebDataSource maintains an ordered list of changes so that the user can undo changes in the order
in which they were made.

815

The DBWebNavigator control provides navigation capabilities for grids, multiple text controls, and can be
extended to standard web controls.
The DBWebDataGrid provides built-in capabilities for paging with numbers and icons, for adding Edit and Delete
columns, and other advanced capabilities. In other words, you no longer need to code these features into your
grid control.

Supported Data Access Components
DB Web Controls are compatible with .NET Framework ADO.NET and Borland BDP.NET data access components.
Any data source that can be accessed by one of these providers can serve as the underlying data source for the
DB Web Controls. In addition, many of the DB Web Controls, like many .NET web controls in general, can access
other objects as data sources, such as arrays, collections, and files.

DB Web Controls Namespace
The namespace for DB Web Controls is Borland.Data.Web. By using reflection, you can learn much about the
structure of the namespace and the controls. You can add the namespace to your project, then open it in the Code
Editor. This opens the Reflection Editor and gives you a hierarchical view of all of the controls and their members.

Control Description

DBWebDataSource Acts as a bridge between the data source and the DBWeb controls.

DBWebAggregateControl Text box control that displays aggregate values from a specified column.

DBWebCalendar A calendar control.

DBWebCheckBox A check box control.

DBWebDropDownList A combo box control.

DBWebGrid A data grid.

DBWebImage An image control.

DBWebLabel A label.

DBWebLabeledTextBox A text box with an attached label.

DBWebListBox A list box control.

DBWebMemo A memo field control.

DBWebNavigationExtender A non-visual component that allows you to define standard web control buttons as navigation
controls.

DBWebNavigator A navigation bar.

DBWebRadioButtonList A radio button group.

DBWebSound A sound control, which uses the default media player on your system.

DBWebTextBox A text box.

DBWebVideo A video control, which uses the default media player on your system.

ASP.NET Application Deployment with DB Web Controls
After creating an ASP.NET project with DB Web Controls, deploy your ASP.NET application as usual. No special
considerations are required.

816

DB Web Controls Navigation API Overview
Although you can use the standard DBWebNavigator control for most applications, you may need to exercise more
control over the navigation in your application. The DB Web Controls now provide an API that allows you to fine-
tune your navigation. For example, using the API, you can create a button that performs navigation directly, rather
than using the standard DBWebNavigator control. Although you can hide buttons on the DBWebNavigator, you might
want to place controls in different locations on the form. With DBWebNavigator, for instance, if you hide all buttons
but Previous and Next, they still appear side by side. To place the buttons on opposite sides of the form, use the
navigation API methods or the DBWebNavigationExtender control. Both allow you to turn standard web control
buttons into navigation controls.

To provide this capability, the DBWebDataSource implements new IDBDataSource methods, each of which perform
a specific navigation task. You include these methods in the Form_Load event. You are not required to include click
events.

The following methods are provided:

RegisterNextControl
RegisterPreviousControl
RegisterFirstControl
RegisterLastControl
RegisterInsertControl
RegisterDeleteControl
RegisterUpdateControl
RegisterCancelControl
RegisterUndoControl
RegisterUndoAllControl
RegisterApplyControl
RegisterRefreshControl
RegisterGoToControl

817

818

Working with DataViews
With DataViews you can set filters on a DataTable using the RowFilter property or place data in a specific order.
You can find the DataView component under the Data Components area of the Tool Palette. This topic discusses:

Runtime Properties
Master-Detail Relationships
ClearSessionChanges Method
DataView Limitations

Runtime Properties
At designtime, when a DBWeb control points to a DataView, the control is automatically updated whenever there is
a change to any DataView property that controls the rows to be displayed. To change the DataView properties at
runtime, you must make sure that the change is in place prior to the rendering of any of the DB Web Controls.

For example, if you use a listbox to set the filter, you would also:

Set the listbox AutoPostback property to True.
Add code in the Page_Load event to handle setting the RowFilter.
Add code in the Page_Load event to call the ClearSessionChanges method after the RowFilter has been
changed.

Assume you have two tables on a form. You bind an ASP.NET listbox to one table that contains lookup values.
These values serve as a filter for the second table, whose values display in a DBWebGrid. Set the AutoPostback
property in the listbox to True, handle the RowFilter setting in Page_Load, and call ClearSessionChanges after
changing the RowFilter.

Tip: If you set the AutoRefresh property to False, which is the default, you might end up using cached data. Review
the WorldTravel demo in \Demos\DBWeb to see an example of how this is handled.

Master-Detail Relationships
You can make a DataView the master table in a master-detail relationship by adding a row filter. Set up a master-
detail relationship with two or more DataTables within a single DataSet, then connect the DataView to the master
DataTable. When the DBWebDataSource connects to the DataView, the DB Web Controls will let you select either
the parent table, which is the DataView, or the detail table.

ClearSessionChanges Method
The ClearSessionChanges method notifies the DBWebDataSource that the DataSet has changed and that existing
row, column, and changed data information is no longer valid. All pending changes are removed. If you try to call
this method from a DBWebNavigator button click event, the DBWebNavigator button will not work.

DataView Limitations
There are some limitations with the DataView:

Inserted rows in a DataView behave differently than inserted rows in a DataTable.
A DataView does not allow multiple inserts of null records. This means that you must add data to an inserted
row before adding a new inserted row.

819

If an inserted row is deleted, that row is removed from the DataView and you cannot use Undo to recall it.
If an inserted row contains a single non-null value, and that value is set to null, the row can be deleted in some
cases and cannot be recalled.
DBWeb controls do not provide full support for the DataViewSort property. If a sort field is encountered, the
values for the fields contained in the Sort property cannot be changed, and the insert key will be disabled on
the DBWebNavigator.

820

Working with WebDataLink Interfaces
The characteristic that makes DB Web Controls different from traditional web controls is that the DB Web Controls
automatically handle all data binding for you. Although you must still configure the links between data sources and
controls at design time, all runtime binding is handled, without the need for you to add a data binding command in
your code. When extending a DBWeb control using the DBWeb Control Wizard, you will implement several
interfaces that provide the data binding capabilities. These interfaces are discussed in this topic.

IDBWebDataLink
IDBWebColumnLink: IDBWebDataLink
IDBWebLookupColumnLink: IDBWebColumnLink

IDBWebDataLink
All DB Web Controls implement this interface. The interface defines a data source and a data table, allowing you to
connect to and access data from a variety of data sources, including databases, text files, arrays, and collections.
If your control only needs to access data at the table level, you implement this interface.

IDBWebColumnLink:IDBWebDataLink
This interface is implemented by DBWeb column controls, such as DBWebImage,DBWebTextBox, and
DBWebCalendar, among others. The interface defines a column name to which a column control is linked. In
combination with the IDBWebDataLink interface, this interface provides access to standard table and column data.

IDBWebLookupColumnLink:IDBWebColumnLink
This interface is implemented by DBWeb lookup controls, such as DBWebListBox,DBWebRadioGroup, and
DBWebDropDownList. The interface defines a TableName within a DataSet, a ColumnName representing a table
that contains the data to be displayed in the lookup, and the column containing the values which, when a value is
selected, are to be placed into the ColumnName field linked to the control. By default, the ColumnName field is the
same as DataTextField. Lookup controls contain not only a text property, usually the item that is displayed in the
control, such as a listbox, but also a value property. The value property might be identical to the text property, or it
might contain a completely different piece of data, such as an identification number. For example, you might choose
to display product names in a listbox or a drop down listbox, but set the values for each displayed item to their
respective product IDs. When a user selects a product name, the product ID is passed to the application, rather than
the name of the product itself. One benefit of this approach is to eliminate processing confusion between products
with similar names.

821

822

Using DB Web Controls in Master-Detail Applications
DB Web Controls allow you to build full-fledged master-detail applications, using the DBWebDataSource,
DBWebGrid, and DBWebNavigator controls. To support master-detail applications, these controls must provide a
way to specify cascading behavior.

This topic includes information about:

Specifying Cascading Deletes
Specifying Cascading Updates

Cascading Deletes
In a master-detail application, the application typically uses an OnApplyChanges event to send the DataSet changes
to the server. It is necessary for the master data adapter's update method (in BDP.NET, the AutoUpdate event) to
be called prior to the detail data adapter's update method. Otherwise, insertion of detail rows fails if the master row
has not yet been inserted. If the master row is deleted prior to the detail row, the server might return an error.

The property CascadingDeletes has been added to the DBWebDataSource control. The CascadingDeletes property
specifies how the server deletes rows in master-detail applications. The CascadingDeletes property provides the
following three options:

NoMasterDelete (Default)
ServerCascadeDelete
ServerNoForeignKey

Note: When DB Web Controls are connected to a DataTable that is a detail table in a relation, the control's rows
are automatically limited to the rows controlled by the current parent row in the master table.

NoMasterDelete
This option does not allow deletion of a master row containing detail rows. This option should be used when the
server enforces a foreign constraint between master and detail, but it does handle cascading deletes. You must:

1 Delete detail rows.
2 Apply the changes with an apply event (for example, the BdpDataAdapter. AutoUpdate event).
3 Delete the master row.
4 Call the apply event (for example, the BdpDataAdapter. AutoUpdate event).

This option is the default value for the CascadingDeletes property.

ServerCascadeDelete
This option allows deletion of the master row. This option should be specified whenever the server is set up to
automatically handle cascading deletes. When a master row is deleted, the detail rows will automatically disappear
from view. Any time prior to applying the change, you can undo the parent row deletion and all the detail rows come
back into view. If the server is not set up to handle cascading deletes, an error may occur when attempting to send
changes to the server.

ServerNoForeignKey
This option automatically deletes all detail rows whenever a master row is deleted. This option should be specified
whenever there are no foreign key constraints between the master-detail tables on the server. Like the

823

ServerCascadeDelete option, when a master row is deleted, the detail rows will automatically disappear from view.
Any time prior to applying the change, it is possible to undo the master row deletion to redisplay the detail rows. If
you specify this option and foreign key constraints exist between master and detail tables, an error will be thrown
by the server when attempting to delete the master table.

Cascading Updates
In a master-detail application, the application typically uses an OnApplyChanges event to send the DataSet changes
to the server. It is necessary for the update method of the master data adapter (in BDP.NET, the AutoUpdate event)
to be called prior to the update method of the detail data adapter. Otherwise, insertion of detail rows fails if the master
row has not yet been inserted. If the master row is deleted prior to the detail row, the server might return an error.

The property CascadingUpdates has been added to the DBWebDataSource control. This property specifies how
the server updates foreign-key values in master-detail applications. The CascadingUpdates property provides the
following three options:

NoMasterUpdate (default)
ServerCascadeUpdate
ServerNoForeignKey

Note: When DB Web Controls are connected to a DataTable that is a detail table in a relation, the rows of the control
are automatically limited to the rows controlled by the current parent row in the master table.

NoMasterUpdate
This option does not allow changes to the foreign key value of a master row if it has any associated detail rows. This
option is the default value for the CascadingUpdates property.

ServerCascadeUpdate
This option allows you to change the foreign key value of the master row. You should use this option whenever the
server automatically handles cascading updates. When the foreign key value of a master row is changed, the key
value is changed automatically in the detail rows. Anytime prior to applying the change, you can undo the change
to the master row and all the detail key changes will be undone also. If the server is not set up to handle cascading
updates, an error might occur when attempting to update the changes to the server.

ServerNoForeignKey
This option also allows changing the foreign key value of the parent row, but should be used whenever there is no
foreign key between the master and detail tables on the server.

824

Using XML Files with DB Web Controls
The DBWebDataSource component provides a way for you to create and use XML and XSD files as the data source
for an ASP.NET application. Typically, you only use these types of files with the DBWeb controls as a way of
prototyping your application. By using XML files as the data source, you can eliminate potentially costly database
resources during the design and development phase of your project.

This topic covers the following issues.

XML files as data sources.
Suggested workflow strategy.
Authentication and caching issues.

XML Files as Data Sources
XML has become another standard data source for many applications, but for ASP.NET applications in particular.
When working with data that does not require strong security and therefore can be sent over HTTP as text, XML
files provide a simple solution. Because the files are text, they are easy to read. Because the XML tags describe the
data, you can understand and process the data structures with little difficulty.

Despite their obvious advantages over more complex data structures, XML files do have some drawbacks. For one
thing, they are not secure, therefore, it is not a good idea to pass sensitive data, such as credit card numbers or
personal identification (PIN) numbers, over the Internet by way of XML files. Another drawback is the lack of
concurrency control over XML records, unlike database records.

Nonetheless, the self-describing nature and the lightweight data format of XML files makes them a natural choice
as data sources for ASP.NET applications. The DBWebDataSource control, in particular, has been built to handle
XML files as well as other types of data sources. There are no special requirements for using XML files, no unique
drivers or communication layers beyond those that come with Developer Studio 2006, so you will find it easy to work
with XML files as data sources.

Suggested Workflow Strategy
You use the DBWebDataSource control to create the XML file for your application and to connect the XML file with
a DataSet object. The basic workflow strategy is this:

Build an ASP.NET application, with a connection to your target database. Use DBWeb controls, including a
DBWebDataSource and specify a non-existent XML file. When you run the application, your DataSet receives
the result set from the target database and the DBWebDataSource then fills the XML file with tagged data
representing the DataSet.
From this point forward, you can eliminate the data adapter and data connection, keeping only a DataSet, the
DBWebDataSource, and the reference to the XML file. Your DBWeb controls will pull data from the XML file
and DataSet rather than from the database. For more information, follow the links to specific procedures on
building and using XML files with DBWeb controls.

Authentication and Caching Issues
The DB Web Controls support automatic reading of an XML file by the DBWebDataSource component at both
designtime and runtime. To support XML files, the DBWebDataSource component includes caching properties. If
you use XML caching, the XML file data is automatically read into the DataSet whenever a data source is loaded.

If you do not implement user authentication in your application, you will likely only use this feature for prototyping.
Otherwise, without user authentication, users may experience permissions errors when trying to access a single

825

XML file concurrently. When multiple clients are using the application, the XML file is constantly being overwritten
by different users. One way to avoid this is to write logic in your server application to check row updates and notify
various clients when there is a conflict. This is similar to what a database system does when it enforces table-level
or row-level locking. When using a text file, like an XML file, this level of control is more difficult to implement.

However, if you implement user authentication, you can create a real-world application by setting the
UseUniqueFileName property. This property specifies that the DBWebDataSource control will create uniquely
named XML files for each client that uses accesses the XML file specified in the XMLFileName property of the
DBWebDataSource. This helps avoid data collisions within a multi-user application. The drawback to this approach
is that each XML file will contain different data and your server application will need built-in logic to merge the unique
data from each client XML file.

Read-write applications using XMLFileName require that all web clients have write access to the XML files to which
they are writing. If the web client does not have write access, the client will get a permissions error on any attempt
to update the XML file. You must grant write access to the clients who will use the application.

826

DB Web Control Wizard Overview
The Borland DB Web Controls are data-aware web components. These DB Web Controls allow you to encapsulate
data-aware functionality into standard web controls. One benefit of this approach is that the data binding function is
fulfilled by the control itself, eliminating the need to add a call to the DataBind method.

The basic concepts involved in creating DB Web Controls are:

The ASP.NET Control Execution Lifecycle
Data Binding Concepts
Overriding ASP.NET Methods
Implementing DB Web Interfaces
Essential Code Modifications

The ASP.NET Control Execution Lifecycle (CEL)
Anytime an ASP.NET web forms page is displayed, ASP.NET performs what Microsoft calls the CEL. This consists
of a number of steps, which are represented by methods:

Initialize
Load view state
Process postback data
Load
Send postback change notifications
Handle postback events
Prerender
Save state
Render
Dispose
Unload

You can add logic to any or all of these events by adding code to given methods, such as the Page_Load method
or the OnInit method. Most often, however, you will need to override the Render method.

Data Binding
In ASP.NET you can bind to a variety of data sources including databases, text files, XML files, arrays, and
collections. In Developer Studio 2006, controls provide a simple property-based interface to data sources. In the
Object Inspector, you can bind a selected control to a data source that is identified to your project by way of the
BDP.NET controls, SQL client controls, or other data or file controls. Each type of data control has different sets of
binding requirements. For instance, any collection control, such as the listbox control, data grid, or listview control,
must bind to a data source that implements the ICollection interface. Other controls, like buttons and text boxes, do
not have this requirement.

When you are programming with web controls, you must add the code to perform the data binding. For example, if
you created an instance of a data grid, the command that you would add would look like:

dataGrid1.DataBind();

When using DB Web Controls, you no longer need to add this code. DB Web Controls handle the data binding
operation for you. The DBWebDataSource component serves as a bridge between your data source component

827

and the specific DB Web control you want to use. The DBWebDataSource creates and manages the data binding
between the data source and the control. Although you can physically add the code to instantiate a DB Web control
and to perform the data binding, it is unnecessary to do so. You can drop your components onto a web form and
select the linkages from property drop down list boxes in the Object Inspector.

Note: When creating a new DB Web control or extending an existing control, you may need to add code to perform
binding of some properties.

Overriding ASP.NET Methods
The main method you will need to override is the Render method (or the RenderContents method). The Render
method is responsible for displaying your controls visibly on the web page. When you define Rendere the Render
method and pass it an instance of the HtmlTextWriter class, you are indicating that whatever you code in the method
is to be written to the ASP.NET page in HTML. The Write method of the HtmlTextWriter class writes a sequential
string of HTML characters onto a Web Forms page.

The following example shows how the control is declared in the file that is built by the DB Web Control Wizard.
This is only a small segment of the code that is provided for you.

/// TWebControl1 inherits from the WebControl class of System.Web.UI.WebControls.

TWebControl1 = class(System.Web.UI.WebControls.WebControl)

When creating your own controls or extending existing controls, you must override the Render method to display
your control. The Render method is responsible for sending output to an instance of an HtmlTextWriter class.
HtmlTextWriter sends a sequence of HTML characters to the web forms page. The HTML characters are the
representation in HTML of your control. For example, a web grid control is represented on a web forms page as an
HTML table. Each control has its own HTML representation, but when you extend a control, you need to modify how
the HTML is emitted to accurately represent your new control.

/// The following lines declare the Render method.
/// Output represents an instance of the HtmlTextWriter class.
/// HtmlTextWriter is the class that writes HTML characters to
/// the ASP.NET Web Forms page.

 strict protected
 procedure Render(Output: HtmlTextWriter); override;

implementation

{$REGION 'Control.Render override'}

/// The following procedure is the overridden Render method
/// You can include additional logic in the procedure to affect
/// the behavior of the control. This method, as written, does
/// nothing but write out a sequence of HTML characters that
/// define TWebControl1.

procedure TWebControl1.Render(Output: HtmlTextWriter);
begin
 Output.Write(Text);
end;

828

You would need to implement the preceding code even if you were trying to extend the capabilities of a standard
web control. To extend one of the DB Web Controls you need to make more adjustments to this code.

Implementing DB Web Interfaces
When you run the DB Web Control Wizard, the wizard creates a code file for you, containing the basic code you
need to extend a DB Web control. This file is similar to the file you would create if you were trying to extend a standard
web control. The major difference is that the DB Web Control Wizard adds implementations of specific DB Web
interfaces, which provide automatic access to a data source, tables, columns and their respective properties.
Because the DB Web Controls handle so much of the postback and data binding automatically, you need to
implement several specific interfaces to add this functionality to your control.

Essential Code Modifications
When you create a new DB Web Control Library, the DB Web Control Wizard creates a file template for you. This
file contains the major elements you need to include in your project to create or extend a control. You will need to
add or modify the following elements:

Change the ToolboxBitmap attribute to specify your own icon for the Tool Palette, if necessary.
Change the control declaration to specify the control you intend to inherit.
Declare the correct Render method.
Implement the IDBWebDataLink interface.
Implement the IDBWebColumnLink and IDBWebLookupColumnLink interfaces, if necessary.
Modify or extend the Render method.
Modify hidden field registration, if necessary.
Set data binding on specific properties, if necessary.

Change the ToolboxBitmap Attribute
If you have a bitmap icon available for use in the Tool Palette, specify its path in the ToolboxBitmap attribute in the
DB Web Control Library file. The code might look something like this:

[ToolboxBitmap(typeof(WebControl1)]
['WebControl1.bmp')]

Make sure that you include the bitmap file in your project.

Change the Control Declaration
You can specify the ancestor more specifically. For example, if your control is an extended version of a DBWebGrid
control, the code would look like this:

 MyDataGrid = class(Borland.Data.Web.DBWebGrid, IPostBackDataHandler, IDBWebDataLink)

829

Declare the Correct Render Method
Your control can inherit from either the Control namespace or the WebControls namespace. WebControls actually
derives from the Control namespace.

The major difference for you is that WebControls defines all of the standard web controls, so if you plan on extending
the capabilities of a web control like a textbox or a data grid, your control needs to inherit from WebControls.

By inheriting from WebControls, you are able to use all of the appearance properties of your base control. Typically,
if you want to create a control that has a UI, inherit from System.Web.UI.WebControls. In the DB Web Control Library
file, you will override the RenderContents method.

If your control inherits from Control, you need to supply the UI definition when you override the Render method.
Typically, if you want to create a control that has no UI, you inherit from System.Web.UI.Control. In the DB Web
Control Library file, you will override the Render method.

Implement the IDBWebDataLink Interface
This interface provides the access to a data source. You need to implement this interface for any DB Web control
you intend to extend. The implementation is handled for you in the DB Web Control Library file.

Modify or Extend the Render Method
In the Render or RenderContents method, depending on which namespace you inherit from, you can override the
properties of the base class. In the DB Web Control Library file the following code is automatically included for you:

procedure TWebControl1.Render(Output: HtmlTextWriter);
 begin
 Output.Write(Text);
 end;

This method passes the definition of your control to an instance of HtmlTextWriter, called Output in this case. The
Text property will contain the HTML text that is to be rendered. If you wanted to code directly within the method, You
could add code, as follows:

procedure TWebControl1.Render(Output: HtmlTextWriter);
 begin
 Output.WriteFullBeginTag("html");
 Output.WriteLine();

 Output.WriteFullBeginTag("body");
 Output.WriteLine();

 Output.WriteEndTag("body");
 Output.WriteLine();

 Output.WriteEndTag("html");
 Output.WriteLine();
 end;

This results in an ASP.NET web page with the following HTML code:

<html>
 <body>
 </body>
</html>

The use of the Text property, however, makes the code easier to work with. Once you have defined your control and
its properties, along with various HTML tags, you can pass the entire structure to the Text property. From that point

830

forward, you need only refer to the Text property to act upon the control. You define the properties of your control
and pass them to the HtmlTextWriter by creating a Text property that contains the control definition. It is instructive
to look at the source code for some of the existing DB Web Controls. For example, the following code shows the
definition of the Text property for the DBWebNavigator control.

protected string Text{
 get
 {

// Create a new instance of StringWriter.
 StringWriter sw = new StringWriter();

// Create a new instance of HtmlTextWriter.
 HtmlTextWriter tw = new HtmlTextWriter(sw);

// Call the DataBind procedure.
 DataBind();

// Call the AddButtons procedure.
 AddButtons();

// Call the SetButtonsWidth procedure.
 SetButtonsWidth();

// Add a style to a panel.
 ClassUtils.AddStyleToWebControl(FPanel, this.Style);

// Render the HTML start tag for a panel control.
 FPanel.RenderBeginTag(tw);

// Call the HtmlTextWriter.Write method and pass the table
// and tablerow tags to the web forms page.
 tw.Write("<table><tr>");

// If the ButtonType is set to ButtonIcons, iteratively create and render buttons
// to the web forms page.

 if(ButtonType == NavigatorButtonType.ButtonIcons)
 {
 for(int i = 0; i < IconNavButtons.Count; i++)
 {

// Write the first table cell tag.
 tw.Write("<td>");

// Instantiate an image button.
 ImageButton b = (IconNavButtons[i] as ImageButton);

// Render the button on the web page.
 b.RenderControl(tw);

// Write the closing table cell tag.
 tw.Write("</td>");
 }
 }
 else

 // If the ButtonType is something other than ButtonIcons, iteratively create and
 // Render default navigation buttons to the web forms page.

831

 {
 for(int i = 0; i < NavButtons.Count; i++)
 {

// Write the first table cell tag.
 tw.Write("<td>");

// Instantiate a button.
 Button b = (NavButtons[i] as Button);

// Render the button on the web page.
 b.RenderControl(tw);

// Write the closing table cell tag.
 tw.Write("</td>");
 }
 }

// Write the closing row and table tags.
 tw.Write("</tr></table>");

// Render the Panel end tag.
 FPanel.RenderEndTag(tw);
 return sw.ToString();
 }
}

Modify Hidden Field Registration
The DB Web Control Library file includes a call to register a hidden field, which identifies the key for a read-write
control. If you are creating a read-only control, you can remove or comment out this call. The call is as shown in the
following sample:

Page.RegisterHiddenField(DBWebDataSource.IdentPrefix +
DBWebConst.Splitter + IDataLink.TableName, self.ID);

Set Data Binding on Specific Properties
If you need other properties data bound, other than the Text property, you can add that data binding code in the
same location where you find that the Text property is being bound. Typically, there is a call to DataBind in the
PreRender method. The DataBind procedure itself is similar to the following sample, taken from the
DBWebLabeledTextBox control source code. You can see in the following code that a number of properties are set
after checking to see if the FColumnLink (from the IDBWebDataColumnLink interface) is bound to some data source.

public override void DataBind()
{
 try
 {
 FTextBox.ReadOnly = FReadOnly;
 FTextBox.ID = this.ID;
 base.DataBind();
 ClassUtils.SetBehaviorProperties(FPanel, this);
 ClassUtils.SetOuterAppearanceProperties(FPanel, this);
 ClassUtils.SetSizeProperties(FPanel, this);
 if(!ClassUtils.IsEmpty(FLabel.Text))

832

 {
 ClassUtils.SetInnerAppearanceProperties(FLabel, this);
 SetProportionalSize();
 SetLabelFont();
 FTextBox.Text = null;
 }

 // If there is a data source.
 if(IColumnLink.DBDataSource != null)
 {

// And if there is bound data.
 if(FColumnLink.IsDataBound)
 {

// Then set behavior properties.
 ClassUtils.SetBehaviorProperties(FTextBox, this);

// Set appearance properties.
 ClassUtils.SetAppearanceProperties(FTextBox, this);

 // Set size properties.
 ClassUtils.SetSizeProperties(FTextBox, this);
 object o = IColumnLink.DBDataSource.GetColumnValue(Page, IColumnLink.
TableName, IColumnLink.ColumnName);

// If the page and the table and column names are not null,
// it means there is already bound data.
// Put the string representation of the page, table, and
// column names into the textbox.
 if(o != null)

 FTextBox.Text = Convert.ToString(o);

 else

// Otherwise, clear the textbox and bind it and
// its properties to the specified
column.
 FTextBox.Text = "";
 FTextBox.DataBind();
 }
}

833

834

Deploying ASP.NET Applications
This topic provides information about:

Web Server Requirements
Pre-Deploy Recommendations
The Developer Studio 2006 ASP.NET Deployment Manager

For additional deployment information, see the deploy.htm file located, by default, at C:\Program Files\Borland\BDS
\4.0.

Web Server Requirements
Before deploying your application to a web server, consider the following web server requirements:

Internet Information Services (IIS) 6.0 must be installed and operational on the web server.
The .NET Framework must be installed on the web server.
ASP.NET must be enabled on the web server.
The ASPNET account on the web server must be configured with the correct permissions.

For information on installing IIS, see the documentation that accompanies your Windows operating system. For
information on performing the other tasks listed above, see the link to ASP.NET platform requirements at the end
of this topic.

Pre-Deploy Recommendations
Before you deploy your application, you should disable debugging and rebuild the application to make it smaller and
more efficient:

For a Delphi ASP.NET or C# application, update the application web.config file to disable debugging. For details,
see the link to using the Deployment Manager at the end of this topic.
For a C# application, choose Project Options and change the Debug/Release option set to the Release
option set and recompile the application.

The Developer Studio 2006 ASP.NET Deployment Manager
While you can use the XCOPY command-line tool to copy your entire project directory to a web server, only a subset
of those files are actually required for deployment. For example, the .aspx, .config, and .dll files are required, but the
Delphi-specific files such as the .bdsproj, .dcuil, and .pas files are not required.

Developer Studio 2006 includes the ASP.NET Deployment Manager to assist you in deploying ASP.NET
applications. You can use it to deploy to a remote computer by using a share or an FTP connection, or to your local
computer.

When you add a Deployment Manager to your project, an XML file (.bdsdeploy) is added to the project directory and
a Deploy tab is added to the IDE. You provide destination and connection information on the Deploy tab and
optionally modify the suggested list of files to copy, then the Deployment Manager copies the files to the deployment
destination.

835

836

Building Web Services with ASP.NET
Web Services is a programmable entity that provides a particular element of functionality, such as application logic.
Web Services is accessible to any number of potentially disparate systems through the use of Internet standards,
such as XML and HTTP. Applications built with ASP.NET Web Services can be either stand-alone applications or
subcomponents of a larger web application and can provide application components to any number of distributed
systems using XML-based messaging. Developer Studio 2006 provides a number of methods that can help you
build, deploy, and use applications with ASP.NET Web Services. For more general information about Web Services,
refer to the Microsoft .NET SDK Documentation.

In This Section
ASP.NET Web Services Overview
Introduces the ASP.NET Web Services architecture for providing application logic.

Web Services Protocol Stack
Describes the infrastructure that makes Web Services work.

ASP.NET Web Services Support
Describes ASP.NET Web Services application support.

Building an ASP.NET "Hello World" Web Services Application
Describes the minimum steps to build a web service to expose functionality over the Web.

Accessing an ASP.NET "Hello World" Web Services Application
Describes the minimum steps to create a client application to access a web service.

837

838

ASP.NET Web Services Overview
Web Services is an Internet-based integration methodology that enables applications, independent of any platform
or language, to connect and exchange information. Web Services is tightly integrated with the ASP.NET model used
for the .NET Framework. Unlike traditional native Windows applications, ASP.NET Web Services applications
contain objects and methods that are exposed over the Web using simple messaging protocol stacks. Any client
can invoke a Web Services application over HTTP using a WebMethod. Like any method that can be accessed by
way of a simple Windows Form application, a WebMethod provides some defined functionality. Unlike other types
of methods, however, the WebMethod is accessed by way of a web browser. For more general information about
Web Services, refer to the Microsoft .NET Framework SDK Documentation.

Borland provides tools to develop and access ASP.NET Web Services using a variety of techniques. As modular
objects, web services can be reused without additional coding.

The following topics provide a brief introduction to the architecture of ASP.NET Web Services, the basic
fundamentals of Web Services communication, and to the files created when you develop ASP.NET Web Services.

This topic introduces:

ASP.NET Web Services Architecture
Web Services Prerequisites
Web Services Scenarios
ASP.NET Web Services Files

ASP.NET Web Services Architecture

The major components of the ASP.NET Web Services architecture include a client application, an ASP.NET Web
Services application, several files such as code files in the development language, .asmx files, and compiled .dll
files. You need a web server to house both ASP.NET Web Services application and the client. Optionally, you might
include a database server for storage and access of ASP.NET Web Services data.

Web Service Prerequisites
Before you begin developing a Web Services application, become familiar with the following concepts:

XML (Extensible Markup Language). XML is a user-defined, human-readable structural description of data.
Any data, dataset, or document that you intend to send to, or receive from, a web service is formatted in XML.
SOAP (Simple Object Access Protocol). SOAP is the standard messaging protocol that is used for
communication between web services and their clients. SOAP uses XML to format its messages, and contains
the parameters or return values needed by servers and clients.

839

WSDL (Web Services Description Language). WSDL is the language that describes a web service. A web
service can be defined in any number of implementation languages. As a single-purpose utility, each web service
must publish a description of its interface, which allows clients to interact with it. The WSDL document, at a
minimum, describes the required parameters a client must provide and the result a client can expect to receive.
The result description typically consists of the return data type.
UDDI (Universal Description, Discovery, and Integration). UDDI is an industry initiative that provides a
standard repository where businesses can publish web services for use by other companies. The UDDI
repository contains links to, and descriptions of, a variety of web services. You can use the UDDI browser in
the IDE to locate web services, download WSDL documents, and access additional information about web
services and the companies that provide them.

Web Service Scenarios
Current web services provide simple information sources that you can easily incorporate into applications, such as
stock quotes, weather forecasts, and sports scores. As the demand for access to business logic over the web
increases, companies are finding ways of providing their customers with a class of applications to analyze and
aggregate information. For example, a financial institution might provide a web service to consolidate and
continuously update customer financial information, such as stock portfolio, 401(k), bank account, and loan
information for display in a spreadsheet, web site, or a personal digital assistant (PDA). This saves customer from
having to manually collect and combine the information on their own. Although much of this information is available
through the web today, a web service will simplify accessing and consolidating information and will ensure greater
reliability.

You can use web services for solutions in the following areas:

Enterprise Application Integration (EAI). A web service could allow multiple business partners to exchange
inventory, order, or financial data, for example, without specifically knowing the precise data layout in which
data is stored for each partner. For instance, many customer relationship management (CRM) or other front-
end applications store customer data in a format that is not entirely compatible with the way a back-end
enterprise resource planning (ERP) system stores its financial or inventory information. However, a sales
organization may wish to use its CRM solution to process real-time orders with up-to-date inventory information
from the ERP system. A web service could be a solution to managing the transformation of CRM requests to
ERP storage and from ERP responses to CRM confirmations.
Business-to-business (B2B) integration. Similar to the EAI solution, a B2B solution could take advantage of
a Web Services capability to provide cached data for large orders. B2B transactions, unlike business-to-
consumer (B2C) transactions, often consist of high-volume transactions that would be prohibitive to execute at
the level of a B2C transaction. For instance, a consumer might order one box of pencils from an online stationery
store, but a business might order a thousand boxes monthly, with multiple shipping addresses. The scale and
complexity of a B2B transaction requires the intervention of a web service to help simplify and process the
transaction quickly and with consistency.
Business-to-consumer integration. B2C web services typically manage web-based transactions. For
example, a web service that allows you to look up postal codes eliminates the need for businesses to create a
new program every time the service is included on a web site. Some commerce sites might use web services
to help manage currency conversion when taking international sales orders.
Mobile (Smart client applications). Because the small footprint of a mobile client requires that memory usage
be reserved for only the most important system functions, and because mobile clients are, by definition, linked
to the Internet by way of their wireless communication protocols, Web services play a vital role in providing
lightweight but powerful applications to mobile devices. Web services allow mobile device users to perform a
variety of tasks which require little more than data input at the device and data display of the results. All
processing can occur on a remote web service, thus decreasing bandwidth requirements on the mobile device
itself.
Distributed and Peer-to-Peer. For certain types of distributed and peer-to-peer applications, web services play
an important role. If you use distributed computing over an uncontrolled network (such as the Internet) rather

840

than over a LAN or corporate network, you might use web services. Web services do not require state
maintenance, thus offering potentially improved performance, particularly where a request-response behavior
is not absolutely required. For applications that require strict request-response behavior and high security, you
should consider using an older, more controlled model, such as COM, CORBA, or .NET remoting.

ASP.NET Web Services Files
Certain files are automatically generated when you create applications with ASP.NET Web Services. These files
enable the ASP.NET Web Services to render their services through a web server. The following table lists the files
and their descriptions.

File Description

.asmx When you create an ASP.NET Web Services application, a text file is automatically generated with
the .asmx extension. The required Web Services directive is placed at the top of this file to correlate
between the URL address of the web service and its implementation. Within the .asmx file, you add Web
Services logic to the methods visible by the client application. The .asmx file acts as the base URL for
clients calling the XML web service. This file is compiled into an assembly, along with other files, for
deployment.

code-behind When you create an ASP.NET Web Service application, a code-behind file is generated with a language-
specific extension. You add your Web Services logic to the public method to process Web Services
requests and responses.

compiled DLL files Web Services DLL files provide dynamic services on the web server.

.wsdl This file is generated when you click the Add Web Reference feature to add the web service to your client
application. It describes the Web Services interface available to the client.

.map This file enables the discovery of a web service that is exposed on a given server. It also contains links
to other resources that describe the web service.

841

842

Web Services Protocol Stack
Understanding the Web Services infrastructure requires that you have some exposure to Extensible Markup
Language (XML), Simple Object Access Protocol (SOAP), Web Services Description Language (WSDL), and
Universal Description, Discovery, and Integration (UDDI). Because the infrastructure already exists, as a developer
of XML web services, you can leverage the existing technology by using standard Web protocols such as XML and
HTTP.

Borland provides an easy way to create, deploy, and use web services without concern for back-end processing so
you can focus more on designing your services.

This topic provides the conceptual background to understand how the protocol stack contributes to Web Services
functionality:

How web services access and expose their services via the Web
How XML passes information through standard SOAP and HTTP
How a client can identify a web service offering
How web services are discovered and accessed

Layers of the Web Services Protocol Stack
Web services consist of sets of internet protocols and standards for exchanging data between applications. The
Web Services Protocol Stack describes the layering of the set of internet protocols or rules used to design, discover,
and implement web services.

The major components or layers of a Web Service Protocol Stack include:

Transport Layer—transports messages between applications
XML Messaging Layer—encodes messages in XML that can be understood by both client and server
WSDL Layer—describes the service provided
UDDI Layer—centralizes services with a common registry

843

Transport Layer
The Transport layer is the first component in the stack and is responsible for moving XML messages between
applications. The Transport protocol most commonly used is the standard HTTP protocol. Other commonly used
Web protocols are SMTP and FTP.

XML Messaging
The messaging layer in the protocol stack is based on an XML model. XML is widely used in Web Services
applications and is the foundation for all web services. XML is just one of the standards enabling web services to
map between technology domains. You will find many resources on the Web that describe XML messaging. For
more information, refer to the World Wide Web Consortium (W3C) site on Messaging listed in the link list below.

The XML Messaging specification is a broadly-defined umbrella under which a number of more specific protocols
are defined. SOAP is one of the more popular standards, and is one of the most significant standards in
communicating web services over the network. XML provides a means for communicating over the Web using an
XML document that both requests and responds to information between two disparate systems. SOAP allows the
sender and the receiver of XML documents to support a common data transfer protocol for effective networked
communication. You will find many resources on the Web that describe SOAP. For more information, refer to the
W3C site for SOAP listed in the link list below.

WSDL Layer
This layer represents a way of specifying a public interface for a web service. It contains information on available
functions, on data types for XML messaging, binding information about the transport protocol, and the location of
the specific web service.

Any client application that wants to know about a service, what data it expects to receive, whether or not it delivers
any results, and the supported transport, uses WSDL to find that information. When you create a Web Service, it
must be described and advertised to its potential customers before it can be used. WSDL provides a common format
for describing and publishing that web service information. Typically, WSDL is used with SOAP, and the WSDL
specification includes a SOAP binding.

Use Borland's Add Web Reference feature to obtain a WSDL document for your web service. The WSDL document,
or proxy file, is copied to the client and is used to call the server. This proxy file is named References.*, where the
file name extension reflects the language type. For more information about WSDL, refer to the W3C WSDL site listed
in the link list below.

UDDI Layer
This layer represents a way to publish and find web services over the Web. You can think of this layer as the White
and Yellow Pages of your phonebook. The White pages of web services provides general information about a specific
company, for instance, their business name, description, and address. The Yellow Pages includes the classification
of data for the services offered, for instance, industry type and products.

The protocol you use to publish your web services is known as UDDI. The UDDI Business Registry allows anyone
to search existing UDDI data and enables you to register your company and its services. With Developer Studio
2006, your data automatically gets published to the registry, or a distributed directory for business and web services.

844

ASP.NET Web Services Support
ASP.NET Web Services support VCL.NET Forms, .NET Windows Forms, and ASP.NET Web Forms. These forms
can be used to create client applications that access Web Services applications. Use the Add Web Reference
feature to add the desired ASP.NET Web Services application to the client application. Using the UDDI Browser
you can locate Web Services applications you might want to use.

Developer Studio 2006 provides simple tools to develop and deploy your ASP.NET Web Services applications.
Additionally, Developer Studio 2006 helps you import WSDL documents that describe particular Web Services
applications and expose their functionality to the client application. You can use the sample WebMethod provided
by Developer Studio 2006, which lets you create and access an ASP.NET Web Services application.

This topic includes:

ASP.NET Web Services Client Support
ASP.NET Web Services Server Support
ASP.NET Web Services Namespaces

ASP.NET Web Services Client Support
You can create a Web Services application that is simply a provider, or a server application. This application resides
on a web server and can be accessed by any client that understands the application architecture. If you want to
consume a Web Services application yourself, you need to create a client application. Developer Studio 2006
provides different tools you can use to build client applications:

Windows Forms
Web Forms
Web References

Windows Forms Versus ASP.NET Web Forms
To determine the best type of form to use for your client application—Windows form or ASP.NET Web form—consider
the type of service you want to access. In most cases, the service you choose will dictate which type of application
you should create.

If you need to provide a rich application that can process complex content on a client workstation, or that can use a
web service application as a supporting piece for a rich client application over a secure network connection, you
might consider building a Windows Forms application. If you need to provide a thin-client application that performs
simple data manipulation or satisfies a single-purpose requirement, consider using ASP.NET Web Forms. Web
Forms are platform-independent interfaces that display in a web browser and invoke Web Services applications over
a simple protocol like HTTP.

You can also create an ASP.NET Web Services application as a console application which can be accessed through
either a console window, or by another Web Services application, even one without a client.

Add Web Reference
You can add a Web Reference to your client application to access web services. A Web Reference refers to either
a WSDL document or an XML schema, which is imported into your client application. The WSDL document or XML
schema describes a web service. When you import one of these documents, Developer Studio 2006 generates the
interfaces and class definitions needed for calling that web service. Right-click the WebService node in the Project
Manager and select Add Web Reference. A UDDI Browser appears. To add the web service to your client
application, you must navigate within the browser and locate the WSDL document for the web service.

845

ASP.NET Web Services Server Support
The ASP.NET Web Services application you build in Developer Studio 2006, provides programmatic access to the
application logic of one or more web services. You define the services you want to expose, how the services are to
be used, and the infrastructure that receives and processes requests and responses.

When you create a new ASP.NET Web Service application, the New ASP.NET Application dialog box lets you
specify the name and location of the ASP.NET Web Services application, and automatically creates the files required
for deployment. When you specify the application settings, Developer Studio 2006 generates the .asmx file that acts
as a base URL for clients calling the ASP.NET Web Services application.

ASP.NET Web Services Namespaces
For more information on System.Web.Services namespaces, refer to the Microsoft .NET Framework SDK.

846

Building Applications with Windows Forms
Windows Forms provide a traditional approach to developing user interfaces, client/server applications, forms,
controls, and application logic. Windows Forms fully leverage the .NET Framework. This section provides an
overview of Windows Forms using Developer Studio 2006 and common steps to building a simple Windows project.

In This Section
Windows Forms Overview
Introduces the Windows Forms architecture for building Windows applications using Developer Studio 2006.

Building a Windows Forms Application
Describes the essential tasks to create a Windows Forms application using Developer Studio 2006.

Deploying Windows Forms Applications
Provides general information about deploying Windows forms applications.

847

848

Windows Forms Overview
Windows Forms is the .NET programming environment for building native Windows applications in a managed
environment. Building Windows clients with .NET allows applications to use features unavailable to browser clients
while leveraging the .NET Framework for general infrastructure. Windows Forms combines features of both
traditional and Internet-centric development, presenting a programming model that takes advantage of a
unified .NET Framework (for instance, for security and dynamic application updates) and the richness of GUI
Windows clients.

This section includes:

Windows Forms Architecture
Windows Forms Components
Windows Forms Data Access
Windows Forms Namespace

Windows Forms Architecture

Windows Forms share common .NET Framework with other programming models, like ASP.NET and ADO.NET.

Windows Forms
Developer Studio 2006 provides an IDE for creating GUI applications in a RAD environment. Developers drag
controls, dialogs, and components onto the form Designer, set properties in Object Inspector, and code the logic
to respond to events.

Windows Forms Components
The Tool Palette for Windows Forms in Developer Studio 2006 provides components, controls, and dialogs for
designing a GUI. Components are classes that represent reusable objects. Controls are a type of component with
user interface functionality. (All controls are components, but not all components are controls.) Typically, you design
user interfaces by positioning and sizing components and controls on a form. Examples of common controls and
components include buttons and menus. To facilitate the construction of menus, Developer Studio 2006 provides a
menu designer for main menu and context menu components. Dialog boxes are a type of form, which in turn can
contain controls. Dialogs provide for various types of user interaction.

849

Windows Forms Data Access
Within the .NET Framework, Windows Forms access data through ADO.NET. You can connect a Windows
application to an ADO.NET data source using data components included in the .NET Framework and BDP.NET.
BDP.NET components connect to a number of industry standard databases. For more information, see the
ADO.NET section.

Windows Forms Namespace
Common Windows Forms classes like Form and Menu are contained within the System.Windows.Forms
namespace. The namespace also contains controls like Button, CheckBox, and Label. Use the Object Inspector
in Developer Studio 2006 to set properties, methods, and events within Windows Forms classes.

850

Deploying Windows Forms Applications
For the common language runtime, deploying Windows Forms applications requires installation of the .NET
Framework on the target computer. If the Windows Forms application is simple, consisting of a single executable,
the .exe file may reside unregistered in the appropriate program directory. If the Windows Forms application includes
a shared assembly, the assembly must be installed to the Global Assembly Cache using tools in the .NET
Framework. For more information, see the .NET Framework SDK help.

851

852

Building Applications with VCL.NET Components
VCL.NET is an extended set of the VCL components that provide a way to quickly build advanced applications in
Delphi. With VCL.NET you can provide your Delphi VCL applications and components to Microsoft .NET Framework
users. With Developer Studio 2006 you gain the benefit of the .NET Framework along with the ease-of-use and
powerful component-driven application development of Delphi.

Developer Studio 2006 provides distinct application types for your use: you can create VCL.NET form applications
that run on the .NET Framework that use VCL.NET components and controls; you can create .NET Windows Forms
applications that use the underlying .NET Framework and .NET controls while offering Developer Studio 2006 code-
behind; you can create powerful ASP.NET applications that use the underlying .NET Framework, ASP.NET controls,
and also offer Developer Studio 2006 code-behind. The following topics provide more information on how to take
advantage of the new VCL.NET provisions in Developer Studio 2006.

In This Section
VCL for .NET Overview
Introduces the VCL for .NET architecture for building applications using Developer Studio 2006.

Porting VCL Applications
Provides conceptual information about porting issues.

Building a VCL Forms Application
Describes the essential tasks to create a VCL Forms application using Developer Studio 2006.

853

854

VCL for .NET Overview
VCL for .NET is the programming framework for building Developer Studio 2006 applications using VCL components.
Developer Studio 2006 and VCL for .NET are intended to help users leverage the power of Delphi when writing new
applications, as well as for migrating existing Win32 applications to the .NET Framework.

These technologies allow a Delphi developer to migrate to .NET, taking their Delphi skills and much of their current
Delphi source code with them. Developer Studio 2006 supports Microsoft .NET Framework development with the
Delphi language and both VCL for .NET controls and Windows Forms controls. Developer Studio 2006 ASP.NET
also supports WebForms, and SOAP and XML Web Services application development.

VCL for .NET is a large subset of the most common classes in VCL for Win32. The .NET Framework was designed
to accommodate any .NET-compliant language. In many cases Delphi source code that operates on Win32 VCL
classes and functions recompiles with minimal changes on .NET. In some cases, the code recompiles with no
changes at all. VCL for .NET is a large subset of VCL, therefore it supports many of the existing VCL classes.
However, source code that calls directly to the Win32 API requires source code changes. Also, dependent third-
party Win32 VCL controls need to be available in .NET versions for compatibility.

This section introduces:

VCL for .NET Architecture
VCL for .NET and the .NET Framework
VCL for .NET Components
Borland.VCL Namespace
Porting Delphi Applications to Developer Studio 2006
Importing .NET Components for Use in VCL for .NET Applications

VCL for .NET Architecture

VCL is a set of visual components for building Windows applications in the Delphi language. VCL for .NET is the
same library of components updated for use in the .NET Framework. VCL for .NET and the .NET Framework coexist

855

within Developer Studio 2006. Both VCL for .NET and .NET provide components and functionality that allow you to
build .NET applications:

VCL for .NET provides the means to create VCL Forms applications, which are Delphi forms that are .NET-
enabled, and use VCL for .NET components.
VCL for .NET provides VCL non-visual components which have been .NET-enabled to access databases. You
can also access databases through the ADO.NET and BDP.NET providers.
.NET provides the means to build .NET Windows Forms, Web Forms, and Console applications, using .NET
components, with Delphi code-behind.

You can build VCL Forms applications using VCL for .NET components, or Windows Forms applications using .NET
components. You can also build ASP.NET Web Forms applications using either VCL for .NET components or .NET
components.

VCL for .NET and the .NET Framework
The .NET Framework provides a library of components, classes, and low-level functionality that manages much of
the common functionality, from the display of buttons to remoting functionality, without regard to the underlying
implementation language. VCL for .NET and the .NET Framework are functionally equivalent. Like the .NET
Framework, VCL for .NET provides libraries of components, controls, classes, and low-level functionality that help
you build Windows Forms, Web Forms, and console applications that run on the current Windows .NET Framework
platform.

VCL for .NET is not a replacement for the .NET Framework.

You will still need the .NET runtime to use VCL for .NET, but you can build complete applications using VCL
for .NET components that will run on .NET platform.

You can build Developer Studio 2006 applications without using VCL for .NET, by creating Windows Forms, Web
Forms, and Console applications using Developer Studio 2006 code.

You can use Developer Studio 2006 to create powerful .NET applications using .NET components, or VCL for .NET
components that have been migrated from the Delphi VCL. If you have existing Delphi VCL applications that you
want to run on Windows XP, you can easily port those applications by using Developer Studio 2006.

VCL for .NET Components
VCL for .NET consists of a set of visual and non-visual components. VCL for .NET builds on the concept of
constructing applications visually, eliminating much manual coding.

Visual Components
Developer Studio 2006 provides a set of visual components, or controls, that you can use to build your applications.
In addition to the common controls, such as buttons, text boxes, radio buttons, and check boxes, you can also find
grid controls, scroll bars, spinners, calendar objects, a full-featured menu designer, and more. These controls are
represented differently in Developer Studio 2006 than they are in frameworks, such as the .NET Framework.

In an IDE for other languages, such as C# or Java, you will see code-centric representations of forms and other
visual components. These representations include physical definitions, such as size, height, and other properties,
as well as constructors and destructors for the components. In the Code Editor of Developer Studio 2006 you will
not see a code representation of your VCL for .NET components.

Developer Studio 2006 is a resource-centric system, which means that the primary code-behind representations are
of event handlers that you fill in with your program logic. Visual components are declared and defined in text files
with the extensions .dfm (Delphi Forms) or .nfm (Developer Studio 2006 forms). The nfm files are created by

856

Developer Studio 2006 as you design your VCL Forms on the Forms Designer, and are listed in the resource list in
the Project Manager for the given project.

Non-Visual Components
You can use non-visual components to implement functionality that is not necessarily exposed visually. For example,
you can access data by using non-visual components like the BDP.NET components, which provide database
connectivity and DataSet access. Even though these components do not have visual runtime behavior, they are
represented by components in the Tool Palette at designtime. VCL for .NET provides a variety of non-visual
components for data access, server functions, and more.

Borland.VCL Namespace
VCL for .NET classes are found under the Borland.Vcl namespace. Database-related classes are in the
Borland.Vcl.DB namespace. Runtime library classes are in the Borland.Vcl.Rtl namespace.

Unit files have been bundled in corresponding Borland.Vcl namespaces. In some cases, units have been moved.
However, namespaces are identified in a way that will assist you in finding the functionality you want.

Source files for all of the Developer Studio 2006 objects are available in the c:\Program Files\Borland\BDS\4.0
\Source subdirectory.

Porting Delphi Applications to Developer Studio 2006
If you have existing applications written with an earlier version of Delphi, you might want to port them to .NET. In
most cases, this will be easier than rewriting the applications. Because Developer Studio 2006 takes advantage of
significant structural elements in the .NET Framework, you will need to perform some manual porting tasks to make
your applications run. For example, the .NET Framework does not support pointers in safe code. So, any instance
of a pChar or pointer variable will need to be changed to a .NET type. Many Delphi objects have been updated to
accommodate these type restrictions, but your code may include references to pointers or unsupported types. For
more information, refer to the Language Guide in this Help system.

Importing .NET Components for Use in VCL for .NET Applications
Developer Studio 2006 provides the .NET Import Wizard to help you import .NET controls into VCL for .NET units
and packages. For example, you can wrap all .NET components, like those from the System.Windows.Forms
assembly, in ActiveX wrappers that can be deployed on VCL for .NET applications. Once you have imported
the .NET components of your choice, you can add a completed package file containing the units for each component
to the Tool Palette. You can also view and modify the individual unit files, which can be useful reference material
when you are writing your own custom components.

857

858

Porting VCL Applications
When porting VCL applications from Delphi 7 to Developer Studio 2006, there are issues you need to consider.
Along with basic language elements that need to be replaced or modified, there are strategies that you should follow
to make sure that you port your applications fully and reliably.

This topic includes

General Language Issues
Renaming Packages
New Language Features
Porting Web Service Client Applications

General Language Issues
Porting Delphi 7 applications to Developer Studio 2006 exposes several language issues in the .NET Framework.
For instance, the .NET Framework considers pointers to be unsafe and so does not consider applications that use
pointers to fall into the category of managed code. To be compliant with the .NET Framework, you need to modify
your applications to avoid or circumvent the use of pointers, the pChar type, and other language-specific elements.

In addition, there are critical issues with the Win32 API, using crackers, migrating char types, and other topics.

Renaming Packages
When porting a Delphi 7 package to Developer Studio 2006, you will need to change the old package names in the
"Requires" list to the corresponding new package names. The following table shows the old and new names.

Old Package Name New Package Name

rtl Borland.Delphi and Borland.VclRtl

vcl Borland.Vcl

vclx Borland.VclX

dbrtl Borland.VclDbRtl

bdertl Borland.VclBdeRtl

vcldb Borland.VclDbCtrls

dbexpress Borland.VclDbExpress

dbxcds Borland.VclDbxCds

dsnap Borland.VclDSnap

dsnapcon Borland.VclDSnapCon

vclactnband Borland.VclActnBand

Borland.VclActnBand Packages are now installed by using Component Installed .NET Components .NET
VCL Components.

New Language Features
Several new features have been added to the Delphi language to support programming concepts and features of
the .NET platform and the CLS:

Partitioning code into namespaces

859

New visibility specifiers for class members
Class static methods, properties, and fields
Class constructors
Nested type declarations within classes
Sealed classes
Final virtual methods
Operator overloads in classes
.NET attributes
Class helper syntax

Programming in the garbage-collected environment of .NET brings a number of new issues related to allocating and
disposing of objects. These issues are discussed in Memory Management Issues on the .NET Platform.

Porting Web Service Client Applications
The .NET Framework employs a major architectural shift in how it handles web services and web service clients.
Your existing web service client applications need to be modified to operate on the .NET Framework. Developer
Studio 2006 does not support the RIO components, and uses a more transparent .NET approach to managing web
service client applications. You will need to eliminate RIO components and modify the way you access WSDL
documents.

860

Language Issues in Porting VCL Applications to Developer Studio
2006
The VCL in Developer Studio 2006 was created with backward compatibility as the primary goal. However, there
are some ways in which the managed environment of .NET imposes differences in the way VCL applications must
work. This document describes most of these differences, and indicates some of the steps you should take to port
a VCL application to the .NET environment.

This document does not attempt to describe the new extensions to the Delphi language. It is limited to the way
existing Delphi code maps to the new Developer Studio 2006 language and VCL framework. This document does
contain links into specific topics within the Delphi Language Guide, where new language features are explained in
detail.

This topic covers the following material:

Migrating Pointer types
Migrating Char and string types
Creating and destroying objects
Calling the Win32 API
Migrating Variants
Working with resources
Change to OnCompare

Migrating Pointer Types
Pointer types are not CLS compliant, and are not considered "safe" in the context of the .NET Common Language
Runtime environment. The port of the VCL has, therefore, eliminated pointers, replacing them with appropriate
alternatives such as dynamic arrays, indexes into an array or string, class references, and so on. When porting a
VCL application, one of the first steps is to locate where you use pointer types and replace them as appropriate.

Untyped Pointers
Untyped pointers are considered unsafe code. If your code includes untyped pointers, the .NET utility PEVerify will
fail to verify it. Code that cannot be verified for type safety cannot be executed in a secured environment, such as a
web server, SQL database server, web browser client, or a machine with restricted security policies.

In the VCL, untyped pointers have been replaced with more strongly-typed values. In most cases, where you used
to find an untyped pointer, you will now find TObject. For example, the elements of TList are now of type TObject,
rather than of type Pointer. Your code can cast any type to an object, and cast a TObject to any other type (even
value types such as Integer, Double, and so on). Casting TObject to another type will generate a runtime error if the
object is not, in fact, an instance of the type to which you are casting it. That is, this cast has the same semantics
as using the as operator.

In some cases, the Pointer type has been replaced with a more precise type. For example, on TObject, the
ClassInfo function returns a value of type Type rather than an untyped pointer.

Untyped pointers that were used for parameters whose type varied depending on context have typically been
replaced by overloading the routine and using var parameters with the possible types. In the case of untyped pointers
that are used with API calls to unmanaged code (such as the Windows API or calls to a data access layer such as
the BDE) the untyped pointer is replaced with System.IntPtr. Thus, for example, the TBookmark type, defined in the
Db unit, now maps to IntPtr.

861

Code that used the address operator (@) to convert a value to an untyped pointer must now change. When the
untyped pointer has changed to TObject, usually all you need to do is eliminate the @ operator. On value types, you
may need to replace the @ operator with a typecast to TObject, so that the value is "boxed". Thus, the following code

var
 P: Pointer;
 I: Integer;
begin
 I := 5;
 P := @I;

could be converted to

var
 P: TObject;
 I: Integer;
begin
 I := 5;
 P := TObject(I);

When the untyped pointer has changed to IntPtr, you need to use the Marshal class to allocate a chunk of unmanaged
memory and copy a value to it, rather than just using the @ operator. Thus the following code:

var
 P: Pointer;
 R: TRect;
begin
 R := Rect(0, 0, 100, 100);
 P := @R;
 CallSomeAPI(P);

would be converted to

var
 P: IntPtr;
 R: TRect;
begin
 R := Rect(0, 0, 100, 100);
 P := Marshal.AllocHGlobal(Marshal.SizeOf(TypeOf(TRect)));
 try
 Marshal.StructureToPtr(TObject(R), P, False);
 CallSomeAPI(P);
 finally
 Marshal.FreeHGlobal(P);
 end;

Note: All unmanaged memory that you allocate using the Marshal class must be explicitly freed. The .NET garbage
collector does not clean up unmanaged memory.

Procedure Pointers
A special case for untyped pointers is when they represent procedure pointers. In managed code, procedure pointers
are replaced by .NET delegates, which are more strongly typed. Declarations of procedural types are delegate

862

declarations in Developer Studio 2006. You can obtain a delegate for a method or global routine using the @ operator.
The code looks the same as obtaining a procedure pointer on the Win32 platform, so in many cases there is nothing
you need to change when porting code. However, it is important to keep in mind that when you use the @ operator,
you get a newly-created delegate, not a pointer.

If you are passing a procedure pointer to an unmanaged API using the @ operator, for example,

Handle := SetTimer(0, 0, 1, @TimerProc);

the only reference to the delegate is the one passed to the API call because the delegate is created on the fly. This
means that the garbage collector will eventually dispose of the delegate after the return of the unmanaged API. If,
as in this case, the unmanaged code may call the procedure after the return of the API call, you will encounter a
runtime exception because the delegate no longer exists. You can work around this situation by assigning the
delegate to a global variable, and passing the global variable to the unmanaged API.

When you call the Windows API GetProcAddress to obtain a procedure pointer, it is returned as an IntPtr. This
value is not a delegate. You can’t cast it to a delegate and call it. Instead, typically such code is translated to use
Platform Invoke to call an unmanaged API. GetProcAddress is useful to determine whether the API is available
so that you do not get a runtime exception when you use Platform Invoke. Thus, code such as the following:

type
 TAnimateWindowProc = function(hWnd: HWND; dwTime: DWORD; dwFlags: DWORD): BOOL; stdcall;
var
 AnimateWindowProc: TAnimateWindowProc = nil;
 UserHandle: HMODULE;
begin
 UserHandle := GetModuleHandle('USER32');
 if UserHandle <> 0 then
 @AnimateWindowProc := GetProcAddress(UserHandle, 'AnimateWindow');
 ...
 if AnimateWindowProc <> nil then
 AnimateWindowProc(Handle, 100, AW_BLEND or AW_SLIDE);

Would be translated to the .NET platform as follows

[DllImport('user32.dll', CharSet = CharSet.Ansi, SetLastError = True, EntryPoint =
'AnimateWindow')]
function AnimateWindow(hWnd: HWND; dwTime: DWORD; dwFlags: DWORD): BOOL; external;
var
 UserHandle: HMODULE;
 CanAnimate: Boolean;
begin
 UserHandle := GetModuleHandle('USER32');
 if UserHandle <> 0 then
 CanAnimate := GetProcAddress(UserHandle, 'AnimateWindow') <> nil
 else
 CanAnimate := False;
 ...
 if CanAnimate then
 AnimateWindow(Handle, 100, AW_BLEND or AW_SLIDE);

Note: The .NET example above is still late bound to the AnimateWindow API. An exception will not be generated
when this code is loaded, if the DLL or function aren't available. The function call is resolved only when the
code is executed for the first time.

863

String Pointers
Code that uses the PChar type usually serves one of three purposes:

The type refers to a null-terminated string (especially when it is used with a Windows API call or an older RTL
function).
The type is used to navigate through a string when processing its value.
The type is used to reference a block of bytes, relying on the fact that in Delphi for Win32, the Char type is a
byte (the Char type is two bytes on the .NET platform).

In the first case, you can usually replace the PChar type with the type string. In the case of Windows API calls, the
managed versions of the APIs now use a string or StringBuilder rather than a PChar, with the marshaling layer
handling the conversions implicitly. Note that many of the RTL functions that supported the PChar type have been
eliminated from the RTL, and you must replace them with corresponding versions that use the string type. The
following table lists functions from the SysUtils units that have been eliminated because they relied on the PChar
type, and the corresponding functions that use the string type:

PChar version String version

AnsiExtractQuotedStr AnsiDequotedStr or DequotedStr

AnsiLastChar, AnsiStrLastChar (use index operator and string length)

AnsiStrComp, StrComp CompareStr, AnsiCompareStr, WideCompareStr

AnsiStrIComp, StrIComp CompareText, AnsiCompareText, WideCompareText

AnsiStrLComp, StrLComp System.String.Compare (StartsStr)

AnsiStrLIComp, StrLIComp System.String.Compare (StartsText)

AnsiStrLower, StrLower AnsiLowerCase, WideLowerCase,

AnsiStrUpper, StrUpper UpCase, AnsiUpperCase, WideUpperCase

AnsiStrPos, StrPos, AnsiStrScan, StrScan Pos

AnsiStrRScan, StrRScan LastDelimiter

StrLen Length

StrEnd, StrECopy (no equivalent)

StrMove, StrCopy, StrLCopy, StrPCopy, StrPLCopy Copy

StrCat, StrLCat + operator, Concat

StrFmt Format, FmtStr

StrLFmt FormatBuf

FloatToText FloatToStrF

FloatToTextFmt FormatFloat

TextToFloat FloatToStr

When a PChar type is used to navigate through a string, you must rewrite the code, replacing the PChar with an
Integer that represents an index into the string. When rewriting such code, you must is recognize when you have
reached the end of the string. When using the PChar type, there is a null character at the end of the string, and the
code typically recognizes the end of the string by finding this null character. With a string-and-index approach, there
is no such null character and you must use the string length to identify the end of the string. Be careful to check that
the index is not past the end of the string before reading a character or you will get a runtime error.

864

Note: String data is immutable, so you can’t write a single character into an existing string using a PChar. You can
accomplish this using string indexing (e.g. s[5]), however.

When a PChar is used to reference a block of bytes, it is typically replaced by either an IntPtr or a dynamic array of
bytes (TBytes). If replaced by an IntPtr, the issues in translating are the same as when replacing an untyped pointer.
When replaced by TBytes, you my need to replace some PChar values with an index into the byte array if it is used
to navigate the block of bytes. This is like replacing PChar with Integer to navigate through a string, except that
indexes into TBytes are 0-based while indexes into strings are 1-based.

Writing Strings to Streams
In Delphi for Win32, it is common to find code similar to the following:

S1 := 'This is a test string';
Stream.WriteBuffer(S1[1], Length(S1));

On the Win32 platform, this code results in the entire string being written to the stream. On the .NET platform
however, this same code produces a quite different result. On the .NET platform, the compiler generates a call to
the Char overloaded version of WriteBuffer, with the result being only a single character (S1[1]) being written to
the stream.

Other Pointer Types
Other typed pointers have been eliminated from the VCL. Typically, they are replaced by the type to which the original
pointed. If the pointer type was the parameter to a procedure call, it is typically converted to a var parameter so that
the resulting code still passes a reference rather than a copy of the argument. Sometimes, it is useful to change a
value type into a class type so that rather than passing a typed pointer, your code passes an object reference.

Migrating Char and String Types
In Developer Studio 2006, the string type maps to the .NET String type, and you can freely access the members of
String using a Delphi string type, as demonstrated in the following example:

var
 S: string;
begin

 S := 'This is a string';

 // Note the typecast is not necessary.
 // S := System.String(S).PadRight(25);

 // Direct access to string class members
 S := S.PadRight(25);
 S := ('This is a new string').PadRight(25);

ANSI Strings and Wide Strings
The biggest difference for strings in Developer Studio 2006 is that the string type is now a Unicode wide string rather
than an AnsiString. This simplifies code for some locales, because you no longer need to worry about multibyte
character sets. However, you must examine your code for any assumptions about the size of a Char, because it is
now two bytes rather than one. You can still use strings with one-byte characters, but you must now declare them

865

as AnsiString rather than string. The compiler converts between wide and narrow strings if you use an explicit
typecast or if you implicitly cast them by assigning to a variable or parameter of the other type.

If your code calls any of the AnsiXXX routines for manipulating strings, you may want to change these to the
corresponding wide string version of the routine. The AnsiXXX routines have (deprecated) overloads that map to
the wide versions, and the overloaded routines accept wide strings for their parameters; this avoids implicit
conversion back and forth between wide and single-byte strings.

Note: Information can be lost when converting from wide to single-byte characters, therefore, you should avoid
downcasting as much as possible.

String Operations
Following the CLR value-type semantics, typically operations on strings return a copy of the string rather than alter
the existing string. This may make some code less efficient, because there is more copying going on. For example,
consider the following:

var
 S: string;
begin
 S := 'This is a string';
 S[3] := 'a';
 S[4] := 't';

When compiled using on the Win32 platform, the character substitutions only require a single byte of memory to
change each time. In Developer Studio 2006, each substitution results in a copy of the entire string. Because of this,
it is a good idea to use a StringBuilder instance when you are manipulating string values. StringBuilder allocates a
chunk of unmanaged memory and manipulates the string the way you expect. When you are finished, you can
convert the result to a string by calling the ToString method.

Note: The conversion to string from a StringBuilder is a low-cost operation. The string data is not copied again.

Uninitialized Strings
In Developer Studio 2006, an uninitialized string has the value of nil. The compiler will automatically compensate if
you compare an uninitialized string with an empty string. That is, if you have a line such as

if S <> '' then ...

The compiler handles the comparison and treats the uninitialized string as an empty string. However, unlike code
compiled on the Win32 platform, other string operations do not automatically treat an uninitialized string like an empty
string. This can lead to Null Object exceptions at runtime.

Typecasts
Unlike Delphi for Win32, in Developer Studio 2006, there is no distinction between an explicit typecast and the as
operator. In both cases, the cast only succeeds if the variable being cast is really an instance of the type to which
you cast it. This means that code which used to work (by casting between incompatible data types) may now generate
a runtime exception.

Message Crackers
Perhaps the most common situation where the change to typecasts causes a problem is in the use of the message
cracker types. In the VCL on Win32, the Messages unit defined a number of record types to represent the parameters

866

of a Windows message. These records were all the same size, with the fields laid out to extract the information from
the Windows message. Thus, you could have the message parameters in one form (say, TMessage), and typecast
it to another (say TWMMouse), and extract the information you wanted. This worked because the two types were
the same size, and an explicit typecast did not raise an exception when you reinterpreted the type with the cast.
Such a reinterpret cast is not allowed in .NET, and the same code would lead to an invalid cast exception in Developer
Studio 2006.

To work around this situation, the message cracker types in Developer Studio 2006 are not records at all, but classes.
Instead of casting a TMessage value to another type such as TWMMouse, you must instantiate the other type,
passing the original TMessage as a parameter. That is, instead of

procedure MyFunction(Msg: TMessage);
var
 MouseMsg: TWMMouse;
begin
 if Msg.Msg = WM_MOUSE then
 with Msg as TWMMouse do
 ...
end;

you would do something like the following:

procedure MyFunction(Msg: TMessage);
var
 MouseMsg: TWMMouse;
begin
 if Msg.Msg = WM_MOUSE then
 with TWMMouse.Create(Msg) do
 ...
end;

To convert in the other direction (from a specialized message type to TMessage), you can use the new
UnwrapMessage function that is declared in the Messages unit.

Accessing Protected Members from Classes in Other Units
Another technique that involves what is now an invalid typecast is when you need to access the protected members
of a class that is declared in another unit. In Delphi for Win32, you can declare a descendant of the class whose
members you want to see:

type
 TPeekAtWinControl = class(TWinControl);

Then, by casting an arbitrary TWinControl descendant to TPeekAtWinControl, you could access the protected
methods of TWinControl, because TPeekAtWinControl was defined in the same unit.

In general, this technique does not work in Developer Studio 2006, because the arbitrary TWinControl descendant
is not, in fact, an instance of TPeekAtWinControl. The cast leads to an invalid cast exception at runtime.

Because this is a widely used technique in Win32, the compiler will recognize this pattern and allow it. However, the
compiler can't know what assembly a unit will be linked into when it compiles the source code. If the units are linked
into assemblies, this technique will fail at runtime with a type exception.

When you need to cross assembly boundaries, one workaround is to introduce an interface that provides access to
the protected members in question. Some of the classes in the VCL (TControl, TWinControl, TCustomForm) now

867

use this technique, and you can find the addition of interfaces to access protected members (IControl, IWinControl,
IMDIForm).

Creating and Destroying Objects
Specific language issues with programming in Delphi on the memory-managed .NET platform are explained in the
topic Memory Management Issues on the .NET Platform.

Because of differences in the way objects are instantiated and freed, it is not possible to have a
BeforeDestruction or AfterConstruction method on a Developer Studio 2006 class. Any classes that
override these methods must be rewritten.

The fact that these methods and the OldCreateOrder property do not exist in the VCL on the .NET platform impacts
forms and data modules that relied on OldCreateOrder being False. The OnCreate and OnDestroy events now
act as if the OldcreateOrder property is set to True, and will only be called from the constructor or destructor.

Note: Because OnDestroy is called from a destructor, it is not guaranteed to be called – if the application does
not call Free, the object’s destructor is not called, even though it is garbage collected.

Working with the Unmanaged Win32 API
Most of the VCL is designed for working with the Windows API. This is handled in a way analogous to the way
Systems.Windows.Forms works: The VCL is a managed API that calls into the Windows API, marshaling between
the managed structures on the VCL side and the unmanaged types that the Windows API uses. Some units,
particularly in the RTL, have been ported so that they sit on top of CLR rather than the Windows API. Such units are
more flexible, because they can work with any .NET environment, even those that do not support the Windows
operating system (for example, the Compact Framework, Mono, and so on). Units that require the Windows operating
system are tagged with the platform directive. In units that are not tagged with the platform directive, any methods
or classes that require Windows are tagged with the platform directive.

Isolating Windows Dependencies
In order to maintain relative platform independence in RTL units, some methods functions that rely on Windows have
been moved into the WinUtils unit. In addition, some classes have been changed to rely more on CLR than
Windows.

TObject, Exception, TPersistent, and TComponent, all map directly to classes implemented in the .NET Framework.
In this way they integrate more smoothly with other .NET applications. Because the corresponding CLR classes
(System.Object, System.Exception, System.Marshal, and System.Component) do not include all the methods that
the VCL requires, the missing methods are supplied by Delphi class helper declarations. In most cases, this
mechanism is transparent. However, there are a few cases where it requires you to make minor tweaks to your code.
For example, with TComponent, FComponentState is now a property of TComponentHelper rather than a true field
of TComponent. This means that you can’t use the Include and Exclude methods on FComponentState, because
when passed a property, they operate on a copy of the property value, which does not alter FComponentState. Thus
code such as

Exclude(FComponentState, csUpdating);

Must be rewritten as

FComponentState := FComponentState – [csUpdating];

TThread has also been changed to map to the CLR thread object. This means that the Thread handle is no longer
an ordinal type, but is rather a reference to the underlying CLR thread object. It also means that TThread no longer

868

supports a ThreadID, which is not supported by the CLR thread object. If your thread class requires a ThreadID, you
should change it to derive from TWin32Thread instead.

Calling the Windows API
Many Windows APIs have changed to use a more managed interface. Often, the types of parameters have changed,
typically to eliminate pointers. One common change is the PChar types have been replaced by string or StringBuilder.

When your application calls a Windows API, it is making a call into an unmanaged DLL. Because of this, all parameter
values must be marshaled into unmanaged memory, where Windows can work with it, and results are then
unmarshalled back into managed memory. In most cases, this marshaling is handled automatically, based on the
attributes that have been added to API declarations or type declarations. There are some cases, however, when
your code must explicitly handle the marshaling – especially when dealing with a pointer on a structure. To do this
marshaling, use the System. Marshal class. Another class that can be very useful when marshaling data to or from
unmanaged memory is the BitConverter class. For example, the Marshal class does not include a method to read
or write a double value, but it can read or write Int64 values, which are the same size, and the BitConverter class
can convert these to or from doubles:

// copy double into unmanaged memory:
Mem := Marshal.AllocHGlobal(SizeOf(Int64));
Marshal.WriteInt64(Mem, BitConverter.DoubleToInt64Bits(DoubleVariable));
...
// copy double from unmanaged memory
DoubleVariable := BitConverter.Int64BitsToDouble(Marshal.ReadInt64(Mem));

When using the marshal class, remember that you must always free any unmanaged memory you allocate – the
garbage collector does not collect unmanaged memory.

Working with Windows Messages
One of the changes in the way Developer Studio 2006 applications work with Windows is the way message handlers
work. The basics of declaring and using messages handlers is the same, but the message-cracker types have
changed from records to classes, and you can no longer simply typecast from one message-cracker type to another.
Most of this has already been covered in the section on typecasts, but there are a few additional issues that bear
mentioning:

When porting code that sends a message, it is no longer sufficient to declare the message cracker on the stack,
fill out its fields, and pass it to a call to SendMessage. You must now add a call to create the message cracker,
because it is now a class.
Inside a message handler, you can still call an inherited message handler using the inherited keyword. However,
if you do this, you must now be sure that the message cracker type is the same as that in the inherited message
handler. For example, if the inherited message handler has a parameter of type TWMMouse, and your message
handler only needs TMessage, declaring your message handler to use TMessage and calling inherited will lead
to an invalid cast exception at runtime. Thus, if you call the inherited message handler, you must now ensure
that your message parameter matches that of the inherited handler.
If a message has parameters that are pointers to records (or pointers to anything, for that matter), then the
corresponding message cracker will have properties that represent those records. It is important to realize,
however, that these are properties and not fields. Thus, you can read the fields of the record directly from the
property, but if your handler needs to change any field values, you can no longer make assignments directly to
the fields of the record. Instead, you must copy the record to a local variable, make your changes, and then
assign the result back to the property.

Using Windows messages is somewhat more expensive in Developer Studio 2006, because in addition to the
overhead of working with the message queue, there is now the overhead of marshaling values to and from
unmanaged memory. This is particularly expensive when a parameter represents a pointer (an object reference or

869

a pointer to a structure). Such parameters are ultimately converted to a WPARAM or LPARAM using an IntPtr, which
acts as a handle to a block of unmanaged memory that contains a copy of the structure. Object references are
converted using a GCHandle. In most cases, the predefined message cracker types handle the marshaling of these
parameters, to and from the IntPtr, but if you defining your own messages, you may need to perform your own
marshaling. The message cracker classes defined in the Controls unit illustrate how to handle these marshaling
issues.

The VCL defines and uses a number of private message types. These are, for the most part, defined in the
Controls unit, and have identifiers of the form CM_XXX or CN_XXX. Because of the extra overhead in marshaling
messages, several of the CM_XXX message types have been changed or eliminated, replaced by other mechanisms
that are less expensive in the .NET environment. The following table lists the message types that have changed,
and how the same task is accomplished in Developer Studio 2006:

Message type Change

CM_FOCUSCHANGED Replaced by a protected method (FocusChanged) on TWinControl. Replace message
handlers by an override to the FocusChanged method. Instead of sending messages, call
FocusChanged using the IWinControl interface.

CM_MOUSEENTER Meaning of LPARAM has changed. It used to pass an object reference to the child control
where the mouse entered – now it passes the index of that child in the FWinControls or
FControls list.

CM_MOUSELEAVE Meaning of LPARAM has changed. It used to pass an object reference to the child control
where the mouse exited – now it passes the index of that child in the FWinControls or
FControls list.

CM_BUTTONPRESSED Replaced by a protected method (ButtonPressed) on TSpeedButton. This was only used by
TSpeedButton. The CMButtonPressed message handler was replaced by ButtonPressed,
which is called directly.

CM_WINDOWHOOK Retired. TApplication.HookMainWindow and TApplication.UnhookMainWindow are both
public methods that can be called directly.

CM_CONTROLLISTCHANGE Replaced by a protected method (ControlListChange) on TWinControl. Replace message
handlers by an override to the ControlListChange method.

CM_GETDATALINK Replaced by a protected method (GetDataLink) on various data-aware controls. Call this using
the new IDataControl interface. When creating your own data-aware control (that does not
descend from an existing class in DBCtrls), you must implement IDataControl if the control is
to work in a DBCGrid.

CM_CONTROLCHANGE Replaced by a protected method (GetDataLink) on various data-aware controls. Call this using
the new IDataControl interface. When creating your own data-aware control (that does not
descend from an existing class in DBCtrls), you must implement IDataControl if the control is
to work in a DBCGrid.

CM_CHANGED Meaning of LPARAM has changed. It used to pass an object reference, now it passes a hash
code for the object that changed.

CM_DOCKCLIENT Replaced by a protected method (DockClient) on TWinControl. Replace message handlers
by an override to the DockClient method.

CM_UNDOCKCLIENT Replaced by a protected method (UndockClient) on TWinControl. Replace message handlers
by an override to the UndockClient method.

CM_FLOAT Replaced by a protected method (FloatControl) on TControl. Replace message handlers by
an override to the FloatControl method.

CM_ACTIONUPDATE Retired. TApplication.DispatchAction was promoted to public, and is called directly rather than
using a message.

CM_ACTIONEXECUTE Retired. TApplication.DispatchAction was promoted to public and is called directly rather than
using a message.

870

Changes to the Threading Model
Sometimes, Windows API calls require the use of the Single Threaded Apartment (STA) model to function properly
on some operating systems. For example, on some versions of Windows 98, the Open and Save dialogs do not
work unless your Developer Studio 2006 application uses the Single Threaded Apartment model. Any portion of the
VCL that uses COM requires this model.

The threading model is established when the process first starts up. If you are creating an executable, this is easy:
just add the [STAThreadAttribute] attribute to the line immediately preceding the begin statement in the dpr
file. When creating a DLL, you can’t force the threading model. However, you can call the CheckThreadingModel
procedure in the SysUtils unit to raise an exception when the application calls a method that requires a particular
threading model.

This restriction is fairly common in .NET. By default, Microsoft Visual Studio adds the STAThreadAttribute attribute
to applications it creates.

Migrating Variants
The Variant type is very different in Developer Studio 2006. Whereas the Win32 compiler maps Variant onto the
record type that COM uses for Variants, in Developer Studio 2006, a Variant is more general. Any object (which in
Developer Studio 2006 is any type) can act be manipulated as a Variant. Thus, in Developer Studio 2006, you could
assign a control to a Variant.

The Delphi Variant type is a Delphi language notion that is not CLS compliant. If you are writing code in Developer
Studio 2006 that uses Variants, to the outside world will see, these will map to only as System. Object. Thus, to code
written in other languages, the flexibility in type conversions that Delphi Variants support provide is not available.

Changes to TVarRec
If your code uses Variants, chances are it should still work. However, because Variants are no longer based on the
TVarRec type, any code that works with the internals of a Win32 Variant by getting into the underlying TVarRec
record must be rewritten for .NET.

Note: Nearly all of the functions provided by the Variants unit are implemented in Developer Studio 2006. If you
need to get the VarType of a Variant, you can accomplish this and still maintain platform portable code.

Changes to OLE Variants
The COM Interop layer automatically marshals Objects (and hence Variants). Thus, you can use Developer Studio
2006 Variants with COM. However, when using Developer Studio 2006 Variants with COM, you should restrict the
types you assign to the Variant to COM-compatible types.

In Delphi for Win32, the compiler enforces COM restrictions on the kinds of data that can be assigned to an
OleVariant. In Developer Studio 2006, OleVariant is simply a synonym for Variant. It does nothing to ensure that the
Variant value is a COM-compatible type.

Changes to Custom Variants
Custom Variants are completely different in Developer Studio 2006. Because Variants are just objects, you do not
need to do anything at all to create a custom Variant – any class you define is already a Variant type. However, to
work well as a custom Variant, it helps to implement some CLR interfaces: IComparable, IConvertible, and
ICloneable. The Delphi compiler can use these to implement Variant operations. Even with these interfaces,
however, other, arbitrary Variant types, can’t be converted into your Variant (class) unless you implement a
FromObject method:

871

class function FromObject(AObject: System.Object): TObject; static;

FromObject takes an arbitrary source object (the Variant to convert to your class type) and returns the corresponding
instance of your class as a TObject.

Working With Resources
Developer Studio 2006 can link Windows resources (res files) into your assemblies. This means that when first
porting an application, you do not need to change the way you declare and use resources, and it will still work. In
some cases, this is what you want to do anyway. For example, if you use custom cursors, it is simpler to use the
Windows API LoadCursor function to add the cursor to TScreen.Cursors than to bring in the overhead of using
Cursor and then obtaining a handle to the underlying cursor. However, for resources that are not Windows-specific
(such as bitmaps, icons, and strings) you will probably want to update to a .NET resources file.

Resource Strings
When you use the resourcestring keyword, Developer Studio 2006 automatically creates the string resources
as .NET resources rather than Windows resources. This happens automatically and there is nothing special you
need to do. The one thing to watch out for is that you no longer can use the PResStringRec type.

Bitmaps
You can convert bitmaps into .NET resources using the ResourceWriter class. The resulting resources file can be
linked into your Developer Studio 2006 application, or deployed as a satellite assembly. To use these converted
bitmaps, LoadFromResourceName has new overloads for working with .NET resources (and the old version of
LoadFromResourceName as well as the LoadFromResourceID method have been deprecated.) Thus, for example,
if your bitmaps are in a resources file with a name such as MyResources.en-US.resources, you can load your bitmap
as follows

MyBitmap.LoadFromResourceName('MyFirstBitmap', 'MyResources', System.
Assembly.GetCallingAssembly);

Note that this example assumes the resources are compiled into the assembly that is making the method call that
contains this line. If the resources are compiled into a different assembly, you can use System.
Assembly.GetAssembly (using a type that is defined in the relevant assembly) or System.
Assembly.GetExecutingAssembly (to obtain the currently executing assembly).

Change to TTreeView.OnCompare
The signature for the OnCompare event in the TTreeView class has changed in the VCL for .NET. Existing code will
cause a runtime exception when the event handler is called.

In Delphi 7, the signature was:

TTVCompareEvent = procedure(Sender: TObject; Node1, Node2: TTreeNode; Data: Integer; var
Compare: Integer) of object;

In Delphi for .NET, the new signature is:

872

TTCompareEvent = procedure(Sender: TObject; Node1, Node2: TTreeNode; Data: TTag; var
Compare: Integer) of object;

873

874

Building Database Applications with ADO.NET
ADO.NET presents a coherent programming model for exposing data access within the .NET Framework. In addition
to supporting MS SQL, Oracle, and OLE DB connection components within the .NET Framework, Developer Studio
2006 includes Borland Data Providers for .NET (BDP.NET). BDP.NET supports access to MS SQL, Oracle, DB2,
and Interbase. BDP.NET component designers ease the generation and configuration of BDP.NET components.

If you are developing new VCL Forms applications for the .NET Framework, or you are migrating existing Win32
VCL Forms applications to the .NET Framework, Developer Studio 2006 provides continued support for existing
Delphi database technologies, such as dbExpress and dbGo.

This section includes conceptual information about how to use Developer Studio 2006 with the ADO.NET
architecture, as well as the VCL for .NET database technologies. and how to build a simple ADO.NET project.

In This Section
ADO.NET Overview
Introduces the ADO.NET architecture for building database applications using Developer Studio 2006.

Borland Data Providers for Microsoft .NET
Describes the providers included with Developer Studio 2006.

BDP.NET Data Types
Describes the data types included with Borland Data Provider for .NET.

BDP.NET Component Designers
Introduces component designers and property editors for databases components.

Stored Procedure Overview
Describes how stored procedures can be used within Developer Studio 2006.

VCL for .NET Database Technologies
Describes Delphi database technologies that you can use in VCL.NET applications.

dbExpress Components overview
Introduces dbExpress, a set of thin database connectivity components.

dbGo Components Overview
Introduces dbGo, a library of ADO components to help you develop ADO database applications rapidly.

Getting Started with InterBase Express
Getting Started with InterBase Express

Deploying Database Applications for the .NET Framework
Provides general information about deploying database applications on the .NET Framework.

Building a Windows Forms Database Application
Describes the essential tasks to create an ADO.NET application using Windows Forms and BDP.NET.

Building an ASP.NET Database Application
Describes the essential tasks to create an ADO.NET application using Web Forms and BDP.NET.

875

876

ADO.NET Overview
ADO.NET is the .NET programming environment for building database applications based on native database
formats or XML data. ADO.NET is designed as a back-end data store for all .NET programming models, including
Web Forms, Web Services, and Windows Forms. Use ADO.NET to manage data in the .NET Framework.

Borland provides tools to simplify rapid ADO.NET development using Borland Data Providers for .NET (BDP.NET).
If you are familiar with rapid application development (RAD) and object oriented programming (OOP) using
properties, methods, and events, you will find the ADO.NET model for building applications familiar. If you are a
traditional database programmer, ADO.NET provides familiar concepts, such as tables, rows, and columns with
relational navigation. XML developers will appreciate navigating the same data with nodes, parents, siblings, and
children.

This topic discusses the major components of the ADO.NET architecture, how ADO.NET integrates with other
programming models in the .NET Framework, and key Developer Studio 2006 functionality to support ADO.NET.

This topic introduces:

ADO.NET Architecture
ADO.NET User Interfaces
BDP.NET Namespace

ADO.NET Architecture

The two major components of the ADO.NET architecture are the Data Provider and the DataSet. The data source
represents the physical database or XML file, the Data Provider makes connections and passes commands, and
the DataSet represents one or more data sources in memory. For more information about the general ADO.NET
model, see the Microsoft .NET Framework SDK documentation.

Data Source
The data source is the physical database, either local or remote, or an XML file. In traditional database programming,
the developer typically works with the data source directly, often requiring complex, proprietary interfaces. With ADO.
NET, the database developer works with a set of components to access the data source, to expose data, and to
pass commands.

877

Data Providers
Data Provider components connect to the physical databases or XML files, hiding implementation details. Providers
can connect to one or more data sources, pass commands, and expose data to the DataSet.

The .NET Framework includes providers for MS SQL, OLE DB, and Oracle. In addition to supporting the .NET
providers, this product includes BDP.NET. BDP.NET connects to a number of industry standard databases, providing
a consistent programming environment. For more information, see the Borland Data Providers for Microsoft .NET
topic.

The TADONETConnector component provides access to .NET DataSets either directly or through BDP.NET.
TADONETConnector is the base class for Developer Studio 2006 datasets that access their data using ADO.NET.
TADONETConnector descendants include TCustomADONETConnector. TADONETConnector is a descendent of
TDataSet.

DataSet
The DataSet object represents in-memory tables and relations from one or more data sources. The DataSet provides
a temporary work area or virtual scratch pad for manipulating data. ADO.NET applications manipulate tables in
memory, not within the physical database. The DataSet provides additional flexibility over direct connections to
physical databases. Much like a typical cursor object supported by many database systems, the DataSet can contain
multiple DataTables, which are representations of tables or views from any number of data sources. The DataSet
works in an asynchronous, non-connected mode, passing update commands through the Provider to the data source
at a later time.

Developer Studio 2006 provides two kinds of DataSets for your use: standard DataSets and typed DataSets. A
standard DataSet is the default DataSet that you get when you define a DataSet object implicitly. This type of DataSet
is constructed based on the layout of the columns in your data source, as they are returned at runtime based on
your Select statement.

Typed DataSets provide more control over the layout of the data you retrieve from a data source. A typed DataSet
derives from a DataSet class. The typed DataSet lets you access tables and columns by name rather than collection
methods. The typed DataSet feature provides better readability, improved code completion capabilities, and data
type enforcement unavailable with standard DataSets. The compiler checks for type mismatches of typed DataSet
elements at compile time rather than runtime. When you create a typed dataset, you will see that some new objects
are created for you and are accessible through the Project Manager. You will notice two files named after your
dataset. One file is an XML .xsd file and the other is a code file in the language you are using. All of the data about
your dataset, including the table and column data from the database connection, is stored in the .xsd file. The program
code file is created based on the XML in the .xsd file. If you want to change the structure of the typed dataset, you
can change items in the .xsd file. When you recompile, the program code file is regenerated based on the modified
XML.

For more information about DataSets, see the Microsoft .NET Framework SDK documentation.

ADO.NET User Interfaces
ADO.NET provides data access for the various programming models in .NET.

Web Forms
Web Forms in ASP.NET provide a convenient interface for accessing databases over the web. ASP.NET uses ADO.
NET to handle data access functions.

.NET and BDP.NET connection components ease integration between Web Forms and ADO.NET. DB Web Controls
support both ADO.NET and BDP.NET components, accelerating web application development.

878

Windows Forms
As an alternative to Web Forms, traditional, native-OS clients can function as a front end to ADO.NET databases.

In Developer Studio 2006 you can provide two types of Windows Forms: a TWinForm object, which is a descendant
of TForm and acts as the native .NET Windows Form, and a VCL.NET form.

BDP.NET Namespace
BDP.NET classes are found under the Borland.Data namespace.

BDP.NET Namespace
Namespace Description

Borland.Data.Common Contains objects common to all Borland Data Providers, including Error and Exceptions classes, data
type enumerations, provider options, and Interfaces for building your own Command, Connection,
and Cursor classes.

Borland.Data.Provider Contains key BDP.NET classes like BdpCommand, BdpConnection, BdpDataAdapter, and others
that provide the means to interact with external data sources, such as Oracle, DB2, Interbase, and
MS SQL Server databases.

Borland.Data.Schema Contains Interfaces for building your own database schema manipulation classes, as well as a
number of types and enumerators that define metadata.

879

880

Borland Data Providers for Microsoft .NET
In addition to supporting the providers included in the .NET Framework, Developer Studio 2006 includes Borland
Data Providers for Microsoft .NET (BDP.NET). BDP.NET is an implementation of the .NET Provider and connects
to a number of popular databases.

This topic includes:

Data Provider Architecture
BDP.NET Advantages
BDP.NET and ADO.NET Components
Supported BDP.NET Providers
BDP.NET Data Types
BDP.NET Interfaces

Data Provider Architecture
Developer Studio 2006 supports the .NET Framework providers and the BDP.NET providers.

BDP.NET provides a high performance architecture for accessing data sources without a COM Interop layer.

The architecture exposes a set of interfaces for third-party integration. You can implement these interfaces for your
own database to provide designtime, tools, and runtime data access integration into the Borland IDE. BDP.NET-
managed components communicate with these interfaces to accomplish all basic data access functionality. These
interfaces were implemented to wrap database-specific native client libraries by way of Platform Invoke (P/Invoke)
services. Depending on the availability of managed database clients, you can implement a fully-managed provider
underneath BDP.NET.

The database-specific implementation is wrapped into an assembly and the full name of the assembly is passed to
the BdpConnection component as part of the connection string. Depending on the Assembly entry in the
ConnectionString property, BDP.NET dynamically loads the database-specific provider and consumes the

881

implementation for ISQLConnection, ISQLCommand, and ISQLCursor. This allows you to switch applications from
one database to another just by changing the ConnectionString property to point to a different provider.

BDP.NET Advantages
BDP.NET provides a number of advantages:

Unified programming model applicable to multiple database platforms
High performance data-access architecture
Open architecture, which supports additional databases easily
Portable code to write once and connect to any supported databases
Consistent data type mapping across databases where applicable
Logical data types mapped to .NET native types
No need for a COM Interop layer, unlike OLE DB
Lets you view live data as you design your application
Extends ADO.NET to provide interfaces for metadata services, schema creation, and data migration
Rich set of component designers and tools to speed database application development

Developer Studio 2006 extends .NET support to additional database platforms, providing a consistent connection
architecture and data type mapping.

BDP.NET and ADO.NET Components
The DataSet is an in-memory representation of one or more DataTables. Each DataTable in a DataSet consists of
DataColumns and DataRows. The DataSet is generated as a result of an SQL query that you supply to the provider.
You can navigate the DataSet like you would any standard relational table. BDP.NET providers encapsulate
implementation details for each database type, yet allow you to customize your SQL statements and manage the
result sets with complete flexibility.

BDP.NET includes several designtime components that you can place onto a Windows Form or Web Form. A set
of designers are also provided to help you build your data connections, DataSets, relations, and other elements.

The primary components that are most useful, particularly if you decide to implement your own database-specific
provider, are:

BdpConnection—establishes a database connection
BdpCommand—includes a set of methods and properties for SQL and stored procedure execution
BdpDataReader—retrieves data
BdpParameter—supports runtime parameter binding
BdpTransaction—supports transaction control
BdpDataAdapter—provides and resolves data
BdpCopyTable—migrates table structures, primary keys, and data
ISQLMetaData—retrieves metadata
ISQLSchemaCreate—includes methods for creating, dropping, and altering database objects

For more information, click on the link for each component, or search for the components in the API reference
documentation in this Help.

882

Supported BDP.NET Providers
BDP.NET includes providers for a number of industry-standard databases. These are shown in the following table,
along with their corresponding namespaces.

Database Namespace

InterBase Borland.Data.Interbase
Oracle Borland.Data.Oracle
IBM DB2 Borland.Data.Db2
Microsoft SQL Server Borland.Data.Mssql
Microsoft Access Borland.Data.Msacc
Sybase Borland.Data.Sybase

The BDP.NET components, metadata access, and designers are defined under the following namespaces:

Borland.Data.Provider
Borland.Data.Common
Borland.Data.Schema
Borland.Data.Design

BDP.NET Data Types
BDP.NET maps SQL data types to .NET Framework data types, eliminating the need for you to learn a database-
specific type system. Every attempt has been made to implement consistent type mappings across database types,
allowing you to write one set of source that you can run against multiple databases. You can achieve a similar effect
with the .NET Framework data providers by communicating with their interfaces directly and by using untyped
ancestors. However, once you use strongly typed accessors, your application becomes less portable. BDP.NET
does not support any database-specific typed accessors. For more information, see the BDP.NET Data Types topic.

BDP.NET Interfaces
You can extend BDP.NET to support other DBMSs by implementing a subset of the .NET Provider interface. BDP.
NET generalizes much of the functionality required to implement data providers. While the .NET Framework gives
you the capabilities to create individual data providers for each data source, Borland has simplified the task by offering
a generalized set of capabilities. Instead of building separate providers, along with corresponding DataAdapters,
DataReaders, Connection objects, and other required objects, you can implement a set of BDP.NET interfaces to
build your own data source plug-ins to the Borland Data Provider.

Building plug-ins is a much easier task than building a completely new data provider. You build an assembly that
contains the namespace for your provider, as well as classes that encapsulate provider-specific functionality. Much
of the functionality you need to connect to, execute commands against, and retrieve data from your data source has
already been defined in the Borland Data Provider interfaces.

883

884

BDP.NET Data Types
BDP.NET data types map to .NET logical types. Dependant upon the database, BDP.NET data types map to native
data types. Where applicable, BDP.NET provides:

Consistent data type mapping across databases.
Logical data types mapped to .NET native types.

BDP.NET and .NET Framework
The DataSet class within ADO.NET uses .NET Framework data types. BDP.NET data types logically map .NET data
types for supported databases. During designtime, you can use BDP.NET logical types, which will map to the
appropriate native type.

Data Types
The .NET Framework includes a wide range of logical data types. BDP.NET inherits logical data types, providing
built-in mappings to supported databases. BDP.NET supports logical data type mappings for DB2, InterBase, MS
SQL, MSDE, and Oracle.

DB2
BDP.NET supports the following DB2 type mappings.

DB2 Type Bdp Type BdpSubType System.Type

CHAR String stFixed String

VARCHAR String NA String

SMALLINT Int16 NA Int16

BIGINT Int64 NA Int64

INTEGER Int32 NA Int32

DOUBLE Double NA Double

FLOAT Float NA Single

REAL Float NA Single

DATE Date NA DateTime

TIME Time NA DateTime

TIMESTAMP Datetime NA DateTime

NUMERIC Decimal NA Decimal

DECIMAL Decimal NA Decimal

BLOB Blob stBinary Byte[]

CLOB Blob stMemo Char[]

885

InterBase
BDP.NET supports the following InterBase type mappings.

InterBase Type Bdp Type BdpSubType System.Type

CHAR String stFixed String

VARCHAR String NA String

SMALLINT Int16 NA Int16

INTEGER Int32 NA Int32

FLOAT Float NA Single

DOUBLE Double NA Double

BLOB Sub_Type 0 Blob stBinary Byte[]

BLOB Sub_Type 1 Blob stMemo Char[]

TIMESTAMP Datetime NA DateTime

MS SQL and MSDE
BDP.NET supports the following MS SQL and MSDE type mappings.

MSSQL Type Bdp Type BdpSubType System.Type

BIGINT Int64 NA Int64

INT Int32 NA Int32

SMALLINT Int16 NA Int16

TINYINT Int16 NA Int16

BIT Boolean NA Boolean

DECIMAL Decimal NA Decimal

NUMERIC Decimal NA Decimal

MONEY Decimal NA Decimal

SMALLMONEY Decimal NA Decimal

FLOAT Double NA Double

REAL Float NA Single

DATETIME DateTime NA DateTime

SMALLDATETIME DateTime NA DateTime

CHAR String stFixed String

VARCHAR String NA String

TEXT Blob stMemo Char[]

BINARY VarBytes NA Byte[]

VARBINARY VarBytes NA Byte[]

IMAGE Blob stBinary Byte[]

TIMESTAMP VarBytes NA Byte[]

886

UNIQUEIDENTIFIER Guid NA Guid

Oracle
BDP.NET supports the following Oracle type mappings.

Oracle Type Bdp Type BdpSubType System.Type

CHAR String stFixed String

NCHAR String stFixed String

VARCHAR String NA String

NVARCHAR String NA String

VARCHAR2 String NA String

NVARCHAR2 String NA String

NUMBER Decimal NA Decimal

DATE Date NA DateTime

BLOB Blob stHBinary Byte[]

CLOB Blob stHMemo Char[]

LONG Blob stMemo Char[]

LONG RAW Blob stBinary Byte[]

BFILE Blob stBFile Char[]

ROWID String NA String

Sybase
BDP.NET supports the following Sybase type mappings.

Sybase Type Bdp Type BdpSubType System.Type

CHAR String stFixed String

VARCHAR String NA String

INT Int32 NA Int32

SMALLINT Int16 NA Int16

TINYINT Int16 NA Int16

DOUBLE PRECISION Float NA Single

FLOAT Float NA Single

REAL Float NA Single

NUMERIC Decimal NA Decimal

DECIMAL Decimal NA Decimal

SMALLMONEY Decimal NA Decimal

MONEY Decimal NA Decimal

887

SMALLDATETIME DateTime NA DateTime

DATETIME DateTime NA DateTime

IMAGE Blob stBinary Byte[]

TEXT Blob stMemo Char[]

BIT Boolean NA Boolean

TIMESTAMP VarBytes NA Byte[]

BINARY Bytes NA Byte[]

VARBINARY VarBytes NA Byte[]

SYSNAME String NA String

888

BDP.NET Component Designers
Almost all distributed applications revolve around reading and updating information in databases. Different
applications you develop using ADO.NET have different requirements for working with data. For instance, you might
develop a simple application that displays data on a form. Or, you might develop an application that provides a way
to share data information with another company. In any case, you need to have an understanding of certain
fundamental concepts about the data approach in ADO.NET.

Using these designers, you can work efficiently to access, expose, and edit data through database server-specific
schema objects like tables, views, and indexes. These designers allow you to use these schema objects to connect
to a variety of popular databases, and perform database operations in a consistent and reliable way.

This topic includes:

Component Designer Relationships
Connection Editor
Command Text Editor
Stored Procedure Dialog Box
Generate DataSets
Configure Data Adapter
Data Explorer

Component Designer Relationships

The major elements of the database component designers include:

The Connection Editor to define a live connection to a data source
The Command Text Editorto construct command text for command components
The Configure Data Adapter to set up commands for a data adapter
The Stored Procedure Dialog box to view and specify values for Input or InputOutput parameters for use with
command components
The Generate Dataset to build custom datasets

889

The Data Explorer to browse database server-specific schema objects and use drag-and-drop techniques to
automatically populate data from a data source to your Delphi for .NET project

Connections Editor
The Connections Editor manages connection strings and database-specific connection options. Using the
Connections Editor you can add, remove, delete, rename, and test database connections. Changes to the
connection information are saved into the BdpConnections.xml file, where they are accessed whenever you need
to create a new connection object. Once you have chosen a particular connection, the Connections Editor
generates the connection string and any connection options, then assigns them to the ConnectionString and
ConnectionOptions properties, respectively.

Display the Connections Editor dialog box by dragging the BdpConnection component from the Tool Palette onto
the form, and then clicking the component designer verb at the bottom of the Object Inspector.

Command Text Editor
The Command Text Editor can be used to construct the command text for command components that have a
CommandText property. A multi-line editing control in the editor lets you manually edit the command or build the
command text by selecting tables and columns. Display the Command Text Editor dialog box by dragging a
BdpCommand component from the Tool Palette onto the form, and clicking the designer verb at the bottom of
the Object Inspector.

The Command Text Editor is a simplified version of a SQL builder capable of generating SQL for a single table.
The database objects are filtered by the SchemaName property set in the BdpCommand and only tables that are
part of that schema are used. If there is no SchemaName listed, all of the available objects for the current login user
are listed. The QuoteObjects setting for the ConnectionOptions property determines whether the objects are quoted
with the database-specific quote character or not. This is important, for instance, when retrieving tables from
databases that allow table names to include spaces.

To populate the Tables and Columns list boxes with items and build SQL statements, you must have defined a live
BdpConnection. Otherwise, data cannot be retrieved. The Command Text Editor allows you to choose table and
column names from a list of available tables and columns. Using this information, the editor generates a SQL
statement. To generate the SQL, the editor uses an instance of the BdpCommandBuilder. When you request
optimized SQL, the editor uses index information to generate the WHERE clause for SELECT, UPDATE, and
DELETE statements; otherwise, non-BLOB columns and searchable columns form the WHERE clause.

When the SQL is generated, the BdpCommand. CommandText property is set to the generated SQL statement.

Stored Procedure Dialog Box
The Stored Procedure dialog box is used to view and enter Input and InputOutput parameters for a stored procedure
and to execute the stored procedure. Display the Stored Procedure dialog box by dragging a BdpCommand
component from the Tool Palette onto the form, setting the CommandType property for the BdpCommand
component to StoredProcedure, and clicking the Command Text Editor designer verb at the bottom of the Object
Inspector.

The Stored Procedure dialog box lets you select a stored procedure from a list of available stored procedures,
which is determined by the BdpConnection specified in the Connection property for the BdpCommand component.
When you select a stored procedure, the dialog box displays the parameters associated with the stored procedure,
and the parameter metadata for the selected parameter. You can specify values for Input or InputOutput parameters
and execute the stored procedure. If the stored procedure returns results, such as Output parameters, InputOutput
parameters, return values, cursor(s) returned, they are all populated into a DataGrid in the bottom of the dialog box
when the stored procedure is executed. After the CommandText, Parameters, and ParameterCount properties are

890

all set for the BdpCommand, the stored procedure can be executed at runtime by making a single call to
ExecuteReader or ExecuteNonQuery.

Generate DataSets
The Generate Dataset designer is used to build a DataSet. Using this tool results in strong typing, cleaner code,
and the ability to use code completion. A DataSet is first derived from the base DataSet class and then uses
information in an XML Schema file (an .xsd file) to generate a new class. Information from the schema (tables,
columns, and so on) is generated and compiled into this new dataset class as a set of first-class objects and
properties. Display this dialog box by dragging a BdpDataAdapter component from the Tool Palette onto the form,
and clicking the component designer verb at the bottom of the Object Inspector. If this component is not displayed,
choose Component Installed .NET Components to add it to the Tool Palette.

Configure Data Adapter
The Configure Data Adapter designer is used to generate SELECT, INSERT, UPDATE, and DELETE SQL
statements. After successful SQL generation, the Configure Data Adapter designer creates new BdpCommand
objects and adds them to the BdpDataAdapterSelectCommand, DeleteCommand, InsertCommand, and
UpdateCommand properties.

After successful SQL SELECT generation, you can preview data and generate a new DataSet. You can also use
an existing DataSet to populate a new DataTable. If you create a new DataSet, it will be added automatically to the
designer host. You can also generate Typed DataSets.

Data Adapters are an integral part of the ADO.NET managed providers. Essentially, Adapters are used to exchange
data between a data source and a dataset. This means reading data from a database into a DataSet, and then writing
changed data from the DataSet back to the database. A Data Adapter can move data between any source and a
DataSet. Display the Configure Data Adapter dialog box by dragging a BdpDataAdapter component from the Tool
Palette onto the form, and clicking the component designer verb at the bottom of the Object Inspector.

Data Explorer
The Data Explorer is a hierarchical database browser and editing tool. The Data Explorer is integrated into the IDE
and can also be run as a standalone executable. To access the Data Explorer within the IDE, choose View Data
Explorer. Use the context menus in the Data Explorer to perform the following tasks:

Manage database connections—add a new connection, modify, delete, or rename your existing connections
Browse database structure and data—expand and open provider nodes to browse database server-specific
schema objects including tables, views, stored procedure definitions, and indexes
Add and modify tables—specify the data structure for a new table, or add or remove columns, and alter column
information for an existing table
View and test stored procedure parameters—specify values for Input or InputOutput parameters and execute
the selected stored procedure
Migrate data—migrate table schema and data of one or more tables from one provider to another
Drag-and-drop schema objects onto forms to simplify application development—drag tables or stored
procedures onto your application form for the .NET Framework to add connection components and automatically
generate connection strings

The Data Explorer provides connectivity to several industry-standard databases, and can be extended to connect
to other popular databases. The Data Explorer uses the ISQLDataSource interface to get a list of available providers,
database connections, and schema objects that are supported by different providers. The list of available providers
is persisted in the BdpDataSources.xml file, and the available connections are persisted in the
BdpConnections.xml file. Once you have chosen a provider the ISQLMetadata interface is used to retrieve

891

metadata and display a read-only tree view of database objects. The current implementation provides a list of tables,
views, and stored procedures for all BDP.NET-supported databases.

The Data Explorer lets you create new tables, alter or drop existing tables, migrate data from multiple tables from
one provider to another, and copy and paste individual tables across BDP-supported databases. For all these
operations, the Data Explorer calls into the ISQLSchemaCreate implementation of the provider.

Additionally, the Data Explorer can be used to drag data from a data source to any Developer Studio 2006 project
for the .NET framework. Dragging a table onto a form adds BdpConnection and BdpDataAdapter components to
your application and automatically configures the BdpDataAdapter for the given table. Dragging a stored procedure
onto a form adds BdpConnection and BdpCommand components to your application, and sets the CommandType
property of the BdpCommand object to StoredProcedure.

892

Stored Procedure Overview
All relational databases have certain features in common that allow applications to store and manipulate data. A
stored procedure is a self-contained program written in a language specific to the database system. A stored
procedure typically handles frequently repeated database-related tasks, and is especially useful for operations that
act on large numbers of records or that use aggregate or mathematical functions. Stored procedures are typically
stored on the database server.

Calling a stored procedure is similar to invoking a SQL command, and Developer Studio 2006 provides support for
using stored procedures in much the same ways as it supports editing and using SQL command text.

Stored procedures can enhance your database applications in the following ways: improve the performance,
security, and reliability of your applications.

Performance—stored procedures can improve the performance of a database application by taking advantage
of the server’s usually greater processing power and speed, and reducing network traffic by moving processing
to the server. Also, the compiled SQL used in a stored procedure executes faster typically than standard SQL
command text.
Security—by creating a layer between clients and the database, stored procedures can enhance security for
your data. You don't need to grant database permissions to individual users. Instead, you can grant users
permission to execute a stored procedure independently of underlying table permissions.
Reliability—stored procedures help to centralize code, which makes it easier to isolate and troubleshoot
problems. Also, stored procedures allow you to move business logic which is inherent to the database into the
database, thus making it available from all clients regardless of the language they are written in.

When you use BDP.NET, the Command Text Editor and the Data Explorer both provide the ability to view your
stored procedure parameters, specify input parameters, and execute your stored procedures as you design your
application.

893

894

VCL for .NET Database Technologies
In most cases, BDP.NET provides the best database connectivity solution for your .NET applications. However, if
you are developing new VCL Forms applications for the .NET Framework, or you are migrating existing Win32 VCL
Forms applications to the .NET Framework, Developer Studio 2006 provides continued support for existing Delphi
database technologies.

Developer Studio 2006 provides a migration path from Delphi database technologies running strictly on Win32 clients
to the .NET Framework. In addition to being able to build new database applications using ADO.NET and BDP.NET,
you can migrate existing database applications to take advantage of .NET capabilities. The Delphi database
technologies now supported by Developer Studio 2006 include:

dbExpress.NET
DataSnap .NET Client (DCOM)
IBX.NET (InterBase for .NET)
BDE.NET
dbGo

Building .NET Applications with dbExpress.NET
Developer Studio 2006 includes a .NET version of dbExpress. This set of components provide comparable
functionality as the dbExpress components for Win32, but updated to run on VCL Forms on the .NET Framework.
dbExpress for .NET provides the same lightweight client capability and unidirectional dataset that is available in
previous versions of the product.

Building .NET Applications with the DataSnap .NET Client (DCOM)
Developer Studio 2006 provides the means to use the DataSnap (DCOM) client to connect to databases in three-
tier applications.

Building .NET Applications with IBX.NET
Developer Studio 2006 provides you with access to InterBase databases, by way of InterBase Express controls, in
addition to the standard BDP.NET data adapter or the .NET Framework's ADO.NET providers. IBX.NET controls
allow you to connect to InterBase databases, access tables, etcetera.

Building .NET Applications with BDE.NET
The Borland Database Engine (BDE) is a data-access mechanism that can be shared by several applications. The
BDE defines a powerful library of API calls that can create, restructure, fetch data from, update, and otherwise
manipulate local and remote database servers. The BDE provides a uniform interface to access a wide variety of
database servers, using drivers to connect to different databases.

You can connect your Developer Studio 2006 database applications to BDE-supported databases, such as Paradox
and dBase.

895

Building .NET Applications with dbGo
Developer Studio 2006 includes a .NET version of dbGo. This set of components provides comparable functionality
as the dbGo components for Win32, but updated to run on VCL Forms on the .NET Framework. dbGo for .NET
provides the same powerful and logical object model that is available in previous versions of the product.

896

dbExpress Components overview
dbExpress is a set of lightweight database drivers that provide fast access to SQL database servers. For each
supported database, dbExpress provides a driver that adapts the server-specific software to a set of uniform
dbExpress interfaces. When you deploy a database application that uses dbExpress, you include a DLL (the server-
specific driver) with the application files you build.

dbExpress lets you access databases using unidirectional datasets. Unidirectional datasets are designed for quick
lightweight access to database information, with minimal overhead. Like other datasets, they can send an SQL
command to the database server, and if the command returns a set of records, obtain a cursor for accessing those
records. However, unidirectional datasets can only retrieve a unidirectional cursor. They do not buffer data in
memory, which makes them faster and less resource-intensive than other types of dataset. However, because there
are no buffered records, unidirectional datasets are also less flexible than other datasets.

dbExpress connections, tables, views, and stored procedures that show up in a data tree view support drag & drop
with native and managed vcl forms.

Connection Strings
The ConnectionString property in dbExpress allows you to pass all database options and connection information
(database, username, password) by means of a single connection string. This feature also allows you to introduce
new properties to your drivers in the middle of a release by changing an interface.

You can load the ConnectionProperties in the dbxconnections.ini for the current connectionName by rightClicking
on the connection and selecting the appropriate menu item. This will create a Parameters item (Parameters
['ConnectionString']) that contains all of the connection properties in the inifile. This way you can add new properties
to the dbxconnections.ini file, and you don't have type the whole string in yourself.

There is also a 'Clear Connection String' menu item off the SqlConnection rightclick menu, which appears whenever
the ConnectionString property is set.

dbExpress Connections
An overloaded connect() method, with no arguments is part ofthe SqlConnection class, and this method has been
implemented for all of the drivers.

To use this property, you must call SqlConnection setOption, passing in the connection string to be used, prior to
calling connect() without any arguments.

Each driver will extract the valid properties for the driver from the connection string. The database name, username,
and password must be included in the connection string, if they are required to connect. Once the connection string
has been set, you can call the new connect() method without arguments.

If an invalid parameter type (e.g. setting Rolename for Sybase) is included in the connection string, no error is
returned when setting the connection string. Otherwise, dbExpress will raise an error if properties needed to connect
are invalid or missing.

Connection Strings for VCL Components
To use the ConnectionString property with VCL, you only need to add a setting to SqlConnection.Parameters. A
following setting is a sample for Interbase:

ConnectionString=Database=c:\Program Files\Borland\InterBase\gds\examples\database
\employee.gdb,
User_Name=sysdba,Password=masterkey,SqlDialect=3,BlobSize=-1,CommitRetain=True,
ServerCharSet=ASCII

897

Note: None of the options set in the connection string need to be contained in the SqlConnection.Parameters. If
they are included they will be ignored.

dbExpress Components
The dbExpress section of the Tool Palette contains the following components that use dbExpress to access
database information:

Component Function

TSQLConnection Encapsulates a dbExpress connection to a database server

TSQLDataSet Represents any data available through dbExpress, or sends commands to a database accessed through
dbExpress

TSQLQuery A query-type dataset that encapsulates an SQL statement and enables applications to access the resulting
records, if any

TSQLTable A table-type dataset that represents all of the rows and columns of a single database table

TSQLStoredProc A stored procedure-type dataset that executes a stored procedure defined on a database server

TSQLMonitor Intercepts messages that pass between an SQL connection component and a database server and saves
them in a string list

TSimpleDataSet A client dataset that uses an internal TSQLDataSet and TDataSetProvider for fetching data and applying
updates

898

dbGo Components Overview
dbGo provides the developers with a powerful and logical object model for programmatically accessing, editing, and
updating data from a wide variety of data sources through Microsoft ADO system interfaces. The most common
usage of dbGo is to query a table or tables in a relational database, retrieve and display the results in an application,
and perhaps allow users to make and save changes to the data.

The ADO layer of an ADO-based application consists of the latest version of Microsoft ADO, an OLE DB provider
or ODBC driver for the data store access, client software for the specific database system used (in the case of SQL
databases), a database back-end system accessible to the application (for SQL database systems), and a database.
All of these must be accessible to the ADO-based application for it to be fully functional. Microsoft Data Access
Components (MDAC) 2.1 or later contains these needed elements. Developer Studio 2006 supports MDAC 2.8.

The dbGo section of the Tool Palette contains the following components that use dbGo to access database
information:

Component Function

TADOConnection Encapsulates a dbGo connection to a database server

TADODataSet Represents any data available through dbGo, or sends commands to a database accessed through dbGo

TADOQuery A query-type dataset that encapsulates an SQL statement and enables applications to access the resulting
records, if any, from an ADO data store

TADOTable A table-type dataset that represents all of the rows and columns of a single database table

TADOStoredProc A stored procedure-type dataset that executes a stored procedure defined on a database server

TADOCommand Represents the ADO Command object, which is used for issuing commands against a data store accessed
through an ADO provider

TADODataSet Represents a dataset retrieved from an ADO data store

TRDSConnection Exposes the functionality of the RDS DataSpace object

899

900

BDP Connection Pooling Overview
You can use the connection pooling options to save connection time by using a connection from an existing pool.
When you are using BDP, all connections go through the BDP Pool Manager, even if pooling is not enabled for your
connection. For each connection, you can specify: Pooling (enabled or disabled), Minimum Pool Size, Maximum
Pool Size, whether connection requests should Grow On Demand, and the number of seconds before a Connection
Timeout (or number of seconds for Connection Lifetime).

As shown in the diagram above, the BDP Pool Manager creates a separate pool for each unique connection string.
The following connection options are available:.

Options Function

MinPoolSize Specifieds the minimum number of connections that will be maintained in the connection
pool.

MaxPoolSize Determines the maximum number of connections in the connection pool. The default
maximum size is 100. If GrowOnDemand is False and MaxPoolSize is reached, subsequent
connection requests will throw an exception.

GrowOnDemand Specifies whether the new connection request should grow on demand after a pool reaches
the MaxPool Size.

Connections that grow on demand will not be returned to the connection pool. Instead, they
will be released on BdpConnection.Close().

ConnectionLifetime (Timeout) Determines the life time of a pooled connection. When a connection returns to the pool, its
lifetime is checked to see if it has expired. If it has, then the connection is released instead
of returned to the pool. The ConnectionLifetime value is in seconds, and the default is 0.

901

902

Getting Started with InterBase Express
InterBase Express (IBX) is a set of data access components that provide a means of accessing data from InterBase
databases. The InterBase Administration Components, which require InterBase 6, are described after the InterBase
data access components.

IBX components
The following components are located on the InterBase tab of the component palette.

Icon Component Name Description

TIBTable A dataset component that encapsulates a database table.

TIBQuery Executes an InterBase SQL statement.

TIBStoredProc Encapsulates a stored procedure on a database server.

TIBDatabase Encapsulates an InterBase database connection.

TIBTransaction Provides discrete transaction control over a one or more database connections in a database
application.

TIBUpdateSQL Provides an object for updating read-only datasets when cached updates are enabled.

TIBDataSet Executes InterBase SQL statements.

TIBSQL Provides an object for executing an InterBase SQL statement with minimal overhead.

TIBDatabaseInfo Returns information about the attached database.

TIBSQLMonitor Monitors dynamic SQL passed to the InterBase server.

TIBExtract Fetches metadata from an InterBase server.

TIBCustomDataSet The base class for all datasets that represent data fetched using InterBase Express.

Though they are similar to BDE components in name, the IBX components are somewhat different. For each
component with a BDE counterpart, the sections below give a discussion of these differences.

There is no simple migration from BDE to IBX applications. Generally, you must replace BDE components with the
comparable IBX components, and then recompile your applications. However, the speed you gain, along with the
access you get to the powerful InterBase features make migration well worth your time.

IBDatabase

Use a TIBDatabase component to establish connections to databases, which can involve one or more concurrent
transactions. Unlike BDE, IBX has a separate transaction component, which allows you to separate transactions
and database connections.

To set up a database connection:

903

1 Drop an IBDatabase component onto a form or data module.
2 Fill out the DatabaseName property. For a local connection, this is the drive, path, and filename of the database

file. Set the Connected property to true.
3 Enter a valid username and password and click OK to establish the database connection.

Warning: Tip: You can store the username and password in the IBDatabase component's Params property by
setting the LoginPrompt property to false after logging in. For example, after logging in as the system
administrator and setting the LoginPrompt property to false, you may see the following when editing the
Params property:

user_name=sysdba
password=masterkey

IBTransaction

Unlike the Borland Database Engine, IBX controls transactions with a separate component, TIBTransaction. This
powerful feature allows you to separate transactions and database connections, so you can take advantage of the
InterBase two-phase commit functionality (transactions that span multiple connections) and multiple concurrent
transactions using the same connection.

Use an IBTransaction component to handle transaction contexts, which might involve one or more database
connections. In most cases, a simple one database/one transaction model will do.

To set up a transaction:

1 Set up an IBDatabase connection as described above.
2 Drop an IBTransaction component onto the form or data module
3 Set the DefaultDatabase property to the name of your IBDatabase component.
4 Set the Active property to true to start the transaction.

IBX dataset components

There are a variety of dataset components from which to choose with IBX, each having their own characteristics and
task suitability:

IBTable

Use an TIBTable component to set up a live dataset on a table or view without having to enter any SQL statements.

IBTable components are easy to configure:

1 Add an IBTable component to your form or data module.
2 Specify the associated database and transaction components.
3 Specify the name of the relation from the TableName drop-down list.
4 Set the Active property to true.

IBQuery

Use an TIBQuery component to execute any InterBase DSQL statement, restrict your result set to only particular
columns and rows, use aggregate functions, and join multiple tables.

IBQuery components provide a read-only dataset, and adapt well to the InterBase client/server environment. To set
up an IBQuery component:

1 Set up an IBDatabase connection as described above.
2 Set up an IBTransaction connection as described above.

904

3 Add an IBQuery component to your form or data module.
4 Specify the associated database and transaction components.
5 Enter a valid SQL statement for the IBQuery's SQL property in the String list editor.
6 Set the Active property to true

IBDataSet

Use an TIBDataSet component to execute any InterBase DSQL statement, restrict your result set to only particular
columns and rows, use aggregate functions, and join multiple tables. IBDataSet components are similar to IBQuery
components, except that they support live datasets without the need of an IBUpdateSQL component.

The following is an example that provides a live dataset for the COUNTRY table in employee.gdb:

1 Set up an IBDatabase connection as described above.
2 Specify the associated database and transaction components.
3 Add an IBDataSet component to your form or data module.
4 Enter SQL statements for the following properties: SelectSQL, RefreshSQL, ModifySQL, DeleteSQL, InsertSQL.

See the following table for example SQL statements.
5 Set the Active property to true.

Sample SQL statements
Property SQL Statement

SelectSQL SELECT Country, Currency FROM Country
RefreshSQL SELECT Country, Currency FROM Country WHERE Country = :Country
ModifySQL UPDATE Country SET Country = :Country, Currency = :Currency WHERE Country

= :Old_Country
DeleteSQL DELETE FROM Country WHERE Country = :Old_Country
InsertSQL INSERT INTO Country (Country, Currency) VALUES (:Country, :Currency)

Note: Note: Parameters and fields passed to functions are case-sensitive in dialect 3. For example,

FieldByName(EmpNo)

would return nothing in dialect 3 if the field was 'EMPNO'.

IBStoredProc

Use TIBStoredProc for InterBase executable procedures: procedures that return, at most, one row of information.
For stored procedures that return more than one row of data, or "Select" procedures, use either IBQuery or IBDataSet
components.

IBSQL

Use an TIBSQL component for data operations that need to be fast and lightweight. Operations such as data
definition and pumping data from one database to another are suitable for IBSQL components.

In the following example, an IBSQL component is used to return the next value from a generator:

1 Set up an IBDatabase connection as described above.
2 Put an IBSQL component on the form or data module and set its Database property to the name of the database.
3 Add an SQL statement to the SQL property string list editor, for example:

905

SELECT GEN_ID(MyGenerator, 1) FROM RDB$DATABASE

IBUpdateSQL

Use an TIBUpdateSQL component to update read-only datasets. You can update IBQuery output with an
IBUpdateSQL component:

1 Set up an IBQuery component as described above.
2 Add an IBUpdateSQL component to your form or data module.
3 Enter SQL statements for the following properties: DeleteSQL, InsertSQL, ModifySQL, and RefreshSQL.
4 Set the IBQuery component's UpdateObject property to the name of the IBUpdateSQL component.
5 Set the IBQuery component's Active property to true.

IBSQLMonitor

Use an TIBSQLMonitor component to develop diagnostic tools to monitor the communications between your
application and the InterBase server. When the TraceFlags properties of an IBDatabase component are turned on,
active IBSQLMonitor components can keep track of the connection's activity and send the output to a file or control.

A good example would be to create a separate application that has an IBSQLMonitor component and a Memo control.
Run this secondary application, and on the primary application, activate the TraceFlags of the IBDatabase
component. Interact with the primary application, and watch the second's memo control fill with data.

IBDatabaseInfo

Use an TIBDatabaseInfo component to retrieve information about a particular database, such as the sweep interval,
ODS version, and the user names of those currently attached to this database.

For example, to set up an IBDatabaseInfo component that displays the users currently connected to the database:

1 Set up an IBDatabase connection as described above.
2 Put an IBDatabaseInfo component on the form or data module and set its Database property to the name of the

database.
3 Put a Memo component on the form.
4 Put a Timer component on the form and set its interval.
5 Double click on the Timer's OnTimer event field and enter code similar to the following:

[Delphi]
Memo1.Text := IBDatabaseInfo.UserNames.Text; // Delphi example

[C++]
Memo1->Text = IBDatabaseInfo->UserNames->Text; // C++ example

IBEvents

Use an IBEvents component to register interest in, and asynchronously handle, events posted by an InterBase
server.

To set up an IBEvents component:

1 Set up an IBDatabase connection as described above.
2 Put an IBEvents component on the form or data module and set its Database property to the name of the

database.

906

3 Enter events in the Events property string list editor, for example: IBEvents.Events.Add
('EVENT_NAME'); (for Delphi) or IBEvents->Events->Add("EVENT_NAME"); (for C++).

4 4. Set the Registered property to true.

InterBase Administration Components

If you have InterBase 6 installed, you can use the InterBase 6 Administration components, which allow you to use
access the powerful InterBase Services API calls.

The components are located on the InterBase Admin tab of the IDE and include:

TIBConfigService

TIBBackupService

TIBRestoreService

TIBValidationService

TIBStatisticalService

TIBLogService

TIBSecurityService

TIBLicensingService

TIBServerProperties

TIBInstall

TIBUnInstall

Note: You must install InterBase 6 to use these features.

IBConfigService

Use an TIBConfigService object to configure database parameters, including page buffers, async mode, reserve
space, and sweep interval.

IBBackupService

Use an TIBBackupService object to back up your database. With IBBackupService, you can set such parameters
as the blocking factor, backup file name, and database backup options.

IBRestoreService

Use an TIBRestoreService object to restore your database. With IBRestoreService, you can set such options as
page buffers, page size, and database restore options.

IBValidationService

907

Use an TIBValidationService object to validate your database and reconcile your database transactions. With the
IBValidationService, you can set the default transaction action, return limbo transaction information, and set other
database validation options.

IBStatisticalService

Use an TIBStatisticalService object to view database statistics, such as data pages, database log, header pages,
index pages, and system relations.

IBLogService

Use an TIBLogService object to create a log file.

IBSecurityService

Use an TIBSecurityService object to manage user access to the InterBase server. With the IBSecurityService, you
can create, delete, and modify user accounts, display all users, and set up work groups using SQL roles.

IBLicensingService

Use an TIBLicensingService component to add or remove InterBase software activation certificates.

IBServerProperties

Use an TIBServerProperties component to return database server information, including configuration parameters,
and version and license information.

IBInstall

Use an TIBInstall component to set up an InterBase installation component, including the installation source and
destination directories, and the components to be installed.

IBUnInstall

Use an TIBUnInstall component to set up an uninstall component.

908

Deploying Database Applications for the .NET Framework
When deploying database applications using Developer Studio 2006, copy the necessary runtime assemblies and
driver DLLs for deployment to a specified location. The following sections list the name of the assemblies and DLLs
and the location of where each should reside.

BDP.NET Application Deployment
Copy specific database runtime assemblies to the following location:

Managed Assemblies Data Provider Location

Borland.Data.Common.dll All GAC

Borland.Data.Provider.dll All GAC

Borland.Data.DB2.dll DB2 GAC

Borland.Data.Interbase.dll Interbase GAC

Borland.Data.Mssql.dll MS SQL/MSDE GAC

Borland.Data.Oracle.dll Oracle GAC

Borland.Data.Msacc.dll MS Access GAC

Borland.Data.Sybase.dll Sybase GAC

Note: If you are deploying a distributed database application that uses the BDP.NET Remoting components, such
as DataHub, DataSync, RemoteConnection, and RemoteServer, you must install Borland.Data.DataSync.dll
to the GAC.

Copy unmanaged database driver DLLs to the following location:

DLLs Data Provider Location

bdpint20.dll Interbase search path

bdpdb220.dll DB2 search path

bdpmss20.dll MS SQL/MSDE search path

bdpora20.dll Oracle search path

bdpmsa20.dll MS Access search path

bdpsyb20.dll Sybase search path

dbExpress for .NET Application Deployment
Copy specific database runtime assemblies to the following location:

Managed Assemblies Data Provider Location

Borland.VclDbExpress.dll All GAC

Borland.VclDbCtrls.dll All GAC

Borland.VclDbxCds.dll Required by database applications that use client datasets GAC

You can deploy associated dbExpress.NET drivers and DataSnap DLLs with your executable. Copy unmanaged
database driver DLLs to the following location:

909

DLLs Data Provider Location

dbexpinf.dll Informix search path

dbexpint.dll InterBase search path

dbexpora.dll Oracle search path

dbexpdb2.dll DB2 search path

dbexpmss.dll MS SQL search path

dbexpmysql.dll MySQL 3.23.x search path

Midas.dll Required by database applications that use client datasets search path

dbGo for .NET Application Deployment
There is no need to deploy runtime assemblies or database drivers for dbGo components used in VCL.NET
applications. Microsoft Data Access Components (MDAC) version 2.1 or later is required to run applications with
dbGo components outside of the IDE. This applies to Win32 VCL applications, as well as VCL.NET applications.
Developer Studio 2006 supports MDAC 2.8.

BDE for .NET Application Deployment
When deploying BDE-based applications, you must include the BDE with your application. While this increases the
size of the application and the complexity of deployment, the BDE can be shared with other BDE-based applications
and provides a broader range of support for database manipulation. Although you can use the API of the BDE directly
in your application, the components on the BDE section of the Tool Palette wrap most of this functionality for you.

910

Building Applications with Unmanaged Code
Borland's Developer Studio 2006 provides the capability to work with the .NET features that support unmanaged
code. If you have COM or ActiveX components that you want to use within the .NET Framework, you can use the .
NET COM Interop capabilities from within Developer Studio 2006 while building your applications. If you have existing
CORBA applications or want to build new CORBA applications, you can use the Borland Janeva product from within
Developer Studio 2006.

In This Section
Using COM Interop in Managed Applications
Conceptual overview of COM Interop technologies and tools.

Using Platform Invoke with Developer Studio 2006
Describes working with the Platform Invoke services from Developer Studio 2006

Using DrInterop
Describes the drinterop command line tool.

911

912

Using COM Interop in Managed Applications
COM Interop is a .NET service that allows seamless interoperation between managed and unmanaged code. The
COM Interop service is a two-way bridge: It allows you to leverage existing COM servers and ActiveX Controls in
new .NET applications, as well as to expose .NET components in legacy, unmanaged applications.

The Developer Studio 2006 IDE features tools that will help you integrate your legacy COM servers and ActiveX
Controls into managed applications. Within the IDE, you can add references to unmanaged DLLs to your project,
and then browse the types contained in them, just as you can with managed assemblies. You can add ActiveX
Controls to the Tool Palette, and then drop them on your forms as you would with any .NET component.

The following topics are covered in this overview:

Introduction to the terminology of COM Interop. If you are already familiar with these concepts, you can skip
directly to the section on Developer Studio 2006 IDE features and tools for COM/Interop.
Introduction to some of the .NET Framework SDK tools for working with COM/Interop.
Using COM Interop Assemblies in the IDE.

COM Interop Overview

Seamless interoperability is achieved through stand-in objects called Runtime Callable Wrappers (RCW). The RCW
is a layer of communication between your managed application, and the actual unmanaged COM server.

COM Interop Terminology
The .NET Framework has a rich collection of terms and three-letter acronyms. This section will help you understand
the terminology you will encounter when reading other COM Interop literature.

Metadata
In the context of .NET and COM, metadata is a term used to mean type information. In COM, type information can
be stored in a variety of ways. For instance, a C++ header file is a language-specific container for type information.
A type library is also a container for type information, but being a binary format, type libraries are language neutral.
Unlike the COM development model where type libraries are not required, language neutral metadata is mandatory
for all .NET assemblies. Every assembly is self-describing; its metadata contains complete type information,
including private types and private class members.

Custom Attributes
Developers often tag program entities (such as classes and their methods) with descriptive attributes such as static,
private, protected, and public. In the .NET Framework, you can tag any entity, including classes, properties, methods,
and even assemblies themselves, with an attribute of your own design and meaning. Custom attributes are

913

expressed in source code, and are processed by the compiler. At the end of the build process, custom attributes are
emitted into the output assembly just like all metadata.

Reflection
A unique characteristic of the .NET Framework is that type information is not lost during the compilation process.
Instead, all metadata, including custom attributes, is emitted by the compiler into the final output assembly. Metadata
is available at runtime, through .NET Reflection services. The .NET Framework SDK provides a reflection tool called
ildasm that allows the developer to open any .NET assembly, and inspect the types declared therein. Such reflection
tools often allow programmers to directly view the IL code generated by the compiler. The Developer Studio 2006
IDE contains its own integrated reflection tool, in the form of the meta data explorer tool that appears when you open
a .NET assembly.

Global Assembly Cache
In COM, components can be deployed anywhere on the user's machine. Usually, a component's installation script
records its location in the system registry. Command-line tools such as regsvr32 and tregsvr can also add and remove
COM components from the registry. Registration of components is required in COM programming, even if the
components are not intended to be shared by multiple applications.

The .NET programming model drastically simplifies deployment of applications and components. On the .NET
platform, non-shared components are deployed directly into the application's local installation directory; no
registration is required. Alternatively, a non-shared component can be deployed in a directory specified in the
application's configuration file. Again, registration is not required for this deployment scenario.

Shared components are installed into a special location called the Global Assembly Cache (GAC). The GAC is an
evolution of the system registry (though it is a completely separate mechanism and is not associated with the registry
at all). The GAC exists in the file system in a folder called \Windows\Assembly. The .NET Framework supports
simultaneous, or "side-by-side" deployment of different versions of the same component. When you view the Global
Assembly Cache folder using Windows Explorer, you are actually looking at the GAC through a special shell
extension. The shell extension presents all of the assemblies that have been installed into the GAC, with their version,
culture, and public key information.

There are three ways to install a .NET component into the GAC. The first way is to use the Framework SDK
command-line tool called gacutil, which is discussed below. Another way is to install a component into the GAC is
to navigate to the \Windows\Assembly folder using Windows Explorer, and then simply drag and drop the assembly
into the directory listing pane. Finally, you can also use the .NET Configuration management tool, which is accessible
through the Windows Control Panel.

Strong Names
The concept of a strong name is similar to that of the 128-bit Globally Unique Identifier (GUID) in COM programming.
A GUID is a name that is guaranteed to be globally unique. Every .NET assembly has a basic name, which consists
of a text string, a version number, and optional culture information. For shared assemblies installed into the GAC,
the basic name alone is not enough to guarantee the assembly is uniquely identified. To generate a globally unique
name, an encryption key with public and private components is used to generate a digital signature. The signature
is then applied to the assembly using the .NET Framework SDK Assembly Linker (al.exe), or by using assembly
attributes in source code.

Runtime Callable Wrappers and COM Callable Wrappers
Accessing a component, be it a .NET component or a COM server, is largely transparent. That is, when you are
using a COM server in a .NET application, the COM server looks like any other .NET component. Similarly a .NET
component, when exposed to an unmanaged application through COM Interop, looks like a COM server. This
transparency is accomplished by behind-the-scenes proxies, or wrapper objects.

914

When you use a COM object in a managed application, the Common Language Runtime (CLR) creates an RCW,
which is the interface between managed and unmanaged code. The complexities of data marshaling and reference
counting are handled by the RCW. In fact the RCW does not even expose the IUnknown and IDispatch interfaces.

When you use a .NET component in an unmanaged application, the system creates a stand-in called a COM Callable
Wrapper (CCW).

Primary Interop Assembly
In the COM programming model, once a GUID is assigned to a type, the GUID always refers to that specific type
no matter where the type appears. For example, a common interface might be defined in many different type libraries,
but each separate type library would have to define the interface with the same GUID, so the duplication is not a
problem. However, if you generate COM Interop assemblies for these separate type libraries, a new and distinct
assembly would be created for each type library. Each of these separate assemblies would contain distinct types
(as far as the CLR is concerned). The strong identity and self-describing nature of .NET assemblies is actually
working against you in this case. Here, it is leading to a GAC that is cluttered with interop assemblies that all contain
RCWs for the same type library. Worse yet, to the CLR each assembly contains distinct and incompatible types,
because each one has a different strong name.

To avoid this proliferation of assemblies and potential type incompatibilities, the framework gives you the ability to
designate one assembly as the primary interop assembly for a type library. A primary interop assembly is always
signed with a strong name, by the original publisher of the type library.

COM Interop Tools in the .NET Framework SDK
Some of the functionality provided by the .NET Framework SDK tools is exposed in the development environment.
This section is not intended to be a complete reference for these tools; it is merely a starting point for more exploration
of the .NET Framework SDK, and hopefully will give you a bit more understanding of how to work with COM Interop
technology in the IDE.

Importing and Exporting Type Libraries
Tlbimp is a command-line tool that you can use to generate a .NET assembly from a type library. Tlbimp will operate
on a type library directly, or on an unmanaged DLL that contains a type library as an embedded resource. Note the
assembly produced by tlbimp contains code for only the RCW, not for the original COM object itself. Therefore you
must still deploy and register the COM object on the end-user's machine. The assembly also contains the types
described in the type library, expressed as metadata. Tlbimp uses a command line switch to produce a primary
interop assembly.

The .NET Framework SDK contains another command-line tool called tlbexp that is used to create a type library
from a .NET assembly. Such an exported type library would then be used to expose the .NET component as a COM
server, for use within an unmanaged application.

Importing ActiveX Control Libraries
Aximp is a command-line tool that generates an ActiveX Control wrapper assembly. This assembly is required so
that the ActiveX Control can be used on a Windows Form. A special utility is required, because a Windows Form
can only host controls that are derived from the System.Windows.Forms.Control class, and the tlbimp utility does
not create a wrapper derived from that class.

The aximp tool will generate both interop assemblies (as with tlbimp, this includes dependent assemblies), and the
ActiveX wrapper assembly. Like tlbimp, aximp has command-line switches to sign the assemblies produced with a
strong name. Unlike tlbimp, aximp cannot generate a primary interop assembly.

915

Generating Strong Names
If you are deploying a .NET component into the GAC, you will need to sign your assembly with a strong name key.
This is done by using a .NET Framework SDK command-line tool called sn. The assembly is signed with the strong
name in one of three ways:

By specifying the strong name key file in the assembly linker (al) command line
By tagging the assembly with the AssemblyKeyFile attribute
By using a technique called "delay signing"

When using delay signing, the assembly is signed with the public portion of the key file at build time. Before shipping
the assembly, the sn tool is used again to sign the assembly with the private key.

Deploying a .NET Component to the Global Assembly Cache
The .NET Framework SDK utility called gacutil is a command-line program that is used to install, remove, and view
components in the GAC. The gacutil command is usable from installation scripts as well as from batch files. The
gacutil command supports installation and removal of shared assemblies, with and without the use of reference
counting. It is recommended that the non-reference counted command switches be used only during development.
Installation scripts that use gacutil to install shared components should always use the reference counted command
line switches.

Using COM Interop Assemblies in the IDE
All of the functionality encompassed by the .NET Framework SDK command-line tools is in fact exposed by
the .NET Framework Class Library itself. The Developer Studio 2006 IDE also takes advantage of the .NET
Framework classes to expose interoperability features. The IDE goes beyond the capabilities of the command-line
tools, however, making interoperation with unmanaged components even easier.

Type Libraries and Interop Assemblies
The IDE initiates the creation of interop assemblies through the Project Manager. When you add a reference to a
DLL to your project, you can select from registered type libraries and unmanaged DLLs, or you can browse to an
unregistered component.

The IDE creates one interop assembly for each imported type library or DLL. The assemblies are named Interop.
LibraryName.dll, where LibraryName is the name of the type library. The name of the library is specified in the library
statement in IDL source code, so the file name of the generated assembly might be different from that of the original
DLL or type library. Each interop assembly (and all of its dependent assemblies) are added to your project as
referenced assemblies. The types contained in the interop assembly are added to a namespace with the same name
as the type library; Again, this is derived from the library statement in IDL source code.

If the assembly you reference has a primary interop assembly, the IDE will recognize this and avoid generating a
new interop assembly. In this case, the IDE will add a reference to the primary interop assembly in the GAC, and it
will not copy the assembly to your local project directory.

Importing ActiveX Controls
To use an ActiveX Control in your managed application, you must first add the control to the tool palette. This will
create both an interop assembly, and an ActiveX assembly with a wrapper class derived from System.Windows.
Forms.AxHost. The ActiveX wrapper assembly will be named AxInterop.LibraryName.dll, where LibraryName is the
name of the type library. Dragging the control from the palette onto a Windows Form will automatically add references
to both assemblies to your project.

Once on your form, the ActiveX Control can be treated as any other .NET component. You can select the control,
and set its properties and event handlers in the Object Inspector. The ActiveX Control wrapper will expose the

916

properties of the Windows.Forms.Control class, while properties exposed by the ActiveX Control will be grouped
under the Misc category.

Interop Assemblies and the Project Manager
Interop assemblies (including ActiveX Control wrapper assemblies) generated by the IDE are kept in a separate
folder called COMImports, underneath your project. Each generated assembly will have its 'Copy Local' property
set, meaning that when the project is built, the assembly will be copied to the folder where the final build target of
the project is kept. The exceptions to this rule are primary interop assemblies, which are deployed in the GAC. When
you add a reference to a primary interop assembly, the IDE will not copy the assembly to the COMImports folder.
The assembly will still be shown in the Project Manager, however, if you right click on it to display its properties,
you will notice that the 'Copy Local' setting is turned off.

The list of referenced assemblies (including those that are not interop assemblies) is an attribute of your project. If
the COMImports folder (or one of the interop assemblies contained therein) does not exist when you open a project,
the IDE will attempt to recreate it. If the IDE cannot create an interop assembly, it will still be shown as a referenced
assembly in the Project Manager; the IDE will highlight such an assembly so that you know it currently does not
exist (or is not registered) on the machine.

917

918

Using Platform Invoke with Developer Studio 2006
This topic describes the basic techniques of using unmanaged APIs from Developer Studio 2006. Some of the
common mistakes and pitfalls are pointed out, and a quick reference for translating Delphi data types is provided.
This topic does not attempt to explain the basics of platform invoke or marshaling data. Please refer to the links at
the end of this topic for more information on platform invoke and marshaling. Understanding attributes and how they
are used is also highly recommended before reading this document.

The Win32 API is used for several examples. For further details on the API functions mentioned, please see the
Windows Platform SDK documentation.

The following topics are discussed in this section:

Calling unmanaged functions
Structures
Callback functions
Passing Object References
Using COM Interfaces

Calling Unmanaged Functions
When calling unmanaged functions, a managed declaration of the function must be created that represents the
unmanaged types. In many cases functions take pointers to data that can be of variable types. One example of such
a function is the Win32 API function SystemParametersInfo that is declared as follows:

BOOL SystemParametersInfo(
 UINT uiAction, // system parameter to retrieve or set
 UINT uiParam, // depends on action to be taken
 PVOID pvParam, // depends on action to be taken
 UINT fWinIni // user profile update option
);

Depending on the value of uiAction, pvParam can be one of dozens of different structures or simple data types.
Since there is no way to represent this with one single managed declaration, multiple overloaded versions of the
function must be declared (see Borland.Vcl.Windows.pas), where each overload covers one specific case. The
parameter pvParam can also be given the generic declaration IntPtr. This places the burden of marshaling on the
caller, rather than the built in marshaler. Note that the data types used in a managed declaration of an unmanaged
function must be types that the default marshaler supports. Otherwise, the caller must declare the parameter as
IntPtr and be responsible for marshaling the data.

Data Types
Most data types do not need to be changed, except for pointer and string types. The following table shows commonly
used data types, and how to translate them for managed code:

Unmanaged Data Type Managed Data Type
Input Parameter Output Parameter

Pointer to string (PChar) String StringBuilder

Untyped parameter/buffer TBytes TBytes

Pointer to structure (PRect) const TRect var TRect

919

Pointer to simple type (PByte) const Byte var Byte

Pointer to array (PInteger) array of Integer array of Integer

Pointer to pointer type (^PInteger) IntPtr IntPtr

IntPtr can also represent all pointer and string types, in which case you need to manually marshal data using the
Marshal class. When working with functions that receive a text buffer, the StringBuilder class provides the easiest
solution. The following example shows how to use a StringBuilder to receive a text buffer:

function GetText(Window: HWND; BufSize: Integer = 1024): string;
var
 Buffer: StringBuilder;
begin
 Buffer := StringBuilder.Create(BufSize);
 GetWindowText(Window, Buffer, Buffer.Capacity);
 Result := Buffer.ToString;
end;

The StringBuilder class is automatically marshaled into an unmanaged buffer and back. In some cases it may not
be practical, or possible, to use a StringBuilder. The following examples show how to marshal data to send and
retrieve strings using SendMessage:

procedure SetText(Window: HWND; Text: string);
var
 Buffer: IntPtr;
begin
 Buffer := Marshal.StringToHGlobalAuto(Text);
 try
 Result := SendMessage(Window, WM_SETTEXT, 0, Buffer);
 finally
 Marshal.FreeHGlobal(Buffer);
 end;
end;

An unmanaged buffer is allocated, and the string copied into it by calling StringToHGlobalAuto. The buffer must
be freed once it’s no longer needed. To marshal a pointer to a structure, use the Marshal. StructureToPtr method
to copy the contents of the structure into the unmanaged memory buffer.

The following example shows how to receive a text buffer and marshal the data into a string:

function GetText(Window: HWND; BufSize: Integer = 1024): string;
var
 Buffer: IntPtr;
begin
 Buffer := Marshal.AllocHGlobal(BufSize * Marshal.SystemDefaultCharSize);
 try
 SendMessage(Window, WM_GETTEXT, BufSize, Buffer);
 Result := Marshal.PtrToStringAuto(Buffer);
 finally
 Marshal.FreeHGlobal(Buffer);
 end;
end;

920

It is important to ensure the buffer is large enough, and by using the SystemDefaultCharSize method, the buffer is
guaranteed to hold BufSize characters on any system.

Advanced Techniques
When working with unmanaged API’s, it is common to pass parameters as either a pointer to something, or NULL.
Since the managed API translations don’t use pointer types, it might be necessary to create an additional overloaded
version of the function with the parameter that can be NULL declared as IntPtr.

Special Cases
There are cases where a StringBuilder and even the Marshal class will be unable to correctly handle the data that
needs to be passed to an unmanaged function. An example of such a case is when the string you need to pass, or
receive, contains multiple strings separated by NULL characters. Since the default marshaler will consider the
first NULL to be the end of the string, the data will be truncated (this also applies to the StringToHGlobalXXX and
PtrToStringXXX methods). In this situation TBytes can be used (using the PlatformStringOf and PlatformBytesOf
functions in Borland.Delphi.System to convert the byte array to/from a string). Note that these utility functions
do not add or remove terminating NULL characters.

When working with COM interfaces, the UnmanagedType enumeration (used by the MarshalAsAttribute class) has
a special value, LPStruct. This is only valid in combination with a System.Guid class, causing the marshaler to
convert the parameter into a Win32 GUID structure. The function CoCreateInstance that is declared in Delphi 7
as:

function CoCreateInstance([MarshalAs(UnmanagedType.LPStruct)] clsid: TCLSID;
 [MarshalAs(UnmanagedType.IUnknown)] unkOuter: TObject;
 dwClsContext: Longint;
 [MarshalAs(UnmanagedType.LPStruct)] iid: TIID;
 [MarshalAs(UnmanagedType.Interface)] out pv
): HResult;

This is currently the only documented use for UnmanagedType.LPStruct.

Structures
The biggest difference between calling unmanaged functions and passing structures to unmanaged functions is that
the default marshaler has some major restrictions when working with structures. The most important are that dynamic
arrays, arrays of structures and the StringBuilder class cannot be used in structures. For these cases IntPtr is required
(although in some cases string paired with various marshaling attributes can be used for strings).

Data Types
The following table shows commonly used data types, and how to “translate” them for managed code:

Unmanaged Data Type Managed Data Type
Input Parameter Output Parameter

Pointer to string (PChar) String IntPtr

Character array (array[a..b] of Char) String String

Array of value type (array[a..b] of Byte) array[a..b] of Byte array[a..b] of Byte

Dynamic array (array[0..0] of type) IntPtr IntPtr

921

Array of struct (array[1..2] of TRect) IntPtr or flatten IntPtr or flatten

Pointer to structure (PRect) IntPtr IntPtr

Pointer to simple type (PByte) IntPtr IntPtr

Pointer to array (PInteger) IntPtr IntPtr

Pointer to pointer type (^PInteger) IntPtr IntPtr

When working with arrays and strings in structures, the MarshalAs attribute is used to describe additional information
to the default marshaler about the data type. A record declared in Delphi 7, for example:

type
 TMyRecord = record
 IntBuffer: array[0..31] of Integer;
 CharBuffer: array[0..127] of Char;
 lpszInput: LPTSTR;
 lpszOutput: LPTSTR;
 end;

Would be declared as follows in Developer Studio 2006:

type
 [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Auto)]
 TMyRecord = record
 [MarshalAs(UnmanagedType.ByValArray, SizeConst = 32)]
 IntBuffer: array[0..31] of Integer;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 128)]
 CharBuffer: string;
 [MarshalAs(UnmanagedType.LPTStr)]
 lpszInput: string;
 lpszOutput: IntPtr;
 end;

The above declarations assume that the strings contain platform dependant TChar’s (as commonly used by the
Win32 API). It is important to note that in order to receive text in lpszOutput, the Marshal. AllocHGlobal method
needs to be called before passing the structure to an API function.

A structure can contain structures, but not pointers to structures. For such cases an IntPtr must be declared, and
the Marshal. StructureToPtr method used to move data from the managed structure into unmanaged memory. Note
that StructureToPtr does not allocate the memory needed (this must be done separately). Be sure to use Marshal.
SizeOf to determine the amount of memory required, as Delphi’s SizeOf is not aware of the MarshalAs attribute (in
the example above, CharBuffer would be 4 bytes using Delphi’s SizeOf when it in fact should occupies 128 bytes
on a single byte system). The following examples show how to send messages that pass pointers to a structure:

procedure SetRect(Handle: HWND; const Rect: TRect);
var
 Buffer: IntPtr;
begin
 Buffer := Marshal.AllocHGlobal(Marshal.SizeOf(TypeOf(TRect)));
 try
 Marshal.StructureToPtr(TObject(Rect), Buffer, False);
 SendMessage(Handle, EM_SETRECT, 0, Buffer);
 finally
 Marshal.DestroyStructure(Buffer, TypeOf(TRect));

922

 end;
end;

procedure GetRect(Handle: HWND; var Rect: TRect);
var
 Buffer: IntPtr;
begin
 Buffer := Marshal.AllocHGlobal(Marshal.SizeOf(TypeOf(TRect)));
 try
 SendMessage(Handle, EM_GETRECT, 0, Buffer);
 Rect := TRect(Marshal.PtrToStructure(Buffer, TypeOf(TRect)));
 finally
 Marshal.DestroyStructure(Buffer, TypeOf(TRect));
 end;
end;

It is important to call DestroyStructure rather than FreeHGlobal if the structure contains fields where the marshaling
layer needs to free additional buffers (see the documentation for DestroyStructure for more details).

Advanced topics
Working with unmanaged API’s it is not uncommon to need to convert a byte array into a structure (or retrieve one
or more fields from a structure held in a byte array), or vice versa. Although the Marshal class contains a method to
retrieve the offset of a given field, it is extremely slow and should be avoided in most situations. Informal performance
tests show that for a structure with eight or nine numeric fields, it is much faster to allocate a block of unmanaged
memory, copy the byte array to the unmanaged memory and call PtrToStructure than finding the position of just one
field using Marshal. OffsetOf and converting the data using the BitConverter class. Borland.Vcl.WinUtils
contains helper functions to perform conversions between byte arrays and structures (see StructureToBytes and
BytesToStructure).

Special cases
There are cases where custom processing is required, such as sending a message with a pointer to an array of
integers. For situations like this, the Marshal class provides methods to copy data directly to the unmanaged buffer,
at specified offsets (so you can construct an array of a custom data type after allocating a buffer). The following
example shows how to send a message where the LParam is a pointer to an array of Integer:

function SendArrayMessage(Handle: HWND; Msg: UINT; WParam: WPARAM;
 LParam: TIntegerDynArray): LRESULT;
var
 Buffer: IntPtr;
begin
 Buffer := Marshal.AllocHGlobal(Length(LParam) * SizeOf(Integer));
 try
 Marshal.Copy(LParam, 0, Buffer, Length(LParam));
 Result := SendMessage(Handle, Msg, WParam, Buffer);
 finally
 Marshal.FreeHGlobal(Buffer);
 end;
end;

Callback Functions
When passing a function pointer for a managed function to an unmanaged API, a reference must be maintained to
the delegate or it will be garbage collected. If you pass a pointer to your managed function directly, a temporary

923

delegate will be created, and as soon as it goes out of scope (at the end of MyFunction in the example below), it
is subject to garbage collection. Consider the following Delphi 7 code:

function MyFunction: Integer;
begin
 ...
 RegisterCallback(@MyCallback);
 ...
end;

In order for this to work in a managed environment, the code needs to be changed to the following:

const
 MyCallbackDelegate: TFNMyCallback = @MyCallback;

function MyFunction: Integer;
begin
 ...
 RegisterCallback(MyCallbackDelegate);
 ...
end;

This will ensure that the callback can be called as long as MyCallbackDelegate is in scope.

Data types
The same rules apply for callbacks as any other unmanaged API function.

Special cases
Any parameters used in an asynchronous process must be declared as IntPtr. The marshaler will free any memory
it has allocated for unmanaged types when it returns from the function call. When using an IntPtr, it is your
responsibility to free any memory that has been allocated.

Passing Object References
When working with for example the Windows API, object references are sometimes passed to the API where they
are stored and later passed back to the application for processing usually associated with a given event. This can
still be accomplished in .NET, but special care needs to be taken to ensure a reference is kept to all objects (otherwise
they can and will be garbage collected).

Data types

Unmanaged Data Types Managed Data Type
Supply Data Receive Data

Pointer (Object reference, user data) GCHandle GCHandle

The GCHandle provides the primary means of passing an object references to unmanaged code, and ensuring
garbage collection does not happen. A GCHandle needs to be allocated, and later freed when no longer needed.
There are several types of GCHandle, GCHandleType.Normal being the most useful when an unmanaged client
holds the only reference. In order pass a GCHandle to an API function once it is allocated, type cast it to IntPtr (and

924

optionally onwards to LongInt, depending on the unmanaged declaration). The IntPtr can later be cast back to a
GCHandle. Note that IsAllocated must be called before accessing the Target property, as shown below:

procedure MyProcedure;
var
 Ptr: IntPtr;
 Handle: GCHandle;
begin
 ...
 if Ptr <> nil then
 begin
 Handle := GCHandle(Ptr);
 if Handle.IsAllocated then
 DoSomething(Handle.Target);
 end;
 ...
end;

Advanced techniques
The use of a GCHandle, although relatively easy, is fairly expensive in terms of performance. It also has the possibility
of resource leaks if handles aren’t freed correctly. If object references are maintained in the managed code, it is
possible to pass a unique index, for example the hash code returned by the GetHashCode method, to the unmanaged
API instead of an object reference. A hash table can be maintained on the managed side to facilitate retrieving an
object instance from a hash value if needed. An example of using this technique can be found in the TTreeNodes
class (in Borland.Vcl.ComCtrls).

Using COM Interfaces
When using COM interfaces, a similar approach is taken as when using unmanaged API’s. The interface needs to
be declared, using custom attributes to describe the type interface and the GUID. Next the methods are declared;
using the same approach as for unmanaged API’s. The following example uses the IAutoComplete interface, defined
as follows in Delphi 7:

IAutoComplete = interface(IUnknown)
 ['{00bb2762-6a77-11d0-a535-00c04fd7d062}']
 function Init(hwndEdit: HWND; punkACL: IUnknown;
 pwszRegKeyPath: LPCWSTR; pwszQuickComplete: LPCWSTR): HRESULT; stdcall;
 function Enable(fEnable: BOOL): HRESULT; stdcall;
end;

In Developer Studio 2006 it is declared as follows:

[ComImport, GuidAttribute('00BB2762-6A77-11D0-A535-00C04FD7D062'), InterfaceTypeAttribute
(ComInterfaceType.InterfaceIsIUnknown)]
IAutoComplete = interface
 function Init(hwndEdit: HWND; punkACL: IEnumString;
 pwszRegKeyPath: IntPtr; pwszQuickComplete: IntPtr): HRESULT;
 function Enable(fEnable: BOOL): HRESULT;
end;

925

Note the custom attributes used to describe the GUID and type of interface. It is also essential to use the
ComImportAttribute class. There are some important notes when importing COM interfaces. You do not need to
implement the IUnknown/IDispatch methods, and inheritance is not supported.

Data types
The same rules as unmanaged functions apply for most data types, with the following additions:

Unmanaged Data Type Managed Data Type
Supply Data Receive Data

GUID System.Guid System.Guid

IUnknown TObject TObject

IDispatch TObject TObject

Interface TObject TObject

Variant TObject TObject

SafeArray (of type) array of <type> array of <type>

BSTR String String

Using the MarshalAsAttribute custom attribute is required for some of the above uses of TObject, specifying the
exact unmanaged type (such as UnmanagedType.IUnknown, UnmanagedType.IDispatch or
UnmanagedType.Interface). This is also true for certain array types. An example of explicitly specifying the
unmanaged type is the Next method of the IEnumString interface. The Win32 API declares Next as follows:

HRESULT Next(
 ULONG celt,
 LPOLESTR * rgelt,
 ULONG * pceltFetched
);

In Developer Studio 2006 the declaration would be:

function Next(celt: Longint;
 [out, MarshalAs(UnmanagedType.LPArray, ArraySubType = UnmanagedType.LPWStr,
SizeParamIndex = 0)]
 rgelt: array of string;
 out pceltFetched: Longint
): Integer;

Advanced techniques
When working with safearrays, the marshal layer automatically converts (for example) an array of bytes into the
corresponding safearray type. The marshal layer is very sensitive to type mismatches when converting safearrays.
If the type of the safearray does not exactly match the type of the managed array, an exception is thrown. Some of
the Win32 safearray API’s do not set the type of the safearray correctly when the array is created, which will lead to
a type mismatch in the marshal layer when used from .NET. The solutions are to either ensure that the safearray is
created correctly, or to bypass the marshal layer’s automatic conversion. The latter choice may be risky (but could
be the only alternative if you don’t have the ability to change the COM server that is providing the data). Consider
the following declaration:

926

function AS_GetRecords(const ProviderName: WideString; Count: Integer;
 out RecsOut: Integer; Options: Integer; const CommandText: WideString;
 var Params: OleVariant; var OwnerData: OleVariant): OleVariant;

If the return value is known to always be a safearray (that doesn’t describe its type correctly) wrapped in a variant,
we can change the declaration to the following:

type
 TSafeByteArrayData = packed record
 VType: Word;
 Reserved1: Word;
 Reserved2: Word;
 Reserved3: Word;
 VArray: IntPtr; { This is a pointer to the actual SafeArray }
 end;

function AS_GetRecords(const ProviderName: WideString; Count: Integer;
 out RecsOut: Integer; Options: Integer; const CommandText: WideString;
 var Params: OleVariant; var OwnerData: OleVariant): TSafeByteArrayData;

Knowing that an OleVariant is a record, the TSafeByteArrayData record can be extracted from Delphi 7’s TVarData
(equivalent to the case where the data type is varArray). The record will provide access to the raw pointer to the
safearray, from which data can be extracted. By using a structure instead of an OleVariant, the marshal layer will
not try to interpret the type of data in the array. You will however be burdened with extracting the data from the actual
safearray.

Special cases
Although it is preferred to use Activator.CreateInstance when creating an instance, it is not fully compatible with
CoCreateInstanceEx. When working with remote servers, CreateInstance will always try to invoke the server
locally, before attempting to invoke the server on the remote machine. Currently the only known work-around is to
use CoCreateInstanceEx.

Since inheritance isn’t supported, a descendant interface needs to declare the ancestor’s methods. Below is the
IAutoComplete2 interface, which extends IAutoComplete.

[ComImport, GuidAttribute('EAC04BC0-3791-11d2-BB95-0060977B464C'), InterfaceTypeAttribute
(ComInterfaceType.InterfaceIsIUnknown)]
IAutoComplete2 = interface(IAutoComplete)
 // IAutoComplete methods
 function Init(hwndEdit: HWND; punkACL: IEnumString;
 pwszRegKeyPath: IntPtr; pwszQuickComplete: IntPtr): HRESULT;
 function Enable(fEnable: BOOL): HRESULT;
 //
 function SetOptions(dwFlag: DWORD): HRESULT;
 function GetOptions(var dwFlag: DWORD): HRESULT;
end;

927

928

Virtual Library Interfaces
This topic describes how to use a feature of Delphi called Virtual Library Interfaces. Virtual Library Interfaces allows
you to discover, load, and call unmanaged code at runtime, without the use of the DllImport attribute.

Standard PInvoke
To call an unmanaged function from managed code, you must use a .NET service called Platform Invoke, or PInvoke.
The Platform Invoke service requires you to declare in source code, a prototype for each unmanaged function you
wish to call. You can do this either within an existing .NET class, or you can create an entirely new class to organize
the prototypes. You must also tag each unnamaged prototype declaration with the DllImport attribute.

The DllImport attribute requires you to specify the name of the DLL in which the unmanaged function resides.
Since the unmanaged prototype is tagged with the DllImport attribute at compile-time, dynamic discovery of DLLs
and their exported unmanaged functions is difficult. Furthermore, if the unmanaged function is not actually exported
from the DLL named in the DllImport attribute, a runtime failure will result. To avoid a runtime failure, you would
have to use LoadLibrary to load the exact DLL you require, and then call GetProcAddress to verify the existance
of the unmanaged function. Even so, you would not be able to directly call the function using the pointer returned
from GetProcAddress. Instead you would have to pass the pointer along to a function in another unmanaged DLL.
That function would then use the pointer to make the call.

Using Virtual Library Interfaces
Virtual Library Interfaces still must use the Platform Invoke service to call unmanaged code. However, instead of
using the DllImport attribute, Virtual Library Interfaces creates an interface on the unmanaged DLL at runtime,
using methods of the .NET System.Reflection.Emit namespace.

Using Virtual Library Interfaces requires that you do three things:

Add Borland.Vcl.Win32 to the uses clause.

Declare an interface containing the exported, unmanaged functions you wish to call.
Call the Supports function to ensure that the unmanaged DLL exists and that the functions in the interface
declaration are actually exported.

If the Supports function returns True, then the DLL supports all of the functions named in the interface declaration,
so you know it is safe to call them. Within the interface declaration, you do not need to use the DllImport attribute
on the prototypes.

For example, if you have a DLL called MyFunctions.dll, that contains the following exported functions:

function AFunction : Boolean;
function AnotherFunction : Boolean;

To call these functions from managed code, add the Borland.Vcl.Win32 unit to the uses clause and declare an
interface in Delphi:

uses Borland.Vcl.Win32, ...;
...
type
IMyFunctions = interface
['Your GUID'] // Not strictly required, but good practice
function AFunction : Boolean;

929

function AnotherFunction : Boolean;
end;

The signature of the Supports function is:

function Supports(ModuleName: string; Source: System.Type; var Instance) : Boolean;

To call the unmanaged functions, first call Supports to load the DLL, and create the interface on the DLL:

var
MyFunctions : IMyFunctions;
begin
 if Supports("MyFunctions.dll", IMyFunctions, MyFunctions) then
 if MyFunctions.AFunction then
 begin
 ...
 end;
 end;
end;

Virtual Library Interfaces have the same limitations in terms of compatible native parameter types and their mapping
to .NET types. In addition, all unmanaged functions are expected to use the stdcall calling convention.

930

Using DrInterop
The drinterop command line tool examines an assembly and produces a set of diagnostic messages that help you
prepare the assembly for use with COM/Interop.

The drinterop tool is located in the bin directory of the product installation. It is invoked by typing

drinterop assembly

Message Cause

Assembly ComVisible attribute is true when it should be
false.

The [assembly:ComVisible(bool)] attribute is set to
true, or is not present.

Assemblies should be hidden from COM to reduce registry
clutter.

Set the ComVisible attribute to false, and selectively
expose classes and interfaces.

Assembly, class, or interface is exposed to COM but does not
contain the Guid attribute.

The assembly, class, or interface has the ComVisible
attribute set to true but does not contain a Guid attribute.

A type library should be generated and registered for
assembly.

This message is generated when a type library is not found in
the same directory as the assembly.

Assembly does not contain the TypeLibVersion attribute. The assembly does not contain the [assembly:
TypeLibVersion(x,y)] attribute.

By default type library version numbers are generated using
only the first two numbers of the assembly version. Using the
TypeLibVersion attribute can help avoid problems where two
assemblies would produce the same type library because the
first two digits of their version number are the same.

Reduce registry size by adding attribute [ClassInterface
(ClassInterfaceType.None)] to class.

The class does not contain the ClassInterface attribute.

By default, each class will cause the creation of a
corresponding interface with the class name prefixed with an
underscore character. This interface has no methods
associated with it.

You can reduce registry size and clutter by putting the
[ClassInterface(ClassInterfaceType.None)]
attribute on the class.

Note: The drinterop tool will not print any messages if it does not find any of the above conditions.

931

932

Deploying COM Interop Applications
Two things are important to keep in mind when working with unmanaged components. First, remember that an
interop assembly is not a replacement for the COM server; it is a stand-in, or proxy for it. The interop assemblies
produced by tlbimp and Developer Studio 2006 are not transformations of the component's unmanaged code into
managed code. Every file required by the component in an unmanaged deployment environment, must also be
deployed in a managed environment in addition to the interop assemblies. Second, the .NET Framework's interop
services do not circumvent the requirement of registering the COM server on the end-user's machine. Note the
registration requirement also applies during the development of your managed application.

As with any other .NET assembly, an interop assembly can be deployed alongside the managed executable in the
installation folder, or it can be deployed in the GAC. If you deploy the interop assembly into the GAC, you must give
it a strong name during development. Primary interop assemblies are always deployed into the GAC; however, just
because an assembly is deployed to the GAC, does not automatically make it a primary interop assembly. An interop
assembly is designated as a primary interop assembly by using the /primary command-line option of the tlbimp utility.
The IDE currently has no built-in support for creating primary interop assemblies. Unmanaged COM servers can be
deployed anywhere on the end-user's machine, however, as noted previously, you must still register unmanaged
components when your application is installed.

933

934

Building Reports for .NET Applications
Developer Studio 2006 ships with Rave Reports from Nevrona. Using the report components, you can build full-
featured reports for your applications. You can create solutions that include reporting capabilities which can be used
and customized by your customers. Additionally, the ComponentOne tools that ship with Developer Studio 2006
include components for creating and generating reports.

In This Section
Using Rave Reports in Developer Studio 2006
Describes how Developer Studio 2006 supports integration of Rave Reports objects.

935

936

Using Rave Reports in Developer Studio 2006
The Developer Studio 2006 environment supports the integration of report objects in your applications. This
integration allows you to create a report using the Rave Reports Designer or to add Rave Reports ActiveX
components directly onto your Windows Forms and Web Forms in the Developer Studio 2006Designer. Your
application users can create and display their own reports, or display existing reports. The Developer Studio 2006
integration with Rave Reports allows you to:

Include new report objects in projects.
Add Rave Reports ActiveX objects onto Windows Forms and Web Forms.

Creating New Reports in Developer Studio 2006
You can include Rave reports in Developer Studio 2006 just as you would other third-party components. The report
is stored as a separate Rave Report object. You can reference the report in other applications that need to call or
generate that report. When you create a new application, you can include the report object by adding a reference
to it in the Project Manager. Rave Reports also provide the capability to connect your report object to a datasource,
which allows your application to build the report dynamically, based on current database information.

Using Rave Reports ActiveX Components
You can add any Rave Reports ActiveX objects to your applications. The Developer Studio 2006Tool Palette
provides a list of any available ActiveX objects. Just drag the objects you want onto a Windows Form or a Web Form
during design. Fill in the appropriate properties and modify any code in the Code Editor. You may need to reset
your .NET components and select the ActiveX components from the Installed .NET Components dialog.

937

Procedures

938

ASP.NET Procedures

939

940

Adding Aggregate Values with DBWebAggregateControl
You can use DBWebAggregateControl to apply one of several standard aggregation functions to a data column.
The control displays the aggregate value in a text box, which also support a linked caption.

To create and configure a DBWebAggregateControl
1 Create a new ASP.NET web application and add your database connection, data adapter, dataset, and

DBWebDataSource component to the application..
2 Set the Active property of BdpDataAdapter to True.
3 Place a DBWebAggregateControl component on the Web Form Designer.
4 Set the DBDataSource property of the DBWebAggregateControl to your DBWebDataSource1, which is the

default name of the DBWebDataSource component.
5 Set the TableName property.
6 Choose the AggregateType property value from the drop down list.
7 Choose the ColumnName property from the drop down list.

The text box is filled with the value based on the type of aggregate you selected and the values in the column
you selected.

Note: If you think there may be NULL values in your selected column, set the IgnoreNullValues
property to True, otherwise you may get an error.

To set the caption for DBWebAggregateControl
1 In the Object Inspector enter the caption in the Caption property field.
2 Choose a position from the CaptionPosition property drop down list.

941

942

Adding Web References in ASP.NET Projects
If you want to consume a web service, you must create a client application, and add a Web Reference. These
procedures describe how to create an ASP.NET client application that consumes a third-party web service. The
client application consumes the DeadOrAliveWS web service available from the XMethods Web site. This web
service lets you query a simple database of celebrities and their respective birthdates and expiration dates.

To create an ASP.NET project
1 Choose File New Other.

The New Items dialog box appears.

2 Double-click the ASP.NET Web Application icon in either the C# Projects or Delphi for .NET Projects item
categories.
The New ASP.NET Application dialog box appears.

3 In the Name field, enter a name for your project.
4 In the Location field, enter a path for your project.

Tip: Most ASP.NET projects reside in the IIS directory Inetpub\wwwroot.

5 If necessary, click the View Server Options button to change your Web server settings.

Tip: The default Server Options will usually be sufficient, so this step is optional.

6 Click OK.
The Web Forms Designer appears.

To design the ASP.NET web page
1 If necessary, click Design view.
2 From the Web Controls category of the Tool Palette, place a Button component onto the Designer surface.

The Button control appears on the Designer. Make sure the control is selected.

3 In Object Inspector, set the Text property to Dead or Alive?.
4 From the Web Controls category of the Tool Palette, place a TextBox component onto the Designer above the

Button.
This is where you type your query to the Web Service.

5 Place a Label component below the Button.
This is where the results of the web service query are displayed.

Use the UDDI browser to locate the DeadOrAlive Web Service on the internet. This allows you to use the methods
and objects published by the Web Service Definition Language (WSDL).

To add the Web Reference for DeadOrAliveWS
1 Choose Project Add Web Reference.
2 In the Borland UDDI Browser web dialog box, click the XMethods Full link in the list of available UDDI

directories.
A list of various web services published on the XMethods Web site appears.

943

3 Find and click the DeadOrAliveWS link.

Tip: You can use Ctrl+F to search within the Borland UDDI Browser.

4 Click the link to the WSDL file:

http://www.abundanttech.com/webservices/deadoralive/deadoralive.wsdl

A WSDL document appears. This XML document describes the interface to the DeadOrAliveWS web service.

5 Click Add Reference to add the WSDL document to the client application.
A Web References folder containing a com.abundanttech.www node is added to the Project directory in the
Project Manager.

To write the application logic
1 If necessary, click Design view.
2 Double-click the Dead or Alive? button to view the code-behind file.
3 For a Delphi for .NET Web Services application, implement the Click event in the Code Editor with the following

code :

[Delphi]
procedure TWebForm1.Button1_Click(sender: System.Object; e: System.EventArgs);
var
 result: DataSet;
 ws: DeadOrAlive;
 currentTable: DataTable;
 currentRow: DataRow;
 currentCol: DataColumn;
begin
 //This initializes the web service
 ws := DeadOrAlive.Create;

 //Send input to the web service
 result := ws.getDeadOrAlive(TextBox1.Text);

 //parse results and display them
 Label1.Text := '';
 for currentTable in result.Tables do
 begin
 Label1.Text := Label1.Text + '<p>' + #13#10;
 for currentRow in currentTable.Rows do
 begin
 for currentCol in currentTable.Columns do
 begin
 Label1.Text := Label1.Text + currentCol.ColumnName + ': ';
 Label1.Text := Label1.Text + (currentRow[currentCol]).ToString;
 Label1.Text := Label1.Text + '
' + #13#10;
 end;
 end;
 Label1.Text := Label1.Text + '</p>';
 end;

end;

944

When you added the Web Reference to your application, Developer Studio 2006 used the WSDL to generate a
proxy class representing the "Hello World" web service. The Click event uses methods from the proxy class to
access the web service. For Delphi for .NET Web Services, you may need to add the unit name of the proxy
class, abundanttech.deadoralive, to the uses clause of your Web Form unit to prevent errors in your Click event.

4 For a C# Web Services application, implement the Click event in the Code Editor with the following code :

[C#]
private void button1_Click(object sender, System.EventArgs e)
{
 DataSet result;

 //This initializes the web service
 DeadOrAlive source = new DeadOrAlive();

 //Send input to the web service
 result = source.getDeadOrAlive(textBox1.Text);

 //parse results and display them
 label1.Text = "";
 foreach (DataTable currentTable in result.Tables) {
 label1.Text += "<p>\n";
 foreach (DataRow currentRow in currentTable.Rows) {
 foreach (DataColumn currentCol in currentTable.Columns) {
 label1.Text += currentCol.ColumnName + ": ";
 label1.Text += currentRow[currentCol] + "
\n";
 }
 }
 label1.Text += "</p>";
 }
}

Note: As you can see by the added application logic code, the DeadOrAliveWS web service returns
query results in the form of a dataset. Web Services can, however, return data in a variety of
formats.

To run the application
1 Choose Project Build All Projects.

Now your project is built and resides on your ASP.NET server.

2 Open a Web browser.
3 Type the URL of your Web Application's .aspx file and press Enter.

Tip: If you are using Microsoft IIS, the URL is the path of the .aspx file after Inetpub\wwwroot. For
example, if the path of your Web Application is c:\Inetpub\wwwroot\WebApplication1 and
your .aspx file is named "WebForm1.aspx", the URL would be http://localhost/WebApplication1/
WebForm1.aspx.

4 If necessary, enter your user name and password for your ASP.NET server.
The web page for your web application appears.

5 Enter the name of a celebrity (for example, Isaac Asimov) in the text box and click the Dead or Alive? button.
Your web application requests the information from the DeadOrAliveWS web service and displays the result in
the label.

945

Note: If no information is displayed, that name may not be in the database. Check your spelling or try
a different name.

946

Binding Columns in the DBWebGrid
There may be times when you want to modify the order in which columns appear in a DBWebGrid control. You can
accomplish this task by binding columns manually, from within the Property Builder.

To open the Property Builder
1 Start a new ASP.NET application.
2 Add a data provider.
3 Add a DBWebDataSource object and connect it to a generated dataset.
4 Add a DBWebGrid control to your Web form.
5 Click the Property Builder Designer verb, located at the bottom of the Object Inspector.

This displays the Property Builder.

To change column order
1 On the Property Builder, click the General tab.
2 Set the DataSource to the DBWebDataSource, or to the dataset the DBWebDataSource points to.
3 Click the Columns tab.
4 Select the columns you want to appear in the Available Columns list.
5 Click the right-arrow button to add the columns to the Selected Columns list.
6 Rearrange the column order, if you like, in the Selected Columns list.
7 You can change the column heading name as it appears in the grid by changing the Header text.
8 Click Apply.
9 Click OK.

Warning: If you choose to bind columns in this way, you must set the AutoGenerateColumns property
to False. Setting this property to True raises a runtime error, and does not allow the visible
restriction of columns at designtime. If the same column is bound to a grid more than once,
you may get a runtime error.

947

948

Building an Application with DB Web Controls
The following procedures describe the minimum number of steps required to build a simple ASP.NET database
application using DB Web Controls and BDP.NET. After generating the required connection objects, the project
displays data in a DBWebGrid with a DBWebNavigator. Additional information is provided for other common DB
Web Controls.

Users should already be familiar with creating an ASP.NET project using BDP.NET.

Building the simple ASP.NET application with DB Web Controls and BDP.NET consists of three major steps:

1 Prepare an ASP.NET project with BDP.NET or other connection components.
2 Drag and drop a DBWebDataSource onto the Designer and set its DataSource property to a DataSet, DataView

or DataTable.
3 Drag and drop a DBWebGrid and other control onto the Designer.

To prepare an ASP.NET project for DB Web Controls
1 Create an ASP.NET project.
2 Set up BDP.NET or other data access components, setting the DataSource property to an existing DataSet,

DataView, or DataTable.

Tip: For more information about setting up BDP.NET data access components, see the related
procedure for building an ASP.NET database application. Instead of using a DataGrid and adding
a DataBind call, in the following procedure you use DB Web Controls without a DataBind call.

To configure a DBWebDataSource
1 Place a DBWebDataSource component on the Designer.
2 In the Object Inspector, select the DataSource property.
3 Select an existing data source (by default, this is called dataSet1).

To configure DB Web Controls
1 Place a DBWebNavigator component on the Designer.
2 In the Object Inspector, select a data source in the DBDataSource property drop-down.
3 In the Object Inspector, select a DataTable from the TableName property drop-down.

Tip: If no TableName is available, verify that the BdpDataAdapterActive property is set to True.

4 Place a DBWebGrid on the Designer.
5 In the Object Inspector, select the data source from the DBDataSource property drop-down.
6 In the Object Inspector, select a DataTable from the TableName property drop-down.

The grid displays data.

7 Place other DB Web Controls as needed.
8 Set the values for DBDataSource, TableName, and other properties as appropriate.

949

Note: For data-aware Column Controls (such as DBWebTextBox, DBWebImage, DBWebMemo, and
DBWebCalendar) additionally set the ColumnName property. For data-aware lookup controls
(such as DBWebDropDownList, DBWebListBox, and DBWebRadioButtonList), also set the
LookupTableName, the DataTextField, and the DataValueField properties.

9 Choose Run Run.
The application compiles and the HTTP server displays a Web Form with a DBWebGrid displaying data.

Tip: Dragging web components from the Tool Palette places them in an absolute position on an ASP.NET web
form. Double-clicking components in the Tool Palette leaves them in ASP.NET flow layout. Flow layout is
much easier to manage. For instance, controls in an absolute position on a web form can overwrite other
controls if they change sizes at runtime. Overwriting might occur when you add rows to and remove rows from
a grid control, making the grid control change size.

950

Building an ASP.NET "Hello World" Application
Though simple, the ASP.NET "Hello World" application demonstrates the essential steps for creating an ASP.NET
application. The application uses a Web Form, controls, and an event that will display a result in response to a user
action.

To create an ASP.NET project
1 Choose File New ASP.NET Web Application for either Delphi for .NET or C#.

The New ASP.NET Application dialog box appears.

2 In the Name field, enter HelloWorld for the application name.
3 In the Location field, accept the default or enter [Inetpub]\HelloWorld, where [Inetpub] is the directory location

for IIS projects (for example, C:\Inetpub\wwwroot\HelloWorld).

To change Web server settings (optional)
1 In the New ASP.NET Application dialog box, click View Server Options.

The dialog expands to show additional server options.

2 Set the various read and write attributes of the project as needed or accept the defaults.

Tip: For most ASP.NET projects, the default settings will suffice.

3 Click OK.
The Web Forms Designer appears.

To create the ASP.NET page
1 If necessary, click Design view.
2 From the Web Controls category of the Tool Palette, drag a Button component onto the Designer surface.

The Button control appears on the Designer. Make sure the control is selected.

3 In Object Inspector, set the Text property to Hello, world!.

To associate code with the button control
1 In the Designer, double-click the Button control.

The code-behind Designer appears, cursor in place between event handler brackets.

2 Code the application logic:

[C#]
button1.Text = button1.Text + "Hello, developer!";

[Delphi]
button1.Text := button1.Text + 'Hello, developer!';

951

3 Choose File Save to save the application.

To run the "Hello World" application
1 Choose Run Run.

The application compiles and the HTTP server displays a Web Form in your default browser with the "Hello,
world!" button.

2 Click the "Hello, world!" button.
The server updates the page with the response, "Hello, developer!".

3 Close the Web browser to return to the IDE.

952

Building an ASP.NET Application
The following procedures describe the general steps required to build a simple ASP.NET project. For more advanced
topics, refer to the related information following the procedure.

To create an ASP.NET project
1 Choose File New ASP.NET Web Application for either Delphi for .NET or C#.

The New ASP.NET Application dialog box appears.

2 In the Name field, enter the name of your project.
3 In the Location field, accept the default path or enter another project path.

Tip: Most ASP.NET projects reside in the IIS directory Inetpub\wwwroot.

To change Web server settings (optional)
1 In the New ASP.NET Application dialog box, click View Server Options

The dialog expands to show additional server options.

2 Set the various read and write attributes of the project as needed or accept the defaults.

Tip: In most cases, the default settings will suffice.

3 Click OK.
The Web Forms Designer appears.

To create an ASP.NET page
1 Make sure the Designer is displayed.
2 From the Tool Palette, drag components onto the Designer to define the user interface.
3 Add code-behind logic to components.

To add code-behind logic to a component
1 In the Designer, double-click the component to which you wish to apply logic.

The code-behind Designer appears, cursor in place between event handler brackets.

2 Add your logic.
3 Run the application.

The application saves and compiles. Once you compile the application, the generated .aspx file displays HTML
in the default web browser.

953

954

Building an ASP.NET Database Application
The following procedure describes the minimum number of steps required to build a simple ASP.NET database
application using BDP.NET. After generating the required connection objects, the project displays data in a DataGrid.

BDP.NET includes component designers to facilitate the creation of database applications. Instead of dropping
individual components on a designer, configuring each in turn, use BDP.NET designers to rapidly create and
configure database components. The following procedure demonstrates the major components of ASP.NET, ADO.
NET, and BDP.NET at work.

Building an ASP.NET application with BDP.NET components consists of four major steps:

1 Create an ASP.NET project.
2 Configure BDP.NET connection components and a data source.
3 Add a DataBind call.
4 Connect a DataGrid to the connection components.

Tip: For testing purposes, use the employee.gdb database included with Interbase, if included with your version of
the product.

To create an ASP.NET project
1 Choose File New ASP.NET Web Application for either Delphi for .NET or C#.

The New ASP.NET Application dialog appears.

2 In the Name field, enter the name of your project.
3 In the Location field, enter the project path.

Tip: Most ASP.NET projects reside in the IIS directory: Inetpub\wwwroot.

To change Web server settings (optional)
1 In the New ASP.NET Application dialog, click View Server Options

The dialog expands to show additional server options.

2 Set the various read and write attributes of the project as needed or accept the defaults.

Tip: In most cases, the default settings will suffice.

3 Click OK.
The Web Forms Designer appears.

To configure data components
1 Drag and drop a BdpDataAdapter component onto the Designer. If necessary, select BdpDataAdapter.
2 In Object Inspector, select Configure Data Adapter.

The Data Adapter Configuration dialog appears.

3 If necessary, select the Command tab. From the Connection drop-down, select New Connection.

955

4 The Borland Data Provider: Connections Editor dialog appears.

Tip: Alternatively, use Data Explorer to drag and drop a table on to the Designer surface. Data
Explorer sets the connection string automatically.

To set up a connection
1 In Borland Data Provider: Connections Editor, select the appropriate item from the Connections list.
2 In Connection Settings, enter the Database path.

Note: If referring to a database on the local disk, prepend the path with localhost:. If using Interbase,
for example, you would enter the path to your Interbase database: localhost:C:\Program Files
\Borland\Interbase\Examples\Database\employee.gdb (or whatever the actual path might be
for your system).

3 Complete the UserName and Password fields for the database as needed.
4 Click Test to confirm the connection.

A dialog appears confirming the status of the connection.

5 Click OK to return to the Borland Data Provider: Connections Editor dialog.
6 Click OK to return to the Data Adapter Configuration dialog.

In the Command tab, the areas for Tables and Columns are updated with information from your connection.

To set a command
1 In the Select area, enter an SQL command.

Tip: For Interbase's employee.gdb database, you might enter select * from SALES, as an example.

2 Click the Preview Data tab.
3 Click Refresh.

Column and row data appear.

4 Click the DataSet tab.
5 Confirm that New DataSet is selected.
6 Click OK.

New components for DataSet and BdpConnection appear on the Designer.

7 Select BdpDataAdapter component.
8 In Object Inspector, select the Active property drop-down and set the value to True.

To connect a DataGrid to a DataSet
1 Drag and drop a DataGrid web control onto the Designer. If necessary, select DataGrid.
2 In Object Inspector, select the DataSource property drop-down. Select the DataSet component that you

generated previously (the default is DataSet1).
3 In Object Inspector, select the DataMember property drop-down. Select the appropriate table.

956

The DataGrid displays data from the DataSet.

To add a DataBind call
1 Use the Object Inspector drop-down to select the Web Form (WebForm1 is the default).
2 In Object Inspector, select the Events tab.
3 Set the Load event to Page_Load.
4 In Object Inspector, double-click Page_Load.

The code-behind Designer appears, cursor in place between event handler brackets.

5 Code the DataBind call:

[C#]
this.dataGrid1.DataBind();

[Delphi]
Self.dataGrid1.DataBind();

Note: If you are using data aware controls, for instance from a third-party provider, you may not need
to code the DataBind call.

6 Choose Run Run.
The application compiles and the HTTP server displays a Web Form with the datagrid.

While presenting a minimum number of steps required to build a database project, the preceding procedure
demonstrates the major components of the ASP.NET, ADO.NET, and BDP.NET architectures at work, including:
providers, datasets, and adapters. The adapter connects to the physical data source via a provider, sending a
command that will read data from the data source and populate a dataset. Once populated, a datagrid displays data
from the dataset.

Once created, use other BDP.NET designers to modify and maintain the components of your project.

957

958

Converting HTML Elements to Server Controls
Unlike Web controls, HTML elements can not, by default, be controlled programmatically. However, you can convert
an HTML element to a server control and then write code to access or modify the element. Most of the HTML elements
that appear in the Tool Palette can be converted by using the Run As Server Control command. HTML elements
that do not appear on the Tool Palette, such as body, can be converted manually.

The following procedures explain how to convert an HTML table element by using the Run As Server Control
command, and how to convert a body element manually.

To convert an HTML table element to a server control
1 With an ASP.NET application open, display the Designer.
2 From the Tool Palette, add the HTML Table element from the HTML Elements category to the Designer.
3 Right-click the Table element on the Designer and choose Run As Server Control.

The server control icon is added to the Table element. In the .aspx file, the id="TABLE1" and
runat="server" attributes are added to the table tag. In the code-behind file, TABLE1 is declared using
System.Web.UI.HtmlControls.HtmlTable.

4 You can now reference TABLE1 in your code. To demonstrate this, add a Button from the Web Controls category
of the Tool Palette to the Designer.

5 Double-click the button. The Code Editor opens and is positioned at the click event for the button.
6 Add the following code to the event handler to change the background color of the table to blue. Note that
TABLE1 is the id that was added automatically to the the table tag in Step 3.

[Delphi]
TABLE1.BgColor := 'blue';

[C#]
TABLE1.BgColor = "blue";

7 Choose Run Run to run the application.
8 Click the button to change the table color.

To convert an HTML body element to a server control manually
1 With an ASP.NET application open, display the .aspx file.
2 Add the runat="server" and id="identifier" attributes to the body tag, where identifier is a descriptive

identifier, such as bodytag.
3 Add the following declaration to the strict protected section of the code-behind file:

[Delphi]
bodytag: System.Web.UI.HtmlControls.HtmlGenericControl;

[C#]
protected System.Web.UI.HtmlControls.HtmlGenericControl bodytag;

4 You can now reference bodytag in your code. To demonstrate this, add a Button from the Web Controls
category of the Tool Palette to the Designer.

959

5 Double-click the button. The Code Editor opens and is positioned at the click event for the button.
6 Add the following code to change the background color of the Web Form to yellow.

[Delphi]
bodytag.Attributes['bgcolor'] := 'yellow';

[C#]
bodytag.Attributes["bgcolor"] = "yellow";

7 Choose Run Run to run the application.
8 Click the button to change the background color of the form.

960

Creating a Briefcase Application with DB Web Controls
You can use DB Web Controls, XML caching, and the BDP.NET data adapters to create server-side briefcase
applications. You can only create this type of application when using user authentication, to guarantee that each
user has a unique copy of the XML file.

To create a briefcase application
1 Create a BDP.NET application.
2 Add a DBWebDataSource control and link to the BDP DataSet.
3 Configure the DBWebDataSource control to generate XML and XSD files.
4 Configure the AutoUpdateCache and UseUniqueFileName properties.
5 Configure an OnApplyChangesRequest to call the BdpDataAdapterAutoUpdate method.
6 Run the application.

To configure the AutoUpdateCache and UseUniqueFileName properties
1 Build a standard ASP.NET database application using the BDP.NET components and the DBWebDataSource

component.
2 Specify XML and XSD filenames for non-existent files in the DBWebDataSource component.

Note: It is best to create these files in the project directory or in a subdirectory of the project directory,
typically on your web server.

3 Set AutoUpdateCache to True.
4 Set UseUniqueFileName to True.
5 Select the Events tab for the DBWebDataSource component.
6 Double-click the OnApplyChangesRequest field to display the event handler in the Code Editor.
7 Add the following code:

BdpDataAdapter1.AutoUpdate;

8 Choose Run Run.
The first time the application runs, it creates the XSD file using the server metadata.

The first time a user runs the application, the application retrieves data from the server. When the user changes
data, thereafter, the application saves those changes to the server in a unique filename based on the username. If
the user shuts down the application and runs it again at a later time, the application restores the user's specific data.
At this point, the user can undo or modify the data. Anytime the OnApplyChangesRequest is called successfully,
the application deletes the unique user files and creates new ones.

Warning: If the tables or columns accessed by the application are altered after the application has run, you must
delete the XSD file to avoid a mismatch between the XSD file and the server metadata. Otherwise, you
can experience runtime errors and unpredictable behavior.

961

962

Creating a Virtual Directory
When you create an ASP.NET application, the IDE automatically creates a virtual directory for you based on the
settings in the New ASP.NET Application dialog box.

However, the IDE can also create a virtual directory for an application that you did not create within the IDE, such
as the demo applications found in the DBWeb folder (located by default at C:\Program Files\Borland\BDS\4.0\Demos
\Delphi.Net).

To create a virtual directory for an existing application
1 Open the ASP.NET application project file in the IDE.
2 Choose Project Options Debugger ASP.NET.

The default application settings are displayed. Accept the default settings or change them as needed.

3 If you are creating a virtual directory for use with Internet Information Server (IIS), click the Server Options button
to display the Configure Virtual Directory dialog.
If you change the name of the virtual directory or its alias, you can also change the permissions associated with
the virtual directory.

4 Click OK to return to the project options.
5 Click OK to exit the project options.

The virtual directory is created for you, enabling you to run the application.

963

964

Creating an XML File for DB Web Controls
You can use XML files as your data source, particularly if you want to prototype applications without reading from
and writing to a database. First you must create the XML file. The DBWebDataSource control provides a powerful
way to create the XML file based on real database data. This procedure assumes that you can create a connection
to a live database containing the data you want to use.

To create and use an XML file
1 Create an ASP.NET application using DB Web Controls.
2 Specify the XML file as a data source for a new ASP.NET application.

To create an ASP.NET application using DBWeb Controls
1 Choose File New ASP.NET Web Application for either Delphi for .NET or C#.
2 Create a database connection and data adapter using the BDP.NET controls or other data adapter controls.
3 Drag and drop a DBWebDataSource control onto the Designer from the DB Web area of the Tool Palette.
4 In the XMLFileName property or in the XMLSchemaFile property, specify a new file name of a file that does not

yet exist.
5 Generate a DataSet from the data adapter.
6 Set the DataSource property of the DBWebDataSource to dataSet1.
7 Set the Active property of the data adapter to True.
8 Choose Run Run.

This runs the application but also creates the XML file or XSD file and fills it with data from the DataSet.

To specify the XML file as a data source for a new ASP.NET application
1 Choose File New ASP.NET Web Application for either Delphi for .NET or C#.
2 Drag and drop a DataSet component onto the Designer from the Data Components area of the Tool Palette.
3 Drag and drop a DBWebDataSource control onto the Designer from the DB Web area of the Tool Palette.
4 Specify the existing XML file name in the XMLFileName property of the DBWebDataSource control.

Note: If you created an XSD file instead of an XML file, you specify the XSD file name in this step.

5 Specify the DataSet component in the DataSource property of the DBWebDataSource control.
6 Drag and drop a DBWebGrid control onto the Designer from the DB Web area of the Tool Palette.
7 Set the DBDataSource property of the DBWebGrid to the name of the DBWebDataSource
8 Choose Run Run to display the application.

The application pulls data from the DataSet and XML file to fill the DBWebGrid.

Warning: It is possible for you to specify an existing XML file in the XMLFileName property of your
DBWebDataSource along with an active BdpDataAdapter and its DataSet. You can run the application
and the DBWeb controls will display the data from the XML file. However, this is not the intended use or
behavior of the XML capabilities of the DBWebDataSource. Although your XML file data may display
properly, the results of an update or any other operations on the data will be unpredictable.

965

966

Creating Metadata for a DataSet
When you choose to use an XML file for a data source in an ASP.NET application using DB Web Controls, you may
need to create the metadata to structure the XML data in your DataSet. If you chose to create an XML file without
an XML schema file (.xsd), you need to manually create the metadata. This procedure assumes that you have already
created an XML file containing data.

To set up the application
1 Choose File New ASP.NET Web Application for either Delphi for .NET or C#.
2 Drag and drop a DBWebDataSource control onto the form.
3 Drag and drop a DataSet component onto the form.
4 Click the ellipsis button (...) next to the XMLFileName property of the DBWebDataSource and locate your XML file.
5 Select the DataSet component in the Component Tray.
6 Click the Tables (Collection) property to display the Tables Collection Editor.

To create the metadata
1 Click Add to add a new table to the collection.

For the sake of illustration, we'll use the following XML records.

<?xml version="1.0" standalone="yes"> /// XML Declaration
<NewSongs>

 /// <song> becomes the table name in your DataSet.
 <song>

 /// <songid> becomes Column1 in your DataSet.
 <songid>1001</songid>

 /// <title> becomes Column2 in your DataSet.
 <title>Mary Had a Little Lamb</title>
 </song>
 <song>
 <songid>1003</songid>
 <title>Twinkle, Twinkle Little Star</title>
 </song>
</NewSongs>

2 Change the TableName property to song.
3 Click the Columns (Collection) property to display the Columns Collection Editor.
4 Click Add to add a new column.
5 Change the ColumnName property to songid.
6 Click Add to add another new column.
7 Change the ColumnName property to title.
8 Click Close to close the Columns Collection Editor.
9 Click Close to close the Tables Collection Editor.

You have now created the metadata to match the XML file data.

967

968

Debugging and Updating ASP.NET Applications
During the installation of Developer Studio 2006, the install program requested permission to update the machine.
config file on your computer. This information is necessary for debugging Developer Studio 2006 applications under
IIS. If you replied Yes to that prompt, Borland debugger information was written to machine.config and will be
available to the applications that you created with Delphi 8. You need not perform this procedure.

If you replied No to that prompt, the debugger information is written to the application web.config file when you create
an ASP.NET application with Developer Studio 2006. However, you will need to add this information manually to
web.config for applications that were created with Delphi 8. Otherwise, attempting to debug your Delphi 8 application
with Developer Studio 2006 may result in the following error:

Unable to start debugging on the web server. Unable to attach to ASP.NET worker process (typically
aspnet_wp.exe or w3wp.exe).

To update the web.config file for a Delphi 8 ASP.NET application
1 Open the web.config file in the IDE or a text editor.
2 Replace the following lines:

<compilation
 debug="true"
 defaultLanguage="c#">
</compilation>

with this:

<compilation defaultLanguage="c#" debug="true">
 <assemblies>
 <add assembly="Borland.dbkasp, Version=9.0.0.1,
 Culture=neutral, PublicKeyToken=b0524c541232aae7"/>
 </assemblies>
</compilation>

<httpModules>
 <add name="DbgConnect" type = "Borland.DbkAsp.DbkConnModule,
 Borland.dbkasp,Version=9.0.0.1, Culture=neutral,
 PublicKeyToken=b0524c541232aae7"/>
</httpModules>

3 Save the web.config file.
4 Open the application project in the IDE and run it.

Note: Before deploying an ASP.NET application, you should disable debugging and remove debugger references
from the web.config file, as described in the topic listed below.

969

970

Generating HTTP Messages in ASP.NET
When attempting to debug your ASP.NET applications, you may find that the error messages are cryptic or even
meaningless. This may be the result of having a specific option set in your Internet Explorer browser. To assist your
debugging efforts, you should change this option.

To generate more meaningful error messages
1 In Internet Explorer (assuming you are using IE) choose Tools Internet Options.
2 Click the Advanced tab.
3 Deselect the Show friendly HTTP error messages check box.
4 Click OK.

This turns off friendly messages and provides meaningful ASP.NET messages.

971

972

Modifying Database Connections
The basic elements of a connection string tend to be the same from one database type to another. However, each
database type supports slightly different connection string syntax. This topic addresses those differences.

To modify different types of database connections
1 Click on the Data Explorer tab in the IDE.
2 Select the database type of your choice.
3 Right-click to display the popup menu.
4 Choose Modify Connection to display the Connections Editor.

The properties in the Connections Editor are organized into three categories: Connections, Options, and Provider
Settings. The Connections options designate the database and authentication parameters. The Options area
includes various database-specific database options, including transaction isolation types. The Provider Settings
area specifies assemblies and the client libraries required to accomplish the connection to the given database.

Note: All of the procedures in this topic assume that you already have installed a database client,
server, or both, and that the database instance is running.

To modify an InterBase connection
1 Either enter the database name or navigate to the database on your local disk or a network drive, by clicking the

ellipsis button to browse.
The standard supplied databases are typically installed into C:\Program Files\Common Files\Borland
Shared\Data.

2 Enter the password and username.
By default, these are masterkey and sysdba, respectively.

3 Set the following options, if necessary.
The default values are shown in the following table.

Option Description Default

CommitRetain Commits the active transaction and retains the transaction context
after a commit.

False

LoginPrompt Determines if you want the user to be prompted for a login every time
the application tries to connect to the database.

False

QuoteObjects Specifies that table names, column names, and other objects should
be quoted or otherwise delimited when included in a SQL statement.
This is required for databases that allow spaces in names, such as MS
Access.

False

RoleName If there is a role for you in the database, you can enter the rolename
here. The role is generally an authentication alias, that combines your
identify with your access rights.

myRole

ServerCharSet Specifies the character set on the server. —

SQLDialect Sets or returns the SQL dialect used by the client. 3

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads,
but the data can be changed before the end of the transaction, resulting

ReadCommitted

973

in non-repeatable reads or phantom data. This specifies the value for
the BdpTransaction. IsolationLevel property.

WaitOnLocks Specifies that a transaction wait for access if it encounters a lock
conflict with another transaction.

False

4 You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Interbase,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token
#

Provider Interbase

VendorClient gds32.dll

5 Click Test to see if the connection works.
6 Click OK to save the connection string.

Note: If you are writing ASP.NET applications, and are running the ASP.NET Web Forms locally for
testing purposes, you might need to modify the path statement that points to your database, to
include the localhost: designation. For example, you would modify the path shown earlier
in this topic as such: localhost:C:\Program Files\Common Files\Borland Shared
\Data\employee.gdb.

Note: Your connection string should resemble something like

database=C:\Program Files\Common Files\Borland Shared\Data\EMPLOYEE.GDB;
assembly=Borland.Data.Interbase,Version=2.0.0.0,
Culture=neutral,PublicKeyToken=91d62ebb5b0d1b1b;
vendorclient=gds32.dll;provider=Interbase;username=sysdba;password=masterkey

To modify an MS SQL Server connection
1 Enter the database name in the Database field of the Connections Editor.

For example, use one of the sample MS SQL Server databases, such as Pubs or Northwind. There is no need
to add the file extension to the name.

2 Enter the hostname.
If you are using a local database server, enter (local) in this field.

3 If you are deferring to your OS authentication, set OSAuthentication to True.
4 If you are using database authentication, enter the password and username into the appropriate fields.

By default, the SQL Server database username is sa.

5 Change the database options if necessary.
The default values are shown in the following table.

Option Description Default

BlobSize Specifies the upper limit of the size of any BLOB field. 1024

LoginPrompt Determines if you want the user to be prompted for a login every time
the application tries to connect to the database.

False

974

QuoteObjects Specifies that table names, column names, and other objects should
be quoted or otherwise delimited when included in a SQL statement.
This is required for databases that allow spaces in names, such as MS
Access.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads,
but the data can be changed before the end of the transaction, resulting
in non-repeatable reads or phantom data. This specifies the value for
the BdpTransaction. IsolationLevel property.

ReadCommitted

6 You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Mssql,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider MSSQL

VendorClient sqloledb.dll

7 Click Test to see if the connection works.
8 Click OK to save the connection string.

Note: If you are writing ASP.NET applications, and are running the ASP.NET Web Forms locally for
testing purposes, you might need to modify the path statement that points to your database, to
include the localhost: designation, prepended to the path.

Note: Your connection string should resemble something like

assembly=Borland.Data.Mssql,Version=2.0.0.0,
Culture=neutral,PublicKeyToken=91d62ebb5b0d1b1b;
vendorclient=sqloledb.dll;osauthentication=True;database=Pubs;username=;hostname=(local);
password=;
provider=MSSQL

To modify a DB2 connection
1 Enter the path to the database.
2 Enter the password and username into the appropriate fields.
3 Set the following database options, if necessary.

The default values are shown in the following table.

Option Description Default

LoginPrompt Determines if you want the user to be prompted for a login every time
the application tries to connect to the database.

False

QuoteObjects Specifies that table names, column names, and other objects should
be quoted or otherwise delimited when included in a SQL statement.
This is required for databases that allow spaces in names.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads,
but the data can be changed before the end of the transaction, resulting
in non-repeatable reads or phantom data. This specifies the value for
the BdpTransaction. IsolationLevel property.

ReadCommitted

975

4 You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Db2,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider DB2

VendorClient db2cli.dll

5 Click Test to see if the connection works.
6 Click OK to save the connection string.

To modify an Oracle connection
1 Enter the path to the database.
2 If you are deferring to your OS authentication, set OSAuthentication to True.

This means that the system defers to your local system username and password to login to the database.

3 If you are using database authentication, enter the password and username into the appropriate fields.
For example, the typical Oracle username and password for the sample database is SCOTT and TIGER,
respectively.

4 Set the following database options, if necessary.
The default values are shown in the following table.

Option Description Default

LoginPrompt Determines if you want the user to be prompted for a login every time
the application tries to connect to the database.

False

QuoteObjects Specifies that table names, column names, and other objects should
be quoted or otherwise delimited when included in a SQL statement.
This is required for databases that allow spaces in names.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads,
but the data can be changed before the end of the transaction, resulting
in non-repeatable reads or phantom data. This specifies the value for
the BdpTransaction. IsolationLevel property.

ReadCommitted

5 You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Oracle,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider Oracle

VendorClient oci.dll

6 Click Test to see if the connection works.
7 Click OK to save the connection string.

To modify an MS Access connection
1 Either enter the database name or navigate to the database on your local disk or a network drive, by clicking the

ellipsis button to browse.

976

If you have the Office Component Toolkit installed, you might find Northwind in C:\Program Files\Office
Component Toolpack\Data\Northwind.mdb.

2 Enter the username and password.
By default, you can generally try admin for the username and leave the password field empty.

3 Set the following database options, if necessary.
The default values are shown in the following table.

Option Description Default

BlobSize Specifies the upper limit of the size of any BLOB field. 1024

LoginPrompt Determines if you want the user to be prompted for a login every time
the application tries to connect to the database.

False

QuoteObjects Specifies that table names, column names, and other objects should
be quoted or otherwise delimited when included in a SQL statement.
This is required for databases that allow spaces in names, such as MS
Access.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads,
but the data can be changed before the end of the transaction, resulting
in non-repeatable reads or phantom data. This specifies the value for
the BdpTransaction. IsolationLevel property.

ReadCommitted

4 You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Msacc,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider MSAccess

VendorClient msjet40.dll

5 Click Test to see if the connection works.
6 Click OK to save the connection string.

Note: Your connection string should resemble something like

database=C:\Program Files\Office Component Toolpack\Data\Northwind.mdb;
assembly=Borland.Data.Msacc,Version=2.0.0.0,
Culture=neutral,PublicKeyToken=91d62ebb5b0d1b1b;
vendorclient=msjet40.dll;provider=MSAccess;username=admin;password=

To modify a Sybase connection
1 Enter the path to the database.
2 Enter the password and username into the appropriate fields.
3 Set the following database options, if necessary. The default values are shown in the following table.

Option Description Default

BlobSize Specifies the upper limit of the size of any BLOB field. 1024

ClientAppName Client application name set by the middle-tier application. —

977

ClientHostName Client host name set by the middle-tier application. —

LoginPrompt Determines if you want the user to be prompted for a login every time
the application tries to connect to the database.

False

PacketSize Specifies the number of bytes per network packet transferred from the
database server to the client.

512

QuoteObjects Specifies that table names, column names, and other objects should
be quoted or otherwise delimited when included in a SQL statement.
This is required for databases that allow spaces in names, such as MS
Access.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads,
but the data can be changed before the end of the transaction, resulting
in non-repeatable reads or phantom data. This specifies the value for
the BdpTransaction. IsolationLevel property.

ReadCommitted

4 You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Sybase,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider Sybase

VendorClient libct.dll

5 Click Test to see if the connection works.
6 Click OK to save the connection string.

Note: Your connection string should resemble something like

assembly=Borland.Data.Sybase,Version=2.0.0.0,Culture=neutral,
PublicKeyToken=91d62ebb5b0d1b1b;vendorclient=libct.dll;database=Pubs;
username=admin;hostname=host1;password=;provider=Sybase

978

Porting a Delphi for Win32 Web Service Client Application to Delphi
for .NET
The following steps are required to port your Delphi for Win32 Web Services client application to Delphi for .NET.

To port your web service
1 Change the existing RIO form components.
2 Change the uses clause.
3 Add a web reference.
4 Change the web service invocation code.

To change your existing form components
1 Copy and save the web reference URL from your existing RIO component.
2 Delete the HTTPRio component from the form if it was not dynamically created.

To change the uses clause
1 Remove any Delphi for Win32 SOAP units from the clause.

These include, but are not restricted to InvokeRegistry, RIO, and SOAPHTTPClient.

Warning: The preceding list of units is not inclusive. Make sure you identify all SOAP units, regardless
of naming convention. Not all of the units include the word SOAP in the name.

2 Remove the reference to the Delphi for Win32 WSDL Importer-generated Interface proxy unit.
3 Remove the proxy unit from the project.

To add a web reference
1 Open a Delphi for Win32 project in Developer Studio 2006 and choose Project Add Web Reference.

Once you have saved the project, the UDDI Browser appears.

2 Enter the URL you want to use, either a service you are already familiar with, or the one saved from your RIO
component into the list box at the top of the Browser.

Note: If you want to locate a WSDL file on your local disk, you can click the ellipsis button next to the
list box and search for the document. You can also navigate to one of the web service sites
listed in the UDDI Browser if you want to use a published service.

3 Click the Add Reference button to add the WSDL document to your project.
Developer Studio 2006 creates the necessary web reference and the corresponding proxy unit based on the
WSDL document. A new Web References node appears in the Project Manager. Expand it to see the associated
WSDL and proxy code files.

4 Choose File Use Unit.

979

To change the web service invocation code
1 In the code file for your application, locate the code that invokes the web service.

Assume it looks something like this:

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
var
 HelloService: Service3Soap;
begin

 // The next line will be slightly different if you have
 // used a component or generated the method dynamically.

 // This is how it will look if you used a component.
 HelloService := (HTTPRIO1 as Service3Soap);

 // This is how it will look if created dynamically.
 // GetService3Soap is the global method in the proxy unit.
 HelloService := GetService3Soap;

 Caption := HelloService.HelloWorld;
end;

2 Change the var section from this:

[Delphi]
var
// This is the type of the old proxy interface.
 HelloService: Service3Soap;

to

[Delphi]
var
// This is the type of the new proxy class.
 HelloService: Service3;

This assumes the name of your service is Service3. Change the name accordingly.

Note: You will see that what was formerly created as an interface is now created as a class.
The .NET Framework provides automatic garbage collection, and so certain restrictions placed
on the use of classes in previous versions of Delphi may no longer apply when using Developer
Studio 2006.

3 Change the first line in the procedure block from this:

[Delphi]
HelloService := (HTTPRIO1 as Service3Soap);

to:

[Delphi]
HelloService := Service3.Create;

The updated code should look like this:

980

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
var
 HelloService: Service3;
begin
 HelloService := Service3.Create;
 Caption := HelloService.HelloWorld;
end;

Your code is most likely more complex than this example. However, these instructions cover the basic steps for
porting any Delphi for Win32 application that uses web services to Developer Studio 2006.

981

982

Setting Permissions for XML File Use
You need to grant rights to clients who will be using your ASP.NET applications, if you want to avoid a permissions
error when using an XML file as a data source. There are two ways to do this, as described in the following
procedures.

To give users rights when the UseUniqueFileName property is false
1 Right-click the Windows Start menu and choose Explore.
2 Choose Tools Folder Options.
3 Choose the View tab.
4 Uncheck the Use Simple File Sharings option.
5 Click Apply to All Folders.
6 Click OK.
7 Locate the XML file being used in the project, then right-click and select Properties.
8 If available, select the Security tab.
9 Add user EveryOne and set Full Rights to the file.

To give users rights when UseUniqueFileName is true and user authentication is in use
1 On the Windows Control Panel User Accounts dialog, create a new user.
2 In the IIS virtual directory where your web application is built, create a new folder named CacheFiles.

Typically, your IIS virtual directories are in the C:\Inetpub\wwwroot directory.

3 Using the Windows Explorer, located the folder CacheFiles.
4 Right-click and choose Properties.
5 Choose the Security tab and add the user you created in Step 1.
6 Add Full Rights to the folder.
7 Move the XML file to this folder.
8 Set the XMLFileName property of the DBWebDataSource in your application to this file.

Note: You must make sure that the Use Simple File Sharings option in your Windows Folder Options is
unchecked.

983

984

Setting Up a Cassini Web Server
Borland distributes the CassiniWebServer as a demo, so that Delphi users can utilize it as an alternative to the
Microsoft IIS web server during development. This is because it is easy to set up, and it works well with the Delphi
debugger. Microsoft makes this managed code web server available as a free download. The following procedures
describe the general steps required to download and configure a Cassini Web Server.

To configure the CassiniWebServer:
1 Tip: .

To xxxxxxx

To xxxxxx

To xxxxxx

985

986

Troubleshooting ASP.NET Applications
Unlike traditional window-based applications, web applications are dependent on servers and resources that are not
directly within the control of the application or the user. Web applications are often hybrid combinations of client,
server, and network resources.

The areas you need to check include ASP.NET installation, IIS installation and configuration, and security. All three
of these areas are extensive and complex. The following procedures provide solutions to some of the most common
problems.

Note: The following suggestions apply only to IIS 5.1.

To troubleshoot your ASP.NET application
1 Install or reinstall ASP.NET.
2 Create or check your ASP.NET user account.
3 Install or reinstall IIS.
4 Start or restart IIS.
5 Configure IIS to recognize your application.
6 Add document types to IIS.
7 Set anonymous authentication.
8 Check your database connection, if applicable.

To install or reinstall ASP.NET
1 Choose Start Run to display the Run dialog box.
2 Type cmd /e in the Open drop down list box.
3 Click OK.
4 Change directories to c:\Windows\Microsoft.NET\Framework\v1.1.4322.
5 Enter the command aspnet_regiis.exe -i.
6 Press Enter.

Note: If you want to know the various command flags for the aspnet_regiis.exe utility, follow the basic
command with a ? character instead of the -i flag.

To create or check your ASP.NET user account
1 Choose Start Control Panel User Accounts to display the list of user accounts on your system.
2 If you do not have an ASPNET user account, create one.
3 Restart your machine.

Warning: Do not give your ASPNET user administrator privileges. This opens up a security hole in
your system and makes deployed ASP.NET applications vulnerable to hacking. Instead,
create an impersonated user.

987

To install or reinstall IIS
1 Choose Start Control Panel Add or Remove Programs.

This displays the Add or Remove Programs dialog box.

2 Click Add/Remove Windows Components.
This displays the Windows Components Wizard.

3 Check the Internet Information Services (IIS) check box.
4 Click Next.
5 Click Finish.
6 Start IIS.

To restart IIS
1 Choose Start Control Panel Administrative Tools Internet Information Services.
2 Select the local computer node.
3 Right-click and select Restart IIS....

This displays the Stop/Start/Reboot dialog.

4 Choose the task you want to accomplish from the drop down list box.
5 Click OK.

To configure IIS to recognize your application
1 In the IIS console, locate the folder or virtual directory containing your web application.

If there is not a folder or virtual directory, you will need to create a virtual directory.

2 Select the folder.
3 Right-click and select Properties.
4 Click the Virtual Directory tab.
5 Under the Application Settings area, click the Create button.

If the Remove button is displayed instead, you can remove, then create the virtual directory again, if necessary.

To add document types to IIS
1 Choose Start Control Panel Administrative Tools Internet Information Services.
2 Select Default Web Site.
3 Right-click and select Properties.
4 Click the Documents tab.
5 Click Add.

This displays the Add Default Document dialog box.

6 Add WebForm1.aspx in the Default Document Name textbox.
7 Click OK twice.

988

To set anonymous authentication
1 In the IIS console, locate the folder or virtual directory containing your web application.

If there is not a folder or virtual directory, you will need to create a virtual directory.

2 Select the folder.
3 Right-click and select Properties.
4 Click the Directory Security tab.
5 Click Edit.
6 Select the Anonymous Access check box.
7 In the User name: field, enter the name of the ASPNET user you created.
8 Check the Integrated Windows authentication check box or add your own password.
9 Click OK twice.

To check your database connection
1 Click the Data Explorer tab to display your database connections.
2 Expand the provider list to display a valid database connection.
3 Right-click and choose Modify Connection.

This displays the Connections Editor.

4 If the Database connection string does not contain the localhost specifier, prepend it to the connection string, as
in the following example:

localhost:C:\Program Files\Common Files\Borland Shared\Data\EMPLOYEE.GDB

5 Make sure all of your other connection options are set property.
6 Click Test to make sure the connection is alive.

989

990

Using the ASP.NET Deployment Manager
You can add an ASP.NET Deployment Manager to an ASP.NET application project to assist you with deploying the
application. The Deployment Manager determines which files are required for deployment, requests the destination
directory name and connection information, and then copies the files to the destination directory. The Deployment
Manager generates a list of files to copy based on the names of the files in your project directory, but you can include
or exclude files as needed.

You can use the right mouse button, when the Deployment Manager window is displayed, to see options for
displaying, copying, deleting, modifying, and filtering destination files.

When the Show Assembly References option is enabled, the Deployment Manager window displays all of the
assemblies referenced by the project. The system assemblies are shown, but disabled (grayed). These disabled
assemblies can't be deployed.

The External Files.... option allows you to pick the external files that you want to deploy. A dialog box with a check
list box is pre-populated with the BDP database libraries, since one of these often needs to be deployed. You can
also add files to the list using a File Open dialog. The list box has a column that indicates the destination
subdirectory for the external file. You can edit the destination path. The files that are checked when you click OK
will be shown in the Deployment Manager.

See the links at the end of this topic for more information about the right-click options for the Deployment Manager.

Considerations

To enable IIS debugging of Developer Studio 2006 applications , during the installation of Developer Studio
2006, the install program requested permission to update the machine.config file on your computer. If you rep
lied Yes to that prompt, Borland debugger information was written to machine.config. If you replied No to that
prompt, that debugger information is written to the application web.config file when you create an ASP.NET
application with Developer Studio 2006. Before deploying the application, you should disable debugging to
optimize the application, as described in the following procedure. Additionally, if you chose not to update
machine.config, you should remove references to the Borland debugger modules in web.config, because those
modules might not be available on the deploy target computer.
Consider maintaining a separate web.config file for deployment purposes. For example, you might maintain a
file named web.config.deploy and rename it to web.config during deployment. Use the Deployment Manager
Change Destination Filename command to rename the file.
You can create the destination directory while using the Deployment Manager, however, you will then need to
use IIS to create the virtual directory before using the application. Alternatively, you can deploy to an existing
virtual directory.
When deploying to an FTP site, the Deployment Manager will retain your FTP connection information. You may
save your FTP connection password, however, it will be saved as unencrypted, plain text.
You can add multiple Deployment Managers to an ASP.NET project and configure them to deploy to different
destination directories.
Some of the commands that are available in the Deployment Manager are also available in the Project
Manager context menu.

To remove debugger references in the web.config file
1 In the IDE or a text editor, open the web.config file that you will use for the deployed ASP.NET application.
2 In the <compilation> section, change debug="true" to debug="false".
3 Skip this step if you chose to update machine.config during the installation of Developer Studio 2006 (see the

Considerations above for details).
Remove or comment out the following references to the Borland debugger assembly and modules:

991

<assemblies>
 <add assembly="Borland.dbkasp, Version=9.0.0.1,
 Culture=neutral, PublicKeyToken=b0524c541232aae7"/>
</assemblies>

<httpModules>
 <add name="DbgConnect" type =
 "Borland.DbkAsp.DbkConnModule,Borland.dbkasp,Version=9.0.0.1,
Culture=neutral,
 PublicKeyToken=b0524c541232aae7"/>
</httpModules>

4 Save the file and recompile the application.

To deploy an ASP.NET application
1 In the IDE, open the ASP.NET application project to be deployed.
2 Choose File New Other Deployment ASP.NET Deployment and click OK. (The Deployment node

is not displayed in the New Items dialog box unless an ASP.NET project is open.)
The Deploy tab is displayed and a .bdsdeploy file is added to the project directory and displayed in the Project
Manager. The files required for deployment are listed on the left side of the Deploy tab under Source Files.

Tip: Only files that have been saved are displayed in the list; save any new files and refresh the
Deployment Manager to display the files.

3 In the Destination drop-down list, select either Folder Location or FTP Location.
If you select Folder Location, the Browse For Folder dialog box is displayed. You can select an existing
directory or click Make New Folder to create a new one.

If you select FTP Location, the FTP Site dialog box is displayed. Enter the connection information. Click Help
for an explanation of each field.

Click OK to return to the Deployment Manager.

4 If you selected an FTP location, check the Connected check box to connect and display the files, if any, in the
destination directory.

5 Review the files in the Source Files list.
Click a file to display detailed file information in the text box below the file list.

6 To copy all of the files to the destination directory, click the Copy All New or Modified Files to Destination
button on the toolbar at the top of the Deployment Manager. The files are copied immediately to the
destination directory and displayed in the Destination Files list.
To modify the file list, right-click anywhere in the file list and use the context menu commands, or use the file list
status buttons, as described below.

Tip: To select a file in the list, click the file name. To select multiple files, press CTRL and click the
files. To select a range of files, press CTRL+SHIFT, click the first file in the range and then the last
file in the range.

Context Menu Command Description

Refresh Redisplays the Deployment Manager to reflect changes in the file
lists.

992

Copy Selected File(s) to Destination Copies the selected files to the destination directory.

Delete Selected Destination File(s) Deletes the selected files from the destination directory after
displaying a confirmation prompt for each file.

Change Destination Filename Displays a dialog for renaming the selected file in the destination
directory.

Copy All New and Modified Files to Destination Copies all of the files marked with to the destination directory.

This command is also available on the Deployment Manager
toolbar and by right-clicking the .bdsdeploy node in the Project
Manager.

Delete All Destination Files Not in Project Deletes any of the files marked with from the destination
directory after displaying a confirmation prompt for each file.

Show Ignored Groups and Files Displays all of the files in the project directory, even those that
are not required to deploy the application.

Ignore Group(s) Causes the selected file to be ignored by the Deployment
Manager.

Ignore File(s) Causes all of the files in a node of the source files list to be ignored
by the Deployment Manager.

Enable Logging Logs the operations performed by the Deployment Manager in a
file named DeployLog.txt in the project directory.

View Log Displays the log file in the default text editor.

7 When you are satisfied with the deployment criteria, save your changes to the .bdsdeploy file.
When you reopen the project, you can open the Deployment Manager from the Project Manager and deploy
the application as is, or modify the deployment criteria as described above.

The following buttons indicate the status of the files in the file list and can be used to copy or delete the file, as
described below.

File List Status Button Description

The file is elligible to copy (it does not exist in the destination directory, or the source file has changed
since it was last copied to the destination).

Click the button to copy the file to the destination directory.

The file exists in the destination directory, but not in the project directory. You can probably safely
delete it from the destination directory.

Click the button to delete the file from the destination directory.

The status of the file in the is unknown. It might have a later time stamp than the file in the project
directory.

Click the button to replace the file in the destination directory.

To create an IIS virtual directory for a new destination directory
1 Open IIS on the computer where you deployed the application.

On Windows XP, for example, choose Start Control Panel Administrative Tools Internet Information
Services.

2 In the Internet Information Services dialog box, expand the tree view to display the local computer node.
3 Right-click the Default Web Site node and choose New Virtual Directory.

993

The Virtual Directory Creation Wizard is displayed.

4 Follow the prompts on each page of the wizard to create the virtual directory.

For more information about virtual directories, refer to the IIS online Help system.

994

Using the DB Web Control Wizard
The DB Web Control Wizard helps you create a data-aware web control based on a standard web control.

To start the DB Web Control Wizard
1 Choose File New Other Delphi for .NET Projects DB Web Control Library.

Note: You can also use the separate DB Web Control Wizard for C#. It works identically to the wizard
described here.

This displays the New DB Web Control Wizard.

2 Enter a name for the control in the Control Name textbox.
3 Select Bind to DataTable.

This informs the wizard to add to the control file code that implements IDBWebDataLink. This interface defines
the means to access data source and table information.

4 Select Bind to DataColumn if you want to bind to a column, for instance, if your control supports a single type
of data.
This informs the wizard to add to the control file code that implements IDBWebColumnLink. This interface defines
the means to access a column in the table accessed by way of IDBWebDataLink.

5 If you select Bind to DataColumn and your control is one of the lookup controls, such as a listbox, radio button
group, or check box control, and you want the new control to be a lookup control also, check the Supports
Lookup check box.
This informs the wizard to add to the control file code that implements IDBWebLookupColumnLink. This interface
defines the means to access the lookup table, the text field and value field of the column accessed by way of
IDBWebColumnLink.

The DB Web Control Wizard creates a template file and displays it in the Code Editor. You then modify this file to
inherit from a specific DB Web control.

995

996

Using the HTML Tag Editor
When you are creating or editing an HTML file, you can use the Tag Editorwindow, beneath the Designer. The Tag
Editor lets you review and modify HTML tags while viewing the corresponding controls in the Designer window,
above it. The Tag Editor allows you to use the Code Completion, Error Insight, and Code Template
Completion features that are also available in the Code Editor. Refer to the links at the end of this topic for more
information about using each of these features.

TheTag Editor works with one tag at a time, unless you have the Document object selected or you have zoomed
out from a tag. (You'll see the item "DOCUMENT" on the Object Inspector when the document object is selected).

The zoom buttons allow you to zoom out to a tag's parent and zoom back in to the selected child tag. Zooming isn't
specific to the tag, it's more generic to the markup in the document itself. For example, if the cursor is on a tag in
your HTML markup, and you use the Zoom command, it will take you to the outer tag, or one level above the attribute
where the cursor is positioned.

Validation against standard HTML style rules occurs automatically. If validation fails, the incorrect element is
highlighted in red in the Designer and Error Insight will appear in the Tag Editor to help you correct the problem.

To view HTML code for an individual control
1 With the Designer displayed, drag an HTML element from the Tool Palette to the Designer surface.

The Tag Editor displays the HTML code.

2 To view the individual control's code, click anywhere on the Designer surface to deselect the control.
The HTML code appears in the tag editor window, with syntax highlighting. The gray header of the tag editor now
displays the higher level tag, usually the FORM tag that defines this particular Web Form.

Note: If a control is defined using several lines of HTML code, when you select the control, the first
line of the code is displayed in the gray header of the tag editor. The additional code appears
below in the tag editor window.

To view the HTML code for all controls
1 With the Designer displayed, drag several HTML elements from the Tool Palette to the Designer surface.

The editor displays the HTML code for each element as you drop them on the Designer surface.

2 Click anywhere on the Designer surface to deselect all controls.
This displays the code for all the controls in the tag editor, with syntax highlighting.

To modify a control
1 Click anywhere on the Designer surface to deselect all controls.
2 Locate the tag that corresponds to the control you want to modify.
3 Modify the code, and the change is immediately reflected in the control on the Designer surface.
4 Save your project to make the modifications permanent.

To change editor properties
1 Choose Tools Options HTML/ASP.NET Options.
2 Change any code editor properties.

997

3 Click OK.
Your changes take effect immediately.

To zoom between contents of the form and the form container
1 To zoom out so that you can view the HTML form definition, click the left-hand blue arrow in the gray header of

the tag editor.

Note: You can only use this feature when the cursor is somewhere in the tag editor, rather than on
the Designer surface.

2 To zoom in so that you can view only the content within the FORM tags, click the right-hand blue arrow in the
gray header of the tag editor.

Note: You can only use this feature when the cursor is somewhere in the tag editor, rather than on
the Designer surface.

To close the Tag Editor
1 Choose Tools Options HTML/ASP.NET Options.
2 Uncheck the Display Tag Editor option.
3 Click OK.

998

Working with ASP.NET User Controls
User controls provide a way to reuse common user interface functionality across ASP.NET web applications. For
example, you might create user control that encapsulates a login screen. You could then add the user control to any
Web Form that requires the login screen functionality. For more information about user controls, click the link at the
end of this topic.

To create an ASP.NET user control
1 Open an ASP.NET application.
2 Choose File New Other Delphi for .NET Projects New ASP.NET Files and double-click on

ASP.NET User Control.
A new .ascx file is added to the Project Manager and the empty page is displayed in the Designer.

Optionally, rename the .ascx file by right-clicking it in the Project Manager and choosing Rename. Any
associated files, such as the .pas or .resx files, are also renamed.

3 Design the page by adding controls, setting properties, and adding code to the code-behind .pas file as needed.
4 Save and compile the project.

To add an ASP.NET user control to a Web Form
1 Open the Web Form to which you want to add the user control. Make sure the Designer is displayed.
2 Choose Insert Insert User Control to display the Insert User Control dialog box.
3 Select a user control from the drop-down list or use the Browse button to navigate to a user control file (.ascx).
4 Click OK to add the user control to the Web Form.
5 Optionally, in the Object Inspector, provide a descriptive name for the user control button with the Id property.
6 Save and compile the project.

The Web Form is displayed in the browser and the user control button is replaced with its encapsulated controls.

Tip: The runtime appearance of the user control depends on the appearance of the encapsulated page and controls,
not the position of the user control button. If you are adding multiple user controls to a page, run the application
to ensure that the controls do not overlap each other.

999

Database Procedures

1000

Adding a New Connection to the Data Explorer
You can add new connections to the Data Explorer, which persist as long as the connection object exists.

To add a new connection
1 Choose View Data Explorer.

This displays the Data Explorer.

2 Select a provider from the tree list.
3 Right-click to display a pop-up menu.
4 Choose Add New Connection.

This displays the Add New Connection dialog.

5 Enter the name of the new connection.
6 Click OK.

Tip: If you need to modify your new connection settings, right-click on your new connection and scroll down to
modify a connection. A Connection Editor dialog appears. Enter your connection settings and click OK.

1001

1002

Adding Aggregate Values with DBWebAggregateControl
You can use DBWebAggregateControl to apply one of several standard aggregation functions to a data column.
The control displays the aggregate value in a text box, which also support a linked caption.

To create and configure a DBWebAggregateControl
1 Create a new ASP.NET web application and add your database connection, data adapter, dataset, and

DBWebDataSource component to the application..
2 Set the Active property of BdpDataAdapter to True.
3 Place a DBWebAggregateControl component on the Web Form Designer.
4 Set the DBDataSource property of the DBWebAggregateControl to your DBWebDataSource1, which is the

default name of the DBWebDataSource component.
5 Set the TableName property.
6 Choose the AggregateType property value from the drop down list.
7 Choose the ColumnName property from the drop down list.

The text box is filled with the value based on the type of aggregate you selected and the values in the column
you selected.

Note: If you think there may be NULL values in your selected column, set the IgnoreNullValues
property to True, otherwise you may get an error.

To set the caption for DBWebAggregateControl
1 In the Object Inspector enter the caption in the Caption property field.
2 Choose a position from the CaptionPosition property drop down list.

1003

1004

Adding an BDP Reconcile Error dialog to your BDP Application
You can modify your BDP applications to call the BDP Reconcile Error dialog to handle an update exception (as
occurs sometimes when two people are trying to simultaneously update the same row of a database table).

To add a BDP Reconcile Error dialog:
1 Add a BDPDataAdapter component to your existing WinForm.
2 Choose the Events tab on the Object Inspector window
3 Double-click in the content section of the blank pull-down list next to the OnUpdateError event. This will populate

the first level of the pull-down list. It will also create the code for the BdpDataAdapter method definition and
implementation.

4 Add the lines that are in bold below to the method implementation to handle the event (the following example is
using the C# language):

private void bdpDataAdapter1_OnUpdateError(object sender, Borland.Data.
Common.BdpUpdateErrorEventArgs e)
 {
 Borland.Data.Common.ReconcileErrorForm f = new Borland.Data.
Provider.ReconcileErrorForm(e);
 f.ShowDialog();
 }

5 Save the changes to your WinForm.

The BDP Reconcile Error dialog will now appear whenever one user is trying to modify data in the same row of a
database that another user is working on. The dialog works as follows. As each row in a table is updated

Your new Error Reconcile Form will display four columns in the upper portion of the window, and six radio buttons
in the bottom portion of the window. The following table describes each of the columns.

Column Label Meaning

Column Name The names of the columns of the table in which an error has occurred.

Current Row The contents of the row that is currently in contention.

Original Row What the row contained before the contentious data was entered.

Server Row The last update that was saved to the Server. (This represents what the row contains on the server.)

The three radio buttons on the lower left portion of the window allow you to indicate how to continue processing after
handling the error. You can only choose one option from the following three choices.

Radio Button Label Meaning

Retry update using primary key The error will be cleared, and then the update will be attempted again with the primary key.
If the data row from the server cannot be found, this option will be disabled.

Skip current row and continue Choose this option when you have decided not to attempt to update changes for the current
row, but you want to try to update the rest of the rows.

Abort updates The latest updates will not be applied, and error will be cleared, but no more updates will be
attempted.

1005

The three radio buttons in the lower right portion of the window allow you to indicate which data to write to the
database. You can only choose one option from the following three choices.

Radio Button Label Meaning

Use original values Place the data from the Original Row column (described previously) into the row where the contention
occurred.

Use server values Place the data from the Server Row column, (described previously) into the row where the contention
occurred.

Use current values Place the data from the Current Row column, (described previously) into the row where the contention
occurred.

1006

Binding Columns in the DBWebGrid
There may be times when you want to modify the order in which columns appear in a DBWebGrid control. You can
accomplish this task by binding columns manually, from within the Property Builder.

To open the Property Builder
1 Start a new ASP.NET application.
2 Add a data provider.
3 Add a DBWebDataSource object and connect it to a generated dataset.
4 Add a DBWebGrid control to your Web form.
5 Click the Property Builder Designer verb, located at the bottom of the Object Inspector.

This displays the Property Builder.

To change column order
1 On the Property Builder, click the General tab.
2 Set the DataSource to the DBWebDataSource, or to the dataset the DBWebDataSource points to.
3 Click the Columns tab.
4 Select the columns you want to appear in the Available Columns list.
5 Click the right-arrow button to add the columns to the Selected Columns list.
6 Rearrange the column order, if you like, in the Selected Columns list.
7 You can change the column heading name as it appears in the grid by changing the Header text.
8 Click Apply.
9 Click OK.

Warning: If you choose to bind columns in this way, you must set the AutoGenerateColumns property
to False. Setting this property to True raises a runtime error, and does not allow the visible
restriction of columns at designtime. If the same column is bound to a grid more than once,
you may get a runtime error.

1007

1008

Browsing a Database in the Data Explorer
Once you have a live connection, you can use the Data Explorer to browse database objects.

To browse database objects
1 Choose View Data Explorer.
2 Expand a provider node to expose the list of available connections.
3 Expand a connection node to view the list of database objects (tables, views, and procedures).

Note: If you receive an error because your connection is not live, you should refresh your provider,
and/or modify your connection.

To retrieve data from the database
1 Expand a connection in the Data Explorer.
2 Double-click a table name or view name to retrieve data.

This operation returns a result set into a tabbed Data Explorer page in the Code Editor.

Tip: You can also select a table in the Data Explorer and right-click to display a pop-up menu with a
Retrieve Data From Table command.

To run a stored procedure
1 Choose View Data Explorer.
2 Expand a connection in the Data Explorer and locate a stored procedure.
3 Double-click the stored procedure to view its parameters.

The parameters open in a separate page on the design surface.

4 Edit input parameters as necessary.
5 Click the Execute button in the top left corner of the page to execute the procedure.

The result set appears in a datagrid.

Tip: You can also select a procedure in the Data Explorer and right-click to display a pop-up menu
with an Execute command.

1009

1010

Building a Database Application that Resolves to Multiple Tables
Developer Studio 2006 supports multi-table resolution with BDP.NET. Specifically, the DataSync and DataHub
components are designed to provide and resolve a .NET DataSet from multiple heterogeneous data sources. In
addition, these components support the display of live data at designtime, and provide and resolve master-detail
data by generating optimal SQL for resolving to BDP data sources.

The DataHub acts as a conduit between a DataSet and a DataSync. The DataPort property for a DataHub can be
set to any IDataProvider implementation. DataSync implements IDataProvider and has a Providers collection that
can contain any .NET data provider that implements IDbDataAdapter. The GetData method for DataSync iterates
through all the DataProviders in the collection and returns a DataSet. SaveData resolves DataSet changes back to
the database through the DataProvider collection. While resolving changes through a BdpDataAdapter the resolver
generates optimal SQL. For non-BDP data providers, their respective CommandBuilder is used.

Building a database application that resolves multiple tables consists of the following steps:

1 Create a simple database project from the Data Explorer with multiple BdpDataAdapter objects to connect to
multiple providers

2 Add and configure a DataSync component to connect the providers
3 Add and configure a DataHub component to connect the DataSync to a DataSet

To create a database project from the Data Explorer
1 Choose File New Windows Forms Application for either Delphi for .NET or C#.

The Windows Forms designer appears.

2 Choose View Data Explorer to access the Data Explorer.
3 Expand the Data Explorer Tree to expose the providers and database tables you want to use.

You must have a live connection to expand provider nodes. If you do not have a live connection, you may need
to modify the connection string.

4 Drag and drop tables from one or more providers onto your form.
For each table you drag onto your form, a BdpConnection and a BdpDataAdapter appear in the component tray.

If you add multiple tables from the same provider, you can delete all but one BdpConnection for that provider.

5 Configure each BdpDataAdapter component.
There is no need to set the Active or DataSet properties, as the DataSet will be populated by the DataHub
component.

6 Add a DataSet component to your form from the Data Components category of the Tool Palette.
7 Add and configure a DataGrid component to your form from the Data Controls category of the Tool Palette.

Set the DataSource property for the DataGrid to the name of the added DataSet component (for example,
dataSet1).

To add and configure a DataSync component
1 Drag a DataSync component onto your form from the Borland Data Provider category of the Tool Palette.
2 In the Component Tray, select the DataSync component.
3 In the Object Inspector, select the Providers property, and click the ellipsis button to open the DataProvider

Collection Editor.
4 In the the DataProvider Collection Editor, add a DataProvider for each table you want to provide and resolve.

1011

You should have a DataProvider for each BdpDataAdapter in your project.

5 For each DataProvider, select the DataProvider in the Members pane, and set the DataAdapter property to the
appropriate BdpDataAdapter.

6 When you have finished configuring your DataProviders, click OK to close the DataProvider Collection Editor.
7 In the Object Inspector, set the CommitBehavior property to specify how failures are handled during resolving.

There are three options for resolving logic:

Atomic—transactions are attempted for each provider. If a transaction fails, no further transactions are
attempted, and all preceding transactions are rolled back. If there are no failed transactions, all transactions are
committed.
Individual—a transaction is attempted for a provider, and if it succeeds, it is committed. The next transaction is
attempted, and if it succeeds, it is committed, and so on. If a transaction fails for a provider, that transaction is
rolled back, and no further transactions are attempted.
ForceIndividual—a transaction is attempted for a provider, and if it succeeds, it is committed. The next
transaction is attempted, and if it succeeds, it is committed, and so on. If a transaction fails for a provider, that
transaction is rolled back, and the next transaction is attempted.

To add and configure a DataHub component
1 Drag a DataHub component onto your form from the Borland Data Provider category of the Tool Palette.
2 In the Component Tray, select the DataHub component.
3 In the Object Inspector, set the DataPort property to the added DataSync component (for example, DataSync1).
4 Set the DataSet property to the added DataSet (for example, dataSet1)
5 Choose Run Run.

The application compiles and displays a Windows Form with a DataGrid.

1012

Building a Distributed Database Application
Data remoting is fundamental to developing distributed database applications. The .NET remoting technology
provides a flexible and extensible framework for interprocess communication. With .NET remoting you can interact
with objects in different application domains, in different processes running on the same machine, or in different
machines on a network.

Using the RemoteServer and RemoteConnection components, you can easily migrate a client/server application
that uses DataHub and DataSync components to a multi-tier DataSet remoting application. RemoteServer
implements IDataService and publishes itself as a singleton server activated object (SAO). On the client side, the
RemoteConnection properties form the URL for connecting to the RemoteServer. Channel specifies the protocol to
use (TCP/IP or HTTP), Port specifies the port on which the RemoteServer is listening for requests, and URI refers
to the unique resource identifier for the RemoteServer.

Building a distributed application with data remoting components consists of the following steps:

Build a server-side Windows Forms application with one or more connections to a BDP.NET data provider, a
DataSync component to collect the connections and set the commit behavior, and a RemoteServer component
to set the communication protocol and URI for communicating with clients
Build a client-side Windows Forms application with RemoteConnection component with properties to specify
the connection to the server-side application, a DataHub component for passing data to and from a DataSet,
and a DataGrid to display the data

Note: The RemoteServer component is hosted in Windows Forms applications without adding any additional code
manually.

To create the server-side application
1 Choose File New Windows Forms Application for either Delphi for .NET or C#.

The Windows Forms designer appears.

2 Choose View Data Explorer to access the Data Explorer, and expand the Data Explorer Tree to expose
the providers and database tables you want to use.
You must have a live connection to expand provider nodes. If you do not have a live connection, you may need
to modify the connection string.

3 Drag and drop tables from one or more providers onto your form.
For each table you drag onto your form, a BdpConnection and a BdpDataAdapter appear in the component tray.
If you add multiple tables from the same provider, you can delete all but one BdpConnection for that provider.

4 Configure each BdpDataAdapter component.
There is no need to set the Active or DataSet properties, as the DataSet will be populated by the DataHub
component on the client-side.

5 Drag a DataSync component onto your form from the Borland Data Provider category of the Tool Palette, and
configure the following DataSync properties in the Object Inspector:

Property Description

Providers Specifies a collection of DataProviders to use as data sources. Click the ellipsis button to open
the DataProvider Collection Editor, and add a DataProvider for each table you want to provide
and resolve.

CommitBehavior Specifies the logic (Atomic, Individual, or ForceIndividual) for handling failures during resolving.

6 Drag a RemoteServer component onto your form from the Borland Data Provider category of the Tool
Palette, and configure the following RemoteServer properties in the Object Inspector:

1013

Property Description

DataSync Specifies the DataSync that needs remoting. Select the DataSync from the drop-down list in the
Object Inspector.

AutoStart Specifies whether or not to start the remote server automatically when the application runs. Set this
property to True.

ChannelType Specifies the channel type: Http (HTTP) or Tcp (TCP/IP). Select the channel type from the drop-
down list in the Object Inspector.

Port Specifies the port the remote server will be listening on. Enter a new value, or accept the default
port value, 8000.

URI Specifies the universal resource identifier for the remote server. By default, the URI property is the
same as the Name property.

7 Choose Run Run to start the server-side application.

To create the client-side application
1 Choose File New Windows Forms Application for either Delphi for .NET or C#.

The Windows Forms designer appears.

2 Drag a DataSet component onto your form from the Data Components category of the Tool Palette.
3 Drag a DataGrid component to your form from the Data Controls category of the Tool Palette, and set the

DataSource property for the DataGrid to the name of the added DataSet component (for example, dataSet1).
4 Drag a RemoteConnection component onto your form from the Borland Data Provider category of the Tool

Palette, and configure the following RemoteConnection properties in the Object Inspector:

Property Description

ProviderType Specifies the type of provider published by the remote server. In this case, the property should be
set to Borland.Data.Provider.DataSync. If the remote server is running, you can select this value
from the drop-down list. Otherwise, you must enter the value.

ChannelType Specifies the channel type: Http (HTTP) or Tcp (TCP/IP). Select the channel type from the drop-
down list in the Object Inspector. This should match the setting for the remote server.

Host The name or IP address of the remote server.

Port Specifies the port the remote server will be listening on. Enter a new value, or accept the default
port value, 8000. This should match the setting for the remote server.

URI Specifies the universal resource identifier for the remote server. This should match the URI property
for the RemoteServer component in the remote server application.

5 Drag a DataHub component onto your form from the Borland Data Provider category of the Tool Palette, and
configure the following DataHub properties in the Object Inspector:

Property Description

DataPort Specifies the data source. Set the DataPort property to the added RemoteConnection component (for
example, RemoteConnection1).

DataSet Specifies the DataSet to hold the data retrieved from the specified data source. Set this property to the
added DataSet (for example, dataSet1).

6 Choose Run Run.

1014

The application compiles and displays a Windows Form with DataGrid.

1015

1016

Building a Windows Forms Database Application
The following procedure describes the minimum number of steps required to build a simple ADO.NET application
using Windows Forms and BDP.NET. After generating the required connection objects, the project displays data in
a DataGrid.

BDP.NET includes component designers to facilitate the creation of database applications. Instead of dropping
individual components on a designer, configuring each in turn, use BDP.NET designers to rapidly create and
configure database components. The following procedure demonstrates the major components of Windows Forms,
ADO.NET, and BDP.NET at work. To instantiate and configure a data provider, you can also drag and drop objects
from the Data Explorer, which is a tabbed window on the right-hand side of the IDE.

Building a BDP.NET project consists of three major steps:

1 Configure BDP.NET connection components and a data source.
2 Create and configure a BdpDataAdapter.
3 Connect a DataGrid to the connection components.

To configure connection components and a data source
1 Choose File New Windows Forms Application for either Delphi for .NET or C#.

The Windows Forms designer appears.

2 Drag and drop a BdpConnection component onto the Designer.
The BdpDataAdapter, BdpConnection, and other BDP.NET components can be found on the Tool Palette in the
Borland Data Provider area.

3 At the bottom of the Object Inspector, click the Designer Verb Connection Editor.

Note: Designer verbs are action phrases that appear in the lower left-hand corner of the Object
Inspector. When you move the cursor over the phrase, the cursor changes to a hand pointer.

4 Click Add to add a new connection.
5 Choose a provider type from the Provider Name drop down list box.
6 Type the name of the provider.
7 Click OK.
8 Set up the connection.
9 Click OK.

Tip: Alternatively, use Data Explorer to drag and drop a table on to the designer surface. Data Explorer sets the
connection string automatically.

To set up a connection
1 Click the Connections Editor Designer Verb at the bottom of the Object Inspector.
2 In the Borland Data Provider: Connections Editor dialog box, select an existing connection from the

Connections list or add a new connection.
3 In Connection Settings, enter the Database path.

1017

Tip: If using Interbase, you would enter the path to your Interbase database, which may be located
locally in c:\Program Files\Common Files\Borland Shared\Data. If connecting to a
shared network location, you will need to enter the network path and you will need to have access
rights for that remote server.

4 Complete the UserName and Password fields for the database as needed.

Tip: If you are using a sample Interbase database, the username and password are, respectively,
sysdba and masterkey.

5 Click Test to confirm the connection.
A dialog appears indicating the status of the connection.

6 Click OK.

To create and configure a data adapter
1 From the Tool Palette, drag and drop a BdpDataAdapter component onto the Designer.
2 In the Object Inspector, expand the SelectCommand property in the Fill area.
3 Select the connection object from the Connection property drop down list box.
4 Click the Configure Data Adapter designer verb.

This displays the Data Adapter Configuration editor.

5 On the Command tab, select a table from the Tables list.
6 Select one or more columns from the Columns list.
7 Click Generate SQL.

To create a dataset
1 To make sure you get the data you want, click the Preview Data tab on the Data Adapter Configuration editor.
2 Click Refresh.

Column and row data should appear. If they don't appear, it may be that you either do not have a live connection
to a database or your SQL statement is incorrect.

3 Click the DataSet tab.
4 Click New DataSet.
5 Either accept the default name or enter a more descriptive name.
6 Click OK.

A new DataSet component appears in the Component Tray at the bottom of the IDE.

To connect a DataGrid to a DataSet
1 In the Component Tray, select the BdpDataAdapter.
2 In the Live Data area of the Object Inspector, set the Active property to True.
3 Drag and drop a DataGrid component from the Data Controls area of the Tool Palette onto the Designer. If

necessary, select the DataGrid object.
4 In the Object Inspector, select the DataSource property drop-down from the Data area.

1018

5 Select the DataSet component that you generated previously (the default is dataSet1).
6 In the Object Inspector, select the DataMember property drop-down.
7 Select the appropriate table.

The DataGrid displays data from the DataSet.

8 Choose Run Run.
The application compiles and displays a Windows Form with DataGrid.

While presenting a minimum number of steps required to build an ADO.NET project, the preceding procedure
demonstrates the major components of the Windows Forms, ADO.NET, and BDP.NET architectures at work,
including: connections, datasets, and adapters. The adapter connects to the physical data source by way of a
connection, sending a command that reads data from the data source and populates a dataset. Once populated, a
datagrid displays data from the dataset.

Alternatively, use the Data Explorer to create and manage database connections.

1019

1020

Building an Application with DB Web Controls
The following procedures describe the minimum number of steps required to build a simple ASP.NET database
application using DB Web Controls and BDP.NET. After generating the required connection objects, the project
displays data in a DBWebGrid with a DBWebNavigator. Additional information is provided for other common DB
Web Controls.

Users should already be familiar with creating an ASP.NET project using BDP.NET.

Building the simple ASP.NET application with DB Web Controls and BDP.NET consists of three major steps:

1 Prepare an ASP.NET project with BDP.NET or other connection components.
2 Drag and drop a DBWebDataSource onto the Designer and set its DataSource property to a DataSet, DataView

or DataTable.
3 Drag and drop a DBWebGrid and other control onto the Designer.

To prepare an ASP.NET project for DB Web Controls
1 Create an ASP.NET project.
2 Set up BDP.NET or other data access components, setting the DataSource property to an existing DataSet,

DataView, or DataTable.

Tip: For more information about setting up BDP.NET data access components, see the related
procedure for building an ASP.NET database application. Instead of using a DataGrid and adding
a DataBind call, in the following procedure you use DB Web Controls without a DataBind call.

To configure a DBWebDataSource
1 Place a DBWebDataSource component on the Designer.
2 In the Object Inspector, select the DataSource property.
3 Select an existing data source (by default, this is called dataSet1).

To configure DB Web Controls
1 Place a DBWebNavigator component on the Designer.
2 In the Object Inspector, select a data source in the DBDataSource property drop-down.
3 In the Object Inspector, select a DataTable from the TableName property drop-down.

Tip: If no TableName is available, verify that the BdpDataAdapterActive property is set to True.

4 Place a DBWebGrid on the Designer.
5 In the Object Inspector, select the data source from the DBDataSource property drop-down.
6 In the Object Inspector, select a DataTable from the TableName property drop-down.

The grid displays data.

7 Place other DB Web Controls as needed.
8 Set the values for DBDataSource, TableName, and other properties as appropriate.

1021

Note: For data-aware Column Controls (such as DBWebTextBox, DBWebImage, DBWebMemo, and
DBWebCalendar) additionally set the ColumnName property. For data-aware lookup controls
(such as DBWebDropDownList, DBWebListBox, and DBWebRadioButtonList), also set the
LookupTableName, the DataTextField, and the DataValueField properties.

9 Choose Run Run.
The application compiles and the HTTP server displays a Web Form with a DBWebGrid displaying data.

Tip: Dragging web components from the Tool Palette places them in an absolute position on an ASP.NET web
form. Double-clicking components in the Tool Palette leaves them in ASP.NET flow layout. Flow layout is
much easier to manage. For instance, controls in an absolute position on a web form can overwrite other
controls if they change sizes at runtime. Overwriting might occur when you add rows to and remove rows from
a grid control, making the grid control change size.

1022

Building an ASP.NET Database Application
The following procedure describes the minimum number of steps required to build a simple ASP.NET database
application using BDP.NET. After generating the required connection objects, the project displays data in a DataGrid.

BDP.NET includes component designers to facilitate the creation of database applications. Instead of dropping
individual components on a designer, configuring each in turn, use BDP.NET designers to rapidly create and
configure database components. The following procedure demonstrates the major components of ASP.NET, ADO.
NET, and BDP.NET at work.

Building an ASP.NET application with BDP.NET components consists of four major steps:

1 Create an ASP.NET project.
2 Configure BDP.NET connection components and a data source.
3 Add a DataBind call.
4 Connect a DataGrid to the connection components.

Tip: For testing purposes, use the employee.gdb database included with Interbase, if included with your version of
the product.

To create an ASP.NET project
1 Choose File New ASP.NET Web Application for either Delphi for .NET or C#.

The New ASP.NET Application dialog appears.

2 In the Name field, enter the name of your project.
3 In the Location field, enter the project path.

Tip: Most ASP.NET projects reside in the IIS directory: Inetpub\wwwroot.

To change Web server settings (optional)
1 In the New ASP.NET Application dialog, click View Server Options

The dialog expands to show additional server options.

2 Set the various read and write attributes of the project as needed or accept the defaults.

Tip: In most cases, the default settings will suffice.

3 Click OK.
The Web Forms Designer appears.

To configure data components
1 Drag and drop a BdpDataAdapter component onto the Designer. If necessary, select BdpDataAdapter.
2 In Object Inspector, select Configure Data Adapter.

The Data Adapter Configuration dialog appears.

3 If necessary, select the Command tab. From the Connection drop-down, select New Connection.

1023

4 The Borland Data Provider: Connections Editor dialog appears.

Tip: Alternatively, use Data Explorer to drag and drop a table on to the Designer surface. Data
Explorer sets the connection string automatically.

To set up a connection
1 In Borland Data Provider: Connections Editor, select the appropriate item from the Connections list.
2 In Connection Settings, enter the Database path.

Note: If referring to a database on the local disk, prepend the path with localhost:. If using Interbase,
for example, you would enter the path to your Interbase database: localhost:C:\Program Files
\Borland\Interbase\Examples\Database\employee.gdb (or whatever the actual path might be
for your system).

3 Complete the UserName and Password fields for the database as needed.
4 Click Test to confirm the connection.

A dialog appears confirming the status of the connection.

5 Click OK to return to the Borland Data Provider: Connections Editor dialog.
6 Click OK to return to the Data Adapter Configuration dialog.

In the Command tab, the areas for Tables and Columns are updated with information from your connection.

To set a command
1 In the Select area, enter an SQL command.

Tip: For Interbase's employee.gdb database, you might enter select * from SALES, as an example.

2 Click the Preview Data tab.
3 Click Refresh.

Column and row data appear.

4 Click the DataSet tab.
5 Confirm that New DataSet is selected.
6 Click OK.

New components for DataSet and BdpConnection appear on the Designer.

7 Select BdpDataAdapter component.
8 In Object Inspector, select the Active property drop-down and set the value to True.

To connect a DataGrid to a DataSet
1 Drag and drop a DataGrid web control onto the Designer. If necessary, select DataGrid.
2 In Object Inspector, select the DataSource property drop-down. Select the DataSet component that you

generated previously (the default is DataSet1).
3 In Object Inspector, select the DataMember property drop-down. Select the appropriate table.

1024

The DataGrid displays data from the DataSet.

To add a DataBind call
1 Use the Object Inspector drop-down to select the Web Form (WebForm1 is the default).
2 In Object Inspector, select the Events tab.
3 Set the Load event to Page_Load.
4 In Object Inspector, double-click Page_Load.

The code-behind Designer appears, cursor in place between event handler brackets.

5 Code the DataBind call:

[C#]
this.dataGrid1.DataBind();

[Delphi]
Self.dataGrid1.DataBind();

Note: If you are using data aware controls, for instance from a third-party provider, you may not need
to code the DataBind call.

6 Choose Run Run.
The application compiles and the HTTP server displays a Web Form with the datagrid.

While presenting a minimum number of steps required to build a database project, the preceding procedure
demonstrates the major components of the ASP.NET, ADO.NET, and BDP.NET architectures at work, including:
providers, datasets, and adapters. The adapter connects to the physical data source via a provider, sending a
command that will read data from the data source and populate a dataset. Once populated, a datagrid displays data
from the dataset.

Once created, use other BDP.NET designers to modify and maintain the components of your project.

1025

1026

Creating a Briefcase Application with DB Web Controls
You can use DB Web Controls, XML caching, and the BDP.NET data adapters to create server-side briefcase
applications. You can only create this type of application when using user authentication, to guarantee that each
user has a unique copy of the XML file.

To create a briefcase application
1 Create a BDP.NET application.
2 Add a DBWebDataSource control and link to the BDP DataSet.
3 Configure the DBWebDataSource control to generate XML and XSD files.
4 Configure the AutoUpdateCache and UseUniqueFileName properties.
5 Configure an OnApplyChangesRequest to call the BdpDataAdapterAutoUpdate method.
6 Run the application.

To configure the AutoUpdateCache and UseUniqueFileName properties
1 Build a standard ASP.NET database application using the BDP.NET components and the DBWebDataSource

component.
2 Specify XML and XSD filenames for non-existent files in the DBWebDataSource component.

Note: It is best to create these files in the project directory or in a subdirectory of the project directory,
typically on your web server.

3 Set AutoUpdateCache to True.
4 Set UseUniqueFileName to True.
5 Select the Events tab for the DBWebDataSource component.
6 Double-click the OnApplyChangesRequest field to display the event handler in the Code Editor.
7 Add the following code:

BdpDataAdapter1.AutoUpdate;

8 Choose Run Run.
The first time the application runs, it creates the XSD file using the server metadata.

The first time a user runs the application, the application retrieves data from the server. When the user changes
data, thereafter, the application saves those changes to the server in a unique filename based on the username. If
the user shuts down the application and runs it again at a later time, the application restores the user's specific data.
At this point, the user can undo or modify the data. Anytime the OnApplyChangesRequest is called successfully,
the application deletes the unique user files and creates new ones.

Warning: If the tables or columns accessed by the application are altered after the application has run, you must
delete the XSD file to avoid a mismatch between the XSD file and the server metadata. Otherwise, you
can experience runtime errors and unpredictable behavior.

1027

1028

Creating an XML File for DB Web Controls
You can use XML files as your data source, particularly if you want to prototype applications without reading from
and writing to a database. First you must create the XML file. The DBWebDataSource control provides a powerful
way to create the XML file based on real database data. This procedure assumes that you can create a connection
to a live database containing the data you want to use.

To create and use an XML file
1 Create an ASP.NET application using DB Web Controls.
2 Specify the XML file as a data source for a new ASP.NET application.

To create an ASP.NET application using DBWeb Controls
1 Choose File New ASP.NET Web Application for either Delphi for .NET or C#.
2 Create a database connection and data adapter using the BDP.NET controls or other data adapter controls.
3 Drag and drop a DBWebDataSource control onto the Designer from the DB Web area of the Tool Palette.
4 In the XMLFileName property or in the XMLSchemaFile property, specify a new file name of a file that does not

yet exist.
5 Generate a DataSet from the data adapter.
6 Set the DataSource property of the DBWebDataSource to dataSet1.
7 Set the Active property of the data adapter to True.
8 Choose Run Run.

This runs the application but also creates the XML file or XSD file and fills it with data from the DataSet.

To specify the XML file as a data source for a new ASP.NET application
1 Choose File New ASP.NET Web Application for either Delphi for .NET or C#.
2 Drag and drop a DataSet component onto the Designer from the Data Components area of the Tool Palette.
3 Drag and drop a DBWebDataSource control onto the Designer from the DB Web area of the Tool Palette.
4 Specify the existing XML file name in the XMLFileName property of the DBWebDataSource control.

Note: If you created an XSD file instead of an XML file, you specify the XSD file name in this step.

5 Specify the DataSet component in the DataSource property of the DBWebDataSource control.
6 Drag and drop a DBWebGrid control onto the Designer from the DB Web area of the Tool Palette.
7 Set the DBDataSource property of the DBWebGrid to the name of the DBWebDataSource
8 Choose Run Run to display the application.

The application pulls data from the DataSet and XML file to fill the DBWebGrid.

Warning: It is possible for you to specify an existing XML file in the XMLFileName property of your
DBWebDataSource along with an active BdpDataAdapter and its DataSet. You can run the application
and the DBWeb controls will display the data from the XML file. However, this is not the intended use or
behavior of the XML capabilities of the DBWebDataSource. Although your XML file data may display
properly, the results of an update or any other operations on the data will be unpredictable.

1029

1030

Creating Database Projects from the Data Explorer
You can drag and drop data from the Data Explorer to any forms such as Windows Forms or Web Forms, and
Global.asax files. to populate datasets and quickly build a database project. This allows you to automatically hook
up database components to your project and eliminates the need to provide a connection string, which can be prone
to errors if entered manually.

To create a database project from the Data Explorer
1 Make sure you have a live connection to a database.
2 From the View menu, select Data Explorer.
3 Choose File New Other and select a Delphi for .NET project.

Typically, this will be either a Windows Form, a VCL Form, or an ASP.NET application.

4 Expand the Data Explorer Tree by drilling down to the Table or View level.
If the connection to your database is live, the small red x will disappear when you expand the connection node
for the database. If it's not live, you may need to modify the connection string.

5 Using the cursor, grab one of the tables named in the list.
6 Drag and drop the table object onto your form.

A BdpConnection and a BdpDataAdapter appear in the component tray.

7 Specify the appropriate database properties for each database component.
For instance, set the Active property to True if you want to be able to view data in your component at design time.

Note: A DataGrid will not appear automatically so make sure you drop a DataGrid component onto your form to
appropriately display data, when necessary.

1031

1032

Creating Metadata for a DataSet
When you choose to use an XML file for a data source in an ASP.NET application using DB Web Controls, you may
need to create the metadata to structure the XML data in your DataSet. If you chose to create an XML file without
an XML schema file (.xsd), you need to manually create the metadata. This procedure assumes that you have already
created an XML file containing data.

To set up the application
1 Choose File New ASP.NET Web Application for either Delphi for .NET or C#.
2 Drag and drop a DBWebDataSource control onto the form.
3 Drag and drop a DataSet component onto the form.
4 Click the ellipsis button (...) next to the XMLFileName property of the DBWebDataSource and locate your XML file.
5 Select the DataSet component in the Component Tray.
6 Click the Tables (Collection) property to display the Tables Collection Editor.

To create the metadata
1 Click Add to add a new table to the collection.

For the sake of illustration, we'll use the following XML records.

<?xml version="1.0" standalone="yes"> /// XML Declaration
<NewSongs>

 /// <song> becomes the table name in your DataSet.
 <song>

 /// <songid> becomes Column1 in your DataSet.
 <songid>1001</songid>

 /// <title> becomes Column2 in your DataSet.
 <title>Mary Had a Little Lamb</title>
 </song>
 <song>
 <songid>1003</songid>
 <title>Twinkle, Twinkle Little Star</title>
 </song>
</NewSongs>

2 Change the TableName property to song.
3 Click the Columns (Collection) property to display the Columns Collection Editor.
4 Click Add to add a new column.
5 Change the ColumnName property to songid.
6 Click Add to add another new column.
7 Change the ColumnName property to title.
8 Click Close to close the Columns Collection Editor.
9 Click Close to close the Tables Collection Editor.

You have now created the metadata to match the XML file data.

1033

1034

Creating Table Mappings
Using the TableMappings property, you can map columns between a data source and an in-memory dataset. This
allows you to use different, often more descriptive names for your dataset columns. You can also map a column in
a database table to a column in the dataset different from that which is selected by default. The TableMappings
property also allows you to create a dataset that contains fewer or more columns than those retrieved from the
database schema.

To create a table mapping
1 Create an application.
2 Add and configure database components.
3 Set the table mappings in the TableMappings dialog.

Note: This procedure assumes you are using BDP.NET database components.

To create an application
1 Choose File New Windows Forms Application for either Delphi for .NET or C#.
2 Click the Data Explorer tab to display your data sources.
3 Expand the list and locate a live data source.
4 Drag-and-drop a table name onto your Windows Form to add a data source to your application.

You should see two objects in the Component Tray: a BdpDataAdapter and a BdpConnection.

For more information about how to create database applications, refer to the additional ADO.NET and database
topics in this Help system.

To configure the database components
1 Select the BdpDataAdapter icon in the Component Tray.
2 Click the Configure Data Adapter designer verb to open the Data Adapter Configuration dialog.
3 Select the DataSet tab.
4 Click the New DataSet radio button.
5 Click OK.

This creates a new dataset and displays an icon for it in the Component Tray.

To set table mappings
1 Select the BdpDataAdapter icon in the Component Tray.
2 Double-click the Collections field for the TableMappings property in the Object Inspector.

This displays the TableMappings dialog.

3 If you want to use an existing dataset as a model for the columns, check the Use a dataset to suggest table
and column names check box.
This provides you with a list of column names from an existing dataset based on the schema of that dataset. The
column names are not linked to anything when you use this process.

1035

4 If you checked the Use a dataset to suggest table and column names check box, you can choose the dataset
from the DataSet drop down list.

5 Select the source table from the Source table drop down list.
If there is more than one table in the data source, their names appear in the drop down list.

6 If you chose to use a dataset to suggest table and column names, and that dataset contains more than one table,
you can select the table you want to use from the Dataset table drop down list.
The column names from the source table and from the dataset should appear in the Column mappings grid.
As they are displayed by default, they represent the mapping from source to dataset; in other words, the data
adapter reads data from each column named on the left side of the grid and stores the data in the dataset column
named in the corresponding field on the right side of the grid. You can change the names on either side by typing
new names or by selecting different tables. This allows you to store queried data into different dataset columns
than the ones created in the dataset by default.

7 If you want to modify a mapping, type a new name in the Dataset table column next to the target Source table
column.
This results in the data from the Source table column being stored in the new dataset column.

Note: If you want to reset the column names so that the dataset columns match the data source
columns, you can click the Reset button.

To delete a mapping
1 Select the grid row that you want to delete.
2 Click Delete.

This will cause the query to ignore that column in the source table and to not fill the dataset column with any data.

1036

Executing SQL in the Data Explorer
You can write, edit, and execute SQL in an SQL Window, which is available from within the Data Explorer.

To open a SQL Window
1 Choose View Data Explorer.
2 Select a connection.
3 Right-click the connection and choose SQL Window.

This opens a tabbed SQL Window in the Code Editor.

To execute SQL
1 Enter a valid SQL statement or stored procedure name in the multi-line text box at the top of the SQL Window.
2 Click Execute SQL.

If the SQL statement or stored procedure is valid, the result set appears in the bottom pane of the SQL Window.

Note: The SQL statement or stored procedure must operate against the current connection and its
target database. You cannot execute SQL against a database to which you are not connected.

3 Click Clear All SQL to clear the SQL statement or stored procedure from the multi-line text box.

1037

1038

Handling Errors in Table Mapping
Whenever you perform any type of comparison function between a data source and an in-memory data
representation, there is potential for error. Errors can occur when a data source and its corresponding dataset do
not share uniform numbers of columns, or when column types in a data source do not correspond to the column
types in the dataset. In addition, other, internal errors can occur for which there is no designtime workaround. You
can use both the MissingMappingAction property and the MissingSchemaAction property to respond to errors in
your table mapping operations. Use the MissingMappingAction when you want to specify how the adapter should
respond when the mapping is missing. Use the MissingSchemaAction when you want to specify how the adapter
should respond when it tries to write data to a column that isn't defined in the dataset.

To set the MissingMappingAction property
1 Once you have created a BdpDataAdapter and have set up your table mappings, click the drop down list next to

the MissingMappingAction property in the Object Inspector.
2 Select Passthrough if you want the adapter to load the data source column data into a dataset column of the

same name, or, if there is no corresponding dataset column, if you want the adapter to perform the action specified
in the MissingSchemaAction property.

3 Select Ignore if you want to keep data from being loaded when data source columns are not properly mapped
to dataset columns.
This could occur if mapped columns are of incompatible data types, lengths, or have other errors.

4 Select Error if you want the adapter to raise an error that you can trap.

To set the MissingSchemaAction property
1 Select Add if you want the data source table or column added to the dataset and its schema.

Setting the MissingMappingAction property to Passthrough and the MissingSchemaAction to Add results in a
duplication of data source table and column names in the dataset.

2 Select AddWithKey if you want the data source table or column added to the dataset and its schema along with
the table's or column's primary key information.

3 Select Ignore if you don't want a table or column added to the dataset, when that table or column aren't already
represented in the dataset schema.
Specify Ignore when you want the dataset loaded only with data explicitly specified in the table mappings. This
may be necessary if your adapter calls a stored procedure or a user-defined SQL statement that returns more
columns than are defined in the dataset.

4 Select Error if you want the adapter to raise an error that you can trap.

1039

1040

Migrating Data Between Databases
The DataExplorer makes it easy to migrate data from one database to another, and even between providers. The
DataExplorer lets you quickly copy a table from one database and paste it into another database. Both the structure
and the data for the table or tables is migrated.

Data migration is supported by the BdpCopyTable class, which is available as a designtime component from the
Tool Palette. You can use this component to programmatically migrate data.

Note: The BdpCopyTable class does not copy foreign keys or dependent objects.

To migrate multiple tables
1 Choose View Data Explorer.
2 Right-click a provider type, such as Interbase, and choose Migrate Data.

The Data Explorer page for data migration opens in the Code Editor. This data migration page lets you select
one or more tables from a source provider connection and a destination connection to which the tables will be
migrated.

3 Choose a connection from the Source Connection drop-down list box.
The tables associated with this connection appear in the list box beneath the connection.

4 Choose a connection from the Destination Connection drop-down list box.
The tables associated with this connection appear in the list box beneath the connection.

5 Select one or more tables to migrate from the list of tables associated with the source connection.
To select consecutive tables, click the first table, press and hold down the SHIFT key, and then click the last table.
To select nonconsecutive tables, press and hold down CTRL, and then click each table.

6 Click the Include (>) button to include these tables for migration to the destination connection.
The selected tables appear in the list of tables for the destination connection. If one of the selected tables has
the same name as a table in the destination connection, it cannot be migrated.

7 Click Migrate to copy the tables to the destination connection.
The Data Migration page shows the progress as SQL types are mapped, tables are created, data is retrieved
from the source connection, and data is populated in the new table in the destination connection. The result of
each operation is reported for each table.

8 Right-click the Tables node in the destination provider and choose Refresh.
Nodes for any new tables appear.

9 Double-click a new table node to confirm its structure and contents.
The table opens in a page on the design surface.

To migrate a single table
1 Choose View Data Explorer.
2 Expand the Tables node in the source provider, and select the database table containing the data and structure

you want to migrate.
You must have a valid connection to expand the provider nodes.

3 Right-click the table you want to migrate and choose Copy Table.
4 Expand the Tables node of the provider into which you want to migrate the data.

1041

5 Right-click any table and choose Paste Table.
The New Table Name dialog box appears.

6 Enter a name for the new table and click OK.
7 Right-click the Tables node in the destination provider and choose Refresh.

A node for the new table appears.

8 Double-click the new table node to confirm its structure and contents.
The table opens in a page on the design surface.

1042

Modifying Connections in the Data Explorer
You can modify connections in a variety of ways from the Data Explorer.

To modify connections
1 Choose View Data Explorer.
2 Select a provider.
3 Right-click to display a pop-up menu to view your options.

To refresh a connection
1 Choose View Data Explorer.
2 Select a provider.
3 Right-click to display a pop-up menu.
4 Choose Refresh.

This operation reinitializes all connections defined for the selected provider.

To delete a connection
1 Choose View Data Explorer.
2 Select a connection.
3 Right-click to display a pop-up menu.
4 Choose Delete Connection.

This displays a confirmation message that asks if you want to delete the connection.

5 Click OK.

To modify a connection
1 Choose View Data Explorer.
2 Select a connection.
3 Right-click to display a pop-up menu.
4 Choose Modify Connection.

This displays the Connections Editor dialog.

5 Make changes to the appropriate values in the editor.
6 Click OK.

To close a connection
1 Choose View Data Explorer.
2 Select a connection.
3 Right-click to display a pop-up menu.
4 Choose Close Connection.

1043

If the connection is open, this operation closes it.

Note: If the Close Connection command is disabled in the menu, the connection is not open.

To rename a connection
1 Choose View Data Explorer.
2 Select a connection.
3 Right-click to display a pop-up menu.
4 Choose Rename Connection.

This displays Rename Connection dialog.

5 Enter a new name.
6 Click OK.

The Data Explorer displays the connection with its new name.

1044

Modifying Database Connections
The basic elements of a connection string tend to be the same from one database type to another. However, each
database type supports slightly different connection string syntax. This topic addresses those differences.

To modify different types of database connections
1 Click on the Data Explorer tab in the IDE.
2 Select the database type of your choice.
3 Right-click to display the popup menu.
4 Choose Modify Connection to display the Connections Editor.

The properties in the Connections Editor are organized into three categories: Connections, Options, and Provider
Settings. The Connections options designate the database and authentication parameters. The Options area
includes various database-specific database options, including transaction isolation types. The Provider Settings
area specifies assemblies and the client libraries required to accomplish the connection to the given database.

Note: All of the procedures in this topic assume that you already have installed a database client,
server, or both, and that the database instance is running.

To modify an InterBase connection
1 Either enter the database name or navigate to the database on your local disk or a network drive, by clicking the

ellipsis button to browse.
The standard supplied databases are typically installed into C:\Program Files\Common Files\Borland
Shared\Data.

2 Enter the password and username.
By default, these are masterkey and sysdba, respectively.

3 Set the following options, if necessary.
The default values are shown in the following table.

Option Description Default

CommitRetain Commits the active transaction and retains the transaction context
after a commit.

False

LoginPrompt Determines if you want the user to be prompted for a login every time
the application tries to connect to the database.

False

QuoteObjects Specifies that table names, column names, and other objects should
be quoted or otherwise delimited when included in a SQL statement.
This is required for databases that allow spaces in names, such as MS
Access.

False

RoleName If there is a role for you in the database, you can enter the rolename
here. The role is generally an authentication alias, that combines your
identify with your access rights.

myRole

ServerCharSet Specifies the character set on the server. —

SQLDialect Sets or returns the SQL dialect used by the client. 3

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads,
but the data can be changed before the end of the transaction, resulting

ReadCommitted

1045

in non-repeatable reads or phantom data. This specifies the value for
the BdpTransaction. IsolationLevel property.

WaitOnLocks Specifies that a transaction wait for access if it encounters a lock
conflict with another transaction.

False

4 You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Interbase,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token
#

Provider Interbase

VendorClient gds32.dll

5 Click Test to see if the connection works.
6 Click OK to save the connection string.

Note: If you are writing ASP.NET applications, and are running the ASP.NET Web Forms locally for
testing purposes, you might need to modify the path statement that points to your database, to
include the localhost: designation. For example, you would modify the path shown earlier
in this topic as such: localhost:C:\Program Files\Common Files\Borland Shared
\Data\employee.gdb.

Note: Your connection string should resemble something like

database=C:\Program Files\Common Files\Borland Shared\Data\EMPLOYEE.GDB;
assembly=Borland.Data.Interbase,Version=2.0.0.0,
Culture=neutral,PublicKeyToken=91d62ebb5b0d1b1b;
vendorclient=gds32.dll;provider=Interbase;username=sysdba;password=masterkey

To modify an MS SQL Server connection
1 Enter the database name in the Database field of the Connections Editor.

For example, use one of the sample MS SQL Server databases, such as Pubs or Northwind. There is no need
to add the file extension to the name.

2 Enter the hostname.
If you are using a local database server, enter (local) in this field.

3 If you are deferring to your OS authentication, set OSAuthentication to True.
4 If you are using database authentication, enter the password and username into the appropriate fields.

By default, the SQL Server database username is sa.

5 Change the database options if necessary.
The default values are shown in the following table.

Option Description Default

BlobSize Specifies the upper limit of the size of any BLOB field. 1024

LoginPrompt Determines if you want the user to be prompted for a login every time
the application tries to connect to the database.

False

1046

QuoteObjects Specifies that table names, column names, and other objects should
be quoted or otherwise delimited when included in a SQL statement.
This is required for databases that allow spaces in names, such as MS
Access.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads,
but the data can be changed before the end of the transaction, resulting
in non-repeatable reads or phantom data. This specifies the value for
the BdpTransaction. IsolationLevel property.

ReadCommitted

6 You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Mssql,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider MSSQL

VendorClient sqloledb.dll

7 Click Test to see if the connection works.
8 Click OK to save the connection string.

Note: If you are writing ASP.NET applications, and are running the ASP.NET Web Forms locally for
testing purposes, you might need to modify the path statement that points to your database, to
include the localhost: designation, prepended to the path.

Note: Your connection string should resemble something like

assembly=Borland.Data.Mssql,Version=2.0.0.0,
Culture=neutral,PublicKeyToken=91d62ebb5b0d1b1b;
vendorclient=sqloledb.dll;osauthentication=True;database=Pubs;username=;hostname=(local);
password=;
provider=MSSQL

To modify a DB2 connection
1 Enter the path to the database.
2 Enter the password and username into the appropriate fields.
3 Set the following database options, if necessary.

The default values are shown in the following table.

Option Description Default

LoginPrompt Determines if you want the user to be prompted for a login every time
the application tries to connect to the database.

False

QuoteObjects Specifies that table names, column names, and other objects should
be quoted or otherwise delimited when included in a SQL statement.
This is required for databases that allow spaces in names.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads,
but the data can be changed before the end of the transaction, resulting
in non-repeatable reads or phantom data. This specifies the value for
the BdpTransaction. IsolationLevel property.

ReadCommitted

1047

4 You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Db2,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider DB2

VendorClient db2cli.dll

5 Click Test to see if the connection works.
6 Click OK to save the connection string.

To modify an Oracle connection
1 Enter the path to the database.
2 If you are deferring to your OS authentication, set OSAuthentication to True.

This means that the system defers to your local system username and password to login to the database.

3 If you are using database authentication, enter the password and username into the appropriate fields.
For example, the typical Oracle username and password for the sample database is SCOTT and TIGER,
respectively.

4 Set the following database options, if necessary.
The default values are shown in the following table.

Option Description Default

LoginPrompt Determines if you want the user to be prompted for a login every time
the application tries to connect to the database.

False

QuoteObjects Specifies that table names, column names, and other objects should
be quoted or otherwise delimited when included in a SQL statement.
This is required for databases that allow spaces in names.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads,
but the data can be changed before the end of the transaction, resulting
in non-repeatable reads or phantom data. This specifies the value for
the BdpTransaction. IsolationLevel property.

ReadCommitted

5 You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Oracle,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider Oracle

VendorClient oci.dll

6 Click Test to see if the connection works.
7 Click OK to save the connection string.

To modify an MS Access connection
1 Either enter the database name or navigate to the database on your local disk or a network drive, by clicking the

ellipsis button to browse.

1048

If you have the Office Component Toolkit installed, you might find Northwind in C:\Program Files\Office
Component Toolpack\Data\Northwind.mdb.

2 Enter the username and password.
By default, you can generally try admin for the username and leave the password field empty.

3 Set the following database options, if necessary.
The default values are shown in the following table.

Option Description Default

BlobSize Specifies the upper limit of the size of any BLOB field. 1024

LoginPrompt Determines if you want the user to be prompted for a login every time
the application tries to connect to the database.

False

QuoteObjects Specifies that table names, column names, and other objects should
be quoted or otherwise delimited when included in a SQL statement.
This is required for databases that allow spaces in names, such as MS
Access.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads,
but the data can be changed before the end of the transaction, resulting
in non-repeatable reads or phantom data. This specifies the value for
the BdpTransaction. IsolationLevel property.

ReadCommitted

4 You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Msacc,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider MSAccess

VendorClient msjet40.dll

5 Click Test to see if the connection works.
6 Click OK to save the connection string.

Note: Your connection string should resemble something like

database=C:\Program Files\Office Component Toolpack\Data\Northwind.mdb;
assembly=Borland.Data.Msacc,Version=2.0.0.0,
Culture=neutral,PublicKeyToken=91d62ebb5b0d1b1b;
vendorclient=msjet40.dll;provider=MSAccess;username=admin;password=

To modify a Sybase connection
1 Enter the path to the database.
2 Enter the password and username into the appropriate fields.
3 Set the following database options, if necessary. The default values are shown in the following table.

Option Description Default

BlobSize Specifies the upper limit of the size of any BLOB field. 1024

ClientAppName Client application name set by the middle-tier application. —

1049

ClientHostName Client host name set by the middle-tier application. —

LoginPrompt Determines if you want the user to be prompted for a login every time
the application tries to connect to the database.

False

PacketSize Specifies the number of bytes per network packet transferred from the
database server to the client.

512

QuoteObjects Specifies that table names, column names, and other objects should
be quoted or otherwise delimited when included in a SQL statement.
This is required for databases that allow spaces in names, such as MS
Access.

False

TransactionIsolation Shared locks are held while the data is being read to avoid dirty reads,
but the data can be changed before the end of the transaction, resulting
in non-repeatable reads or phantom data. This specifies the value for
the BdpTransaction. IsolationLevel property.

ReadCommitted

4 You should be able to accept the defaults for the following Provider Settings:

Option Default

Assembly Borland.Data.Sybase,Version=Current Product Version,Culture=neutral,PublicKeyToken=Token #

Provider Sybase

VendorClient libct.dll

5 Click Test to see if the connection works.
6 Click OK to save the connection string.

Note: Your connection string should resemble something like

assembly=Borland.Data.Sybase,Version=2.0.0.0,Culture=neutral,
PublicKeyToken=91d62ebb5b0d1b1b;vendorclient=libct.dll;database=Pubs;
username=admin;hostname=host1;password=;provider=Sybase

1050

Passing Parameters in a Database Application
The following procedures describe a simple application that allows you to pass a parameter value at runtime to a
DataSet. Parameters allow you to create applications at design time without knowing specifically what data the user
will enter at runtime. This example process assumes that you already have your sample Interbase Employee
database set up and connected. For purposes of illustration, this example uses the default connector IBConn1, which
is set to a standard location. Your database location may differ.

To pass a parameter
1 Create a data adapter and connection to the Interbase employee.gdb database.
2 Add a text box control, a button control, and a data grid control to your form.
3 Configure the data adapter.
4 To add a parameter to the data adapter.
5 Configure the data grid.
6 Add code to the button Click event..
7 Compile and run the application.

To create a data adapter and connection
1 Choose File New Windows Forms Application for either Delphi for .NET or C#.

The Windows Forms designer appears.

2 Click on the Data Explorer tab and drill down to find the IBConn1 connection under the Interbase node.
3 Drag and drop the EMPLOYEE table onto the Windows Form.

This creates a BdpDataAdapter and BdpConnection and displays their icons in the Component Tray.

4 Select the data adapter icon, then click the Configure Data Adapter designer verb in the Designer Verb area
at the bottom of the Object Inspector.
This displays the Data Adapter Configuration dialog.

5 Rewrite the SQL statement that is displayed in the Select tab of the dialog to:

SELECT EMP_NO, FIRST_NAME, LAST_NAME, SALARY FROM EMPLOYEE WHERE FIRST_NAME = ?;

As you can see, this statement is limiting the number of fields. It also contains a ? character as part of the Where
clause. The ? character is a wildcard that represents the parameter value that your application passes in at
runtime. There are at least two reasons for using a parameter in this way. The first reason is to make the
application capable of retrieving numerous instances of the data in the selected columns, while using a different
value to satisfy the condition. The second reason is that you may not know the actual values at design time. You
can imagine how limited the application might be if we retrieved only data where FIRST_NAME = 'Bob'.

6 Click the DataSet tab.
7 Click New DataSet.
8 Click OK.

This creates the DataSet that represents your query.

1051

To add a parameter to the data adapter
1 Select the data adapter icon, then expand the properties under SelectCommand in the Fill area of the Object

Inspector.
You should be able to see your Select statement in the SelectCommand property drop down list box.

2 Change the ParameterCount property to 1.
3 Click the (Collection) entry next to the Parameters property.

This displays the BdpParameter Collection Editor.

4 Click Add to add a new parameter.
5 Rename the parameter to emp.
6 Set BdpType to String, DbType to Object, Direction to Input, Source Column to FIRST_NAME, and

ParameterName to emp.
7 Click OK.
8 In the Object Inspector, set the Active property under Live Data to True.

To add controls to the form
1 Drag and drop a TextBox control onto the form.
2 Drag and drop a Button onto the form.
3 Change the Text property of the button to Get Info.
4 Drag and drop a DataGrid data control onto the form.
5 Arrange the controls how you want them to appear, making sure that the DataGrid is long enough to display four

fields of data.

To configure the data grid
1 Select the data grid.
2 Set the DataSource property to the name of the DataSet (dataSet1 by default).
3 Set the DataMember property to Table1.

This should display the column names of the columns specified in the SQL statement that you entered into the
data adapter.

To add code to the button Click event
1 Double-click the button to open the Code Editor.
2 In the button1_Click event code block, add the following code:

[C#]
bdpSelectCommand1.Close();
/* This closes the command to make sure that we will pass the parameter to */
/* the most current bdpSelectCommand. */

 bdpDataAdapter1.Active = false;
/* This clears the data adapter so that we don't maintain old data */

 bdpSelectCommand1.Parameters["emp"].Value = textBox1.Text;
/* This sets the parameter value to whatever value is in the text field. */

1052

 bdpDataAdapter1.Active = true;
/* This re-activates the data adapter so the refreshed data appears in the data grid. */

[Delphi]

Self.bdpSelectCommand1.Close();
/* This closes the command to make sure that we will pass the parameter to */
/* the most current bdpSelectCommand. */

 Self.BdpDataAdapter1.Active := false;
/* This clears the data adapter so that we don't maintain old data */

 Self.bdpSelectCommand1.Parameters['emp'].Value := textBox1.Text;
/* This sets the parameter value to whatever value is in the text field. */

 Self.BdpDataAdapter1.Active := true;
/* This re-activates the data adapter so the refreshed data appears in the data grid. */

If you have changed the names of any of these items, you need to update these commands to reflect the new
names.

3 Save your application.

To compile and run the application
1 Press Shift + F9 to compile the application.
2 Press F9 to run the application.
3 Type one of the names John, Robert, Roger, Kim, Terri, Katherine, or Ann into the text box.
4 Click the button.

This displays the employee number, first name, last name, and salary of the employee with that name in the data
grid. If there is more than one person with the same first name, the grid displays all occurrences of employees
with that name.

1053

1054

Using Standard DataSets
The standard DataSet provides an in-memory representation of one or more tables or views retrieved from a
connected data source. Because of the level of indirection used in coding the underlying data structure, you are only
able to see the column names from your data source at runtime. When you generate a DataSet, it retrieves everything
you specified in your Select statement in the Data Adapter Configuration dialog. You can limit your columns by
changing the Select statement and creating a new DataSet.

To use DataSets
1 Generate a DataSet.
2 Add multiple tables to a DataSet.
3 Define primary keys for DataTables in the DataSet.
4 Define column properties for your DataSet columns.
5 Define constraints for your columns.
6 Define relationships between tables in your DataSet.

To generate a DataSet
1 From the Data Explorer, select a data source.
2 Drill down in the tree, then drag and drop the name of a table onto your Windows Form or Web Form.

This creates the BdpDataAdapter and BdpConnection for that data source and displays icons for those objects
in the Component Tray.

Note: You can also drag a data source only onto the form, rather than a table, but in that case,
Developer Studio 2006 creates only a connection object for you. You must still create and
configure the BdpDataAdapter object explicitly.

3 Click the BdpDataAdapter icon (named bdpDataAdapter1, by default) to select it.
4 Click the Configure Data Adapter designer verb in the Designer Verb area at the bottom of the Object

Inspector.
This displays the Data Adapter Configuration dialog.

5 If the SQL statement that is pre-filled on the dialog is acceptable, click the DataSet tab, otherwise, modify the
SQL statement, then click the DataSet tab.

6 Select the New DataSet radio button.

Tip: You can accept the default name or change the name of the DataSet.

7 Click OK to generate the DataSet.
A DataSet icon appears in the Component Tray indicating that your DataSet has been created.

Note: By reviewing the code for the DataSet in the Code Editor, you can see that the columns are
defined as generic dataColumns, whose columnName properties are assigned the value of the
column name from the database table. This differs from how a typed DataSet is constructed,
wherein the object name is constructed from the actual database column name, rather than
assigned as a property value.

1055

To add multiple tables to one DataSet
1 From the Data Explorer, select a data source.
2 Drill down in the tree, then drag and drop the names of multiple tables, one at a time, onto your Windows Form

or Web Form.
This creates the BdpDataAdapter for each table and one BdpConnection for that data source and displays icons
for those objects in the Component Tray.

3 Click the BdpDataAdapter icon (named bdpDataAdapter1, by default) to select it.
4 Click the Configure Data Adapter designer verb in the Designer Verb area at the bottom of the Object

Inspector.
This displays the Data Adapter Configuration dialog.

5 If the SQL statement that is pre-filled on the dialog is acceptable, click the DataSet tab, otherwise, modify the
SQL statement, then click the DataSet tab.

6 Select the New DataSet radio button.

Tip: You can accept the default name or change the name of the DataSet.

7 Click OK to generate the DataSet.
A DataSet icon appears in the Component Tray indicating that your DataSet has been created.

8 Repeat the Data Adapter configuration for each of the other data adapters, but select Existing Data Set on the
DataSet tab when generating the DataSets for all data adapters except the first one you configure.
This generates a DataTable for each data adapter and stores them all in one DataSet.

Note: It is also possible to generate multiple DataSets, either one for each data adapter, or
combinations of DataTables.

To define primary keys for each DataTable in the DataSet
1 Select each data adapter in turn and set the Active property under Live Data in the Object Inspector to True.
2 Select the DataSet in the Component Tray.
3 In the Object Inspector, in the Tables property, click the ellipsis button.

This displays the Tables Collection Editor. If you have set all of the data adapters' Active properties to True,
the Tables Collection Editor will contain one member for each DataTable stored in the corresponding DataSet.

4 Select a table from the members list.
5 In the Primary Key field in the Table Properties, click on the DataColumn[] entry to display a pop-up list of column

names.
6 Click the gray check box next to the column name of the column or columns that comprise the Primary Key.

The number 1 appears in the gray check box when selected.

7 Define Column properties and Constraints for your Primary Key columns.

To define column properties for your DataSet columns
1 In the Tables Collection Editor, click the (Collections) entry next to Columns in the Table Properties pane.

This displays the Columns Collection Editor for the selected column.

2 Set the property values for the individual columns.

1056

3 Repeat the process for each column.

To define constraints for your columns
1 In the Tables Collection Editor, click the (Collections) entry next to Constraints in the Table Properties pane.

This displays the Constraints Collection Editor for the selected column.

2 Click Add to add either a Unique Constraint or a Primary Key Constraint.
3 If you selected Unique Constraint, the Unique Constraint dialog appears. Select one or more of the displayed

column names. You can also select the Primary Key check box if you want to set the column as a primary key.
By setting the Unique Constraint on a column, you are enforcing the rule that all values in the column must be
unique. This is useful for columns that contain identification numbers, such as employee numbers, social security
numbers, part numbers, and so on.

Note: If you have already defined a primary-foreign key relationship between two tables, you may not
be able to set a column as a primary key, based on the fact that it may already be set as the
primary key, or based on a conflict with another relationship.

4 If you selected Foreign Key Constraint, the Foreign Key Constraint dialog appears. Select the tables you want
to relate by choosing them from the Parent table and Child table drop down lists.

5 Click Key Columns to select the primary key column from the list.
6 Click Foreign Key Columns to select the foreign key column from the list.

Warning: The primary key and foreign key columns must have the same data type and must contain
unique values. Columns that can contain duplicates are not good choices for primary or
foreign keys. It is common to choose the same column name from each table for your
primary-foreign key relationship.

To define relationships between tables in the DataSet
1 Once you have defined primary keys for each DataTable, select the DataSet in the Component Tray if it is not

already selected.
2 Click the ellipsis button next to the Relations property in the Object Inspector.

This displays the blank Relations Collection Editor dialog.

3 Click Add.
This displays the Relation editor dialog

4 From the Parent table and Child table dropdown lists, choose the tables you want to relate.
5 Click the Key Columns field to choose a Primary Key column from the list of column names from the parent table.
6 Click the Foreign Key Columns field to choose a Foreign Key column from the list of column names from the

child table.

Note: If you have already performed this procedure while setting constraints for your DataTables, you
may find that all of the appropriate values are already established.

Warning: The primary key and foreign key columns must have the same data type and must contain
unique values. Columns that can contain duplicates are not good choices for primary or

1057

foreign keys. It is common to choose the same column name from each table for your
primary-foreign key relationship.

7 Click OK.
8 Repeat the process to define additional relations between the same DataTables.

1058

Using the Command Text Editor
In order to create a DataSet, your BdpDataAdapter needs to have at least a SQL Select statement defined for the
CommandText property. This statement, once built, appears as the CommandText of the BdpCommand object for
the BdpDataAdapter. You can enter this Select statement manually, or you can use the Command Text Editor to
construct the statement, along with Update, Insert, and Delete statements, using a simple point-and-click
mechanism. Using this method, once you have a connection to a live data source, you will be able to see the names
of tables and columns in the Command Text Editor. You can pick from listboxes to build the statement. Also, if you
create your BdpDataAdapter using the Data Explorer and a live connection to a data source, a boilerplate Select
statement is created for you in the form select * from tablename. You can use this statement to return all
rows from the named data source, or you can modify the statement prior to generating the DataSet.

To generate the commands
1 Select a connection from the Connection drop-down list box. This must be a BdpConnection you have already

defined. Your associated BdpDataAdapter object must also be defined and must have the DataSet Active
property set to True.
This populates the Tables and Columns list boxes with data from the database.

2 Select a table from the Tables list box.
3 Select each column that you want to appear in your SQL statements.

As you select the column names, they appear in the SQL text box.

4 Select the check box next to each statement type you want to generate.
5 Click the Generate SQL button.

1059

1060

Using the Connection Editor Designer
Each connection object can support multiple named connections. These connections can represent connections to
multiple databases and database types.

To add a new connection
1 Select an existing BdpConnection component in the designer, or drop a BdpConnection component onto the

designer to create a new object.
2 Click the component designer tab at the bottom of the Object Inspector to display the Connection Editor dialog.
3 Click Add to display the Add New Connection dialog.
4 Select a provider from the Provider Name drop-down list box.
5 Enter a new name for the connection in the Connection Name text box.
6 Click OK.
7 Enter the appropriate values for your particular data source.
8 Click OK.

To remove a connection
1 Select the connection type until it is highlighted.
2 Click Remove.

A Confirm Delete dialog box appears.

3 Click Yes.

To rename a connection
1 Right-click on the connection and choose Rename.
2 Type the new name of the connection.
3 Click OK.

1061

1062

Using the Data Adapter Designer
The Data Adapter contains, at a minimum, a SQL Select statement of the SELECT command property. You can
enter this statement yourself, or using the Data Adapter designer you can construct the Select, along with the
Update, Insert, and Delete statements. The BdpCommandBuilder constructs the Update, Insert, and Delete
statements based on the tables and columns you have selected. The Data Adapter designer uses a live connection
to retrieve metadata from which you can build the appropriate SQL statements for manipulating the data you want
to move from a DataSet back into your database.

To invoke the commands
1 Select a connection from the Connection drop-down list box. This must be a BdpConnection you have already

defined.
This populates the Tables and Columns list boxes with data from the database.

2 Select a table from the Tables list box.
3 Select each column that you want to appear in your SQL statements.
4 Select the check box next to each statement type you want to generate.
5 Click the Generate SQL button.
6 Edit the generated text if desired, or reselect different columns and click Generate SQL again.
7 Click OK.

Note: Command components are automatically created as needed based on the selections in the
dialog.

1063

1064

Using the Data Adapter Preview
Borland Developer Studio 2006 provides a tool that enables communication between a data source and a dataset.
You can use the Data Adapter Preview to specify what data to move into and out of the dataset either in the form
of SQL statements or stored procedures that are invoked to read or write a database.

To use the Data Adapter Preview
1 After you have dropped a BdpDataAdapter component onto the designer, click the Configure Data Adapter

designer verb that appears at the bottom of the Object Inspector.
2 Click the Preview tab to display the Data Adapter Preview.
3 To limit the number of rows fetched, click the Limit rows check box.
4 Enter the number of rows you want the result set to contain, in the Rows to fetch text box.
5 Click Refresh to re-execute the query and to refill the list box with the new number of rows.

1065

1066

Using the DB Web Control Wizard
The DB Web Control Wizard helps you create a data-aware web control based on a standard web control.

To start the DB Web Control Wizard
1 Choose File New Other Delphi for .NET Projects DB Web Control Library.

Note: You can also use the separate DB Web Control Wizard for C#. It works identically to the wizard
described here.

This displays the New DB Web Control Wizard.

2 Enter a name for the control in the Control Name textbox.
3 Select Bind to DataTable.

This informs the wizard to add to the control file code that implements IDBWebDataLink. This interface defines
the means to access data source and table information.

4 Select Bind to DataColumn if you want to bind to a column, for instance, if your control supports a single type
of data.
This informs the wizard to add to the control file code that implements IDBWebColumnLink. This interface defines
the means to access a column in the table accessed by way of IDBWebDataLink.

5 If you select Bind to DataColumn and your control is one of the lookup controls, such as a listbox, radio button
group, or check box control, and you want the new control to be a lookup control also, check the Supports
Lookup check box.
This informs the wizard to add to the control file code that implements IDBWebLookupColumnLink. This interface
defines the means to access the lookup table, the text field and value field of the column accessed by way of
IDBWebColumnLink.

The DB Web Control Wizard creates a template file and displays it in the Code Editor. You then modify this file to
inherit from a specific DB Web control.

1067

1068

Using Typed DataSets
Typed DataSets provide certain advantages over standard DataSets. For one thing, they are derived from an XML
hierarchy of the target database table. The XML file containing the DataSet description allows the system to provide
extensive code-completion capabilities not available when using standard DataSets. Strong typing of DataSet
methods, properties, and events allows compile-time type checking, and can provide a performance improvement
in some applications.

To create a strongly typed DataSet
1 From the Database Explorer, select the data source you want to use.
2 Drag and drop the name of the database table you want to use onto your form.

This displays a BdpConnection icon and a BdpDataAdapter icon in the Component Tray.

3 Select the BdpDataAdapter.
4 Click the Configure Data Adapter designer verb in the Designer Verb area beneath the Object Inspector.

This displays the Data Adapter Configuration dialog.

5 Modify the pre-filled SQL statement if you like.
6 Click OK.

Note: Do not create a DataSet by selecting the DataSet tab in the Configure Data Adapter dialog.
That tab applies only to standard DataSets.

7 Click the Generate Typed Dataset designer verb in the Designer Verb area beneath the Object Inspector.
This displays the Generate Dataset dialog.

8 Select the database table you want to use.
9 Click OK.

This creates an instance of the typed DataSet and displays an icon <DataSet Name>1 in the Component
Tray. For example, if your DataSet is DataSet1, the new instance will be named dataSet11. You will also see
that an XML .xsd file and a new program file appear in the Project Manager under your project.

To modify how columns appear
1 After you have created a new typed DataSet, drop a DataGrid component onto your form.
2 Set the DataSource property to point to the typed DataSet and the DataMember property to point to the target

table.
3 Click the (Collection) entry next to the TableStyles property.

This displays the DataGridTableStyle Collection Editor.

4 Click Add to add a new member to the members list.
5 Click the drop down list next to the MappingName property.
6 Click the (Collection) entry next to the GridColumnStyles property.

This displays the DataGridColumnStyle Collection Editor.

7 Click Add to add a new item to the members list.

Note: By default the item is created as a Text Box Column. You can also expand the Add button and
select the BoolColumn if you want a boolean.

1069

8 Click the MappingName property, select the column you want to display in your grid, then change any additional
properties you want, including the header name that will appear as the column header in the runtime grid.

9 Click OK twice.

Note: When you build and run the application, only the columns that you explicitly defined by following
the steps in this procedure appear.

To modify the structure of the dataset
1 In the Project Manager, double-click the .xsd file that contains the XML definition of your dataset.
2 Edit the XML file to reflect how you want the dataset to be structured.

You can change data types, names, and anything else about the structure.

3 If you have the program code file (<dataset>.cs or <dataset>.pas) open in the Code Editor, close it now.
4 Choose Project Compile to recompile the .xsd file.

If you re-open the program code file, you will see that the file contains the changes you made to the XML in the .xsd file.

To set the Namespace property for a dataset
1 In the Project Manager, double-click the .xsd file that contains the XML definition of your dataset.
2 Find the targetNamespace property.
3 Change the following text to a relevant namespace:

http://www.changeme.now/DataSet1.xsd

4 If you have the program code file (<dataset>.cs or <dataset>.pas) open in the Code Editor, close it now.
5 Choose Project Compile to recompile the .xsd file.

If you re-open the program code file, you will see that the InitClass() class now contains the new namespace.

1070

ECO Framework Procedures

1071

1072

Adding a Derived Association End to an ECO Class Diagram
You can use OCL to derive association ends. Unlike the case of derived attributes, the expression must result in a
single object or a collection of objects, depending on the multiplicity of the association end. A derived association
end must be derived from another association on the class.

To add a derived association end
1 Add a new association between the two classes of interest.
2 Select the new association on the ECO class diagram.
3 Set the derived property of the new association to true.
4 Expand either (or both) of the End1TaggedValues or End2TaggedValues properties of the new association.

Either or both ends of the association may be derived.

5 In the Object Inspector, for either the End1TaggedValues or End2TaggedValues property, click the property
editor ellipses for the Derivation OCL property.

The OCL Expression Editor will open.

6 Create the OCL expression for the derived association end.
7 Click OK to close the OCL Expression Editor.

The following diagram shows an example of a derived association end. The name of the derived association is /
DerivedAssociation. The Derivation OCL property of the CrowdedCourses association end contains the
OCL expression self.Courses->select(numberOfStudents > 30). Notice how the OCL expression for the
derived association end uses the existing TeacherCourseAssignment association. The semantics of the
CrowdedCourses association end and its derivation OCL expression are that a Teacher object has an attribute
called CrowdedCourses. The CrowdedCourses attribute gives the collection of all Course objects with more than
thirty students enrolled.

1073

1074

Adding a Derived Attribute to an ECO Class
To create an attribute with a derived value, set the attribute’s derived property to true in the Object Inspector.
Note that the names of derived attributes are automatically prefixed with a slash (‘/’). This is a UML convention. Also
note that setting the derived property to true causes the persistence property to be set to transient, meaning the
attribute will not be stored in the database.

To add a derived attribute
1 Right-click on the ECO class, and choose Add Attribute.

Note: You may add an attribute either from the ECO class diagram context menu, or from the Model
View context menu.

2 Set the attribute's name and type in the Object Inspector.
3 Set the attribute's derived property to true in the Object Inspector.

Note: The IDE automatically adds a slash ('/') to the attribute name, and sets the transient property
to true.

4 Click the Derivation OCL property editor ellipses.

The OCL Expression editor will open. Create an OCL expression that results in the same type as the derived
attribute.

1075

1076

Adding a Guard Expression to a State Transition
Guard expressions are written in Object Constraint Language (OCL). On a state machine diagram guard expressions
result in a boolean value that determines whether or not a transition can occur. If the result of the expression is
true, the transition can occur.

To add a guard expression to a state transition
1 In the Model View, double-click the state machine diagram icon of the class you wish to work with.

The state machine diagram for the class opens.

2 On the diagram, select the transition for which you want to add a guard.
3 In the Object Inspector, click [...] on the guard property.

The OCL Expression Editor opens.

4 Use the OCL Expression Editor to construct an OCL expression that results in a boolean value.

Using the Expression Editor to Build OCL and Expressions

1077

1078

Adding a PersistenceMapperClient to an ECO Space

To add a PersistenceMapperClient to an ECO space
1 Save and compile your project.
2 Open the ECO space source file for your project.
3 Select the Design tab of the ECO space source file.
4 Place a PersistenceMapperClient component onto the ECO Space Designer.
5 Select the PersistenceMapperClient component, and set its Url property to the URL of the persistence server,

for example, tcp://localhost:4243/PersistenceServer.

Note: The PersistenceMapperProvider code template creates a method called
RegisterTcpServer that you can use as an example of registering a persistence server. The
port and server name, shown in the URL above, are both set in the RegisterTcpServer
method.

6 Click an empty part of the ECO Space Designer.
The Object Inspector displays the properties of the ECO space itself.

7 Set the PersistenceMapper property of the ECO space to the PersistenceMapperClient component you created
in step 4.

1079

1080

Adding a PersistenceMapperSharer to an ECO Space

To add PersistenceMapperSharer to an ECO space
1 Save and compile your project.
2 Open the ECO space source file for your project.
3 Select the Design tab of the ECO space source file.
4 Place a PersistenceMapperSharer component onto the ECO Space Designer.
5 Select the PersistenceMapperSharer component, and set its MapperProviderType property to the
PersistenceMapperProvider.

6 Click an empty part of the ECO Space Designer.
The Object Inspector displays the properties of the ECO space itself.

7 Set the PersistenceMapper property of the ECO space to the PersistenceMapperSharer component you created
in step 4.

1081

1082

Adding a Reference to an ECO Package in a DLL
You can add a reference to ECO packages that are compiled in separate DLLs. Classes defined in the external
package are read-only. You may derive new classes from them, and draw unidirectional associations to them, but
you may not add attributes or methods to them.

Note: The ECO Package in a DLL wizard creates a project that builds a DLL containing an ECO package.

To add a reference to ECO packages in a DLL
1 Select the Project Manager window.
2 Right-click the executable node of the project that is to reference the DLL and choose Referred ECO Packages.

The Referred ECO Packages dialog appears.

3 Click Add.
The Open file dialog opens.

4 In the Open file dialog, navigate to the ECO package file that you wish to refer to in your project.
The ECO package file is named <PackageName>.ecopkg, where PackageName is the name you gave to the
ECO package in the IDE.

5 In the Open file dialog, select the package file and click OK.
The selected package file will appear in the Referred ECO Packages dialog.

Repeat this procedure, adding all the ECO package files you wish to refer to in your project.

6 In the Project Manager, right-click the executable node and choose Add Reference.
The Add Reference dialog opens.

7 In the Add Reference dialog, click the Browse button and navigate to the DLL that contains the ECO package
you added previously.

Note: Repeat this step to add a reference to the DLL for each ECO package file you added.

8 In the Add Reference dialog, click the Ok button when you are done adding DLL references.

The referenced ECO packages will appear in the Model View. You can view the diagrams in the model and reference
its classes and associations in your source code.

1083

1084

Adding a Region to a State
Each state on a state machine diagram contains at least one region. You may add additional regions, allowing for
multiple, concurrent substates.

Multiple regions within a state are delineated by a dotted line.

You may add regions to a state using the ECO state machine diagram, or the Model View.

To add a region using the ECO state machine diagram
1 Choose View Model View.
2 Expand the ECO package that contains the class of interest.
3 Expand the ECO class node.
4 Double click on the state machine diagram icon to open the ECO state machine diagram for the class.

The state machine diagram for the class opens.

5 Right-click within the state to which you want to add a new region.

Note: Be sure to click outside of any existing regions, so that the selection handles appear on the
state rectangle itself.

6 Choose Add Region from the context menu.

To add a region using the Model View
1 Choose View Model View.
2 Expand the ECO package that contains the class of interest.
3 Expand the ECO class node.
4 Expand the ECO state machine diagram node that contains the state to which you will add the region.
5 Right-click on the state and choose Add Region.

Both the Model View, and the ECO state machine diagram will be updated to show the new region.

To edit the properties of a region
1 Select the region.

Note: You can select the region either in the Model View, or on the ECO state machine diagram.

2 Edit the properties of the region in the Object Inspector.

1085

1086

Adding a Trigger Method to an ECO Class
A trigger method may be added to a class using either the Class Diagram or the Model View.

Note: A trigger is an operation on a class that has its Is Trigger attribute set to true. You may convert any
existing operation to a trigger by setting the Is Trigger attribute in the Object Inspector.

To add a trigger method using the Model View
1 Choose View Model View.
2 Expand the ECO package that contains the class of interest.
3 Right-click on the class and choose Add Trigger .

A new trigger method called Trigger_1 is added to the class. Edit the name of the method as necessary.

To add a trigger method using the ECO class diagram
1 Choose View Model View.
2 Double-click the ECO package icon that contains the class.

The ECO class diagram displays.

3 Right-click on the class and choose Add Trigger.

Both the Model View and the ECO class diagram will be updated to show the new trigger.

To change the properties of a trigger
1 Click the trigger method, either on the ECO class diagram or in the Model View.
2 Edit the properties of the trigger method in the Object Inspector.

If your trigger method has parameters, you must edit them in the Object Inspector rather than in source code. This
is so the parameters will not be overwritten if you regenerate ECO source code.

1087

1088

Adding an ECO Enabled Windows Form to a Project
You can add an ECO Enabled Windows Form to a project using the ECO Enabled Windows Form code template.

Note: The ECO wizards are available in both C# and Delphi for .NET projects. The functionality of the wizards is
identical. The only difference is in the language used to generate source code files.

To add an ECO-enabled Windows form to your project
1 Open an ECO project.
2 Choose File New Other.

The New Items dialog appears.

3 Select the New ECO Files category.
4 Double-click ECO Enabled Windows Form.

The ECO Enabled Windows Form wizard adds a new System.Windows.Forms.Form to your project.

The new class provides a constructor that takes an instance of the ECO Space of the application. The constructor
then uses this instance to initialize the ECO Space property of the form. An ECO-enabled form also provides a root
handle and four extender providers, which are described in Creating a New ECO Windows Forms Application.

1089

1090

Adding an ECO UML Package to a Project
You can add an ECO UML package to a project using the Model View context menu.

To add a new ECO UML package to your project
1 Open an ECO project.
2 Choose View Model View.

The Model View appears.

3 Right-click on the top-level node in the Model View and choose Add ECO Package.

Note: To nest an ECO package within another one, right click on the ECO package node in the Model
View and choose Add ECO Package.

The IDE creates a new source code file that contains the declarations necessary for the new UML package. The
default name of the new package is Package_N, where N is an increasing integer.

You can populate the UML package with new classes and draw the relationships between them on the ECO Class
Diagram surface. As you design the classes, the IDE generates source code into the source file that contains the
ECO UML package. The generated source code contains the necessary ECO attributes to support the services
provided by the ECO framework.

1091

1092

Adding an Effect to a State Transition
State transitions can have effects that occur when the trigger method of the transition is called. Transition effects
are written in ECO Action Language.

To add an effect to a state transition
1 In the Model View, double-click the state machine diagram icon of the class you wish to work with.

The state machine diagram for the class displays.

2 On the diagram, select the transition for which you want to add an effect.
3 In the Object Inspector, click [...] on the Effect property.

The ECO Action Editor displays.

4 Use the ECO Action Editor to construct an ECO Action Language expression.

Using the Expression Editor to Build OCL and Expressions

1093

1094

Adding and Configuring a Connection Handle on an ECO Space
This procedure shows how to add a connection handle component to the ECO space designer.

To add and configure a connection handle
1 Locate the Borland Data Provider category in the Tool Palette.

Note: If you are using a SQL Server persistence handle, locate the Data Components category.

2 Place a BdpConnection or SqlConnection component onto the ECO Space Designer.
3 Select the persistence mapper component on the designer surface.
4 Set the Connection property of the persistence mapper component to the connection handle you created in step 2.
5 Set the default vendor-specific configuration settings of the persistence mapper by right-clicking the persistence

mapper component, and choosing the appropriate item from the context menu.
For example, to set the default settings for an InterBase database, select InterBase dialect 3 setup from the
context menu.

6 Right-click the connection handle component and choose Connection Editor.
The ConnectionString will vary depending on the database vendor. For an InterBase database, you will need to
edit the connection string to reflect the correct path to the database file. Default, vendor-specific connection
strings are available both from the Connections Editor dialog box, and from the drop-down list of the
ConnectionString property in the Object Inspector.

1095

1096

Adding Columns and Nestings to an ECO Handle
You can add columns to handles to accommodate computed or derived values that have no corresponding
designtime field in a class or in an underlying data source. The ECO framework provides the ability to add columns
to handles at designtime. GUI components, such as datagrids, that use the handle as a datasource will display the
additional columns. This procedure assumes you have read the ECO and modeling overviews listed below.

To add a column to an expression handle
1 Open an ECO Windows Forms application with a datagrid and an expression handle already defined.
2 Select the expression handle in the Component Tray of the form designer.
3 Click [...] on the Column field in the Object Inspector.

The Column Collection Editor appears.

4 Click Add.
5 Click [...] on the Expression field in the Properties pane.
6 Create the OCL expression by double-clicking objects in the right-hand text box of the OCL Expression

Editor and adding elements.
For example, double-click a class name, then double-click allInstances to add it to the expression.

7 Click OK to close the OCL Expression Editor.
8 Click OK to close the Column Collection Editor.
9 Compile the application.

If you are using a datagrid that references the expression handle for which you created a new column, the new
column will appear in the designtime datagrid.

If the column you are adding is a relationship to another class, the column is called a nesting. The OCL expression
you enter for the column will return an object or objects that have their own set of attributes. You must configure the
nested columns using the Nesting Collection Editor.

To add a nesting to a column
1 Select the expression handle component that contains a nested column.
2 Click [...] to open the Column Collection Editor for the expression handle.
3 In the Column Collection Editor, select the nested column.
4 Set the Nested property of the column to True.
5 Enter a name in the NestingName property.

You will refer to this name in the Nesting Collection Editor.

6 Click OK.
7 Click [...] of the Nestings property.
8 Click Add.

Enter the Name of the nesting; this is the name you entered in step 5, above.

9 Click [...] to open the Column Collection Editor.
Each nesting has its own collection of columns, which you must configure using the Column Collection Editor.

Note: The columns in a nesting might contain more nestings themselves.

1097

1098

Adding Entry and Exit Actions to a State
States can have entry and exit actions associated with them. These actions are performed on entry to a state, and
when a trigger causes a state to be exited, respectively. Entry and exit actions are written using ECO Action
Language, which is an extension of the Object Constraint language (OCL) that allows side-effects.

To add entry and exit actions to a state
1 In the Model View, double-click the state machine diagram icon of the class you wish to work with.

The state machine diagram for the class displays.

2 On the diagram, select the state for which you want to add entry and exit actions.
3 In the Object Inspector, click [...] on the Entry action or on the Exit action property.

The ECO Action Editor opens for the entry action, or the exit action, respectively.

4 Use the ECO Action Editor to construct an ECO Action Language expression.

Using the Expression Editor to Build OCL and Expressions

1099

1100

Adding States and Substates to an ECO State Machine Diagram
You may add states to an ECO state machine diagram using either the Model View, or the state diagram context
menu. You may also drag states onto the diagram from the Tool Palette.

A state contains one region by default. If you need to model sequential substates, you may add substates to a region
within a state. When concurrent substates are required, you must add more regions to the state. With noted
variations, you add substates to regions using the same procedures described below. The main difference is that
substates are added to a region within a state, rather than at the top level of the diagram itself.

To add a state using the ECO state machine diagram context menu
1 Choose View Model View.
2 Expand the ECO package that contains the class of interest.
3 Expand the class node.
4 Double click the state machine diagram icon to open the ECO state machine diagram for the class.
5 Right-click on an empty part of the state machine diagram.

Note: To add a substate, right-click within a region of the composite state instead of on an empty part
of the state machine diagram.

6 Choose Add State.

To add a state using the Model View
1 Choose View Model View.
2 Expand the ECO package that contains the class of interest.
3 Expand the class node.
4 Right-click on the ECO state machine diagram icon and choose Add State.

Note: To add a substate, expand the node of the composite state, and right-click on the region icon
in the Model View.

To add a state using the Tool Palette
1 Choose View Model View.
2 Expand the ECO package that contains the class of interest.
3 Expand the class node.
4 Double click on the state machine diagram icon to open the ECO state machine diagram for the class.
5 In the Tool Palette, click the state icon and drag it onto the diagram.

Note: To add a substate, drag the state to a region within the composite state.

You may add initial and final states by choosing Add Initial or Add Final from either the diagram context menu
or the Model View context menu. Similarly, you may drag initial and final states from the Tool Palette.

1101

A state machine may have only one initial state (regions may have their own initial states). If an initial state already
exists, the Initial menu item will be disabled. When dragging an initial state from the Tool Palette, the IDE will not
allow you to drop a second initial state onto the diagram.

To edit the properties of a state or substate
1 Select the state or substate.

Note: You may select the state or substate either on the ECO state machine diagram, or in the
Model View.

2 Edit the properties of the state or substate in the Object Inspector.

1102

Building Applications with the ECO Framework
Building an ECO-enabled application consists of a number of steps, each with its own set of procedures. This topic
presents an overview of the entire process. It is assumed you are familiar with basic ECO concepts; please see the
links below for more information.

To create an ECO-enabled application
1 Create an ECO application using one of the following code templates in the New Items dialog box (File New

 Other):

ECO Windows Forms Application
ECO ASP.NET Web Application
ECO ASP.NET Web Service Application

Note: The code templates are available for both Delphi for .NET, and C# projects.

2 Create or edit your model using the integrated UML class diagramming tools:

The Model View shows the logical view of your project, as opposed to the file-oriented view of the Project
Manager.
The ECO Class diagram surface allows you to draw your classes and build relationships between them.
The ECO State Machine diagram allows you to model the behavior of the classes in your model.
The Tool Palette contains the UML elements that you may add to the diagram.
The Object Inspector allows you to edit properties of the elements in your model.

3 If you will be using a relational database, create a new, empty database using the vendor-supplied tools.
4 Configure the ECO Space of the application using the ECO Space Designer.

The ECO Space contains the model, and the objects created by your application as it runs; it is a middle layer
between the user interface and the persistent storage of the application. The ECO Space design tab contains all
the tools to:

Configure the application's persistence settings (RDBMS or XML file).
Create or evolve the database schema.
Select the ECO UML packages that you wish to persists from the model.
Validate the model.
Reverse engineer and wrap an existing relational database with ECO source code.
Upgrade an ECO project created with a prior version of the IDE.

5 Build a user interface for your application.
ECO applications are built using the WinForms designer; there is nothing different about ECO applications in
that respect. You can connect data-aware .NET components on your forms to the objects in your ECO Space
through element handles such as ExpressionHandle. The ExpressionHandle component provides a way to
retrieve objects from the ECO Space using an OCL expression. The element handle components implement the
interfaces required to render their values in a data-aware component. You can use the OCL Expression
Editor to enrich the specification of your model by adding invariant constraints and derived attributes.

6 Evolve your application using ECO code templates in the New Items dialog box:

ECO Enabled Windows form
ECO Space

1103

ECO PersistenceMapperProvider

7 Deploy your ECO enabled application.

1104

Configuring a PersistenceMapperMultiDb Component
A PersistenceMapperMultiDb component is used when data resides in more than one database. The ECO space
must be configured with one PersistenceMapper for each database. Each PersistenceMapper must then be
configured to connect to the correct database.

The PersistenceMapperMultiDb component manages the collection of PersistenceMapper components.

To configure a PersistenceMapperMultiDb component
1 Configure the ECO space with one PersistenceMapper component for each database.

Note: Do not connect the ECO space to the PersistenceMapper components added in this step. The
ECO space will be connected to the PersistenceMapperMultiDb component later in this
procedure.

Configuring the Persistence Method of an ECO Space
2 Add a database connection component for each PersistenceMapper.

Adding and Configuring a Connection Handle on an ECO Space
3 If you are using a custom OR mapping file, you must configure a FileMappingProvider for each

PersistenceMapper component.

Using a Custom Object-Relational Mapping File
4 In the Tool Palette, drag a PersistenceMapperMultiDb component from the Enterprise Core Objects

category onto the ECO space designer.
5 In the Object Inspector, click [...] for the PersistenceMappers property.

The PMapperDef Collection Editor displays.

6 Use the PMapperDef Collection Editor to add each PersistenceMapper on the ECO space to the
PersistenceMapperMultiDb component.

Note: The name property is a logical name for the database. If you are using a custom OR mapping
file, the logical name you give to each PersistenceMapper must correspond to the name in the
OR mapping file.

7 Click in an empty region of the ECO space designer.
8 In the Object Inspector, set the PersistenceMapper property to the PersistenceMapperMultiDb component..

1105

1106

Configuring an OclVariables Component
This procedure assumes you are familiar with ECO handles and OclVariable components.

It is also assumed that you are designing a form that will allow the user to search a collection of Person objects,
given all or part of a last name. The Person class contains an attribute called lastName. These have already been
designed on the class diagram.

The form already contains:

A text box component named searchString. The user will enter the last name search string into this text box.

A grid component named gPersonDisplayGrid. The grid will display all persons whose last name matches
the text entered into the searchString text box.

An ECO ExpressionHandle named ehAllPersons. This handle will be used as the datasource for the
gPersonDisplayGrid.

To configure the VariableHandle component
1 Drop a VariableHandle component onto the form.
2 Set the Name property of the VariableHandle to vhLastName.
3 Set the EcoSpaceType property of the VariableHandle to the ECO space type for your application.
4 Set the StaticValueTypeName property of the VariableHandle to System.String.
5 In code, set the value of the EcoSpace property of the vhLastName component. You can perform this step in

the EcoSpace property accessor for the ECO enabled windows form.
Add the line of code to the property accessor as shown:

[Delphi]

function TWinForm.get_EcoSpace: TBldOwnEcoSpace;
begin
 if not Assigned(fEcoSpace) then
 begin
 fEcoSpace := TBldOwnEcoSpace.Create;
 rhRoot.EcoSpace := fEcoSpace;

 // Set the VariableHandle's EcoSpace property
 vhLastName.EcoSpace := fEcoSpace;
 end;
 result := fEcoSpace;
end;

[C#]

public Project11EcoSpace EcoSpace {
 get {
 if (ecoSpace == null)
 {
 ecoSpace = new Project11EcoSpace();
 rhRoot.EcoSpace = ecoSpace;

 // Set the VariableHandle's EcoSpace property
 vhLastName.EcoSpace = ecoSpace;
 }

1107

 return ecoSpace;
 }
 }

The vhLastNameVariableHandle will get its value from the searchString text box.

To retrieve the search string from the text box
1 Select the searchString text box component.
2 Create an event handler for the TextChanged event.
3 In the event handler, retrieve the value with the following line of code:

[Delphi]
vhLastName.Element.AsObject := searchString.Text;

[C#]
vhLastName.Element.AsObject = searchString.Text;

You can also use the vhLastNameVariableHandle as the databinding property of the text box. If you use this method
to connect the components, you do not need an event handler. You do need to make sure the VariableHandle has
been assigned a value. Do this in the constructor for the form, usually by setting the initial value to an empty string.

To configure the OclVariables component
1 Place an OclVariables component onto the form.
2 Set the Name property of the OclVariables component to oclSearchVariables.
3 Click [...] to open the property editor for the OclVariableCollection property.

The .NET collection editor appears.

4 Click Add.
5 Set the ElementHandle property of the variable to the vhLastNameVariableHandle created above.
6 Set the VariableName property to vSearchString.
7 Click OK.

To configure the ExpressionHandle to use the OclVariables component
1 Select the ehAllPersonsExpressionHandle component.
2 Set the Variables property of the ehAllPersonsExpressionHandle to the oclSearchVariables component

created above.
3 Click the Expression property editor.

The OCL Expression Editor appears.

4 In the editor, build the OCL expression

Person.allInstances->select(lastName.regExpMatch(vLastname))

1108

5 Click OK.

When the OCL evaluator encounters the expression in the ehAllPersonsExpressionHandle, it will look up the
variable named vLastName in the OclVariables component, and retrieve its value from the
vhLastNameVariableHandle component. The vhLastName component is connected to the searchString text
box.

The gPersonDisplayGrid will now display a list of all person objects whose lastName attribute matches the text
entered by the user.

1109

1110

Configuring the Persistence Method of an ECO Space
You may choose to persist objects in either a relational database or in an XML file. This procedure shows how to
configure the ECO space to use the persistence method of your choice.

To configure the ECO Space for the chosen persistence method
1 Locate the Enterprise Core Objects category in the Tool Palette.

There are three persistence methods to choose from:

PersistenceMapperBdp uses the Borland Data Provider classes for database connectivity.
PersistenceMapperSqlServer uses the native .NET database connectivity classes, which are optimized for use
with Microsoft SQL Server.
PersistenceMapperXML persists objects to an XML file instead of a relational database.

Tip: It is often useful to store your objects in an XML file during initial development and prototyping,
and then switch to a relational database as your model becomes more stable.

2 Place the appropriate persistence mapper onto the ECO Space Designer surface.
3 Click an empty part of the ECO Space Designer surface.

The Object Inspector shows the properties of the ECO Space.

4 Set the PersistenceMapper property to the persistence mapper you created above.

Note: When using the PersistenceMapperXML component, it is not necessary to create or evolve a database
schema. When persisting to an XML file, all that is required is to select the component on the ECO Space
designer, and set its FileName property.

1111

1112

Converting an ECO framework Project to Developer Studio 2006
You must update an ECO framework project to the format used in Developer Studio 2006. Updating involves three
separate tasks:

1 Add references to new assemblies. The PersistenceMapperXml, PersistenceMapperBdp, and
PersistenceMapperSql components have been moved to new assemblies. You must add a reference to the
appropriate assembly to your project.

2 Set the EcoCompatibilityMode property on the PersistenceMapper components on the ECO space
designer, or on the PersistenceMapperProvider designer. The default names of some ECO-generated tables
and columns were changed in Developer Studio 2006. You can set the EcoCompatibilityMode property to
force the framework to use the old names. This step is not required if you are using the
DefaultORMappingBuilder component with the PersistenceMapper.

3 The SyncActive property has been moved into a new component. If you are using the
PersistenceMapperBdp or PersistenceMapperSqlServer component, and you had the SyncActive
property set to true, you must add a new SyncHandler component. Additionally, the HistoryLength
property has also been moved to the SyncHandler component.

4 Update the model. Previously, the primary storage format for the model was the source code of your business
classes. In Developer Studio 2006, the model is stored in a file with the name PackageName .ecopkg,
where PackageName is the name of the ECO package that contains your business classes.

Warning: You must perform update steps one and two prior to updating the model.

Note: The CreateRetrieveCondition method of the IOclService interface has been moved to the IOclPSService.

To add references to new assemblies
1 Open the project.
2 Close all forms and designers without saving any changes.
3 In the Project Manager, right-click on the project node and choose Add Reference.
4 Add the new assemblies to the project.

The following table shows the new assemblies. Add the appropriate assembly, depending on the components
you are using.

Component Assembly

PersistenceMapperXml Borland.Eco.Persistence.Xml.dll

PersistenceMapperBdp Borland.Eco.Persistence.Bdp.dll

PersistenceMapperSqlServer Borland.Eco.Persistence.SqlServer.dll

If the ECO packages do not appear in the Model View, close the project and reopen it.

To set the EcoCompatibility property
1 Open the project.
2 In the Project Manager, double-click the ECO space file to open it.
3 Click the design tab of the ECO space.
4 On the designer, click the PersistenceMapper component to select it.

1113

5 In the Object Inspector, set the EcoCompatibilityMode property to EcoI or EcoII.

To add a new SyncHandler component
1 In the Project Manager, double-click the PersistenceMapperProvider implementation source file to open it.
2 In the Tool Palette, click and drag a SyncHandler component to the PersistenceMapperProvider designer.
3 Set the HistoryLength property of the SyncHandler component as necessary.
4 On the PersistenceMapperProvider designer, click the PersistenceMapperBdp or
PersistenceMapperSqlServer component.

5 In the Object Inspector, set the SyncHandler property to the SyncHandler component previously created
on the designer.

Note: The SyncHandler component is not available in all product SKUs.

To upgrade the model
1 Open the project.
2 Choose Project Build to build the project.
3 In the Project Manager, double-click the ECO space file to open it.
4 Click the design tab of the ECO space.
5 Click the ECO space designer tool, “Convert a compiled model to ECO III ModelLayer.”

Note: Hover the mouse cursor over the ECO space designer tool buttons to view the tooltip caption.

The Convert Compiled Model dialog will appear.

6 Click Yes in the Convert Compiled Model dialog to continue, or No to cancel the conversion.
The Update Code dialog will appear.

7 Click Yes to update ECO-generated source code in the model, or No to convert the model leaving the code as it is.

Note: The code generator creates more robust code in Developer Studio 2006, so this step is highly
recommended.

After conversion, the project will contain a ProjectName .ecopkg file for each ECO package in your model. The
conversion tool will also add each new ProjectName .ecopkg file to the project.

1114

Creating a New ECO Space Subclass
You can add a new ECO space subclass to a project using the ECO Space code template.

Note: The ECO wizards are available in both C# and Delphi for .NET projects. The functionality of the wizards is
identical. The only difference is in the language used to generate source code files.

To create a new subclass of the EcoSpace class
1 Open an ECO project.
2 Choose File New Other.

The New Items dialog box appears.

3 Select the New ECO Files category.
4 Double-click the ECO Space icon.

The ECO Space wizard will generate a source code file that contains a new subclass of the DefaultEcoSpace class.

1115

1116

Creating a New ECO Windows Forms Application
You can create a new ECO Windows Forms application with the ECO Winforms Application code template.

Note: The ECO wizards are available in both C# and Delphi for .NET projects. The functionality of the wizards is
identical. The only difference is in the language used to generate source code files.

To create a new ECO Windows Forms application
1 Choose File New Other.

The New Items dialog box appears.

2 Select either Delphi for .NET Projects, or C# Projects.
3 Double-click ECO Windows Forms Application.

The New Application dialog box appears.

4 Type the name of your project, and use the [...] button to locate the folder where you want to place the project files.

The ECO WinForms Application wizard generates a new project containing the following files.

File Description

Package_NUnit.pas Contains the source code for the UML packages, interfaces, classes and their associations,
and all other types in your model. N is an increasing integer.

<ProjectName>EcoSpace.pas Contains source code for the subclass of Borland.Eco.Handles.EcoSpace.
<ProjectName> is replaced with the name of your project.

WinForm.pas Contains source code for the ECO-enabled main WinForm of the application. The main form
for an ECO application provides a property that holds an instance of the ECO Space of the
application. The form also contains code to automatically allocate an instance the ECO
Space class.

Borland.Eco.Windows.Forms.dll

Borland.Eco.Handles.dll

Borland.Eco.Interfaces.dll

Borland.Eco.Ocl.ParserCore.dll

Borland.Eco.Persistence.dll

The ECO WinForms Application wizard automatically adds references to these
assemblies, and they must be distributed with your application along with all other
referenced assemblies.

The generated ECO enabled form also contains the following extender providers for buttons, listboxes, and grids.

Extender Provider Purpose

EcoGlobalActions Extends buttons with the EcoAction property.

This property allows buttons to perform database-oriented operations (such as Update, Undo, and
Redo) without writing code.

EcoAutoForms Extends grids and list boxes with the EcoAutoForm property.

If the EcoAutoForm property is set to True, double-clicking the grid or list box will open an automatically-
generated form that describes the selected object.

EcoListActions Extends buttons with the CurrencyManager and EcoListAction properties.

The EcoListAction property allows buttons to perform list-oriented operations (such as Add, Delete,
MoveFirst, and MoveNext) without writing code.

1117

The CurrencyManager property must be set to the CurrencyManager used by the ExpressionHandle
that holds the list on which to operate.

EcoDragDrop Extends grids and list boxes with the EcoDragSource and EcoDropTarget properties.

If EcoDragSource is set to true, you can drag objects from the listbox or grid. If EcoDropTarget is set
to True, you can drop an object onto the control. The object must conform to the target list. For example,
you can drag a Person object into a Customer list, but you cannot drag a Person object into a
City list.

1118

Creating a PersistenceMapperProvider
You can add a PersistenceMapperProvider to your project using the ECO PersistenceMapperProvider code
template. A PersistenceMapperProvider binds the persistence components and their configuration, allowing them
to be shared by more than one ECO space. The PersistenceMapperProvider is thread-safe and remotable, so
multiple instances of an ECO space can connect to a single provider.

This procedure assumes you have an existing ECO application project open. It can be either an ECO WinForms
application, or an ECO ASP.NET Web application. Please refer to the links below for more information on creating
ECO application projects.

To create a new PersistenceMapperProvider
1 Choose File New Other.

The New Items dialog box appears.

2 Select the New ECO Files category.
3 Double-click ECO Persistence Mapper Provider.

The Persistence Mapper Provider wizard creates a source file called EcoPersistenceMapperProvider.pas (or
EcoPersistenceMapperProvider.cs, depending on the type of project you have open).

1119

1120

Creating an Association Class on an ECO Class Diagram
Associations can have classes associated with them. An association class is useful when the association itself has
attributes.

This procedure assumes you have an existing ECO class diagram with two classes and an association between
them.

To create an association class
1 Add a new ECO class to an ECO class diagram.

This class will be the association class.

2 Select the association for which you want to create an association class.
3 In the Object Inspector, click the property editor ellipses for the Association Class property.

The Choose Class to Instantiate dialog box appears.

4 Expand the tree node of the ECO package that contains the association class you just added.
5 Select the association class in the tree.
6 Click OK.

The following diagram shows an ECO class diagram with two classes called Teacher and Course, and an
association class called Room.

1121

1122

Creating an ECO ASP.NET Application
This procedure describes how to create a basic ECO ASP.NET application. Please refer to the topics below for more
information on ASP.NET and the ECO framework.

To create an ECO ASP.NET application
1 Choose File New Other.

The New Items dialog box appears..

2 Select ECO ASP.NET Application for either Delphi for .NET or C#.
3 In the Name field, enter the name of your project.
4 In the Location field, accept the default path or enter another project path.

Tip: Most ASP.NET projects reside in the IIS directory Inetpub\wwwroot.

To change Web server settings (optional)
1 In the New ECO ASP.NET Application dialog box, click View Server Options

The dialog box expands to show additional server options.

2 Set the read and write attributes of the project as needed or accept the defaults.

Tip: In most cases, the default settings will be sufficient.

3 Click OK.
The Web Forms Designer appears.

1123

1124

Creating an ECO framework State Machine Diagram
State machine diagrams are associated with classes in your model. Each class may have one or more state diagrams
associated with it.

To create a new ECO state machine diagram
1 Choose View Model View.

The Model View displays.

2 Expand the ECO package that contains the class for which you want to add a state diagram.

Note: You must expand the ECO package in the Model View. An ECO state machine diagram must
be added to the class in the ECO package, not from the C# namespace or Delphi unit.

3 Right click on the class and choose Add ECO State Machine from the menu.

A new ECO state machine diagram will be added to the model for the selected class.

To develop a state machine diagram
1 Add states and substates to the diagram.

Adding States and Substates to an ECO State Machine Diagram
2 Add trigger methods to your classes.

Adding a Trigger Method to an ECO Class
3 Add guard expressions to state transitions.

Adding a Guard Expression to a State Transition
4 Add entry and exit actions to states.

Adding Entry and Exit Actions to a State
5 Add state transition effects.

Adding an Effect to a State Transition
6 Add regions to a state to use concurrent substates.

Adding a Region to a State

As you work with the diagram, select elements and set their properties using the Object Inspector.

1125

1126

Creating an ECO Package in a DLL
This topic describes how to create an ECO package in a DLL, rather than a full ECO application.

The ECO Package in a DLL wizard generates an ECO UML package and associated source files, but it does not
create an ECO space class. You can reference the ECO packages in the DLL in an ECO application. This will make
the model available in read-only mode in the application that references the packages. You may draw inheritance
links and unidirectional associations to the referenced classes, but you may not add attributes or methods.

Note: The ECO wizards are available in both C# and Delphi for .NET projects. The functionality of the wizards is
identical. The only difference is in the language used to generate source code files.

To create an ECO Package in a DLL
1 Choose File New Other.

The New Items dialog box appears.

2 Select either the Delphi for .NET Projects category, or the C# Projects category.
3 Double-click ECO Package in a DLL (C#), or ECO Package in package (Delphi for .NET).

A new project is created with one default ECO package.

1127

1128

Creating an Empty InterBase Database

To create an empty InterBase database using the IBConsole program
1 Start the InterBase Console program, IBConsole.
2 Logon to the server where you want the new database to be created.

Note: Under the Databases node you will see a list of databases that reside on that server.

3 Right-click the Databases node and choose Create Database.
4 Type the path and file name of the database.
5 Customize any database parameters you wish to change.
6 Click OK.

The new database will be displayed under the Databases node in the IBConsole window.

1129

1130

Creating an Event Derived Column
This procedure assumes you are familiar with ECO handles and columns.

If the value of a column cannot be computed using OCL, you can derive the value in source code by creating an
event derived column.

To create an event derived column
1 Add a column to an existing handle.

Please refer to the procedure Adding Columns and Nestings to an ECO Handle for more information.

2 In the Column Collection editor, set the EventDerivedValue property of the column to True.
3 Click OK.
4 Select the handle on the form designer.
5 Select the Events tab in the Object Inspector.
6 Add an event handler for the DeriveValue event.

There is one event handler for all the event derived columns in the column collection of the handle. In the event
handler code, you can examine the Name property of the DeriveEventArgs parameter to determine which column
value is being requested.

Pass the computed value of the column back in the ResultElement property of the DeriveEventArgs parameter.

1131

1132

Deploying an ECO framework Application

To deploy an ECO application
1 Open the project.
2 Choose View Project Manager.
3 Select the appropriate compiler settings in the Project Options dialog box.

Note: You must set the appropriate build settings on each project in the project group of your
application.

4 Select Project Build <Project Name> where <Project Name> is the actual name of your project to build your
application.
The build targets for each project in the project group will be generated per their own respective project settings.

Referenced assemblies that have their Copy Local setting checked will be copied to the output directory of the
project that references them.

In addition to the other assemblies your project references, there are ECO-specific assemblies that must be deployed
with all ECO applications. The tables below show the ECO assemblies that are required, depending on the
deployment scenario.

ECO assemblies to be deployed in all cases

Borland.Eco.Core.dll

Borland.Eco.Handles.dll

Borland.Eco.Interfaces.dll

Borland.Eco.Ocl.ParserCore.dll

Borland.Delphi.dll

Note: this assembly is required even for C# projects.

Additional deployment scenarios
Scenario Requirement

Projects that use persistence to a relational database Borland.Eco.Persistence.dll, and

Borland.Eco.Persistence.Bdp.dll, or

Borland.Eco.Persistence.SqlServer.dll

Projects that use multiple databases and ECO space
synchronization

Borland.Eco.Persistence.Multi.dll

Projects that use persistence to XML file only Borland.Eco.Persistence.Xml.dll

The Borland.Eco.Persistence.dll assembly is not required in
this case.

Windows Forms projects Borland.Eco.Windows.Forms

ECO ASP.NET projects Borland.Eco.Web.dll

Projects that use BDP Borland.Data.Common, Borland.Data.Provider

You must also deploy the assemblies required for your
particular database, such as Borland.Data.Interbase.dll and
bdpint20.dll, for InterBase.

1133

Projects that use ECO DBWebControls Borland.Data.Web.dll, Borland.Data.Web.Eco.dll

The Developer Studio 2006 installer deploys these assemblies into the .NET Global Assembly Cache (GAC). The
GAC cannot be viewed or manipulated directly. Copies of these files are kept with other shared assemblies in the
Developer Studio 2006 Common Files folder. The default path to this location is \Program Files\Common Files
\Borland Shared\BDS\Shared Assemblies\<version>, where <version> is the version number of Developer Studio
2006 that is installed on the development machine.

You can deploy the ECO assemblies into the GAC, or you can deploy them into the installation directory of the
application. If you will be deploying multiple ECO applications, it is best to deploy them as shared assemblies.

1134

Deriving an Attribute in Source Code
You can derive the value of an attribute in source code when you cannot derive it in OCL. To do this, you must
implement a specific design pattern so that the method that computes the attribute value can be called by the
framework.

To create the source code method
1 In the ECO class diagram, select the attribute in the class that you want to derive.
2 In the Object Inspector, set the derived property of the attribute to true.
3 Make sure the DerivationOCL property of the element is left blank.
4 Create a method in your class with the following signature:

[Delphi]

function attributeNameDeriveAndSubscribe(reevaluateSubscriber : ISubscriber;
resubscribeSubscriber : ISubscriber) : System.Object;

[C#]

System.Object attributeNameDeriveAndSubscribe(ISubscriber reevaluateSubscriber,
ISubscriber resubscribeSubscriber);

5 Replace attributeName with the name of the attribute whose value you are computing. For example if you
are computing the value of an attribute called fullName, the method signature would be:

[Delphi]

function fullNameDeriveAndSubscribe(reevaluateSubscriber : ISubscriber;
resubscribeSubscriber : ISubscriber) : System.Object;

[C#]

System.Object fullNameDeriveAndSubscribe(ISubscriber reevaluateSubscriber, ISubscriber
resubscribeSubscriber);

6 Within the implementation of the DeriveAndSubscribe method, perform the calculations necessary to
compute the value of the attribute. To compute the value of the full name of a person, you might write code such
as the following:

[Delphi]

function Person.fullNameDeriveAndSubscribe(reevaluateSubscriber : ISubscriber;
resubscribeSubscriber : ISubscriber) : System.Object;
Var
 fullName : String;
begin
 fullName := firstName + ‘ ‘ + lastName;
 result := fullName;
end;

1135

[C#]

System.Object fullNameDeriveAndSubscribe(reevaluateSubscriber : ISubscriber;
resubscribeSubscriber : ISubscriber)
{
 string fullName;

 fullName = firstName + “ “ + lastName;
 return fullName;
}

Now you must determine which elements need subscriptions. In the computation of the fullName attribute, you
used the firstName and lastName attributes of the Person class. Therefore, you must place subscriptions on
these two attributes so that the value of the fullName attribute will be reevaluated when a change occurs to either
a person’s first or last name.

To place a subscription, call the method SubscribeToValue. This method is implemented by the framework for all
IElement types, so you must cast the object using the AsIObject method, and then you can place the subscription.

To place a subscription on an attribute, call the SubscribeToValue method in the DeriveAndSubscribe method,
as shown below (SubscribeToValue is a method of the IElement interface).

Notice that in this example, you only need a reevaluate subscription, since you are interested only in the atomic
values, firstName and lastName.

[Delphi]

function Person.fullNameDeriveAndSubscribe(reevaluateSubscriber : ISubscriber;
resubscribeSubscriber : ISubscriber) : System.Object;
Var
 fullName : String;
begin
 fullName := firstName + lastName;

 // Subscribe to the firstName and lastName attributes.
 AsIObject.Properties[‘firstName’].SubscribeToValue(reevaluateSubscriber);
 AsIObject.Properties[‘lastName’].SubscribeToValue(reevaluateSubscriber);

 result := fullName;
end;

[C#]

System.Object fullNameDeriveAndSubscribe(reevaluateSubscriber : ISubscriber;
resubscribeSubscriber : ISubscriber)
{
 string fullName;

 fullName := firstName + lastName;

 // Subscribe to the firstName and lastName attributes.
 AsIObject.Properties[‘firstName’].SubscribeToValue(reevaluateSubscriber);
 AsIObject.Properties[‘lastName’].SubscribeToValue(reevaluateSubscriber);

 return fullName;
}

1136

Tip: The Properties of an IObject can be indexed using the name of the attribute you are interested in.

1137

1138

Generating a Model and OR Mapping from an Existing Database
The Wrap existing database tool on the ECO Space Designer, produces the following:

An ECO package containing the model with classes, attributes, and associations
Source files for generated classes
An XML file describing the generated OR mapping

To wrap an existing database
1 Configure the persistence components of the ECO space to use the existing database.

Using the ECO Space Designer
2 On the ECO space designer, click the Wrap Existing Database with ECO tool.
3 In step one of the wizard, select an existing XML file that contains an OR mapping for the database.

This step is optional. If you do not have an existing XML file, click Next.

Note: If you specify an XML file, the wizard will attempt to merge the contents of the XML file with the
database schema, to create a single OR mapping file.

4 In step two of the wizard, use the Database table tree to include or exclude tables or table columns from the
generated mapping.

Note: You may further customize the mapping by selecting a node in the tree and setting its properties
in the Node properties list.

5 In step three of the wizard, use the Classes and properties tree to include or exclude classes or class properties
from the generated mapping.

Note: You may further customize the mapping by selecting a node in the tree and setting its properties
in the Node properties list.

The last step of the wizard displays a report of what will take place when you click
Finish.

6 Place a FileMappingProvider component onto the ECO Space Designer.
7 Enter the name of the XML file produced above in the FileName property of the FileMappingProvider component.

Note: The XML mapping file must be distributed with the application. The path to this file is relative
to the executable file.

8 Set the RunTimeMappingProvider property of the persistence mapper component to the FileMappingProvider
created above.

9 In the ECO space designer toolbar, click Select Packages tool.
The Select Packages dialog displays.

Use the Select Packages dialog to add ECO packages to the ECO space.

The new ECO UML packages generated in the source file are displayed in the Model View window. You can open
the class diagram and make changes as you would with any ECO package.

You must make modifications to fine tune the generated model and XML mapping if they do not accurately match
the database schema. These changes must be made on the class diagram surface and in the XML mapping file.

1139

Note: If you need to reverse engineer multiple databases, repeat this procedure once for each database. You will
need to add and configure separate persistence mappers and file mapping provider components for each
database.

1140

Implementing a Subclass of SubscriberAdapterBase
This procedure assumes you are familiar with the basic concepts of working with ECO subscriptions.

Rather than implementing the ISubscriber interface directly, you should create a small, private utility subclass of
SubscriberAdapterBase. SubscriberAdapterBase is an abstract class that handles most of the implementation
details of the ISubscriber interface.

In your subclass, you only have to implement the DoReceive method to respond to the subscription event.

To implement a subclass of SubscriberAdapterBase
1 Create a utility class within the class that will respond to the subscription event, which might look like the following:

using System;
using Borland.Eco.Subscription;

private class MySubscribingClass {

 private class MySubscriberAdapter : SubscriberAdapterBase {

 // Notice the actual subscriber class (MySubscribingClass) is
 // passed on to the SubscriberAdapterBase class.
 public MySubscriberAdapter(object subscriber) : base(subscriber)
 { }

 }

}

2 Implement the DoReceive method in the utility class.

private class MySubscriberAdapter : SubscriberAdapterBase {

 public MySubscriberAdapter(object subscriber) : base(subscriber)
 { }

 protected override void DoReceive(object sender,EventArgs e) {

 // ActualSubscriber is a property of SubscriberAdapterBase.
 (ActualSubscriber as MySubscribingClass).RespondToEvent();
 }
}

In the previous code, the method ResondToEvent is implemented in the outer class, MySubscriberClass.

3 Implement the RespondToEvent method in the outer class.

private class MySubscribingClass {

 private class MySubscriberAdapter : SubscriberAdapterBase {

 protected override void DoReceive(object sender, EventArgs e) {

1141

 // ActualSubscriber is a property of SubscriberAdapterBase.
 (ActualSubscriber as MySubscribingClass).RespondToEvent();
 }

 public MySubscriberAdapter(object subscriber) : base(subscriber)
 { }

 }

 private void RespondToEvent() {

 // Add code to handle the event

 }
}

4 Write code to place a subscription.
In the following code, a field is added to hold an instance of the subscriber adapter, and a new method is defined
to place the subscription. This example shows how to use the IExtentService interface to receive subscription
events whenever objects of a given class are created.

private class MySubscribingClass {

 private class MySubscriberAdapter : SubscriberAdapterBase {

 protected override void DoReceive(object sender, EventArgs e) {

 // ActualSubscriber is a property of SubscriberAdapterBase.
 (ActualSubscriber as MySubscribingClass).RespondToEvent();
 }

 public MySubscriberAdapter(object subscriber) : base(subscriber)
 { }

 }

 private void RespondToEvent() {

 // Add code to handle the event

 }

 // Add a field to hold the subscriber adapter.
 private MySubscriberAdapter myAdapter = null;

 public void SubscribeToObject(IExtentService extentService, IClass
subscribeToClass) {

 // Drop old subscriptions if any (Deactivate is a method of
SubsciberAdapterBase)
 if(myAdapter != null)
 myAdapter.Deactivate();

 // Create an instance of the private subscriber adapter
 myAdapter = new MySubscriberAdapter(this);

 // Place a subscription

1142

 extentService.SubscribeToObjectAdded(myAdapter, subscribeToClass);
 }
}

The DoReceive method of MySubscriberAdapter will be called whenever new objects of the type passed to
SubscribeToObject are created.

1143

1144

Regenerating and Updating ECO Source Code
If you have turned off automatic code regeneration in the Tools Options dialog box, then you need to regenerate
or update your ECO source code manually. You may either completely recreate all ECO source code, or update
only those classes that you have changed since the last update.

Source code regeneration changes the following ECO-generated code elements

Implementation of list interfaces
The Initialize, Deinitialize, get_MemberByIndex, and set_MemberByIndex methods.

ECO properties
Custom attributes, for example, [UmlElement()]
Methods with the Is trigger or Is query attribute set to true.

Note: Code regeneration does not change those elements that are expected to have user-written code. This
includes attributes that have the HasUserCode attribute set to true, methods not marked as state machine
triggers or queries, public constructors, and methods that have a body specified in ECO Action Language.

To completely regenerate ECO source code
1 Choose View Model View to open the Model View for your project.
2 Right-click on the top-level node in the Model View tree and choose Regenerate ECO source code.

All source code files for ECO classes and ECO packages will be regenerated except for those parts noted above.

Tip: You may also regenerate ECO source code by clicking the Regenerate ECO source code toolbar button in
the Model View.

To update ECO source code
1 Choose View Model View to open the Model View.
2 Right-click on the top-level node in the Model View tree and choose Update ECO source code.

The update option makes as few changes as possible to ECO source code. Like the regenerate option, the update
option only changes source code as noted above.

Tip: You may also update ECO source code by clicking the Update ECO source code toolbar button in the Model
View.

1145

1146

Selecting ECO UML Packages
This procedure describes how to select the ECO UML packages that you want to use in the ECO space. Classes
that reside in packages other than those selected cannot be stored in the ECO space.

To select UML packages
1 Click Select Packages on the ECO space designer. The Select packages dialog box appears.

A full list of available UML packages is shown in the Available Packages list box. UML packages that are already
managed in the ECO Space are shown in the Selected Packages list box.

2 To add a single UML package, select it in the list, and click [<].
To add all available packages, click [<<].

3 To remove a single package from the ECO Space, select the package in the Selected Packages list, and click [>].
To remove all selected packages from the ECO space, click [>>].

1147

1148

Using a Custom Object-Relational Mapping File
You can use a custom OR mapping file with the built-in database schema evolution tools available on the ECO
Space Designer.

This procedure assumes you are familiar with using the ECO Space Designer.

To specify a custom OR mapping file
1 Place a FileMappingProvider component onto the ECO Space designer.
2 Set the FileName property of the FileMappingProvider component to the name of the custom OR mapping file.
3 Select the persistence mapper component of the ECO space.
4 Set the RuntimeMappingProvider property of the persistence mapper to the FileMappingProvider component.

After you make changes to the custom OR mapping file, there are two ways to evolve the database schema. Changes
to the schema can be made manually, using the appropriate database tools supplied by your vendor, or you can
use the database evolution tool on the ECO Space Designer. If you use the ECO Space Designer, you must set
the old and new OR mapping provider properties of the persistence mapper component, as described below.

To use ECO database evolution with a custom OR mapping file
1 Save a copy of your current OR mapping file before making any changes.

This file is now the old mapping file.

2 Place a second FileMappingProvider component onto the ECO Space Designer.
3 Set the FileName property of the FileMappingProvider to the copy of the OR mapping file you created in step 1..
4 Select the persistence mapper component on the ECO space designer.
5 Set the OldMappingProvider property of the persistence mapper to the FileMappingProvider you created in step

2.
6 Set the NewMappingProvider property of the persistence mapper to the same FileMappingProvider as the

RuntimeMappingProvider property.

Tip: If you make changes to the database schema manually, you only need to set the RuntimeMappingProvider
property of the persistence mapper.

1149

1150

Using the ECO Space Designer
An ECO Space is a container for the runtime instances of the classes in your model. The ECO Space Designer lets
you select UML packages from your model, choose the persistence mechanism for objects, create or evolve the
database schema, and perform designtime validation of the model.

You cannot work directly with the class EcoSpace. Instead, the IDE automatically creates a subclass of the EcoSpace
class for you when you create a new ECO application. If you have imported a model from another tool, such as Bold
for Delphi or Together Control Center, you can add an ECO Space to your project using the ECO Space wizard in
the New Items dialog box.

The ECO Space class for your application is implemented in one source file. The default source file name is
EcoSpace.cs or EcoSpace.pas. To open the ECO Space Designer, double-click the source code file in the Project
Manager window, and then click the Design tab. This document describes the basic procedure for configuring an
ECO Space. Each step is then explained in more detail in the following sections.

Warning: You must compile or build your application prior to using the ECO Space Designer. The ECO framework
makes extensive use of .NET custom attributes, and building your application ensures that the designer
is working with the correct assembly metadata.

To configure an ECO Space
1 Select the UML packages containing the classes that you want to exist in the ECO space.

Selecting ECO UML Packages
2 Choose a persistence method, either a relational database, or XML file.

Configuring the Persistence Method of an ECO Space
3 On the ECO space designer, click the Validate model tool to perform consistency checks on the model.

The IDE will perform a number of checks to make sure the model is well-formed. For example, OCL expressions
are checked to make sure they are valid.

4 If you are using an RDBMS, create an empty database.

Note: The exact procedure will vary depending on your database vendor. This procedure creates an
InterBase database as an example.

Creating an Empty InterBase Database
5 Add a connection handle component to the ECO Space and configure its connection string.

Adding and Configuring a Connection Handle on an ECO Space
6 If you are using an RDBMS and you are starting from scratch, create the initial database schema by clicking the

Generate Schema tool on the ECO space designer. Otherwise, if you have made changes to the model, or you
want to add or remove a UML package, use the Evolve Schema tool to update the existing database schema.

Note: During creation or evolution of the database schema, the ECO tab in the Message pane will display status
messages and results of the operation.

Warning: When a class or attribute is deleted and the database schema evolved, the corresponding columns are
removed from the database and the data is lost. You will have a chance to cancel the operation before
proceeding.

1151

1152

Using the Expression Editor to Build OCL and ECO Action
Language Expressions
There are two expression editors available in Developer Studio 2006: The Object Constraint Language (OCL)
Expression Editor, and the ECO Action Language Expression Editor. Some ECO components and model elements
have properties whose values are expressed in OCL or in ECO Action Language. The Expression Editor is a
property editor for those components and model elements. It is invoked from the Object Inspector by clicking
the [...] button for the property.

The two expression editors are essentially the same, except the ECO Action Language Expression Editor features
extensions that allow you to change values in the model. In contrast, OCL expressions are used only to calculate
values or query the ECO space for objects.

There are two ways to build an expression: Type directly into the left-hand pane of the editor, or, use the right-hand
pane to build the expression from model types and OCL or ECO Action Language operations. The right-hand pane
shows the types, attributes, and operations that are valid in the current context. As you build the expression, the
editor checks syntax and reports errors in the Parser Message tab.

Note: When editing the Expression property of an ExpressionHandle component, if the model types and operations
do not appear in the right-hand pane, make sure the EcoSpaceType property for the root handle is set to a
valid ECO Space. In addition, check the Parser Message tab for any errors encountered in the model itself.

To open the Expression Editor
1 Select the component on the Windows Form designer, or the model element on the diagram.
2 In the Object Inspector, click [...] for the property.

The Expression Editor opens.

Depending on the property, the Expression Editor will build an OCL expression, or an ECO Action Language
expression.

The following table shows the actions available in the editor:

Desired action Editor interface

To add a type or operation to the current expression Double-click the type or expression in the right-hand pane.

The type or operation will be added to the current expression
in the left-hand pane.

To remove the last type or operation added to the expression Click the Remove button.

To clear the current expression Click the Clear button.

To toggle the view in the right-hand pane between list and tree
modes

Click the Switch between list and tree view button, located
above the right-hand pane.

To view class inheritance in tree-view mode Click the Show classes hierarchical button, located above the
right-hand pane.

To hide or show return types of operations in the right-hand
pane

Click the Show return types button, located above the right-
hand pane.

To hide or show the class in which attributes are defined Click the Show defining class button, located above the right-
hand pane.

To use the OCL Expression Editor when adding columns
1 With an expression handle selected, click [...] for the Columns property in the Object Inspector.

1153

The Column Collection Editor opens.

2 Click Add OclColumn.
3 In the Column Collection Editor, click [...] for the Expression field.

The OCL Expression Editor opens.

4 Construct your expression by double-clicking elements from the right-hand pane of the OCL Expression
Editor until the expression is complete.

5 Click OK to close the OCL Expression Editor.
6 Click OK to close the Column Collection Editor.

At runtime, a new column is added to any data grid component that is linked to the expression handle.

1154

Using the PersistenceMapperProvider Designer
This procedure assumes you have an existing ECO ASP.NET or ECO Windows Forms project open.

A PersistenceMapperProvider component allows you to share the same PersistenceMapper among several
ECO Space instances. The PersistenceMapperProvider designer is very similar to the ECO space designer,
however, the PersistenceMapperProvider designer only allows for creation and evolution of database schema.

To configure the PersistenceMapperProvider
1 Add a PersistenceMapperProvider component to your project.

After adding the component, select its Design tab in the editor pane.

Creating a PersistenceMapperProvider
2 Choose a persistence method, either a relational database, or XML file.

Configuring the Persistence Method of an ECO Space
3 Click on an empty part of the PersistenceMapperProvider Designer surface.

The Object Inspector shows the properties of the PersistenceMapperProvider.

4 Set the PersistenceMapper property to the persistence mapper you created previously.
5 Compile the project.
6 Select the ECO space from the dropdown list on the EcoSpaceType property of the
PersistenceMapperProvider.

Note: You must compile the application before the ECO space will appear in the dropdown list.

7 If you are using an RDBMS, create an empty database.

Note: The exact procedure will vary depending on your database vendor. This procedure creates an
InterBase database as an example.

Creating an Empty InterBase Database
8 Add a connection handle component to the ECO Space and configure its connection string.

Adding and Configuring a Connection Handle on an ECO Space
9 If you are using an RDBMS and you are starting from scratch, create the initial database schema by clicking the

Generate Schema tool on the ECO space designer. Otherwise, if you have made changes to the model, or you
want to add or remove a UML package, use the Evolve Schema tool to update the existing database schema.

10If you are creating a server that will share its ECO space with multiple clients, add a PersistenceMapperSharer
component to the ECO space.

Adding a PersistenceMapperSharer to an ECO Space
11If you are creating a client application that will connect to an ECO space provided by a server, add a

PersistenceMapperClient component to the ECO space.

Adding a PersistenceMapperClient to an ECO Space

1155

Interoperable Applications Procedures

1156

Adding a Reference to a COM Server

To Add a Reference to a COM Server
1 In the Project Manager, right-click the References tree node of your project, and select Add Reference.
2 In the Add Reference dialog box, click the COM Imports tab.

The IDE will scan the system registry for all registered type libraries and COM servers.

3 Select the item or items you want to reference in your project.

Tip: You can individually select multiple items from the list by holding down the CTRL key as you click
each item. To select a range of items, select the first item, then hold down the SHIFT key as you
select the second item.

4 Click the Add Reference button.
All of the items you selected will appear in the New References list in the bottom portion of the dialog.

Tip: You can remove items from the New References list. Select the item or items and click the
Remove button.

5 If the COM component you want to reference does not appear in the list, click the Browse button to add an
explicit reference to it.

6 In the Select a reference dialog box, navigate to the folder where the component is located.
7 Select it, and click Open.
8 When you have selected all of the COM servers you wish to add, click OK.

After you click the OK button in the Add Reference dialog, the IDE will generate interop assemblies for each item
you selected (unless a Primary Interop Assembly has already been created). These assemblies will be named
Interop.LibraryName.dll, where LibraryName is the name of the component's type library (note this name might differ
from the control's DLL file name). The generated assemblies will be stored in a folder called COMImports, under
your project directory. Each generated interop assembly will be set to Copy Local, meaning, when the project is built,
the assembly will be copied to the build target folder automatically.

The COMImports folder might not exist, for example, if you move the project to a new machine, or if you delete it on
the machine where the project resides. If the COMImports folder does not exist when the project is reopened, the
IDE will recreate it and regenerate the interop assemblies. In order for this to work, the COM servers must first be
registered on the machine where the project resides.

If a Primary Interop Assembly for the COM server exists, the IDE will not generate a new interop assembly. Instead
a reference to the Primary Interop Assembly will be added, and the Copy Local setting will be turned off, since Primary
Interop Assemblies are deployed in the Global Assembly Cache.

Note: To see the Copy Local setting on any referenced assembly, right click the mouse on the assembly in the
Project Manager. The Copy Local setting is an item on the context menu.

The project will still retain references to the interop assemblies, even if the COMImports folder could not be
regenerated. In this case, the Project Manager will highlight the referenced assembly to indicate that it currently
does not exist on the machine.

1157

1158

Adding an ActiveX Control to the Tool Palette

To Add an ActiveX Control to the Tool Palette
1 Choose Component Installed .NET Components from the menu.

The Installed .NET Components dialog box appears.

2 Click the ActiveX Components tab.
The IDE will scan the Windows registry for all available ActiveX controls.

3 Click the check box next to the control names you want to add to the Tool Palette.

Tip: To remove a control from the Tool Palette, uncheck the check box next to the control's name.

4 If a control you want to add does not appear in the list, click the Select an ActiveX Component button to add
an explicit reference to it.

5 In the Browse to select an ActiveX Component dialog box, navigate to the folder where the control is located.
6 Select the control, and click Open.
7 Click OK.

The ActiveX Controls you selected will appear on the Tool Palette.

By default, ActiveX Controls appear in the ActiveX category. You can then drag the ActiveX Control from the Tool
Palette, onto your form. When you do so, the IDE will generate an interop assembly and an ActiveX control wrapper
assembly for each item you selected (unless a Primary Interop Assembly has already been created). These
assemblies will be named Interop.LibraryName.dll, and AxInterop.LibraryName.dll where LibraryName is the name
of the component's type library (note this name might differ from the control's DLL file name). The generated
assemblies will be stored in a folder called COMImports, under your project directory. Each generated interop and
ActiveX control wrapper assembly will be set to Copy Local, meaning, when the project is built, the assembly will be
copied to the build target folder automatically.

The COMImports folder might not exist, for example, if you move the project to a new machine, or if you delete it on
the machine where the project resides. If the COMImports folder does not exist when the project is reopened, the
IDE will recreate it and regenerate the interop assemblies. In order for this to work, the COM servers must first be
registered on the machine where the project resides.

If a Primary Interop Assembly for the ActiveX control exists, the IDE will not generate new interop assemblies. Instead
a reference to the Primary Interop Assembly will be added, and the Copy Local setting will be turned off, since Primary
Interop Assemblies are deployed in the Global Assembly Cache.

Note: To see the Copy Local setting on any referenced assembly, right-click the assembly in the Project
Manager. The Copy Local setting is an item on the context menu.

The project will still retain references to the interop assemblies, even if the COMImports folder could not be
regenerated. In this case, the Project Manager will highlight the referenced assembly to indicate that it currently
does not exist on the machine.

1159

1160

Installing Janeva Compilers in the Tools Menu
You can install the Janeva compilers into the Tools Menu, if you want to access them in a separate command window,
rather than compiling your IDL directly from within the Code Editor.

To install a compiler to the Tools menu
1 Choose Tools Configure Tools.

This displays the Tool Options dialog.

2 Click Add.
3 In the Title: text box, enter the name you want to appear on the Tools menu.
4 In the Program: text box, enter the path and name of the idl2cs or the java2cs executables.

Tip: You can locate the program and its path, as well as its working directory, by clicking the
Browse button to display the Select Transfer Item dialog. Navigate to the program executable
and double-click on it to add its name to the Program: text box.

5 In the Working dir: text box, enter the name of the working directory.
6 In the Parameters: text box, enter the parameters you want to pass to the program when the user selects the

menu command.
7 To enter pre-defined macros in the Parameters: text box, click Macros and double-click on the macro names

you want to pass to the program when the user selects the menu command.
8 Click OK.

The name you specified in the Title: text box appears in the Tools menu. The user can select this command to
execute the compiler in a command window.

1161

VCL for .NET Procedures

1162

Building a VCL Forms Application
The following procedure illustrates the essential steps to building a VCL Forms application using Developer Studio
2006.

To create a VCL Form
1 Choose File New Other.

The New Items dialog appears.

2 Select Delphi for .NET Projects.
3 Double-click VCL Forms Application.

The VCL Forms Designer displays.

4 From the Tool Palette, place components onto the form to create the user interface.
5 Write the code for the controls.

To associate code with a control
1 Double-click a component on the form. The Code Editor displays, cursor in place within the event handler block.
2 Code your application logic.
3 Save and compile the application.

1163

1164

Building a VCL Forms dbExpress.NET Database Application
The following procedures describe how to build a dbExpress database application.

Building a VCL Forms dbExpress.NET application consists of the following major steps:

1 Set up the database connection.
2 Set up the unidirectional dataset.
3 Set up the data provider, client dataset, and data source.
4 Connect a DataGrid to the connection components.
5 Run the application.

To add a dbExpress connection component
1 Choose File New VCL Forms Application.

The VCL Forms Designer displays.

2 From the dbExpress category of the Tool Palette, place a TSQLConnection component on the form.
3 Double-click the TSQLConnection component to display the Connection Editor.
4 In the Connection Editor, set the Connection Name list to IBConnection.
5 In the Connections Setting box, specify the path to the InterBase database file called employee.gdb in the

Database field.
By default, the file is located in C:\Program Files\Common Files\Borland Shared\Data.

6 Accept the value in the User_Name field (sysdba) and Password field (masterkey).
7 To test the connection, click the button with the checkmark on it (just above the Connection Name list).

Note: By default, you are prompted to log in. Use the masterkey password. If the connection works
a confirmation message appears. If you cannot connect to the database, make sure you have
installed Interbase and that the server is started.

8 Click OK to close the Connection Editor and save your changes.

To set up the unidirectional dataset
1 From the dbExpress category of the Tool Palette, place a TSQLDataSet component at the top of the form.
2 In the Object Inspector, set the SQLConnection property drop-down list to SQLConnection1.
3 Set the CommandText to a SQL command, for example, Select * from sales.

For the SQL command, you can either type a Select statement in the Object Inspector or click the ellipsis to the
right of CommandText to display the Command Text Editor where you can build your own query statement.

Tip: If you need additional help while using the Command Text Editor, click the Help button or press
F1.

4 In the Object Inspector, set the Active property to True to open the dataset.

To add the provider
1 From the Data Access category of the Tool Palette, place a TDataSetProvider component at the top of the form.

1165

2 In the Object Inspector, set the DataSet property drop-down list to SQLDataSet1.

To add client dataset
1 From the Data Access category of the Tool Palette, place a TClientDataSet component to the right of the

DataSetProvider component on the form.
2 In the Object Inspector, set the ProviderName drop-down to DataSetProvider1.
3 Set the Active property to True to allow data to be passed to your application.

A data source connects the client dataset with data-aware controls. Each data-aware control must be associated
with a data source component to have data to display and manipulate. Similarly, all datasets must be associated
with a data source component for their data to be displayed and manipulated in data-aware controls on the form.

To add the data source
1 From the Data Access category of the Tool Palette, place a TDataSource component to the right of the

ClientDataSet on the form.
2 In the Object Inspector, set the DataSet property drop-down to ClientDataSet1.

To connect a DataGrid to the DataSet
1 From the Data Controls category of the Tool Palette, place a TDBGrid component on the form.
2 In the Object Inspector, set the DataSource property drop-down to DataSource1.
3 Save all files in the project.
4 Select Run Run.

You are prompted to enter a password.

5 Enter masterkey as the password.
The application compiles and displays a VCL.NET form with a DBGrid.

1166

Building a VCL Forms Hello World Application
The Windows Forms Hello World application demonstrates the essential steps for creating a VCL Forms application.
The application uses a VCL Form, a control, an event, and displays a dialog in response to a user action.

Creating the Hello World application consists of the following steps:

1 Create a VCL.NET Form with a button control.
2 Write the code to display "Hello World" when the button is clicked.
3 Run the application.

To create a VCL Form
1 Choose File New Other Delphi for .NET Projects VCL Forms Application.

The VCL Forms Designer displays.

2 Click the Design tab to display the form view.
3 From the Standard category of the Tool Palette, place a TButton component on the form.

To display the "Hello World" string
1 Select Button1 on the form.
2 In the Object Inspector, double-click the OnClick event handler on the Events tab.

The Code Editor appears, with the cursor in the TForm1.Button1Click event handler block.

3 Place the cursor before the begin reserved word and then press Return.

This creates a new line above the code block.

4 Insert the cursor on the new line created, and type the following variable declaration:

var s: string;

5 Insert the cursor within the code block, and type the following code:

s:= 'Hello World!';
ShowMessage(s);

To run the "Hello World" application
1 Save your project files.
2 Choose Run Run to build and run the application.

The form displays with a button called Button1.

3 Click Button1.
A dialog box displays the message "Hello World!".

4 Click OK to close the message dialog.
5 Close the VCL form to return to the IDE.

1167

1168

Building a VCL.NET Forms ADO.NET Database Application
The following procedure describes how to build an ADO.NET database application.

Building a VCL.NET ADO.NET application consists of the following major steps:

1 Set up the database connection.
2 Set up the dataset.
3 Set up the data provider, client dataset, and data source.
4 Connect a DataGrid to the connection components.
5 Run the application.

To add an ADO connection component
1 Choose File New Other Delphi for .NET Projects VCL Forms Application.

The VCL Forms Designer displays.

2 From the dbGO category of the Tool Palette, place a TADOConnection component on the form.
3 Double-click the TADOConnection component to display the ConnectionString dialog.
4 If necessary, select Use Connection String; then click the Build button to display the Link Properties dialog

box.
5 On the Provider page of the dialog, select Microsoft Jet 4.0 OLE DB Provider; then click the Next button to

display the Connections page.
6 On the Connections page, click the ellipsis button to browse for the dbdemos.mdb database. The default path

to this database is C:\Program Files\Common Files\Borland Shared\Data.
7 If it is not already filled in, enter Admin in the User name field and select the Blank password check box.
8 Click Test Connection to confirm the connection.

A dialog appears, indicating the status of the connection.

9 Click OK twice to close the Data Link Properties dialog box and the ConnectionString dialog box.

To set up the dataset
1 From the dbGO category, double-click a TADODataSet component to place it on the form.
2 In the Object Inspector, set the Connection property drop-down list from the Linkages category to

ADOConnection1.
3 Set the CommandText to an SQL command, for example, Select * from orders.

You can either type the Select statement in the Object Inspector or click the ellipsis button to the right of
CommandText to display the Command Text Editor where you can build your own query statement.

Tip: If you need additional help while using the CommandText Editor, click the Help button or press
F1.

4 Set the Active property to True to open the dataset.
You are prompted to log in.

5 Enter Admin for the username.

1169

6 Leave the password field blank.

To add the provider
1 From the Data Access category of the Tool Palette, double-click a TDataSetProvider component to place it at

the top of the form.
2 In the Object Inspector, set the DataSet property to ADODataSet1.

To add client dataset
1 From the Data Access category of the Tool Palette, double-click a TClientDataSet component to place it to the

right of the DataSetProvider component on the form.
2 In the Object Inspector, set the ProviderName property to DataSetProvider1.
3 Set the Active property to True to allow data to be passed to your application.

A data source connects the client dataset with data-aware controls. Each data-aware control must be associated
with a data source component to have data to display and manipulate. Similarly, all datasets must be associated
with a data source component for their data to be displayed and manipulated in data-aware controls on the form.

To add the data source
1 From the Data Access category of the Tool Palette, double-click a TDataSource component to place it to the

right of the ClientDataSet on the form.
2 In the Object Inspector, set the DataSet property to ClientDataSet1.

To connect a DataGrid to the DataSet
1 From the Data Controls area of the Tool Palette, double-click a TDBGrid component to place it on the form.
2 In the Object Inspector, set the DataSource property to DataSource1.
3 SelectRun Run.

You are prompted to log in.

4 Enter Admin for the username.
5 Leave the password field blank.
6 Click OK.

The application compiles and displays a VCL form with a DBGrid.

1170

Building an Application with XML Components
This example creates a VCL Forms application that uses an XMLDocument component to display contents in an
XML file.

The basic steps are:
1 Create an XML document.
2 Create a VCL form.
3 Place an XMLDocument component on the form, and associate it with the XML file.
4 Create VCL components to enable the display of XML file contents.
5 Write event handlers to display XML child node contents.
6 Compile and run the application.

To create the XML document
1 Copy the text below into a file in a text editor.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE StockHoldings [
 <!ELEMENT StockHoldings (Stock+)>
 <!ELEMENT Stock (name)>
 <!ELEMENT Stock (price)>
 <!ELEMENT Stock (symbol)>
 <!ELEMENT Stock (shares)>
]>

<StockHoldings>
 <Stock exchange="NASDAQ">
 <name>Borland</name>
 <price>10.375</price>
 <symbol>BORL</symbol>
 <shares>100</shares>
 </Stock>

 <Stock exchange="NYSE">
 <name>MyCompany</name>
 <price>8.75</price>
 <symbol>MYCO</symbol>
 <shares type="preferred">25</shares>
 </Stock>
</StockHoldings>

2 Save the file to your local drive as an XML document. Give it a name such as stock.xml.
3 Open the document in your browser.

The contents should display without error.

Note: In the browser, you can choose View Source to view the source file in the text editor.

To create a form with an XMLDocument component
1 Start a new project.

1171

2 Choose File New Other.
3 In the New Items dialog box, select Delphi for .NET Projects.
4 Double-click VCL Forms Application.

The VCL Forms Designer displays.

5 From the Internet category on the Tool Palette, place an TXMLDocument component on the form.
6 In the Object Inspector, click the ellipsis button next to the FileName property, browse to the location of the XML

file you created, and open it.
The XML file is associated with the TXMLDocument component.

7 In the Object Inspector, set the Active property to True.

To set up the VCL components
1 From the Standard page on the Tool Palette, place a TMemo component on the form.
2 From the Standard page on the Tool Palette, place two TButton components on the form just above Memo1.
3 In the Object Inspector with Button1 selected, enter Borland for the Caption property.
4 In the Object Inspector with Button2 selected, enter MyCompany for the Caption property.

To display child node contents in the XML file
1 Select Button1.
2 In the Object Inspector double-click the OnClick event on the Events tab.

The code displays with the cursor in the TForm1.Button1Click event handler block.

3 Enter the following code to display the stock price for the first child node when the Borland button is clicked:

BorlandStock:=XMLDocument1.DocumentElement.ChildNodes[0];
 Price:= BorlandStock.ChildNodes['price'].Text;
 Memo1.Text := Price;

4 Add a var section just above the code block, above the begin statement in the event handler, and enter the
following local variable declarations:

var
 BorlandStock: IXMLNode;
 Price: string;

5 Select Button2.
6 In the Object Inspector double-click the OnClick event on the Events tab.

The code displays with the cursor in the TForm1.Button2Click event handler block.

7 Enter the following code to display the stock price for the second child node when the MyCompany button is
clicked:

MyCompany:=XMLDocument1.DocumentElement.ChildNodes[1];
Price:= MyCompany.ChildNodes['price'].Text;
Memo1.Text := Price;

1172

8 Add a var section just above the code block, above the begin statement in the event handler, and enter the
following local variable declarations:

var
 MyCompany: IXMLNode;
 Price: string;

To compile and run the application
1 Select Run Run to compile and execute the application.

The application displays two buttons and a memo.

2 Click the Borland button.
The stock price displays.

3 Click the MyCompany button.
The stock price displays.

1173

1174

Building VCL Forms Applications With Graphics
Each of the procedures listed below builds a VCL Form application that uses graphics. Build one or more of the
examples.

1 Draw straight lines.
2 Draw rectangles and ellipses.
3 Draw a polygon.
4 Display a bitmap image.
5 Place a bitmap in a combo box.

1175

1176

Creating a New VCL.NET Component
You can use the New VCL Component Wizard to create a new VCL.NET component. The wizard detects which
personality of the product you are using and creates the appropriate type of component.

To create a new VCL.NET component
1 Specify an ancestor component.
2 Specify the class name.
3 Create a unit or add the unit to a package.

To specify an ancestor component
1 Choose File New Other Delphi for .NET Projects VCL Forms Application.
2 Choose Component New VCL Component.

This displays the first page of the New VCL Component wizard.

3 Select VCL for Delphi.NET.
4 Click Next.

This displays the second page of the New VCL Component wizard and loads the page with ancestor
components.

5 Select an ancestor component from the list.
6 Click Next.

This displays the third page of the New VCL Component wizard.

To specify a class name
1 If you want to change the default class name, enter it in the Class Name textbox.
2 Enter the name of the area on the Tool Palette where you want the component to appear in the Palette Page

textbox.
3 Enter the unit name in the Unit Name textbox.
4 Enter the search path in the Search Path textbox.
5 Click Next.

Note: You can also take the default values.

To create a unit
1 Select the Create Unit radio button.
2 Click Finish.

To install a unit into an existing package
1 Select the Install into Existing Package radio button.
2 Click Next.

1177

This generates a list of existing packages.

3 Select the package you want to install the unit into.
4 Click Finish.

To install a unit into a new package
1 Select the Install into New Package radio button.
2 Click Next.
3 Enter a name for the package into the File Name textbox.
4 Enter a description for the package into the Description textbox.
5 Click Finish.

The new unit opens in the Code Editor.

1178

Creating Actions in a VCL Forms Application
Using Developer Studio 2006, the following procedures illustrate how to create actions using the ActionList tool. You
will set up a simple application and create an edit menu with cut and paste actions that can be used to cut and paste
to a memo.

Creating the VCL application consists of the following major steps:

1 Add main menu, actionlist, and memo tools to a form.
2 Create the cut and paste actions.
3 Add the actions to the main menu and associate with the edit action category.
4 Build and run the application.

To add the main menu, actionlist, and memo to a form
1 Choose File New Other Delph for .NET Projects VCL Forms Application to create a new form.
2 Click the Design tab to switch to the VCL Form Designer.
3 From the Standard category of the Tool Palette, place a TMainMenu, TActionList, and TMemo component on

the form.

To create the actions
1 Double-click ActionList1 on the form.

The ActionList Editor displays.

2 Select New Standard Action from the drop-down list to display the Standard Action Classes dialog box.
3 Scroll to the TEditCut action, select it, and click OK.

EditCut1 displays in the Actions list in the editor.

4 Select New Standard Action from the drop-down list to display the Standard Action Classes dialog box.
5 Scroll to the TEditPaste action, select it, and click OK.

EditPaste1 displays in the Actions list in the editor.

6 Close the ActionList Editor window.

To add the cut and paste actions to the edit category in the main menu
1 Double-click MainMenu1 on the form.

The MainMenu1 Editor displays with the first blank command category selected.

2 In the Object Inspector, enter Edit for the Caption property and press ENTER.
Edit displays as the first command category.

3 Click Edit to display a blank action just below it.
4 Click the blank action to select it.
5 In the Object Inspector, select EditCut1 from the drop-down list of actions in the Action property, located in the

Linkage category.
6 If not already filled in, expand the list of Action properties, enter Cut for the Caption property, enter Edit for the

category, and press ENTER.
Cut displays as the first action.

1179

7 In the MainMenu1 Editor, click the second blank action beneath Cut to select it.
8 In the Object Inspector, select EditPaste from the drop-down list of actions in the Action property, located in

the Linkage category.
9 Expand the list of Action properties, and if necessary, enter Paste for the Caption property, enter Edit for the

category, and press ENTER.
Paste displays as the second action.

To build and run the application
1 Save all files in the project.
2 Choose Run Run.

The application executes, displaying a form with the main menu bar and the Edit menu.

3 In the application, select text in the memo.
4 Choose Edit Cut.

The text is cut from the memo.

5 Choose Edit Paste.
The text is pasted back into the memo.

1180

Displaying a Bitmap Image in a VCL Forms Application
These procedures load a bitmap image from a file and displays it to a VCL form.

1 Create a VCL form with a button control.
2 Provide a bitmap image.
3 Code the button's onClick event handler to load and display a bitmap image.
4 Build and run the application.

To create a VCL form and button
1 Choose File New Other Delphi for .NET Projects VCL Forms Application.

The VCL Forms Designer displays.

2 From the Standard category in the Tool Palette, place a TButton component on the form.

To provide a bitmap image
1 Create a directory in which to store your project files.
2 Locate a bitmap image and copy it to your project directory.
3 Save all files in your project to your project directory.

To write the OnClick event handler
1 In the Input category of the Events tab, double-click the Button1OnClick event.

The Code Editor displays with the cursor in the TForm1.Button1Click event handler block.

2 Enter the following event handling code, replacing MyFile.bmp with the name of the bitmap image in your project
directory:

 Rect := TRect.Create(0,0,100,100);
 Bitmap := TBitmap.Create;
 try
 Bitmap.LoadFromFile('MyFile.bmp');
 Form1.Canvas.Brush.Bitmap := Bitmap;
 Form1.Canvas.FillRect(Rect);
 finally
 Form1.Canvas.Brush.Bitmap := nil;
 Bitmap.Free;
 end;

Tip: You can change the size of the rectangle to be displayed by adjusting the Rect parameter values.

3 In the var section of the code, add these variable declarations:

Bitmap : TBitmap;
Rect : TRect;

1181

To run the program
1 Save all files in your project.
2 Choose Run Run.
3 Click the button to display the image bitmap in a 100 x 100-pixel rectangle in the upper left corner of the form.

1182

Drawing a Rounded Rectangle in a VCL Forms Application
These procedures draw a rounded rectangle in a VCL form.

1 Create a VCL form.
2 Code the form's OnPaint event handler to draw a polygon.
3 Build and run the application.

To create a VCL form
1 Choose File New Other Delphi for .NET Projects VCL Forms Application.
2 In the Designer, click the form, if necessary, to display Form1 properties in the Object Inspector.

To write the OnPaint event handler
1 In the Object Inspector, click the Events tab.
2 Double-click the OnPaint event handler in the Visual category.

The Code Editor displays with the cursor in the TForm1.FormPaint event handler block.

3 Enter the following event handling code:

Canvas.RoundRect(0, 0, ClientWidth div 2,
 ClientHeight div 2, 10, 10);

To run the program
1 Save all files in your project.
2 Select Run Run.
3 The application executes, displaying a rounded rectangle in the upper left quadrant of the form.

1183

1184

Drawing Rectangles and Ellipses in a VCL Forms Application
These procedures draw a rectangle and ellipse in a VCL form.

1 Create a VCL form.
2 Code the form's OnPaint event handler to draw a rectangle and ellipse.
3 Build and run the application.

To create a VCL form
1 Choose File New Other Delphi for .NET Projects VCL Forms Application.
2 In the Object Inspector, click the Design tab, if necessary, to display Form1.

To write the OnPaint event handler
1 In the Object Inspector, click the Events tab.
2 Double-click the OnPaint event in the Miscellaneous category on the Events tab.

The Code Editor displays with the cursor in the TForm1.FormPaint event handler block.

3 Enter the following event handling code:

Canvas.Rectangle (0, 0, ClientWidth div 2, ClientHeight div 2);
Canvas.Ellipse (0, 0, ClientWidth div 2, ClientHeight div 2);

To run the program
1 Save all files in your project.
2 Choose Run Run.
3 The application executes, displaying a rectangle in the upper left quadrant, with an ellipse in the middle of the

rectangle.

1185

1186

Drawing Straight Lines In a VCL Forms Application
These procedures draw two diagonal straight lines on an image in a VCL form.

1 Create a VCL form.
2 Code the form's OnPaint event handler to draw the straight lines.
3 Build and run the application.

To create a VCL form and place an image on it
1 Choose File New Other Delphi for .NET Projects VCL Forms Application.
2 Click the Design tab, if necessary, to display Form1 properties in the Object Inspector.

To write the OnPaint event handler
1 In the Object Inspector, click the Events tab.
2 In the Visual category, double-click the OnPaint event.

The Code Editor displays with the cursor in the TForm1.FormPaint event handler block.

3 Enter the following event handling code:

with Canvas do
 begin
 MoveTo(0,0);
 LineTo(ClientWidth, ClientHeight);
 MoveTo(0, ClientHeight);
 LineTo(ClientWidth, 0);
 end;

To run the program
1 Save all files in your project.
2 Choose Run Run.

The application executes, displaying a form with two diagonal crossing lines.

Tip: To change the color of the pen to green, insert this statement following the first MoveTo()
statement in the event handler code: Pen.Color := clRed; Experiment using other canvas
and pen object properties.

1187

1188

Importing .NET Controls to VCL.NET
You might want to use .NET components on your VCL.NET forms. There is no direct way to use .NET components.
You can, however, wrap the components in an ActiveX wrapper, which then can be added to your VCL.NET
application. Developer Studio 2006 provides the .NET Import Wizard to accomplish this task.

To use .NET components in a VCL.NET Form
1 Run the WinForm Control Import Wizard.
2 Build the package to create an assembly file.
3 Add the assembly to the Tool Palette.

To run the WinForm Control Import Wizard
1 Choose File New Other Delphi for .NET Projects WinForm Controls Package.

This starts the WinForm Control Import Wizard.

2 Specify the following file:

c:\Windows\Microsoft.NET\Framework\v1.1.4322\System.Windows.Forms.dll

3 Click Next.
This displays the second page of the WinForm Control Import Wizard and lists all of the available components.

4 Check the check boxes next to the components you want to import.

Note: If you want to import all components, click the Check All button.

5 Click Next.
This displays the third page of the Wizard, which provides generation options for the units.

6 Accept the defaults, and click Next.
This displays the fourth page of the Wizard, which allows you to set a location and a name for the package file.

7 Click Next.
This displays the fifth page of the Wizard, which allows you to overwrite any existing files of the same name.

8 Click Next.
This initiates the generation process and displays status messages for each file as it is created, including the
package (.dpk) file.

9 If you want to import additional controls, click New. Otherwise, click Finish.
The package containing the units appears in the Project Manager.

To build and add the package
1 Select the package node in the Project Manager.
2 Choose Project Build <Project Name> from the main menu where <Project Name> is the name of your

project.
This creates the assembly file containing the package and the units.

3 Choose Components Installed .NET Components.

1189

4 Click the .NET VCL Components tab.
5 Click Add.
6 Locate the package assembly, select it, and click Open.

The location depends on your project options directory locations. The file might also end up in your default
documents directory.

7 Click OK.
The individual controls appear in the Tool Palette under the WinForm Controls category. You can now add the
individual controls to your VCL.NET form applications.

1190

Placing a Bitmap Image in a Control in a VCL Forms Application
These procedures add a bitmap image to a combo box in a VCL forms application.

1 Create a VCL form.
2 Place components on the form.
3 Set component properties in the Object Inspector.
4 Write event handlers for the component's drawing action.
5 Build and run the application.

To create a VCL form with a ComboBox component
1 Choose File New Other Delphi for .NET Projects VCL Forms Application.

The VCL Forms Designer displays.

2 Click the Design tab to display the form.
3 From the Win32 category of the Tool Palette, place an TImageList component on the form.
4 From the Standard category of the Tool Palette, place a TComboBox component on the form.

To set the component properties
1 Select ComboBox1 on the form.
2 In the Object Inspector, set the Style property drop-down to csOwnerDrawFixed.
3 In the Object Inspector, click the [...] next to the Items property.

The String List Editor displays.

4 Enter a string you would like to associate with the bitmap image, for example, MyImage and then click OK.
5 Double-click ImageList1 in the form.

The ImageList Editor displays.

6 Click the Add button to display the Add Images dialog.
7 Browse your local drive to locate a bitmap image to display in the combobox.
8 Select a very small image such as an icon. Copy it to your project directory, and click Open.

The image displays in the ImageList Editor.

9 Click OK to close the editor.

To add the event handler code
1 In the Designer, select ComboBox1.
2 In the Object Inspector, click the Events tab.
3 Double-click the OnDrawItem event.

The Code Editor displays with cursor in the code block of the DrawItem event handler.

4 Enter the following code for the event handler:

ComboBox1.Canvas.FillRect(rect);
ImageList1.Draw(ComboBox1.Canvas, Rect.Left, Rect.Top, Index);

1191

ComboBox1.Canvas.TextOut(Rect.Left+ImageList1.Width+2,
 Rect.Top, ComboBox1.Items[Index]);

To run the program
1 Save all files in your project.
2 Choose Run Run.

The application executes, displaying a form with a combo box.

3 Click the combobox drop-down.
The bitmap image and the text string display as a list item.

1192

Using ActionManager to Create Actions in a VCL Forms Application
Using Developer Studio 2006, the following procedure illustrates how to create actions using ActionManager. It sets
up a simple user interface with a text area, as would be appropriate for a text editing application, and describes how
to create a file menu item with a file open action.

Building the VCL application with ActionManager actions consists of the following major steps:

1 Add a file open action to the ActionManager on a form.
2 Create the main menu.
3 Add the action to the menu.
4 Build and run the application.

To add a file open action to ActionManager
1 Choose File New Other Delphi for .NET Projects VCL Forms Application to create a new form.
2 From the Additional page of the Tool Palette, add a TActionManager component to the form.
3 Double-click the TActionManager component to display the Action Manager editor.

Tip: To display captions for nonvisual components such as TActionManager, choose Tools
Environment Options. On the Designer tab, check Show component captions, and click OK.

4 If necessary, click the Actions tab.
5 Select New Standard Action from the drop-down list to display the Standard Action Classes dialog.
6 Scroll to the File category, and click the TFileOpen action.
7 Click OK to close the dialog.
8 In the Action Manager editor, select the File category.

Open... displays in the Actions: list box.

9 Click Close to close the editor.

To create the main menu and add the File action to it
1 From the Additional page of the Tool Palette, place a TActionMainMenuBar component on the form.
2 Open the Action Manager editor, and select the File category from the Categories list box.
3 Drag File to the blank menu bar.

File displays on the menu bar.

4 Click Close to close the editor.

To build and run the application
1 Select Run Run.

The application executes, displaying a form with the main menu bar and the File menu.

2 Select File Open.
The Open file dialog displays.

1193

Web Services Procedures

1194

Accessing an ASP.NET "Hello World" Web Services Application
If you want to consume the Web Services application you created, you must create a client application to access
your ASP.NET Web Services application. This process requires different development steps to achieve the desired
output.

To access a simple "Hello World" ASP.NET Web Services application
1 Create a client application.
2 Add a Web Reference for an XML web service.
3 Create the code-behind logic.
4 Run the client application.

To create a client application
1 Choose File New Other.

A New Items dialog box appears.

2 Select any type of application to create your client, such as a Windows Forms application or an ASP.NET Web
application.
For this example, we will create a Windows Forms application (either Delphi for .NET or C#).

3 Click OK.
A New Project dialog box appears.

To add a Web Reference for an ASP.NET Web Services application
1 Choose Project Add Web Reference.
2 From the Borland UDDI Browser web dialog box, enter the following URL in the address text box at the top:

http://localhost/WebService1/WebService1.asmx

Note: The name of your application may not be WebService1. In that case, use your own application
name in place of WebService1 in the example preceding example.

3 Press Enter.

Note: If you need to determine the proper path and you are using IIS, you can open the IIS
Administrator from the Windows XP Control Panel Administrative Tools. Find the WebService
you have saved and compiled in the list of IIS web sites, then review the name of the site and
the name of the .asmx file.

If you have entered the proper path, this should display information about the WebMethods.

4 Click the Service Description link to view the WSDL document.
5 Click Add Reference to add the WSDL document to the client application.

A Web References folder is added to the Project directory in the Project Manager which contains the
WebService1.wsdl file and the dialog box disappears.

1195

To create the code-behind logic
1 Add a Button to the Windows Form.
2 Double-click the Button to view the code-behind file.
3 For a Delphi for .NET client, implement the Click event in the Code Editor with the following code:

[Delphi]
procedure TWinForm.Button1_Click(sender: System.Object; e: System.EventArgs);
var
 ws: TWebService1;
begin
 ws := TWebService1.Create;
 button1.Text := ws.HelloWorld();
end;

When you added the Web Reference to your application, Developer Studio 2006 used the WSDL to generate a
proxy class representing the "Hello World" web service. The Click event uses methods from the proxy class to
access the web service. For a Delphi for .NET client, you may need to add the unit name of the proxy class (for
example, localhost.WebService1) to the uses clause of your Windows Form unit to prevent errors in your Click
event.

4 For a C# client, implement the Click event in the Code Editor with the following code:

[C#]

 private void button1_Click(object sender, System.EventArgs e)
 {
 TWebService1 ws = new TWebService1();
 button1.Text = ws.HelloWorld();
 }

To run the client application
1 Save the application.
2 Compile and run the project.
3 Click the Button on your client application.

The "Hello World" caption appears on the button.

1196

Adding Web References in ASP.NET Projects
If you want to consume a web service, you must create a client application, and add a Web Reference. These
procedures describe how to create an ASP.NET client application that consumes a third-party web service. The
client application consumes the DeadOrAliveWS web service available from the XMethods Web site. This web
service lets you query a simple database of celebrities and their respective birthdates and expiration dates.

To create an ASP.NET project
1 Choose File New Other.

The New Items dialog box appears.

2 Double-click the ASP.NET Web Application icon in either the C# Projects or Delphi for .NET Projects item
categories.
The New ASP.NET Application dialog box appears.

3 In the Name field, enter a name for your project.
4 In the Location field, enter a path for your project.

Tip: Most ASP.NET projects reside in the IIS directory Inetpub\wwwroot.

5 If necessary, click the View Server Options button to change your Web server settings.

Tip: The default Server Options will usually be sufficient, so this step is optional.

6 Click OK.
The Web Forms Designer appears.

To design the ASP.NET web page
1 If necessary, click Design view.
2 From the Web Controls category of the Tool Palette, place a Button component onto the Designer surface.

The Button control appears on the Designer. Make sure the control is selected.

3 In Object Inspector, set the Text property to Dead or Alive?.
4 From the Web Controls category of the Tool Palette, place a TextBox component onto the Designer above the

Button.
This is where you type your query to the Web Service.

5 Place a Label component below the Button.
This is where the results of the web service query are displayed.

Use the UDDI browser to locate the DeadOrAlive Web Service on the internet. This allows you to use the methods
and objects published by the Web Service Definition Language (WSDL).

To add the Web Reference for DeadOrAliveWS
1 Choose Project Add Web Reference.
2 In the Borland UDDI Browser web dialog box, click the XMethods Full link in the list of available UDDI

directories.
A list of various web services published on the XMethods Web site appears.

1197

3 Find and click the DeadOrAliveWS link.

Tip: You can use Ctrl+F to search within the Borland UDDI Browser.

4 Click the link to the WSDL file:

http://www.abundanttech.com/webservices/deadoralive/deadoralive.wsdl

A WSDL document appears. This XML document describes the interface to the DeadOrAliveWS web service.

5 Click Add Reference to add the WSDL document to the client application.
A Web References folder containing a com.abundanttech.www node is added to the Project directory in the
Project Manager.

To write the application logic
1 If necessary, click Design view.
2 Double-click the Dead or Alive? button to view the code-behind file.
3 For a Delphi for .NET Web Services application, implement the Click event in the Code Editor with the following

code :

[Delphi]
procedure TWebForm1.Button1_Click(sender: System.Object; e: System.EventArgs);
var
 result: DataSet;
 ws: DeadOrAlive;
 currentTable: DataTable;
 currentRow: DataRow;
 currentCol: DataColumn;
begin
 //This initializes the web service
 ws := DeadOrAlive.Create;

 //Send input to the web service
 result := ws.getDeadOrAlive(TextBox1.Text);

 //parse results and display them
 Label1.Text := '';
 for currentTable in result.Tables do
 begin
 Label1.Text := Label1.Text + '<p>' + #13#10;
 for currentRow in currentTable.Rows do
 begin
 for currentCol in currentTable.Columns do
 begin
 Label1.Text := Label1.Text + currentCol.ColumnName + ': ';
 Label1.Text := Label1.Text + (currentRow[currentCol]).ToString;
 Label1.Text := Label1.Text + '
' + #13#10;
 end;
 end;
 Label1.Text := Label1.Text + '</p>';
 end;

end;

1198

When you added the Web Reference to your application, Developer Studio 2006 used the WSDL to generate a
proxy class representing the "Hello World" web service. The Click event uses methods from the proxy class to
access the web service. For Delphi for .NET Web Services, you may need to add the unit name of the proxy
class, abundanttech.deadoralive, to the uses clause of your Web Form unit to prevent errors in your Click event.

4 For a C# Web Services application, implement the Click event in the Code Editor with the following code :

[C#]
private void button1_Click(object sender, System.EventArgs e)
{
 DataSet result;

 //This initializes the web service
 DeadOrAlive source = new DeadOrAlive();

 //Send input to the web service
 result = source.getDeadOrAlive(textBox1.Text);

 //parse results and display them
 label1.Text = "";
 foreach (DataTable currentTable in result.Tables) {
 label1.Text += "<p>\n";
 foreach (DataRow currentRow in currentTable.Rows) {
 foreach (DataColumn currentCol in currentTable.Columns) {
 label1.Text += currentCol.ColumnName + ": ";
 label1.Text += currentRow[currentCol] + "
\n";
 }
 }
 label1.Text += "</p>";
 }
}

Note: As you can see by the added application logic code, the DeadOrAliveWS web service returns
query results in the form of a dataset. Web Services can, however, return data in a variety of
formats.

To run the application
1 Choose Project Build All Projects.

Now your project is built and resides on your ASP.NET server.

2 Open a Web browser.
3 Type the URL of your Web Application's .aspx file and press Enter.

Tip: If you are using Microsoft IIS, the URL is the path of the .aspx file after Inetpub\wwwroot. For
example, if the path of your Web Application is c:\Inetpub\wwwroot\WebApplication1 and
your .aspx file is named "WebForm1.aspx", the URL would be http://localhost/WebApplication1/
WebForm1.aspx.

4 If necessary, enter your user name and password for your ASP.NET server.
The web page for your web application appears.

5 Enter the name of a celebrity (for example, Isaac Asimov) in the text box and click the Dead or Alive? button.
Your web application requests the information from the DeadOrAliveWS web service and displays the result in
the label.

1199

Note: If no information is displayed, that name may not be in the database. Check your spelling or try
a different name.

1200

Building an ASP.NET "Hello World" Web Services Application
Building an application with ASP.NET Web Services lets you expose functionality to your client application over a
Web connection. These steps walk you through building a simple "Hello World" application with ASP.NET Web
Services. Once built, the application exposes all of its objects and methods through a WebMethod that you create
and access through a web browser.

To create a simple "Hello World" application with ASP.NET Web Services
1 Create an ASP.NET Web Services application.
2 Create a WebMethod.
3 Test and run the ASP.NET Web Services application.

Note: Currently, using Developer Studio 2006 you can only create web services using the code-behind method.
You cannot use the code inline method, in which you code your web service in the <ServiceName>.asmx
file. Currently, Developer Studio 2006 does not support the code inline method of creating web services.

To create an an ASP.NET Web Services application
1 Choose File New Other.

A New Items dialog box appears.

2 Select the ASP Projects folder for the language you are using.
3 Select ASP.NET Web Service Application.

An Application Name dialog box appears.

4 Enter a name and location of the application in the fields and retain all other default settings.

Note: If you are using the Cassini Web Server, you need to change the Location and Server entries.
You also need to make sure you configure the Cassini Web Server before trying to run this
application. Choose Tools Options and select ASP.NET Options to set the Path and
the Port for Cassini.

5 Click OK.
A WebService1.asmx file and a WebService1.asmx.<filetype>, are automatically created for you.

To create a WebMethod
1 Select the WebService.pas or WebService.asmx.cs tab at the bottom of the Code Editor.

If you named your web service application something other than the default, that will be the name that appears
on the tab. The code for the "Hello World" application is already included in the WebMethod that is created for
you when you created the Web Services application.

2 Uncomment the sample WebMethods in the code-behind file.
Delphi for .NET applications have two "Hello World" WebMethods to uncomment; one in the Interface module
and the other in the Implementation module.

In C# Web Services applications, uncomment the "HelloWorld" and "EchoString" WebMethods.

3 Choose Project Build <project name> to build your project.
4 Run your project.

This invokes the browser which hosts the Web Service.

1201

The pages you see will include sample SOAP and HTTP code that you can use to access the WebMethods. You
can run the samples and see how the results are passed to an output XML file.

To test and run the XML web service manually
1 From a web browser, enter the location of the WebService1.asmx file on your localhost:

http://localhost/WebService1/WebService1.asmx

The pages you see will include sample SOAP and HTTP code that you can use to access the WebMethods. You
can run the samples and see how the results are passed to an output XML file.

Note: You may need to use a slightly different syntax than that shown in this step. For instance, on
some Windows XP machines, the localhost identifier should be your machine name. For
instance, if you machine name is MyMachine, the syntax would be: http://MyMachine/
WebService1/Webservice1.asmx.

2 Test the two methods from a web browser.

1202

Porting a Delphi for Win32 Web Service Client Application to Delphi
for .NET
The following steps are required to port your Delphi for Win32 Web Services client application to Delphi for .NET.

To port your web service
1 Change the existing RIO form components.
2 Change the uses clause.
3 Add a web reference.
4 Change the web service invocation code.

To change your existing form components
1 Copy and save the web reference URL from your existing RIO component.
2 Delete the HTTPRio component from the form if it was not dynamically created.

To change the uses clause
1 Remove any Delphi for Win32 SOAP units from the clause.

These include, but are not restricted to InvokeRegistry, RIO, and SOAPHTTPClient.

Warning: The preceding list of units is not inclusive. Make sure you identify all SOAP units, regardless
of naming convention. Not all of the units include the word SOAP in the name.

2 Remove the reference to the Delphi for Win32 WSDL Importer-generated Interface proxy unit.
3 Remove the proxy unit from the project.

To add a web reference
1 Open a Delphi for Win32 project in Developer Studio 2006 and choose Project Add Web Reference.

Once you have saved the project, the UDDI Browser appears.

2 Enter the URL you want to use, either a service you are already familiar with, or the one saved from your RIO
component into the list box at the top of the Browser.

Note: If you want to locate a WSDL file on your local disk, you can click the ellipsis button next to the
list box and search for the document. You can also navigate to one of the web service sites
listed in the UDDI Browser if you want to use a published service.

3 Click the Add Reference button to add the WSDL document to your project.
Developer Studio 2006 creates the necessary web reference and the corresponding proxy unit based on the
WSDL document. A new Web References node appears in the Project Manager. Expand it to see the associated
WSDL and proxy code files.

4 Choose File Use Unit.

1203

To change the web service invocation code
1 In the code file for your application, locate the code that invokes the web service.

Assume it looks something like this:

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
var
 HelloService: Service3Soap;
begin

 // The next line will be slightly different if you have
 // used a component or generated the method dynamically.

 // This is how it will look if you used a component.
 HelloService := (HTTPRIO1 as Service3Soap);

 // This is how it will look if created dynamically.
 // GetService3Soap is the global method in the proxy unit.
 HelloService := GetService3Soap;

 Caption := HelloService.HelloWorld;
end;

2 Change the var section from this:

[Delphi]
var
// This is the type of the old proxy interface.
 HelloService: Service3Soap;

to

[Delphi]
var
// This is the type of the new proxy class.
 HelloService: Service3;

This assumes the name of your service is Service3. Change the name accordingly.

Note: You will see that what was formerly created as an interface is now created as a class.
The .NET Framework provides automatic garbage collection, and so certain restrictions placed
on the use of classes in previous versions of Delphi may no longer apply when using Developer
Studio 2006.

3 Change the first line in the procedure block from this:

[Delphi]
HelloService := (HTTPRIO1 as Service3Soap);

to:

[Delphi]
HelloService := Service3.Create;

The updated code should look like this:

1204

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
var
 HelloService: Service3;
begin
 HelloService := Service3.Create;
 Caption := HelloService.HelloWorld;
end;

Your code is most likely more complex than this example. However, these instructions cover the basic steps for
porting any Delphi for Win32 application that uses web services to Developer Studio 2006.

1205

Windows Forms Procedures

1206

Building a Windows Forms Application
The following procedures illustrate the essential steps to build a Windows Forms application using Developer Studio
2006.

To create a Windows Forms project
1 Choose File New Other Delphi for .NET Projects Windows Forms Application.

The Windows Forms Designer appears.

2 From the Tool Palette, place components onto the Designer to create the user interface.
3 Associate logic with the controls.

To associate code with a control
1 In the Designer, double-click a component.

The Code Editor appears, cursor in place between the reserved words begin and end in the event handler.

2 Code your application logic.
3 Save and compile the application.

1207

1208

Building a Windows Forms Database Application
The following procedure describes the minimum number of steps required to build a simple ADO.NET application
using Windows Forms and BDP.NET. After generating the required connection objects, the project displays data in
a DataGrid.

BDP.NET includes component designers to facilitate the creation of database applications. Instead of dropping
individual components on a designer, configuring each in turn, use BDP.NET designers to rapidly create and
configure database components. The following procedure demonstrates the major components of Windows Forms,
ADO.NET, and BDP.NET at work. To instantiate and configure a data provider, you can also drag and drop objects
from the Data Explorer, which is a tabbed window on the right-hand side of the IDE.

Building a BDP.NET project consists of three major steps:

1 Configure BDP.NET connection components and a data source.
2 Create and configure a BdpDataAdapter.
3 Connect a DataGrid to the connection components.

To configure connection components and a data source
1 Choose File New Windows Forms Application for either Delphi for .NET or C#.

The Windows Forms designer appears.

2 Drag and drop a BdpConnection component onto the Designer.
The BdpDataAdapter, BdpConnection, and other BDP.NET components can be found on the Tool Palette in the
Borland Data Provider area.

3 At the bottom of the Object Inspector, click the Designer Verb Connection Editor.

Note: Designer verbs are action phrases that appear in the lower left-hand corner of the Object
Inspector. When you move the cursor over the phrase, the cursor changes to a hand pointer.

4 Click Add to add a new connection.
5 Choose a provider type from the Provider Name drop down list box.
6 Type the name of the provider.
7 Click OK.
8 Set up the connection.
9 Click OK.

Tip: Alternatively, use Data Explorer to drag and drop a table on to the designer surface. Data Explorer sets the
connection string automatically.

To set up a connection
1 Click the Connections Editor Designer Verb at the bottom of the Object Inspector.
2 In the Borland Data Provider: Connections Editor dialog box, select an existing connection from the

Connections list or add a new connection.
3 In Connection Settings, enter the Database path.

1209

Tip: If using Interbase, you would enter the path to your Interbase database, which may be located
locally in c:\Program Files\Common Files\Borland Shared\Data. If connecting to a
shared network location, you will need to enter the network path and you will need to have access
rights for that remote server.

4 Complete the UserName and Password fields for the database as needed.

Tip: If you are using a sample Interbase database, the username and password are, respectively,
sysdba and masterkey.

5 Click Test to confirm the connection.
A dialog appears indicating the status of the connection.

6 Click OK.

To create and configure a data adapter
1 From the Tool Palette, drag and drop a BdpDataAdapter component onto the Designer.
2 In the Object Inspector, expand the SelectCommand property in the Fill area.
3 Select the connection object from the Connection property drop down list box.
4 Click the Configure Data Adapter designer verb.

This displays the Data Adapter Configuration editor.

5 On the Command tab, select a table from the Tables list.
6 Select one or more columns from the Columns list.
7 Click Generate SQL.

To create a dataset
1 To make sure you get the data you want, click the Preview Data tab on the Data Adapter Configuration editor.
2 Click Refresh.

Column and row data should appear. If they don't appear, it may be that you either do not have a live connection
to a database or your SQL statement is incorrect.

3 Click the DataSet tab.
4 Click New DataSet.
5 Either accept the default name or enter a more descriptive name.
6 Click OK.

A new DataSet component appears in the Component Tray at the bottom of the IDE.

To connect a DataGrid to a DataSet
1 In the Component Tray, select the BdpDataAdapter.
2 In the Live Data area of the Object Inspector, set the Active property to True.
3 Drag and drop a DataGrid component from the Data Controls area of the Tool Palette onto the Designer. If

necessary, select the DataGrid object.
4 In the Object Inspector, select the DataSource property drop-down from the Data area.

1210

5 Select the DataSet component that you generated previously (the default is dataSet1).
6 In the Object Inspector, select the DataMember property drop-down.
7 Select the appropriate table.

The DataGrid displays data from the DataSet.

8 Choose Run Run.
The application compiles and displays a Windows Form with DataGrid.

While presenting a minimum number of steps required to build an ADO.NET project, the preceding procedure
demonstrates the major components of the Windows Forms, ADO.NET, and BDP.NET architectures at work,
including: connections, datasets, and adapters. The adapter connects to the physical data source by way of a
connection, sending a command that reads data from the data source and populates a dataset. Once populated, a
datagrid displays data from the dataset.

Alternatively, use the Data Explorer to create and manage database connections.

1211

1212

Building a Windows Forms Hello World Application
Though simple, the Windows Forms Hello World application demonstrates the essential steps for creating a Windows
Forms application. The application uses a Windows Form, a control, an event, and will display a dialog in response
to a user action.

Creating the Hello World application consists of three major steps:

1 Create a Windows Form.
2 Create the logic.
3 Run the application.

To create a Windows Form
1 Choose File New Other Delphi for .NET Projects Windows Forms Application.

The Windows Forms Designer appears.

2 From the Windows Forms Tool Palette, drag and drop a Button control onto the Designer.
3 If necessary, select the control.
4 Set the Text property to Hello, world!

To associate code with the button control
1 In the Designer, double-click the Button control.

The Code Editor appears, cursor in place within the event handler code block.

2 Code the application logic:

MessageBox.Show('Hello, Developer!');

3 Save and compile the application.

To run the "Hello World" application
1 Choose Run Run.

The application compiles and displays a Windows Form with the "Hello, world" button.

2 Click the "Hello, world!" button.
The "Hello, developer!" dialog appears.

3 Close the Windows Form to return to the IDE.

1213

1214

Building Windows Forms Menus
Using Developer Studio 2006 designers, the following procedures illustrate how to create a Windows Forms context
or main menu, add event handlers, and use common keyboard and pop-up options. For more information regarding
the ContextMenu and MainMenu classes, see the .NET Framework Class Library.

To create a menu
1 From the Tool Palette, place a ContextMenu or a MainMenu component on the Windows Forms Designer.

A visual representation of the menu appears on the Designer.

Note: For convenience, the ContextMenu appears much like a MainMenu component when placed
on the designer.

2 Select and replace sample menu text.
When you select menu text, additional options appear for submenus and menu items. Complete as needed.

To create an event handler for a menu item
1 In the Designer, double-click a menu item.

The Code Editor appears, cursor in place between event handler brackets.

2 Code your menu item logic.
3 Save and compile the application.

You can use Arrow, Shift, and other keys to manipulate menu items.

To use keyboard sequences for menus
1 Add a MainMenu or a ContextMenu to the Designer.
2 Refer to the following table for keyboard sequences.

Key Description

Delete Removes the currently selected menu item.

Insert Inserts a blank menu item before the currently selected menu item.

Enter The Designer goes into editing mode on the currently selected item. If the Designer is already in editing
mode, the next item becomes the currently selected item.

Arrow Changes the currently selected menu item to the next item in the arrow direction.

You can right-click on a context menu to view a shortcut menu.

To use shortcut menus
1 Add a MainMenu or a ContextMenu to the Designer.
2 Right click on the menu object.
3 Refer to the following table for menu selections.

1215

Menu Item Description

Cut Removes the currently selected menu item and places it on the clipboard.

Copy Places the currently selected menu item in the clipboard.

Paste Places a menu item from the clipboard above the currently selected menu item.

Delete Removes the currently selected menu item.

Insert New Inserts a blank menu item before the currently selected menu item.

Insert Separator Inserts a separator before the currently selected menu item.

Show Code Goes to the code and generates an event handler if one does not already exist.

1216

Passing Parameters in a Database Application
The following procedures describe a simple application that allows you to pass a parameter value at runtime to a
DataSet. Parameters allow you to create applications at design time without knowing specifically what data the user
will enter at runtime. This example process assumes that you already have your sample Interbase Employee
database set up and connected. For purposes of illustration, this example uses the default connector IBConn1, which
is set to a standard location. Your database location may differ.

To pass a parameter
1 Create a data adapter and connection to the Interbase employee.gdb database.
2 Add a text box control, a button control, and a data grid control to your form.
3 Configure the data adapter.
4 To add a parameter to the data adapter.
5 Configure the data grid.
6 Add code to the button Click event..
7 Compile and run the application.

To create a data adapter and connection
1 Choose File New Windows Forms Application for either Delphi for .NET or C#.

The Windows Forms designer appears.

2 Click on the Data Explorer tab and drill down to find the IBConn1 connection under the Interbase node.
3 Drag and drop the EMPLOYEE table onto the Windows Form.

This creates a BdpDataAdapter and BdpConnection and displays their icons in the Component Tray.

4 Select the data adapter icon, then click the Configure Data Adapter designer verb in the Designer Verb area
at the bottom of the Object Inspector.
This displays the Data Adapter Configuration dialog.

5 Rewrite the SQL statement that is displayed in the Select tab of the dialog to:

SELECT EMP_NO, FIRST_NAME, LAST_NAME, SALARY FROM EMPLOYEE WHERE FIRST_NAME = ?;

As you can see, this statement is limiting the number of fields. It also contains a ? character as part of the Where
clause. The ? character is a wildcard that represents the parameter value that your application passes in at
runtime. There are at least two reasons for using a parameter in this way. The first reason is to make the
application capable of retrieving numerous instances of the data in the selected columns, while using a different
value to satisfy the condition. The second reason is that you may not know the actual values at design time. You
can imagine how limited the application might be if we retrieved only data where FIRST_NAME = 'Bob'.

6 Click the DataSet tab.
7 Click New DataSet.
8 Click OK.

This creates the DataSet that represents your query.

1217

To add a parameter to the data adapter
1 Select the data adapter icon, then expand the properties under SelectCommand in the Fill area of the Object

Inspector.
You should be able to see your Select statement in the SelectCommand property drop down list box.

2 Change the ParameterCount property to 1.
3 Click the (Collection) entry next to the Parameters property.

This displays the BdpParameter Collection Editor.

4 Click Add to add a new parameter.
5 Rename the parameter to emp.
6 Set BdpType to String, DbType to Object, Direction to Input, Source Column to FIRST_NAME, and

ParameterName to emp.
7 Click OK.
8 In the Object Inspector, set the Active property under Live Data to True.

To add controls to the form
1 Drag and drop a TextBox control onto the form.
2 Drag and drop a Button onto the form.
3 Change the Text property of the button to Get Info.
4 Drag and drop a DataGrid data control onto the form.
5 Arrange the controls how you want them to appear, making sure that the DataGrid is long enough to display four

fields of data.

To configure the data grid
1 Select the data grid.
2 Set the DataSource property to the name of the DataSet (dataSet1 by default).
3 Set the DataMember property to Table1.

This should display the column names of the columns specified in the SQL statement that you entered into the
data adapter.

To add code to the button Click event
1 Double-click the button to open the Code Editor.
2 In the button1_Click event code block, add the following code:

[C#]
bdpSelectCommand1.Close();
/* This closes the command to make sure that we will pass the parameter to */
/* the most current bdpSelectCommand. */

 bdpDataAdapter1.Active = false;
/* This clears the data adapter so that we don't maintain old data */

 bdpSelectCommand1.Parameters["emp"].Value = textBox1.Text;
/* This sets the parameter value to whatever value is in the text field. */

1218

 bdpDataAdapter1.Active = true;
/* This re-activates the data adapter so the refreshed data appears in the data grid. */

[Delphi]

Self.bdpSelectCommand1.Close();
/* This closes the command to make sure that we will pass the parameter to */
/* the most current bdpSelectCommand. */

 Self.BdpDataAdapter1.Active := false;
/* This clears the data adapter so that we don't maintain old data */

 Self.bdpSelectCommand1.Parameters['emp'].Value := textBox1.Text;
/* This sets the parameter value to whatever value is in the text field. */

 Self.BdpDataAdapter1.Active := true;
/* This re-activates the data adapter so the refreshed data appears in the data grid. */

If you have changed the names of any of these items, you need to update these commands to reflect the new
names.

3 Save your application.

To compile and run the application
1 Press Shift + F9 to compile the application.
2 Press F9 to run the application.
3 Type one of the names John, Robert, Roger, Kim, Terri, Katherine, or Ann into the text box.
4 Click the button.

This displays the employee number, first name, last name, and salary of the employee with that name in the data
grid. If there is more than one person with the same first name, the grid displays all occurrences of employees
with that name.

1219

Concepts

Win32

1220

Building Windows Applications with Win32 Forms
Windows provides a traditional approach to developing user interfaces, client/server applications, forms, controls,
and application logic. This section provides an overview of Windows forms using Developer Studio 2006 for Win32
and outlines the steps you would use to build a simple Windows project.

In This Section
Windows Overview
This topic provides an overview of the different types of Windows applications and Windows components.

Building a Windows Application
This procedure describes the essential tasks to create a Windows application.

1221

1222

Windows Overview
The Windows platform provides several ways to help you create and build applications. The most common types of
Windows applications are:

GUI Applications
Console Applications
Service Applications
Packages and DLLs

GUI Applications
A graphical user interface (GUI) application is designed using graphical components such as windows, menus, dialog
boxes, and other features that make the application easy to use. When you compile a GUI application, an executable
file with start-up code is created from your source files. The executable usually provides the basic functionality of
your program. Simple programs often consist of only an executable file. You can extend the application by calling
DLLs, packages, and other support files from the executable.

TheDeveloper Studio 2006 IDE offers two application UI models:

Single Document Interface (SDI)
Multiple Document Interface (MDI)

Single Document Interface
A SDI application normally contains a single document view.

Multiple Document Interface
In an MDI application, more than one document or child window can be opened within a single parent window. This
is common in applications such as spreadsheets or word processors.

MDI applications require more planning and are more complex to design than SDI applications. MDI applications
spawn child windows that reside within the client window; the main form contains child forms. For instance, you need
to set the FormStyle property of the TForm object to specify whether a form is a child (fsMDIChild) or main form
(fsMDIForm). It is a best practice to define a base class for your child forms and derive each child form from this
class. Otherwise, you will have to reset the form properties of the child. MDI applications often include a Window
pop-up on the main menu that has items such as Cascade and Tile for viewing multiple windows in various styles.
When a child window is minimized, its icon is located in the MDI parent form.

Console Applications
Console applications are 32-bit programs that run in a console window without a graphical interface. These
applications typically do not require much user input and perform a limited set of functions. Any application that
contains {$APPTYPE CONSOLE} in the code opens a console window of its own.

Service Applications
Service applications take requests from client applications, process those requests, and return the information to
the client applications. Service applications typically run in the background without much user input. A Web, FTP,
or an email server is an example of a service application.

1223

Creating Packages and DLLs
Dynamic link libraries (DLLs) are modules of compiled code that work in conjunction with an executable to provide
functionality to an application. You can create DLLs in cross-platform programs.

Packages are special DLLs used by Delphi applications, the IDE, or both. The two types of packages are runtime
and designtime. Runtime packages provide functionality to a program while that program is running. Designtime
packages extend the functionality of the IDE.

For most applications, packages provide greater flexibility and are easier to create than DLLs. However,here are a
few situations where DLLs would work better than packages:

Your code module will be called from non-Delphi applications.
You are extending the functionality of a Web server.
You are creating a code module to be used by third-party developers.
Your project is an OLE container.

You cannot pass Delphi runtime type information (RTTI) across DLLs or from a DLL to an executable. If you pass
an object from one DLL to another DLL or to an executable, you will not be able to use the is or as operators with
the passed object. This is because the is and as operators need to compare RTTI. If you need to pass objects from
a library, use packages instead of DLLs, because packages can share RTTI. Similarly, you should use packages
instead of DLLs in Web Services because they rely on Delphi RTTI.

1224

Building Web Applications with WebSnap
This section provides a conceptual background for building WebSnap applications using Developer Studio 2006.
WebSnap makes it easier to build Web server applications that deliver complex, data-driven Web pages. WebSnap's
support for multiple modules and for server-side scripting makes development and maintenance easier for teams of
developers and Web designers.

In This Section
Win32 Web Applications Overview
An overview of Win32 web applications programming using Web Snap and Web Broker.

Building a WebSnap Application
Describes the essential tasks to create an WebSnap application using Developer Studio 2006.

1225

1226

Win32 Web Applications Overview
This section covers:

Web Application Support
Web Broker Overview
Web Snap Overview
Debugging With the Web Application Debugger

For more detailed information on web applications, please see the Win32 Developers Guide in the Reference section
of this Help system.

Win32 Web Application Support
The following types of web applications will be supported in Developer Studio 2006.

ISAPI
CGI
Web Application Debugger

Apache web applications are not supported for this release.

ISAPI
Selecting this type of application sets up your project as a DLL, with the exported methods expected by the Web
server. It adds the library header to the project file, and the required entries to the uses list and exports clause of
the project file.

CGI
Selecting this type of application sets up your project as a console application, and adds the required entries to the
uses clause of the project file.

Web Application Debugger
Selecting this type of application sets up an environment for developing and testing Web server applications. This
type of application is not intended for deployment.

Web Broker Overview
Web Broker components, located on the Internet tab of the Component Palette, enable you to create event handlers
that are associated with a specific Uniform Resource Identifier (URI). When processing is complete, you can
construct HTML or XML documents within your program and transfer them to the client. You can use Web Broker
components for cross-platform application development.

Frequently, the content of Web pages is drawn from databases. You can use Internet components to automatically
manage connections to databases, allowing a single DLL to handle multiple simultaneous, thread-safe, database
connections.

Web Snap Overview
WebSnap augments Web Broker with additional components, wizards, and views, making it easier to build Web
server applications that deliver complex, data-driven Web pages. WebSnap's support for multiple modules and for

1227

server-side scripting makes development and maintenance easier for teams of developers and Web designers.
WebSnap allows HTML design experts on your team to make a more effective contribution to Web server
development and maintenance.

The final product of the WebSnap development process includes a series of scriptable HTML page templates. These
pages can be changed using HTML editors that support embedded script tags, like Microsoft FrontPage, or even a
text editor. Changes can be made to the templates as needed, even after the application is deployed. There is no
need to modify the project source code at all, which saves valuable development time. WebSnap’s multiple module
support can be used to divide your application into smaller pieces during the coding phases of your project, so that
developers can work more independently.

Debugging With the Web Application Debugger
The Web Application Debugger provides an easy way to monitor HTTP requests, responses, and response times.
The Web Application Debugger takes the place of the Web server. Once you have debugged your application, you
can convert it to one of the supported types of Web application and install it with a commercial Web server.

To use the Web Application Debugger, you must first create your Web application as a Web Application Debugger
executable. Whether you are using Web Broker or WebSnap, the wizard that creates your Web server application
includes this as an option when you first begin the application. This creates a Web server application that is also a
COM server. The first time you run your application, it registers your COM server so that the Web Application
Debugger can access it. Before you can run the Web Application Debugger, you will need to run bin\serverinfo.
exe once to register the ServerInfo application.

Launching your application with the Web Application Debugger
Once you have developed your Web server application, you can run and debug it using the Web Application
Debugger. You can set breakpoints in it just like any other executable. When you run your application, it displays
the console window of the COM server that is your Web server application. Once you start your application and run
the Web App Debugger, the ServerInfo page is displayed in your default browser, and you can select your application
from a drop-down list. Once you have selected your application, click the Go button. This launches your application
in the Web Application Debugger, which provides you with details on request and response messages that pass
between your application and the Web Application Debugger.

Converting your application to another type of Web server application after debugging
When you have finished debugging your Web server application with the Web Application Debugger, you will need
to convert it to another type that can be installed on a commercial Web server.

1228

Building Web Services with Win32 Applications
Web Services are self-contained modular applications that can be published and invoked over the Internet. Web
Services provide well-defined interfaces that describe the services provided. Unlike Web server applications that
generate Web pages for client browsers, Web Services are not designed for direct human interaction. Rather, they
are accessed programmatically by client applications. This section gives an overview of web services and web
services support.

In This Section
Web Services Overview
This topic gives an overview of web services.

Using Web Services

1229

1230

Web Services Overview
Web Service applications are server implementations that do not require clients to use a specific platform or
programming language. These applications define interfaces in a language-neutral document, and they allow
multiple communication mechanisms.

Web Services are designed to work using Simple Object Access Protocol (SOAP). SOAP is a standard lightweight
protocol for exchanging information in a decentralized, distributed environment. SOAP uses XML to encode remote
procedure calls and typically uses HTTP as a communications protocol.

Web Service applications use a Web Service Definition Language (WSDL) document to publish information on
interfaces that are available and how to call them. On the server side, your application can publish a WSDL document
that describes your Web Service. On the client side, a wizard or command-line utility can import a published WSDL
document, providing you with the interface definitions and connection information you need. If you already have a
WSDL document that describes the Web service you want to implement, you can generate the server-side code
when you import the WSDL document.

1231

1232

Building Database Applications for the Win32 Platform
Database applications let users interact with the information that is stored in the databases. Databases provide
structure for the information, and allow it to be shared among different applications.

Delphi provides support for relational database applications. Relational databases organize information into tables,
which contain rows (records) and columns (fields). These tables can be manipulated by simple operations known
as the relational calculus.

In This Section
dbGo Overview
This topic describes the dbGo components in the Tool Palette.

dbExpress Components
This topic gives an overview of the dbExpress components in the Tool Palette.

BDE Overview
This topic gives an overview of the BDE components in the Tool Palette.

Deploying Multi-tiered Database Applications (DataSnap)

1233

1234

dbGo Overview
dbGo provides the developers with a powerful and logical object model for programmatically accessing, editing, and
updating data from a wide variety of data sources through OLE DB system interfaces. The most common usage of
dbGo is to query a table or tables in a relational database, retrieve and display the results in an application, and
perhaps allow users to make and save changes to the data.

The ADO layer of an ADO-based application consists of the latest version of Microsoft ADO, an OLE DB provider
or ODBC driver for the data store access, client software for the specific database system used (in the case of SQL
databases), a database back-end system accessible to the application (for SQL database systems), and a database.
All of these must be accessible to the ADO-based application for it to be fully functional.

The dbGo category of the Tool Palette hosts the dbGo components. These components let you connect to an ADO
data store, execute commands, and retrieve data from tables in databases using the ADO framework. The
components require the latest version of ADO to be installed on the host computer. Additionally, client software for
the target database system (such as Microsoft SQL Server) must be installed, as well as an OLE DB driver or ODBC
driver specific to the particular database system.

Most dbGo components have direct counterparts in the components available for other data access mechanisms:
a database connection component, TADOConnection, and various types of datasets. In addition, dbGo includes
TADOCommand, a simple component that is not a dataset but which represents an SQL command to be executed
on the ADO data store.

The main dbGo components are:

Components Function

TADOConnection A database connection component that establishes a connection with an ADO data store.

Multiple ADO dataset and command components can share this connection to execute commands,
retrieve data, and operate on metadata.

TRDSConnection A database connection component to marshal data in multi-tier database applications that are built using
ADO-based application servers.

TADODataSet Primary dataset used for retrieving and operating on data.

TADODataSet can retrieve data from a single or multiple tables, can connect directly to a data store, or
use a TADOConnection component

TADOTable A table-type dataset for retrieving and operating on a recordset produced by a single database table.

TADOTable can connect directly to a data store or use a TADOConnection component

TADOQuery A query-type dataset for retrieving and operating on a recordset produced by a valid SQL statement.

TADOQuery can also execute Data Definition Language (DDL) SQL statements. It can connect directly
to a data store or use a TADOConnection component.

TADOStoredProc A stored procedure-type dataset for executing stored procedures.

TADOStoredProc executes stored procedures that may or may not retrieve data. It can connect directly
to a data store or use a TADOConnection component.

TADOCommand A simple component for executing commands (SQL statements that do not return result sets).

TADOCommand can be used with a supporting dataset component, or retrieve a dataset from a table.
It can connect directly to a data store or use a TADOConnection component

1235

1236

dbExpress Components
dbExpress is a set of lightweight database drivers that provide fast access to SQL database servers. For each
supported database, dbExpress provides a driver that adapts the server-specific software to a set of uniform
dbExpress interfaces. When you deploy a database application that uses dbExpress, you include a DLL(the server-
specific driver) with the application files you build.

dbExpress lets you access databases using unidirectional datasets. Unidirectional datasets are designed for quick
lightweight access to database information, with minimal overhead. Like other datasets, they can send an SQL
command to the database server, and if the command returns a set of records, obtain a cursor for accessing those
records. However, unidirectional datasets can only retrieve a unidirectional cursor. They do not buffer data in
memory, which makes them faster and less resource-intensive than other types of dataset. However, because there
are no buffered records, unidirectional datasets are also less flexible than other datasets.

dbExpress connections, tables, views, and stored procedures that show up in a data tree view support drag & drop
with native and managed vcl forms.

The dbExpress category of the Tool Palette contains components that use dbExpress to access database
information. They are:

Components Function

TSQLConnection Encapsulates a dbExpress connection to a database server

TSQLDataSet Represents any data available through dbExpress, or sends commands to a database accessed through
dbExpress

TSQLQuery A query-type dataset that encapsulates an SQL statement and enables applications to access the resulting
records, if any

TSQLTable A table-type dataset that represents all of the rows and columns of a single database table

TSQLStoredProc A stored procedure-type dataset that executes a stored procedure defined on a database server

TSQLMonitor Intercepts messages that pass between an SQL connection component and a database server and saves
them in a string list

TSimpleDataSet A client dataset that uses an internal TSQLDataSet and TDataSetProvider for fetching data and applying
updates

1237

1238

BDE Overview
The Borland Database Engine (BDE) is a data-access mechanism that can be shared by several applications. The
BDE defines a powerful library of API calls that can create, restructure, fetch data from, update, and otherwise
manipulate local and remote database servers. The BDE provides a uniform interface to access a wide variety of
database servers, using drivers to connect to different databases. The components on the BDE category of the Tool
Palette enable you to connect to database information using the BDE.

When deploying BDE-based applications, you must include the BDE with your application. While this increases the
size of the application and the complexity of deployment, the BDE can be shared with other BDE-based applications
and provides a broader range of support for database manipulation. Although you can use the API of the BDE directly
in your application, the components on the BDE category of the Tool Palette wrap most of this functionality for you.

The main BDE components are:

Components Function

TTable Retrieves data from a physical database table via the BDE and supplies it to one or more data-aware
components through a DataSource component. Conversely, it also sends data received from a component
to a physical database via the BDE.

TQuery Uses SQL statements to retrieve data from a physical database table via the BDE and supplies it to one or
more data-aware components through a TDataSource component. Conversely, it uses SQL statements to
send data from a component to a physical database via the BDE.

TStoredProc Enables an application to access server stored procedures. It sends data received from a component to a
physical database via the BDE.

TDatabase Sets up a persistent connection to a database, especially a remote database requiring a user login and
password.

TSession Provides global control over a group of database components. A default TSession component is automatically
created for each database application. You must use the TSession component only if you are creating a
multithreaded database application. Each database thread requires its own session component.

TBatchMove Copies a table structure or its data. It can be used to move entire tables from one database format to another.

TUpdateSQL Lets you use cached updates support with read-only datasets.

TNestedTable Retrieves the data in a nested dataset field and supplies it to data-aware controls through a datasource
component.

1239

1240

Getting Started with InterBase Express
InterBase Express (IBX) is a set of data access components that provide a means of accessing data from InterBase
databases. The InterBase Administration Components, which require InterBase 6, are described after the InterBase
data access components.

IBX components
The following components are located on the InterBase tab of the component palette.

TIBTable

TIBQuery

TIBStoredProc

TIBDatabase

TIBTransaction

TIBUpdateSQL

TIBDataSet

TIBSQL

TIBDatabaseInfo

IBSQLMonitor

TIBEvents

TIBExtract

TIBCustomDataSet

Though they are similar to BDE components in name, the IBX components are somewhat different. For each
component with a BDE counterpart, the sections below give a discussion of these differences.

There is no simple migration from BDE to IBX applications. Generally, you must replace BDE components with the
comparable IBX components, and then recompile your applications. However, the speed you gain, along with the
access you get to the powerful InterBase features make migration well worth your time.

IBDatabase

Use a TIBDatabase component to establish connections to databases, which can involve one or more concurrent
transactions. Unlike BDE, IBX has a separate transaction component, which allows you to separate transactions
and database connections.

1241

To set up a database connection:

1 Drop an IBDatabase component onto a form or data module.
2 Fill out the DatabaseName property. For a local connection, this is the drive, path, and filename of the database

file. Set the Connected property to true.
3 Enter a valid username and password and click OK to establish the database connection.

Warning: Tip: You can store the username and password in the IBDatabase component's Params property by
setting the LoginPrompt property to false after logging in. For example, after logging in as the system
administrator and setting the LoginPrompt property to false, you may see the following when editing the
Params property:

 user_name=sysdba
 password=masterkey

IBTransaction

Unlike the Borland Database Engine, IBX controls transactions with a separate component, TIBTransaction. This
powerful feature allows you to separate transactions and database connections, so you can take advantage of the
InterBase two-phase commit functionality (transactions that span multiple connections) and multiple concurrent
transactions using the same connection.

Use an IBTransaction component to handle transaction contexts, which might involve one or more database
connections. In most cases, a simple one database/one transaction model will do.

To set up a transaction:

1 Set up an IBDatabase connection as described above.
2 Drop an IBTransaction component onto the form or data module
3 Set the DefaultDatabase property to the name of your IBDatabase component.
4 Set the Active property to true to start the transaction.

IBX dataset components

There are a variety of dataset components from which to choose with IBX, each having their own characteristics and
task suitability:

IBTable

Use an TIBTable component to set up a live dataset on a table or view without having to enter any SQL statements.

IBTable components are easy to configure:

1 Add an IBTable component to your form or data module.
2 Specify the associated database and transaction components.
3 Specify the name of the relation from the TableName drop-down list.
4 Set the Active property to true.

IBQuery

Use an TIBQuery component to execute any InterBase DSQL statement, restrict your result set to only particular
columns and rows, use aggregate functions, and join multiple tables.

IBQuery components provide a read-only dataset, and adapt well to the InterBase client/server environment. To set
up an IBQuery component:

1242

1 Set up an IBDatabase connection as described above.
2 Set up an IBTransaction connection as described above.
3 Add an IBQuery component to your form or data module.
4 Specify the associated database and transaction components.
5 Enter a valid SQL statement for the IBQuery's SQL property in the String list editor.
6 Set the Active property to true

IBDataSet

Use an TIBDataSet component to execute any InterBase DSQL statement, restrict your result set to only particular
columns and rows, use aggregate functions, and join multiple tables. IBDataSet components are similar to IBQuery
components, except that they support live datasets without the need of an IBUpdateSQL component.

The following is an example that provides a live dataset for the COUNTRY table in employee.gdb:

1 Set up an IBDatabase connection as described above.
2 Specify the associated database and transaction components.
3 Add an IBDataSet component to your form or data module.
4 Enter SQL statements for the following properties:

SelectSQL SELECT Country, Currency FROM Country

RefreshSQL SELECT Country, Currency FROM Country WHERE Country = :Country

ModifySQL UPDATE Country SET Country = :Country, Currency = :Currency WHERE Country
= :Old_Country

DeleteSQL DELETE FROM Country WHERE Country = :Old_Country

InsertSQL INSERT INTO Country (Country, Currency) VALUES (:Country, :Currency)

1 Set the Active property to true.

Note: Note: Parameters and fields passed to functions are case-sensitive in dialect 3. For example,

FieldByName(EmpNo)

would return nothing in dialect 3 if the field was 'EMPNO'.

IBStoredProc

Use TIBStoredProc for InterBase executable procedures: procedures that return, at most, one row of information.
For stored procedures that return more than one row of data, or "Select" procedures, use either IBQuery or IBDataSet
components.

IBSQL

1243

Use an TIBSQL component for data operations that need to be fast and lightweight. Operations such as data
definition and pumping data from one database to another are suitable for IBSQL components.

In the following example, an IBSQL component is used to return the next value from a generator:

1 Set up an IBDatabase connection as described above.
2 Put an IBSQL component on the form or data module and set its Database property to the name of the database.
3 Add an SQL statement to the SQL property string list editor, for example:

 SELECT GEN_ID(MyGenerator, 1) FROM RDB$DATABASE

IBUpdateSQL

Use an TIBUpdateSQL component to update read-only datasets. You can update IBQuery output with an
IBUpdateSQL component:

1 Set up an IBQuery component as described above.
2 Add an IBUpdateSQL component to your form or data module.
3 Enter SQL statements for the following properties: DeleteSQL, InsertSQL, ModifySQL, and RefreshSQL.
4 Set the IBQuery component's UpdateObject property to the name of the IBUpdateSQL component.
5 Set the IBQuery component's Active property to true.

IBSQLMonitor

Use an TIBSQLMonitor component to develop diagnostic tools to monitor the communications between your
application and the InterBase server. When the TraceFlags properties of an IBDatabase component are turned on,
active IBSQLMonitor components can keep track of the connection's activity and send the output to a file or control.

A good example would be to create a separate application that has an IBSQLMonitor component and a Memo control.
Run this secondary application, and on the primary application, activate the TraceFlags of the IBDatabase
component. Interact with the primary application, and watch the second's memo control fill with data.

IBDatabaseInfo

Use an TIBDatabaseInfo component to retrieve information about a particular database, such as the sweep interval,
ODS version, and the user names of those currently attached to this database.

For example, to set up an IBDatabaseInfo component that displays the users currently connected to the database:

1 Set up an IBDatabase connection as described above.
2 Put an IBDatabaseInfo component on the form or data module and set its Database property to the name of the

database.
3 Put a Memo component on the form.
4 Put a Timer component on the form and set its interval.
5 Double click on the Timer's OnTimer event field and enter code similar to the following:

 Memo1.Text := IBDatabaseInfo.UserNames.Text; // Delphi example
 Memo1->Text = IBDatabaseInfo->UserNames->Text; // C++ example

IBEvents

1244

Use an IBEvents component to register interest in, and asynchronously handle, events posted by an InterBase
server.

To set up an IBEvents component:

1 Set up an IBDatabase connection as described above.
2 Put an IBEvents component on the form or data module and set its Database property to the name of the

database.
3 Enter events in the Events property string list editor, for example:

 IBEvents.Events.Add('EVENT_NAME'); // Delphi example
 IBEvents->Events->Add("EVENT_NAME"); // C++ Example

1 4. Set the Registered property to true.

InterBase Administration Components

If you have InterBase 6 installed, you can use the InterBase 6 Administration components, which allow you to use
access the powerful InterBase Services API calls.

The components are located on the InterBase Admin tab of the IDE and include:

TIBConfigService

TIBBackupService

TIBRestoreService

TIBValidationService

TIBStatisticalService

TIBLogService

TIBSecurityService

TIBLicensingService

TIBServerProperties

TIBInstall

TIBUnInstall

Note: You must install InterBase 6 to use these features.

IBConfigService

1245

Use an TIBConfigService object to configure database parameters, including page buffers, async mode, reserve
space, and sweep interval.

IBBackupService

Use an TIBBackupService object to back up your database. With IBBackupService, you can set such parameters
as the blocking factor, backup file name, and database backup options.

IBRestoreService

Use an TIBRestoreService object to restore your database. With IBRestoreService, you can set such options as
page buffers, page size, and database restore options.

IBValidationService

Use an TIBValidationService object to validate your database and reconcile your database transactions. With the
IBValidationService, you can set the default transaction action, return limbo transaction information, and set other
database validation options.

IBStatisticalService

Use an TIBStatisticalService object to view database statistics, such as data pages, database log, header pages,
index pages, and system relations.

IBLogService

Use an TIBLogService object to create a log file.

IBSecurityService

Use an TIBSecurityService object to manage user access to the InterBase server. With the IBSecurityService, you
can create, delete, and modify user accounts, display all users, and set up work groups using SQL roles.

IBLicensingService

Use an TIBLicensingService component to add or remove InterBase software activation certificates.

IBServerProperties

Use an TIBServerProperties component to return database server information, including configuration parameters,
and version and license information.

IBInstall

Use an TIBInstall component to set up an InterBase installation component, including the installation source and
destination directories, and the components to be installed.

IBUnInstall

Use an TIBUnInstall component to set up an uninstall component.

1246

Building Applications with VCL Components
VCL is a set of visual components for the rapid development of Windows applications in the Delphi language. VCL
contains a wide variety of visual, non-visual, and utility classes for tasks such as building Windows applications, web
applications, database applications, and console applications.

In This Section
VCL Overview
An overview of using the VCL for application development.

Building a VCL Forms Application
Describes the essential tasks to create a VCL Forms application using Developer Studio 2006.

1247

1248

VCL Overview
This section introduces:

VCL Architecture
VCL versus VCL.NET
VCL Components
Working With Components

VCL Architecture
VCL is an acronym for the Visual Component Library, a set of visual components for rapid development of Windows
applications in the Delphi language. VCL contains a wide variety of visual, non-visual, and utility classes for tasks
such as Windows application building, web applications, database applications, and console applications. All classes
descend from TObject. TObject introduces methods that implement fundamental behavior like construction,
destruction, and message handling.

VCL versus VCL.NET
VCL.Net contains only a subset of the full functionality available in VCL for Win32. The .NET Framework was
architected to accommodate any .NET-compliant language. In many cases, Delphi source code that operates on
Win32 VCL classes and functions recompiles with minimal changes on .NET. In some cases, the code recompiles
with no changes at all. Since VCL.NET is a large subset of VCL, it supports many of the existing VCL classes.
However, source code that calls directly to the Win32 API requires source code changes.

VCL Components
Components are a subset of the component library that descend from the class TComponent. You can place
components on a form or data module and manipulate them at designtime. Using the Object Inspector, you can
assign property values without writing code. Most components are either visual or nonvisual, depending on whether
they are visible at runtime. Some components appear on the Component Palette.

Visual Components
Visual components, such as TForm and TSpeedButton, are called controls and descend from TControl. Controls
are used in GUI applications, and appear to the user at runtime. TControl provides properties that specify the visual
attributes of controls, such as their height and width.

NonVisual Components
Nonvisual components are used for a variety of tasks. For example, if you are writing an application that connects
to a database, you can place a TDataSource component on a form to connect a control and a dataset used by the
control. This connection is not visible to the user, so TDataSource is nonvisual. At designtime, nonvisual components
are represented by an icon. This allows you to manipulate their properties and events just as you would a visual
control.

Other VCL Classes
Classes that are not components (that is, classes that descend from TObject but not TComponent) are also used
for a variety of tasks. Typically, these classes are used for accessing system objects (such as a file or the clipboard)

1249

or for transient tasks (such as storing data in a list). You cannot create instances of these classes at designtime,
although they are sometimes created by the components that you add in the Form Designer.

Working With Components
Many components are provided in the IDE on the Component Palette. You select components from the Component
Palette and place them onto a form or data module. You design the user interface of an application by arranging
the visual components such as buttons and list boxes on a form. You can also place nonvisual components, such
as data access components, on either a form or a data module. At first, Delphi’s components appear to be just like
any other classes. But there are differences between components in Delphi and the standard class hierarchies that
many programmers work with. Some differences are:

All Delphi components descend from TComponent.
Components are most often used as is. They are changed through their properties, rather than serving as base
classes to be subclassed to add or change functionality. When a component is inherited, it is usually to add
specific code to existing event handling member functions.
Components can only be allocated on the heap, not on the stack.
Properties of components contain runtime type information.
Components can be added to the Component Palette in the IDE and manipulated on a form.

Components often achieve a better degree of encapsulation than is usually found in standard classes. For example,
consider a dialog box containing a button. In a Windows program developed using VCL components, when a user
clicks the button, the system generates a WM_LBUTTONDOWN message. The program must catch this message
(typically in a switch statement, a message map, or a response table) and send it to a routine that will execute in
response to the message. Most Windows messages (VCL applications) are handled by Delphi components. When
you want to respond to a message or system event, you only need to provide an event handler.

Using Events
Almost all the code you write is executed, directly or indirectly, in response to events. An event is a special kind of
property that represents a runtime occurrence, often a user action. The code that responds directly to an event,
called an event handler, is a Delphi procedure.

The Events page of the Object Inspector displays all events defined for a given component. Double-clicking an
event in the Object Inspector generates a skeleton event handling procedure, which you can fill in with code to
respond to that event. Not all components have events defined for them.

Some components have a default event, which is the event the component most commonly needs to handle. For
example, the default event for a button is OnClick. Double-clicking on a component with a default event in the
Form Designer will generate a skeleton event handling procedure for the default event.

You can reuse code by writing event handlers that respond to more than one event. For example, many applications
provide speed buttons that are equivalent to drop down menu commands. When a button performs the same action
as a menu command, you can write a single event handler and then assign it to the OnClick event for both the button
and the menu item by setting the event handler in the Object Inspector for both the events you want to respond to.

This is the simplest way to reuse event handlers. However, action lists, and in the VCL, action bands, provide
powerful tools for centrally organizing the code that responds to user commands. Action lists can be used in cross-
platform applications; action bands cannot.

Setting Component Properties
To set published properties at design time, you can use the Object Inspector and, in some cases, property editors.
To set properties at runtime, assign their values in your application source code.

1250

When you select a component on a form at design time, the Object Inspector displays its published properties and,
when appropriate, allows you to edit them.

When more than one component is selected, the Object Inspector displays all properties—except Name—that are
shared by the selected components. If the value for a shared property differs among the selected components, the
Object Inspector displays either the default value or the value from the first component selected. When you change
a shared property, the change applies to all selected components.

Changing code-related properties, such as the name of an event handler, in the Object Inspector automatically
changes the corresponding source code. In addition, changes to the source code, such as renaming an event handler
method in a form class declaration, are immediately reflected in the Object Inspector.

1251

1252

Building Interoperable Applications
Developer Studio 2006 provides wizards and classes to make it easy to implement applications based on the
Component Object Model (COM) from Microsoft. With these wizards, you can create COM-based classes and
components to use within applications or you can create fully functional COM clients or servers that implement COM
objects, Automation servers (including Active Server Objects), ActiveX controls, or ActiveForms.

In This Section
Building COM Applications
Describes the chapter content in a sentence; used for part descriptions only.

Interoperable Applications Procedures

1253

1254

Building COM Applications
Delphi provides wizards and classes to make it easy to implement applications based on the Component Object
Model (COM) from Microsoft. With these wizards, you can create COM-based classes and components to use within
applications or you can create fully functional COM clients and servers that implement COM objects, Automation
servers (including Active Server Objects), ActiveX controls, or ActiveForms.

This topic covers:

COM Technologies Overview
COM Interfaces
COM Servers
COM Clients

COM Technologies Overview
COM is a language-independent software component model that enables interaction between software components
and applications running on a Windows platform. The most important aspect of COM is that it enables communication
between components, between applications, and between clients and servers through clearly defined interfaces.
Interfaces provide a way for clients to ask a COM component which features it supports at runtime. To provide
additional features for your component, you simply add an additional interface for those features.

Applications can access the interfaces of COM components that exist on the same computer as the application or
that exist on another computer on the network using a mechanism called Distributed COM (DCOM).

COM is both a specification and an implementation. The COM specification defines how objects are created and
how they communicate with each other. According to this specification, COM objects can be written in different
languages, run in different process spaces and on different platforms. As long as the objects conform to the written
specification, they can communicate. This allows you to integrate legacy code as a component with new components
implemented in object-oriented languages.

The COM implementation is built into the Win32 subsystem, which provides a number of core services that support
the specification. The COM library contains a set of standard interfaces that define the core functionality of a COM
object, and a small set of API functions for creating and managing COM objects.

When you use Delphi wizards and VCL objects in your application, you are using Delphi’s implementation of the
COM specification. In addition, Delphi provides some wrappers for COM services for those features that it does not
implement directly (such as Active Documents). You can find these wrappers defined in the ComObj unit and the
API definitions in the AxCtrls unit.

Note: Delphi’s interfaces and language follow the COM specification. Delphi implements objects conforming to the
COM spec using a set of classes called the Delphi ActiveX framework (DAX). These classes are found in the
AxCtrls, OleCtrls, and OleServer units. In addition, the Delphi interface to the COM API is in ActiveX.
pas and ComSvcs.pas.

COM Interfaces
COM clients communicate with objects through COM interfaces. Interfaces are groups of logically or semantically
related routines which provide communication between a provider of a service (server object) and its clients.

For example, every COM object must implement the basic interface, IUnknown. Through a routine called
QueryInterface in IUnknown, clients can request other interfaces implemented by the server.

1255

Objects can have multiple interfaces, where each interface implements a feature. An interface provides a way to tell
the client what service it provides, without providing implementation details of how or where the object provides this
service.

Key aspects of COM interfaces are as follows:

Once published, interfaces do not change. You can rely on an interface to provide a specific set of functions.
Additional functionality is provided by additional interfaces.
By convention, COM interface identifiers begin with a capital I and a symbolic name that defines the interface,
such as IMalloc or IPersist.

Interfaces are guaranteed to have a unique identification, called a Globally Unique Identifier (GUID), which is a
128-bit randomly generated number. Interface GUIDs are called Interface Identifiers (IIDs). This eliminates
naming conflicts between different versions of a product or different products.
Interfaces are language independent. You can use any language to implement a COM interface as long as the
language supports a structure of pointers, and can call a function through a pointer, either explicitly or implicitly.
Interfaces are not objects themselves, they provide a way to access an object. Therefore, clients do not access
data directly, they access data through an interface pointer. Windows 2000 adds another layer of indirection,
known as an interceptor, through which it provides COM+ features such as just-in-time activation and object
pooling.
Interfaces are always inherited from the base interface, IUnknown.

Interfaces can be redirected by COM through proxies to enable interface method calls to call between threads,
processes, and networked machines, all without the client or server objects ever being aware of the redirection.

The IUnknown interface
All COM objects must support the fundamental interface, called IUnknown, a typedef to the base interface type
IInterface. IUnknown contains the following routines:

QueryInterface: Provides pointers to other interfaces that the object supports.

AddRef and Release: Simple reference counting methods that keep track of the object’s lifetime so that an
object can delete itself when the client no longer needs its service.

Clients obtain pointers to other interfaces through the IUnknown method, QueryInterface. QueryInterface
knows about every interface in the server object and can give a client a pointer to the requested interface. When
receiving a pointer to an interface, the client is assured that it can call any method of the interface.

Objects track their own lifetime through the IUnknown methods, AddRef and Release, which are simple reference
counting methods. As long as the reference count of an object is nonzero, the object remains in memory. Once the
reference count reaches zero, the interface implementation can safely dispose of the underlying object.

COM Interface Pointers
An interface pointer is a pointer to an object instance that points, in turn, to the implementation of each method in
the interface. The implementation is accessed through an array of pointers to these methods, which is called a vtable.
Vtables are similar to the mechanism used to support virtual functions in Delphi. Because of this similarity, the
compiler can resolve calls to methods on the interface the same way it resolves calls to methods on Delphi classes.

The vtable is shared among all instances of an object class, so for each object instance, the object code allocates
a second structure that contains its private data. The client’s interface pointer, then, is a pointer to the pointer to the
vtable.

In Windows 2000 and subsequent versions of Windows, when an object is running under COM+, another level of
indirection is provided between the interface pointer and the vtable pointer. The interface pointer available to the
client points at an interceptor, which in turn points at the vtable. This allows COM+ to provide such services as just-

1256

in-time activation, where the server can be deactivated and reactivated dynamically in a way that is opaque to the
client. To achieve this, COM+ guarantees that the interceptor behaves as if it were an ordinary vtable pointer.

COM Servers
A COM server is an application or a library that provides services to a client application or library. A COM server
consists of one or more COM objects, where a COM object is a set of properties and methods.

Clients do not know how a COM object performs its service; the object’s implementation remains hidden. An object
makes its services available through its interfaces as described previously.

In addition, clients do not need to know where a COM object resides. COM provides transparent access regardless
of the object’s location.

When a client requests a service from a COM object, the client passes a class identifier (CLSID) to COM. A CLSID
is simply a GUID that identifies a COM object. COM uses this CLSID, which is registered in the system registry, to
locate the appropriate server implementation. Once the server is located, COM brings the code into memory, and
has the server create an object instance for the client. This process is handled indirectly, through a special object
called a class factory (based on interfaces) that creates instances of objects on demand.

As a minimum, a COM server must perform the following:

Register entries in the system registry that associate the server module with the class identifier (CLSID).
Implement a class factory object, which creates another object of a particular CLSID.
Expose the class factory to COM.
Provide an unloading mechanism through which a server that is not servicing clients can be removed from
memory.

COM Clients
COM clients are applications that make use of a COM object implemented by another application or library. The
most common types are Automation controllers, which control an Automation server and ActiveX containers, which
host an ActiveX control.

There are two types of COM clients, controllers and containers. Controllers launch the server and interact with it
through its interface. They request services from the COM object or drive it as a separate process. Containers host
visual controls or objects that appear in the container’s user interface. They use predefined interfaces to negotiate
display issues with server objects. It is impossible to have a container relationship over DCOM; for example, visual
controls that appear in the container's user interface must be located locally. This is because the controls are
expected to paint themselves, which requires that they have access to local GDI resources.

The task of writing these two types of COM client is remarkably similar: The client application obtains an interface
for the server object and uses its properties and methods. Delphi makes it easier for you to develop COM clients by
letting you import a type library or ActiveX control into a component wrapper so that server objects look like other
VCL components. Delphi lets you wrap the server CoClass in a component on the client, which you can even install
on the Component palette. Samples of such component wrappers appear on two pages of the Component palette,
sample ActiveX wrappers appear on the ActiveX page, and sample Automation objects appear on the Servers page.

Even if you do not choose to wrap a server object in a component wrapper and install it on the Component palette,
you must make its interface definition available to your application. To do this, you can import the server’s type
information.

Clients can always query the interfaces of a COM object to determine what it is capable of providing. All COM objects
allow clients to request known interfaces. In addition, if the server supports the IDispatch interface, clients can
query the server for information about what methods the interface supports. Server objects have no expectations

1257

about the client using its objects. Similarly, clients don’t need to know how an object provides the services, they
simply rely on server objects to provide the services they describe in their interfaces.

COM Extensions
As COM has evolved, it has been extended beyond the basic COM services. COM serves as the basis for other
technologies such as Automation, ActiveX controls, Active Documents, and Active Directories. In addition, when
working in a large, distributed environment, you can create transactional COM objects. Prior to Windows 2000, these
objects were not an architectural part of COM, but ran in the Microsoft Transaction Server (MTS) environment. As
of Windows 2000, this support is integrated into COM+. Delphi provides wizards to easily implement applications
that use the above technologies in the Delphi environment.

Automation Servers
Automation refers to the ability of an application to control the objects in another application programmatically, such
as a macro that can manipulate more than one application at the same time. The server object being manipulated
is called the Automation object, and the client of the Automation object is referred to as an Automation controller.
Automation can be used on in-process, local, and remote servers.

Automation is defined by two major points:

The Automation object defines a set of properties and commands, and describes their capabilities through type
descriptions. In order to do this, it must have a way to provide information about its interfaces, the interface
methods, and the arguments to those methods. Typically, this information is available in a type library. The
Automation server can also generate type information dynamically when queried via its IDispatch interface.

Automation objects make their methods accessible so that other applications can use them. For this, they
implement the IDispatch interface. Through this interface an object can expose all of its methods and
properties. Through the primary method of this interface, the object’s methods can be invoked, once having
been identified through type information.

Developers often use Automation to create and use non-visual OLE objects that run in any process space, because
the Automation IDispatch interface automates the marshaling process. Automation does, however, restrict the
types that you can use.

Active X Controls
Delphi wizards allow you to easily create ActiveX controls. ActiveX is a technology that allows COM components,
especially controls, to be more compact and efficient. This is especially necessary for controls that are intended for
Intranet applications, which need to be downloaded by a client before they are used.

ActiveX controls are visual controls that run only as in-process servers, and can be plugged into an ActiveX control
container application. They are not complete applications in themselves, but can be thought of as already written
OLE controls that are reusable in various applications. ActiveX controls have a visible user interface, and rely on
predefined interfaces to negotiate I/O and display issues with their host containers.

ActiveX controls make use of Automation to expose their properties, methods, and events. Features of ActiveX
controls include the ability to fire events, bind to data sources, and support licensing.

One use of ActiveX controls is on a Web site as interactive objects in a Web page. As such, ActiveX is a standard
that targets interactive content for the World Wide Web, including the use of ActiveX Documents used for viewing
non-HTML documents through a Web browser. For more information about ActiveX technology, see the Microsoft
ActiveX Web site.

1258

Active Documents
Active Documents (previously referred to as OLE documents) are a set of COM services that support linking and
embedding, drag-and-drop, and visual editing. Active Documents can seamlessly incorporate data or objects of
different formats, such as sound clips, spreadsheets, text, and bitmaps.

Unlike ActiveX controls, Active Documents are not limited to in-process servers; they can be used in cross-process
applications.

Unlike Automation objects, which are almost never visual, Active Document objects can be visually active in another
application. Thus, Active Document objects are associated with two types of data: presentation data, used for visually
displaying the object on a display or output device, and native data, used to edit an object.

Active Document objects can be document containers or document servers. While Delphi does not provide an
automatic wizard for creating Active Documents, you can use the VCL class, TOleContainer, to support linking and
embedding of existing Active Documents.

You can also use TOleContainer as a basis for an Active Document container. To create objects for Active Document
servers, use the COM object wizard and add the appropriate interfaces, depending on the services the object needs
to support. For more information about creating and using Active Document servers, see the Microsoft ActiveX Web
site.

Note: While the specification for Active Documents has built-in support for marshaling in cross-process applications,
Active Documents do not run on remote servers because they use types that are specific to a system on a
given machine such as window handles, menu handles, and so on.

Transactional Objects
Delphi uses the term "transactional objects" to refer to objects that take advantage of the transaction services,
security, and resource management supplied by Microsoft Transaction Server (MTS) (for versions of Windows prior
to Windows 2000) or COM+ (for Windows 2000 and later). These objects are designed to work in a large, distributed
environment.

The transaction services provide robustness so that activities are always either completed or rolled back. The server
never partially completes an activity. The security services allow you to expose different levels of support to different
classes of clients. The resource management allows an object to handle more clients by pooling resources or keeping
objects active only when they are in use. To enable the system to provide these services, the object must implement
the IObjectControl interface. To access the services, transactional objects use an interface called
IObjectContext, which is created for them by MTS or COM+.

Under MTS, the server object must be built into a DLL library, which is then installed in the MTS runtime environment.
That is, the server object is an in-process server that runs in the MTS runtime process space. Under COM+, this
restriction does not apply because all COM calls are routed through an interceptor. To clients, the difference between
MTS and COM+ is transparent.

MTS or COM+ servers group transactional objects that run in the same process space. Under MTS, this group is
called an MTS package, while under COM+ it is called a COM+ application. A single machine can be running several
different MTS packages (or COM+ applications), where each one is running in a separate process space.

To clients, the transactional object may appear like any other COM server object. The client does not need know
about transactions, security, or just-in-time activation unless it is initiating a transaction itself.

Both MTS and COM+ provide a separate tool for administering transactional objects. This tool lets you configure
objects into packages or COM+ applications, view the packages or COM+ applications installed on a computer, view
or change the attributes of the included objects, monitor and manage transactions, make objects available to clients,
and so on. Under MTS, this tool is the MTS Explorer. Under COM+ it is the COM+ Component Manager.

Type Libraries
Type libraries provide a way to get more type information about an object than can be determined from an object’s
interface. The type information contained in type libraries provides needed information about objects and their

1259

interfaces, such as what interfaces exist on what objects (given the CLSID), what member functions exist on each
interface, and what arguments those functions require.

You can obtain type information either by querying a running instance of an object or by loading and reading type
libraries. With this information, you can implement a client which uses a desired object, knowing specifically what
member functions you need, and what to pass those member functions.

Clients of Automation servers, ActiveX controls, and transactional objects expect type information to be available.
All of Delphi’s wizards generate a type library automatically, although the COM object wizard makes this optional.
You can view or edit this type information by using the Type Library Editor.

1260

Build Configurations
This section contains topics about build configurations. Build configurations store sets of command-line options for
build tools such as the compiler and linker.

Build configurations are available for only the C++ personality.

In This Section
Managing C++ Build Configurations
Describes the behavior of build configurations in the C++ personality.

1261

1262

Managing C++ Build Configurations
A build configuration stores sets of command-line options for build tools such as the compiler and linker. You can
create multiple build configurations that you can quickly switch between.

Two configurations are available by default: Debug Build and Release Build. Use the Build Configurations dialog
box, accessable by choosing Project Options and clicking Configurations, to create other build configurations.

Through the features available in the C++ Project Options dialog box and the way in which build configurations
inherit from a top-level configuration, you can easily manage multiple sets of command-line options.

Build Configuration Inheritance
Two configurations are available by default: Debug Build and Release Build. These build configurations and any
others you create inherit their options from the top-level All Configurations build configuration. When you change
options in All Configurations, the changes affect all other available configurations.

For example, if you had several build configurations and wanted all of them to generate a Map file with publics, you
would select All Configurations and enable that option. All other build configurations would then inherit the
Generate Map file with publics option.

The Inherit Check Box
The Inherit check box appears next to an option if

The option requires a list of strings as a parameter, such as the bcc32 -DConditional Defines option.
You are currently editing a build configuration other than All Configurations.

When you check Inherit, the current build configuration inherits the strings defined in All Configurations. You
cannot delete any inherited strings from the current build configuration.

Overriding Inherited Options
Build configurations inherit options from the All Configurations build configuration. When the value of an option
differs from the value in All Configurations, the option appears in blue and has overridden the inherited option. You
can right-click an overridden option to revert its value.

Setting Project Defaults
If you check Default on the Project Options dialog box, the current project settings will be used for projects you
create later. The current set of build configurations is also saved.

For example, if you created a new build configuration called Internal Development Build with Default checked in
the Project Options dialog box, the Internal Development Build will be available for projects you create later.

Tip: To restore the factory default project settings, delete the default project file located in C:\Documents and
Settings\<user-name>\local settings\application data\Borland\BDS\4.0\DefProject.bdsproj

1263

1264

Debugging C++ Applications with CodeGuard Error Reporting
CodeGuard provides runtime debugging for C++ applications developed with Developer Studio 2006. CodeGuard
reports errors that are not caught by the compiler because they do not violate syntax rules. CodeGuard tracks runtime
libraries with full support for multithreaded applications.

In This Section
CodeGuard Overview
CodeGuard Errors
CodeGuard Warnings

CodeGuard Overview
CodeGuard provides runtime debugging for C++ applications developed with Developer Studio 2006. CodeGuard
reports errors that are not caught by the compiler because they do not violate syntax rules. CodeGuard tracks runtime
libraries with full support for multithreaded applications.

CodeGuard provides two principal types of coverage:

Memory and Resource Use
Function Call Validation

Memory and Resource Use
CodeGuard checks for faulty memory use, improper memory allocation or deallocation, invalid file streams or
handles, and resource leaks caused by improper use of file streams or handles. CodeGuard verifies pointer
dereferencing and pointer arithmetic. CodeGuard can report an error if your program tries to access memory or
resources that have already been released.

Function Call Validation
CodeGuard verifies function arguments and reports function failure as indicated by the return value of the function.
It validates Windows resource handles used in function calls.

1265

1266

CodeGuard Errors
CodeGuard reports four types of runtime errors.

In This Section
Access Errors
Resource Errors
Exception Errors
Function Failure Errors

Access Errors
Access errors result from improper memory management.

When CodeGuard detects accesses to freed memory blocks or deleted objects, it can identify where each block was
allocated and deleted. Enable the Delay Free option using the CodeGuard Configuration dialog box to use this
feature.

The following are types of access errors:

Access in freed memory
Access in uninitialized stack
Access in invalid stack

Access In Freed Memory
In the following example, CodeGuard identifies the line where an invalid access occurrs. CodeGuard then indicates
where the memory block was allocated and subsequently freed.

Error 00004. 0x100430 (Thread 0xFFF87283):
Access in freed memory: Attempt to access 19 byte(s) at 0x00B423DC.
strcpy(0x00B423DC, 0x004091CA ["Copy to free block"])
| lang.cpp line 106:
|
| free(buf_h);
|> strcpy(buf_h, "Copy to free block");
|
| //-----------------------//
Call Tree:
 0x004011F1(=LANG.EXE:0x01:0001F1) lang.cpp#106
 0x00407EE5(=LANG.EXE:0x01:006EE5)

The memory block (0x00B423DC) [size: 21 bytes] was allocated with malloc
| lang.cpp line 80:
| char * pad = (char *) malloc(200);
| // An array in the RTL heap.
|> char * buf_h = (char *) malloc(21);
| char * p;
| // A scratch buffer.
Call Tree:
 0x004011A1(=LANG.EXE:0x01:0001A1) lang.cpp#80
 0x00407EE5(=LANG.EXE:0x01:006EE5)

The memory block (0x00B423DC) was freed with free
| lang.cpp line 105:

1267

| //-------------//
|
|> free(buf_h);
| strcpy(buf_h, "Copy to free block");
|
Call Tree:
 0x004011E5(=LANG.EXE:0x01:0001E5) lang.cpp#105
 0x00407EE5(=LANG.EXE:0x01:006EE5)

Access In Uninitialized Stack
In the following example, the pointer p became invalid when getBadLocal returned from execution. No additional
information is provided because the stack frame for getBadLocal was automatically removed.

Error 00005. 0x120400 (Thread 0xFFF87283):
Access in uninitialized stack: Attempt to access 20 byte(s) at 0x0072FC88.
memcpy(0x0072FCC4, 0x0072FC88, 0x14 [20])
| lang.cpp line 112:
| //-----------------------//
| p = getBadLocal();
|> memcpy(buffer, p, 20);
|
| //-------------//
Call Tree:
 0x00401208(=LANG.EXE:0x01:000208) lang.cpp#112
 0x00407EE5(=LANG.EXE:0x01:006EE5)

Access In Invalid Stack
In the following example, an allocation was made for buf_s on the stack. However, the strcpy function writes just
below the beginning of the valid stack region. CodeGuard identifies this as an error even if the string is only one byte
long.

Error 00002. 0x110400 (Thread 0xFFF87283):
Access in invalid stack: Attempt to access 22 byte(s) at 0x0072FD8F.
strcpy(0x0072FD8F, 0x00409188 ["This string is long!\n"])
| LANG.CPP line 93:
|
| // Stack underrun:
|> strcpy(buf_s -1, "This string is long!\n");
|
| // Global data overrun:
Call Tree:
 0x004011C5(=LANG.EXE:0x01:0001C5) LANG.CPP#93
 0x00407EED(=LANG.EXE:0x01:006EED)

Resource Errors
Resources are memory blocks (allocated with functions like malloc, GlobalAlloc) and object arrays, such as file
handles, stream handles, modules, and items returned by new[].

The following runtime error examples illustrate how CodeGuard reports improper use of resources:

Bad parameter

1268

Reference to freed resource
Resource type mismatch
Resource leaks
Resource from different RTL

Bad Parameter
When a resource is passed to a function, CodeGuard checks the runtime arguments. CodeGuard notifies you if it
detects a bad parameter.

Error 00017. 0x310000 (Thread 0xFFF87283):
Bad parameter: A bad file handle (0xEA) has been passed to the function.
close(0xEA [234])
| lang.cpp line 170:
| // using a bad handle //
| //--------------------//
|> close(234);
|
| //----------------------//
Call Tree:
 0x00401456(=LANG.EXE:0x01:000456) lang.cpp#170
 0x00407EE5(=LANG.EXE:0x01:006EE5)

Reference To Freed Resource
In the following example, CodeGuard reports an attempt to read from a file that has already been closed. The
CodeGuard log shows where the file was opened and subsequently closed.

Error 00020. 0x310030 (Thread 0xFFF840F1):
Reference to freed resource:
read(0x3 [3], 0x0072FCC4, 0x5 [5])
| lang.cpp line 177:
| int i = open("lang.cpp", 0);
| close(i);
|> read (i, buffer, 5);
|
| //--------------//
Call Tree:
 0x00401487(=LANG.EXE:0x01:000487) lang.cpp#177
 0x00407EED(=LANG.EXE:0x01:006EED)

The file handle (0x00000003) [name: 'lang.cpp'] was opened with open
| lang.cpp line 175:
| // using a freed handle //
| //----------------------//
|> int i = open("lang.cpp", 0);
| close(i);
| read (i, buffer, 5);
Call Tree:
 0x0040146C(=LANG.EXE:0x01:00046C) lang.cpp#175
 0x00407EED(=LANG.EXE:0x01:006EED)

The file handle (0x00000003) was closed with close
| lang.cpp line 176:

1269

| //----------------------//
| int i = open("lang.cpp", 0);
|> close(i);
| read (i, buffer, 5);
|
Call Tree:
 0x00401477(=LANG.EXE:0x01:000477) lang.cpp#176
 0x00407EED(=LANG.EXE:0x01:006EED)

Resource Type Mismatch
In the following example, a memory block that was allocated with the new[] operator, and should therefore be
released with the delete[] operator, is instead released with a call to the free function.

Error 00024. 0x350010 (Thread 0xFFF840F1):
Resource type mismatch: a(n) memory block was expected.
free(0x00B42464)
| lang.cpp line 188:
| //---------------//
| char * ss = new char[21];
|> free(ss);
|
| #ifdef __WIN32__
Call Tree:
 0x0040149F(=LANG.EXE:0x01:00049F) lang.cpp#188
 0x00407EED(=LANG.EXE:0x01:006EED)

The object array (0x00B42464) [size: 21 bytes] was created with new[]
| lang.cpp line 187:
| // type mismatch //
| //---------------//
|> char * ss = new char[21];
| free(ss);
|
Call Tree:
 0x00401498(=LANG.EXE:0x01:000498) lang.cpp#187
 0x00407EED(=LANG.EXE:0x01:006EED)

Resource Leaks
In the following example, memory has been allocated but is never freed.

The memory block (0x00B42310) [size: 200 bytes] was allocated with malloc
| lang.cpp line 78:
| // An array on the stack.
| char buf_s[21];
|> char * pad = (char *) malloc(200);
| // An array in the RTL heap.
| char * buf_h = (char *) malloc(21);
Call Tree:
 0x00401199(=LANG.EXE:0x01:000199) lang.cpp#78
 0x00407EE5(=LANG.EXE:0x01:006EE5)

1270

Resource From Different RTL
CodeGuard reports an error if your application allocates, uses, or releases resources in different versions of the
runtime library. This can happen, as the following example illustrates, if you link with a static runtime library but call
a DLL.

Note: CodeGuard detects resource type mismatches before it detects mixed versions of the RTL. When the two
kinds of error are combined, CodeGuard will not report the mixed RTLs until you correct the resource type
mismatch.

Error 00001. 0x340010 (Thread 0x0062):
Resource from different RTL:
close(0x3 [3])
| testdll.cpp line 23:
| {¬
| MessageBox(NULL,"RTLMixHandle: DLL closing EXE handle", "TESTDLL.CPP", MB_OK);
|> close(handle);
| return 1;
| }
Call Tree:
 0x0032115A(=testdll.dll:0x01:00015A) testdll.cpp#23
 0x00401660(=WINAPI.EXE:0x01:000660) filescg.cpp#33
 0x00401271(=WINAPI.EXE:0x01:000271) winapi.cpp#122
 0x77EA15B3
 0x00408B9A(=WINAPI.EXE:0x01:007B9A)

The file handle (0x00000003) [name: 'test2.dat'] was opened with open
| filescg.cpp line 32:
|
| MessageBox(NULL,"FilesMixCG: Mixing RTL file handles", "FILESCG.CPP", MB_OK);
|> i = open("test2.dat", O_CREAT, S_IREAD | S_IWRITE);
| RTLMixHandle(i);
| }
Call Tree:
 0x00401657(=WINAPI.EXE:0x01:000657) filescg.cpp#32
 0x00401271(=WINAPI.EXE:0x01:000271) winapi.cpp#122
 0x77EA15B3
 0x00408B9A(=WINAPI.EXE:0x01:007B9A)

Exception Errors
When a system exception occurs, CodeGuard reports the runtime error using information provided by the operating
system. If possible, the CodeGuard log shows where your application caused the exception. CodeGuard does not
trap or redirect the exception or otherwise interfere with normal program behavior.

The following exceptions illustrate how CodeGuard exception reporting:

General Protection Fault
Divide by zero

General Protection Fault
In the following example, CodeGuard provides information on a general protection fault (Intel system exception
0xD). In addition to the location of the source code that caused the exception, the log shows where the memory was

1271

allocated and subsequently freed. The reported incorrect value is a result of accessing a byte pattern that CodeGuard
uses to identify invalid memory locations.

Error 00003. 0x400003 (Thread 0x0090):
Exception 0xC0000005: Access violation at 0x80828082.
| gpfault.c line 32:
| {¬
| q = p[3];
|> *q = 1;
| }
| }
Call Tree:
 0x004010E5(=GPFAULT.EXE:0x01:0000E5) gpfault.c#32
 0x00406B29(=GPFAULT.EXE:0x01:005B29)

The bogus value (0x80828082) was most likely retrieved by accessing a(n)
 memory block that has already been freed
The memory block (0x008322A4) [size: 16 bytes] was allocated with malloc
| gpfault.c line 17:
| int *q;
|
|> p = malloc(sizeof(*p) * 4);
|
| /* Initialize p */
Call Tree:
 0x00401094(=GPFAULT.EXE:0x01:000094) gpfault.c#17
 0x00406B29(=GPFAULT.EXE:0x01:005B29)

The memory block (0x008322A4) was freed with free
| gpfault.c line 17:
| int *q;
|
|> p = malloc(sizeof(*p) * 4);
|
| /* Initialize p */
Call Tree:
 0x00401094(=GPFAULT.EXE:0x01:000094) gpfault.c#17
 0x00406B29(=GPFAULT.EXE:0x01:005B29)

Divide By Zero
In the following example, CodeGuard identifies the location in source code where division by zero (Intel system
exception 0x0) occurred.

Error 00001. 0x400000 (Thread 0x008B):
Exception 0xC0000094:
| ZERODIV.C line 9:
| {¬
| x = 1;
|> return x / y;
| }
|
Call Tree:
 0x0040109C(=ZERODIV.EXE:0x01:00009C) ZERODIV.C#9
 0x00406321(=ZERODIV.EXE:0x01:005321)

1272

Function Failure Errors
CodeGuard reports function calls that fail, as indicated by their return value.

In the following example, the close function is given an invalid file handle, which causes it to return a value indicating
that it was unable to close a file.

Error 00009. 0x820000 (r) (Thread 0xFFF840F1):
Function failure:
close(0x80868086 [-2138668922])=0xFFFFFFFF [-1]
| lang.cpp line 125:
| // uninitialized data usage //
| //--------------------------//
|> close(m->handle);
|
|
Call Tree:
 0x00401236(=LANG.EXE:0x01:000236) lang.cpp#125
 0x00407EED(=LANG.EXE:0x01:006EED)

1273

1274

CodeGuard Warnings
CodeGuard can report situations where your application may access memory beyond a buffer's maximum size.
Warnings are available for three types of runtime library functions.

In This Section
String Comparison Warnings
Memory Block Comparison Warnings
Pathname Merging and Splitting Warnings

String Comparison Warnings
Each of the following functions has a parameter that determines the maximum number of bytes it compares:

strncmp
strnicmp
strncmpi
_fstrncmp
_fstrnicmp

If the Warnings option is enabled for the functions listed, CodeGuard verifies that a string comparison can be
performed for each buffer passed to the function. If the buffer size is too large, as determined by the parameter
passed to the function, and the buffer is not null-terminated, CodeGuard generates a warning.

If the Warnings option is disabled for the functions listed above, CodeGuard checks the first byte in each memory
block passed to the function. If the memory block is invalid, CodeGuard generates an error message.

Memory Block Comparison Warnings
Each of the following functions has a parameter that determines the maximum number of bytes it compares:

memcmp
memicmp
_fmemcmp
_fmemicmp

If the Warnings option is enabled for the functions listed above, CodeGuard verifies that a comparison can be
performed for each memory block passed to the function. If a memory block is too large, as determined by the
parameter passed to the function, CodeGuard generates a warning.

If the Warnings option is disabled for the functions listed above, CodeGuard checks the first byte in each memory
block passed to the function. If the memory block is invalid, CodeGuard generates an error message.

Pathname Merging and Splitting Warnings
Each of the following functions use constants defined in dir.h to determine the maximum number of bytes to copy
to or from a buffer:

fnmerge
fnsplit
getcurdir

1275

fnmerge
If the Warnings option is enabled, the output buffer is validated against MAXPATH before fnmerge is called.

If the Warnings option is disabled, the size of the output buffer is validated against the null-terminated string length
after fnmerge is called.

fnsplit
If the Warnings option is enabled, the input buffers are validated against MAXDRIVE, MAXDIR, MAXFILE, and
MAXEXT before fnsplit is called.

If the Warnings option is disabled, the input buffers are validated against the length of the null-terminated string
after fnsplit is called.

getcurdir
If the Warnings option is enabled, the output buffer is validated against MAXDIR before getcurdir is called.

If the Warnings option is disabled, the output buffer is validated against the length of the null-terminated string after
getcurdir is called.

1276

Building Reports for Win32 Applications
Developer Studio 2006 ships with Rave Reports from Nevrona. Using the report components, you can build full-
featured reports for your applications. You can create solutions that include reporting capabilities which can be used
and customized by your customers. Additionally, the ComponentOne tools that ship with Developer Studio 2006
include components for creating and generating reports.

In This Section
Using Rave Reports in Developer Studio 2006
Describes how Developer Studio 2006 supports integration of Rave Reports objects.

1277

1278

Using Rave Reports in Developer Studio 2006
The Developer Studio 2006 environment supports the integration of report objects in your applications. This
integration allows you to create a report using the Rave Reports Designer directly from within the Developer Studio
2006 IDE. Your application users can create and display their own reports, or display existing reports.

Creating New Reports in Developer Studio 2006
You can include reports in Developer Studio 2006 just as you would other 3rd-party components. The report is stored
as a separate Rave Report object. You can reference the report in other applications that need to call or generate
that report. When you create a new application, you can include the report object by adding a reference to it in
the Project Manager. Rave Reports also provide the capability to connect your report object to a datasource, which
allows your application to build the report dynamically, based on current database information.

1279

Procedures

1280

CodeGuard Procedures

1281

1282

Using CodeGuard

To run C++ application with CodeGuard reporting
1 Enable the CodeGuard reporting tool.
2 Enable CodeGuard compiler options for your project.
3 Choose Run Run to run your application.

During the execution of your application, CodeGuard runtime errors appear in the Message view.

CodeGuard also generates an error log named <project_name>.cgl that lists any errors it finds. The error log is
located in the same directory as your executable.

Note: If you suspect that your program accesses a freed memory block but CodeGuard does not report an error,
increase the value of Maximum memory block size or Delay queue length on the Resource Options page
of the Configure CodeGuard dialog box.

To enable the CodeGuard reporting tool
1 Choose Tools CodeGuard Configuration to display the CodeGuard Configuration dialog box.
2 Verify that CodeGuard is enabled.
3 Click OK.

Note: If you change any CodeGuard settings in the CodeGuard Configuration dialog box, CodeGuard generates
a .cgi configuration file with the same name and directory as your project file.

To enable CodeGuard compiler options for your project
1 Choose Project Options C++ Compiler CodeGuard compile support to display the CodeGuard

compiler options.
2 Check All CodeGuard options on to enable full CodeGuard coverage.
3 Click OK.
4 Rebuild your project.

Note: If you compile and link your project in separate steps, remember to include the CodeGuard library (cg32.lib)
before including other libraries.

1283

Database Procedures

1284

Accessing Schema Information
The schema information or metadata includes information about what tables and stored procedures are available
on the server and the information about these tables and stored procedures (like the fields of a table, the indexes
that are defined, and the parameters a stored procedure uses).

To access schema information
1 To populate a unidirectional dataset with metadata from the database server, call SetSchemaInfo method to

indicate what data you want to see.
2 Set the type of schema information parameter of SetSchemaInfo method.
3 Set the name of table or stored procedure parameter of SetSchemaInfo method.
4 To fetch data after using the dataset for metadata, do one of the following:

Set the CommandText property to specify the query, table, or stored procedure from which you want to fetch
data.
Set the type of schema information to stNoSchema and call SetSchemaInfo method.

Note: If you choose the second option, the dataset fetches the data specified by the CommandText
property.

1285

1286

Configuring TSQL Connection
The first step when working with a unidirectional dataset is to connect it to a database server. At designtime, once
a dataset has an active connection to a database server, the Object Inspector can provide drop-down lists of values
for other properties. For example, when representing a stored procedure, you must have an active connection before
the Object Inspector can list what stored procedures are available on the server. The connection to a database
server is represented by a separate TSQLConnection component. You work with TSQLConnection like any other
database connection component.

To configure a TSQL Connection
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 From the dbExpress category of the Tool Palette, drag a TSQLConnection component to the form.
4 Identify the driver.
5 Specify connection parameters.
6 Identify a database connection.
7 Display and use the dbExpress Connection Editor.

To identify the driver
1 Select the TSQLConnection component.
2 In the Object Inspector, set the DriverName property, to an installed dbExpress driver.
3 Identify the files associated with the driver name. Select any of the following:

The dbExpress driver
The dynamic link library

Note: The relationship between the dbExpress driver or dynamic link library and the database name is stored in a
file called dbxdrivers.ini, which is updated when you install a dbExpress driver. The SQL connection
component looks the dbExpress driver and the dynamic-link library up in dbxdrivers.ini when given the value
of DriverName. When you set the DriverName property, TSQLConnection automatically sets the
LibraryName and VendorLib properties to the names of the associated dlls. Once LibraryName and VendorLib
have been set, your application does not need to rely on dbxdrivers.ini.

To specify a connection parameter
1 Double-click on the Params property in the Object Inspector to edit the parameters using Value List Editor at

designtime.
2 Use the Params.Values property to assign values to individual parameters at run time.

To identify a database connection
1 Set the ConnectionName property to a valid connection name.

This automatically sets the DriverName and Params properties.

1287

2 Edit the Params property to change the saved set of parameter values.
3 Set the LoadParamsOnConnect property to True to develop your application using one database and deploy it

using another.
This causes TSQLConnection to automatically set DriverName and Params to the values associated with
ConnectionName in dbxconnections.ini when the connection is opened.

4 Call the LoadParamsFromIniFile method.
This method sets DriverName and Params to the values associated with ConnectionName in
dbxconnections.ini (or in another file that you specify). You might choose to use this method if you want to then
override certain parameter values before opening the connection.

To display the Connection Editor
1 Double-click the TSQLConnection component.

The dbExpress Connection Editor appears, with a drop-down drivers list, a list of connection names for the
currently selected driver, and a connection parameters table for the currently selected connection name.

2 From the Driver Name drop-down list, select a driver to indicate the connection to use.
3 From the Connection Name list, select a connection name.
4 Choose the configuration that you want.
5 Click the Test Connection button to check for a valid configuration.

To define and modify connections using the Connection Editor
1 To edit the currently selected named connections in dbxconnections.ini, edit the parameter values in the

parameter table.
2 Click OK.

The new parameter values are saved to dbxconnections.ini.

3 Click the Add Connection button to define a new connection.
The New Connection dialog appears.

4 In the New Connection dialog box, set the Driver Name and the Connection Name.
5 Click OK.
6 Click the Delete Connection button to delete the currently selected named connection from dbxconnections.ini.
7 Click the Rename Connection button to change the name of the currently selected named connection.

1288

Connecting to Databases with TDatabase
TDatabase sets up a persistent connection to a database, especially a remote database requiring a user login and
password. TDatabase is especially important because it permits control over database transaction processing with
the BDE when connected to a remote SQL database server. Use TDatabase when a BDE-based database
application requires:

Persistent database connections
Customized database server logins
Transaction control
Application-specific BDE aliases

To connect to databases with TDatabase
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 Associate a database component with a session.
4 Identify the database.
5 Open a connection using TDatabase.

To associate a database component with a session
1 From the BDE category of the Tool Palette, drag a TDatabase component to the form.
2 Drag a TSession component to the form.
3 In the Object Inspector, set the SessionName property of the TSession component.

SessionName is set to “Default," which means it is associated with the default session component that is
referenced by the global Session variable.

4 Add a TSession component for each session if you use multiple sessions.
5 Set the SessionName property of the TDatabase component to the SessionName property of the TSession

component to associate your dataset with a session component.
6 Read the Session property to access the session component with which the database is associated at runtime.

If SessionName is blank or “Default," the Session property references the same TSession instance referenced
by the global Session variable.

Session enables applications to access the properties, methods, and events of a database component’s parent
session component without knowing the session’s actual name. If you are using an implicit database component,
the session for that database component is the one specified by the dataset’s SessionName property.

To identify the database
1 In the drop-down lists for dataset components, specify the alias name or the name of an existing BDE alias for

a database component.

1289

Note: This clears any value already assigned to DriverName. Alternatively, you can specify a driver
name instead of an alias when you create a local BDE alias for a database component using
the DatabaseName property. Specifying the driver name clears any value already assigned to
AliasName. To provide your own name for a database connection, set the DatabaseName. To
specify a BDE alias at designtime, assign a BDE driver.

2 Create a local BDE alias.
3 Double-click a database component.

The Database editor opens.

4 In the Name edit box in the properties editor, enter the same name as specified by the DatabaseName property.
5 In the Alias name combo box, enter an existing BDE alias name or choose from existing aliases in the drop-

down list.
6 To create or edit connection parameters at designtime, do one of the following:

Use the Database Explorer or BDE Administration utility.
Double-click the Params property in the Object Inspector to invoke the Value List editor.
Double-click a database component in a data module or form to invoke the Database editor.

Note: All of these methods edit the Params property for the database component. When you first invoke the
Database Properties editor, the parameters for the BDE alias are not visible. To see the current settings,
click Defaults. The current parameters are displayed in the Parameter overrides memo box. You can edit
existing entries or add new ones. To clear existing parameters, click Clear. Changes you make take effect
only when you click OK.

To open a connection using TDatabase
1 In the Params property of a TDatabase component, configure the ODBC driver for your application.
2 To connect to a database using TDatabase, set the Connected property to True or call the Open method.

Note: Calling TDatabase. Rollback does not call TDataSet. Cancel for any data sets associated with the database.

1290

Connecting to the Application Server using DataSnap Components
A client application uses one or more connection components in the DataSnap category of the Tool Palette to
establish and maintain a connection to an application server.

To connect to the application server using DataSnap components
1 Identify the protocol for communicating with the application server.
2 Locate the server machine.
3 Identify the application server on the server machine.
4 If you are not using SOAP, identify the server using the ServerName or ServerGUID property.
5 Manage server connections.

1291

1292

Debugging dbExpress Applications using TSQLMonitor
While you are debugging your database application, you can monitor the SQL messages that are sent to and from
the database server through your connection component, including those that are generated automatically for you
(for example by a provider component or by the dbExpress driver).

To debug dbExpress applications
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 To monitor SQL commands, from the dbExpress category of the Tool Palette, drag a TSQLMonitor component
to the form.

4 Set the SQLConnection property of the TSQLMonitor to the TSQLConnection component.
5 Set the Active property of the TSQLMonitor to True.

To use a callback to monitor SQL commands
1 Use the SetTraceCallbackEvent method of the TSQLConnection component.
2 Set the parameters, CallType and CBInfo.

The callback returns a value of type CBRType, typically cbrUSEDEF.

The dbExpress driver calls your callback every time the SQL connection component passes a command to the server
or the server returns an error message.

Warning: Do not call SetTraceCallbackEvent if the TSQLConnection object has an associated TSQLMonitor
component. TSQLMonitor uses the callback mechanism to work, and TSQLConnection can only
support one callback at a time.

1293

1294

Executing the Commands using TSQLDataSet
You can use a unidirectional dataset even if the query or stored procedure it represents does not return any records.
Such commands include statements that use Data Definition Language (DDL) or Data Manipulation Language (DML)
statements other than SELECT statements. The language used in commands is server-specific, but usually
compliant with the SQL-92 standard for the SQL language. The SQL command you execute must be acceptable to
the server you are using. Unidirectional datasets neither evaluate the SQL nor execute it, but pass the command to
the server for execution.

To execute commands
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 From the dbExpress category of the Tool Palette, drag a TSQLDataSet component to the form.
4 Specify the command to execute.
5 Execute the command.
6 Create and modify server metadata.

To specify the command to execute
1 Set the CommandType and CommandText properties in the Object Inspector to specify the command for a

TSQLDataSet.
2 Set the SQL property in the Object Inspector to specify the SQL statement to pass to the server for a

TSQLQuery .
3 Set the StoredProcName property in the Object Inspector to specify the name of the stored procedure to execute

for a TSQLStoredProc .

To execute the command
1 If the dataset is an instance of a TSQLDataSet or a TSQLQuery, call the ExecSQL method.
2 If the dataset is an instance of a TSQLStoredProc, call the ExecProc method.

Tip: If you are executing the query or stored procedure multiple times, it is a good idea to set the Prepared property
to True.

To create and modify server metadata
1 To create tables in a database, use the CREATE TABLE statement.
2 To create new indexes for those tables, use the CREATE INDEX statement.
3 To add various metadata objects, use CREATE DOMAIN, CREATE VIEW, CREATE SCHEMA, and CREATE

PROCEDURE statements.
4 To delete any of the above metadata objects, use DROP TABLE, DROP VIEW, DROP DOMAIN, DROP

SCHEMA, and DROP PROCEDURE.

1295

5 To change the structure of a table, use the ALTER TABLE statement.

1296

Fetching the Data using TSQLDataSet

To fetch the data
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 From the dbExpress category of the Tool Palette, drag a TSQLDataSet component to the form.
4 To fetch the data for a unidirectional dataset, do one of the following:

In the Object Inspector, set the Active property to True.
Call the Open method at runtime.

Tip: Use GetMetadata property to selectively fetch metadata on a database object. Set GetMetadata
to False if you are fetching a dataset for read-only purposes.

5 Set its Prepared property to True to prepare the dataset explicitly.
6 Call the NextRecordSet method to fetch multiple sets of records.

Note: NextRecordSet returns a newly created TCustomSQLDataSet component that provides access to the next
set of records. That is, the first time you call NextRecordSet, it returns a dataset for the second set of records.
Calling NextRecordSet returns a third dataset, and so on, until there are no more sets of records. When there
are no additional datasets, NextRecordSet does not return anything.

1297

1298

Managing Database Sessions Using TSession
A session provides global connection over a group of database components. A default TSession component is
automatically created for each database application. You must use TSession component only if you are creating a
multithreaded database application. Each database thread requires its own session components.

To manage database sessions
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 Activate a session.
4 Specify default database connection behavior.
5 Manage database connections.
6 Work with password-protected Paradox and dBASE tables.
7 Work with BDE aliases.
8 Retrieve information about a session.
9 Create, Name, and Manage additional sessions.

1299

1300

Specifying the Data to Display using TSQLDataSet

To specify the data to display
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 From the dbExpress category of the Tool Palette, drag a TSQLDataSet component to the form.
4 For TSQLDataSet, specify the type of unidirectional dataset by CommandType property in the Object Inspector.
5 Specify whether information comes from results of query, a database table, or a stored procedure.

To display results from a query
1 Set the CommandType property to ctQuery for a TSQLDataSet.
2 For TSQLQuery, drag a TSQLQuery component from the Tool Palette to the form.
3 Set the SQL property to the query you want to assign.
4 Select TSQLDataSet.
5 Click the CommandText property.

The CommandText Editor opens.

6 In the CommandText Editor, set the SQL property to the text of the query statement.

Note: When you specify the query, it can include parameters, or variables, the values of which can be varied at
design time or runtime. Parameters can replace data values that appear in the SQL statement. SQL defines
queries such as UPDATE queries that perform actions on the server but do not return records.

To display records in a table
1 In the Object Inspector, set the CommandType property to ctTable.

TSQLDataSet generates a query based on the values of two properties: CommandText that specifies the name
of the database table that the TSQLDataSet object should represent and SortFieldNames that lists the names
of any fields to use to sort the data, in the order of significance

2 Drag a TSQLTable component to the form.
3 In the Object Inspector , set the TableName property to the table you want.
4 Set the IndexName property to the name of an index defined on the server or set the IndexFieldNames property

to a semicolon-delimited list of field names to specify the order of fields in the dataset.

To display the results of a stored procedure
1 In the Object Inspector, set the CommandType property to ctStoredProc.
2 Specify the name of the stored procedure as the value of the CommandText property.
3 Set the StoredProcName property to the name of the stored procedure for TSQLStoredProc.

1301

Note: After you have identified a stored procedure, your application may need to enter values for any input
parameters of the stored procedure or retrieve the values of output parameters after you execute the stored
procedure.

1302

Specifying the Provider using TLocalConnection or
TConnectionBroker
Client datasets are specialized datasets that hold all the data in memory. They use a provider to supply them with
data and apply updates when they cache updates from a database server or another dataset, represent the data in
an XML document, and store the data in the client portion of a multi-tiered application.

To specify the provider
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 From the DataSnap category of the Tool Palette, drag a TConnectionBroker component to the form if the
provider is on a remote application server.

4 In the Object Inspector, set the ConnectionBroker property of your client dataset to the TConnectionBroker
component to the form.

5 From the DataSnap category of the Tool Palette, drag a TLocalConnection component to the form if the
provider is in the same application as the client dataset.

6 Set the RemoteServer property of your client dataset to the TLocalConnection component to the form.

1303

1304

Using BDE

To use BDE
1 Choose File New Other.

The New Items dialog box opens.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 From the BDE category of the Tool Palette, drag a TTable component to the form.
This will encapsulate the full structure of data in an underlying database table.

4 From the BDE category of the Tool Palette, drag a TQuery component to the form.
This will encapsulate an SQL statement and enables applications to access the resulting records.

5 From the BDE category of the Tool Palette, drag a TStoredProc component to the form.
This will execute a stored procedure that is defined on a database server.

6 From the BDE category of the Tool Palette, drag a TBatchMove component to the form.
This will copy a table structure or its data.

7 From the BDE category of the Tool Palette, drag a TUpdateSQL component to the form.
This will provide a way to update the underlying datasets.

1305

1306

Using DataSnap
A multi-tiered client/server application is partitioned into logical units, called tiers, which run in conjunction on
separate machines. Multi-tiered applications share data and communicate with one another over a local-area
network or even over the Internet. They provide many benefits, such as centralized business logic and thin client
applications.

Multi-tiered applications use the components on the DataSnap category in the Tool Palette. DataSnap provides
multi-tier database capability to Delphi applications by allowing client applications to connect to providers in an
application server.

To build multi-tiered database applications using DataSnap
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 From the DataSnap category of the Tool Palette, drag a TDCOMConnection component to the form.
This will establish a DCOM connection to a remote server in a multi-tiered database application.

4 From the DataSnap category of the Tool Palette, drag a TSocketConnection component to the form.
This will establish a TCP/IP connection to a remote server in a multi-tiered database application.

5 From the DataSnap category of the Tool Palette, drag a TSimpleObjectBroker component to the form.
This will locate a server for a connection component from a list of available application servers.

6 From the DataSnap category of the Tool Palette, drag a TWebConnection component to the form.
This will establish an HTTP connection to a remote server in a multi-tiered database application.

7 From the DataSnap category of the Tool Palette, drag a TConnectionBroker component to the form.
This will centralize all connections to the application server so that applications do not need major rewriting when
changing the connection protocol.

8 From the DataSnap category of the Tool Palette, drag a TSharedConnection component to the form.
This will connect to a child remote data module when the application server is built using multiple remote data
modules.

9 From the DataSnap category of the Tool Palette, drag a TLocalConnection component to the form.
This will provide access to IAppServer methods that would otherwise be unavailable, and make it easier to scale
up to a multi-tiered application at a later time. It acts like a connection component for providers that reside in the
same application.

1307

1308

Using dbExpress

To build a database applications using dbExpress
1 Connect to the database server and configure a TSQL connection.
2 Specify the data to display.
3 Fetch the data.
4 Execute the commands.
5 Access the schema information.
6 Debug dbExpress application using TSQLMonitor.
7 Use TSQLTable to represent a table on a database server that is accessed via TSQLConnection.
8 Use TSQLQuery to execute an SQL command on a database server that is accessed via TSQLConnection.
9 Use TSQLStoredProc to execute a stored procedure on a database server that is accessed via

TSQLConnection.

1309

1310

Using TBatchMove
TBatchMove copies a table structure or its data. It can be used to move entire tables from one database format to
another.

To use TBatchMove
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 Create a batch move component.
4 Specify a batch move mode.
5 Map data types.
6 Execute a batch move.
7 Handle batch move errors.

1311

1312

Using TQuery
TQuery is a query-type dataset that encapsulates an SQL statement and enables applications to access the resulting
records.

To use TQuery
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 Associate the dataset with database and session connections.
4 Create heterogeneous queries.
5 Obtain an editable result set.
6 Update read-only result sets.

To associate a dataset with database and session connections
1 From the BDE category of the Tool Palette, drag a TDatabase component to the form.
2 Drag a TSession component to the form.
3 Set the DatabaseName property of the TDatabase component to associate a BDE-enabled dataset with a

database.
For the TDatabase component, database name is the value of the DatabaseName property of the database
component.

4 Specify a BDE alias as the value of DatabaseName if you want to use an implicit database component and the
database has a BDE alias.

Note: A BDE alias represents a database plus configuration information for that database. The
configuration information associated with an alias differs by database type (Oracle, Sybase,
InterBase, Paradox, dBASE, and so on).

5 In the Object Inspector, set the DatabaseName to specify the directory where the database tables are located
if you want to use an implicit database component for a Paradox or dBASE database.

6 Use the default session to control all database connections in your application.
7 Set the SessionName property of the TSession component to associate your dataset with an explicitly created

session component .

Note: Whether you use the default session or explicitly specify a session using the SessionName property, you can
access the session associated with a dataset by reading the DBSession property. If you use a session
component, the SessionName property of a dataset must match the SessionName property for the database
component with which the dataset is associated.

To create mixed queries
1 Define separate BDE aliases for each database accessed in the query using the BDE Administration tool or the

SQL explorer.
2 Leave the DatabaseName property of the TQuery component blank.

The names of the databases used will be specified in the SQL statement.

1313

3 Set the SQL property to the SQL statement you want to execute.
4 Precede each table name in the statement with the BDE alias for the database of the table, enclosed in colons.

This whole reference is then enclosed in quotation marks.

5 Set the Params property to any parameters for the query.
6 Write a Prepare method to prepare the query for execution prior to executing it for the first time.
7 Write an Open or ExecSQL method depending on the type of query you are executing.
8 Use a TDatabase component as an alternative to using a BDE alias to specify the database in a mixed query.
9 Configure the TDatabase to the database, set the TDatabase. DatabaseName to an unique value, and use that

value in the SQL statement instead of a BDE alias name.

To obtain an editable result set
1 Set RequestLive property of the TQuery component to True.
2 If the query contains linked fields, treat the result set as a read-only result set, and update it.

If an application requests a live result set, but the SELECT statement syntax does not allow it, the BDE returns either
a read-only result set for queries made against Paradox or dBASE, or an error code for SQL queries made against
a remote server.

To update read-only result sets
1 If all updates are applied to a single database table, indicate the underlying table to update in an

OnGetTableName event handler.
2 Set the query’s UpdateObject property to the TUpdateSQL object you are using to have more control over

applying updates.
3 Set the DeleteSQL, InsertSQL, and ModifySQL properties of the update object to the SQL statements that

perform the appropriate updates for your query’s data.

If you are using the BDE to cache updates, you must use an update object.

1314

Using TSimpleDataSet
TSimpleDataSet is a special type of client dataset designed for simple two-tiered applications. Like a unidirectional
dataset, it can use an SQL connection component to connect to a database server and specify an SQL statement
to execute on that server. Like other client datasets, it buffers data in memory to allow full navigation and editing
support.

To use TSQLStoredProc
1 From the dbExpress category of the Tool Palette, drag a TSimpleDataSet component to the form.
2 Set its Name property to a unique value appropriate to your application.
3 From the dbExpress section of the Tool Palette, drag a TSQLConnection component on the form.
4 Select TSimpleDataSet component. Set the Connection property to TSQLConnection component.
5 To fetch data from the server, do any of the following:

Set CommandType to ctQuery and set CommandText to an SQL statement you want to execute on the server.
Set CommandType to ctStoredProc and set CommandText to the name of the stored procedure you want to
execute.
Set CommandType to ctTable and set CommandText to the name of the database tables whose records you
want to use.

6 If the stored procedure returns a cursor to be used with visual data controls, add a data source component to
the form.

7 Set the DataSet property of the data source component to the TSimpleDataSet object.
8 To activate the dataset, use the Active property or call the Open method.
9 If you executed a stored procedure, use the Params property to retrieve any output parameters.

1315

1316

Using TSimpleObjectBroker
If you have multiple COM-based servers that your client application can choose from, you can use an Object Broker
to locate an available server system.

To use TSimpleObjectBroker
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 From the DataSnap category of the Tool Palette, choose the connection component depending on the kind of
connection you want.

4 From the Tool Palette, drag a TSimpleObjectBroker to the form.
5 In the Object Inspector, set the ObjectBroker property of the connection component that you chose in Step 3

to use this broker.

Warning: Do not use the ObjectBroker property with SOAP connections.

1317

1318

Using TSQLQuery
TSQLQuery represents a query that is executed using dbExpress. TSQLQuery can represent the results of a
SELECT statement or perform actions on the database server using statements such as INSERT, DELETE,
UPDATE, ALTER TABLE, and so on. You can add a TSQLQuery component to a form at design time, or create
one dynamically at runtime.

To use TSQLQuery
1 From the dbExpress category of the Tool Palette, drag a TSQLQuery component to the form.
2 In the Object Inspector, set its Name property to a unique value appropriate to your application.
3 Set the SQLConnection property.
4 Click the ellipsis button next to the SQL property of the TSQLQuery component.

The String List editor opens.

5 In the String List editor, type the query statement you want to execute.
6 If the query data is to be used with visual data controls, add a data source component to the form.
7 Set the DataSet property of the data source component to the query-type dataset.
8 To activate the query component, set the Active property to True or call the Open method at runtime.

1319

1320

Using TSQLStoredProc
TSQLStoredProc represents a stored procedure that is executed using dbExpress. TSQLStoredProc can
represent the result set if the stored procedure returns a cursor. You can add a TSQLStoredProc component to a
form at design time, or create one dynamically at runtime.

To use TSQLStoredProc
1 From the dbExpress category of the Tool Palette, drag a TSQLStoredProc component to the form.
2 In the Object Inspector, set its Name property to a unique value appropriate to your application.
3 Set the SQLConnection property.
4 Set the StoredProcName property to specify the stored procedure to execute.
5 If the stored procedure returns a cursor to be used with visual data controls, add a data source component to

the form.
6 Set the DataSet property of the data source component to the stored procedure-type dataset.
7 Provide input parameter values for the stored procedure, if necessary.
8 To execute the stored procedure that returns a cursor, use the Active property or call the Open method.
9 Process any results.

1321

1322

Using TSQLTable
TSQLTable represents a database table that is accessed using dbExpress. TSQLTable generates a query to fetch
all of the rows and columns in a table you specify. You can add a TSQLTable component to a form at designtime,
or create one dynamically at runtime.

To use TSQLTable
1 Choose File New Other.

The New Items dialog displays.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 From the dbExpress category of the Tool Palette, drag a TSQLTable component to the form.
4 In the Object Inspector, set its Name property to a unique value appropriate to your application.
5 Set the SQLConnection property
6 Set the TableName property to the name of the table in the database.
7 Add a data source component to the form.
8 Set the DataSet property of the data source component to the the name of the dataset.

1323

1324

Using TStoredProc
TStoredProc is a stored procedure-type dataset that executes a stored procedure that is defined on a database
server.

To use TStoredProc
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 Associate a dataset with database and session connections.
4 Bind the parameters.

To associate a dataset with database and session connections
1 From the BDE category of the Tool Palette, drag a TDatabase component to the form.
2 To associate a BDE-enabled dataset with a database, set the DatabaseName property.

For TDatabase component, database name is the value of the DatabaseName property of the database
component.

3 Drag a TSession component to the form.
4 To control all database connections in your application, use the default session.
5 In the Object Inspector, set the SessionName property of the TSession component to associate your dataset

with an explicitly created session component.

Note: If you use a session component, the SessionName property of a dataset must match the SessionName
property for the database component with which the dataset is associated.

To bind parameters
1 From the BDE category of the Tool Palette, drag a TStoredProc component to the form.
2 Set the ParamBindMode property to default pbByName to specify how parameters should be bound to the

parameters on the server.
3 View the stored procedure source code of a server in the SQL Explorer if you want to set ParamBindMode to

pbByNumber.
4 Determine the correct order and type of parameters.
5 Specify the correct parameter types in the correct order.

Note: Some servers also support binding parameters by ordinal value, the order in which the parameters appear
in the stored procedure. In this case the order in which you specify parameters in the parameter collection
editor is significant. The first parameter you specify is matched to the first input parameter on the server, the
second parameter is matched to the second input parameter on the server, and so on. If your server supports
parameter binding by ordinal value, you can set ParamBindMode to pbByNumber.

1325

1326

Using TTable
TTable is a table-type dataset that represents all of the rows and columns of a single database table.

To use TTable
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click VCL Forms Application.
The Windows Designer displays.

3 Associate the dataset with the database and session connections.
4 Specify the table type for local tables and control read/write access to local tables.
5 Specify a dBASE index file.
6 Rename local tables.
7 Import data from another table.

To associate a dataset with database and session connections
1 From the BDE category of the Tool Palette, drag a TDatabase component to the form.
2 Drag a TSession component to the form.
3 To associate a BDE-enabled dataset with a database, in the Object Inspector, set the DatabaseName property

of the TDatabase component .
For a TDatabase component, the database name is the value of the DatabaseName property of the database
component.

4 Use the default session to control all database connections in your application.
5 Set the SessionName property of the TSession component to associate your dataset with an explicitly created

session component.

If you use a session component, the SessionName property of a dataset must match the SessionName property for
the database component with which the dataset is associated.

To specify the TableType and control read/write access
1 From the BDE category of the Tool Palette, drag a TTable component to the form.
2 In the Object Inspector, set the TableType property if an application accesses Paradox, dBASE, FoxPro, or

comma-delimited ASCII text tables.
BDE uses the TableType property to determine the table’s type.

3 Set TableType to ttDefault if your local Paradox, dBASE, and ASCII text tables use the file extensions like, .DB, .
DBF, and .TXT.

4 For other extensions, set TableType to ttParadox for Paradox, ttDBase for dBASE, ttFoxPro for FoxPro, and
ttASCII for Comma-delimited ASCII text respectively.

5 Set the table component’s Exclusive property to True before opening the table to gain sole read/write access.

Note: If the table is already in use when you attempt to open it, exclusive access is not granted. You
can attempt to set Exclusive on SQL tables, but some servers do not support exclusive table-

1327

level locking. Others may grant an exclusive lock, but permit other applications to read data
from the table.

To specify a dBASE index file
1 Set the IndexFiles property to the name of the non-production index file or list the files with a .NDX extension.
2 Specify one index in the IndexName property to have it actively sorting the dataset.
3 At designtime, click the ellipsis button in the IndexFiles property.

The Index Files editor opens.

4 To add a non-production index file or file with .NDX extension, click the Add button in the Index Files dialog and
select the file from the Open dialog.

Note: For each non-production index file or .NDX file, repeat Steps 3 and 4.

5 After adding all desired indexes, click the OK button in the Index Files editor.

Note: To do steps 3-5 at runtime, access the IndexFiles property using properties and methods of string lists.

To rename local tables
1 To rename a Paradox or dBASE table at design time, right-click the table component.

A drop-down context menu opens.

2 From the context menu, select Rename Table.
3 To rename a Paradox or dBASE table at runtime, call the table’s RenameTable method.

To import data from another table
1 Use the BatchMove method of a table component to import data, copy, update, append records from another

table into this table, or delete records from a table.
2 Set the name of the table from which to import data, and a mode specification that determines which import

operation to perform.

1328

Using TUpdateSQL to Update a Dataset
When the BDE-enabled dataset represents a stored procedure or a query that is not “live”, it is not possible to apply
updates directly from the dataset. Such datasets may also cause a problem when you use a client dataset to cache
updates.

To update a dataset using an update object
1 From the Tool Palette, add a TUpdateSQL component to the same form as the BDE-enabled dataset.
2 In the Object Inspector, set the UpdateObject property of the BDE-enabled dataset component’s to the

TUpdateSQL component in the form.
3 Set the ModifySQL, InsertSQL, and DeleteSQL properties of the update object to specify the SQL statements

needed to perform updates.
4 Close the dataset.
5 Set the dataset component’s CachedUpdates property to True or link the dataset to the client dataset using a

dataset provider.
6 Reopen the dataset.
7 Create SQL statements for update components.
8 Use multiple update objects.
9 Execute the SQL statements.

1329

Interoperable Applications Procedures

1330

Using COM Wizards
Developer Studio 2006 provides wizards that help you create COM projects and COM objects. These wizards are
available for both Delphi, and C++ projects. The following COM wizards are provided:

ActiveX Library
COM Object
Type Library
Active Form
Active Server Object
Automation Object
COM+ Event Object
COM+ Subscription Object
Property Page

To use a COM wizard
1 Choose File New Other.

The New Items dialog box displays.

2 In the Item Categories tree, click the ActiveX folder.
The wizards available are shown in the right-hand pane of the New Items dialog.

COM wizards are available for both C++ and Delphi projects.

3 Double-click the wizard you wish to use.

Note: If your application implements more than one COM object, you should specify the same instancing for all of
them.

1331

Reporting Procedures

1332

Adding Rave Reports to Developer Studio 2006
Rave Reports offers a powerful set of tools for building reports and including them in your applications. Rave Reports
are installed in a \RaveReports subdirectory in your installation directory. To make the Rave Reports more easily
accessible, add the command executable to your Tools menu.

To add a Rave Reports command to the Tools menu
1 Choose Tools Configure Tools.

This displays the Tool Options dialog box.

2 Click Add.
This displays the Tool Properties dialog box.

3 Type Rave Reports in the Title text box.
4 Click the Browse button.
5 Browse to the \RaveReports subdirectory in your Developer Studio 2006 installation directory.
6 Select the Rave.exe icon.
7 Click OK.

This adds the path for the program and the working directory to the Tool Properties dialog box.

8 Click OK
9 Click Close.

This adds the command to your Tools menu that will initiate a Rave Reports session. Refer to the Rave Reports
online Help for information on how to build and integrate report objects.

1333

VCL Procedures

1334

Adding and Sorting Strings
Creating this VCL application consists of the following steps:

1 Create a VCL Form with Button, Label, and TListBox controls.
2 Write the code to add and sort strings.
3 Run the application.

To create a VCL Form with Button, Label, and ListBox controls
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer displays.

2 From the Standard category of the Tool Palette, place a TButton, TLabel, and TListBox component on the form.

To write the copy stream procedure
1 Select Button1 on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the TForm1.Button1Click event handler block.

3 For Delphi, place the cursor before the begin reserved word and press ENTER.

This creates a new line above the code block.

4 Type the following variable declarations:

[Delphi]
var
 MyList: TStringList;
 Index: Integer;

[C++]
TStringList *MyList;
int Index;

5 Insert the cursor within the code block, and type the following code:

[Delphi]
MyList := TStringList.Create;
try
 MyList.Add('Animals');
 MyList.Add('Flowers');

 MyList.Add('Cars');

 MyList.Sort;
 if MyList.Find('Flowers', Index) then
 begin
 ListBox1.Items.AddStrings(MyList);
 Label1.Caption := 'Flowers has an index value of ' + IntToStr(Index);
 end;

1335

finally
 MyList.Free;
end;

[C++]
MyList = new TStringList();
try {
 MyList->Add("Animals");
 MyList->Add("Flowers");
 MyList->Add("Cars");
 MyList->Sort();
 if(MyList->Find("Flowers", Index) {
 ListBox1–>Items->AddStrings(MyList);
 Label1–>Caption = "Flowers has an index of " +
 IntToStr(Index);
 }
} __finally {
 MyList->Free();
}

Note: Find will only work on sorted lists. Use IndexOf on unsorted lists.

To run the application
1 Save your project files; then choose Run Run to build and run the application.

The form displays with the controls.

2 Click the Button.
The strings 'Animals', 'Cars', and 'Flowers' display alphabetically in a list in the ListBox. The Label caption displays
the message string: 'Flowers has an index value of 2.'

1336

Avoiding Simultaneous Thread Access to the Same Memory
Use these basic techniques to prevent other threads from accessing the same memory as your thread:

Lock objects.
Use critical sections.
Use a multi-read exclusive-write synchronizer

To lock objects
1 For objects such as canvas that have a Lock method, call the Lock method, as necessary, to prevent other

objects from accessing the object, and call Unlock when locking is no longer required.
2 Call TThreadList.LockList (Delphi) or TThreadList::LockList() (C++) to block threads from using

the list object TThreadList, and call TThreadList.UnlockList when locking is no longer required.

Note: You can safely make calls to TCanvas.Lock and TThreadList.LockList.

To use a critical section
1 Create a global instance of TCriticalSection.
2 Call the Acquire method to lock out other threads while accessing global memory.
3 Call the Release method so other threads can access the memory by calling Acquire.

The following code has a global critical section variable LockXY that blocks access to the global variables X and
Y. To use X or Y, a thread must surround that use with calls to the critical section such as shown here:

[Delphi]
LockXY.Acquire;
try
 X := X + 1;
 Y := sin(X);
finally
 LockXY.Release
end;

[C++]
LockXY->Acquire();
try {
 x++;
 y = sin(x);
} __finally {
 LockXY->Release();
}

Warning: Critical sections only work if every thread uses them to access global memory. Otherwise, problems of
simultaneous access can occur.

1337

To use the multi-read exclusive-write synchronizer
1 Create a global instance of TMultiReadExclusiveWriteSynchronizer that is associated with the global

memory you want to protect.
2 Before any thread reads from the memory, it must call BeginRead.
3 At the completion of reading memory, the thread must call EndRead.
4 Before any thread writes to the memory, it must call BeginWrite.
5 At the completion of writing to the memory, the thread must call EndWrite.

Warning: The multi-read exclusive-write synchronizer only works if every thread uses it to access the associated
global memory. Otherwise, problems of simultaneous access can occur.

1338

Building a Multithreaded Application
These are the essential steps to building a VCL Forms multithreaded application with a thread object using Developer
Studio 2006.

To drop a component on a form
1 Create a VCL form with a defined thread object.
2 Optionally initialize the thread.
3 Write the thread function.
4 Optionally write the cleanup code.

1339

1340

Building a VCL Forms "Hello world" Application
Though simple, the Windows Forms "Hello world" application demonstrates the essential steps for creating a VCL
Forms application. The application uses a VCL Form, a control, an event, and will display a dialog in response to a
user action.

Creating the "Hello world" application consists of the following steps:

1 Create a VCL Form with a button control.
2 Write the code to display "Hello world" when the button is clicked.
3 Run the application.

To create a VCL Form
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 Click the VCL form to display the form view.
3 From the Standard page of the Tool Palette, place a TButton component on the form.

To display the "Hello world" string
1 Select Button1 on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the Button1Click event handler block.

3 For Delphi, place the cursor before the begin reserved word; then press ENTER. This creates a new line above
the code block.
For C++, place the cursor after the opening brace ({) and press ENTER.

4 For Delphi, insert the cursor on the new line created, and type the following variable declaration:

[Delphi]
var s: string;

For C++, enter the following code:

[C++]
AnsiString s;

5 For Delphi, insert the cursor within the code block and type the following code:

s:= 'Hello world!';
ShowMessage(s);

For C++, enter the following code:

1341

[C++]
s = “Hello world!”;
ShowMessage(s);

To run the "Hello world" application
1 Choose Run Run to build and run the application.

The form displays with a button called Button1.

2 Click Button1.
A dialog box displays the message "Hello World!"

3 Close the VCL form to return to the IDE.

1342

Building a VCL Forms ADO Database Application
The following procedure describes how to build an ADO database application.

Building a VCL ADO application consists of the following major steps:

1 Set up the database connection.
2 Set up the dataset.
3 Set up the data provider, client dataset, and data source.
4 Connect a DataGrid to the connection components.
5 Run the application.

To add an ADO connection component
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the ADO page of the Tool Palette, place an ADOConnection component on the form.
3 Double-click the ADOConnection component to display the ConnectionString dialog.
4 If necessary, select Use Connection String; then click the Build button to display the Link Properties dialog.
5 On the Provider page of the dialog, select Microsoft Jet 4.0 OLE DB Provider; then click the Next button to

display the Connections page.
6 On the Connections page, click the ellipsis button to browse for the dbdemos.mdb database. The default path

to this database is C:\Program Files\Common Files\Borland Shared\Data.
7 Click Test Connection to confirm the connection. A dialog appears, indicating the status of the connection.
8 Click OK to close the Data Link Properties dialog. Click OK to close the ConnectionString dialog.

To set up the dataset
1 From the ADO page, place an ADODataSet component at the top of the form.
2 In the Object Inspector, select the Connection property drop-down list. Set it to ADOConnection1.
3 Set the CommandText property to an SQL command, for example, Select * from orders.

You can either type the Select statement in the Object Inspector or click the ellipsis to the right of CommandText
to display the CommandText Editor where you can build your own query statement.

Tip: If you need additional help while using the CommandText Editor, click the Help button.

4 Set the Active property to True to open the dataset.
You are prompted to log in. Use admin for the username and no password.

To add the provider
1 From the Data Access page, place a DataSetProvider component at the top of the form.
2 In the Object Inspector, select the DataSet property drop-down list. Set it to ADODataSet1.

1343

To add client dataset
1 From the Data Access page, place a ClientDataSet component to the right of the DataSetProvider component

on the form.
2 In the Object Inspector, select the ProviderName drop-down. Set it to DataSetProvider1.
3 Set the Active property to True to allow data to be passed to your application.

A data source connects the client dataset with data-aware controls. Each data-aware control must be associated
with a data source component to have data to display and manipulate. Similarly, all datasets must be associated
with a data source component for their data to be displayed and manipulated in data-aware controls on the form.

To add the data source
1 In the Tool Palette on the Data Access page, place a DataSource component to the right of the ClientDataSet

on the form.
2 In the Object Inspector, select the DataSet property drop-down. Set it to ClientDataSet1.

To connect a DataGrid to the DataSet
1 In the Tool Palette on the Data Controls page, place a DBGrid component on the form.
2 In the Object Inspector, select the DataSource property drop-down. Set the data source to DataSource1.
3 Choose Run Run.
4 You are prompted to log in. Enter admin for the username and no password.

The application compiles and displays a VCL form with a DBGrid.

1344

Building a VCL Forms Application
The following procedure illustrates the essential steps to building a VCL Forms application using Developer Studio
2006.

To create a VCL Form
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Tool Palette, place components onto the form to create the user interface.
3 Write the code for the controls.

To associate code with a control
1 Double-click the component on the form to which you want to apply logic. The Code Editor displays, cursor in

place within the event handler block.
2 Code your application logic.
3 Save and compile the application.

1345

1346

Building a VCL Forms Application with Decision Support
Components
Creating a form with tables and graphs of multidimensional data consists of the following major steps:

1 Create a VCL form.
2 Add a decision query and dataset.
3 Add a decision cube.
4 Add a decision source.
5 Optionally add a decision pivot.
6 Add one or more decision grids and graphs.
7 Set the active property of the decision query (or alternate dataset component) to True.

To create a VCL form
1 Choose File New Other Delphi Projects and double-click the VCL Forms Application icon.

The VCL Forms Designer displays.

2 If necessary, click Form1 to make it the active window.

To add a decision dataset
1 From the Decision Cube page on the Tool Palette, add a DecisionQuery component to the top of the form.

Tip: Place non-visual components such as this one in the top left corner of the form to keep them out
of the way of visual components you will be adding.

2 Right-click the DecisionQuery component, and select Decision Query Editor....
The Decision Query Editor displays.

3 On the Dimensions/Summary tab, select the BCDEMOS database from the Database: drop-down list.
4 From the Table: drop-down, select the parts.db table.

The List of Available Fields: listbox displays the fields in the parts.db table.

5 Use CTRL+Click to select the PartNo, OnOrder, and Cost fields; then click the right-arrow button next to the
Dimensions: listbox.
PartNo, OnOrder, and Cost display in the listbox.

6 Select the OnOrder field; then click the right-arrow button next to the Summaries: listbox and select count from
the pop-up that displays.
COUNT(OnOrder) displays in the Summaries: listbox.

7 Select the Cost field in the List of Available Fields: listbox; then click the right-arrow button next to the
Summaries: listbox and select sum from the pop-up that displays.
SUM(Cost) displays in the Summaries: listbox.

8 Click OK to close the Decision Query Editor.

Note: When you use the Decision Query Editor, the query is initially handled in ANSI-92 SQL syntax and then
translated (if necessary) into the dialect used by the server. The Decision Query editor reads and displays

1347

only ANSI standard SQL. The dialect translation is automatically assigned to the TDecisionQuery's SQL
property. To modify a query, edit the ANSI-92 version in the Decision Query rather than the SQL property.

To add a decision cube
1 From the Decision Cube page on the Tool Palette, add a decision cube component to the top left corner of the

form.
2 In the Object Inspector, select DecisionQuery1 from the drop-down list next to the decision cube's DataSet

property.

To add a decision source
1 From the Decision Cube page on the Tool Palette, add a decision source component to the top left corner of

the form.
2 In the Object Inspector, select DecisionCube1 from the drop-down list next to the decision source's

DecisionCube property.

To add a decision pivot
1 From the Decision Cube page on the Tool Palette, add an optional DecisionPivot component to the top of the

form.

Tip: The decision pivot displays in the final application window. Place it to the right of the nonvisual
components.

2 In the Object Inspector, select DecisionSource1 from the drop-down list next to the decision pivot's
DecisionSource property.

To create a decision grid
1 From the Decision Cube page on the Tool Palette, add a decision grid component to the form just beneath the

decision pivot.
2 In the Object Inspector, select DecisionSource1 from the drop-down list next to the decision grid's

DecisionSource property.

To create a decision graph
1 From the Decision Cube page on the Tool Palette, add a decision graph component to the form just beneath

the decision grid.
2 In the Object Inspector, select DecisionSource1 from the drop-down list next to the decision graph's

DecisionSource property.

To run the application
1 In the Object Inspector, select True from the Active property drop-down.

The visual decision graph, grid, and pivot components display data.

2 Choose Run Run to run the application.

1348

The application runs and displays the decision support components.

3 Use the decision pivot to update, as desired, the data displayed in the grid and graph.

1349

1350

Building a VCL Forms dbExpress Database Application
The following procedure describes how to build a dbExpress database application.

Building a VCL Forms dbExpress application consists of the following major steps:

1 Set up the database connection.
2 Set up the unidirectional dataset.
3 Set up the data provider, client dataset, and data source.
4 Connect a DataGrid to the connection components.
5 Run the application.

To add a dbExpress connection component
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the dbExpress page of the Tool Palette, place a TSQLConnection component on the form.
3 Double-click the TSQLConnection component to display the Connection Editor.
4 In the Connection Editor, set the Connection Name field to IBConnection.
5 In the Connections Setting box, specify the path to the InterBase database file called employee.gdb in the

Database field.
By default, the file is located in C:\Program Files\Common Files\Borland Shared\Data.

6 Accept the value in the User_Name field (sysdba) and Password field (masterkey).
7 Click OK to close the Connection Editor and save your changes.

To set up the unidirectional dataset
1 In the Tool Palette on the dbExpress page, place a TSQLDataSet component at the top of the form.
2 In the Object Inspector, select the SQLConnection property drop-down list. Set it to TSQLConnection1.
3 Set the CommandText property to an SQL command, for example, Select * from SALES.

You are prompted to log in. Use the masterkey password.

For the SQL command, you can either type a Select statement in the Object Inspector or click the ellipsis to the
right of CommandText to display the CommandText Editor where you can build your own query statement.

Tip: If you need additional help while using the CommandText Editor, click the Help button.

4 In the Object Inspector, set the Active property to True to open the dataset.

To add the provider
1 In the Tool Palette on the Data Access page, place a TDataSetProvider component at the top of the form.
2 In the Object Inspector, select the DataSet property drop-down list. Set it to SQLDataSet1.

1351

To add client dataset
1 In the Tool Palette on the Data Access page, place a TClientDataSet component to the right of the

TDataSetProvider component on the form.
2 In the Object Inspector, select the ProviderName drop-down. Set it to DataSetProvider1.
3 Set the Active property to True to allow data to be passed to your application.

A data source connects the client dataset with data-aware controls. Each data-aware control must be associated
with a data source component to have data to display and manipulate. Similarly, all datasets must be associated
with a data source component for their data to be displayed and manipulated in data-aware controls on the form.

To add the data source
1 In the Tool Palette on the Data Access page, place a TDataSource component to the right of the TClientDataSet

on the form.
2 In the Object Inspector, select the DataSet property drop-down. Set it to ClientDataSet1.

To connect a DataGrid to the DataSet
1 In the Tool Palette on the Data Controls page, place a TDBGrid component on the form.
2 In the Object Inspector, select the DataSource property drop-down. Set the data source to DataSource1.
3 ChooseRun Run.

You are prompted to enter a password. Enter masterkey. If you enter an incorrect password or no password, the
debugger throws an exception.

The application compiles and displays a VCL form with a DBGrid.

1352

Building a VCL Forms MDI Application Using a Wizard
The VCL Forms MDI application wizard automatically creates a project that includes the basic files for an MDI
application. In addition to the Main source file, the wizard creates unit files for child and about box windows, along
with the supporting forms files and resources.

To create a new MDI application using a wizard
1 Choose File New Other Delphi Projects and double-click the MDI Application icon.

The Browse to Folder dialog box is displayed.

2 Navigate to the folder in which you want to store the files for the project.
3 Click OK.
4 Choose Run Run to compile and run the application.
5 Try commands that are automatically set up by the MDI Application wizard.

1353

1354

Building a VCL Forms MDI Application Without Using a Wizard

The basic steps to create a new MDI application with a child window without using a wizard
are
1 Create a main window form (MDI parent window).
2 Create a child window form.
3 Have the main window create the child window under user control.
4 Write the event handler code to close the child window.
5 Create the main menu and commands.
6 Add the event handlers for the commands.
7 Compile and run the application.

To create the main window form
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 In the Object Inspector, set the FormStyle property to fsMDIForm.
3 Enter a more descriptive name such as frMain for the Name property.
4 Save the unit file with a more descriptive name, such as uMain.pas (Delphi) or uMain.cpp (C++).

To create a child window
1 Choose File New Form
2 In the Object Inspector, set the FormStyle property to fsMDIChild.
3 Enter a more descriptive name such as frChild for the Name property.
4 Save the unit file as uChild.pas (Delphi) or uChild.cpp (C++).

To have the main window create the child window
1 Choose Project Options Forms.

The Project Options dialog box appears.

2 Select frChild from Auto-create forms list and click [>] to move it to the Available forms list and click OK.
3 Select the frMain form to activate it; then switch to the Code view.
4 For Delphi, scroll to the uses section and add uChild to the list.

For C++, add #include “uChild.h” to uMain.h.

5 For Delphi, scroll to the private declarations section and enter this procedure declaration:

[Delphi]
procedure CreateChildForm(const childName: string);

For C++, add the following function declaration to the private: declarations of TfrMain.

1355

[C++]
void __fastcall CreateChildForm(const AnsiString childName);

6 For Delphi, scroll to the implementation section, and enter the code below:

[Delphi]
procedure TfrMain.CreateChildForm (const childName: string);
 var Child: TfrChild;
 begin
 Child := TfrChild.Create(Application);
 Child.Caption := childName;
 end;

For C++, add the following function definition to uMain.cpp:

[C++]
void __fastcall TfrMain::CreateChildForm(const AnsiString childName)
{
 TfrChild *Child = new TfrChild(Application);
 Child->Caption = childName;
}

To write the event handler code to close the child window
1 If necessary, activate the frMain form; then select the Events tab in the Object Inspector.
2 Double-click the OnClose event.

The Code Editor displays with the cursor in the TfrMain.FormClose (Delphi) or TfrMain::FormClose (C
++) event handler block.

3 For Delphi, enter the following code:

Action := caFree;

For C++, enter the following code:

[C++]
Action = caFree;

To create the main menu and commands
1 From the Standard page on the Tool Palette, place a TMainMenu component on the main form.
2 Double-click the TMainMenu component.

The Menu designer (frMain.MainMenu1) displays with the first blank menu item highlighted.

3 In the Object Inspector on the Properties tab, enter mnFile for the Name property and &File for the Caption
property; then press ENTER.
In the Menu designer, File displays as the name of the first menu item.

4 In the Menu designer, select File.
A blank command field displays in the File group. Select the blank command.

1356

5 In the Object Inspector, enter mnNewChild for the Name property and &New child for the Caption property; then
press ENTER.
In the Menu designer, New child displays as the name of the first file command, and a blank command field
displays just beneath New child.

6 Select the blank command.
7 In the Object Inspector, enter mnCloseAll for the Name property and &Close All for the Caption property; then

press ENTER.
In the Menu designer, Close All displays as the name of the second file command.

To add event handlers for the New child and Close All commands
1 If necessary, open the Menu designer and select New child.
2 In the Object Inspector, double-click the OnClick event on the Events tab.

The Code Editor displays with the cursor in the TfrMain.mnNewChildClick (Delphi) or
TfrMain::mnNewChildClick (C++) event handler block.

3 For Delphi, enter the following code:

CreateChildForm('Child '+IntToStr(MDIChildCount+1));

For C++, enter the following code:

[C++]
CreateChildForm(“Child “ + IntToStr(MDIChildCount + 1));

4 In the Menu designer, select Close All.
5 In the Object Inspector, double-click the OnClick event on the Events tab.

The Code Editor displays with the cursor in the TfrMain.mnCloseAllClick (Delphi) or
TfrMain::mnCloseAllClick (C++) event handler block.

6 For Delphi, enter the following code:

for i:=0 to MDIChildCount - 1 do
 MDIChildren[i].Close;

For C++, enter the following code:

[C++]
for(int i = 0; i < MDIChildCount; i++) {
 MDIChildren[i]->Close();
}

7 For Delphi, declare the local variable i. The first two lines of the event handler code should appear as shown
here when you are done:

procedure TfrMain.mnCloseAllClick(Sender: TObject);
 var i: integer;

1357

Note: The event handler minimizes the child window in the main window. To close the child window,
you must add an OnClose procedure to the child form (next).

To close the child window
1 Activate the child form.
2 In the Object Inspector, double-click the OnClose event on the Events tab.

The Code Editor displays with the cursor in the TfrChild.FormClose (Delphi) or TfrChild::FormClose
(C++) event handler block.

3 For Delphi, enter the following statement:

Action := caFree;

For C++, enter the following statement:

[C++]
Action = caFree;

To compile and run the MDI application
1 Choose Run Run.
2 The application executes, displaying the File command.
3 Choose File New child one or more times.

A child window displays with each New child command.

4 Choose File Close All.
The child windows close.

1358

Building a VCL Forms SDI Application

To create a new SDI application
1 Choose File New Other Delphi Projects and double-click the SDI Application icon.
2 Pick a folder to save the files in and click OK.
3 Choose Run Run to compile and run the application.

1359

1360

Building a VCL Forms Web Browser Application
Creating the Web browser application consists of the following steps:

1 Create a VCL Form with a button control.
2 Add a TWebBrowser component to the form.
3 Add controls to enter a URL and launch the browser.
4 Write the code to launch the browser when a button is clicked.
5 Run the application.

To create a VCL Form
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Internet page of the Tool Palette, place a TWebBrowser component on the form.
3 With the TWebBrowser component selected on the form, drag the handles to adjust the size of the browser

window. Leave some space on the form above the TWebBrowser to add a URL entry window.
If the window is not large enough to display a browser page in its entirety, the TWebBrowser component adds
scrollbars when you run the application and launch the browser window.

4 From the Standard page of the Tool Palette, place a TMemo component on the form.
With the TMemo component selected on the form, drag the handles to adjust the size to accommodate a user-
entered URL.

5 From the Standard page of the Tool Palette, place a Label component on the form.
6 Select the Label, and in the Object Inspector, enter URL: as the Label caption.
7 From the Standard page of the Tool Palette, place a TButton component on the form.
8 Select the Button, and in the Object Inspector, enter OK as the TButton caption.

To code a button click event that launches the browser
1 Select Button1 on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the Button1Click event handler block.

3 Type the following code:

[Delphi]
WebBrowser1.Navigate(WideString(Memo1.Text));

[C++]
WebBrowser1–>Navigate(WideString(Memo1–>Text));

To run the application
1 Choose Run Run to build and run the application.

1361

2 Enter a URL to a Web page in the memo window; then click the button.
The browser launches in the TWebBrowser window.

1362

Building a Windows "Hello World" Application
The Windows "Hello World" application demonstrates the essential steps for creating a Windows application. The
application uses Windows, a control, an event, and will display a dialog in response to a user action.

To create the "Hello world" application
1 Create a Windows form.
2 Create the logic.
3 Run the application.

To create a Windows form
1 Choose File New Other....

The New Items dialog box appears.

2 In the New Items dialog box, select Delphi Projects or C++Builder Projects and double-click Application.
3 If necessary, select Design view to display the Form Designer
4 From the Tool Palette, drag a TButton control onto the designer.
5 Select Properties tab in Object Inspector.
6 With the button control selected, set the button's Caption property to Hello World .

To associate code with the button control
1 In the designer, double-click the button control.

The Code Editor appears with the cursor placed in the event handler code block.

2 Code the application logic:

[Delphi]
ShowMessage('Hello, Developer!');

[C++]
ShowMessage(“Hello, Developer!”);

3 Save and compile the application.

To run the "Hello World" application
1 Choose Run Run.

The application compiles and displays a form with the "Hello World" button.

2 Click the "Hello World" button.
The "Hello, Developer!" message appears in a dialog box.

3 Close the form to return to the IDE.

1363

1364

Building a Windows Application
The following procedure illustrates the essential steps for building a Windows application.

To create a Windows project
1 In the New Items dialog, select Delphi Projects and double-click Application.

The Windows Designer displays.

2 If necessary, select Design view.
3 From the Tool Palette, drag components onto the designer to create the user interface.
4 Associate logic with controls.

To associate code with a control
1 In the designer, double-click the component to which you wish to apply logic.

The Code Editor appears, cursor in place between the reserved words begin and end in the event handler.

2 Code your application logic.
3 Save and compile the application.

1365

1366

Building an Application with XML Components
This example creates a VCL Forms application that uses an XMLDocument component to display contents in an
XML file.

The basic steps are:
1 Create an XML document.
2 Create a VCL form.
3 Place an XMLDocument component on the form, and associate it with the XML file.
4 Create VCL components to enable the display of XML file contents.
5 Write event handlers to display XML child node contents.
6 Compile and run the application.

To create the XML document
1 Copy the text below into a file in a text editor.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE StockHoldings [
 <!ELEMENT StockHoldings (Stock+)>
 <!ELEMENT Stock (name)>
 <!ELEMENT Stock (price)>
 <!ELEMENT Stock (symbol)>
 <!ELEMENT Stock (shares)>
]>

<StockHoldings>
 <Stock exchange="NASDAQ">
 <name>Borland</name>
 <price>10.375</price>
 <symbol>BORL</symbol>
 <shares>100</shares>
 </Stock>

 <Stock exchange="NYSE">
 <name>MyCompany</name>
 <price>8.75</price>
 <symbol>MYCO</symbol>
 <shares type="preferred">25</shares>
 </Stock>
</StockHoldings>

2 Save the file to your local drive as an XML document. Give it a name such as stock.xml.
3 Open the document in your browser.

The contents should display without error.

Note: In the browser, you can choose View Source to view the source file in the text editor.

1367

To create a form with an XMLDocument component
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Internet page on the Tool Palette, place an TXMLDocument component on the form.
3 In the Object Inspector, click the ellipsis button next to the FileName property, browse to the location of the XML

file you created, and open it.
The XML file is associated with the TXMLDocument component.

4 In the Object Inspector, set the Active property to true.

To set up the VCL components
1 From the Standard page on the Tool Palette, place a TMemo component on the form.
2 From the Standard page on the Tool Palette, place two TButton components on the form just above Memo1.
3 In the Object Inspector with Button1 selected, enter Borland for the Caption property.
4 In the Object Inspector with Button2 selected, enter MyCompany for the Caption property.

To display child node contents in the XML file
1 In the Object Inspector with Button1 selected, double-click the OnClick event on the Events tab.

The Code displays with the cursor in the TForm1.Button1Click event handler block.

2 Enter the following code to display the stock price for the first child node when the Borland button is clicked:

[Delphi]
 BorlandStock:=XMLDocument1.DocumentElement.ChildNodes[0];
 Price:= BorlandStock.ChildNodes['price'].Text;
 Memo1.Text := Price;

[C++]
IXMLNode *BorlandStock = XMLDocument1->DocumentElement->
 ChildNodes->GetNode(0);
WideString Price = BorlandStock->ChildNodes->
 FindNode("price")->Text;
Memo1->Text = Price;

3 For Delphi, add a var section just above the code block in the event handler, and enter the following local variable
declarations:

var
 BorlandStock: IXMLNode;
 Price: string;

4 In the Object Inspector with Button2 selected, double-click the OnClick event on the Events tab.
The Code displays with the cursor in the TForm1.Button2Click event handler block.

5 Enter the following code to display the stock price for the second child node when the MyCompany button is
clicked:

1368

[Delphi]

 MyCompany:=XMLDocument1.DocumentElement.ChildNodes[1];
 Price:= MyCompany.ChildNodes['price'].Text;
 Memo1.Text := Price;

[C++]
IXMLNode *MyCompany = XMLDocument1–>DocumentElement
 ->ChildNodes->GetNode(1);
WideString Price = BorlandStock->ChildNodes
 ->FindNode(“price”)->Text;
Memo1–>Text = Price;

6 For Delphi, add a var section just above the code block in the event handler, and enter the following local variable
declarations:

var
 MyCompany: IXMLNode;
 Price: string;

To compile and run the application
1 Choose Run Run to compile and execute the application.

The application form displays two buttons and a memo.

2 Click the Borland button.
The stock price displays.

3 Click the MyCompany button.
The stock price displays.

1369

1370

Building Application Menus
Menus provide an easy way for your users to execute logically grouped commands. You can add or delete menu
items, or drag them to rearrange them during designtime. In addition to TMainMenu and TPopupMenu components,
the Tool Palette also contains TActionMainMenuBar, TActionManager, and TActionToolBar.

To create application menus
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select Delphi Projects and double-click Application.
The Windows Designer displays.

3 Build application menus.
4 Use the Menu Designer.
5 Create an event handler for each menu item.
6 Move menu items.
7 Add images to menu items.

To build application menus
1 From the Standard category of the Tool Palette, add TMainMenu or TPopupMenu component to your form.

A visual representation of the menu appears on the designer.

Note: A TMainMenu component creates a menu that is attached to the title bar of the form. A
TPopupMenu component creates a menu that appears when the user right-clicks in the form.

2 To view the menu, if the form is visible, click the form.
The menu appears in the form exactly as it will when you run the program.

3 To delete a menu item, select the menu item you want to delete. Press Delete.
4 To edit menu items, select the Windows form, select the menu item you want to edit, and edit its properties.
5 To make the menu item a separator bar, place the cursor on the menu where you want a separator to appear

and enter a hyphen (-) for the caption or press the hyphen (-) key.
6 To specify a keyboard shortcut for a menu item, in the Object Inspector, set the ShortCut property.

To use the Menu Designer
1 Select a menu component on the form.
2 Double-click the menu component.

The Menu Designer window opens.

Note: You can also open the Menu Designer by clicking the ellipsis(...) button next to the Items
property in the Object Inspector.

3 To name a menu component, in the Object Inspector, set the Caption property.

1371

Tip: Delphi derives the Name property from the caption, for e.g. if you give a menu item a Caption
property value of File, Delphi assigns the menu item a Name property of File1. However, if you
fill in the Name property before filling in the Caption property, Delphi leaves the Caption property
blank until you type a value.

4 Right-click anywhere on the Menu Designer to use the Menu Designer context menu.
A drop-down list opens. This is the Menu Designer context menu.

5 To insert a placeholder below or to the right of the cursor, choose Insert from the context menu.
6 To delete the selected menu item (and all its subitems, if any), click Delete from the context menu.
7 To switch among menus in a form, choose Select Menu from the context menu.

The Select Menu dialog box appears. It lists all the menus associated with the form whose menu is currently
open in the Menu designer.

8 From the list in the Select Menu dialog box, choose the menu you want to view or edit.

To create an event handler for a menu item
1 In the designer, double-click the menu item to which you wish to add an event handler.

The Code Designer appears, cursor in place between event handler brackets.

2 Code your menu item logic.
3 Save and compile the application.

To move menu items
1 To move a menu item along the desired menu bar, drag the item until the arrow tip of the cursor points to the

new location.
2 Release the mouse button.
3 To move a menu item into a menu list, drag the item until the arrow tip of the cursor points to the new menu.
4 Release the mouse button.

To add images to menu items
1 From the Tool Palette, drag a TMainMenu or TPopupMenu component to a form.
2 From the Tool Palette, drop a TImageList component to the form.
3 Double-click on the TImageList component.

The ImageList editor opens.

4 Click Add to select the bitmap or bitmap group you want to use in the menu.
5 Select the bitmap that you want and click OK.
6 In the Object Inspector, set the Images property of the TMainMenu or TPopupMenu component to the image

you selected in the ImageList editor.

1372

Building VCL Forms Applications With Graphics
Each of the procedures listed below builds a VCL Form application that uses graphics. Build one or more of the
examples and then add other graphics features to these basic VCL Form applications.

1 Draw straight lines.
2 Draw rectangles and ellipses.
3 Draw a polygon.
4 Display a bitmap image.
5 Place a bitmap in a combo box.

1373

1374

Copying a Complete String List
Copying a string list can have the effect of appending to or overwriting an existing string list. This VCL application
appends to a string list. With a simple change, it can overwrite a string list. Creating this VCL application consists of
the following steps:

1 Create a VCL Form with TButtons, TComboBox, and TMemo controls.
2 Write the code to create a string list to the Button1 OnClick handler.
3 Write the code to copy the string list to the Button2 OnClick handler.
4 Run the application.

To create a VCL Form with Button, ComboBox, and Memo controls
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Standard page of the Tool palette, place two TButtons, a TComboBox, and a TMemo component on
the form.

To create the string list
1 Select Button1 on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the TForm1.Button1Click (Delphi) or
TForm1::Button1Click (C++) event handler block.

3 For Delphi, place the cursor before the begin reserved word; then press return.

This creates a new line above the code block.

4 For Delphi, insert the cursor on the new line created and type the following variable declarations:

[Delphi]
var
 StringList: TStrings;

For C++, enter the following variable declarations:

[C++]
TStrings *StringList;

5 Insert the cursor within the code block, and type the following code:

[Delphi]
StringList := TStringList.Create;
 try
 with StringList do begin
 Add('This example uses a string List.');
 Add('It is the easiest way to add strings');
 Add('to a combobox''s list of strings.');
 Add('Always remember: the TStrings.Create');

1375

 Add('method is abstract; use the');
 Add('TStringList.Create method instead.');
 end;

 with ComboBox1 do begin
 Width := 210;
 Items.Assign(StringList);
 ItemIndex := 0;
 end;
 finally
 StringList.free;
 end;

[C++]
StringList = new TStringList();
try {
 StringList->Add("This example uses a string list");
 StringList->Add("It is the easiest way to add strings");
 StringList->Add("to a ComboBox's list of strings.");
 StringList->Add("Remember to call the TStringList constructor!");
 ComboBox1->Width = 210;
 ComboBox1->Items->Assign(StringList);
 ComboBox1->ItemIndex = 0;
} __finally {
 StringList->Free();
}

To copy the string list
1 Select Button2 on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the TForm1.Button2Click (Delphi) or
TForm1::Button2Click (C++) event handler block. At the cursor, enter the following code:

[Delphi]
Memo1.Lines.AddStrings(ComboBox1.Items);

[C++]
Memo1–>Lines->AddStrings(ComboBox1–>Items

To run the application
1 Save your project files; then choose Run Run to build and run the application.

The form displays with the controls.

2 Click Button1.
3 In ComboBox1, click the arrow to expand the drop-down list.

The strings display in the TComboBox in the order listed in the event handler code for Button1.

4 Click Button2.
In the Memo1 window, the strings from ComboBox1 are appended to the 'Memo1' string.

1376

Note: Try replacing the code in the Button2 event handler with the following code; then compile and
run the application again.

[Delphi]
Memo1.Lines.Assign(ComboBox1.Items);

[C++]
Memo1–>Lines->Assign(ComboBox1–>Items);

The strings from ComboBox1 overwrite the 'Memo1' string.

1377

1378

Copying Data From One Stream To Another
Creating this VCL application consists of the following steps:

1 Create a project directory containing a text file to copy.
2 Create a VCL Form with a button control.
3 Write the code to read the string and write it to a file.
4 Run the application.

To set up your project directory and a text file to copy
1 Create a directory in which to store your project files.
2 Using a text editor, create a simple text file and save it as from.txt in your project directory.

To create a VCL Form with a button control
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Standard page of the Tool palette, place a TButton component on the form.
3 In the Object Inspector, enter CopyFile for the Caption and Name properties.

To write the copy stream procedure
1 Select Button1 on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the TForm1.CopyFileClick (Delphi) or
TForm1::CopyFileClick (C++) event handler block.

3 For Delphi, Place the cursor before the begin reserved word; then press return.

This creates a new line above the code block.

4 For Delphi, insert the cursor on the new line created and type the following variable declaration:

var stream1, stream2: TStream;

For C++, enter the following variable declarations:

[C++]
TStream *stream1, *stream2;

5 Insert the cursor within the code block, and type the following code:

[Delphi]
stream1 := TFileStream.Create('from.txt', fmOpenRead);
try
 stream2:= TFileStream.Create('to.txt', fmCreate);
 try

1379

 stream2.CopyFrom(stream1, stream1.Size);
 finally
 stream2.Free;
 end;
finally
 stream1.Free;
end;

[C++]
stream1 = new TFileStream(“from.txt”, fmOpenRead);
try {
 stream2 = new TFileStream(“to.txt”, fmCreate);
 try {
 stream2–>CopyFrom(stream1, stream1–>Size);
 } __finally {
 stream2–>Free();
 }
} finally {
 stream1–>Free();
}

To run the application
1 Save your project files; then choose Run Run to build and run the application.

The form displays with a button called CopyFile.

2 Click CopyFile.
3 Use a text editor to open the newly created file to.txt, which is located in your project directory.

The contents of from.txt are copied into to.txt.

1380

Creating a New VCL Component
You can use the New VCL Component wizard to create a new VCL component. The wizard detects which
personality of the product you are using and creates the appropriate type of component.

To create a new VCL component
1 Specify an ancestor component.
2 Specify the class name.
3 Create a unit or add the unit to a package.

To specify an ancestor component
1 Choose File New Other Delphi Projects and double-click the VCL Forms Application icon.

The VCL Forms Designer is displayed.

2 Choose Component New VCL Component.
This displays the first page of the New VCL Component wizard. By default, it should be set to Delphi for VCL
Win32.

3 Click Next.
This displays the second page of the New VCL Component wizard and loads the page with ancestor
components.

4 Select an ancestor component from the list.
5 Click Next.

This displays the third page of the New VCL Component wizard.

To specify a class name
1 If you want to change the default class name, enter it in the Class Name textbox.
2 Enter the name of the area on the Tool Palette where you want the component to appear in the Palette Page

textbox.
3 Enter the unit name in the Unit Name textbox.
4 Enter the search path in the Search Path textbox.
5 Click Next.

Note: You can also take the default values.

To create a unit
1 Select the Create Unit radio button.
2 Click Finish.

To install a unit into an existing package
1 Select the Install into Existing Package radio button.

1381

2 Click Next.
This generates a list of existing packages.

3 Select the package you want to install the unit into.
4 Click Finish.

To install a unit into a new package
1 Select the Install into New Package radio button.
2 Click Next.
3 Enter a name for the package into the File Name textbox.
4 Enter a description for the package into the Description textbox.
5 Click Finish.

The new unit opens in the Code Editor.

1382

Creating a VCL Form Instance Using a Local Variable
A safe way to create a unique instance of a modal VCL form is to use a local variable in an event handler as a
reference to a new instance. If you use a local variable, it doesn't matter whether the form is auto-created or not.
The code in the event handler makes no reference to the global form variable. Using Developer Studio 2006, the
following procedure creates a modal form instance dynamically. It (optionally) removes the second form's invocation
at startup.

Building this VCL application consists of the following steps:

1 Create the project directory.
2 Create two forms for the project.
3 Remove the second form's invocation at startup (optional).
4 Link the forms.
5 Create a control on the main form to create and display the modal form; then write the event handler.
6 Build and run the application.

To create the two forms
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer displays Form1.

2 Choose File New Other Delphi Projects Delphi Files or C++Builder Projects and double-click the
Form icon.
The VCL Forms Designer displays Form2.

To optionally remove Form2's invocation at startup
1 Choose Project Options Forms.

The Project Options dialog displays.

2 Select Form2 in the Auto-create forms list and click [>].
Form2 is moved to the Available forms list.

3 Click OK to close the dialog.

To link Form1 to Form2
1 Select Form1 and choose File Use Unit (Delphi) or Include Unit Hdr (C++).

The Uses Unit dialog displays.

2 Select Form2 (the form that Form1 needs to reference) in the dialog.
3 Click OK.

For Delphi, a uses clause containing the unit name Unit2 is placed in the implementation section of Unit1.

For C++, the #include “Unit2.h” directive is added to Unit1.h.

1383

To display Form2 from Form1
1 Select Form1, if necessary; then, from the Standard page of the Tool Palette, place a TButton on the form.
2 In the Object Inspector with Button1 selected, double-click the OnClick event on the Events tab.

The Code Editor displays with the cursor in the TForm1.Button1Click (Delphi) or
TForm1::Button1Click (C++) event handler block.

3 For Delphi, insert the cursor just above the event handler block and enter the following statement to define a
local variable:

[Delphi]
var FM: TForm2;

For C++, enter the following variable declaration:

[C++]
TForm2 *FM;

4 Insert the cursor in the event handler block, and enter the following code:

[Delphi]
FM := TForm2.Create(self);
FM.ShowModal;
FM.Free;

[C++]
FM = new TForm2(this);
FM->ShowModal();
FM->Free();

To build and run the application
1 Save all files in the project; then choose Run Run.

The application executes, displaying Form1.

2 Click the button.
Form2 displays.

3 With Form2 displayed, attempt to click on Form1 to activate it.
Nothing happens. Click the X in the upper right corner of Form2.

Form2 closes and Form1 becomes the active form.

1384

Creating a VCL Forms ActiveX Active Form
Like a Delphi control, an ActiveX control generates program code when you place the component on a form or other
logical container in the IDE. The main difference between an ActiveX control and a Delphi control is that an ActiveX
control is language independent. You can create ActiveX controls for deployment to a variety of programming
environments on Windows, not just Delphi or C++Builder, for example.

This procedure uses the VCL forms ActiveX Active Form wizard to create an Active Form containing two components.
To test the control, you can deploy it to the Web. This procedure consists of the following major steps:

1 Create an ActiveX library project for an ActiveX Active Form.
2 Add controls to the Active Form.
3 Add event handling code for the controls.
4 Deploy the project to the Web.
5 Display the form and test the controls in your Web browser.

To create an Active X library project for an ActiveX Active Form
1 Create a directory on your local drive for the ActiveX project. Give it an easy to find name, for example, ActiveX.
2 Create a second directory to contain the ActiveX component and an HTML file for deploying the Active Form to

your Microsoft Internet Explorer Web browser. Name this directory ActiveX_Deploy.
3 Choose File New Other and select the ActiveX page in the New Items dialog.
4 On the ActiveX page, double-click Active Form.

The Active Form Wizard displays.

5 Accept the default settings and click OK.
The wizard generates the code needed to implement the ActiveX control and adds the code to the project. If the
project is already an ActiveX library, the wizard adds the control to the current project.

Note: If the project is not already an ActiveX library, a Warning dialog displays and asks you if you
want to start a new ActiveX library project.

6 Click OK to start a new ActiveX library project.
An ActiveX Active Form displays.

To add some functionality to the Active Form
1 From the Standard page of the Tool Palette, add TEdit and TButton components to the form.
2 Select the button.
3 On the Events tab in the Object Inspector, double-click the OnClick event.

The Code Editor opens with the cursor in place in the TActiveFormX.Button1Click (Delphi) or
TActiveFormX::Button1Click() (C++) event handler block.

Enter the following code at the cursor:

[Delphi]
ShowMessage(Edit1.text);

1385

[C++]
ShowMessage(Edit1–>Text)

4 Save the project files to your ActiveX directory.

To deploy the Active Form to your Web browser
1 Choose Project Web Deployment Options....

The Web Deployment Options dialog displays.

2 On the Project page, use the Browse button to enter the path to the ActiveX_Deploy directory.
3 Enter the same path for the HTML dir.
4 For Target URL, enter .\ to indicate the current directory.
5 Click OK.
6 Choose Project Web Deploy.

HTML and OCX files are created in the ActiveX_Deploy directory.

To test the Active Form
1 Launch your browser.
2 Choose File Open, and browse to the ActiveX_Deploy directory.
3 Double-click the HTML file to launch it in the browser window.

The Active Form displays in the browser window.

4 Click the button.
A pop-up dialog displays the text in the Edit box.

5 Change the text, and click the button again.
The new text you entered displays in the pop-up.

1386

Creating Actions in a VCL Forms Application
Using Developer Studio 2006, the following procedure illustrates how to create actions using the ActionList tool. It
sets up a simple application and describes how to create a file menu item with a file open action.

Building the VCL application with ActionList actions consists of the following major steps:

1 Create a main window and add tools for creating a main menu and a File open action.
2 Add the File category to the main menu.
3 Add the File open action to the File category.
4 Build and run the application.

To create a main window
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer displays.

2 From the Standard category of the Tool Palette, add a TMainMenu and TActionList component to the form.

Tip: To display icons for nonvisual components such as ActionList1, choose Tools Options
Environment Options, select VCL Designer from the Delphi options, click Show Component
Options, and click OK.

To add the File category to the main menu
1 Double-click MainMenu1 on the form.

The MainMenu1 editor displays with the first blank command category selected.

2 In the Object Inspector, enter &File for the Caption property and press RETURN.
File displays on the main menu.

3 Click File on the MainMenu1 editor.
The first blank action under the File command displays. Select the blank action.

4 Double-click ActionList1 on the form.
The ActionList editor displays.

5 In the editor, select New Standard Action from the drop-down list to display the Standard Action Classes
dialog.

6 Scroll to the File category, and click the TFileOpen action.
7 Click OK to close the dialog.

File displays in the Categories listbox in the ActionList editor.

8 Click File in the editor.
The FileOpen1 action displays in the Action listbox.

To add the File Open action to the File category
1 Double-click MainMenu1, if necessary, to display the MainMenu1 editor; select the blank action under the File

category.

1387

2 In the Object Inspector, enter &Open for the Caption property and select FileOpen1 from the Action property
drop-down list; then press RETURN.
Open... displays in the blank action field in the MainMenu1 editor.

To build and run the application
1 Choose Run Run.

The application executes, displaying a form with the main menu bar and the File menu.

2 Choose File Open in the application.
The standard Open file dialog displays.

1388

Creating Strings
Creating this VCL application consists of the following steps:

1 Create a VCL Form with TButton and TComboBox controls.
2 Write the code to create strings to the TButton OnClick handler.
3 Run the application.

To create a VCL Form with TButton and TComboBox controls
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Standard page of the Tool palette, place a TButton, a TLabel, and a TComboBox component on the
form.

To write the create string procedure
1 Select Button1 on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the TForm1.Button1Click (Delphi) or
TForm1::Button1Click (C++) event handler block.

3 For Delphi, place the cursor before the begin reserved word; then press RETURN.

This creates a new line above the code block.

4 For Delphi, insert the cursor on the new line created and type the following variable declarations:

var
 StringList: TStrings;

For C++, enter the following variable declarations:

[C++]
TStrings *StringList;

5 Insert the cursor within the code block, and type the following code:

[Delphi]
StringList := TStringList.Create;
 try
 with StringList do begin
 Add('Animals');
 Add('Cats');
 Add('Flowers');
 end;

 with ComboBox1 do begin
 Width := 210;
 Items.Assign(StringList);
 ItemIndex := 0;

1389

 end;

 Label1.Caption := 'Flowers has an index of ' +
 IntToStr(StringList->IndexOf('Flowers'));
 finally
 StringList.free;
 end;

[C++]
StringList = new TStringList();
try {
 StringList->Add(“Animals”);
 StringList->Add(“Cats”);
 StringList->Add(“Flowers”);
 ComboBox1–>Width = 210;
 ComboBox1–>Items->Assign(StringList);
 ComboBox1–>ItemIndex = 0;
 Label1–>Caption = “Flowers has an index of “ +
 IntToStr(StringList->IndexOf(“Flowers”));
} __finally {
 StringList->Free();
}

To run the application
1 Save your project files; then choose Run Run to build and run the application.

The form displays with the controls.

2 Click the Button.
The strings 'Animals', 'Cars', and 'Flowers' display alphabetically in a list in the ListBox. The Label caption displays
the message string: 'Flowers has an index value of 2.'

3 In the ComboBox, click the arrow to expand the drop-down list.
The strings added in the TButton event handler appear.

1390

Defining the Thread Object

To define the thread object
1 Choose File New Other Delphi Projects Delphi Files or File New Other C++Builder

Files and double-click the Thread Object icon.
The New Thread Object dialog displays.

2 Enter a class name, for example, TMyThread.
3 Optionally check the Named Thread check box, and enter a name for the thread, for example, MyThreadName.

Tip: Entering a name for Named Thread makes it easier to track the thread while debugging.

4 Click OK.

The Code Editor displays the skeleton code for the thread object.

The code generated for the new unit will look like this if you named your thread class TMyThread.

1391

[Delphi]
unit Unit1;

interface

uses
 Classes;

type
 TMyThread = class(TThread)
 private
 { Private declarations }
 protected
 procedure Execute; override;
 end;

implementation

{ Important: Methods and properties of objects in visual components can only be
 used in a method called using Synchronize, for example,

 Synchronize(UpdateCaption);

 and UpdateCaption could look like,

 procedure TMyThread.UpdateCaption;
 begin
 Form1.Caption := 'Updated in a thread';
 end; }

{ TMyThread }

procedure TMyThread.Execute;
begin
 { Place thread code here }
end;

end.

Adding a name for the thread generates additional code for the unit. It includes the Windows unit, adds the procedure
(Delphi) or function (C++) SetName, and adds the record TThreadNameInfo (Delphi) or struct
THREADNAME_INFO (C++). The name is assigned to the FName field, as shown here:

[Delphi]
unit Unit1;

interface

uses
 Classes {$IFDEF MSWINDOWS} , Windows {$ENDIF};

type
 TMyThread = class(TThread)
 private
 procedure SetName;
 protected
 procedure Execute; override;
 end;

1392

implementation

{ Important: Methods and properties of objects in visual components can only be
 used in a method called using Synchronize, for example,

 Synchronize(UpdateCaption);

 and UpdateCaption could look like,

 procedure TMyThread.UpdateCaption;
 begin
 Form1.Caption := 'Updated in a thread';
 end; }

{$IFDEF MSWINDOWS}
type
 TThreadNameInfo = record
 FType: LongWord; // must be 0x1000
 FName: PChar; // pointer to name (in user address space)
 FThreadID: LongWord; // thread ID (-1 indicates caller thread)
 FFlags: LongWord; // reserved for future use, must be zero
 end;
{$ENDIF}

{ TMyThread }

procedure TMyThread.SetName;
{$IFDEF MSWINDOWS}
var
 ThreadNameInfo: TThreadNameInfo;
{$ENDIF}
begin
{$IFDEF MSWINDOWS}
 ThreadNameInfo.FType := $1000;
 ThreadNameInfo.FName := 'MyThreadName';
 ThreadNameInfo.FThreadID := $FFFFFFFF;
 ThreadNameInfo.FFlags := 0;

 try
 RaiseException($406D1388, 0, sizeof(ThreadNameInfo) div sizeof(LongWord),
@ThreadNameInfo);
 except
 end;
{$ENDIF}
end;

procedure TMyThread.Execute;
begin
 SetName;
 { Place thread code here }
end;

end.

[C++]
// Unit1.h

#ifndef Unit1H
#define Unit1H
#include <Classes.hpp>

1393

class TMyThread : public TThread
{
 typedef struct tagTHREADNAME_INFO
 {
 DWORD dwType;
 LPCSTR szName;
 DWORD dwThreadID;
 DWORD dwFlags;
 } THREADNAME_INFO;
private:
 void SetName();
protected:
 void __fastcall Execute();
public:
 __fastcall TMyThread(bool CreateSuspended);
};

#endif

[C++]
// Unit1.cpp
#include "Unit3.h"
#pragma package(smart_init)

__fastcall TMyThread::TMyThread(bool CreateSuspended)
 : TThread(CreateSuspended)
{
}

void TMyThread::SetName()
{
 THREADNAME_INFO info;
 info.dwType = 0x1000;
 info.szName = "TMyThreadName";
 info.dwThreadID = -1;
 info.dwFlags = 0;

 __try
 {
 RaiseException(0x406D1388, 0, sizeof(info)/sizeof(DWORD),(DWORD*)&info;);
 }
 __except (EXCEPTION_CONTINUE_EXECUTION)
 {
 }
}

void __fastcall TMyThread::Execute()
{
 SetName();
 //---- Place thread code here ----
}

1394

Deleting Strings
Creating this VCL application consists of the following steps:

1 Create a VCL Form with Buttons and ListBox controls.
2 Write the code to add strings to a list.
3 Write the code to delete a string from the list.
4 Run the application.

To create a VCL Form with TButton and ListBox controls
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Standard page of the Tool palette, place two TButtons and a TListBox component on the form.
3 Select Button1 on the form.
4 In the Object Inspector, enter Add for the Name and Caption properties.
5 Select Button2 on the form.
6 In the Object Inspector, enter Delete for the Name and Caption properties.

To add strings to a list
1 Select the Add button on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the TForm1.AddClick (Delphi) or TForm1::AddClick (C++)
event handler block.

3 For Delphi, place the cursor before the begin reserved word; then press return.

This creates a new line above the code block.

4 For Delphi, insert the cursor on the new line created and type the following variable declaration:

var
 MyList: TStringList;

For C++, enter the following variable declaration:

[C++]
TStringList *MyList;

5 Insert the cursor within the code block, and type the following code:

[Delphi]
MyList := TStringList.Create;
 try
 with MyList do
 begin
 Add('Mice');
 Add('Goats');

1395

 Add('Elephants');
 Add('Birds');
 ListBox1.Items.AddStrings(MyList);
 end;
 finally
 MyList.Free;
 end;

[C++]
MyList = new TStringList();
try {
 MyList->Add(“Mice”);
 MyList->Add(“Goats”);
 MyList->Add(“Elephants”);
 MyList->Add(“Birds”);
 ListBox1–>Items->AddStrings(MyList);
} __finally {
 MyList->Free();
}

To delete a string from the list
1 Select the Delete button on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the TForm1.DeleteClick (Delphi) or
TForm1::DeleteClick (C++) event handler block.

3 For Delphi, place the cursor before the begin reserved word; then press ENTER.

This creates a new line above the code block.

4 For Delphi, insert the cursor on the new line created and type the following variable declaration:

[Delphi]
var
 BIndex: Integer;

For C++, enter the following variable declaration:

[C++]
int BIndex;

5 For Delphi, insert the cursor within the code block and type the following code:

[Delphi]
with ListBox1.Items do
 begin
 BIndex := IndexOf('Elephants');
 Delete (BIndex);
 end;

1396

[C++]
BIndex = ListBox1–>Items->IndexOf(“Elephants”);
ListBox1–>Items->Delete(BIndex);

To run the application
1 Save your project files; then choose Run Run to build and run the application.

The form displays with the controls.

2 Click the Add button.
The strings 'Mice', 'Goats', 'Elephants', and 'Birds' display in the order listed.

3 Click the Delete button.
The string 'Elephants' is deleted from the list.

1397

1398

Displaying a Bitmap Image in a VCL Forms Application
This procedure loads a bitmap image from a file and displays it to a VCL form.

1 Create a VCL form with a button control.
2 Provide a bitmap image.
3 Code the button's onClick event handler to load and display a bitmap image.
4 Build and run the application.

To create a VCL form and button
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Standard page of the Tool Palette, place a TButton component on the form.

To provide a bitmap image
1 Create a directory in which to store your project files.
2 Locate a bitmap image on your local drive, and copy it to your project directory.
3 Save all files in your project to your project directory.

To write the OnClick event handler
1 In the Object Inspector, double-click the Button1 OnClick event on the Events tab.

The Code Editor displays with the cursor in the TForm1.Button1Click (Delphi) or
TForm1::Button1Click (C++) event handler block.

2 Enter the following event handling code, replacing MyFile.bmp with path to the bitmap image in your project
directory:

[Delphi]
Bitmap := TBitmap.Create;
try
 Bitmap.LoadFromFile('MyFile.bmp');
 Form1.Canvas.Brush.Bitmap := Bitmap;
 Form1.Canvas.FillRect(Rect(0,0,100,100));
finally
 Form1.Canvas.Brush.Bitmap := nil;
 Bitmap.Free;
end;

[C++]
Graphics::TBitmap *Bitmap = new Graphics::TBitmap();
try {
 Bitmap->LoadFromFile("..\\MyFile.bmp");
 Form1->Canvas->Brush->Bitmap = Bitmap;
 Form1->Canvas->FillRect(Rect(0,0,100,100));
} __finally {

1399

 Form1->Canvas->Brush->Bitmap = NULL;
 Bitmap->Free();
}

Note: For C++ projects, the code assumes the target output directory is located in the project directory.

Tip: You can change the size of the rectangle to be displayed by adjusting the Rect parameter values.

3 For Delphi, add the following variable declaration in the var block:

Bitmap : TBitmap;

To run the program
1 Select Run Run.
2 Click the button to display the image bitmap in a 100 x 100-pixel rectangle in the upper left corner of the form.

1400

Displaying a Full View Bitmap Image in a VCL Forms Application
This procedure loads a bitmap image from a file and displays it in its entirety to a VCL form. The procedure uses the
Height and Width properties of the Bitmap object to display a full view of the image.

1 Create a VCL form with a button control.
2 Provide a bitmap image.
3 Code the button's onClick event handler to load and display a bitmap image.
4 Build and run the application.

To create a VCL form and button
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Standard page of the Tool Palette, place a button component on the form.
3 In the Object Inspector, enter Full View for the Caption property and FullView for the name property.

To provide a bitmap image
1 Create a directory in which to store your project files.
2 Locate a bitmap image on your local drive, and copy it to your project directory.
3 Save all files in your project to your project directory.

To write the OnClick event handler
1 In the Object Inspector, double-click the Button1 OnClick event on the Events tab.

The Code Editor displays with the cursor in the TForm1.FullViewClick (Delphi) or
TForm1::FullViewClick (C++) event handler block.

2 Enter the following event handling code, replacing MyFile.bmp with the name of the bitmap image in your project
directory:

[Delphi]

 Bitmap := TBitmap.Create;
 try
 Bitmap.LoadFromFile('MyFile.bmp');
 Form1.Canvas.Brush.Bitmap := Bitmap;
 Form1.Canvas.FillRect(Rect(0,0,Bitmap.Width,Bitmap.Height));
 finally
 Form1.Canvas.Brush.Bitmap := nil;
 Bitmap.Free;
 end;

[C++]
Graphics::TBitmap Bitmap = new Graphics::TBitmap();
try {
 Bitmap->LoadFromFile(“..\\MyFile.bmp”);

1401

 Form1–>Canvas->Brush->Bitmap = Bitmap;
 Form1–>Canvas->FillRect(
 Rect(0, 0, Bitmap->Width, Bitmap->Height));
} __finally {
 Form1–>Canvas->Brush->Bitmap = NULL;
 Bitmap->Free();
}

Note: For C++ projects, the code assumes the target output directory is located in the project directory.

3 For Delphi, add the following variable declaration in the var block:

[Delphi]
Bitmap : TBitmap;s

To run the program
1 Choose Run Run.
2 Click the button to display the image bitmap in a rectangle in the upper left corner of the form.

1402

Displaying an Auto-Created VCL Form
Using Developer Studio 2006, the following procedure creates a modal form at design time that is displayed later
during program execution.

Building this VCL application consists of the following steps:

1 Create the project directory.
2 Create two forms for the project.
3 Link the forms.
4 Create a control on the main form to display the modal form; then write the event handler.
5 Build and run the application.

To create the two forms
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer displays Form1.

2 Choose File New Other Delphi Projects Delphi Files or File New Other C++Builder
Files and double-click the Form icon.
The VCL Forms Designer displays Form2.

To link Form1 to Form2
1 For Delphi, select Form1 and choose File Use Unit.

For C++, select Form1 and choose File Include Unit Hdr.

The Uses Unit dialog displays.

2 Select Form2 (the form that Form1 needs to reference) in the dialog.
3 Click OK.

For Delphi, a uses clause containing the unit name Unit2 is placed in the implementation section of Unit1.

For C++, the #include “Unit2.h” directive is added to Unit1.h.

To display Form2 from Form1
1 Select Form1, if necessary; then, from the Standard page of the Tool Palette, place a button on the form.
2 In the Object Inspector with Button1 selected, double-click the OnClick event on the Events tab.

The Code Editor displays with the cursor in the TForm1.Button1Click (Delphi) or
TForm1::Button1Click (C++) event handler block.

3 Enter the following event handling code:

[Delphi]
Form2.ShowModal;

1403

[C++]
Form2–>ShowModal();

To build and run the application
1 Save all files in the project; then choose Run Run.

The application executes, displaying Form1.

2 Click the button.
Form2 displays.

3 Click the X in the upper right corner of Form2.
Form2 closes and Form1 becomes the active form.

1404

Drawing a Polygon in a VCL Forms Application
This procedure draws a polygon in a VCL form.

1 Create a VCL form.
2 Code the form's OnPaint event handler to draw a polygon.
3 Build and run the application.

To create a VCL form
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 In the form view, click the form, if necessary, to display Form1 in the Object Inspector.

To write the OnPaint event handler
1 In the Object Inspector, click the Events tab.
2 Double-click the OnPaint event.

The Code Editor displays with the cursor in the TForm1.FormPaint (Delphi) or TForm1::FormPaint (C++)
event handler block.

3 Enter the following event handling code:

[Delphi]
Canvas.Polygon ([Point(0,0), Point(0, ClientHeight),
Point(ClientWidth, ClientHeight)]);

[C++]
TPoint points[] = { Point(0,0),
 Point(0, ClientHeight),
 Point(ClientWidth, ClientHeight) };
Canvas->Polygon(points, 3);

To run the program
1 Select Run Run.
2 The applications executes, displaying a right triangle in the lower left half of the form.

1405

1406

Drawing a Rounded Rectangle in a VCL Forms Application
This procedure draws a rounded rectangle in a VCL form.

1 Create a VCL form and code the form's OnPaint event handler.
2 Build and run the application.

To create a VCL form
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 In the Object Inspector, click the Events tab.
3 Double-click the OnPaint event.

The Code Editor displays with the cursor in the TForm1.FormPaint (Delphi) or TForm1::FormPaint (C++)
event handler block.

4 Enter the following event handling code:

[Delphi]
Canvas.RoundRect(0, 0, ClientWidth div 2,
 ClientHeight div 2, 10, 10);

[C++]
Canvas->RoundRect(0, 0, ClientWidth / 2, ClientHeight / 2, 10, 10);

To run the program
1 Save all files in your project; then choose Run Run.
2 The application executes, displaying a rounded rectangle in the upper left quadrant of the form.

1407

1408

Drawing Rectangles and Ellipses in a VCL Forms Application
This procedure draws a rectangle and ellipse in a VCL form.

1 Create a VCL form.
2 Code the form's OnPaint event handler to draw a rectangle and ellipse.
3 Build and run the application.

To create a VCL form and place an image on it
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 In the form view, click the form, if necessary, to display Form1 in the Object Inspector.

To write the OnPaint event handler
1 In the Object Inspector, double-click the Form1 OnPaint event on the Events tab.

The Code Editor displays with the cursor in the TForm1.FormPaint (Delphi) or TForm1::FormPaint (C++)
event handler block.

2 Enter the following event handling code:

[Delphi]
Canvas.Rectangle (0, 0, ClientWidth div 2, ClientHeight div 2);
Canvas.Ellipse (0, 0, ClientWidth div 2, ClientHeight div 2);

[C++]
Canvas->Rectangle(0, 0, ClientWidth / 2, ClientHeight / 2);
Canvas->Ellipse(0, 0, ClientWidth / 2, ClientHeight / 2);

To run the program
1 Choose Run Run.
2 The applications executes, displaying a rectangle in the upper left quadrant, and an ellipse in the same area of

the form.

1409

1410

Drawing Straight Lines In a VCL Forms Application
This procedure draws two diagonal straight lines on an image in a VCL form.

1 Create a VCL form.
2 Code the form's OnPaint event handler to draw the straight lines.
3 Build and run the application.

To create a VCL form and place an image on it
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 In the form view, click the form, if necessary, to display Form1 in the Object Inspector.

To write the OnPaint event handler
1 In the Object Inspector, double-click the Form1 OnPaint event on the Events tab.

The Code Editor displays with the cursor in the TForm1.FormPaint event handler block.

2 Enter the following event handling code:

[Delphi]
with Canvas do
begin
MoveTo(0,0);
LineTo(ClientWidth, ClientHeight);
MoveTo(0, ClientHeight);
LineTo(ClientWidth, 0);
end;

[C++]
Canvas->MoveTo(0, 0);
Canvas->LineTo(ClientWidth, ClientHeight);
Canvas->MoveTo(0, ClientHeight);
Canvas->LineTo(ClientWidth, 0);

To run the program
1 Choose Run Run.
2 The applications executes, displaying a form with two diagonal crossing lines.

Tip: To change the color of the pen to green, insert this statement following the first MoveTo()
statement in the event handler code: Pen.Color := clGreen; (Delphi) Canvas->Pen-
>Color = clGreen; (C++). Experiment using other canvas and pen object properties. See
"Using the properties of the Canvas object" in the Delphi 7 Developer's Guide.

1411

1412

Dynamically Creating a VCL Modal Form
You may not want all your VCL application's forms in memory at once. To reduce the amount of memory required
at load time, your application can create forms only when it needs to make them available for use. A dialog box, for
example, needs to be in memory only during the time the user interacts with it. Using Developer Studio 2006, the
following procedure creates a modal form dynamically. The main difference between dynamically creating a form
and displaying an auto-created VCL form is that you remove the second form's invocation at startup and write code
to dynamically create the form.

Building this VCL application consists of the following steps:

1 Create the project directory.
2 Create two forms for the project.
3 Remove the second form's invocation at startup.
4 Link the forms.
5 Create a control on the main form to create and display the modal form; then write the event handler.
6 Build and run the application.

To create the two forms
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer displays Form1.

2 Choose File New Other Delphi Projects Delphi Files or File New Other C++Builder
Files and double-click the Form icon.
The VCL Forms Designer displays Form2.

To remove Form2's invocation at startup
1 Choose Project Options Forms.

The Project Options dialog displays.

2 Select Form2 in the Auto-create forms list and click [>].
Form2 is moved to the Available forms list.

3 Click OK to close the dialog.

To link Form1 to Form2
1 For Delphi, select Form1 and choose File Use Unit.

For C++, select Form1 and choose File Include Unit Hdr

The Uses Unit dialog displays.

2 Select Form2 (the form that Form1 needs to reference) in the dialog.
3 Click OK.

For Delphi, a uses clause containing the unit name Unit2 is placed in the implementation section of Unit1.

1413

For C++, the #include “Unit2.h” directive is added to Unit1.h.

To display Form2 from Form1
1 Select Form1, if necessary; then, from the Standard page of the Tool Palette, place a TButton on the form.
2 In the Object Inspector with Button1 selected, double-click the OnClick event on the Events tab.

The Code Editor displays with the cursor in the TForm1.Button1Click (Delphi) or
TForm1::Button1Click (C++) event handler block.

3 Enter the following event handling code:

Form2 := TForm2.Create(self);
try
 Form2.ShowModal;
finally
 Form2.Free;
end;

Form2 = new TForm2(this);
try {
 Form2–>ShowModal();
} __finally {
 Form2–>Free();
}

To build and run the application
1 Save all files in the project; then choose Run Run.

The application executes, displaying Form1.

2 Click the button.
Form2 displays.

3 Click the X in the upper right corner of the form.
Form2 closes and Form1 becomes the active form.

1414

Dynamically Creating a VCL Modeless Form
A modless form is a window that is displayed until it is either obscured by another window or until it is closed or
minimuzed by the user. Using Developer Studio 2006, the following procedure creates a modeless form dynamically.

Building this VCL application consists of the following steps:

1 Create the project directory.
2 Create two forms for the project.
3 Remove the second form's invocation at startup.
4 Link the forms.
5 Create a control on the main form to create and display the modal form; then write the event handler.
6 Build and run the application.

To create the two forms
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer displays Form1.

2 Choose File New Other Delphi Projects Delphi Files or File New Other C++Builder
Files and double-click the Form icon.
The VCL Forms Designer displays Form2.

To remove Form2's invocation at startup
1 Choose Project Options.

The Project Options dialog displays.

2 Select Form2 in the Auto-create forms list and click [>].
Form2 is moved to the Available forms list.

3 Click OK to close the dialog.

To link Form1 to Form2
1 For Delphi, select Form1 and choose File Use Unit.

For C++, select Form1 and choose File Include Unit Hdr.

The Uses Unit dialog displays.

2 Select Form2 (the form that Form1 needs to reference) in the dialog.
3 Click OK.

For Delphi, a uses clause containing the unit name Unit2 is placed in the implementation section of Unit1.

For C++, the #include “Unit2.h” directive is added to Unit1.h.

To display Form2 from Form1
1 Select Form1, if necessary; then, from the Standard page of the Tool Palette, place a button on the form.

1415

2 In the Object Inspector with Button1 selected, double-click the OnClick event on the Events tab.
The Code Editor displays with the cursor in the TForm1.Button1Click (Delphi) or
TForm1::Button1Click (C++)event handler block.

3 Enter the following event handling code:

[Delphi]
Form2 := TForm2.Create(self);
Form2.Show;

[C++]
Form2 = new TForm2(this);
Form2–>Show();

Note: If your application requires additional instances of the modeless form, declare a separate global
variable for each instance. In most cases you use the global reference that was created when
you made the form (the variable name that matches the Name property of the form).

To build and run the application
1 Save all files in the project; then choose Run Run.

The application executes, displaying Form1.

2 Click the button.
Form2 displays.

3 Click Form1.
Form1 becomes the active form. Form2 displays until you minimize or close it.

1416

Handling Exceptions

To handle exceptions in the thread function
1 Add a try...except block to the implementation of your Execute method.
2 Code the logic such as shown here:

[Delphi]
procedure TMyThreadExecute;
begin
 try
 while not Terminated do
 PerformSomeTask;
 except
 {do something with exceptions}
 end;
end;

[C++]
void __fastcall TMyThread::Execute() {
 try {
 while(!Terminated()) {
 // perform tasks
 }
 } catch(...) { // catch specific exceptions first
 // exception—handling code
 }
}

1417

1418

Initializing a Thread

To initialize a thread object
1 Assign a default thread priority.
2 Indicate when the thread is freed.

To assign a default priority
1 Assign a default priority to the thread from the values listed in the table below.

Use a high-priority to handle time critical tasks, and a low priority to perform other tasks.

Value Priority

tpIdle The thread executes only when the system is idle. Windows won't interrupt the other threads to
execute a thread with tpIdle priority.

tpLowest The thread's priority is two points below normal.

tpLower The thread's priority is one point below normal.

tpNormal The thread has normal priority.

tpHigher The thread's priority is one point above normal.

tpHighest The thread's priority is two points above normal.

tpTimeCritical The thread gets highest priority.

2 Override the Create method (Delphi) or default constructor (C++) of the thread class by adding a new constructor
to the declaration.

3 Code the constructor. The following is an example for a low-priority thread:

[Delphi]
constructor TMyThread.Create(CreateSuspended: Boolean);
begin
 inherited Create(CreateSuspended);
 Priority := tpIdle;
end;

[C++]
TMyThread::TMyThread(bool CreateSuspended) : TThread(CreateSuspended) {
 Priority = tpIdle;
}

4 Indicate whether the thread should be freed automatically when it finishes executing.

Warning: Boosting the thread priority of a CPU intensive operation may starve other threads in the application.
Only apply priority boosts to threads that spend most of their time waiting for external events.

To indicate when a thread is freed
1 Set the FreeOnTerminate property to true, unless the thread must be coordinated with other threads.

1419

2 If the thread requires coordination with another thread, set FreeOnTerminate to false; then explicitly free the
first thread from the second.

1420

Iterating Through Strings in a List
This VCL application first creates a list of strings. Then it iterates through the strings, changing all string characters
to uppercase. It consists of the following steps:

1 Create a VCL Form with Buttons and TListBox controls.
2 Write the code to create a string list and add strings to it.
3 Write the code to iterate through the string list to process string characters.
4 Run the application.

To create a VCL Form with TButton and TListBox controls
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Standard page of the Tool palette, place two TButtons and a TListBox component on the form.
3 Select Button1 on the form.
4 In the Object Inspector, enter Add for the Name and Caption properties.
5 Select Button2 on the form.
6 In the Object Inspector, enter ToUpper for the Name and Caption properties.

To create a string list and add strings to it
1 Select the Add button on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the TForm1.AddClick (Delphi) or TForm1::AddClick (C++)
event handler block.

3 For Delphi, place the cursor before the begin reserved word; then press ENTER.

This creates a new line above the code block.

4 For Delphi, insert the cursor on the new line created, and type the following variable declaration:

[Delphi]
var
 MyList: TStringList;

5 Insert the cursor within the code block, and type the following code:

[Delphi]
MyList := TStringList.Create;
 try
 with MyList do
 begin
 Add('Mice');
 Add('Goats');
 Add('Elephants');
 Add('Birds');

1421

 ListBox1.Items.AddStrings(MyList);
 end;
 finally
 MyList.Free;
 end;

[C++]
TStringList *MyList = new TStringList();
try {
 MyList->Add(“Mice”);
 MyList->Add(“Goats”);
 MyList->Add(“Elephants”);
 MyList->Add(“Birds”);
 ListBox1–>Items->AddStrings(MyList);
} __finally {
 MyList->Free();
}

To change all characters to uppercase
1 Select the ToUpper button on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the TForm1.ToUpperClick (Delphi) or
TForm1::ToUpperClick (C++) event handler block.

3 For Delphi, place the cursor before the begin reserved word; then press return.

This creates a new line above the code block.

4 For Delphi, insert the cursor on the new line created and type the following variable declaration:

var
 Index: Integer;

5 Insert the cursor within the code block, and type the following code:

[Delphi]
for Index := 0 to ListBox1.Items.Count - 1 do
 ListBox1.Items[Index] := UpperCase(ListBox1.Items[Index]);

[C++]
for(int i = 0; i < ListBox1–>Items->Count; i++) {
 ListBox1–>Items[i] = UpperCase(ListBox1–>Items[i]);
}

To run the application
1 Save your project files; then choose Run Run to build and run the application.

The form displays with the controls.

2 Click the Add button.

1422

The strings 'Mice', 'Goats', 'Elephants', and 'Birds' display in the order listed.

3 Click the ToUpper button.
The string characters display in uppercase.

1423

1424

Placing A Bitmap Image in a Control in a VCL Forms Application
This procedure adds a bitmap image to a combo box in a VCL forms application.

1 Create a VCL form.
2 Place components on the form.
3 Set component properties in the Object Inspector.
4 Write event handlers for the component's drawing action.
5 Build and run the application.

To create a VCL form with a TComboBox component
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Win32 page of the Tool Palette, place an TImageList component on the form.
3 From the Standard page of the Tool Palette, place a TComboBox on the form.

To set the component properties
1 Select ComboBox1 in the form.
2 In the Object Inspector, set the Style property drop-down to csOwnerDrawFixed.
3 In the Object Inspector, click the ellipsis next to the Items property.

The String List Editor displays.

4 Enter a string you would like to associate with the bitmap image, for example, MyImage; then click OK.
5 Double-click ImageList1 in the form.

The ImageList editor displays.

6 Click the Add button to display the Add Images dialog.
7 Locate a bitmap image to display in the Combo box.

To locate an image, you can search for *.bmp images on your local drive. Select a very small image such as an
icon. Copy it to your project directory, and click Open.

The image displays in the ImageList editor.

8 Click OK to close the editor.

To add the event handler code
1 In the VCL form view, select ComboBox1.
2 In the Object Inspector, click the Events page, and double-click the OnDrawItem event.

The Code Editor displays with cursor in the code block of the ComboBox1DrawItem (Delphi) or ComboBox1::
DrawItem (C++) event handler.

3 Enter the following code for the event handler:

1425

[Delphi]
Combobox1.Canvas.FillRect(Rect);
ImageList1.Draw(ComboBox1.Canvas, Rect.Left, Rect.Top, Index);
Combobox1.Canvas.TextOut(Rect.Left+ImageList1.Width+2,
 Rect.Top, ComboBox1.Items[Index]);

[C++]
ComboBox1–>Canvas->FillRect(Rect);
ImageList1–>Draw(ComboBox1–>Canvas, Rect.Left, Rect.Top, Index);
ComboBox1–>Canvas->TextOut(Rect.Left + ImageList1–>Width + 2,
 Rect.Top,
 ComboBox1–>Items[Index]);

To run the program
1 Choose Run Run.

The applications executes, displaying a form with a combo box.

2 Click the combo box drop-down.
The bitmap image and the text string display as a list item.

1426

Reading a String and Writing It To a File
Creating this VCL application consists of the following steps:

1 Create a VCL Form with a button control.
2 Write the code to read the string and write it to a file.
3 Run the application.

To create a VCL Form
1 Create a directory in which to store your project files.
2 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

3 From the Standard page of the Tool palette, place a TButton component on the form.

To read and write a string
1 Select Button1 on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the TForm1.Button1Click (Delphi) or
TForm1::Button1Click (C++) event handler block.

3 For Delphi. place the cursor before the begin reserved word; then press return.

This creates a new line above the code block.

4 Type the following variable declarations:

[Delphi]
var fs: TFileStream;
const s: string = 'Hello';

[C++]
TFileStream *fs;
const AnsiString str;

5 Insert the cursor within the code block, and type the following code:

[Delphi]
fs := TFileStream.Create('temp.txt', fmCreate);
fs.Write(PChar(s)^, Length(s));

[C++]
fs = new TFileStream("temp.txt", fmCreate);
fs->Write((void*)str.c_str(), s.Length());

1427

To run the "Hello world" application
1 Save your project files; then choose Run Run to build and run the application.

The form displays with a button called Button1.

2 Click Button1.
3 Use a text editor to open the newly created file temp.txt, which is located in your project directory.

The string 'Hello' displays in the file.

1428

Renaming Files
Creating this VCL application consists of the following steps:

1 Create a project directory containing a file to rename.
2 Create a VCL Form with button and label controls.
3 Write the code to rename the file.
4 Run the application.

To set up your project directory and a text file to copy
1 Create a directory in which to store your project files.
2 Either create or copy a text file to your project directory; then save it as MyFile.txt.

To create a VCL Form with a button and label
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Standard page of the Tool palette, place a TButton component on the form.
3 From the Standard page of the Tool palette, place a TLabel component on the form.

To write the rename file procedure
1 Select Button1 on the form.
2 In the Object Inspector, double-click the OnClick action on the Events tab.

The Code Editor displays, with the cursor in the TForm1.Button1Click (Delphi) or
TForm1::Button1Click (C++) event handler block.

3 At the cursor, type the following code:

if not RenameFile('MyFile.txt', 'YourFile.txt') then
Label1.Caption := 'Error renaming file!';
if(!RenameFile("..\\MyFile.txt", "..\\YourFile.txt")
 Label1–>Caption = “Error renaming file”;
// the file parameters assume the target output directory is in your project directory

Note: You cannot rename (move) a file across drives using RenameFile. You would need to first copy
the file and then delete the old one. In the runtime library, RenameFile is a wrapper around the
Windows API MoveFile function, so MoveFile will not work across drives either.

To run the application
1 Save your project file; then choose Run Run to build and run the application.

The form displays.

2 Click the button; If no message displays in the Label, check the file name in your project directory.

1429

MyFile.txt should is renamed as YourFile.txt.

3 If the caption label displays the error message, recheck your event handler code.

1430

Using ActionManager to Create Actions in a VCL Forms Application
Using Developer Studio 2006, the following procedure illustrates how to create actions using ActionManager. It sets
up a simple user interface with a text area, as would be appropriate for a text editing application, and describes how
to create a file menu item with a file open action.

Building the VCL application with ActionManager actions consists of the following major steps:

1 Create a main window.
2 Add a File open action to the ActionManager.
3 Create the main menu.
4 Add the action to the menu.
5 Build and run the application.

To create a main window and add a File open action
1 Choose File New Other Delphi Projects or C++Builder Projects and double-click the VCL Forms

Application icon.
The VCL Forms Designer is displayed.

2 From the Additional page of the Tool Palette, add an TActionManager component to the form.
3 Double-click the TActionManager to display the Action Manager editor.

Tip: To display captions for nonvisual components such as ActionManager, choose Tools
Environment Options. On the Designer tab, check Show component captions, and click OK.

4 If necessary, click the Actions tab.
5 Select New Standard Action from the drop-down list to display the Standard Action Classes dialog.
6 Scroll to the File category, and click the TFileOpen action.
7 Click OK to close the dialog.
8 In the Action Manager editor, select the File category.

Open... displays in the Actions: list box.

9 Click Close to close the editor.

To create the main menu
1 From the Additional page of the Tool Palette, place an TActionMainMenuBar component on the form.
2 Open the Action Manager editor, and select the File category from the Categories: list box.
3 Drag File to the blank menu bar.

File displays on the menu bar.

To build and run the application
1 Choose Run Run.

The application executes, displaying a form with the main menu bar and the File menu.

2 Choose File Open.

1431

The Open file dialog displays.

1432

Using the Main VCL Thread
Using the main VCL thread consists of the following basic steps:

1 Create a separate routine to handle Windows messages received by components in your application.
2 Call CheckSynchronize periodically.
3 Declare thread-local variables, as necessary, for exclusive use by your thread.

To create a separate routine
1 Write a main thread routine that handles accessing object properties and executing object methods for all objects

in your application.
2 Call the routine using the TThread.Synchronize (Delphi) or TThread::Synchronize method.

The following code is an example of how to call a method using Synchronize

[Delphi]
procedure TMyThread.PushTheButton
begin
 Button1.Click;
end;
procedure TMyThread.Execute;
begin
 ...
 Synchronize(PushThebutton);
 ...
end;

[C++]
void TMyThread::PushTheButton() { Form1–>Button1–>Click(); }
void __fastcall TMyThread::Execute() {
 ...
 Synchronize((TThreadMethod)&PushTheButton);
 ...
}

Synchronize waits for the main thread to enter the message loop and then executes the passed method.

Note: Because Synchronize uses a message loop, it does not work in console applications. For
console applications, use other mechanisms, such as critical sections, to protect access to VCL
objects.

To call CheckSynchronize
1 Call CheckSynchronize periodically within the main thread to enable background threads to synchronize

execution with the main thread.
2 To ensure the safety of making background thread calls, call CheckSynchronize when the application is idle,

for example, from an OnIdle event handler.

1433

To use a thread-local variable
1 Identify variables that you want to make global to all the routines running in your thread but not shared by other

instances of the same thread class.
2 For Delphi, declare these variables in a threadvar section, for example,

[Delphi]
threadvar
 x: integer;

For C++, declare these variables with the __thread modifier:

[C++]
int __thread x;

Note: Use the threadvar section for global variables only. Do not use it for Pointer and Function variables or types
that use copy-on-write semantics, such as long strings.

Note: For C++, if you initialize a __thread variable, you must initialize it to a constant expression. For example, int
__thread foo = 3; is a legal statement, but int __thread foo = get_value(); is not permitted
because the initialization occurs at runtime.

1434

Waiting for Threads
The following are procedures that can be used to wait for threads.

Wait for a thread to finish executing.
Wait for a task to complete.
Check if another thread is waiting for your thread to terminate.

To wait for a thread to finish executing
1 Use the WaitFor method of the other thread.
2 Code your logic. For example, the following code waits for another thread to fill a thread list object before

accessing the objects in the list:

[Delphi]
if ListFillingThread.WaitFor then
begin
 with ThreadList1.LockList do
 begin
 for I := 0 to Count - 1 do
 ProcessItem(Items[I];
 end;
 ThreadList1.UnlockList;
end;

[C++]
if(ListFillingThread->WaitFor()) {
 TList* list = ThreadList1–>LockList();
 for(int i = 0; i < list->Count; i++) {
 DoSomething(list->Items[i]);
 }
 ThreadList1–>UnlockList();
}

To wait for a task to complete
1 Create a TEvent object of global scope.
2 When a thread completes an operation other threads are waiting for, have the thread call TEvent.SetEvent.
3 To turn off the signal, call TEvent.ResetEvent.

The following example is an OnTerminate event handler that uses a global counter in a critical section to keep track
of the number of terminating threads. When Counter reaches 0, the handler calls the SetEvent method to signal
that all processes have terminated:

[Delphi]
procedure TDataModule.TaskTerminateThread(Sender: TObject);
begin
 ...
 CounterGuard.Acquire; {obtain a lock on the counter}
 Dec(Counter); {decrement the global counter variable}

1435

 if Counter = 0 then
 Event1.SetEvent; {signal if this is the last thread}
 Counter.Release; {release the lock on the counter}
 ...
end;

[C++]
void __fastcall TDataModule::TaskThreadTerminate(TObject *Sender) {
 ...
 CounterGuard->Acquire(); // lock the counter
 if(––Counter == 0) // decrement counter
 Event1–>SetEvent(); // signal if this is the last thread
 CounterGuard->Release(); // release lock
}

The main thread initializes Counter, launches the task threads, and waits for the signal that they are all done by
calling the TEvent::WaitFor method. WaitFor waits a specified time period for the signal to be set and returns
one of the values in the table below.

The following code example shows how the main thread launches the task threads and resumes when they have
completed.

[Delphi]
Event1.ResetEvent; {clear the event before launching the threads}
for i := 1 to Counter do
 TaskThread.Create(False); {create and launch the task threads}
if Event1.WaitFor(20000) <> wrSignaled then
 raise Exception;
{continue with main thread}

[C++]
Event1–>ResetEvent(); // clear the event before launching threads
for(int i = 0; i < Counter; i++) {
 new TaskThread(false);
if(Event1–>WaitFor(20000) != wrSignaled)
 throw Exception;
// now continue with the main thread

Note: If you do not want to stop waiting for an event handler after a specified time period, pass the WaitFor method
a parameter value of INFINITE. Be careful when using INFINITE, because your thread will hang if the
anticipated signal is never received.

To check if another thread is waiting on your thread to terminate
1 In your Execute procedure, implement the Terminate method by checking and responding to the
Terminated property.

2 This is one way to code the logic:

[Delphi]
procedure TMyThread.Execute;
begin
 while not Terminated do
 PerformSomeTask;
end;

1436

[C++]
void __fastcall TMyThread::Execute() {
 while(!Terminated)
 DoSomething();
}

WaitFor return values

Value Meaning

wrSignaled The signal of the event was set.

wrTimeout The specified time elapsed without the signal being set.

wrAbandoned The event object was destroyed before the timeout period elapsed.

wrError An error occurred while waiting.

1437

1438

Writing Cleanup Code

To clean up after your thread finishes executing
1 Centralize the cleanup code by placing it in the OnTerminate event handler.

This ensures that the code gets executed.

2 Do not use any thread-local variables, because OnTerminate is not run as part of your thread.
3 You can safely access any objects from the OnTerminate handler.

1439

1440

Writing the Thread Function
The Execute method is your thread function. You can think of it as a program that is launched by your application,
except that it shares the same process space. Writing the thread function is a little trickier than writing a separate
program, because you must make sure that you do not overwrite memory that is used by other processes in your
application. On the other hand, because the thread shares the same process space with other threads, you can use
the shared memory to communicate between threads.

To implement Execute, coordinate thread execution by
1 Synchronizing with a main VCL thread.
2 Avoiding simultaneous access to the same memory.
3 Waiting for threads.
4 Handling exceptions.

1441

WebSnap Procedures

1442

Building a WebSnap "Hello World" Application
Though simple, the WebSnap "Hello world" application demonstrates the essential steps for creating an WebSnap
application.

Building the WebSnap "Hello world" application consists of five major steps:

1 Create a WebSnap project.
2 Accept the default included components.
3 Set the page title in the page options.
4 Modify the HTML template.
5 Run the application.

To create a WebSnap project
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select WebSnap Application from the Delphi Projects WebSnap or C++Builder
Projects WebSnap folder.

3 Click OK.
The New WebSnap Application dialog appears.

4 Select the Web App Debugger executable radio button.
5 In the Class Name field, enter HelloWorld.
6 Select your application model components.
7 In the Page Name field, enter HelloWorld.
8 Select your caching type from the Caching drop-down.

To change included components (optional)
1 In the New WebSnap Application dialog, click Components.

The WebApp Components dialog appears.

2 Select the components you want to include.

Tip: In most cases, the default settings will suffice.

3 Click OK.

To set the page title in the page options
1 In the New WebSnap Application dialog, click Page Options.

The WebApp Components dialog appears.

2 In the Title field, enter Hello World!.

1443

To modify the HTML template
1 Click on the HTML tab in the IDE.
2 Below the line <h2><%= Page.Title %></h2>, insert a line saying This is my first WebSnap
application.

3 Save the application.

To run the "Hello world" application
1 Choose Run Run.

An application window opens, and the COM server registers your WebSnap application with the Web Application
Debugger.

2 Close the application window.
3 Choose Tools Web App Debugger .

The Web Application Debugger launches.

4 In the Web App Debugger, click the Start button.
5 Click on the Default URL to launch the browser.
6 In the browser, select your Hello World application from the list of applications and click Go.

Your application appears in the browser with the text Hello World! This is my first WebSnap
application.

7 Close the Web browser to return to the IDE.

1444

Building a WebSnap Application
The following procedure describes the generic steps required to build a simple WebSnap project. For more advanced
topics, refer to related information following the procedure.

Building a WebSnap application consists of five major steps:

1 Create an WebSnap project.
2 Change included components (optional).
3 Set page options (optional)
4 Create additional WebSnap pages.
5 Run the application.

To create a WebSnap project
1 Choose File New Other.

The New Items dialog appears.

2 In the New Items dialog, select WebSnap Application from the Delphi Projects WebSnap folder.
3 Click OK.

The New WebSnap Application dialog appears.

4 Select the type of application you are creating.
5 Select your application model components.
6 In the Page Name field, enter the name of your page.
7 Select your caching type from the Caching drop-down.

To change included components (optional)
1 In the New WebSnap Application dialog, click Components.

The WebApp Components dialog appears.

2 Select the components you want to include.

Tip: In most cases, the default settings will suffice.

3 Click OK.

To set page options (optional)
1 In the New WebSnap Application dialog, click Page Options.

The WebApp Components dialog appears.

2 Set the page options.

To create additional WebSnap pages
1 In the New Items dialog, select WebSnap Page Module from the Delphi Projects WebSnap folder.
2 Configure the page module options and click OK.

1445

3 Add and configure components.

1446

Debugging a WebSnap Application using the Web Application
Debugger

To debug a WebSnap Application using the Web Application Debugger
1 Register the server information application for the Web Application Debugger.
2 Register your WebSnap application with the Web Application Debugger the first time you run it.
3 Launch the Web Application Debugger.
4 Select and launch your web application.
5 Debug your web application using breakpoints and the Web Application Debugger log.

To register the server information application for the Web Application Debugger
1 Navigate to the bin directory of your Developer Studio 2006 installation.
2 Run serverinfo.exe.
3 Close the blank application window that opens.

This step only needs to be performed the first time you use the Web Application Debugger.

To register your web application with the Debugger
1 Choose Run Run.

This displays the console window of the COM server that is your Web server application.

2 Close the blank application window that opens.

Your COM server is now registered so that the Web App debugger can access it.

To launch the Web Application Debugger
1 Choose Tools Web App Debugger .

The Web Application Debugger launches.

2 In the Web App Debugger, click the Start button.
3 Click on the Default URL to launch the browser.

To select and launch your web application
1 In the browser, select your application from the list of applications.
2 Click Go.

Your application appears in the browser.

1447

Developer's Guide

Win32

1448

Win32 Developer's Guide

1449

Programming with Delphi

1450

Delphi programming fundamentals

Designing Applications
You can design any kind of 32-bit applicationfrom general—purpose utilities to sophisticated data access programs
or distributed applications.

As you visually design the user interface for your application, the Form Designer generates the underlying Delphi
code to support the application. As you select and modify the properties of components and forms, the results of
those changes appear automatically in the source code, and vice versa. You can modify the source files directly with
any text editor, including the built-in Code editor. The changes you make are immediately reflected in the visual
environment.

You can create your own components using the Delphi language. Most of the components provided are written in
Delphi. You can add components that you write to the Tool palette and customize the palette for your use by
including new tabs if needed.

You can also design applications that run on both Linux and Windows by using CLX components. CLX contains a
set of classes that, if used instead of those in the VCL, allows your program to port between Windows and Linux. If
you are using Kylix while developing cross-platform applications, Kylix also includes a Developer's Guide that is
tailored for the Linux environment. You can refer to the manual both in the Kylix online Help or the printed manual
provided with the Kylix product.

Creating applications introduces support for different types of applications.

Creating Projects
All application development revolves around projects. When you create an application in Delphi you are creating a
project. A project is a collection of files that make up an application. Some of these files are created at design time.
Others are generated automatically when you compile the project source code.

You can view the contents of a project in a project management tool called the Project Manager. The Project
Manager lists, in a hierarchical view, the unit names, the forms contained in the unit (if there is one), and shows the
paths to the files in the project. Although you can edit many of these files directly, it is often easier and more reliable
to use the visual tools.

At the top of the project hierarchy is a group file. You can combine multiple projects into a project group. This allows
you to open more than one project at a time in the Project Manager. Project groups let you organize and work on
related projects, such as applications that function together or parts of a multi-tiered application. If you are only
working on one project, you do not need a project group file to create an application.

Project files, which describe individual projects, files, and associated options, have a .dpr extension. Project files
contain directions for building an application or shared object. When you add and remove files using the Project
Manager, the project file is updated. You specify project options using a Project Options dialog which has tabs for

1451

various aspects of your project such as forms, application, and compiler. These project options are stored in the
project file with the project.

Units and forms are the basic building blocks of an application. A project can share any existing form and unit file
including those that reside outside the project directory tree. This includes custom procedures and functions that
have been written as standalone routines.

If you add a shared file to a project, realize that the file is not copied into the current project directory; it remains in
its current location. Adding the shared file to the current project registers the file name and path in the uses clause
of the project file. Delphi automatically handles this as you add units to a project.

When you compile a project, it does not matter where the files that make up the project reside. The compiler treats
shared files the same as those created by the project itself.

Editing Code
The Code editor is a full-featured ASCII editor. If using the visual programming environment, a form is automatically
displayed as part of a new project. You can start designing your application interface by placing objects on the form
and modifying how they work in the Object Inspector. But other programming tasks, such as writing event handlers
for objects, must be done by typing the code.

The contents of the form, all of its properties, its components, and their properties can be viewed and edited as text
in the Code editor. You can adjust the generated code in the Code editor and add more components within the editor
by typing code. As you type code into the editor, the compiler is constantly scanning for changes and updating the
form with the new layout. You can then go back to the form, view and test the changes you made in the editor, and
continue adjusting the form from there.

The code generation and property streaming systems are completely open to inspection. The source code for
everything that is included in your final executable file—all of the VCL objects, CLX objects, RTL sources, and project
files—can be viewed and edited in the Code editor.

Compiling Applications
When you have finished designing your application interface on the form and writing additional code so it does what
you want, you can compile the project from the IDE or from the command line.

All projects have as a target a single distributable executable file. You can view or test your application at various
stages of development by compiling, building, or running it:

When you compile, only units that have changed since the last compile are recompiled.
When you build, all units in the project are compiled, regardless of whether they have changed since the last
compile. This technique is useful when you are unsure of exactly which files have or have not been changed,
or when you simply want to ensure that all files are current and synchronized. It's also important to build when
you"ve changed global compiler directives to ensure that all code compiles in the proper state. You can also
test the validity of your source code without attempting to compile the project.
When you run, you compile and then execute your application. If you modified the source code since the last
compilation, the compiler recompiles the changed files and any files that depend on them.

If you have grouped several projects together, you can compile or build all projects in a single project group at once.
Choose Project Compile All Projects, or Project Build All Projects with the project group selected in the
Project Manager.

Note: To compile a CLX application on Linux, you need Kylix.

1452

Debugging Applications
With the integrated debugger, you can find and fix errors in your applications. The integrated debugger lets you
control program execution, monitor variable values and items in data structures, and modify data values while
debugging.

The integrated debugger can track down both runtime errors and logic errors. By running to specific program
locations and viewing the variable values, the functions on the call stack, and the program output, you can monitor
how your program behaves and find the areas where it is not behaving as designed.

You can also use exception handling to recognize, locate, and deal with errors. Exceptions are classes, like other
classes in Delphi, except, by convention, they begin with an initial E rather than a T.

Deploying Applications
Delphi includes add-on tools to help with application deployment. For example, InstallShield Express (not available
in all editions) helps you to create an installation package for your application that includes all of the files needed for
running a distributed application. TeamSource software (not available in all editions) is also available for tracking
application updates.

To deploy a CLX application on Linux, you need Kylix.

Note: Not all editions have deployment capabilities.

Refer to Deploying Applications for specific information on deployment.

1453

Understanding the component library

Understanding the Component Library
The component library is made up of objects separated into several sublibraries, each of which serves a different
purpose. These sublibraries are listed in the following table:

Component sublibraries
Part Description

VCL/RTL Low-level classes and routines available for all VCL applications. VCL/RTL includes the runtime library (RTL) up
to and including the Classes unit.

DataCLX Client data-access components. The components in DataCLX are a subset of the total available set of components
for working with databases. These components are used in cross-platform applications that access databases.
They can access data from a file on disk or from a database server using dbExpress.

NetCLX Components for building Web Server applications. These include support for applications that use Apache or CGI
Web Servers.

VisualCLX Cross-platform GUI components and graphics classes. VisualCLX classes make use of an underlying cross-
platform widget library (Qt).

WinCLX Classes that are available only on the Windows platform. These include controls that are wrappers for native
Windows controls, database access components that use mechanisms (such as the Borland Database Engine
or ADO) that are not available on Linux, and components that support Windows-only technologies (such as COM,
NT Services, or control panel applets).

The VCL and CLX contain many of the same sublibraries. They both include BaseCLX, DataCLX, NetCLX. The VCL
also includes WinCLX while CLX includes VisualCLX instead. Use the VCL when you want to use native Windows
controls, Windows-specific features, or extend an existing VCL application. Use CLX when you want to write a cross-
platform application or use controls that are available in CLX applications, such as TLCDNumber.

All classes descend from TObject. TObject introduces methods that implement fundamental behavior like
construction, destruction, and message handling.

Components are a subset of the component library that descend from the class TComponent. You can place
components on a form or data module and manipulate them at design time. Using the Object Inspector, you can
assign property values without writing code. Most components are either visual or nonvisual, depending on whether
they are visible at runtime. Some components appear on the Tool palette.

Visual components, such as TForm and TSpeedButton, are called controls and descend from TControl. Controls
are used in GUI applications, and appear to the user at runtime. TControl provides properties that specify the visual
attributes of controls, such as their height and width.

Nonvisual components are used for a variety of tasks. For example, if you are writing an application that connects
to a database, you can place a TDataSource component on a form to connect a control and a dataset used by the

1454

control. This connection is not visible to the user, so TDataSource is nonvisual. At design time, nonvisual components
are represented by an icon. This allows you to manipulate their properties and events just as you would a visual
control.

Classes that are not components (that is, classes that descend from TObject but not TComponent) are also used
for a variety of tasks. Typically, these classes are used for accessing system objects (such as a file or the clipboard)
or for transient tasks (such as storing data in a list). You can't create instances of these classes at design time,
although they are sometimes created by the components that you add in the Form Designer.

Detailed reference material on all VCL and CLX objects is accessible while you are programming. In the Code editor,
place the cursor anywhere on the object and press F1 to display the Help topic. Objects, properties, methods, and
events that are in the VCL are marked "VCL Reference" and those in CLX are marked "CLX Reference."

Properties, Methods, and Events
Both the VCL and CLX form hierarchies of classes that are tied to the IDE, where you can develop applications
quickly. The classes in both component libraries are based on properties, methods, and events. Each class includes
data members (properties), functions that operate on the data (methods), and a way to interact with users of the
class (events). The component library is written in the Delphi language, although the VCL is based on the Windows
API and CLX is based on the Qt widget library.

Properties
Properties are characteristics of an object that influence either the visible behavior or the operations of the object.
For example, the Visible property determines whether an object can be seen in an application interface. Well-
designed properties make your components easier for others to use and easier for you to maintain.

Here are some of the useful features of properties:

Unlike methods, which are only available at runtime, you can see and change some properties at design time
and get immediate feedback as the components change in the IDE.
You can access some properties in the Object Inspector, where you can modify the values of your object
visually. Setting properties at design time is easier than writing code and makes your code easier to maintain.
Because the data is encapsulated, it is protected and private to the actual object.
The calls to get and set the values of properties can be methods, so special processing can be done that is
invisible to the user of the object. For example, data could reside in a table, but could appear as a normal data
member to the programmer.
You can implement logic that triggers events or modifies other data during the access of a property. For example,
changing the value of one property may require you to modify another. You can change the methods created
for the property.
Properties can be virtual.
A property is not restricted to a single object. Changing one property on one object can affect several objects.
For example, setting the Checked property on a radio button affects all of the radio buttons in the group.

Methods
A method is a procedure that is always associated with a class. Methods define the behavior of an object. Class
methods can access all the public, protected, and private properties and fields of the class and are commonly referred
to as member functions. Although most methods belong to an instance of a class, some methods belong instead to
the class type. These are called class methods.

1455

Events
An event is an action or occurrence detected by a program. Most modern applications are said to be event-driven,
because they are designed to respond to events. In a program, the programmer has no way of predicting the exact
sequence of actions a user will perform. For example, the user may choose a menu item, click a button, or mark
some text. You can write code to handle the events in which you are interested, rather than writing code that always
executes in the same restricted order.

Regardless of how an event is triggered, VCL objects look to see if you have written any code to handle that event.
If you have, that code is executed; otherwise, the default event handling behavior takes place.

Types of Events
The kinds of events that can occur can be divided into two main categories:

User events
System events
Internal events

User events
User events are actions that the user initiates. Examples of user events are OnClick (the user clicked the
mouse), OnKeyPress (the user pressed a key on the keyboard), and OnDblClick (the user double-clicked a mouse
button).

System events
System events are events that the operating system fires for you. For example, the OnTimer event (which the Timer
component issues whenever a predefined interval has elapsed), the OnPaint event (a component or window needs
to be redrawn), and so on. Usually, system events are not directly initiated by a user action.

Internal events
Internal events are events that are generated by the objects in your application. An example of an internal event is
the OnPost event that a dataset generates when your application tells it to post the current record.

Objects, Components, and Controls
The following diagram is a greatly simplified view of the inheritance hierarchy that illustrates the relationship between
objects, components, and controls.

1456

Every object (class) inherits from TObject. Objects that can appear in the Form Designer inherit from TPersistent or
TComponent. Controls, which appear to the user at runtime, inherit from TControl. There are two types of controls,
graphic controls, which inherit from TGraphicControl, and windowed controls, which inherit from TWinControl or
TWidgetControl. A control like TCheckBox inherits all the functionality of TObject, TPersistent, TComponent,
TControl, and TWinControl or TWidgetControl, and adds specialized capabilities of its own.

The figure shows several important base classes, which are described in the following table:

Class Description

TObject Signifies the base class and ultimate ancestor of everything in the VCL or CLX. TObject
encapsulates the fundamental behavior common to all VCL/CLX objects by introducing
methods that perform basic functions such as creating, maintaining, and destroying an
instance of an object.

Exception Specifies the base class of all classes that relate to VCL exceptions. Exception provides a
consistent interface for error conditions, and enables applications to handle error conditions
gracefully.

TPersistent Specifies the base class for all objects that implement publishable properties. Classes under
TPersistent deal with sending data to streams and allow for the assignment of classes.

TComponent Specifies the base class for all components. Components can be added to the Tool
palette and manipulated at design time. Components can own other components.

TControl Represents the base class for all controls that are visible at runtime. TControl is the common
ancestor of all visual components and provides standard visual controls like position and
cursor. This class also provides events that respond to mouse actions.

TWinControl or TWidgetControl Specifies the base class of all controls that can have keyboard focus. Controls under
TWinControl are called windowed controls while those under TWidgetControl are called
widgets.

For a complete overview of the VCL and CLX object hierarchies, refer to the VCL Object Hierarchy and CLX Object
Hierarchy wall charts included with this product.

TObject Branch
The TObject branch includes all VCL and CLX classes that descend from TObject but not from TPersistent. Much
of the powerful capability of the component library is established by the methods that TObject introduces. TObject
encapsulates the fundamental behavior common to all classes in the component library by introducing methods that
provide:

1457

The ability to respond when object instances are created or destroyed.
Class type and instance information on an object, and runtime type information (RTTI) about its published
properties.
Support for handling messages (VCL applications) .

TObject is the immediate ancestor of many simple classes. Classes in the TObject branch have one common,
important characteristic: they are transitory. This means that these classes do not have a method to save the state
that they are in prior to destruction; they are not persistent.

One of the main groups of classes in this branch is the Exception class. This class provides a large set of built-in
exception classes for automatically handling divide-by-zero errors, file I/O errors, invalid typecasts, and many other
exception conditions.

Another group in the TObject branch is classes that encapsulate data structures, such as:

TBits, a class that stores an "array" of Boolean values.
TList, a linked list class.
TStack, a class that maintains a last-in first-out array of pointers.
TQueue, a class that maintains a first-in first-out array of pointers.

Another group in the TObject branch are wrappers for external objects like TPrinter, which encapsulates a printer
interface, and TIniFile, which lets a program read from or write to an ini file.

TStream is a good example of another type of class in this branch. TStream is the base class type for stream objects
that can read from or write to various kinds of storage media, such as disk files, dynamic memory, and so on (see
Using streams for information on streams).

TPersistent Branch
The TPersistent branch includes all VCL and CLX classes that descend from TPersistent but not from
TComponent. Persistence determines what gets saved with a form file or data module and what gets loaded into
the form or data module when it is retrieved from memory.

Because of their persistence, objects from this branch can appear at design time. However, they can't exist
independently. Rather, they implement properties for components. Properties are only loaded and saved with a form
if they have an owner. The owner must be some component. TPersistent introduces the GetOwner method, which
lets the Form Designer determine the owner of the object.

Classes in this branch are also the first to include a published section where properties can be automatically loaded
and saved. A DefineProperties method lets each class indicate how to load and save properties.

Following are some of the classes in the TPersistent branch of the hierarchy:

Graphics such as: TBrush, TFont, and TPen.
Classes such as TBitmap and TIcon, which store and display visual images, and TClipboard, which contains
text or graphics that have been cut or copied from an application.
String lists, such as TStringList, which represent text or lists of strings that can be assigned at design time.
Collections and collection items, which descend from TCollection or TCollectionItem. These classes maintain
indexed collections of specially defined items that belong to a component. Examples include
THeaderSections and THeaderSection or TListColumns and TListColumn.

1458

TComponent Branch
The TComponent branch contains classes that descend from TComponent but not TControl. Objects in this branch
are components that you can manipulate on forms at design time but which do not appear to the user at runtime.
They are persistent objects that can do the following:

Appear on the Tool palette and be changed on the form.
Own and manage other components.
Load and save themselves.

Several methods introduced by TComponent dictate how components act during design time and what information
gets saved with the component. Streaming (the saving and loading of form files, which store information about the
property values of objects on a form) is introduced in this branch. Properties are persistent if they are published and
published properties are automatically streamed.

The TComponent branch also introduces the concept of ownership that is propagated throughout the component
library. Two properties support ownership: Owner and Components. Every component has an Owner property that
references another component as its owner. A component may own other components. In this case, all owned
components are referenced in the component's Components property.

The constructor for every component takes a parameter that specifies the new component's owner. If the passed-
in owner exists, the new component is added to that owner's Components list. Aside from using the Components
list to reference owned components, this property also provides for the automatic destruction of owned components.
As long as the component has an owner, it will be destroyed when the owner is destroyed. For example, since
TForm is a descendant of TComponent, all components owned by a form are destroyed and their memory freed
when the form is destroyed. (Assuming, of course, that the components have properly designed destructors that
clean them up correctly.)

If a property type is a TComponent or a descendant, the streaming system creates an instance of that type when
reading it in. If a property type is TPersistent but not TComponent, the streaming system uses the existing instance
available through the property and reads values for that instance's properties.

Some of the classes in the TComponent branch include:

TActionList, a class that maintains a list of actions, which provides an abstraction of the responses your program
can make to user input.
TMainMenu, a class that provides a menu bar and its accompanying drop-down menus for a form.
TOpenDialog, TSaveDialog, TFontDialog, TFindDialog, TColorDialog, and so on, classes that display and
gather information from commonly used dialog boxes.
TScreen, a class that keeps track of the forms and data modules that an application creates, the active form,
the active control within that form, the size and resolution of the screen, and the cursors and fonts available for
the application to use.

Components that do not need a visual interface can be derived directly from TComponent. To make a tool such as
a TTimer device, you can derive from TComponent. This type of component resides on the Tool palette but performs
internal functions that are accessed through code rather than appearing in the user interface at runtime.

See Working with components for details on setting properties, calling methods, and working with events for
components.

TControl Branch
The TControl branch consists of components that descend from TControl but not TWinControl (TWidgetControl in
CLX applications). Classes in this branch are controls: visual objects that the user can see and manipulate at runtime.
All controls have properties, methods, and events in common that relate to how the control looks, such as its position,

1459

the cursor associated with the control's window, methods to paint or move the control, and events to respond to
mouse actions. Controls in this branch, however, can never receive keyboard input.

Whereas TComponent defines behavior for all components, TControl defines behavior for all visual controls. This
includes drawing routines, standard events, and containership.

TControl introduces many visual properties that all controls inherit. These include the Caption, Color, Font, and
HelpContext or HelpKeyword. While these properties inherited from TControl, they are only published—and hence
appear in the Object Inspector—for controls to which they are applicable. For example, TImage does not publish
the Color property, since its color is determined by the graphic it displays. TControl also introduces the Parent
property, which specifies another control that visually contains the control.

Classes in the TControl branch often called graphic controls, because they all descend from TGraphicControl, which
is an immediate descendant of TControl. Although these controls appear to the user at runtime, graphic controls do
not have their own underlying window or widget. Instead, they use their parent's window or widget. It is because of
this limitation that graphic controls cant receive keyboard input or act as a parent to other controls. However, because
they do not have their own window or widget, graphic controls use fewer system resources. For details on many of
the classes in the TControl branch, see graphics controls.

There are two versions of TControl, one for VCL (Windows-only) applications and one for CLX (cross-platform)
applications. Most controls have two versions as well, a Windows-only version that descends from the Windows-
only version of TControl, and a cross-platform version that descends from the cross-platform version of TControl.
The Windows-only controls use native Windows APIs in their implementations, while the cross-platform versions sit
on top of the Qt cross-platform widget library.

TWinControl/TWidgetControl Branch
Most controls fall into the TWinControl/ TWidgetControl branch. Unlike graphic controls, controls in this branch have
their own associated window or widget. Because of this, they are sometimes called windowed controls or widget
controls. Windowed controls all descend from TWinControl, which descends from the windows-only version of
TControl. Widget controls all descend from TWidgetControl, which descends from the CLX version of TControl.

Controls in the TWinControl/TWidgetControl branch:

Can receive focus while an application is running, which means they can receive keyboard input from the
application user. In comparison, graphic controls can only display data and respond to the mouse.
Can be the parent of one or more child controls.
Have a handle, or unique identifier, that allows them to access the underlying window or widget.

The TWinControl/TWidgetControl branch includes both controls that are drawn automatically (such as TEdit,
TListBox, TComboBox, TPageControl, and so on) and custom controls that do not correspond directly to a single
underlying Windows control or widget. Controls in this latter category, which includes classes like TStringGrid
and TDBNavigator, must handle the details of painting themselves. Because of this, they descend from
TCustomControl, which introduces a Canvas property on which they can paint themselves.

1460

Using the object model

Using the Object Model
The Delphi language is a set of object-oriented extensions to standard Pascal. Object-oriented programming is an
extension of structured programming that emphasizes code reuse and encapsulation of data with functionality. Once
you define a class, you and other programmers can use it in different applications, thus reducing development time
and increasing productivity.

The following topics provide a brief introduction to object-oriented concepts for programmers who are just starting
out with the Delphi language. For more details on object-oriented programming for programmers who want to write
components that can be installed on the Tool palette, see Overview of Component Creation.

What is an object?
Inheriting data and code from an object
Scope and qualifiers
Using object variables
Creating, instantiating, and destroying objects
Defining new classes
Using interfaces

What Is an Object?
A class is a data type that encapsulates data and operations on data in a single unit. Before object-oriented
programming, data and operations (functions) were treated as separate elements. An object is an instance of a class.
That is, it is a value whose type is a class. The term object is often used more loosely in this documentation and
where the distinction between a class and an instance of the class is not important, the term "object" may also refer
to a class.

You can begin to understand objects if you understand Pascal records or structures in C. Records are made of up
fields that contain data, where each field has its own type. Records make it easy to refer to a collection of varied
data elements.

Objects are also collections of data elements. But objects—unlike records—contain procedures and functions that
operate on their data. These procedures and functions are called methods.

An object's data elements are accessed through properties. The properties of many Delphi objects have values that
you can change at design time without writing code. If you want a property value to change at runtime, you need to
write only a small amount of code.

1461

The combination of data and functionality in a single unit is called encapsulation. In addition to encapsulation, object-
oriented programming is characterized by inheritance and polymorphism. Inheritance means that objects derive
functionality from other objects (called ancestors); objects can modify their inherited behavior. Polymorphism means
that different objects derived from the same ancestor support the same method and property interfaces, which often
can be called interchangeably.

Examining a Delphi Object
When you create a new project, the IDE displays a new form for you to customize. In the Code editor, the
automatically generated unit declares a new class type for the form and includes the code that creates the new form
instance. The generated code for a new Windows application looks like this:

unit Unit1;
interface
uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs;
type
TForm1 = class(TForm){ The type declaration of the form begins here }
 private
 { Private declarations }
 public
 { Public declarations }
 end;{ The type declaration of the form ends here }
var
 Form1: TForm1;
implementation{ Beginning of implementation part }
{$R *.dfm}
end.{ End of implementation part and unit}

The new class type is TForm1, and it is derived from type TForm, which is also a class.

A class is like a record in that they both contain data fields, but a class also contains methods—code that acts on
the object's data. So far, TForm1 appears to contain no fields or methods, because you haven't added any
components (the fields of the new object) to the form and you haven't created any event handlers (the methods of
the new object). TForm1 does contain inherited fields and methods, even though you don't see them in the type
declaration.

This variable declaration declares a variable named Form1 of the new type TForm1.

var
 Form1: TForm1;

Form1 represents an instance, or object, of the class type TForm1. You can declare more than one instance of a
class type; you might want to do this, for example, to create multiple child windows in a Multiple Document Interface
(MDI) application. Each instance maintains its own data, but all instances use the same code to execute methods.

Although you haven't added any components to the form or written any code, you already have a complete GUI
application that you can compile and run. All it does is display a blank form.

Suppose you add a button component to this form and write an OnClick event handler that changes the color of the
form when the user clicks the button. The result might look like this:

A simple form

1462

When the user clicks the button, the form's color changes to green. This is the event-handler code for the
button's OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form1.Color := clGreen;
end;

Objects can contain other objects as data fields. Each time you place a component on a form, a new field appears
in the form's type declaration. If you create the application described above and look at the code in the Code editor,
this is what you see:

unit Unit1;
interface
uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs;
type
 TForm1 = class(TForm)
 Button1: TButton;{ New data field }
 procedure Button1Click(Sender: TObject);{ New method declaration }
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 Form1: TForm1;
implementation
{$R *.dfm}
procedure TForm1.Button1Click(Sender: TObject);{ The code of the new method }
begin
 Form1.Color := clGreen;
end;
end.

1463

TForm1 has a Button1 field that corresponds to the button you added to the form. TButton is a class type, so
Button1 refers to an object.

All the event handlers you write using the IDE are methods of the form object. Each time you create an event handler,
a method is declared in the form object type. The TForm1 type now contains a new method, the Button1Click
procedure, declared in the TForm1 type declaration. The code that implements the Button1Click method appears in
the implementation part of the unit.

Changing the Name of a Component
You should always use the Object Inspector to change the name of a component. For example, suppose you want
to change a form's name from the default Form1 to a more descriptive name, such as ColorWindow. When you
change the form's Name property in the Object Inspector, the new name is automatically reflected in the
form's .dfm or .xfm file (which you usually don't edit manually) and in the source code that the IDE generates:

unit Unit1;
interface
uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs;
type
 TColorWindow = class(TForm){ Changed from TForm1 to TColorWindow }
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 ColorWindow: TColorWindow;{ Changed from Form1 to ColorWindow }
implementation
{$R *.dfm}
procedure TColorWindow.Button1Click(Sender: TObject);
begin
 Form1.Color := clGreen;{ The reference to Form1 didn"t change! }
end;
end.

Note that the code in the OnClick event handler for the button hasn't changed. Because you wrote the code, you
have to update it yourself and correct any references to the form:

procedure TColorWindow.Button1Click(Sender: TObject);
begin
 ColorWindow.Color := clGreen;
end;

Inheriting Data and Code from an Object
The TForm1 object in examining a Delphi object seems simple. TForm1 appears to contain one field (Button1), one
method (Button1Click), and no properties. Yet you can show, hide, or resize of the form, add or delete standard
border icons, and set up the form to become part of a Multiple Document Interface (MDI) application. You can do
these things because the form has inherited all the properties and methods of the component TForm. When you add
a new form to your project, you start with TForm and customize it by adding components, changing property values,
and writing event handlers. To customize any object, you first derive a new object from the existing one; when you
add a new form to your project, the IDE automatically derives a new form from the TForm type:

1464

TForm1 = class(TForm)

A derived class inherits all the properties, events, and methods of the class from which it derives. The derived class
is called a descendant and the class from which it derives is called an ancestor. If you look up TForm in the online
Help, you'll see lists of its properties, events, and methods, including the ones that TForm inherits from its ancestors.
A Delphi class can have only one immediate ancestor, but it can have many direct descendants.

Scope and Qualifiers
Scope determines the accessibility of an object's fields, properties, and methods. All members declared in a class
are available to that class and, as is discussed later, often to its descendants. Although a method's implementation
code appears outside of the class declaration, the method is still within the scope of the class because it is declared
in the class declaration.

When you write code to implement a method that refers to properties, methods, or fields of the class where the
method is declared, you don't need to preface those identifiers with the name of the class. For example, if you put
a button on a new form, you could write this event handler for the button's OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Color := clFuchsia;
 Button1.Color := clLime;
end;

The first statement is equivalent to

Form1.Color := clFuchsia

You don't need to qualify Color with Form1 because the Button1Click method is part of TForm1; identifiers in the
method body therefore fall within the scope of the TForm1 instance where the method is called. The second
statement, in contrast, refers to the color of the button object (not of the form where the event handler is declared),
so it requires qualification.

The IDE creates a separate unit (source code) file for each form. If you want to access one form's components from
another form's unit file, you need to qualify the component names, like this:

Form2.Edit1.Color := clLime;

In the same way, you can access a component's methods from another form. For example,

Form2.Edit1.Clear;

To access Form2's components from Form1's unit file, you must also add Form2's unit to the uses clause of
Form1's unit.

The scope of a class extends to its descendants. You can, however, redeclare a field, property, or method in a
descendant class. Such redeclarations either hide or override the inherited member.

Private, Protected, Public, and Published Declarations
A class type declaration contains three or four possible sections that control the accessibility of its fields and methods:

Type
 TClassName = Class(TObject)

1465

 public
 {public fields}
 {public methods}
 protected
 {protected fields}
 {protected methods}
 private
 {private fields}
 {private methods}
end;

The public section declares fields and methods with no access restrictions. Class instances and descendant
classes can access these fields and methods. A public member is accessible from wherever the class it belongs
to is accessible—that is, from the unit where the class is declared and from any unit that uses that unit.
The protected section includes fields and methods with some access restrictions. A protected member is
accessible within the unit where its class is declared and by any descendant class, regardless of the descendant
class's unit.
The private section declares fields and methods that have rigorous access restrictions. A private member is
accessible only within the unit where it is declared. Private members are often used in a class to implement
other (public or published) methods and properties.
For classes that descend from TPersistent, a published section declares properties and events that are available
at design time. A published member has the same visibility as a public member, but the compiler generates
runtime type information for published members. Published properties appear in the Object Inspector at design
time.

When you declare a field, property, or method, the new member is added to one of these four sections, which gives
it its visibility: private, protected, public, or published.

Using Object Variables
You can assign one object variable to another object variable if the variables are of the same type or are assignment
compatible. In particular, you can assign an object variable to another object variable if the type of the variable to
which you are assigning is an ancestor of the type of the variable being assigned. For example, here is a
TSimpleForm type declaration and a variable declaration section declaring two variables, AForm and Simple:

type
 TSimpleForm = class(TForm)
 Button1: TButton;
 Edit1: TEdit;
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 AForm: TForm;
 SimpleForm: TSimpleForm;

AForm is of type TForm, and SimpleForm is of type TSimpleForm. Because TSimpleForm is a descendant of
TForm, this assignment statement is legal:

AForm := SimpleForm;

Suppose you write an event handler for the OnClick event of a button. When the button is clicked, the event handler
for the OnClick event is called. Each event handler has a Sender parameter of type TObject:

1466

procedure TForm1.Button1Click(Sender: TObject);
begin
.
.
.
end;

Because Sender is of type TObject, any object can be assigned to Sender. The value of Sender is always the control
or component that responds to the event. You can test Sender to find the type of component or control that called
the event handler using the reserved word is. For example,

if Sender is TEdit then
 DoSomething
else
 DoSomethingElse;

Creating, Instantiating, and Destroying Objects
Many of the objects you use in the Form Designer, such as buttons and edit boxes, are visible at both design time
and runtime. Some, such as common dialog boxes, appear only at runtime. Still others, such as timers and data
source components, have no visual representation at runtime.

You may want to create your own classes. For example, you could create a TEmployee class that contains Name,
Title, and HourlyPayRate properties. You could then add a CalculatePay method that uses the data in
HourlyPayRate to compute a paycheck amount. The TEmployee type declaration might look like this:

type
 TEmployee = class(TObject)
 private
 FName: string;
 FTitle: string;
 FHourlyPayRate: Double;
 public
 property Name: string read FName write FName;
 property Title: string read FTitle write FTitle;
 property HourlyPayRate: Double read FHourlyPayRate write FHourlyPayRate;
 function CalculatePay: Double;
 end;

In addition to the fields, properties, and methods you've defined, TEmployee inherits all the methods of TObject.
You can place a type declaration like this one in either the interface or implementation part of a unit, and then create
instances of the new class by calling the Create method that TEmployee inherits from TObject:

var
 Employee: TEmployee;
begin
 Employee := TEmployee.Create;
end;

The Create method is called a constructor. It allocates memory for a new instance object and returns a reference to
the object.

Components on a form are created and destroyed automatically. However, if you write your own code to instantiate
objects, you are responsible for disposing of them as well. Every object inherits a Destroy method (called a

1467

destructor) from TObject. To destroy an object, however, you should call the Free method (also inherited from
TObject), because Free checks for a nil reference before calling Destroy. For example,

Employee.Free;

destroys the Employee object and deallocates its memory.

Components and Ownership
Delphi components have a built-in memory-management mechanism that allows one component to assume
responsibility for freeing another. The former component is said to own the latter. The memory for an owned
component is automatically freed when its owner's memory is freed. The owner of a component—the value of its
Owner property—is determined by a parameter passed to the constructor when the component is created. By default,
a form owns all components on it and is in turn owned by the application. Thus, when the application shuts down,
the memory for all forms and the components on them is freed.

Ownership applies only to TComponent and its descendants. If you create, for example, a TStringList or
TCollection object (even if it is associated with a form), you are responsible for freeing the object.

Defining New Classes
Although there are many classes in the object hierarchy, you are likely to need to create additional classes if you
are writing object-oriented programs. The classes you write must descend from TObject or one of its descendants.

The advantage of using classes comes from being able to create new classes as descendants of existing ones.
Each descendant class inherits the fields and methods of its parent and ancestor classes. You can also declare
methods in the new class that override inherited ones, introducing new, more specialized behavior.

The general syntax of a descendant class is as follows:

Type
 TClassName = Class (TParentClass)
 public
 {public fields}
 {public methods}
 protected
 {protected fields}
 {protected methods}
 private
 {private fields}
 {private methods}
end;

If no parent class name is specified, the class inherits directly from TObject. TObject defines only a handful of
methods, including a basic constructor and destructor.

To define a class:
1 In the IDE, start with a project open and choose File New Unit to create a new unit where you can define

the new class.
2 Add the uses clause and type section to the interface section.
3 In the type section, write the class declaration. You need to declare all the member variables, properties, methods,

and events.

1468

TMyClass = class; {This implicitly descends from TObject}
public
.
.
.
private
.
.
.
published {If descended from TPersistent or below}
.
.
.

If you want the class to descend from a specific class, you need to indicate that class in the definition:

TMyClass = class(TParentClass); {This descends from TParentClass}

For example:

type TMyButton = class(TButton)
 property Size: Integer;
 procedure DoSomething;
end;

4 Some editions of the IDE include a feature called class completion that simplifies the work of defining and
implementing new classes by generating skeleton code for the class members you declare. If you have code
completion, invoke it to finish the class declaration: place the cursor within a method definition in the interface
section and press Ctrl+Shift+C (or right-click and select Complete Class at Cursor). Any unfinished property
declarations are completed, and for any methods that require an implementation, empty methods are added to
the implementation section.
If you do not have class completion, you need to write the code yourself, completing property declarations and
writing the methods.

Given the example above, if you have class completion, read and write specifiers are added to your declaration,
including any supporting fields or methods:

type TMyButton = class(TButton)
 property Size: Integer read FSize write SetSize;
 procedure DoSomething;
private
 FSize: Integer;
 procedure SetSize(const Value: Integer);

The following code is also added to the implementation section of the unit.

{ TMyButton }
procedure TMyButton.DoSomething;
begin
end;
procedure TMyButton.SetSize(const Value: Integer);
begin
FSize := Value;
end;

1469

5 Fill in the methods. For example, to make it so the button beeps when you call the DoSomething method, add
the Beep between begin and end.

{ TMyButton }
procedure TMyButton.DoSomething;
begin
 Beep;
end;
procedure TMyButton.SetSize(const Value: Integer);
begin
 if fsize < > value then
 begin
 FSize := Value;
 DoSomething;
 end;
end;

Note that the button also beeps when you call SetSize to change the size of the button.

Using Interfaces
Delphi is a single-inheritance language. That means that any class has only a single direct ancestor. However, there
are times you want a new class to inherit properties and methods from more than one base class so that you can
use it sometimes like one and sometimes like the other. Interfaces let you achieve something like this effect.

An interface is like a class that contains only abstract methods (methods with no implementation) and a clear
definition of their functionality. Interface method definitions include the number and types of their parameters, their
return type, and their expected behavior. By convention, interfaces are named according to their behavior and
prefaced with a capital I. For example, an IMalloc interface would allocate, free, and manage memory. Similarly, an
IPersist interface could be used as a general base interface for descendants, each of which defines specific method
prototypes for loading and saving the state of an object to a storage, stream, or file.

An interface has the following syntax:

IMyObject = interface
 procedure MyProcedure;
end;

A simple example of an interface declaration is:

type
IEdit = interface
 procedure Copy;
 procedure Cut;
 procedure Paste;
 function Undo: Boolean;
end;

Interfaces can never be instantiated. To use an interface, you need to obtain it from an implementing class.

To implement an interface, define a class that declares the interface in its ancestor list, indicating that it will implement
all of the methods of that interface:

TEditor = class(TInterfacedObject, IEdit)
 procedure Copy;
 procedure Cut;

1470

 procedure Paste;
 function Undo: Boolean;
end;

While interfaces define the behavior and signature of their methods, they do not define the implementations. As long
as the class's implementation conforms to the interface definition, the interface is fully polymorphic, meaning that
accessing and using the interface is the same for any implementation of it.

Using Interfaces Across the Hierarchy
Using interfaces lets you separate the way a class is used from the way it is implemented. Two classes can implement
the same interface without descending from the same base class. By obtaining an interface from either class, you
can call the same methods without having to know the type of the class. This polymorphic use of the same methods
on unrelated objects is possible because the objects implement the same interface. For example, consider the
interface,

IPaint = interface
 procedure Paint;
end;

and the two classes,

TSquare = class(TPolygonObject, IPaint)
 procedure Paint;
end;
TCircle = class(TCustomShape, IPaint)
 procedure Paint;
end;

Whether or not the two classes share a common ancestor, they are still assignment compatible with a variable of
IPaint as in

var
 Painter: IPaint;
begin
 Painter := TSquare.Create;
 Painter.Paint;
 Painter := TCircle.Create;
 Painter.Paint;
end;

This could have been accomplished by having TCircle and TSquare descend from a common ancestor (say,
TFigure), which declares a virtual method Paint. Both TCircle and TSquare would then have overridden the Paint
method. In the previous example, IPaint could be replaced by TFigure. However, consider the following interface:

IRotate = interface
 procedure Rotate(Degrees: Integer);
end;

IRotate makes sense for the rectangle but not the circle. The classes would look like

TSquare = class(TRectangularObject, IPaint, IRotate)
 procedure Paint;
 procedure Rotate(Degrees: Integer);
end;

1471

TCircle = class(TCustomShape, IPaint)
 procedure Paint;
end;

Later, you could create a class TFilledCircle that implements the IRotate interface to allow rotation of a pattern that
fills the circle without having to add rotation to the simple circle.

Note: For these examples, the immediate base class or an ancestor class is assumed to have implemented the
methods of IInterface, the base interface from which all interfaces descend. For more information on
IInterface, see Implementing IInterface and Memory management of interface objects.

Using Interfaces with Procedures
Interfaces allow you to write generic procedures that can handle objects without requiring that the objects descend
from a particular base class. Using the IPaint and IRotate interfaces defined previously, you can write the following
procedures:

procedure PaintObjects(Painters: array of IPaint);
var
 I: Integer;
begin
 for I := Low(Painters) to High(Painters) do
 Painters[I].Paint;
end;
procedure RotateObjects(Degrees: Integer; Rotaters: array of IRotate);
var
 I: Integer;
begin
 for I := Low(Rotaters) to High(Rotaters) do
 Rotaters[I].Rotate(Degrees);
end;

RotateObjects does not require that the objects know how to paint themselves and PaintObjects does not require
the objects know how to rotate. This allows the generic procedures to be used more often than if they were written
to only work against a TFigure class.

Implementing IInterface
Just as all objects descend, directly or indirectly, from TObject, all interfaces derive from the IInterface interface.
IInterface provides for dynamic querying and lifetime management of the interface. This is established in the
three IInterface methods:

QueryInterface dynamically queries a given object to obtain interface references for the interfaces that the object
supports.
_AddRef is a reference counting method that increments the count each time a call to QueryInterface succeeds.
While the reference count is nonzero the object must remain in memory.
_Release is used with _AddRef to allow an object to track its own lifetime and determine when it is safe to delete
itself. Once the reference count reaches zero, the object is freed from memory. Every class that implements
interfaces must implement the three IInterface methods, as well as all of the methods declared by any other
ancestor interfaces, and all of the methods declared by the interface itself. You can, however, inherit the
implementations of methods of interfaces declared in your class.

By implementing these methods yourself, you can provide an alternative means of lifetime management, disabling
reference-counting. This is a powerful technique that lets you decouple interfaces from reference-counting.

1472

TInterfacedObject
When defining a class that supports one or more interfaces, it is convenient to use TInterfacedObject as a base
class because it implements the methods of IInterface. TInterfacedObject class is declared in the System unit as
follows:

type
 TInterfacedObject = class(TObject, IInterface)
 protected
 FRefCount: Integer;
 function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
 function _AddRef: Integer; stdcall;
 function _Release: Integer; stdcall;
 public
 procedure AfterConstruction; override;
procedure BeforeDestruction; override;
class function NewInstance: TObject; override;
 property RefCount: Integer read FRefCount;
 end;

Deriving directly from TInterfacedObject is straightforward. In the following example declaration, TDerived is a direct
descendant of TInterfacedObject and implements a hypothetical IPaint interface.

type
 TDerived = class(TInterfacedObject, IPaint)
 .
 .
 .
 end;

Because it implements the methods of IInterface, TInterfacedObject automatically handles reference counting and
memory management of interfaced objects. For more information, see Memory management of interface objects,
which also discusses writing your own classes that implement interfaces but that do not follow the reference-counting
mechanism inherent in TInterfacedObject.

Using the as Operator with Interfaces
Classes that implement interfaces can use the as operator for dynamic binding on the interface. In the following
example,

procedure PaintObjects(P: TInterfacedObject)
var
 X: IPaint;
begin
 X := P as IPaint;
{ statements }
end;

the variable P of type TInterfacedObject, can be assigned to the variable X, which is an IPaint interface reference.
Dynamic binding makes this assignment possible. For this assignment, the compiler generates code to call the
QueryInterface method of P's IInterface interface. This is because the compiler cannot tell from P's declared type
whether P's instance actually supports IPaint. At runtime, P either resolves to an IPaint reference or an exception is
raised. In either case, assigning P to X will not generate a compile-time error as it would if P was of a class type that
did not implement IInterface.

When you use the as operator for dynamic binding on an interface, you should be aware of the following
requirements:

1473

Explicitly declaring IInterface: Although all interfaces derive from IInterface, it is not sufficient, if you want to use
the as operator, for a class to simply implement the methods of IInterface. This is true even if it also implements
the interfaces it explicitly declares. The class must explicitly declare IInterface in its interface list.
Using an IID: Interfaces can use an identifier that is based on a GUID (globally unique identifier). GUIDs that
are used to identify interfaces are referred to as interface identifiers (IIDs). If you are using the as operator with
an interface, it must have an associated IID. To create a new GUID in your source code you can use the Ctrl
+Shift+G editor shortcut key.

Reusing Code and Delegation
One approach to reusing code with interfaces is to have one interfaced object contain, or be contained by another.
Using properties that are object types provides an approach to containment and code reuse. To support this design
for interfaces, the Delphi language has a keyword implements, that makes if easy to write code to delegate all or
part of the implementation of an interface to a subobject.

Aggregation is another way of reusing code through containment and delegation. In aggregation, an outer object
uses an inner object that implements interfaces which are exposed only by the outer object.

Using Implements for Delegation
Many classes have properties that are subobjects. You can also use interfaces as property types. When a property
is of an interface type (or a class type that implements the methods of an interface) you can use the keyword
implements to specify that the methods of that interface are delegated to the object or interface reference which is
the value of the property. The delegate only needs to provide implementation for the methods. It does not have to
declare the interface support. The class containing the property must include the interface in its ancestor list.

By default, using the implements keyword delegates all interface methods. However, you can use methods resolution
clauses or declare methods in your class that implement some of the interface methods to override this default
behavior.

The following example uses the implements keyword in the design of a color adapter object that converts an 8-bit
RGB color value to a Color reference:

unit cadapt;
interface
type
IRGB8bit = interface
['{1d76360a-f4f5-11d1-87d4-00c04fb17199}']
 function Red: Byte;
 function Green: Byte;
 function Blue: Byte;
 end;
IColorRef = interface
['{1d76360b-f4f5-11d1-87d4-00c04fb17199}']
 function Color: Integer;
 end;
{ TRGB8ColorRefAdapter map an IRGB8bit to an IColorRef }
TRGB8ColorRefAdapter = class(TInterfacedObject, IRGB8bit, IColorRef)
 private
 FRGB8bit: IRGB8bit;
 FPalRelative: Boolean;
 public
 constructor Create(rgb: IRGB8bit);
 property RGB8Intf: IRGB8bit read FRGB8bit implements IRGB8bit;
 property PalRelative: Boolean read FPalRelative write FPalRelative;
 function Color: Integer;

1474

 end;
implementation
constructor TRGB8ColorRefAdapter.Create(rgb: IRGB8bit);
begin
 FRGB8bit := rgb;
end;
function TRGB8ColorRefAdapter.Color: Integer;
begin
 if FPalRelative then
 Result := PaletteRGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue)
 else
 Result := RGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue);
end;
end.

Aggregation
Aggregation offers a modular approach to code reuse through sub-objects that make up the functionality of a
containing object, but that hide the implementation details from that object. In aggregation, an outer object
implements one or more interfaces. At a minimum, it must implement IInterface. The inner object, or objects, also
implement one or more interfaces. However, only the outer object exposes the interfaces. That is, the outer object
exposes both the interfaces it implements and the ones that its contained objects implement.

Clients know nothing about inner objects. While the outer object provides access to the inner object interfaces, their
implementation is completely transparent. Therefore, the outer object class can exchange the inner object class type
for any class that implements the same interface. Correspondingly, the code for the inner object classes can be
shared by other classes that want to use it.

The aggregation model defines explicit rules for implementing IInterface using delegation. The inner object must
implement two versions of the IInterface methods.

It must implement IInterface on itself, controlling its own reference count. This implementation of IInterface tracks
the relationship between the outer and the inner object. For example, when an object of its type (the inner object)
is created, the creation succeeds only for a requested interface of type IInterface.
It also implements a second IInterface for all the interfaces it implements that the outer object exposes. This
second IInterface delegates calls to QueryInterface, _AddRef, and _Release to the outer object. The outer
IInterface is referred to as the "controlling Unknown."

Refer to the MS online help for the rules about creating an aggregation. When writing your own aggregation classes,
you can also refer to the implementation details of IInterface in TComObject. TComObject is a COM class that
supports aggregation. If you are writing COM applications, you can also use TComObject directly as a base class.

Memory Management of Interface Objects
One of the concepts behind the design of interfaces is ensuring the lifetime management of the objects that
implement them. The _AddRef and _Release methods of IInterface provide a way to implement this lifetime
management. _AddRef and _Release track the lifetime of an object by incrementing the reference count on the
object when an interface reference is passed to a client, and will destroy the object when that reference count is zero.

If you are creating COM objects for distributed applications (in the Windows environment only), then you should
strictly adhere to the reference counting rules. However, if you are using interfaces only internally in your application,
then you have a choice that depends upon the nature of your object and how you decide to use it.

1475

Using Reference Counting
The Delphi compiler provides most of the IInterface memory management for you by its implementation of interface
querying and reference counting. Therefore, if you have an object that lives and dies by its interfaces, you can easily
use reference counting by deriving from TInterfacedObject. If you decide to use reference counting, then you must
be careful to only hold the object as an interface reference, and to be consistent in your reference counting. For
example:

procedure beep(x: ITest);
function test_func()
var
 y: ITest;
begin
 y := TTest.Create; // because y is of type ITest, the reference count is one
 beep(y); // the act of calling the beep function increments the reference count
 // and then decrements it when it returns
 y.something; // object is still here with a reference count of one
end;

This is the cleanest and safest approach to memory management; and if you use TInterfacedObject it is handled
automatically. If you do not follow this rule, your object can unexpectedly disappear, as demonstrated in the following
code:

function test_func()
var
 x: TTest;
begin
 x := TTest.Create; // no count on the object yet
 beep(x as ITest); // count is incremented by the act of calling beep
 // and decremented when it returns
 x.something; // surprise, the object is gone
end;

Note: In the examples above, the beep procedure, as it is declared, increments the reference count (call
_AddRef) on the parameter, whereas either of the following declarations do not:

procedure beep(const x: ITest);

or

procedure beep(var x: ITest);

These declarations generate smaller, faster code.

One case where you cannot use reference counting, because it cannot be consistently applied, is if your object is a
component or a control owned by another component. In that case, you can still use interfaces, but you should not
use reference counting because the lifetime of the object is not dictated by its interfaces.

Not Using Reference Counting
If your object is a component or a control that is owned by another component, then it is part of a different memory
management system that is based in TComponent. Although some classes mix the object lifetime management
approaches of TComponent and interface reference counting, this is very tricky to implement correctly.

To create a component that supports interfaces but bypasses the interface reference counting mechanism, you must
implement the _AddRef and _Release methods in code such as the following:

1476

function TMyObject._AddRef: Integer;
begin
 Result := -1;
end;
function TMyObject._Release: Integer;
begin
 Result := -1;
end;

You would still implement QueryInterface as usual to provide dynamic querying on your object.

Note that, because you implement QueryInterface, you can still use the as operator for interfaces, as long as you
create an interface identifier (IID). You can also use aggregation. If the outer object is a component, the inner object
implements reference counting as usual, by delegating to the "controlling Unknown." It is at the level of the outer
object that the decision is made to circumvent the _AddRef and _Release methods, and to handle memory
management via another approach. In fact, you can use TInterfacedObject as a base class for an inner object of an
aggregation that has a as its containing outer object one that does not follow the interface lifetime model.

Note: The "controlling Unknown" is the IUnknown implemented by the outer object and the one for which the
reference count of the entire object is maintained. IUnknown is the same as IInterface, but is used instead in
COM-based applications (Windows only). For more information distinguishing the various implementations
of the IUnknown or IInterface interface by the inner and outer objects, see Aggregation and the Microsoft
online Help topics on the "controlling Unknown."

Using Interfaces in Distributed Applications
In VCL applications, interfaces are a fundamental element in the COM, SOAP, and CORBA distributed object
models. Delphi provides base classes for these technologies that extend the basic interface functionality in
TInterfacedObject, which simply implements the IInterface interface methods.

When using COM, classes and interfaces are defined in terms of IUnknown rather than IInterface. There is no
semantic difference between IUnknown and IInterface, the use of IUnknown is simply a way to adapt Delphi
interfaces to the COM definition. COM classes add functionality for using class factories and class identifiers
(CLSIDs). Class factories are responsible for creating class instances via CLSIDs. The CLSIDs are used to register
and manipulate COM classes. COM classes that have class factories and class identifiers are called CoClasses.
CoClasses take advantage of the versioning capabilities of QueryInterface, so that when a software module is
updated QueryInterface can be invoked at runtime to query the current capabilities of an object.

New versions of old interfaces, as well as any new interfaces or features of an object, can become immediately
available to new clients. At the same time, objects retain complete compatibility with existing client code; no
recompilation is necessary because interface implementations are hidden (while the methods and parameters
remain constant). In COM applications, developers can change the implementation to improve performance, or for
any internal reason, without breaking any client code that relies on that interface. For more information about COM
interfaces, see Overview of COM technologies.

When distributing an application using SOAP, interfaces are required to carry their own runtime type information
(RTTI). The compiler only adds RTTI to an interface when it is compiled using the {$M+} switch. Such interfaces are
called invokable interfaces. The descendant of any invokable interface is also invokable. However, if an invokable
interface descends from another interface that is not invokable, client applications can only call the methods defined
in the invokable interface and its descendants. Methods inherited from the non-invokable ancestors are not compiled
with type information and so can't be called by clients.

The easiest way to define invokable interfaces is to define your interface so that it descends from IInvokable.
IInvokable is the same as IInterface, except that it is compiled using the {$M+} switch. For more information about
Web Service applications that are distributed using SOAP, and about invokable interfaces, see Using Web Services.

1477

Using the VCL/RTL

Using the VCL/RTL: Overview
There are a number of units in the component library that provide the underlying support for most of the component
libraries. These units include the global routines that make up the runtime library, a number of utility classes such
as those that represent streams and lists, and the classes TObject, TPersistent, and TComponent. Collectively,
these units are called the VCL/RTL. The VCL/RTL does not include any of the components that appear on the Tool
Palette. Rather, the classes and routines in the VCL/RTL are used by the components that do appear on the Tool
Palette and are available for you to use in application code or when you are writing your own classes.

The following topics discuss many of the classes and routines that make up the VCL/RTL and illustrate how to use
them.

Using streams
Working with files
Working with .ini files
Working with lists
Working with string lists
Working with strings
Creating drawing spaces
Printing
Converting measurements
Defining custom variants

Note: This list of tasks is not exhaustive. The runtime library in the VCL/RTL contains many routines to perform
tasks that are not mentioned here. These include a host of mathematical functions (defined in the Math unit),
routines for working with date/time values (defined in the SysUtils and DateUtils units), and routines for
working with Variant values (defined in the Variants unit).

Using Streams
Streams are classes that let you read and write data. They provide a common interface for reading and writing to
different media such as memory, strings, sockets, and BLOB fields in databases. There are several stream classes,
which all descend from TStream. Each stream class is specific to one media type. For example, TMemoryStream
reads from or writes to a memory image; TFileStream reads from or writes to a file.

1478

The following topics describe the methods common to all stream classes:

Using streams to read or write data
Copying data from one stream to another
Specifying the stream position and size

Using Streams to Read or Write Data
Stream classes all share several methods for reading and writing data. These methods are distinguished by whether
they:

Return the number of bytes read or written.
Require the number of bytes to be known.
Raise an exception on error.

Stream methods for reading and writing
The Read method reads a specified number of bytes from the stream, starting at its current Position, into a
buffer. Read then advances the current position by the number of bytes actually transferred. The prototype for
Read is:

[Delphi]
function Read(var Buffer; Count: Longint): Longint;

[C++]
virtual int __fastcall Read(void *Buffer, int Count);

Read is useful when the number of bytes in the file is not known. Read returns the number of bytes actually
transferred, which may be less than Count if the stream did not contain Count bytes of data past the current position.

The Write method writes Count bytes from a buffer to the stream, starting at the current Position. The prototype for
Write is:

[Delphi]
function Write(const Buffer; Count: Longint): Longint;

[C++]
virtual int __fastcall Write(const void *Buffer, int Count);

After writing to the file, Write advances the current position by the number bytes written, and returns the number of
bytes actually written, which may be less than Count if the end of the buffer is encountered or the stream can't accept
any more bytes.

The counterpart procedures are ReadBuffer and WriteBuffer which, unlike Read and Write, do not return the number
of bytes read or written. These procedures are useful in cases where the number of bytes is known and required,
for example when reading in structures. ReadBuffer and WriteBuffer raise an exception (EReadError and
EWriteError) if the byte count can not be matched exactly. This is in contrast to the Read and Write methods, which
can return a byte count that differs from the requested value. The prototypes for ReadBuffer and WriteBuffer are:

1479

[Delphi]
procedure ReadBuffer(var Buffer; Count: Longint);
procedure WriteBuffer(const Buffer; Count: Longint);

[C++]
virtual int __fastcall ReadBuffer(void *Buffer, int Count);
virtual int __fastcall WriteBuffer(const void *Buffer, int Count);

These methods call the Read and Write methods to perform the actual reading and writing.

Reading and writing components
TStream defines specialized methods, ReadComponent and WriteComponent, for reading and writing components.
You can use them in your applications as a way to save components and their properties when you create or alter
them at runtime.

ReadComponent and WriteComponent are the methods that the IDE uses to read components from or write them
to form files. When streaming components to or from a form file, stream classes work with the TFiler classes,
TReader and TWriter, to read objects from the form file or write them out to disk. For more information about using
the component streaming system, see TStream, TFiler, TReader, TWriter, and TComponent classes.

Reading and writing strings
If you are passing a string to a read or write function, you need to be aware of the correct syntax. The Buffer
parameters for the read and write routines are var and const types, respectively. These are untyped parameters,
so the routine takes the address of a variable.

The most commonly used type when working with strings is a long string. However, passing a long string as the
Buffer parameter does not produce the correct result. Long strings contain a size, a reference count, and a pointer
to the characters in the string. Consequently, dereferencing a long string does not result in the pointer element. You
need to first cast the string to a Pointer or PChar, and then dereference it. For example:

[Delphi]
procedure caststring;
var
 fs: TFileStream;
const
 s: string = 'Hello';
begin
 fs := TFileStream.Create('temp.txt', fmCreate or fmOpenWrite);
 fs.Write(s, Length(s));// this will give you garbage
 fs.Write(PChar(s)^, Length(s));// this is the correct way
end;

Copying Data from One Stream to Another
When copying data from one stream to another, you do not need to explicitly read and then write the data. Instead,
you can use the CopyFrom method, as illustrated in the following example.

In the following example, one file is copied to another one using streams. The application includes two edit controls
(EdFrom and EdTo) and a Copy File button.

1480

[Delphi]
procedure TForm1.CopyFileClick(Sender: TObject);
var
Source, Destination:TStream;
begin
Source := TFileStream.Create(edFrom.Text, fmOpenRead or fmShareDenyWrite);
try
Destination := TFileStream.Create(edTo.Text, fmOpenCreate or fmShareDenyRead);
try
Destination.CopyFrom(Source,Source.Size);
 finally
Destination.Free;
 end;
 finally
 Source.Free
end;

[C++]
void __fastcall TForm1::CopyFileClick(TObject *Sender)
{
TStream* Source= new TFileStream(edFrom->Text, fmOpenRead | fmShareDenyWrite);
try
 {
 TStream* Destination = new TFileStream(edTo->Text, fmCreate | fmShareDenyRead);
try
 {
 Destination -> CopyFrom(Source, Source->Size);
 }
 __finally
 {
 delete Destination;
 }
 }
 __finally
 {
 delete Source;
 }
}

Specifying the Stream Position and Size
In addition to methods for reading and writing, streams permit applications to seek to an arbitrary position in the
stream or change the size of the stream. Once you seek to a specified position, the next read or write operation
starts reading from or writing to the stream at that position.

Seeking to a specific position
The Seek method is the most general mechanism for moving to a particular position in the stream. There are two
overloads for the Seek method:

[Delphi]
function Seek(Offset: Longint; Origin: Word): Longint;
function Seek(const Offset: Int64; Origin: TSeekOrigin): Int64;

1481

[C++]
virtual int __fastcall Seek(int Offset, Word Origin);
virtual __int64 __fastcall Seek(const __int64 Offset, TSeekOrigin Origin);

Both overloads work the same way. The difference is that one version uses a 32-bit integer to represent positions
and offsets, while the other uses a 64-bit integer.

The Origin parameter indicates how to interpret the Offset parameter. Origin should be one of the following values:

Values for the Origin parameter
Value Meaning

soFromBeginning Offset is from the beginning of the resource. Seek moves to the position Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the resource. Seek moves to Position + Offset.

soFromEnd Offset is from the end of the resource. Offset must be <= 0 to indicate a number of bytes before the end
of the file.

Seek resets the current stream position, moving it by the indicated offset. Seek returns the new current position in
the stream.

Using Position and Size properties
All streams have properties that hold the current position and size of the stream. These are used by the Seek method,
as well as all the methods that read from or write to the stream.

The Position property indicates the current offset, in bytes, into the stream (from the beginning of the streamed data).
The declaration for Position is:

[Delphi]
property Position: Int64;

[C++]
__property __int64 Position = {read=GetPosition, write=SetPosition, nodefault};

The Size property indicates the size of the stream in bytes. It can be used to determine the number of bytes available
for reading, or to truncate the data in the stream. The declaration for Size is:

[Delphi]
property Size: Int64;

[C++]
__property __int64 Size = {read=GetSize, write=SetSize64, nodefault};

Size is used internally by routines that read and write to and from the stream.

Setting the Size property changes the size of the data in the stream. For example, on a file stream, setting Size
inserts an end of file marker to truncate the file. If the Size of the stream cannot be changed, an exception is raised.
For example, trying to change the Size of a read-only file stream raises an exception.

1482

Working with Files
The VCL/RTL supports several ways of working with files. In addition to using file streams, there are several runtime
library routines for performing file I/O. Both file streams and the global routines for reading from and writing to files
are described in Approaches to file I/O.

In addition to input/output operations, you may want to manipulate files on disk. Support for operations on the files
themselves rather than their contents is described in Manipulating files.

Note: When writing cross-platform applications, remember that although the Delphi language is not case sensitive,
the Linux operating system is. When using objects and routines that work with files, be attentive to the case
of file names.

Approaches to File I/O
There are several approaches you can take when reading from and writing to files:

The recommended approach for working with files is to use file streams. File streams are instances of the
TFileStream class used to access information in disk files. File streams are a portable and high-level approach
to file I/O. Because file streams make the file handle available, this approach can be combined with the next
one. The Using file streams discusses TFileStream in detail.
You can work with files using a handle-based approach. File handles are provided by the operating system
when you create or open a file to work with its contents. The SysUtils unit defines a number of file-handling
routines that work with files using file handles. On Windows, these are typically wrappers around Windows API
functions. Because the VCL/RTL functions can use the Delphi language syntax, and occasionally provide default
parameter values, they are a convenient interface to the Windows API. Furthermore, there are corresponding
versions on Linux, so you can use these routines in cross-platform applications. To use a handle-based
approach, you first open a file using the FileOpen function or create a new file using the FileCreate function.
Once you have the handle, use handle-based routines to work with its contents (write a line, read text, and so on).
The System unit defines a number of file I/O routines that work with file variables, usually of the format "F: Text:
" or "F: File:" File variables can have one of three types: typed, text, and untyped. A number of file-handling
routines, such as AssignPrn and writeln, use them. The use of file variables is deprecated, and these file types
are supported only for backward compatibility. They are incompatible with Windows file handles.

Using File Streams
The TFileStream class enables applications to read from and write to a file on disk. Because TFileStream is a stream
object, it shares the common stream methods. You can use these methods to read from or write to the file, copy
data to or from other stream classes, and read or write components values. See Using streams for details on the
capabilities that files streams inherit by being stream classes.

In addition, file streams give you access to the file handle, so that you can use them with global file handling routines
that require the file handle.

Creating and opening files using file streams
To create or open a file and get access to its handle, you simply instantiate a TFileStream. This opens or creates a
specified file and provides methods to read from or write to it. If the file cannot be opened, the TFileStream constructor
raises an exception.

1483

[Delphi]
constructor Create(const filename: string; Mode: Word);

[C++]
__fastcall TFileStream(const AnsiString FileName, Word Mode);

The Mode parameter specifies how the file should be opened when creating the file stream. The Mode parameter
consists of an open mode and a share mode OR'ed together. The open mode must be one of the following values:

Open modes
Value Meaning

fmCreate TFileStream a file with the given name. If a file with the given name exists, open the file in write mode.

fmOpenRead Open the file for reading only.

fmOpenWrite Open the file for writing only. Writing to the file completely replaces the current contents.

fmOpenReadWrite Open the file to modify the current contents rather than replace them.

The share mode can be one of the following values with the restrictions listed below:

Share modes
Value Meaning

fmShareCompat Sharing is compatible with the way FCBs are opened (VCL applications only).

fmShareExclusive Other applications can not open the file for any reason.

fmShareDenyWrite Other applications can open the file for reading but not for writing.

fmShareDenyRead Other applications can open the file for writing but not for reading (VCL applications only).

fmShareDenyNone No attempt is made to prevent other applications from reading from or writing to the file.

Note that which share mode you can use depends on which open mode you used. The following table shows shared
modes that are available for each open mode.

Shared modes available for each open mode
Open Mode fmShareCompat

(VCL)
fmShareExclusive fmShareDenyWrite fmShareDenyRead

(VCL)
fmShareDenyNone

fmOpenRead Can't use Can't use Available Can't use Available

fmOpenWrite Available Available Can't use Available Available

fmOpenReadWrite Available Available Available Available Available

The file open and share mode constants are defined in the SysUtils unit.

Using the file handle
When you instantiate TFileStream you get access to the file handle. The file handle is contained in the Handle
property. On Windows, Handle is a Windows file handle. On Linux versions of CLX, it is a Linux file handle.
Handle is read-only and reflects the mode in which the file was opened. If you want to change the attributes of the
file Handle, you must create a new file stream object.

Some file manipulation routines take a file handle as a parameter. Once you have a file stream, you can use the
Handle property in any situation in which you would use a file handle. Be aware that, unlike handle streams, file
streams close file handles when the object is destroyed.

1484

Manipulating Files
Several common file operations are built into the runtime library. The routines for working with files operate at a high
level. For most routines, you specify the name of the file and the routine makes the necessary calls to the operating
system for you. In some cases, you use file handles instead.

Warning: Although the Delphi language is not case sensitive, the Linux operating system is. Be attentive to case
when working with files in cross-platform applications.

The following topics describe how to use runtime library routines to perform file manipulation tasks:

Deleting a file
Finding a file
Renaming a file
File date-time routines
Copying a file

Deleting a File
Deleting a file erases the file from the disk and removes the entry from the disk's directory. There is no corresponding
operation to restore a deleted file, so applications should generally allow users to confirm before deleting files. To
delete a file, pass the name of the file to the DeleteFile function:

DeleteFile(FileName);

DeleteFile returns True if it deleted the file and False if it did not (for example, if the file did not exist or if it was read-
only). DeleteFile erases the file named by FileName from the disk.

Finding a File
There are three routines used for finding a file: FindFirst, FindNext, and FindClose. FindFirst searches for the first
instance of a filename with a given set of attributes in a specified directory. FindNext returns the next entry matching
the name and attributes specified in a previous call to FindFirst. FindClose releases memory allocated by
FindFirst. You should always use FindClose to terminate a FindFirst/FindNext sequence. If you want to know if a
file exists, a FileExists function returns True if the file exists, False otherwise.

The three file find routines take a TSearchRec as one of the parameters. TSearchRec defines the file information
searched for by FindFirst or FindNext. If a file is found, the fields of the TSearchRec type parameter are modified to
describe the found file.

1485

[Delphi]
type
 TFileName = string;
 TSearchRec = record
 Time: Integer;//Time contains the time stamp of the file.
 Size: Integer;//Size contains the size of the file in bytes.
 Attr: Integer;//Attr represents the file attributes of the file.
 Name: TFileName;//Name contains the filename and extension.
 ExcludeAttr: Integer;
 FindHandle: THandle;
 FindData: TWin32FindData;//FindData contains additional information such as
 //file creation time, last access time, long and short filenames.
 end;

[C++]
struct TSearchRec
{
int Time; // time stamp of the file
int Size; // size of the file in bytes
int Attr; // file attribute flags
AnsiString Name; // filename and extension
int ExcludeAttr; // file attribute flags for files to ignore
unsigned FindHandle;
_WIN32_FIND_DATAA FindData; // structure with addition information
} ;

On field of TSearchRec that is of particular interest is the Attr field. You can test Attr against the following attribute
constants or values to determine if a file has a specific attribute:

Attribute constants and values
Constant Value Description

faReadOnly $00000001 Read-only files

faHidden $00000002 Hidden files

faSysFile $00000004 System files

faVolumeID $00000008 Volume ID files

faDirectory $00000010 Directory files

faArchive $00000020 Archive files

faAnyFile $0000003F Any file

To test for an attribute, combine the value of the Attr field with the attribute constant using the and operator. If the
file has that attribute, the result will be greater than 0. For example, if the found file is a hidden file, the following
expression will evaluate to True:

[Delphi]
(SearchRec.Attr and faHidden > 0).

[C++]
(SearchRec.Attr & faHidden > 0).

Attributes can be combined by OR'ing their constants or values. For example, to search for read-only and hidden
files in addition to normal files, pass the following as the Attr parameter.

1486

[Delphi]
(faReadOnly or faHidden).

[C++]
(faReadOnly | faHidden).

The following example illustrates the use of the three file find routines. It uses a label, a button named Search, and
a button named Again on a form. When the user clicks the Search button, the first file in the specified path is found,
and the name and the number of bytes in the file appear in the label's caption. Each time the user clicks the Again
button, the next matching filename and size is displayed in the label:

[Delphi]
var
 SearchRec: TSearchRec;
procedure TForm1.SearchClick(Sender: TObject);
begin
 FindFirst('c:\Program Files\MyProgram\bin\

.', faAnyFile, SearchRec);
 Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + " bytes in size';
end;
procedure TForm1.AgainClick(Sender: TObject);
begin
 if FindNext(SearchRec) = 0 then
 Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in size'
 else
 FindClose(SearchRec);
end;

[C++]
 TSearchRec SearchRec; // global variable
void __fastcall TForm1::SearchClick(TObject *Sender)
{
 FindFirst("c:\\Program Files\\MyProgram\\bin\\
.", faAnyFile, SearchRec);
 Label1->Caption = SearchRec->Name + " is " + IntToStr(SearchRec.Size) + " bytes in size";
}
void __fastcall TForm1::AgainClick(TObject *Sender)
{
 if (FindNext(SearchRec) == 0)
 Label1->Caption = SearchRec->Name + " is " + IntToStr(SearchRec.Size) + " bytes in size";
 else
 FindClose(SearchRec);
}

[Delphi]

Note: In cross-platform applications, you should replace any hard-coded pathnames with the correct pathname for
the system or use environment variables (on the Environment Variables page when you choose Tools
Options Environment Options) to represent them.

1487

Renaming a File
To change a file name, use the RenameFile function:

[Delphi]
function RenameFile(const OldFileName, NewFileName: string): Boolean;

[C++]
extern PACKAGE bool __fastcall RenameFile(const AnsiString OldName, const AnsiString
NewName);

RenameFile changes a file name, identified by OldFileName, to the name specified by NewFileName. If the operation
succeeds, RenameFile returns True. If it cannot rename the file (for example, if a file called NewFileName already
exists), RenameFile returns False. For example:

[Delphi]
if not RenameFile('OLDNAME.TXT','NEWNAME.TXT') then
 ErrorMsg('Error renaming file!');

[C++]
if (!RenameFile("OLDNAME.TXT","NEWNAME.TXT"))
 ErrorMsg("Error renaming file!");

You cannot rename (move) a file across drives using RenameFile. You would need to first copy the file and then
delete the old one.

Note: RenameFile in the runtime library is a wrapper around the Windows API MoveFile function, so MoveFile will
not work across drives either.

File Date-time Routines
The FileAge, FileGetDate, and FileSetDate routines operate on operating system date-time values. FileAge returns
the date-and-time stamp of a file, or -1 if the file does not exist. FileSetDate sets the date-and-time stamp for a
specified file, and returns zero on success or an error code on failure. FileGetDate returns a date-and-time stamp
for the specified file or –1 if the handle is invalid.

As with most of the file manipulating routines, FileAge uses a string filename. FileGetDate and FileSetDate, however,
use a Handle type as a parameter. To get the file handle either:

Use the FileOpen or FileCreate function to create a new file or open an existing file. Both FileOpen and
FileCreate return the file handle.
Instantiate TFileStream to create or open a file. Then use its Handle property. See Using file streams for more
information.

Copying a File
The runtime library does not provide any routines for copying a file. However, if you are writing Windows-only
applications, you can directly call the Windows API CopyFile function to copy a file. Like most of the runtime library
file routines, CopyFile takes a filename as a parameter, not a file handle. When copying a file, be aware that the file
attributes for the existing file are copied to the new file, but the security attributes are not. CopyFile is also useful
when moving files across drives because neither the RenameFile function nor the Windows API MoveFile function
can rename or move files across drives.

1488

Working with ini Files and the System Registry
Many applications use ini files to store configuration information. The VCL/RTL includes two classes for working with
ini files: TIniFile and TMemIniFile. Using ini files has the advantage that they can be used in cross-platform
applications and they are easy to read and edit. For information on these classes, see Using TIniFile and TMemIniFile
for more information.

Many Windows applications replace the use of ini files with the system Registry. The Windows system Registry is
a hierarchical database that acts as a centralized storage space for configuration information. The VCL includes
classes for working with the system Registry. Two of these classes, TRegistryIniFile and TRegistry, are discussed
here because of their similarity to the classes for working with ini files.

TRegistryIniFile is useful for cross-platform applications, because it shares a common ancestor (TCustomIniFile)
with the classes that work with ini files. If you confine yourself to the methods of the common ancestor
(TCustomIniFile) your application can work on both applications with a minimum of conditional code.
TRegistryIniFile is discussed in Using TRegistryIniFile.

For applications that are not cross-platform, you can use the TRegistry class. The properties and methods of
TRegistry have names that correspond more directly to the way the system Registry is organized, because it does
not need to be compatible with the classes for ini files. TRegistry is discussed in Using TRegistry.

Using TIniFile and TMemIniFile
The ini file format is still popular, many configuration files (such as the DSK Desktop settings file) are in this format.
This format is especially useful in cross-platform applications, where you can't always count on a system Registry
for storing configuration information. The VCL/RTL provides two classes, TIniFile and TMemIniFile, to make reading
and writing ini files very easy.

TIniFile works directly with the ini file on disk while TMemIniFile buffers all changes in memory and does not write
them to disk until you call the UpdateFile method.

When you instantiate the TIniFile or TMemIniFile object, you pass the name of the ini file as a parameter to the
constructor. If the file does not exist, it is automatically created. You are then free to read values using the various
read methods, such as ReadString, ReadDate, ReadInteger, or ReadBool. Alternatively, if you want to read an entire
section of the ini file, you can use the ReadSection method. Similarly, you can write values using methods such as
WriteBool, WriteInteger, WriteDate, or WriteString.

Following is an example of reading configuration information from an ini file in a form's OnCreate event handler and
writing values in the OnClose event handler.

[Delphi]
procedure TForm1.FormCreate(Sender: TObject);
var
 Ini: TIniFile;
begin
 Ini := TIniFile.Create(ChangeFileExt(Application.ExeName, '.INI'));
 try
 Top := Ini.ReadInteger('Form', 'Top', 100);
 Left := Ini.ReadInteger('Form', 'Left', 100);
 Caption := Ini.ReadString('Form', 'Caption', 'New Form');
 if Ini.ReadBool('Form', 'InitMax', false) then
 WindowState = wsMaximized
 else
 WindowState = wsNormal;
 finally
 TIniFile.Free;
 end;
end;
procedure TForm1.FormClose(Sender: TObject; var Action TCloseAction)

1489

var
 Ini: TIniFile;
begin
 Ini := TIniFile.Create(ChangeFileExt(Application.ExeName, '.INI'));
 try
 Ini.WriteInteger('Form', 'Top', Top);
 Ini.WriteInteger('Form', 'Left', Left);
 Ini.WriteString('Form', 'Caption', Caption);
 Ini.WriteBool('Form', 'InitMax', WindowState = wsMaximized);
 finally
 TIniFile.Free;
 end;
end;

[C++]
__fastcall TForm1::TForm1(TComponent *Owner) : TForm(Owner)
{
TIniFile *ini;
ini = new TIniFile(ChangeFileExt(Application->ExeName, ".INI"));
Top = ini->ReadInteger("Form", "Top", 100);
Left = ini->ReadInteger("Form", "Left", 100);
Caption = ini->ReadString("Form", "Caption",
"Default Caption");
ini->ReadBool("Form", "InitMax", false) ?
WindowState = wsMaximized :
WindowState = wsNormal;
delete ini;
}
void __fastcall TForm1::FormClose(TObject *Sender, TCloseAction &Action)
{
TIniFile *ini;
ini = new TIniFile(ChangeFileExt(Application->ExeName, ".INI"));
 ini->WriteInteger("Form", "Top", Top);
ini->WriteInteger("Form", "Left", Left);
ini->WriteString ("Form", "Caption", Caption);
ini->WriteBool ("Form", "InitMax",
WindowState == wsMaximized);
delete ini;
}

Each of the Read routines takes three parameters. The first parameter identifies the section of the ini file. The second
parameter identifies the value you want to read, and the third is a default value in case the section or value doesn't
exist in the ini file. Just as the Read methods gracefully handle the case when a section or value does not exist, the
Write routines create the section and/or value if they do not exist. The example code creates an ini file the first time
it is run that looks like this:

[Form]
Top=100
Left=100
Caption=Default Caption
InitMax=0

On subsequent execution of this application, the ini values are read in when the form is created and written back
out in the OnClose event.

1490

Using TRegistryIniFile
Many 32-bit Windows applications store their information in the system Registry instead of ini files because the
Registry is hierarchical and doesn't suffer from the size limitations of ini files. If you are accustomed to using ini files
and want to move your configuration information to the Registry instead, you can use the TRegistryIniFile class. You
may also want to use TRegistryIniFile in cross-platform applications if you want to use the system Registry on
Windows and an ini file on Linux. You can write most of your application so that it uses the TCustomIniFile type. You
need only conditionalize the code that creates an instance of TRegistryIniFile (on Windows) or TMemIniFile (on
Linux) and assigns it to the TCustomIniFile your application uses.

TRegistryIniFile makes Registry entries look like ini file entries. All the methods from TIniFile and TMemIniFile (read
and write) exist in TRegistryIniFile.

When you construct a TRegistryIniFile object, the parameter you pass to the constructor (corresponding to the
filename for an IniFile or TMemIniFile object) becomes a key value under the user key in the registry. All sections
and values branch from that root. TRegistryIniFile simplifies the Registry interface considerably, so you may want
to use it instead of the TRegistry component even if you aren't porting existing code or writing a cross-platform
application.

Using TRegistry
If you are writing a Windows-only application and are comfortable with the structure of the system Registry, you can
use TRegistry. Unlike TRegistryIniFile, which uses the same properties and methods of other ini file components,
the properties and methods of TRegistry correspond more directly to the structure of the system Registry. You can
specify both the root key and subkey using TRegistry, while TRegistryIniFile uses HKEY_CURRENT_USER as the
root key.

In addition to methods for opening, closing, saving, moving, copying, and deleting keys, TRegistry lets you specify
the access level you want to use.

Note: TRegistry is not available for cross-platform programming.

The following example retrieves a value from a registry entry:

[Delphi]
function GetRegistryValue(KeyName: string): string;
var
 Registry: TRegistry;
begin
Registry := TRegistry.Create(KEY_READ);
 try
 Registry.RootKey = HKEY_LOCAL_MACHINE;
// False because we do not want to create it if it doesn't exist
 Registry.OpenKey(KeyName, False);
 Result := Registry.ReadString('VALUE1');
 finally
 Registry.Free;
 end;
end;

[C++]
#include <Registry.hpp>
AnsiString GetRegistryValue(AnsiString KeyName)
{
AnsiString S;
TRegistry *Registry = new TRegistry(KEY_READ);
try
{

1491

Registry->RootKey = HKEY_LOCAL_MACHINE;
// False because we do not want to create it if it doesn't exist
Registry->OpenKey(KeyName,false);
S = Registry->ReadString("VALUE1");
}
__finally
{
delete Registry;
}
return S;
}

Working with Lists
The VCL/RTL includes many classes that represents lists or collections of items. They vary depending on the types
of items they contain, what operations they support, and whether they are persistent.

The following table lists various list classes, and indicates the types of items they contain:

Object Maintains

TList A list of pointers

TThreadList A thread-safe list of pointers

TBucketList A hashed list of pointers

TObjectBucketList A hashed list of object instances

TObjectList A memory-managed list of object instances

TComponentList A memory-managed list of components (that is, instances of classes descended from TComponent)

TClassList A list of class references

TInterfaceList A list of interface pointers.

TQueue A first-in first-out list of pointers

TStack A last-in first-out list of pointers

TObjectQueue A first-in first-out list of objects

TObjectStack A last-in first-out list of objects

TCollection Base class for many specialized classes of typed items.

TStringList A list of strings

THashedStringList A list of strings with the form Name=Value, hashed for performance.

Common List Operations
Although the various list classes contain different types of items and have different ancestries, most of them share
a common set of methods for adding, deleting, rearranging, and accessing the items in the list.

Adding list items
Most list classes have an Add method, which lets you add an item to the end of the list (if it is not sorted) or to its
appropriate position (if the list is sorted). Typically, the Add method takes as a parameter the item you are adding
to the list and returns the position in the list where the item was added. In the case of bucket lists (TBucketList and
TObjectBucketList), Add takes not only the item to add, but also a datum you can associate with that item. In the

1492

case of collections, Add takes no parameters, but creates a new item that it adds. The Add method on collections
returns the item it added, so that you can assign values to the new item's properties.

Some list classes have an Insert method in addition to the Add method. Insert works the same way as the Add
method, but has an additional parameter that lets you specify the position in the list where you want the new item
to appear. If a class has an Add method, it also has an Insert method unless the position of items is predetermined
For example, you can't use Insert with sorted lists because items must go in sort order, and you can't use Insert with
bucket lists because the hash algorithm determines the item position.

The only classes that do not have an Add method are the ordered lists. Ordered lists are queues and stacks. To add
items to an ordered list, use the Push method instead. Push, like Add, takes an item as a parameter and inserts it
in the correct position.

Deleting list items
To delete a single item from one of the list classes, use either the Delete method or the Remove method. Delete
takes a single parameter, the index of the item to remove. Remove also takes a single parameter, but that parameter
is a reference to the item to remove, rather than its index. Some list classes support only a Delete method, some
support only a Remove method, and some have both.

As with adding items, ordered lists behave differently than all other lists. Instead of using a Delete or Remove method,
you remove an item from an ordered list by calling its Pop method. Pop takes no arguments, because there is only
one item that can be removed.

If you want to delete all of the items in the list, you can call the Clear method. Clear is available for all lists except
ordered lists.

Accessing list items
All list classes (except TThreadList and the ordered lists)have a property that lets you access the items in the list.
Typically, this property is called Items. For string lists, the property is called Strings, and for bucket lists it is called
Data. The Items, Strings, or Data property is an indexed property, so that you can specify which item you want to
access.

On TThreadList, you must lock the list before you can access items. When you lock the list, the LockList method
returns a TList object that you can use to access the items.

Ordered lists only let you access the "top" item of the list. You can obtain a reference to this item by calling the
Peek method.

Rearranging list items
Some list classes have methods that let you rearrange the items in the list. Some have an Exchange method, that
swaps the position of two items. Some have a Move method that lets you move an item to a specified location. Some
have a Sort method that lets you sort the items in the list.

To see what methods are available, check the online Help for the list class you are using.

Persistent Lists
Persistent lists can be saved to a form file. Because of this, they are often used as the type of a published property
on a component. You can add items to the list at design time, and those items are saved with the object so that they
are there when the component that uses them is loaded into memory at runtime. There are two main types of
persistent lists: string lists and collections.

Examples of string lists include TStringList and THashedStringList. String lists, as the name implies, contain strings.
They provide special support for strings of the form Name=Value, so that you can look up the value associated with

1493

a name. In addition, most string lists let you associate an object with each string in the list. String lists are described
in more detail in Working with string lists.

Collections descend from the class TCollection. Each TCollection descendant is specialized to manage a specific
class of items, where that class descends from TCollectionItem. Collections support many of the common list
operations. All collections are designed to be the type of a published property, and many can not function
independently of the object that uses them to implement on of its properties. At design time, the property whose
value is a collection can use the collection editor to let you add, remove, and rearrange items. The collection editor
provides a common user interface for manipulating collections.

Working with String Lists
One of the most commonly used types of list is a list of character strings. Examples include items in a combo box,
lines in a memo, names of fonts, and names of rows and columns in a string grid. The VCL/RTL provides a common
interface to any list of strings through an object called TStrings and its descendants such as TStringList and
THashedStringList. TStringList implements the abstract properties and methods introduced by TStrings, and
introduces properties, events, and methods to

Sort the strings in the list.
Prohibit duplicate strings in sorted lists.
Respond to changes in the contents of the list.

In addition to providing functionality for maintaining string lists, these objects allow easy interoperability; for example,
you can edit the lines of a memo (which are a TStrings descendant) and then use these lines as items in a combo
box (also a TStrings descendant).

A string-list property appears in the Object Inspector with TStrings in the Value column. Double-click TStrings to
open the String List editor, where you can edit, add, or delete lines.

You can also work with string-list objects at runtime to perform such tasks as

Loading and saving string lists
Creating a new string list
Manipulating strings in a list
Associating objects with a string list

Loading and Saving String Lists
String-list objects provide SaveToFile and LoadFromFile methods that let you store a string list in a text file and load
a text file into a string list. Each line in the text file corresponds to a string in the list. Using these methods, you could,
for example, create a simple text editor by loading a file into a memo component, or save lists of items for combo
boxes.

The following example loads a copy of the MyFile.ini file into a memo field and makes a backup copy called MyFile.
bak.

[Delphi]
procedure EditWinIni;
var FileName: string;{ storage for file name }
begin FileName := 'c:\Program Files\MyProgram\MyFile.ini'{ set the file name }

 with Form1.Memo1.Lines do begin
 LoadFromFile(FileName);{ load from file }

1494

 SaveToFile(ChangeFileExt(FileName, '.bak'));{ save into backup file }
 end;
end;

[C++]
void __fastcall EditWinIni()
{
 AnsiString FileName = "C:\\Program Files\\MyFile.ini";
 Form1->Memo1->Lines->LoadFromFile(FileName); // load from file

[Delphi]

Creating a New String List
A string list is typically part of a component. There are times, however, when it is convenient to create independent
string lists, for example to store strings for a lookup table. The way you create and manage a string list depends on
whether the list is short-term (constructed, used, and destroyed in a single routine) or long-term (available until the
application shuts down). Whichever type of string list you create, remember that you are responsible for freeing the
list when you finish with it.

Short-term string lists
If you use a string list only for the duration of a single routine, you can create it, use it, and destroy it all in one place.
This is the safest way to work with string lists. Because the string-list object allocates memory for itself and its strings,
you should use a try... finally block to ensure that the memory is freed even if an exception occurs.

To create a short-term string list:
1 Construct the string-list object.
2 In the try part of a try... finally block, use the string list.
3 In the finally part, free the string-list object.

The following event handler responds to a button click by constructing a string list, using it, and then destroying it.

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
var TempList: TStrings;{ declare the list }
begin
 TempList := TStringList.Create;{ construct the list object }
 try { use the string list }
 finally TempList.Free;{ destroy the list object }
 end;
end;

[C++]
void __fastcall TForm1::ButtonClick1(TObject *Sender)
{
 TStringList *TempList = new TStringList; // declare the list
 try{
 //use the string list
 }

1495

 __finally{
delete TempList; // destroy the list object
 }
}

Long-term string lists
If a string list must be available at any time while your application runs, construct the list at start-up and destroy it
before the application terminates.

To create a long-term string list:
1 In the unit file for your application's main form, add a field of type TStrings to the form's declaration.
2 Write an event handler for the main form's OnCreate event that executes before the form appears. It should

create a string list and assign it to the field you declared in the first step.
3 Write an event handler that frees the string list for the form's OnClose event.

This example uses a long-term string list to record the user's mouse clicks on the main form, then saves the list to
a file before the application terminates.

[Delphi]
unit Unit1;
interface
uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs;
{For CLX apps: uses SysUtils, Variants, Classes, QGraphics, QControls, QForms, QDialogs;}
type TForm1 = class(TForm)
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure FormMouseDown(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X,
Y: Integer);
 private
 { Private declarations }
 public
 { Public declarations }
 ClickList: TStrings;{ declare the field }
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.FormCreate(Sender: TObject);
begin
 ClickList := TStringList.Create;{ construct the list }
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
 ClickList.SaveToFile(ChangeFileExt(Application.ExeName, '.log'));{ save the list }
 ClickList.Free;{ destroy the list object }
end;

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton; Shift: TShiftState;
X, Y: Integer);
begin
 ClickList.Add(Format('Click at (%d, %d)', [X, Y]));{ add a string to the list }
end;

1496

end.

[C++]
//---
#include <vcl.h>
#pragma hdrstop
#include "Unit1.h"
//---
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
//---
__fastcall TForm1::TForm1(TComponent* Owner)
: TForm(Owner)
{
ClickList = new TStringList;
}
//---
void __fastcall TForm1::FormClose(TObject *Sender, TCloseAction &Action)
{
ClickList->SaveToFile(ChangeFileExt(Application->ExeName, ".log"));//Save the list
delete ClickList;
}
//---
void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)
{
TVarRec v[] = {X,Y};
ClickList->Add(Format("Click at (%d, %d)",v,ARRAYSIZE(v) - 1));//add a string to the list

Note: Although you can use events such as OnCreate and OnDestroy to allocate and free classes, using the
constructor and destructor for a class is generally safer coding practice.

Manipulating Strings in a List
Operations commonly performed on string lists include:

Counting the strings in a list
Accessing a particular string
Finding the position of a string in the list
Iterating through strings in a list
Adding a string to a list
Moving a string within a list
Deleting a string from a list
Copying a complete string list

Counting the Strings in a List
The read-only Count property returns the number of strings in the list. Since string lists use zero-based indexes,
Count is one more than the index of the last string.

1497

Accessing a Particular String
The Strings array property contains the strings in the list, referenced by a zero-based index. Because Strings is the
default property for string lists, you can omit the Strings identifier when accessing the list; thus

[Delphi]
StringList1.Strings[0] := 'This is the first string.';

[C++]
StringList1->Strings[0] = "This is the first string.";

is equivalent to

[Delphi]
StringList1[0] := 'This is the first string.';

[C++]
(*StringList1)[0] = "This is the first string.";

Locating Items in a String List
To locate a string in a string list, use the IndexOf method. IndexOf returns the index of the first string in the list that
matches the parameter passed to it, and returns –1 if the parameter string is not found. IndexOf finds exact matches
only; if you want to match partial strings, you must iterate through the string list yourself.

For example, you could use IndexOf to determine whether a given file name is found among the Items of a list box:

[Delphi]
if FileListBox1.Items.IndexOf('TargetFileName') > -1 ...

[C++]
if (FileListBox1->Items->IndexOf("TargetFileName") > -1) ...

Iterating Through Strings in a List
To iterate through the strings in a list, use a for loop that runs from zero to Count –1.

The following example converts each string in a list box to uppercase characters.

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);var Index: Integer;
begin
 for Index := 0 to ListBox1.Items.Count - 1 do ListBox1.Items[Index] := UpperCase
(ListBox1.Items[Index]);
end;

[C++]
void __fastcall TForm1::Button1Click(TObject *Sender)
{
 for (int i = 0; i < ListBox1->Items->Count; i++)

1498

 ListBox1->Items->Strings[i] = UpperCase(ListBox1->Items->Strings[i]);
}

Adding a String to a List
To add a string to the end of a string list, call the Add method, passing the new string as the parameter. To insert a
string into the list, call the Insert method, passing two parameters: the string and the index of the position where you
want it placed. For example, to make the string "Three" the third string in a list, you would use:

[Delphi]
Insert(2, 'Three');

[C++]
StringList1->Insert(2, "Three");

To append the strings from one list onto another, call AddStrings:

[Delphi]
StringList1.AddStrings(StringList2); { append the strings from StringList2 to StringList1 }

[C++]
StringList1->AddStrings(StringList2); // append the strings from StringList2 to StringList1

Deleting a String from a List
To delete a string from a string list, call the list's Delete method, passing the index of the string you want to delete.
If you don't know the index of the string you want to delete, use the IndexOf method to locate it. To delete all the
strings in a string list, use the Clear method.

The following example uses IndexOf and Delete to find and delete a string:

[Delphi]
with ListBox1.Items do
 begin
 FoundIndex := IndexOf('bureaucracy');
 if FoundIndex > -1 then
 Delete(FoundIndex);
 end;

[C++]
int BIndex = ListBox1->Items->IndexOf("bureaucracy");
if (BIndex > -1)
 ListBox1->Items->Delete(BIndex);

Copying a Complete String List
You can use the Assign method to copy strings from a source list to a destination list, overwriting the contents of the
destination list. To append strings without overwriting the destination list, use AddStrings. For example,

1499

[Delphi]
Memo1.Lines.Assign(ComboBox1.Items); { overwrites original strings }

[C++]
Memo1->Lines->Assign(ComboBox1->Item)s;

copies the lines from a combo box into a memo (overwriting the memo), while

[Delphi]
Memo1.Lines.AddStrings(ComboBox1.Items); { appends strings to end }

[C++]
Memo1->Lines->AddStrings(ComboBox1->Items);

appends the lines from the combo box to the memo.

When making local copies of a string list, use the Assign method. If you assign one string-list variable to another—

[Delphi]
StringList1 := StringList2;

[C++]
StringList1 = StringList2;

—the original string-list object will be lost, often with unpredictable results.

Associating Objects with a String List
In addition to the strings stored in its Strings property, a string list can maintain references to objects, which it stores
in its Objects property. Like Strings, Objects is an array with a zero-based index. The most common use for
Objects is to associate bitmaps with strings for owner-draw controls.

Use the AddObject or InsertObject method to add a string and an associated object to the list in a single step.
IndexOfObject returns the index of the first string in the list associated with a specified object. Methods like Delete,
Clear, and Move operate on both strings and objects; for example, deleting a string removes the corresponding
object (if there is one).

To associate an object with an existing string, assign the object to the Objects property at the same index. You
cannot add an object without adding a corresponding string.

Working with Strings
The runtime library provides many specialized string-handling routines specific to a string type. These are routines
for wide strings, long strings, and null-terminated strings (meaning PChars). Routines that deal with null-terminated
strings use the null-termination to determine the length of the string. There are no categories of routines listed for
ShortString types. However, some built-in compiler routines deal with the ShortString type. These include, for
example, the Low and High standard functions. For more details about the various string types, see the Delphi
Language Guide.

The following topics provide an overview of many of the string-handling routines in the runtime library:

Wide character routines
Commonly used long string routines

1500

Commonly used routines for null-terminated strings

Wide Character Routines
Wide strings are used in a variety of situations. Some technologies, such as XML, use wide strings as a native type.
You may also choose to use wide strings because they simplify some of the string-handling issues in applications
that have multiple target locales. Using a wide character encoding scheme has the advantage that you can make
many of the usual assumptions about strings that do not work for MBCS systems. There is a direct relationship
between the number of bytes in the string and the number of characters in the string. You do not need to worry about
cutting characters in half or mistaking the second part of a character for the start of a different character.

A disadvantage of working with wide characters is that many VCL controls represent string values as single byte or
MBCS strings. (Cross-platform versions of the controls typically use wide strings.) Translating between the wide
character system and the MBCS system every time you set a string property or read its value can require tremendous
amounts of extra code and slow your application down. However, you may want to translate into wide characters
for some special string processing algorithms that need to take advantage of the 1:1 mapping between characters
and WideChars.

The following functions convert between standard single-byte character strings (or MBCS strings) and Unicode
strings:

StringToWideChar
WideCharLenToString
WideCharLenToStrVar
WideCharToString
WideCharToStrVar

In addition, the following functions translate between WideStrings and other representations:

UCS4StringToWideString
WideStringToUCS4String
VarToWideStr
VarToWideStrDef

The following routines work directly with WideStrings:

WideCompareStr
WideCompareText
WideSameStr
WideSameText
WideSameCaption (CLX applications only)
WideFmtStr
WideFormat
WideLowerCase
WideUpperCase

Finally, some routines include overloads for working with wide strings:

UniqueString
Length

1501

Trim
TrimLeft
TrimRight

Commonly Used Long String Routines
The long string handling routines cover several functional areas. Within these areas, some are used for the same
purpose, the differences being whether they use a particular criterion in their calculations. The following tables list
these routines by these functional areas:

Comparison
Case conversion
Modification
Sub-string

Where appropriate, the tables also provide columns indicating whether a routine satisfies the following criteria.

Uses case sensitivity: If locale settings are used, it determines the definition of case. If the routine does not use
locale settings, analyses are based upon the ordinal values of the characters. If the routine is case-insensitive,
there is a logical merging of upper and lower case characters that is determined by a predefined pattern.
Uses locale settings: Locale settings allow you to customize your application for specific locales, in particular,
for Asian language environments. Most locale settings consider lowercase characters to be less than the
corresponding uppercase characters. This is in contrast to ASCII order, in which lowercase characters are
greater than uppercase characters. Routines that use the system locale are typically prefaced with Ansi (that
is, AnsiXXX).
Supports the multi-byte character set (MBCS): MBCSs are used when writing code for far eastern locales. Multi-
byte characters are represented by one or more character codes, so the length in bytes does not necessarily
correspond to the length of the string. The routines that support MBCS parse one- and multibyte characters.

ByteType and StrByteType determine whether a particular byte is the lead byte of a multibyte character. Be careful
when using multibyte characters not to truncate a string by cutting a character in half. Do not pass characters as a
parameter to a function or procedure, since the size of a character cannot be predetermined. Pass, instead, a pointer
to a to a character or string. For more information about MBCS, see Enabling Application Code.

String comparison routines:

Routine Case-sensitive Uses locale settings Supports MBCS

AnsiCompareStr yes yes yes

AnsiCompareText no yes yes

AnsiCompareFileName no (yes in CLX) yes yes

AnsiMatchStr yes yes yes

AnsiMatchText no yes yes

AnsiContainsStr yes yes yes

AnsiContainsText no yes yes

AnsiStartsStr yes yes yes

AnsiStartsText no yes yes

AnsiEndsStr yes yes yes

1502

AnsiEndsText no yes yes

AnsiIndexStr yes yes yes

AnsiIndexText no yes yes

CompareStr yes no no

CompareText no no no

AnsiResemblesText no no no

Case conversion routines:

Routine Uses locale settings Supports MBCS

AnsiLowerCase yes yes

AnsiLowerCaseFileName yes yes

AnsiUpperCaseFileName yes yes

AnsiUpperCase yes yes

LowerCase no no

UpperCase no no

Note: The routines used for string file names: AnsiCompareFileName, AnsiLowerCaseFileName, and
AnsiUpperCaseFileName all use the system locale. You should always use file names that are portable
because the locale (character set) used for file names can and might differ from the default user interface.

String modification routines:

Routine Case-sensitive Supports MBCS

AdjustLineBreaks NA yes

AnsiQuotedStr NA yes

AnsiReplaceStr yes yes

AnsiReplaceText no yes

StringReplace optional by flag yes

ReverseString NA no

StuffString NA no

Trim NA yes

TrimLeft NA yes

TrimRight NA yes

WrapText NA yes

Sub-string routines:

Routine Case-sensitive Supports MBCS

AnsiExtractQuotedStr NA yes

AnsiPos yes yes

IsDelimiter yes yes

IsPathDelimiter yes yes

1503

LastDelimiter yes yes

LeftStr NA no

RightStr NA no

MidStr NA no

QuotedStr no no

Commonly Used Routines for Null-terminated Strings
The null-terminated string handling routines cover several functional areas. Within these areas, some are used for
the same purpose, the differences being whether or not they use a particular criteria in their calculations. The
following tables list these routines by these functional areas:

Comparison
Case conversion
Modification
Sub-string
Copying

Where appropriate, the tables also provide columns indicating whether the routine is case-sensitive, uses the current
locale, and/or supports multi-byte character sets.

Null-terminated string comparison routines
Routine Case-sensitive Uses locale settings Supports MBCS

AnsiStrComp yes yes yes

AnsiStrIComp no yes yes

AnsiStrLComp yes yes yes

AnsiStrLIComp no yes yes

StrComp yes no no

StrIComp no no no

StrLComp yes no no

StrLIComp no no no

Null-terminated case conversion routines
Routine Uses locale settings Supports MBCS

AnsiStrLower yes yes

AnsiStrUpper yes yes

StrLower no no

StrUpper no no

String modification routines
Routine

StrCat

1504

StrLCat

Sub-string routines
Routine Case-sensitive Supports MBCS

AnsiStrPos yes yes

AnsiStrScan yes yes

AnsiStrRScan yes yes

StrPos yes no

StrScan yes no

StrRScan yes no

Null-terminated string copying
Routine

StrCopy

StrLCopy

StrECopy

StrMove

StrPCopy

StrPLCopy

Declaring and Initializing Strings
When you declare a long string:

S: string;

you do not need to initialize it. Long strings are automatically initialized to empty. To test a string for empty you can
either use the EmptyStr variable:

 S = EmptyStr;

or test against an empty string:

 S = '';

An empty string has no valid data. Therefore, trying to index an empty string is like trying to access nil and will result
in an access violation:

var
 S: string;
begin
 S[i]; // this will cause an access violation
 // statements
end;

1505

Similarly, if you cast an empty string to a PChar, the result is a nil pointer. So, if you are passing such a PChar to a
routine that needs to read or write to it, be sure that the routine can handle nil:

var
 S: string; // empty string
begin
 proc(PChar(S)); // be sure that proc can handle nil
 // statements
end;

If it cannot, then you can either initialize the string:

 S := 'No longer nil';
 proc(PChar(S));// proc does not need to handle nil now

or set the length, using the SetLength procedure:

 SetLength(S, 100);//sets the dynamic length of S to 100
 proc(PChar(S));// proc does not need to handle nil now

When you use SetLength, existing characters in the string are preserved, but the contents of any newly allocated
space is undefined. Following a call to SetLength, S is guaranteed to reference a unique string, that is a string with
a reference count of one. To obtain the length of a string, use the Length function.

Remember when declaring a string that:

 S: string[n];

implicitly declares a short string, not a long string of n length. To declare a long string of specifically n length, declare
a variable of type string and use the SetLength procedure.

 S: string;
 SetLength(S, n);

Mixing and Converting String Types
Short, long, and wide strings can be mixed in assignments and expressions, and the compiler automatically
generates code to perform the necessary string type conversions. However, when assigning a string value to a short
string variable, be aware that the string value is truncated if it is longer than the declared maximum length of the
short string variable.

Long strings are already dynamically allocated. If you use one of the built-in pointer types, such as PAnsiString,
PString, or PWideString, remember that you are introducing another level of indirection. Be sure this is what you
intend.

Additional functions (CopyQStringListToTstrings, Copy TStringsToQStringList, QStringListToTStringList) are
provided for converting underlying Qt string types and CLX string types. These functions are located in Qtypes.pas.

String to PChar Conversions
Long string to PChar conversions are not automatic. Some of the differences between strings and PChars can make
conversions problematic:

Long strings are reference-counted, while PChars are not.
Assigning to a string copies the data, while a PChar is a pointer to memory.

1506

Long strings are null-terminated and also contain the length of the string, while PChars are simply null-
terminated.

Situations in which these differences can cause subtle errors are discussed in the following topics:

String dependencies
Returning a PChar local variable
Passing a local variable as a PChar

String Dependencies
Sometimes you need convert a long string to a null-terminated string, for example, if you are using a function that
takes a PChar. If you must cast a string to a PChar, be aware that you are responsible for the lifetime of the resulting
PChar. Because long strings are reference counted, typecasting a string to a PChar increases the dependency on
the string by one, without actually incrementing the reference count. When the reference count hits zero, the string
will be destroyed, even though there is an extra dependency on it. The cast PChar will also disappear, while the
routine you passed it to may still be using it. For example:

procedure my_func(x: string);
begin
 // do something with x
 some_proc(PChar(x)); // cast the string to a PChar
 // you now need to guarantee that the string remains
 // as long as the some_proc procedure needs to use it
end;

Returning a PChar Local Variable
A common error when working with PChars is to store a local variable in a data structure, or return it as a value.
When your routine ends, the PChar disappears because it is a pointer to memory, and not a reference counted copy
of the string. For example:

function title(n: Integer): PChar;
var
 s: string;
begin
 s := Format('title - %d', [n]);
 Result := PChar(s); // DON'T DO THIS
end;

This example returns a pointer to string data that is freed when the title function returns.

Passing a Local Variable as a PChar
Consider the case where you have a local string variable that you need to initialize by calling a function that takes
a PChar. One approach is to create a local array of char and pass it to the function, then assign that variable to the
string:

// assume FillBuffer is a predefined function
function FillBuffer(Buf:PChar;Count:Integer):Integer
begin

1507

 . . .
end;
// assume MAX_SIZE is a predefined constant
var
 i: Integer;
 buf: array[0..MAX_SIZE] of char;
 S: string;
begin
 i := FillBuffer(0, buf, SizeOf(buf));// treats buf as a PChar
 S := buf;
 //statements
end;

This approach is useful if the size of the buffer is relatively small, since it is allocated on the stack. It is also safe,
since the conversion between an array of char and a string is automatic. The Length of the string is automatically
set to the right value after assigning buf to the string.

To eliminate the overhead of copying the buffer, you can cast the string to a PChar (if you are certain that the routine
does not need the PChar to remain in memory). However, synchronizing the length of the string does not happen
automatically, as it does when you assign an array of char to a string. You should reset the string Length so that
it reflects the actual width of the string. If you are using a function that returns the number of bytes copied, you can
do this safely with one line of code:

var
 S: string;
begin
 SetLength(S, MAX_SIZE;// when casting to a PChar, be sure the string is not empty
 SetLength(S, GetModuleFilename(0, PChar(S), Length(S)));
 // statements
end;

Compiler Directives for Strings
The following compiler directives affect character and string types.

Compiler directives for strings
Directive Description

{$H+/-} A compiler directive, $H, controls whether the reserved word string represents a short string or a long string. In the
default state, {$H+}, string represents a long string. You can change it to a ShortString by using the {$H-} directive.

{$P+/-} The $P directive is meaningful only for code compiled in the {$H-} state, and is provided for backwards compatibility.
$P controls the meaning of variable parameters declared using the string keyword in the {$H-} state.

In the {$P-} state, variable parameters declared using the string keyword are normal variable parameters, but in
the {$P+} state, they are open string parameters. Regardless of the setting of the $P directive, the OpenString
identifier can always be used to declare open string parameters.

{$V+/-} The $V directive controls type checking on short strings passed as variable parameters. In the {$V+} state, strict
type checking is performed, requiring the formal and actual parameters to be of identical string types.

In the {$V-} (relaxed) state, any short string type variable is allowed as an actual parameter, even if the declared
maximum length is not the same as that of the formal parameter. Be aware that this could lead to memory corruption.
For example:

var S: string[3];
procedure Test(var T: string);
begin
 T := '1234';
end;

1508

begin
 Test(S);
end.

{$X+/-} The {$X+} compiler directive enables support for null-terminated strings by activating the special rules that apply to
the built-in PChar type and zero-based character arrays. (These rules allow zero-based arrays and character
pointers to be used with Write, Writeln, Val, Assign, and Rename from the System unit.)

Creating Drawing Spaces
The TCanvas class is defined in the Graphics unit, and encapsulates a Windows device context. This class handles
all drawing for forms, visual containers (such as panels) and the printer object (see Printing). Using the canvas object,
you need not worry about allocating pens, brushes, palettes, and so on—all the allocation and deallocation are
handled for you.

TCanvas includes a large number of primitive graphics routines to draw lines, shapes, polygons, fonts, etc. onto any
control that contains a canvas. For example, here is a button event handler that draws a line from the upper left
corner to the middle of the form and outputs some raw text onto the form:

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
begin
Canvas.Pen.Color := clBlue;
Canvas.MoveTo(10, 10);
Canvas.LineTo(100, 100);
Canvas.Brush.Color := clBtnFace;
Canvas.Font.Name := 'Arial';
Canvas.TextOut(Canvas.PenPos.x, Canvas.PenPos.y,'This is the end of the line');
end;

[C++]
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Canvas->Pen->Color = clBlue;
Canvas->MoveTo(10, 10);
Canvas->LineTo(100, 100);
Canvas->Brush->Color = clBtnFace;
Canvas->Font->Name = "Arial";
Canvas->TextOut(Canvas->PenPos.x, Canvas->PenPos.y,"This is the end of the line");
}

The TCanvas object defined in the Graphics unit also protects you against common Windows graphics errors, such
as restoring device contexts, pens, brushes, and so on to the value they had before the drawing operation.
TCanvas is used everywhere in the VCL that drawing is required or possible, and makes drawing graphics both fail-
safe and easy.

Printing
The VCL TPrinter object encapsulates details of Windows printers. To get a list of installed and available printers,
use the Printers property. Both printer objects use a TCanvas (which is identical to the form's TCanvas) which means
that anything that can be drawn on a form can be printed as well. To print an image, call the BeginDoc method
followed by whatever canvas graphics you want to print (including text through the TextOut method) and send the
job to the printer by calling the EndDoc method.

1509

This example uses a button and a memo on a form. When the user clicks the button, the content of the memo is
printed with a 200-pixel border around the page.

To run this example successfully, add Printers to your uses clause.

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
var
r: TRect;
i: Integer;
begin
with Printer do
begin
r := Rect(200,200,(Pagewidth - 200),(PageHeight - 200));
BeginDoc;
 Canvas.Brush.Style := bsClear;
for i := 0 to Memo1.Lines.Count do
Canvas.TextOut(200,200 + (i *
 Canvas.TextHeight(Memo1.Lines.Strings[i])),
 Memo1.Lines.Strings[i]);
Canvas.Brush.Color := clBlack;
Canvas.FrameRect(r);
EndDoc;
end;
end;

[C++]
void __fastcall TForm1::Button1Click(TObject *Sender)
{
TPrinter *Prntr = Printer();
TRect r = Rect(200,200,Prntr->PageWidth - 200,Prntr->PageHeight- 200);
Prntr->BeginDoc();
for(int i = 0; i < Memo1->Lines->Count; i++)
Prntr->Canvas->TextOut(200,200 + (i *
 Prntr->Canvas->TextHeight(Memo1->Lines->Strings[i])),
 Memo1->Lines->Strings[i]);
Prntr->Canvas->Brush->Color = clBlack;
Prntr->Canvas->FrameRect(r);
Prntr->EndDoc();
}

Converting Measurements
The ConvUtils unit declares a general-purpose Conversion Function that you can use to convert a measurement
from one set of units to another. You can perform conversions between compatible units of measurement such as
feet and inches or days and weeks. Units that measure the same types of things are said to be in the same conversion
family. The units you're converting must be in the same conversion family. For information on doing conversions,
see Performing Conversions.

The StdConvs unit defines several conversion families and measurement units within each family. In addition, you
can create customized conversion families and associated units using the RegisterConversionTypeand
RegisterConversionFamily functions. For information on extending conversion and conversion units, see Adding
new measurement types.

1510

Performing Conversions
You can use the Convert function to perform both simple and complex conversions. It includes a simple syntax and
a second syntax for performing conversions between complex measurement types.

Performing simple conversions
You can use the Convert function to convert a measurement from one set of units to another. The Convert function
converts between units that measure the same type of thing (distance, area, time, temperature, and so on).

To use Convert, you must specify the units from which to convert and to which to convert. You use the TConvType
type to identify the units of measurement.

For example, this converts a temperature from degrees Fahrenheit to degrees Kelvin:

[Delphi]
TempInKelvin := Convert(StrToFloat(Edit1.Text), tuFahrenheit, tuKelvin);

[C++]
TempInKelvin = Convert(StrToFloat(Edit1->Text), tuFahrenheit, tuKelvin);

Performing complex conversions
You can also use the Convert function to perform more complex conversions between the ratio of two measurement
types. Examples of when you might need to use this this are when converting miles per hour to meters per minute
for calculating speed or when converting gallons per minute to liters per hour for calculating flow.

For example, the following call converts miles per gallon to kilometers per liter:

[Delphi]
nKPL := Convert(StrToFloat(Edit1.Text), duMiles, vuGallons, duKilometers, vuLiter);

[C++]
double nKPL = Convert(StrToFloat(Edit1.Text), duMiles, vuGallons, duKilometers, vuLiter);

The units you're converting must be in the same conversion family (they must measure the same thing). If the units
are not compatible, Convert raises an EConversionError exception. You can check whether two TConvType values
are in the same conversion family by calling CompatibleConversionTypes.

The StdConvs unit defines several families of TConvType values.

Adding New Measurement Types
If you want to perform conversions between measurement units not already defined in the StdConvs unit, you need
to create a new conversion family to represent the measurement units (TConvType values). When two
TConvType values are registered with the same conversion family, the Convert function can convert between
measurements made using the units represented by those TConvType values.

You first need to obtain TConvFamily values by registering a conversion family using the RegisterConversionFamily
function. After you get a TConvFamily value (by registering a new conversion family or using one of the global
variables in the StdConvs unit), you can use the RegisterConversionType function to add the new units to the
conversion family. The following examples show how to do this:

Creating a simple conversion family and adding units

1511

Using a conversion function

Using a class to manage conversions

For more examples, refer to the source code for the standard conversions unit (stdconvs.pas). (Note that the source
is not included in all editions of Delphi.)

Creating a Simple Conversion Family and Adding Units
One example of when you could create a new conversion family and add new measurement types might be when
performing conversions between long periods of time (such as months to centuries) where a loss of precision can
occur.

To explain this further, the cbTime family uses a day as its base unit. The base unit is the one that is used when
performing all conversions within that family. Therefore, all conversions must be done in terms of days. An inaccuracy
can occur when performing conversions using units of months or larger (months, years, decades, centuries,
millennia) because there is not an exact conversion between days and months, days and years, and so on. Months
have different lengths; years have correction factors for leap years, leap seconds, and so on.

If you are only using units of measurement greater than or equal to months, you can create a more accurate
conversion family with years as its base unit. This example creates a new conversion family called cbLongTime.

Declare variables
First, you need to declare variables for the identifiers. The identifiers are used in the new LongTime conversion
family, and the units of measurement that are its members:

[Delphi]
var
cbLongTime: TConvFamily;
ltMonths: TConvType;
ltYears: TConvType;
ltDecades: TConvType;
ltCenturies: TConvType;
ltMillennia: TConvType;

[C++]
tConvFamily cbLongTime;
TConvType ltMonths;
TConvType ltYears;
TConvType ltDecades;
TConvType ltCenturies;
TConvType ltMillennia;

Register the conversion family
Next, register the conversion family:

[Delphi]
cbLongTime := RegisterConversionFamily ('Long Times');

1512

[C++]
cbLongTime = RegisterConversionFamily ("Long Times");

Although an UnregisterConversionFamily procedure is provided, you don't need to unregister conversion families
unless the unit that defines them is removed at runtime. They are automatically cleaned up when your application
shuts down.

Register measurement units
Next, you need to register the measurement units within the conversion family that you just created. You use the
RegisterConversionType function, which registers units of measurement within a specified family. You need to define
the base unit which in the example is years, and the other units are defined using a factor that indicates their relation
to the base unit. So, the factor for ltMonths is 1/12 because the base unit for the LongTime family is years. You also
include a description of the units to which you are converting.

The code to register the measurement units is shown here:

[Delphi]
ltMonths:=RegisterConversionType(cbLongTime,'Months',1/12);
ltYears:=RegisterConversionType(cbLongTime,'Years',1);
ltDecades:=RegisterConversionType(cbLongTime,'Decades',10);
ltCenturies:=RegisterConversionType(cbLongTime,'Centuries',100);
ltMillennia:=RegisterConversionType(cbLongTime,'Millennia',1000);

[C++]
ltMonths = RegisterConversionType(cbLongTime,"Months",1/12);
ltYears = RegisterConversionType(cbLongTime,"Years",1);
ltDecades = RegisterConversionType(cbLongTime,"Decades",10);
ltCenturies = RegisterConversionType(cbLongTime,"Centuries",100);
ltMillennia = RegisterConversionType(cbLongTime,"Millennia",1000);

Use the new units
You can now use the newly registered units to perform conversions. The global Convert function can convert between
any of the conversion types that you registered with the cbLongTime conversion family.

So instead of using the following Convert call,

[Delphi]
Convert(StrToFloat(Edit1.Text),tuMonths,tuMillennia);

[C++]
Convert(StrToFloat(Edit1->Text),tuMonths,tuMillennia);

you can now use this one for greater accuracy:

[Delphi]
Convert(StrToFloat(Edit1.Text),ltMonths,ltMillennia);

1513

[C++]
Convert(StrToFloat(Edit1->Text),ltMonths,ltMillennia);

Using a Conversion Function
For cases when the conversion is more complex, you can use a different syntax to specify a function to perform the
conversion instead of using a conversion factor. For example, you can't convert temperature values using a
conversion factor, because different temperature scales have a different origins.

This example, which comes from the StdConvs unit, shows how to register a conversion type by providing functions
to convert to and from the base units.

Declare variables
First, declare variables for the identifiers. The identifiers are used in the cbTemperature conversion family, and the
units of measurement are its members:

[Delphi]
var
cbTemperature: TConvFamily;
tuCelsius: TConvType;
tuKelvin: TConvType;
tuFahrenheit: TConvType;

[C++]
TConvFamily cbTemperature;
TConvType tuCelsius;
TConvType tuKelvin;
TConvType tuFahrenheit;

Note: The units of measurement listed here are a subset of the temperature units actually registered in the
StdConvs unit.

Register the conversion family
Next, register the conversion family:

[Delphi]
cbTemperature := RegisterConversionFamily ('Temperature');

[C++]
cbTemperature = RegisterConversionFamily ("Temperature");

Register the base unit
Next, define and register the base unit of the conversion family, which in the example is degrees Celsius. Note that
in the case of the base unit, we can use a simple conversion factor, because there is no actual conversion to make:

1514

[Delphi]
tuCelsius:=RegisterConversionType(cbTemperature,'Celsius',1);

[C++]
tuCelsius = RegisterConversionType(cbTemperature,"Celsius",1);

Write methods to convert to and from the base unit
You need to write the code that performs the conversion from each temperature scale to and from degrees Celsius,
because these do not rely on a simple conversion factor. These functions are taken from the StdConvs unit:

[Delphi]
function FahrenheitToCelsius(const AValue: Double): Double;
begin
Result := ((AValue - 32) * 5) / 9;
end;
function CelsiusToFahrenheit(const AValue: Double): Double;
begin
Result := ((AValue * 9) / 5) + 32;
end;
function KelvinToCelsius(const AValue: Double): Double;
begin
Result := AValue - 273.15;
end;
function CelsiusToKelvin(const AValue: Double): Double;
begin
Result := AValue + 273.15;
end;

[C++]
double __fastcall FahrenheitToCelsius(const double AValue)
{
return (((AValue - 32) * 5) / 9);
}
double __fastcall CelsiusToFahrenheit(const double AValue)
{
return (((AValue * 9) / 5) + 32);
}
double __fastcall KelvinToCelsius(const double AValue)
{
 return (AValue - 273.15);
}
double __fastcall CelsiusToKelvin(const double AValue)
{
 return (AValue + 273.15);
}

Register the other units
Now that you have the conversion functions, you can register the other measurement units within the conversion
family. You also include a description of the units.

The code to register the other units in the family is shown here:

1515

[Delphi]
tuKelvin := RegisterConversionType(cbTemperature, 'Kelvin', KelvinToCelsius,
CelsiusToKelvin);
tuFahrenheit := RegisterConversionType(cbTemperature, 'Fahrenheit', FahrenheitToCelsius,
CelsiusToFahrenheit);

[C++]
tuKelvin = RegisterConversionType(cbTemperature, "Kelvin", KelvinToCelsius,
CelsiusToKelvin);
tuFahrenheit = RegisterConversionType(cbTemperature, "Fahrenheit", FahrenheitToCelsius,
CelsiusToFahrenheit);

Use the new units
You can now use the newly registered units to perform conversions in your applications. The global Convert function
can convert between any of the conversion types that you registered with the cbTemperature conversion family. For
example the following code converts a value from degrees Fahrenheit to degrees Kelvin.

[Delphi]
Convert(StrToFloat(Edit1.Text), tuFahrenheit, tuKelvin);

[C++]
Convert(StrToFloat(Edit1->Text), tuFahrenheit, tuKelvin);

Using a Class to Manage Conversions
You can always use conversion functions to register a conversion unit. There are times, however, when this requires
you to create an unnecessarily large number of functions that all do essentially the same thing.

If you can write a set of conversion functions that differ only in the value of a parameter or variable, you can create
a class to handle those conversions. For example, there is a set standard techniques for converting between the
various European currencies since the introduction of the Euro. Even though the conversion factors remain constant
(unlike the conversion factor between, say, dollars and Euros), you can't use a simple conversion factor approach
to properly convert between European currencies for two reasons:

The conversion must round to a currency-specific number of digits.
The conversion factor approach uses an inverse factor to the one specified by the standard Euro conversions.

However, this can all be handled by the conversion functions such as the following:

[Delphi]
function FromEuro(const AValue: Double, Factor; FRound: TRoundToRange): Double;
begin
Result := RoundTo(AValue * Factor, FRound);
end;
function ToEuro(const AValue: Double, Factor): Double;
begin
Result := AValue / Factor;
end;

1516

[C++]
double __fastcall FromEuro(const double AValue, const double Factor, TRoundToRange FRound)
{
return(RoundTo(AValue * Factor, FRound));
}
double __fastcall ToEuro(const double AValue, const double Factor)
{
return (AValue / Factor);
}

The problem is, this approach requires extra parameters on the conversion function, which means you can't simply
register the same function with every European currency. In order to avoid having to write two new conversion
functions for every European currency, you can make use of the same two functions by making them the members
of a class.

Creating the conversion class
The class must be a descendant of TConvTypeFactor. TConvTypeFactor defines two methods, ToCommon and
FromCommon, for converting to and from the base units of a conversion family (in this case, to and from Euros).
Just as with the functions you use directly when registering a conversion unit, these methods have no extra
parameters, so you must supply the number of digits to round off and the conversion factor as private members of
your conversion class:

[Delphi]
type
TConvTypeEuroFactor = class(TConvTypeFactor)
private
FRound: TRoundToRange;
public
constructor Create(const AConvFamily: TConvFamily;
const ADescription: string; const AFactor: Double;
const ARound: TRoundToRange);
function ToCommon(const AValue: Double): Double; override;
function FromCommon(const AValue: Double): Double; override;
end;
end;

[C++]
class PASCALIMPLEMENTATION TConvTypeEuroFactor : public Convutils::TConvTypeFactor
{
 private:
TRoundToRange FRound;
public:
 __fastcall TConvTypeEuroFactor(const TConvFamily AConvFamily,
 const AnsiString ADescription, const double AFactor, const TRoundToRange ARound);
 TConvTypeFactor(AConvFamily, ADescription, AFactor);
 virtual double ToCommon(const double AValue);
virtual double FromCommon(const double AValue);
}

The constructor assigns values to those private members:

[Delphi]
constructor TConvTypeEuroFactor.Create(const AConvFamily: TConvFamily;
const ADescription: string; const AFactor: Double;
const ARound: TRoundToRange);

1517

begin
inherited Create(AConvFamily, ADescription, AFactor);
FRound := ARound;
end;

[C++]
__fastcall TConvTypeEuroFactor::TConvTypeEuroFactor(const TConvFamily AConvFamily,
 const AnsiString ADescription, const double AFactor, const TRoundToRange ARound):
 TConvTypeFactor(AConvFamily, ADescription, AFactor);
{
 FRound = ARound;
}

The two conversion functions simply use these private members:

[Delphi]
function TConvTypeEuroFactor.FromCommon(const AValue: Double): Double;
begin
Result := RoundTo(AValue * Factor, FRound);
end;
function TConvTypeEuroFactor.ToCommon(const AValue: Double): Double;
begin
Result := AValue / Factor;
end;

[C++]
virtual double TConvTypeEuroFactor::ToCommon(const double AValue)
{
 return (RoundTo(AValue * Factor, FRound));
}
virtual double TConvTypeEuroFactor::ToCommon(const double AValue)
{
 return (AValue / Factor);
}

Declare variables
Now that you have a conversion class, begin as with any other conversion family, by declaring identifiers:

1518

[Delphi]
var
 euEUR: TConvType; { EU euro }
euBEF: TConvType; { Belgian francs }
euDEM: TConvType; { German marks }
euGRD: TConvType; { Greek drachmas }
euESP: TConvType; { Spanish pesetas }
euFFR: TConvType; { French francs }
euIEP: TConvType; { Irish pounds }
euITL: TConvType; { Italian lire }
euLUF: TConvType; { Luxembourg francs }
euNLG: TConvType; { Dutch guilders }
euATS: TConvType; { Austrian schillings }
euPTE: TConvType; { Portuguese escudos }
euFIM: TConvType; { Finnish marks }
 cbEuro: TConvFamily;

[C++]
TConvFamily cbEuro;
TConvType euEUR; // EU euro
TConvType euBEF; // Belgian francs
TConvType euDEM; // German marks
TConvType euGRD; // Greek drachmas
TConvType euESP; // Spanish pesetas
TConvType euFFR; // French francs
TConvType euIEP; // Irish pounds
TConvType euITL; // Italian lire
TConvType euLUF; // Luxembourg francs
TConvType euNLG; // Dutch guilders
TConvType euATS; // Austrian schillings
TConvType euPTE; // Protuguese escudos
TConvType euFIM; // Finnish marks

Register the conversion family and the other units
Now you are ready to register the conversion family and the European monetary units, using your new conversion
class. Register the conversion family the same way you registered the other conversion families:

[Delphi]
cbEuro := RegisterConversionFamily ('European currency');

[C++]
cbEuro = RegisterConversionFamily ("European currency");

To register each conversion type, create an instance of the conversion class that reflects the factor and rounding
properties of that currency, and call the RegisterConversionType method:

[Delphi]
var
 LInfo: TConvTypeInfo;
begin
 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'EUEuro', 1.0, -2);
 if not RegisterConversionType(LInfo, euEUR) then
 LInfo.Free;

1519

 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'BelgianFrancs', 40.3399, 0);
 if not RegisterConversionType(LInfo, euBEF) then
 LInfo.Free;
 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'GermanMarks', 1.95583, -2);
 if not RegisterConversionType(LInfo, euDEM) then
 LInfo.Free;
 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'GreekDrachmas', 340.75, 0);
 if not RegisterConversionType(LInfo, euGRD) then
 LInfo.Free;
 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'SpanishPesetas', 166.386, 0);
 if not RegisterConversionType(LInfo, euESP) then
 LInfo.Free;
 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'FrenchFrancs', 6.55957, -2);
 if not RegisterConversionType(LInfo, euFFR) then
 LInfo.Free;
 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'IrishPounds', 0.787564, -2);
 if not RegisterConversionType(LInfo, euIEP) then
 LInfo.Free;
 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'ItalianLire', 1936.27, 0);
 if not RegisterConversionType(LInfo, euITL) then
 LInfo.Free;
 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'LuxembourgFrancs', 40.3399, -2);
 if not RegisterConversionType(LInfo, euLUF) then
 LInfo.Free;
 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'DutchGuilders', 2.20371, -2);
 if not RegisterConversionType(LInfo, euNLG) then
 LInfo.Free;
 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'AustrianSchillings', 13.7603, -2);
 if not RegisterConversionType(LInfo, euATS) then
 LInfo.Free;
 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'PortugueseEscudos', 200.482, -2);
 if not RegisterConversionType(LInfo, euPTE) then
 LInfo.Free;
 LInfo := TConvTypeEuroFactor.Create(cbEuro, 'FinnishMarks', 5.94573, 0);
 if not RegisterConversionType(LInfo, euFIM) then
 LInfo.Free;
end;

[C++]
TConvTypeInfo *pInfo = new TConvTypeEuroFactor(cbEuro, "EUEuro", 1.0, -2);
if (!RegisterConversionType(pInfo, euEUR))
 delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, "BelgianFrancs", 40.3399, 0);
if (!RegisterConversionType(pInfo, euBEF))
 delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, "GermanMarks", 1.95583, -2);
if (!RegisterConversionType(pInfo, euDEM))
 delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, "GreekDrachmas", 340.75, 0);
if (!RegisterConversionType(pInfo, euGRD)
 delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, "SpanishPesetas", 166.386, 0);
if (!RegisterConversionType(pInfo, euESP)
 delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, "FrenchFrancs", 6.55957, -2);
if (!RegisterConversionType(pInfo, euFFR)
 delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, "IrishPounds", 0.787564, -2);
if (!RegisterConversionType(pInfo, euIEP)
 delete pInfo;

1520

pInfo = new TConvTypeEuroFactor(cbEuro, "ItalianLire", 1936.27, 0);
if (!RegisterConversionType(pInfo, euITL)
 delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, "LuxembourgFrancs", 40.3399, -2);
if (!RegisterConversionType(pInfo, euLUF)
 delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, "DutchGuilders", 2.20371, -2);
if (!RegisterConversionType(pInfo, euNLG)
 delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, "AutstrianSchillings", 13.7603, -2);
if (!RegisterConversionType(pInfo, euATS)
 delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, "PortugueseEscudos", 200.482, -2);
if (!RegisterConversionType(pInfo, euPTE)
 delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, "FinnishMarks", 5.94573, 0);
if (!RegisterConversionType(pInfo, euFIM)
 delete pInfo;

Note: The ConvertIt demo provides an expanded version of this example that includes other currencies (that do
not have fixed conversion rates) and more error checking.

Use the new units
You can now use the newly registered units to perform conversions in your applications. The global Convert function
can convert between any of the European currencies you have registered with the new cbEuro family. For example,
the following code converts a value from Italian Lire to German Marks:

[Delphi]
Edit2.Text = FloatToStr(Convert(StrToFloat(Edit1.Text), euITL, euDEM));

[C++]
Edit2->Text = FloatToStr(Convert(StrToFloat(Edit1->Text), euITL, euDEM));

Defining Custom Variants
One powerful built-in type of the Delphi language is the Variant type. Variants represent values whose type is not
determined at compile time. Instead, the type of their value can change at runtime. Variants can mix with other
variants and with integer, real, string, and boolean values in expressions and assignments; the compiler
automatically performs type conversions.

By default, variants can't hold values that are records, sets, static arrays, files, classes, class references, or pointers.
You can, however, extend the Variant type to work with any particular example of these types. All you need to do is
create a descendant of the TCustomVariantType class that indicates how the Variant type performs standard
operations.

To create a Variant type:
1 Map the storage of the variant's data on to the TVarData record.
2 Declare a class that descends from TCustomVariantType. Implement all required behavior (including type

conversion rules) in the new class.

1521

3 Write utility methods for creating instances of your custom variant and recognizing its type.

The above steps extend the Variant type so that the standard operators work with your new type and the new Variant
type can be cast to other data types. You can further enhance your new Variant type so that it supports properties
and methods that you define. When creating a Variant type that supports properties or methods, you use
TInvokeableVariantType or TPublishableVariantType as a base class rather than TCustomVariantType.

Storing a Custom Variant Type's Data
Variants store their data in the TVarData record type. This type is a record that contains 16 bytes. The first word
indicates the type of the variant, and the remaining 14 bytes are available to store the data. While your new Variant
type can work directly with a TVarData record, it is usually easier to define a record type whose members have
names that are meaningful for your new type, and cast that new type onto the TVarData record type.

For example, the VarConv unit defines a custom variant type that represents a measurement. The data for this type
includes the units (TConvType) of measurement, as well as the value (a double). The VarConv unit defines its own
type to represent such a value:

TConvertVarData = packed record
 VType: TVarType;
 VConvType: TConvType;
 Reserved1, Reserved2: Word;
 VValue: Double;
end;

This type is exactly the same size as the TVarData record. When working with a custom variant of the new type, the
variant (or its TVarData record) can be cast to TConvertVarData, and the custom Variant type simply works with the
TVarData record as if it were a TConvertVarData type.

Note: When defining a record that maps onto the TVarData record in this way, be sure to define it as a packed
record.

If your new custom Variant type needs more than 14 bytes to store its data, you can define a new record type that
includes a pointer or object instance. For example, the VarCmplx unit uses an instance of the class
TComplexData to represent the data in a complex-valued variant. It therefore defines a record type the same size
as TVarData that includes a reference to a TComplexData object:

TComplexVarData = packed record
 VType: TVarType;
 Reserved1, Reserved2, Reserved3: Word;
 VComplex: TComplexData;
 Reserved4: LongInt;
end;

Object references are actually pointers (two Words), so this type is the same size as the TVarData record. As before,
a complex custom variant (or its TVarData record), can be cast to TComplexVarData, and the custom variant type
works with the TVarData record as if it were a TComplexVarData type.

Creating a Class to Enable the Custom Variant Type
Custom variants work by using a special helper class that indicates how variants of the custom type can perform
standard operations. You create this helper class by writing a descendant of TCustomVariantType. This involves
overriding the appropriate virtual methods of TCustomVariantType.

The following topics provide details on how to implement and use a TCustomVariantType descendant:

Enabling casting

1522

Implementing binary operations
Implementing comparison operations
Implementing unary operations
Copying and clearing custom variants
Loading and saving custom variant values
Using the TCustomVariantType descendant

Enabling Casting
One of the most important features of the custom variant type for you to implement is typecasting. The flexibility of
variants arises, in part, from their implicit typecasts.

There are two methods for you to implement that enable the custom Variant type to perform typecasts: Cast, which
converts another variant type to your custom variant, and CastTo, which converts your custom Variant type to another
type of Variant.

When implementing either of these methods, it is relatively easy to perform the logical conversions from the built-in
variant types. You must consider, however, the possibility that the variant to or from which you are casting may be
another custom Variant type. To handle this situation, you can try casting to one of the built-in Variant types as an
intermediate step.

For example, the following Cast method, from the TComplexVariantType class uses the type Double as an
intermediate type:

procedure TComplexVariantType.Cast(var Dest: TVarData; const Source: TVarData);
var
LSource, LTemp: TVarData;
begin
VarDataInit(LSource);
try
VarDataCopyNoInd(LSource, Source);
if VarDataIsStr(LSource) then
TComplexVarData(Dest).VComplex := TComplexData.Create(VarDataToStr(LSource))
else
begin
VarDataInit(LTemp);
try
VarDataCastTo(LTemp, LSource, varDouble);
TComplexVarData(Dest).VComplex := TComplexData.Create(LTemp.VDouble, 0);
finally
VarDataClear(LTemp);
end;
end;
Dest.VType := VarType;
finally
VarDataClear(LSource);
end;
end;

In addition to the use of Double as an intermediate Variant type, there are a few things to note in this implementation:

The last step of this method sets the VType member of the returned TVarData record. This member gives the
Variant type code. It is set to the VarType property of TComplexVariantType, which is the Variant type code
assigned to the custom variant.

1523

The custom variant's data (Dest) is typecast from TVarData to the record type that is actually used to store its
data (TComplexVarData). This makes the data easier to work with.
The method makes a local copy of the source variant rather than working directly with its data. This prevents
side effects that may affect the source data.

When casting from a complex variant to another type, the CastTo method also uses an intermediate type of Double
(for any destination type other than a string):

procedure TComplexVariantType.CastTo(var Dest: TVarData; const Source: TVarData;
const AVarType: TVarType);
var
LTemp: TVarData;
begin
if Source.VType = VarType then
case AVarType of
varOleStr:
VarDataFromOleStr(Dest, TComplexVarData(Source).VComplex.AsString);
varString:
VarDataFromStr(Dest, TComplexVarData(Source).VComplex.AsString);
else
VarDataInit(LTemp);
try
LTemp.VType := varDouble;
LTemp.VDouble := TComplexVarData(LTemp).VComplex.Real;
VarDataCastTo(Dest, LTemp, AVarType);
finally
VarDataClear(LTemp);
end;
end
else
RaiseCastError;
end;

Note that the CastTo method includes a case where the source variant data does not have a type code that matches
the VarType property. This case only occurs for empty (unassigned) source variants.

Implementing Binary Operations
To allow the custom variant type to work with standard binary operators (+, -, *, /, div, mod, shl, shr, and, or, xor
listed in the System unit), you must override the BinaryOp method. BinaryOp has three parameters: the value of the
left-hand operand, the value of the right-hand operand, and the operator. Implement this method to perform the
operation and return the result using the same variable that contained the left-hand operand.

For example, the following BinaryOp method comes from the TComplexVariantType defined in the VarCmplx unit:

procedure TComplexVariantType.BinaryOp(var Left: TVarData; const Right: TVarData;
 const Operator: TVarOp);
begin
 if Right.VType = VarType then
 case Left.VType of
 varString:
 case Operator of
 opAdd: Variant(Left) := Variant(Left) + TComplexVarData(Right).VComplex.AsString;
 else
 RaiseInvalidOp;
 end;
 else

1524

 if Left.VType = VarType then
 case Operator of
 opAdd:
 TComplexVarData(Left).VComplex.DoAdd(TComplexVarData(Right).VComplex);
 opSubtract:
 TComplexVarData(Left).VComplex.DoSubtract(TComplexVarData(Right).VComplex);
 opMultiply:
 TComplexVarData(Left).VComplex.DoMultiply(TComplexVarData(Right).VComplex);
 opDivide:
 TComplexVarData(Left).VComplex.DoDivide(TComplexVarData(Right).VComplex);
 else
 RaiseInvalidOp;
 end
 else
 RaiseInvalidOp;
 end
 else
 RaiseInvalidOp;
end;

There are several things to note in this implementation:

This method only handles the case where the variant on the right side of the operator is a custom variant that
represents a complex number. If the left-hand operand is a complex variant and the right-hand operand is not, the
complex variant forces the right-hand operand first to be cast to a complex variant. It does this by overriding the
RightPromotion method so that it always requires the type in the VarType property:

function TComplexVariantType.RightPromotion(const V: TVarData;
const Operator: TVarOp; out RequiredVarType: TVarType): Boolean;
begin
{ Complex Op TypeX }
RequiredVarType := VarType;
Result := True;
end;

The addition operator is implemented for a string and a complex number (by casting the complex value to a string
and concatenating), and the addition, subtraction, multiplication, and division operators are implemented for two
complex numbers using the methods of the TComplexData object that is stored in the complex variant's data. This
is accessed by casting the TVarData record to a TComplexVarData record and using its VComplex member.

Attempting any other operator or combination of types causes the method to call the RaiseInvalidOp method, which
causes a runtime error. The TCustomVariantType class includes a number of utility methods such as
RaiseInvalidOp that can be used in the implementation of custom variant types.

BinaryOp only deals with a limited number of types: strings and other complex variants. It is possible, however, to
perform operations between complex numbers and other numeric types. For the BinaryOp method to work, the
operands must be cast to complex variants before the values are passed to this method. We have already seen
(above) how to use the RightPromotion method to force the right-hand operand to be a complex variant if the left-
hand operand is complex. A similar method, LeftPromotion, forces a cast of the left-hand operand when the right-
hand operand is complex:

function TComplexVariantType.LeftPromotion(const V: TVarData;
const Operator: TVarOp; out RequiredVarType: TVarType): Boolean;
begin
{ TypeX Op Complex }
if (Operator = opAdd) and VarDataIsStr(V) then
RequiredVarType := varString
else
RequiredVarType := VarType;

1525

 Result := True;
end;

This LeftPromotion method forces the left-hand operand to be cast to another complex variant, unless it is a string
and the operation is addition, in which case LeftPromotion allows the operand to remain a string.

Implementing Comparison Operations
There are two ways to enable a custom variant type to support comparison operators (=, <>, <, <=, >, >=). You can
override the Compare method, or you can override the CompareOp method.

The Compare method is easiest if your custom variant type supports the full range of comparison operators.
Compare takes three parameters: the left-hand operand, the right-hand operand, and a var Parameter that returns
the relationship between the two. For example, the TConvertVariantType object in the VarConv unit implements the
following Compare method:

procedure TConvertVariantType.Compare(const Left, Right: TVarData;
var Relationship: TVarCompareResult);
const
CRelationshipToRelationship: array [TValueRelationship] of TVarCompareResult =
(crLessThan, crEqual, crGreaterThan);
var
LValue: Double;
LType: TConvType;
LRelationship: TValueRelationship;
begin
// supports...
// convvar cmp number
// Compare the value of convvar and the given number
 // convvar1 cmp convvar2
// Compare after converting convvar2 to convvar1's unit type
 // The right can also be a string. If the string has unit info then it is
// treated like a varConvert else it is treated as a double
LRelationship := EqualsValue;
case Right.VType of
 varString:
 if TryStrToConvUnit(Variant(Right), LValue, LType) then
 if LType = CIllegalConvType then
 LRelationship := CompareValue(TConvertVarData(Left).VValue, LValue)
 else
 LRelationship := ConvUnitCompareValue(TConvertVarData(Left).VValue,
 TConvertVarData(Left).VConvType, LValue, LType)
 else
 RaiseCastError;
 varDouble:
 LRelationship := CompareValue(TConvertVarData(Left).VValue, TVarData(Right).VDouble);
 else
 if Left.VType = VarType then
 LRelationship := ConvUnitCompareValue(TConvertVarData(Left).VValue,
 TConvertVarData(Left).VConvType, TConvertVarData(Right).VValue,
 TConvertVarData(Right).VConvType)
 else
 RaiseInvalidOp;
 end;
 Relationship := CRelationshipToRelationship[LRelationship];
end;

If the custom type does not support the concept of "greater than" or "less than," only "equal" or "not equal," however,
it is difficult to implement the Compare method, because Compare must return crLessThan, crEqual, or

1526

crGreaterThan. When the only valid response is "not equal," it is impossible to know whether to return crLessThan or
crGreaterThan. Thus, for types that do not support the concept of ordering, you can override the CompareOp method
instead.

CompareOp has three parameters: the value of the left-hand operand, the value of the right-hand operand, and the
comparison operator. Implement this method to perform the operation and return a boolean that indicates whether
the comparison is True. You can then call the RaiseInvalidOp method when the comparison makes no sense.

For example, the following CompareOp method comes from the TComplexVariantType object in the VarCmplx unit.
It supports only a test of equality or inequality:

function TComplexVariantType.CompareOp(const Left, Right: TVarData;
const Operator: Integer): Boolean;
begin
Result := False;
if (Left.VType = VarType) and (Right.VType = VarType) then
case Operator of
opCmpEQ:
Result := TComplexVarData(Left).VComplex.Equal(TComplexVarData(Right).VComplex);
opCmpNE:
Result := not TComplexVarData(Left).VComplex.Equal(TComplexVarData(Right).VComplex);
else
RaiseInvalidOp;
end
else
RaiseInvalidOp;
end;

Note that the types of operands that both these implementations support are very limited. As with binary operations,
you can use the RightPromotion and LeftPromotion methods to limit the cases you must consider by forcing a cast
before Compare or CompareOp is called.

Implementing Unary Operations
To allow the custom variant type to work with standard unary operators (-, not), you must override the UnaryOp
method. UnaryOp has two parameters: the value of the operand and the operator. Implement this method to perform
the operation and return the result using the same variable that contained the operand.

For example, the following UnaryOp method comes from the TComplexVariantType defined in the VarCmplx unit:

procedure TComplexVariantType.UnaryOp(var Right: TVarData; const Operator: TVarOp);
begin
if Right.VType = VarType then
case Operator of
opNegate:
TComplexVarData(Right).VComplex.DoNegate;
else
RaiseInvalidOp;
end
else
RaiseInvalidOp;
end;

Note that for the logical not operator, which does not make sense for complex values, this method calls
RaiseInvalidOp to cause a runtime error.

1527

Copying and Clearing Custom Variants
In addition to typecasting and the implementation of operators, you must indicate how to copy and clear variants of
your custom Variant type.

To indicate how to copy the variant's value, implement the Copy method. Typically, this is an easy operation, although
you must remember to allocate memory for any classes or structures you use to hold the variant's value:

procedure TComplexVariantType.Copy(var Dest: TVarData; const Source: TVarData;
const Indirect: Boolean);
begin
if Indirect and VarDataIsByRef(Source) then
VarDataCopyNoInd(Dest, Source)
else
with TComplexVarData(Dest) do
begin
VType := VarType;
VComplex := TComplexData.Create(TComplexVarData(Source).VComplex);
end;
end;

Note: The Indirect parameter in the Copy method signals that the copy must take into account the case when the
variant holds only an indirect reference to its data.

Tip: If your custom variant type does not allocate any memory to hold its data (if the data fits entirely in the
TVarData record), your implementation of the Copy method can simply call the SimplisticCopy method.

To indicate how to clear the variant's value, implement the Clear method. As with the Copy method, the only tricky
thing about doing this is ensuring that you free any resources allocated to store the variant's data:

procedure TComplexVariantType.Clear(var V: TVarData);
begin
V.VType := varEmpty;
FreeAndNil(TComplexVarData(V).VComplex);
end;

You will also need to implement the IsClear method. This way, you can detect any invalid values or special values
that represent "blank" data:

function TComplexVariantType.IsClear(const V: TVarData): Boolean;
begin
Result := (TComplexVarData(V).VComplex = nil) or
TComplexVarData(V).VComplex.IsZero;
end;

Loading and Saving Custom Variant Values
By default, when the custom variant is assigned as the value of a published property, it is typecast to a string when
that property is saved to a form file, and converted back from a string when the property is read from a form file. You
can, however, provide your own mechanism for loading and saving custom variant values in a more natural
representation. To do so, the TCustomVariantType descendant must implement the IVarStreamable interface from
Classes.pas.

1528

IVarStreamable defines two methods, StreamIn and StreamOut, for reading a variant's value from a stream and for
writing the variant's value to the stream. For example, TComplexVariantType, in the VarCmplx unit, implements the
IVarStreamable methods as follows:

procedure TComplexVariantType.StreamIn(var Dest: TVarData; const Stream: TStream);
begin
with TReader.Create(Stream, 1024) do
try
with TComplexVarData(Dest) do
begin
VComplex := TComplexData.Create;
VComplex.Real := ReadFloat;
VComplex.Imaginary := ReadFloat;
end;
finally
Free;
end;
end;
procedure TComplexVariantType.StreamOut(const Source: TVarData; const Stream: TStream);
begin
with TWriter.Create(Stream, 1024) do
try
with TComplexVarData(Source).VComplex do
begin
WriteFloat(Real);
WriteFloat(Imaginary);
end;
finally
Free;
end;
end;

Note how these methods create a Reader or Writer object for the Stream parameter to handle the details of reading
or writing values.

Using the TCustomVariantType Descendant
In the initialization section of the unit that defines your TCustomVariantType descendant, create an instance of your
class. When you instantiate your object, it automatically registers itself with the variant-handling system so that the
new Variant type is enabled. For example, here is the initialization section of the VarCmplx unit:

initialization
ComplexVariantType := TComplexVariantType.Create;

In the finalization section of the unit that defines your TCustomVariantType descendant, free the instance of your
class. This automatically unregisters the variant type. Here is the finalization section of the VarCmplx unit:

finalization
FreeAndNil(ComplexVariantType);

Writing Utilities to Work with a Custom Variant Type
Once you have created a TCustomVariantType descendant to implement your custom variant type, it is possible to
use the new Variant type in applications. However, without a few utilities, this is not as easy as it should be.

1529

It is a good idea to create a method that creates an instance of your custom variant type from an appropriate value
or set of values. This function or set of functions fills out the structure you defined to store your custom variant's
data. For example, the following function could be used to create a complex-valued variant:

function VarComplexCreate(const AReal, AImaginary: Double): Variant;
begin
 VarClear(Result);
TComplexVarData(Result).VType := ComplexVariantType.VarType;
TComplexVarData(ADest).VComplex := TComplexData.Create(ARead, AImaginary);
end;

This function does not actually exist in the VarCmplx unit, but is a synthesis of methods that do exist, provided to
simplify the example. Note that the returned variant is cast to the record that was defined to map onto the
TVarData structure (TComplexVarData), and then filled out.

Another useful utility to create is one that returns the variant type code for your new Variant type. This type code is
not a constant. It is automatically generated when you instantiate your TCustomVariantType descendant. It is
therefore useful to provide a way to easily determine the type code for your custom variant type. The following
function from the VarCmplx unit illustrates how to write one, by simply returning the VarType property of the
TCustomVariantType descendant:

function VarComplex: TVarType;
begin
Result := ComplexVariantType.VarType;
end;

Two other standard utilities provided for most custom variants check whether a given variant is of the custom type
and cast an arbitrary variant to the new custom type. Here is the implementation of those utilities from the VarCmplx
unit:

function VarIsComplex(const AValue: Variant): Boolean;
begin
Result := (TVarData(AValue).VType and varTypeMask) = VarComplex;
end;
function VarAsComplex(const AValue: Variant): Variant;
begin
if not VarIsComplex(AValue) then
VarCast(Result, AValue, VarComplex)
else
Result := AValue;
end;

Note that these use standard features of all variants: the VType member of the TVarData record and the VarCast
function, which works because of the methods implemented in the TCustomVariantType descendant for casting data.

In addition to the standard utilities mentioned above, you can write any number of utilities specific to your new custom
variant type. For example, the VarCmplx unit defines a large number of functions that implement mathematical
operations on complex-valued variants.

Supporting Properties and Methods in Custom Variants
Some variants have properties and methods. For example, when the value of a variant is an interface, you can use
the variant to read or write the values of properties on that interface and call its methods. Even if your custom variant
type does not represent an interface, you may want to give it properties and methods that an application can use in
the same way.

1530

Using TInvokeableVariantType
To provide support for properties and methods, the class you create to enable the new custom variant type should
descend from TInvokeableVariantType instead of directly from TCustomVariantType.

TInvokeableVariantType defines four methods:

DoFunction
DoProcedure
GetProperty
SetProperty

that you can implement to support properties and methods on your custom variant type.

For example, the VarConv unit uses TInvokeableVariantType as the base class for TConvertVariantType so that
the resulting custom variants can support properties. The following example shows the property getter for these
properties:

function TConvertVariantType.GetProperty(var Dest: TVarData;
const V: TVarData; const Name: String): Boolean;
var
LType: TConvType;
begin
// supports...
// 'Value'
// 'Type'
// 'TypeName'
// 'Family'
// 'FamilyName'
// 'As[Type]'
Result := True;
if Name = 'VALUE' then
Variant(Dest) := TConvertVarData(V).VValue
else if Name = 'TYPE' then
Variant(Dest) := TConvertVarData(V).VConvType
else if Name = 'TYPENAME' then
Variant(Dest) := ConvTypeToDescription(TConvertVarData(V).VConvType)
else if Name = 'FAMILY' then
Variant(Dest) := ConvTypeToFamily(TConvertVarData(V).VConvType)
else if Name = 'FAMILYNAME' then
Variant(Dest) := ConvFamilyToDescription(ConvTypeToFamily(TConvertVarData(V).VConvType))
else if System.Copy(Name, 1, 2) = 'AS' then
begin
if DescriptionToConvType(ConvTypeToFamily(TConvertVarData(V).VConvType),
System.Copy(Name, 3, MaxInt), LType) then
VarConvertCreateInto(Variant(Dest), Convert(TConvertVarData(V).VValue,
TConvertVarData(V).VConvType, LType), LType)
else
Result := False;
end
else
Result := False;
end;

The GetProperty method checks the Name parameter to determine what property is wanted. It then retrieves the
information from the TVarData record of the Variant (V), and returns it as a Variant (Dest). Note that this method
supports properties whose names are dynamically generated at runtime (As[Type]), based on the current value of
the custom variant.

1531

Similarly, the SetProperty, DoFunction, and DoProcedure methods are sufficiently generic that you can dynamically
generate method names, or respond to variable numbers and types of parameters.

Using TPublishableVariantType
If the custom variant type stores its data using an object instance, then there is an easier way to implement properties,
as long as they are also properties of the object that represents the variant's data. If you use TPublishableVariantType
as the base class for your custom variant type, then you need only implement the GetInstance method, and all the
published properties of the object that represents the variant's data are automatically implemented for the custom
variants.

For example, as was seen in Storing a custom variant type's data, TComplexVariantType stores the data of a
complex-valued variant using an instance of TComplexData. TComplexData has a number of published properties
(Real, Imaginary, Radius, Theta, and FixedTheta), that provide information about the complex value.
TComplexVariantType descends from TPublishableVariantType, and implements the GetInstance method to return
the TComplexData object (in TypInfo.pas) that is stored in a complex-valued variant's TVarData record:

function TComplexVariantType.GetInstance(const V: TVarData): TObject;
begin
Result := TComplexVarData(V).VComplex;
end;

TPublishableVariantType does the rest. It overrides the GetProperty and SetProperty methods to use the runtime
type information (RTTI) of the TComplexData object for getting and setting property values.

Note: For TPublishableVariantType to work, the object that holds the custom variant's data must be compiled with
RTTI. This means it must be compiled using the {$M+} compiler directive, or descend from TPersistent.

1532

Working with components

Setting Component Properties
To set published properties at design time, you can use the Object Inspector and, in some cases, special property
editors. To set properties at runtime, assign their values in your application source code.

For information about the properties of each component, see the online Help.

Setting Properties at Design Time
When you select a component on a form at design time, the Object Inspector displays its published properties and
(when appropriate) allows you to edit them. Use the Tab key to toggle between the left-hand Property column and
the right-hand Value column. When the cursor is in the Property column, you can navigate to any property by typing
the first letters of its name. For properties of Boolean or enumerated types, you can choose values from a drop-down
list or toggle their settings by double-clicking in Value column.

If a plus (+) symbol appears next to a property name, clicking the plus symbol or typing '+' when the property has
focus displays a list of subvalues for the property. Similarly, if a minus (-) symbol appears next to the property name,
clicking the minus symbol or typing '-' hides the subvalues.

By default, properties in the Legacy category are not shown; to change the display filters, right-click in the Object
Inspector and choose View.

When more than one component is selected, the Object Inspector displays all properties—except Name—that are
shared by the selected components. If the value for a shared property differs among the selected components, the
Object Inspector displays either the default value or the value from the first component selected. When you change
a shared property, the change applies to all selected components.

Changing code-related properties, such as the name of an event handler, in the Object Inspector automatically
changes the corresponding source code. In addition, changes to the source code, such as renaming an event handler
method in a form class declaration, is immediately reflected in the Object Inspector.

Using Property Editors
Some properties, such as Font, have special property editors. Such properties appear with ellipsis marks (...) next
to their values when the property is selected in the Object Inspector. To open the property editor, double-click in
the Value column, click the ellipsis mark, or type Ctrl+Enter when focus is on the property or its value. With some
components, double-clicking the component on the form also opens a property editor.

Property editors let you set complex properties from a single dialog box. They provide input validation and often let
you preview the results of an assignment.

1533

Setting Properties at Runtime
Any writable property can be set at runtime in your source code. For example, you can dynamically assign a caption
to a form:

[Delphi]
Form1.Caption := MyString;

[C++]
Form1->Caption = MyString;

Calling Methods
Methods are called just like ordinary procedures and functions. For example, visual controls have a Repaint method
that refreshes the control's image on the screen. You could call the Repaint method in a draw-grid object like this:

[Delphi]
DrawGrid1.Repaint;

[C++]
DrawGrid1->Repaint;

As with properties, the scope of a method name determines the need for qualifiers. If you want, for example, to
repaint a form within an event handler of one of the form's child controls, you don't have to prepend the name of the
form to the method call:

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
begin
 Repaint;
end;

[C++]
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Repaint;
}

For more information about scope, see Scope and Qualifiers.

Working with Events and Event Handlers
Almost all the code you write is executed, directly or indirectly, in response to events. An event is a special kind of
property that represents a runtime occurrence, often a user action. The code that responds directly to an event—
called an event handler—is a Delphi procedure. The sections that follow show how to:

Generate a new event handler.
Generate a handler for a component's default event.
Locate event handlers.
Associate an event with an existing event handler.
Associate menu events with event handlers.

1534

Delete event handlers.

Generating a New Event Handler
You can generate skeleton event handlers for forms and other components.

To create an event handler:
1 Select a component.
2 Click the Events tab in the Object Inspector. The Events page of the Object Inspector displays all events

defined for the component.
3 Select the event you want, then double-click the Value column or press Ctrl+Enter. The Code editor opens with

the cursor inside the skeleton event handler, or begin...end block.
4 At the cursor, type the code that you want to execute when the event occurs.

Generating a Handler for a Component's Default Event
Some components have a default event, which is the event the component most commonly needs to handle. For
example, a button's default event is OnClick. To create a default event handler, double-click the component in the
Form Designer; this generates a skeleton event-handling procedure and opens the Code editor with the cursor in
the body of the procedure, where you can easily add code.

Not all components have a default event. Some components, such as TBevel, don't respond to any events. Other
components respond differently when you double-click them in the Form Designer. For example, many components
open a default property editor or other dialog when they are double-clicked at design time.

Locating Event Handlers
If you generated a default event handler for a component by double-clicking it in the Form Designer, you can locate
that event handler in the same way. Double-click the component, and the Code editor opens with the cursor at the
beginning of the event-handler body.

To locate an event handler that's not the default:
1 In the form, select the component whose event handler you want to locate.
2 In the Object Inspector, click the Events tab.
3 Select the event whose handler you want to view and double-click in the Value column. The Code editor opens

with the cursor inside the skeleton event-handler.

Associating an Event with an Existing Event Handler
You can reuse code by writing event handlers that respond to more than one event. For example, many applications
provide speed buttons that are equivalent to drop-down menu commands. When a button initiates the same action
as a menu command, you can write a single event handler and assign it to both the button's and the menu item's
OnClick event.

1535

To associate an event with an existing event handler
1 On the form, select the component whose event you want to handle.
2 On the Events page of the Object Inspector, select the event to which you want to attach a handler.
3 Click the down arrow in the Value column next to the event to open a list of previously written event handlers.

(The list includes only event handlers written for events of the same name on the same form.) Select from the
list by clicking an event-handler name.

The previous procedure is an easy way to reuse event handlers. Action lists and in the VCL, action bands, however,
provide powerful tools for centrally organizing the code that responds to user commands. Action lists can be used
in cross-platform applications, whereas action bands cannot.

Using the Sender Parameter
In an event handler, the Sender parameter indicates which component received the event and therefore called the
handler. Sometimes it is useful to have several components share an event handler that behaves differently
depending on which component calls it. You can do this by using the Sender parameter in an if...then...else
statement. For example, the following code displays the title of the application in the caption of a dialog box only if
the OnClick event was received by Button1.

procedure TMainForm.Button1Click(Sender: TObject);
begin
if Sender = Button1 then
 AboutBox.Caption := 'About ' + Application.Title
else
 AboutBox.Caption := '';
AboutBox.ShowModal;
end;

Displaying and Coding Shared Events
When components share events, you can display their shared events in the Object Inspector. First, select the
components by holding down the Shift key and clicking on them in the Form Designer; then choose the Events tab
in the Object Inspector. From the Value column in the Object Inspector, you can now create a new event handler
for, or assign an existing event handler to, any of the shared events.

Associating Menu Events with Event Handlers
The Menu Designer, along with the MainMenu and PopupMenu components, make it easy to supply your application
with drop-down and pop-up menus. For the menus to work, however, each menu item must respond to the
OnClick event, which occurs whenever the user chooses the menu item or presses its accelerator or shortcut key.
This topic explains how to associate event handlers with menu items. For information about the Menu Designer and
related components, see Creating and managing menus.

To create an event handler for a menu item:
1 Open the Menu Designer by double-clicking on a MainMenu or PopupMenu component.
2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a value is assigned to the

item's Name property.
3 From the Menu Designer, double-click the menu item. The Code editor opens with the cursor inside the skeleton

event handler, or the begin...end block.

1536

4 At the cursor, type the code that you want to execute when the user selects the menu command.

To associate a menu item with an existing OnClick event handler:
1 Open the Menu Designer by double-clicking a MainMenu or PopupMenu component.
2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a value is assigned to the

item's Name property.
3 On the Events page of the Object Inspector, click the down arrow in the Value column next to OnClick to open

a list of previously written event handlers. (The list includes only event handlers written for OnClick events on
this form.) Select from the list by clicking an event handler name.

Deleting Event Handlers
When you delete a component from a form using the Form Designer, the Code editor removes the component from
the form's type declaration. It does not, however, delete any associated methods from the unit file, since these
methods may still be called by other components on the form. You can manually delete a method—such as an event
handler—but if you do so, be sure to delete both the method's forward declaration (in the unit's interface section)
and its implementation (in the implementation section). Otherwise you'll get a compiler error when you build your
project.

Cross-platform and Non-cross-platform Components
The Tool palette contains a selection of components that handle a wide variety of programming tasks. The
components are arranged in pages according to their purpose and functionality. For example, commonly used
components such as those to create menus, edit boxes, or buttons are located on the Standard page. Which pages
appear in the default configuration depends on the edition of the product you are running.

The following table lists typical default pages and components available for creating applications, including those
that are not cross-platform. You can use all CLX components in both Windows and Linux applications. You can use
some VCL-specific components in a Windows-only CLX application; however, the application is not cross-platform
unless you isolate these portions of the code.

Tool palette pages
Page name Description Cross-platform?

ActiveX Sample ActiveX controls; see
Microsoft documentation
(msdn.microsoft.com).

No

Additional Specialized controls. Yes, though for VCL applications only:
ApplicationEvents, ValueListEditor, ColorBox,
Chart, ActionManager, ActionMainMenuBar,
ActionToolBar, CustomizeDlg, and StaticText.

For CLX applications only: LCDNumber.

ADO Components that provide data access
through the ADO framework.

No

BDE Components that provide data access
through the Borland Database Engine.

No

COM+ Component for handling COM+
events.

No

1537

Data Access Components for working with
database data that are not tied to any
particular data access mechanism.

Yes, though for VCL applications only:
XMLTransform, XMLTransformProvider, and
XMLTransformClient.

Data Controls Visual, data-aware controls. Yes, though for VCL applications only:
DBRichEdit, DBCtrlGrid, and DBChart.

dbExpress Database controls that use
dbExpress, a cross-platform,
database-independent layer that
provides methods for dynamic SQL
processing. It defines a common
interface for accessing SQL servers.

Yes

DataSnap Components used for creating multi-
tiered database applications.

No

Decision Cube Data analysis components. No

Dialogs Commonly used dialog boxes. Yes, though for VCL applications only:
OpenPictureDialog, SavePictureDialog,
PrintDialog, and PrinterSetupDialog.

Indy Clients

Indy Servers

Indy Misc

Indy Intercepts

Indy I/O Handlers

Cross-platform Internet components
for the client and server (open source
Winshoes Internet components).

Yes

InterBase Components that provide direct
access to the InterBase database.

Yes

InterBaseAdmin Components that access InterBase
Services API calls.

Yes

Internet Components for Internet
communication protocols and Web
applications.

Yes

InternetExpress Components that are simultaneously
a Web server application and the client
of a multi-tiered database application.

Yes

Office2K COM Server examples for Microsoft
Excel, Word, and so on (see Microsoft
MSDN documentation).

No

IW Client Side

IW Control

IW Data

IW Standard

Components to build Web server
applications using IntraWeb.

No

Rave Components to design visual reports. No

Samples Sample custom components. No

Servers COM Server examples for Microsoft
Excel, Word, and so on (see Microsoft
MSDN documentation).

No

Standard Standard controls, menus. Yes

1538

System Components and controls for system-
level access, including timers,
multimedia, and DDE (VCL
applications).

Components for filtering and
displaying files (CLX applications).

The components are different between a VCL
and CLX application.

WebServices Components for writing applications
that implement or use SOAP-based
Web Services.

Yes

WebSnap Components for building Web server
applications.

Yes

Win 3.1 Old style Win 3.1 components. No

Win32 (VCL)/Common Controls
(CLX)

Common Windows controls. In CLX applications, the Common Controls
page replaces the Win32 page.

VCL applications only: RichEdit, UpDown,
HotKey, DataTimePicker, MonthCalendar,
CoolBar, PageScroller, and ComboBoxEx.

CLX applications only: TextViewer,
TextBrowser, SpinEdit, and IconView.

You can add, remove, and rearrange components on the palette, and you can create component templates and
frames that group several components.

For more information about the components on the Tool palette, see online Help. You can press F1 on the Tool
palette, on the component itself when it is selected, after it has been dropped onto a form, or anywhere on its name
in the Code editor. If a tab of the Tool palette is selected, the Help gives a general description for all of the
components on that tab. Some of the components on the ActiveX, Servers, and Samples pages, however, are
provided as examples only and are not documented.

Adding Custom Components to the Tool Palette
You can install custom components—written by yourself or third parties—on the Tool palette and use them in your
applications. To write a custom component, see Overview of component creation. To install an existing component,
see Installing component packages.

1539

Working with controls

Implementing Drag and Drop in Controls
Drag-and-drop is often a convenient way for users to manipulate objects. You can let users drag an entire control,
or let them drag items from one control—such as a list box or tree view—into another.

Starting a drag operation
Accepting dragged items
Dropping items
Ending a drag operation
Customizing drag and drop with a drag object
Changing the drag mouse pointer

Starting a Drag Operation
Every control has a property called DragMode that determines how drag operations are initiated. If DragMode is
dmAutomatic, dragging begins automatically when the user presses a mouse button with the cursor on the control.
Because dmAutomatic can interfere with normal mouse activity, you may want to set DragMode to dmManual (the
default) and start the dragging by handling mouse-down events.

To start dragging a control manually, call the control's BeginDrag method. BeginDrag takes a Boolean parameter
called Immediate and, optionally, an integer parameter called Threshold. If you pass True for Immediate, dragging
begins immediately. If you pass False, dragging does not begin until the user moves the mouse the number of pixels
specified by Threshold. Calling

[Delphi]
BeginDrag (False);

[C++]
false, -1

allows the control to accept mouse clicks without beginning a drag operation.

You can place other conditions on whether to begin dragging, such as checking which mouse button the user
pressed, by testing the parameters of the mouse-down event before calling BeginDrag. The following code, for
example, handles a mouse-down event in a file list box by initiating a drag operation only if the left mouse button
was pressed.

1540

[Delphi]
procedure TFMForm.FileListBox1MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 if Button = mbLeft then { drag only if left button pressed }
 with Sender as TFileListBox do { treat Sender as TFileListBox }
 begin
 if ItemAtPos(Point(X, Y), True) >= 0 then { is there an item here? }
 BeginDrag(False); { if so, drag it }
 end;
end;

[C++]
void __fastcall TFMForm::FileListBox1MouseDown(TObject *Sender,
{
 if (Button == mbLeft)
 {
 TFileListBox *pLB = dynamic_cast<TFileListBox *>(Sender); // cast to TFileListBox
 if (pLB && pLB->ItemAtPos(Point(X,Y), true) >= 0) // is there an item here?
 pLB->BeginDrag(false, -1); // if so, drag it
 }
}

Accepting Dragged Items
When the user drags something over a control, that control receives an OnDragOver event, at which time it must
indicate whether it can accept the item if the user drops it there. The drag cursor changes to indicate whether the
control can accept the dragged item. To accept items dragged over a control, attach an event handler to the control's
OnDragOver event.

The drag-over event has a parameter called Accept that the event handler can set to True if it will accept the
item. Accept changes the cursor type to an accept cursor or not.

The drag-over event has other parameters, including the source of the dragging and the current location of the mouse
cursor, that the event handler can use to determine whether to accept the drag. In the following VCL example, a
directory tree view accepts dragged items only if they come from a file list box.

[Delphi]
procedure TFMForm.DirectoryOutline1DragOver(Sender, Source: TObject; X,
 Y: Integer; State: TDragState; var Accept: Boolean);
begin
 if Source is TFileListBox then
 Accept := True
 else
 Accept := False;
end;

[C++]
void __fastcall TForm1::TreeView1DragOver(TObject *Sender, TObject *Source,
 int X, int Y, TDragState State, bool &Accept)
{
 if (Source->InheritsFrom(__classid(TFileListBox)))
}

1541

Dropping Items
If a control indicates that it can accept a dragged item, it needs to handle the item should it be dropped. To handle
dropped items, attach an event handler to the OnDragDrop event of the control accepting the drop. Like the drag-
over event, the drag-and-drop event indicates the source of the dragged item and the coordinates of the mouse
cursor over the accepting control. The latter parameter allows you to monitor the path an item takes while being
dragged; you might, for example, want to use this information to change the color of components if an item is dropped.

In the following VCL example, a directory tree view, accepting items dragged from a file list box, responds by moving
files to the directory on which they are dropped.

[Delphi]
procedure TFMForm.DirectoryOutline1DragDrop(Sender, Source: TObject; X,
 Y: Integer);
begin
 if Source is TFileListBox then
 with DirectoryOutline1 do
 ConfirmChange('Move', FileListBox1.FileName, Items[GetItem(X, Y)].FullPath);
end;

[C++]
void __fastcall TForm1::TreeView1DragDrop(TObject *Sender, TObject *Source,
 if (Source->InheritsFrom(__classid(TFileListBox)))
 {
 TTreeNode *pNode = TreeView1->GetNodeAt(X,Y); // pNode is drop target
 AnsiString NewFile = pNode->Text + AnsiString("//") +
 ExtractFileName(FileListBox1->FileName); // build file name for drop target
 MoveFileEx(FileListBox1->FileName.c_str(), NewFile.c_str(),
 MOVEFILE_REPLACE_EXISTING | MOVEFILE_COPY_ALLOWED); // move the file
 }
}

Ending a Drag Operation
A drag operation ends when the item is either successfully dropped or released over a control that cannot accept it.
At this point an end-drag event is sent to the control from which the drag was initiated. To enable a control to respond
when items have been dragged from it, attach an event handler to the control's OnEndDrag event.

The most important parameter in an OnEndDrag event is called Target, which indicates which control, if any, accepts
the drop. If Target is nil, it means no control accepts the dragged item. The OnEndDrag event also includes the
coordinates on the receiving control.

In the following VCL example, a file list box handles an end-drag event by refreshing its file list.

[Delphi]
procedure TFMForm.FileListBox1EndDrag(Sender, Target: TObject; X, Y: Integer);
begin
 if Target <> nil then FileListBox1.Update;
end;

1542

[C++]
void __fastcall TFMForm::FileListBox1EndDrag(TObject *Sender, TObject *Target, int X, int
Y)
 if (Target)
 FileListBox1->Update();
};

Customizing Drag and Drop with a Drag Object
You can use a TDragObject descendant to customize an object's drag-and-drop behavior. The standard drag-over
and drag-and-drop events indicate the source of the dragged item and the coordinates of the mouse cursor over the
accepting control. To get additional state information, derive a custom drag object from TDragObject or
TDragObjectEx (VCL only) and override its virtual methods. Create the custom drag object in the OnStartDrag event.

Normally, the source parameter of the drag-over and drag-and-drop events is the control that starts the drag
operation. If different kinds of control can start an operation involving the same kind of data, the source needs to
support each kind of control. When you use a descendant of TDragObject, however, the source is the drag object
itself; if each control creates the same kind of drag object in its OnStartDrag event, the target needs to handle only
one kind of object. The drag-over and drag-and-drop events can tell if the source is a drag object, as opposed to the
control, by calling the IsDragObject function.

TDragObjectEx descendants (VCL only) are freed automatically whereas descendants of TDragObject are not. If
you have TDragObject descendants that you are not explicitly freeing, you can change them so they descend from
TDragObjectEx instead to prevent memory loss.

Drag objects let you drag items between a form implemented in the application's main executable file and a form
implemented using a DLL, or between forms that are implemented using different DLLs.

Changing the Drag Mouse Pointer
You can customize the appearance of the mouse pointer during drag operations by setting the source component's
DragCursor property (VCL only).

Implementing Drag and Dock in Controls
Descendants of TWinControl can act as docking sites and descendants of TControl can act as child windows that
are docked into docking sites. For example, to provide a docking site at the left edge of a form window, align a panel
to the left edge of the form and make the panel a docking site. When dockable controls are dragged to the panel
and released, they become child controls of the panel.

Making a windowed control a docking site
Making a control a dockable child
Controlling how child controls are docked
Controlling how child controls are undocked
Controlling how child controls respond to drag-and-dock operations

Note: Drag-and-dock properties are not available in CLX applications.

1543

Making a Windowed Control a Docking Site

To make a windowed control a docking site:
1 Set the DockSite property to True.
2 If the dock site object should not appear except when it contains a docked client, set its AutoSize property to

True. When AutoSize is True, the dock site is sized to 0 until it accepts a child control for docking. Then it resizes
to fit around the child control.

Note: Drag-and-dock properties are not available in CLX applications.

Making a Control a Dockable Child

To make a control a dockable child:
1 Set its DragKind property to dkDock. When DragKind is dkDock, dragging the control moves the control to a new

docking site or undocks the control so that it becomes a floating window. When DragKind is dkDrag (the default),
dragging the control starts a drag-and-drop operation which must be implemented using the OnDragOver,
OnEndDrag, and OnDragDrop events.

2 Set its DragMode to dmAutomatic. When DragMode is dmAutomatic, dragging (for drag-and-drop or docking,
depending on DragKind) is initiated automatically when the user starts dragging the control with the mouse. When
DragMode is dmManual, you can still begin a drag-and-dock (or drag-and-drop) operation by calling the
BeginDrag method.

3 Set its FloatingDockSiteClass property to indicate the TWinControl descendant that should host the control when
it is undocked and left as a floating window. When the control is released and not over a docking site, a windowed
control of this class is created dynamically, and becomes the parent of the dockable child. If the dockable child
control is a descendant of TWinControl, it is not necessary to create a separate floating dock site to host the
control, although you may want to specify a form in order to get a border and title bar. To omit a dynamic container
window, set FloatingDockSiteClass to the same class as the control, and it will become a floating window with
no parent.

Note: Drag-and-dock properties are not available in CLX applications.

Controlling How Child Controls Are Docked
A docking site automatically accepts child controls when they are released over the docking site. For most controls,
the first child is docked to fill the client area, the second splits that into separate regions, and so on. Page controls
dock children into new tab sheets (or merge in the tab sheets if the child is another page control).

Three events allow docking sites to further constrain how child controls are docked:

[Delphi]
property OnGetSiteInfo: TGetSiteInfoEvent;
TGetSiteInfoEvent = procedure(Sender: TObject; DockClient: TControl; var InfluenceRect:
TRect; var CanDock: Boolean) of object;

[C++]
__property TGetSiteInfoEvent OnGetSiteInfo = {read=FOnGetSiteInfo, write=FOnGetSiteInfo};

1544

typedef void __fastcall (__closure *TGetSiteInfoEvent)(System::TObject* Sender, TControl*
DockClient, Windows::TRect &InfluenceRect, const Windows::TPoint &MousePos, bool &CanDock);

OnGetSiteInfo occurs on the docking site when the user drags a dockable child over the control. It allows the site to
indicate whether it will accept the control specified by the DockClient parameter as a child, and if so, where the child
must be to be considered for docking. When OnGetSiteInfo occurs, InfluenceRect is initialized to the screen
coordinates of the docking site, and CanDock is initialized to True. A more limited docking region can be created by
changing InfluenceRect and the child can be rejected by setting CanDock to False.

[Delphi]
property OnDockOver: TDockOverEvent;
TDockOverEvent = procedure(Sender: TObject; Source: TDragDockObject; X, Y: Integer; State:
TDragState; var Accept: Boolean) of object;

[C++]
__property TDockOverEvent OnDockOver = {read=FOnDockOver, write=FOnDockOver};
typedef void __fastcall (__closure *TDockOverEvent)(System::TObject* Sender,
TDragDockObject* Source, int X, int Y, TDragState State, bool &Accept);

OnDockOver occurs on the docking site when the user drags a dockable child over the control. It is analogous to
the OnDragOver event in a drag-and-drop operation. Use it to signal that the child can be released for docking, by
setting the Accept parameter. If the dockable control is rejected by the OnGetSiteInfo event handler (perhaps
because it is the wrong type of control), OnDockOver does not occur.

[Delphi]
property OnDockDrop: TDockDropEvent;
TDockDropEvent = procedure(Sender: TObject; Source: TDragDockObject; X, Y: Integer) of
object;

[C++]
__property TDockDropEvent OnDockDrop = {read=FOnDockDrop, write=FOnDockDrop};
typedef void __fastcall (__closure *TDockDropEvent)(System::TObject* Sender,
TDragDockObject* Source, int X, int Y);

OnDockDrop occurs on the docking site when the user releases the dockable child over the control. It is analogous
to the OnDragDrop event in a normal drag-and-drop operation. Use this event to perform any necessary
accommodations to accepting the control as a child control. Access to the child control can be obtained using the
Control property of the TDockObject specified by the Source parameter.

Note: Drag-and-dock properties are not available in CLX applications.

Controlling How Child Controls Are Undocked
A docking site automatically allows child controls to be undocked when they are dragged and have a DragMode
property of dmAutomatic. Docking sites can respond when child controls are dragged off, and even prevent the
undocking, in an OnUnDock event handler:

[Delphi]
property OnUnDock: TUnDockEvent;
TUnDockEvent = procedure(Sender: TObject; Client: TControl; var Allow: Boolean) of object;

1545

[C++]
__property TUnDockEvent OnUnDock = {read=FOnUnDock, write=FOnUnDock};
typedef void __fastcall (__closure *TUnDockEvent)(System::TObject* Sender, TControl*
Client, TWinControl* NewTarget, bool &Allow);

The Client parameter indicates the child control that is trying to undock, and the Allow parameter lets the docking
site (Sender) reject the undocking. When implementing an OnUnDock event handler, it can be useful to know what
other children (if any) are currently docked. This information is available in the read-only DockClients property, which
is an indexed array of TControl. The number of dock clients is given by the read-only DockClientCount property.

Note: Drag-and-dock properties are not available in CLX applications.

Controlling How Child Controls Respond to Drag-and-dock Operations
Dockable child controls have two events that occur during drag-and-dock operations: OnStartDock, analogous to
the OnStartDrag event of a drag-and-drop operation, allows the dockable child control to create a custom drag object.
OnEndDock, like OnEndDrag, occurs when the dragging terminates.

Note: Drag-and-dock properties are not available in CLX applications.

Working with Text in Controls
The following topics how to use various features of rich edit and memo controls. Some of these features work with
edit controls as well.

Setting text alignment
Adding scrollbars at runtime
Adding the clipboard object
Selecting text
Selecting all text
Cutting, copying, and pasting text
Deleting selected text
Disabling menu items
Providing a pop-up menu
Handling the OnPopup event

Setting Text Alignment
In a rich edit or memo component, text can be left- or right-aligned or centered. To change text alignment, set the
edit component's Alignment property. Alignment takes effect only if the WordWrap property is True; if word wrapping
is turned off, there is no margin to align to.

For example, the following code attaches an OnClick event handler to a Character Left menu item, then attaches
the same event handler to both a Character Right and Character Center menu item.

[Delphi]
procedure TForm.AlignClick(Sender: TObject);
begin

1546

 Left1.Checked := False; { clear all three checks }
 Right1.Checked := False;
 Center1.Checked := False;
 with Sender as TMenuItem do Checked := True; { check the item clicked }
 with Editor do { then set Alignment to match }
 if Left1.Checked then
 Alignment := taLeftJustify
 else if Right1.Checked then
 Alignment := taRightJustify
 else if Center1.Checked then
 Alignment := taCenter;
end;

[C++]
switch(reinterpret_cast<int>(RichEdit1->Paragraph->Alignment))
{
 case 0: LeftAlign->Down = true; break;
 case 1: RightAlign->Down = true; break;
 case 2: CenterAlign->Down = true; break;
}

You can also use the HMargin property to adjust the left and right margins in a memo control.

Adding Scroll Bars at Runtime
Rich edit and memo components can contain horizontal or vertical scroll bars, or both, as needed. When word
wrapping is enabled, the component needs only a vertical scroll bar. If the user turns off word wrapping, the
component might also need a horizontal scroll bar, since text is not limited by the right side of the editor.

To add scroll bars at runtime:
1 Determine whether the text might exceed the right margin. In most cases, this means checking whether word

wrapping is enabled. You might also check whether any text lines actually exceed the width of the control.
2 Set the rich edit or memo component's ScrollBars property to include or exclude scroll bars.

The following example attaches an OnClick event handler to a Character WordWrap menu item.

[Delphi]
procedure TForm.WordWrap1Click(Sender: TObject);
begin
 with Editor do
 begin
 WordWrap := not WordWrap; { toggle word wrapping }
 if WordWrap then
 ScrollBars := ssVertical { wrapped requires only vertical }
 else
 ScrollBars := ssBoth; { unwrapped might need both }
 WordWrap1.Checked := WordWrap; { check menu item to match property }
 end;
end;

[C++]
void __fastcall TForm::WordWrap1Click(TObject *Sender)
{
 Editor->WordWrap = !(Editor->WordWrap); // toggle word wrapping

1547

 if (Editor->WordWrap)
 Editor->ScrollBars = ssVertical; // wrapped requires only vertical
 else
 Editor->ScrollBars = ssBoth; // unwrapped can need both
 WordWrap1->Checked = Editor->WordWrap; // check menu item to match property
}

The rich edit and memo components handle their scroll bars in a slightly different way. The rich edit component can
hide its scroll bars if the text fits inside the bounds of the component. The memo always shows scroll bars if they
are enabled.

Adding the Clipboard Object
Most text-handling applications provide users with a way to move selected text between documents, including
documents in different applications. TClipboard object encapsulates a clipboard (such as the Windows Clipboard)
and includes methods for cutting, copying, and pasting text (and other formats, including graphics). The Clipboard
object is declared in the Clipbrd unit.

To add the Clipboard object to an application:
1 Select the unit that will use the clipboard.
2 Search for the implementation reserved word.
3 Add Clipbrd to the uses clause below implementation.

If there is already a uses clause in the implementation part, add Clipbrd to the end of it.
If there is not already a uses clause, add one that says

[Delphi]
 uses Clipbrd;

[C++]
#include <vcl\Clipbrd.hpp>

For example, in an application with a child window, the uses clause in the unit's implementation part might look like
this:

[Delphi]
uses
 MDIFrame, Clipbrd;

Selecting Text
For text in an edit control, before you can send any text to the clipboard, that text must be selected. Highlighting of
selected text is built into the edit components. When the user selects text, it appears highlighted.

The table below lists properties commonly used to handle selected text.

Properties of selected text

1548

Property Description

SelText Contains a string representing the selected text in the component.

SelLength Contains the length of a selected string.

SelStart Contains the starting position of a string relative to the beginning of an edit control's text buffer.

For example, the following OnFind event handler searches a Memo component for the text specified in the
FindText property of a find dialog component. If found, the first occurrence of the text in Memo1 is selected.

procedure TForm1.FindDialog1Find(Sender: TObject);
var
I, J, PosReturn, SkipChars: Integer;
begin
for I := 0 to Memo1.Lines.Count do
begin
PosReturn := Pos(FindDialog1.FindText,Memo1.Lines[I]);
if PosReturn <> 0 then {found!}
begin
Skipchars := 0;
for J := 0 to I - 1 do
Skipchars := Skipchars + Length(Memo1.Lines[J]);
SkipChars := SkipChars + (I*2);
SkipChars := SkipChars + PosReturn - 1;
 Memo1.SetFocus;
Memo1.SelStart := SkipChars;
Memo1.SelLength := Length(FindDialog1.FindText);
Break;
end;
end;
end;

Selecting All Text
The SelectAll method selects the entire contents of an edit control, such as a rich edit or memo component. This is
especially useful when the component's contents exceed the visible area of the component. In most other cases,
users select text with either keystrokes or mouse dragging.

To select the entire contents of a rich edit or memo control, call the RichEdit1 control's SelectAll method.

For example:

[Delphi]
procedure TMainForm.SelectAll(Sender: TObject);
begin
 RichEdit1.SelectAll; { select all text in RichEdit }
end;

[C++]
void __fastcall TMainForm::SelectAll(TObject *Sender)
{
 RichEdit1->SelectAll(); // select all text in RichEdit
}

1549

Cutting, Copying, and Pasting Text
Applications that use the Clipbrd unit can cut, copy, and paste text, graphics, and objects through the clipboard. The
edit components that encapsulate the standard text-handling controls all have methods built into them for interacting
with the clipboard.

To cut, copy, or paste text with the clipboard, call the edit component's CutToClipboard, CopyToClipboard, and
PasteFromClipboard methods, respectively.

For example, the following code attaches event handlers to the OnClick events of the Edit Cut, Edit Copy,
and Edit Paste commands, respectively:

[Delphi]
procedure TEditForm.CutToClipboard(Sender: TObject);
begin
 Editor.CutToClipboard;
end;
procedure TEditForm.CopyToClipboard(Sender: TObject);
begin
 Editor.CopyToClipboard;
end;
procedure TEditForm.PasteFromClipboard(Sender: TObject);
begin
 Editor.PasteFromClipboard;
end;

[C++]
void __fastcall TMainForm::EditCutClick(TObject* Sender)
{ RichEdit1->CutToClipboard();
}
void __fastcall TMainForm::EditCopyClick(TObject* Sender)
{ RichEdit1->CopyToClipboard();
}
void __fastcall TMainForm::EditPasteClick(TObject* Sender)
{ RichEdit1->PasteFromClipboard();
}

Deleting Selected Text
You can delete the selected text in an edit component without cutting it to the clipboard. To do so, call the
ClearSelection method. For example, if you have a Delete item on the Edit menu, your code could look like this:

[Delphi]
procedure TEditForm.Delete(Sender: TObject);
begin
 RichEdit1.ClearSelection;
end;

[C++]
void __fastcall TMainForm::EditDeleteClick(TObject *Sender)
{
 RichEdit1->ClearSelection();
}

1550

Disabling Menu Items
It is often useful to disable menu commands without removing them from the menu. For example, in a text editor, if
there is no text currently selected, the Cut, Copy, and Delete commands are inapplicable. An appropriate time to
enable or disable menu items is when the user selects the menu. To disable a menu item, set its Enabled property
to False.

In the following example, an event handler is attached to the OnClick event for the Edit item on a child form's menu
bar. It sets Enabled for the Cut, Copy, and Delete menu items on the Edit menu based on whether RichEdit1 has
selected text. The Paste command is enabled or disabled based on whether any text exists on the clipboard.

[Delphi]
procedure TEditForm.Edit1Click(Sender: TObject);
var
 HasSelection: Boolean; { declare a temporary variable }
begin
 Paste1.Enabled := Clipboard.HasFormat(CF_TEXT); {enable or disable the
Paste menu item}
 HasSelection := Editor.SelLength > 0; { True if text is selected }
 Cut1.Enabled := HasSelection; { enable menu items if HasSelection is True }
 Copy1.Enabled := HasSelection;
 Delete1.Enabled := HasSelection;
end;

[C++]
void __fastcall TMainForm::EditEditClick(TObject *Sender)
{
 // enable or disable the Paste menu item
 Paste1->Enabled = Clipboard()->HasFormat(CF_TEXT);
 bool HasSelection = (RichEdit1->SelLength > 0); // true if text is selected
 Cut1->Enabled = HasSelection; // enable menu items if HasSelection is true
 Copy1->Enabled = HasSelection;
 Delete1->Enabled = HasSelection;
}

The HasFormat method (Provides method in CLX applications) of the clipboard returns a Boolean value based on
whether the clipboard contains objects, text, or images of a particular format. By calling HasFormat with the
parameter CF_TEXT, you can determine whether the clipboard contains any text, and enable or disable the Paste
item as appropriate.

Note: In CLX applications, use the Provides method. In this case, the text is generic. You can specify the type of
text using a subtype such as text/plain for plain text or text/html for html.

Providing a Pop-up Menu
Pop-up, or local, menus are a common ease-of-use feature for any application. They enable users to minimize mouse
movement by clicking the right mouse button in the application workspace to access a list of frequently used
commands.

In a text editor application, for example, you can add a pop-up menu that repeats the Cut, Copy, and Paste editing
commands. These pop-up menu items can use the same event handlers as the corresponding items on the Edit
menu. You don't need to create accelerator or shortcut keys for pop-up menus because the corresponding regular
menu items generally already have shortcuts.

A form's PopupMenu property specifies what pop-up menu to display when a user right-clicks any item on the form.
Individual controls also have PopupMenu properties that can override the form's property, allowing customized
menus for particular controls.

1551

To add a pop-up menu to a form:
1 Place a pop-up menu component on the form.
2 Use the Menu Designer to define the items for the pop-up menu.
3 Set the PopupMenu property of the form or control that displays the menu to the name of the pop-up menu

component.
4 Attach handlers to the OnClick events of the pop-up menu items.

Handling the OnPopup Event
You may want to adjust pop-up menu items before displaying the menu, just as you may want to enable or disable
items on a regular menu. With a regular menu, you can handle the OnClick event for the item at the top of the menu.

With a pop-up menu, however, there is no top-level menu bar, so to prepare the pop-up menu commands, you handle
the event in the menu component itself. The pop-up menu component provides an event just for this purpose, called
OnPopup.

To adjust menu items on a pop-up menu before displaying them:
1 Select the pop-up menu component.
2 Attach an event handler to its OnPopup event.
3 Write code in the event handler to enable, disable, hide, or show menu items.

In the following code, the Edit1Click event handler described previously in Disabling menu items is attached to the
pop-up menu component's OnPopup event. A line of code is added to Edit1Click for each item in the pop-up menu.

[Delphi]
procedure TEditForm.Edit1Click(Sender: TObject);
var
 HasSelection: Boolean;
begin
 Paste1.Enabled := Clipboard.HasFormat(CF_TEXT);
 Paste2.Enabled := Paste1.Enabled;{Add this line}
 HasSelection := Editor.SelLength <> 0;
 Cut1.Enabled := HasSelection;
 Cut2.Enabled := HasSelection;{Add this line}
 Copy1.Enabled := HasSelection;
 Copy2.Enabled := HasSelection;{Add this line}
 Delete1.Enabled := HasSelection;
end;

[C++]
void __fastcall TMainForm::EditEditClick(TObject *Sender)
{
 // enable or disable the Paste menu item
 Paste1->Enabled = Clipboard()->HasFormat(CF_TEXT);
 Paste2->Enabled = Paste1->Enabled; // add this line
 bool HasSelection = (RichEdit1->SelLength > 0); // true if text is selected
 Cut1->Enabled = HasSelection; // enable menu items if HasSelection is true
 Cut2->Enabled = HasSelection; // add this line
 Copy1->Enabled = HasSelection;
 Copy2->Enabled = HasSelection; // add this line

1552

 Delete1->Enabled = HasSelection;
}

Adding Graphics to Controls
Several controls let you customize the way the control is rendered. These include list boxes, combo boxes, menus,
headers, tab controls, list views, status bars, tree views, and toolbars. Instead of using the standard method of
drawing a control or its items, the control's owner (generally, the form) draws them at runtime. The most common
use for owner-draw controls is to provide graphics instead of, or in addition to, text for items. For information on using
owner-draw to add images to menus, see Adding images to menu items..

All owner-draw controls contain lists of items. Usually, those lists are lists of strings that are displayed as text, or
lists of objects that contain strings that are displayed as text. You can associate an object with each item in the list
to make it easy to use that object when drawing items.

To create an owner-draw control:
1 Indicating that a control is owner-drawn.
2 Adding graphical objects to a string list.
3 Drawing owner-drawn items.

Indicating That a Control Is Owner-drawn
To customize the drawing of a control, you must supply event handlers that render the control's image when it needs
to be painted. Some controls receive these events automatically. For example, list views, tree views, and toolbars
all receive events at various stages in the drawing process without your having to set any properties. These events
have names such as OnCustomDraw or OnAdvancedCustomDraw.

Other controls, however, require you to set a property before they receive owner-draw events. List boxes, combo
boxes, header controls, and status bars have a property called Style. Style determines whether the control uses the
default drawing (called the "standard" style) or owner drawing. Grids use a property called DefaultDrawing to enable
or disable the default drawing. List views and tab controls have a property called OwnerDraw that enables or disabled
the default drawing.

List boxes and combo boxes have additional owner-draw styles, called fixed and variable, as the following table
describes. Other controls are always fixed, although the size of the item that contains the text may vary, the size of
each item is determined before drawing the control.

Fixed vs. variable owner-draw styles
Owner-draw style Meaning Examples

Fixed Each item is the same height, with that height determined
by the ItemHeight property.

lbOwnerDrawFixed,csOwnerDrawFixed

Variable Each item might have a different height, determined by the
data at runtime.

lbOwnerDrawVariable, csOwnerDrawVariable

Adding Graphical Objects to a String List
Every string list has the ability to hold a list of objects in addition to its list of strings. You can also add graphical
objects of varying sizes to a string list.

1553

For example, in a file manager application, you may want to add bitmaps indicating the type of drive along with the
letter of the drive. To do that, you need to add the bitmap images to the application, then copy those images into the
proper places in the string list as described in the following sections.

Note that you can also organize graphical objects using an image list by creating a TImageList. However, these
images must all be the same size. See Adding images to menu items for an example of setting up an image list.

Adding Images to an Application
An image control is a nonvisual control that contains a graphical image, such as a bitmap. You use image controls
to display graphical images on a form. You can also use them to hold hidden images that you'll use in your application.
For example,

To store bitmaps for owner-draw controls in hidden image controls:
1 Add image controls to the main form.
2 Set their Name properties.
3 Set the Visible property for each image control to False.
4 Set the Picture property of each image to the desired bitmap using the Picture editor from the Object Inspector.

The image controls are invisible when you run the application. The image is stored with the form so it doesn't have
to be loaded from a file at runtime.

Adding Images to a String List
Once you have graphical images in an application, you can associate them with the strings in a string list. You can
either add the objects at the same time as the strings, or associate objects with existing strings. The preferred method
is to add objects and strings at the same time, if all the needed data is available.

The following example shows how you might want to add images to a string list. This is part of a file manager
application where, along with a letter for each valid drive, it adds a bitmap indicating each drive's type. The
OnCreate event handler looks like this:

[Delphi]
procedure TFMForm.FormCreate(Sender: TObject);
var
 Drive: Char;
 AddedIndex: Integer;
begin
 for Drive := 'A' to 'Z' do { iterate through all possible drives }
 begin
 case GetDriveType(Drive + ':/') of { positive values mean valid drives }
 DRIVE_REMOVABLE: { add a tab }
 AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Floppy.Picture.Graphic);
 DRIVE_FIXED: { add a tab }
 AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Fixed.Picture.Graphic);
 DRIVE_REMOTE: { add a tab }
 AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Network.Picture.Graphic);
 end;
 if UpCase(Drive) = UpCase(DirectoryOutline.Drive) then { current drive? }
 DriveTabSet.TabIndex := AddedIndex; { then make that current tab }
 end;
end;

1554

[C++]
void __fastcall TFMForm::FormCreate(TObject *Sender)
{
 int AddedIndex;
 char DriveName[4] = "A:\\";
 for (char Drive = "A"; Drive <= "Z"; Drive++) // try all possible drives
 {
 DriveName[0] = Drive;
 switch (GetDriveType(DriveName))
 {
 case DRIVE_REMOVABLE:
 DriveName[1] = "\0"; // temporarily make drive letter into string
 AddedIndex = DriveList->Items->AddObject(DriveName,
 Floppy->Picture->Graphic);
 DriveName[1] = ":" // replace the colon
 break;
 case DRIVE_FIXED:
 DriveName[1] = "\0"; // temporarily make drive letter into string
 AddedIndex = DriveList->Items->AddObject(DriveName,
 Fixed->Picture->Graphic);
 DriveName[1] = ":" // replace the colon
 break;
 case DRIVE_REMOTE:
 DriveName[1] = "\0"; // temporarily make drive letter into string
 AddedIndex = DriveList->Items->AddObject(DriveName,
 Network->Picture->Graphic);
 DriveName[1] = ":" // replace the colon
 break;
 }
 if ((reinterpret_cast<int>(Drive - "A")) == getdisk()) // current drive?
 DriveList->ItemIndex = AddedIndex; // then make that the current list item
 }
}

Drawing Owner-drawn Items
When you indicate that a control is owner-drawn, either by setting a property or supplying a custom draw event
handler, the control is no longer drawn on the screen. Instead, the operating system generates events for each visible
item in the control. Your application handles the events to draw the items.

To draw the items in an owner-draw control, do the following for each visible item in the
control. Use a single event handler for all items.
1 Size the item, if needed.

Items of the same size (for example, with a list box style of lsOwnerDrawFixed), do not require sizing.

2 Draw the item.

Sizing Owner-draw Items
Before giving your application the chance to draw each item in a variable owner-draw control, the control receives
a measure-item event, which is of type TMeasureItemEvent. TMeasureItemEvent tells the application where the
item appears on the control.

1555

Delphi determines the size of the item (generally, it is just large enough to display the item's text in the current font).
Your application can handle the event and change the rectangle chosen. For example, if you plan to substitute a
bitmap for the item's text, change the rectangle to the size of the bitmap. If you want a bitmap and text, adjust the
rectangle to be large enough for both.

To change the size of an owner-draw item, attach an event handler to the measure-item event in the owner-draw
control. Depending on the control, the name of the event can vary. List boxes and combo boxes use
OnMeasureItem. Grids have no measure-item event.

The sizing event has two important parameters: the index number of the item and the height of that item. The height
is variable: the application can make it either smaller or larger. The positions of subsequent items depend on the
size of preceding items.

For example, in a variable owner-draw list box, if the application sets the height of the first item to five pixels, the
second item starts at the sixth pixel down from the top, and so on. In list boxes and combo boxes, the only aspect
of the item the application can alter is the height of the item. The width of the item is always the width of the control.

Owner-draw grids cannot change the sizes of their cells as they draw. The size of each row and column is set before
drawing by the ColWidths and RowHeights properties.

The following code, attached to the OnMeasureItem event of an owner-draw list box, increases the height of each
list item to accommodate its associated bitmap.

[Delphi]
procedure TFMForm.ListBox1MeasureItem(Control: TWinControl; Index: Integer;
 var Height: Integer); { note that Height is a var parameter}
var
 BitmapHeight: Integer;
begin
 BitmapHeight := TBitmap(ListBox1.Items.Objects[Index]).Height;
 { make sure the item height has enough room, plus two }
 Height := Max(Height, Bitmap Height +2);
end;

[C++]
void __fastcall TForm1::ListBox1MeasureItem(TWinControl *Control, int Index,
 int &Height) // note that Height is passed by reference
{
 int BitmapHeight = (dynamic_cast<TBitmap *>(ListBox1->Items->Objects[Index]))->Height + 2;
 // make sure list item has enough room for bitmap (plus two)
 Height = Max(Height, Bitmap Height +2);
}

Note: You must typecast the items from the Objects property in the string list. Objects is a property of type
TObject so that it can hold any kind of object. When you retrieve objects from the array, you need to typecast
them back to the actual type of the items.

Drawing Owner-draw Items
When an application needs to draw or redraw an owner-draw control, the operating system generates draw-item
events for each visible item in the control. Depending on the control, the item may also receive draw events for the
item as a part of the item.

To draw each item in an owner-draw control, attach an event handler to the draw-item event for that control.

The names of events for owner drawing typically start with one of the following:

OnDraw, such as OnDrawItem or OnDrawCell

1556

OnCustomDraw, such as OnCustomDrawItem
OnAdvancedCustomDraw, such as OnAdvancedCustomDrawItem

The draw-item event contains parameters identifying the item to draw, the rectangle in which to draw, and usually
some information about the state of the item (such as whether the item has focus). The application handles each
event by rendering the appropriate item in the given rectangle.

For example, the following code shows how to draw items in a list box that has bitmaps associated with each string.
It attaches this handler to the OnDrawItem event for the list box:

[Delphi]
procedure TFMForm.DriveTabSetDrawTab(Sender: TObject; TabCanvas: TCanvas;
 R: TRect; Index: Integer; Selected: Boolean);
var
 Bitmap: TBitmap;
begin
 Bitmap := TBitmap(DriveTabSet.Tabs.Objects[Index]);
 with TabCanvas do
 begin
 Draw(R.Left, R.Top + 4, Bitmap); { draw bitmap }
 TextOut(R.Left + 2 + Bitmap.Width, { position text }
 R.Top + 2, DriveTabSet.Tabs[Index]); { and draw it to the right of the bitmap }
 end;
end;

[C++]
void __fastcall TForm1::ListBox1DrawItem(TWinControl *Control, int Index,
 TRect &Rect, TOwnerDrawState State)
 TBitmap *Bitmap = (TBitmap *)ListBox1->Items->Objects[Index];
 ListBox1->Canvas->Draw(R.Left, R.Top + 2, Bitmap); // draw the bitmap
 ListBox1->Canvas->TextOut(R.Left + Bitmap->Width + 2, R.Top + 2,
 ListBox1->Items->Strings[Index]); // and write the text to its right
}

1557

Building applications, components, and
libraries

Creating Applications
The most common types of applications you can design and build are:

GUI applications
Console applications
Service applications
Packages and DLLs

GUI applications generally have an easy-to-use interface. Console applications run from a console window. Service
applications are run as Windows services. These types of applications compile as executables with start-up code.

You can create other types of projects such as packages and DLLs that result in creating packages or dynamically
linkable libraries. These applications produce executable code without start-up code. Refer to Creating packages
and DLLs.

GUI Applications
A graphical user interface (GUI) application is one that is designed using graphical features such as windows, menus,
dialog boxes, and features that make the application easy to use. When you compile a GUI application, an executable
file with start-up code is created. The executable usually provides the basic functionality of your program, and simple
programs often consist of only an executable file. You can extend the application by calling DLLs, packages, and
other support files from the executable.

The IDE offers two application UI models:

Single document interface (SDI)
Multiple document interface (MDI)

In addition to the implementation model of your applications, the design-time behavior of your project and the runtime
behavior of your application can be manipulated by setting project options in the IDE.

User Interface Models
Any form can be implemented as a single document interface (SDI) or multiple document interface (MDI) form. An
SDI application normally contains a single document view. In an MDI application, more than one document or child

1558

window can be opened within a single parent window. This is common in applications such as spreadsheets or word
processors.

For more information on developing the UI for an application, see Developing the application user interface.

SDI Applications

To create a new SDI application:
1 Choose File New Other to bring up the New Items dialog.
2 Click on the Projects page and double-click SDI Application.
3 Click OK.

By default, the FormStyle property of your Form object is set to fsNormal, so that the IDE assumes that all new
applications are SDI applications.

MDI Applications

To create a new MDI application using a wizard:
1 Choose File New Other to bring up the New Items dialog.
2 Click on the Projects page and double-click MDI Application.
3 Click OK.

MDI applications require more planning and are somewhat more complex to design than SDI applications. MDI
applications spawn child windows that reside within the client window; the main form contains child forms. Set the
FormStyle property of the TForm object to specify whether a form is a child (fsMDIChild) or main form
(fsMDIForm). It is a good idea to define a base class for your child forms and derive each child form from this class,
to avoid having to reset the child form's properties.

MDI applications often include a Window pop-up on the main menu that has items such as Cascade and Tile for
viewing multiple windows in various styles. When a child window is minimized, its icon is located in the MDI parent
form.

To create a new MDI application without using a wizard:
1 Create the main window form or MDI parent window. Set its FormStyle property to fsMDIForm.
2 Create a menu for the main window that includes File Open, File Save, and Window which has Cascade,

Tile, and Arrange All items.
3 Create the MDI child forms and set their FormStyle properties to fsMDIChild.

Setting IDE, Project, and Compiler Options
In addition to the implementation model of your applications, the design-time behavior of your project and the runtime
behavior of your application can be manipulated by setting project options in the IDE. To specify various options for
your project, choose Project Options.

1559

Setting default project options
To change the default options that apply to all future projects, set the options in the Project Options dialog box and
check the Default box at the bottom left of the window. All new projects will use the current options selected by default.

Code Templates
Code templates are commonly used skeleton structures that you can add to your source code and then fill in. You
can also use standard code templates such as those for array, class, and function declarations, and many
statements.

You can also write your own templates for coding structures that you often use. For example, if you want to use a
for loop in your code, you could insert the following template:

[Delphi]
for := to do
begin
end;

[C++]
for (; ;)
{
}

To insert a code template in the Code editor, press Ctrl-j and select the template you want to use. You can also add
your own templates to this collection.

To add a template:
1 Choose Tools Options Editor Options.
2 Click the Source Options tab and then the Edit Code Templates button.
3 In the Templates section, click Add.
4 Type a name for the template after Shortcut name, enter a brief description of the new template, and click OK.
5 Add the template code to the Code text box.
6 Click OK.

Console Applications
Console applications are 32-bit programs that run without a graphical interface, in a console window. These
applications typically don't require much user input and perform a limited set of functions. Any application that
contains:

{$APPTYPE CONSOLE}

in the code opens a console window of its own.

To create a new console application, choose File New Other. Select Delphi Projects and double-click Console
Application from the New Items dialog box.

The IDE then creates a project file for this type of source file and displays the Code editor.

1560

Console applications should make sure that no exceptions escape from the program scope. Otherwise, when the
program terminates, the Windows operating system displays a modal dialog with exception information. For example,
your application should include exception handling such as shown in the following code:

program ConsoleExceptionHandling;
{$APPTYPE CONSOLE}
uses
SysUtils;
procedure ExecuteProgram;
begin
 //Program does something
 raise Exception.Create('Unforeseen exception');
end;
begin
 try
 ExecuteProgram;
 except
//Handle error condition
 WriteIn('Program terminated due to an exception');
 //Set ExitCode <> 0 to flag error condition (by convention)
 ExitCode := 1;
 end;
end.

Users can terminate console applications in one of the following ways:

Click the Close (X) button.
Press Ctrl+C.
Press Ctrl+Break.
Log off.

Depending on which way the user chooses, the application is terminated forcefully, the process is not shut down
cleanly, and the finalization section isn't run. Use the Windows API SetConsoleCtrlHandler function for options for
handling these user termination requests.

Service Applications
Service applications take requests from client applications, process those requests, and return information to the
client applications. They typically run in the background, without much user input. A Web, FTP, or e-mail server is
an example of a service application.

To create an application that implements a Win32 service:
1 Choose File New Other, and double-click Service Application in the New Items dialog box. This adds a

global variable named Application to your project, which is of type TServiceApplication.
2 A Service window appears that corresponds to a service (TService). Implement the service by setting its

properties and event handlers in the Object Inspector.
3 You can add additional services to your service application by choosing File New Other, and double-click

Service in the New Items dialog box. Do not add services to an application that is not a service application. While
a TService object can be added, the application will not generate the requisite events or make the appropriate
Windows calls on behalf of the service.

1561

4 Once your service application is built, you can install its services with the Service Control Manager (SCM). Other
applications can then launch your services by sending requests to the SCM.

To install your application's services, run it using the /INSTALL option. The application installs its services and exits,
giving a confirmation message if the services are successfully installed. You can suppress the confirmation message
by running the service application using the /SILENT option.

To uninstall the services, run it from the command line using the /UNINSTALL option. (You can also use the /SILENT
option to suppress the confirmation message when uninstalling).

Note: This service has a TServerSocket whose port is set to 80. This is the default port for Web browsers to make
requests to Web servers and for Web servers to make responses to Web browsers. This particular example
produces a text document in the C:\Temp directory called WebLogxxx.log (where xxx is the ThreadID). There
should be only one server listening on any given port, so if you have a Web server, you should make sure
that it is not listening (the service is stopped).

To see the results: open up a Web browser on the local machine and for the address, type 'localhost' (with no quotes).
The browser will time out eventually, but you should now have a file called Weblogxxx.log in the C:\Temp directory.

To create the example:
1 Choose File New Other and select Service Application from the New Items dialog box. The Service1 window

appears.
2 From the Internet category of the Tool palette, add a ServerSocket component to the service window (Service1).
3 Add a private data member of type TMemoryStream to the TService1 class. The interface section of your unit

should now look like this:

[Delphi]

interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, SvcMgr, Dialogs,
 ScktComp;
type
 TService1 = class(TService)
 ServerSocket1: TServerSocket;
 procedure ServerSocket1ClientRead(Sender: TObject;
 Socket: TCustomWinSocket);
 procedure Service1Execute(Sender: TService);
 private
 { Private declarations }
 Stream: TMemoryStream; // Add this line here
 public
 function GetServiceController: PServiceController; override;
 { Public declarations }
 end;
var
 Service1: TService1;

[C++]
//---
#ifndef Unit1H
#define Unit1H
//---
#include <SysUtils.hpp>
#include <Classes.hpp>

1562

#include <SvcMgr.hpp>
#include <ScktComp.hpp>
//---
class TService1 : public TService
{
__published:
TServerSocket *ServerSocket1;
private:
TMemoryStream *Stream; // add this line here
public:
__fastcall TService1(TComponent* Owner);
PServiceController __fastcall GetServiceController(void);
friend void __stdcall ServiceController(unsigned CtrlCode);
};
//---
extern PACKAGE TService1 *Service1;
//---
#endif

4 Select ServerSocket1, the component you added in step 1. In the Object Inspector, double-click the
OnClientRead event and add the following event handler:

[Delphi]

procedure TService1.ServerSocket1ClientRead(Sender: TObject;
 Socket: TCustomWinSocket);
var
 Buffer: PChar;
begin
 Buffer := nil;
while Socket.ReceiveLength > 0 do begin
 Buffer := AllocMem(Socket.ReceiveLength);
 try
 Socket.ReceiveBuf(Buffer^, Socket.ReceiveLength);
 Stream.Write(Buffer^, StrLen(Buffer));
 finally
 FreeMem(Buffer);
 end;
 Stream.Seek(0, soFromBeginning);
 Stream.SaveToFile('c:\Temp\Weblog' + IntToStr(ServiceThread.ThreadID) + '.log');
 end;
end;

[C++]
void __fastcall TService1::ServerSocket1ClientRead(TObject *Sender,
TCustomWinSocket *Socket)
{
char *Buffer = NULL;
int len = Socket->ReceiveLength();
while (len > 0)
{
try
{
Buffer = (char *)malloc(len);
Socket->ReceiveBuf((void *)Buffer, len);
Stream->Write(Buffer, len);
}
__finally
{

1563

free(Buffer);
}
Stream->Seek(0, soFromBeginning);
AnsiString LogFile = "C:\\Temp\\WebLog";
LogFile = LogFile + IntToStr(ServiceThread->ThreadID) + ".log";
Stream->SaveToFile(LogFile);
}
}

5 Finally, select Service1 by clicking in the window's client area (but not on the ServiceSocket). In the Object
Inspector, double click the OnExecute event and add the following event handler:

[Delphi]

procedure TService1.Service1Execute(Sender: TService);
begin
 Stream := TMemoryStream.Create;
 try
 ServerSocket1.Port := 80; // WWW port
 ServerSocket1.Active := True;
 while not Terminated do begin
 ServiceThread.ProcessRequests(True);
 end;
 ServerSocket1.Active := False;
 finally
 Stream.Free;
 end;
end;

[C++]
void __fastcall TService1::Service1Execute(TService *Sender)
{
Stream = new TMemoryStream();
try
{
ServerSocket1->Port = 80; // WWW port
ServerSocket1->Active = true;
while (!Terminated)
ServiceThread->ProcessRequests(true);
ServerSocket1->Active = false;
}
__finally
{
delete Stream;
}
}

When writing your service application, you should be aware of:

Service threads
Service name properties
Debugging service applications

Note: Service applications are not available for cross-platform applications.

1564

Service Threads
Each service has its own thread (TServiceThread), so if your service application implements more than one service
you must ensure that the implementation of your services is thread-safe. TServiceThread is designed so that you
can implement the service in the TService OnExecute event handler. The service thread has its own Execute method
which contains a loop that calls the service's OnStart and OnExecute handlers before processing new requests.

Because service requests can take a long time to process and the service application can receive simultaneous
requests from more than one client, it is more efficient to spawn a new thread (derived from TThread, not
TServiceThread) for each request and move the implementation of that service to the new thread's Execute method.
This allows the service thread's Execute loop to process new requests continually without having to wait for the
service's OnExecute handler to finish. The following example demonstrates.

Note: This service beeps every 500 milliseconds from within the standard thread. It handles pausing, continuing,
and stopping of the thread when the service is told to pause, continue, or stop.

To create the example:
1 Choose File New Other and double-click Service Application in the New Items dialog. The Service1 window

appears.
2 In the interface section of your unit, declare a new descendant of TThread named TSparkyThread. This is the

thread that does the work for your service. The declaration should appear as follows:

[Delphi]

TSparkyThread = class(TThread)
 public
 procedure Execute; override;
end;

[C++]
class TSparkyThread : public TThread
{
private:
protected:
 void __fastcall Execute();
public:
__fastcall TSparkyThread(bool CreateSuspended);
};

3 In the implementation section of your unit, create a global variable for a TSparkyThread instance:

[Delphi]

var
 SparkyThread: TSparkyThread;

[C++]
TSparkyThread *SparkyThread;// Add this code as the constructor
__fastcall TSparkyThread::TSparkyThread(bool CreateSuspended)
: TThread(CreateSuspended)
{
}

1565

4 In the implementation section for the TSparkyThread Execute method (the thread function), add the following
code:

[Delphi]

procedure TSparkyThread.Execute;
begin
 while not Terminated do
 begin
 Beep;
 Sleep(500);
 end;
end;

[C++]
void __fastcall TSparkyThread::Execute()
{
 while (!Terminated)
 {
 Beep();
 Sleep(500);
 }
}

5 Select the Service window (Service1), and double-click the OnStart event in the Object Inspector. Add the
following OnStart event handler:

[Delphi]

procedure TService1.Service1Start(Sender: TService; var Started: Boolean);
begin
 SparkyThread := TSparkyThread.Create(False);
 Started := True;
end;

[C++]
void __fastcall TService1::Service1Start(TService *Sender, bool &Started)
{
 SparkyThread = new TSparkyThread(false);
 Started = true;
}

6 Double-click the OnContinue event in the Object Inspector. Add the following OnContinue event handler:

[Delphi]

procedure TService1.Service1Continue(Sender: TService; var Continued: Boolean);
begin
 SparkyThread.Resume;
 Continued := True;
end;

[C++]
void __fastcall TService1::Service1Continue(TService *Sender, bool &Continued)
{

1566

 SparkyThread->Resume();
 Continued = true;
}

7 Double-click the OnPause event in the Object Inspector. Add the following OnPause event handler:

[Delphi]

procedure TService1.Service1Pause(Sender: TService; var Paused: Boolean);
begin
 SparkyThread.Suspend;
 Paused := True;
end;

[C++]
void __fastcall TService1::Service1Pause(TService *Sender, bool &Paused)
{
 SparkyThread->Suspend();
 Paused = true;
}

8 Finally, double-click the OnStop event in the Object Inspector and add the following OnStop event handler:

[Delphi]

procedure TService1.Service1Stop(Sender: TService; var Stopped: Boolean);
begin
 SparkyThread.Terminate;
 Stopped := True;
end;

[C++]
void __fastcall TService1::Service1Stop(TService *Sender, bool &Stopped)
{
 SparkyThread->Terminate();
 Stopped = true;
}

When developing server applications, choosing to spawn a new thread depends on the nature of the service being
provided, the anticipated number of connections, and the expected number of processors on the computer running
the service.

Service Name Properties
The VCL provides classes for creating service applications on the Windows platform (not available for cross-platform
applications). These include TService and TDependency. When using these classes, the various name properties
can be confusing. This topic describes the differences.

Services have user names (called Service start names) that are associated with passwords, display names for
display in manager and editor windows, and actual names (the name of the service). Dependencies can be services
or they can be load ordering groups. They also have names and display names. And because service objects are
derived from TComponent, they inherit the Name property. The following sections summarize the name properties.

1567

TDependency properties
The TDependency DisplayName is both a display name and the actual name of the service. It is nearly always the
same as the TDependency Name property.

TService name properties
The TService Name property is inherited from TComponent. It is the name of the component, and is also the name
of the service. For dependencies that are services, this property is the same as the TDependency Name and
DisplayName properties.

TService's DisplayName is the name displayed in the Service Manager window. This often differs from the actual
service name (TService.Name, TDependency.DisplayName, TDependency.Name). Note that the DisplayName for
the Dependency and the DisplayName for the Service usually differ.

Service start names are distinct from both the service display names and the actual service names. A
ServiceStartName is the user name input on the Start dialog selected from the Service Control Manager.

Debugging Service Applications
You can debug service applications by attaching to the service application process when it is already running (that
is, by starting the service first, and then attaching to the debugger). To attach to the service application process,
choose Run Attach To Process, and select the service application in the resulting dialog.

In some cases, this approach may fail, due to insufficient rights. If that happens, you can use the Service Control
Manager to enable your service to work with the debugger:

To debug:
1 First create a key called Image File Execution Options in the following registry location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion

2 Create a subkey with the same name as your service (for example, MYSERV.EXE). To this subkey, add a value
of type REG_SZ, named Debugger. Use the full path to bds.exe as the string value.

3 In the Services control panel applet, select your service, click Startup and check Allow Service to Interact with
Desktop.

On Windows NT systems, you can use another approach for debugging service applications. However, this approach
can be tricky, because it requires short time intervals:

For Windows NT:
1 First, launch the application in the debugger. Wait a few seconds until it has finished loading.
2 Quickly start the service from the Control Panel or from the command line:

start MyServ

You must launch the service quickly (within 15-30 seconds of application startup) because the application will
terminate if no service is launched.

1568

Creating Packages and DLLs
Dynamic link libraries (DLLs) are modules of compiled code that work in conjunction with an executable to provide
functionality to an application. You can create DLLs in cross-platform programs. However, on Linux, DLLs (and
packages) recompile as shared objects.

DLLs and libraries should handle all exceptions to prevent the display of errors and warnings through Windows
dialogs.

The following compiler directives can be placed in library project files:

Compiler directives for libraries
Compiler Directive Description

{$LIBPREFIX 'string'} Adds a specified prefix to the output file name. For example, you could specify {$LIBPREFIX 'dcl'}
for a design-time package, or use {$LIBPREFIX''} to eliminate the prefix entirely.

{$LIBSUFFIX 'string'} Adds a specified suffix to the output file name before the extension. For example, use {$LIBSUFFIX
'-2.1.3'} in something.pas to generate something-2.1.3.bpl.

{$LIBVERSION 'string'} Adds a second extension to the output file name after the .bpl extension. For example, use
{$LIBVERSION '2.1.3'} in something.pas to generate something.bpl.2.1.3.

Packages are special DLLs used by Delphi applications, the IDE, or both. There are two kinds of packages: runtime
packages and design-time packages. Runtime packages provide functionality to a program while that program is
running. Design-time packages extend the functionality of the IDE.

For more information on packages, see Working with packages and components.

When to Use Packages and DLLs
For most applications, packages provide greater flexibility and are easier to create than DLLs. However, there are
several situations where DLLs would be better suited to your projects than packages:

Your code module will be called from non-Delphi applications.
You are extending the functionality of a Web server.
You are creating a code module to be used by third-party developers.
Your project is an OLE container.

However, if your application includes VisualCLX, you must use packages instead of DLLs. Only packages can
manage the startup and shut down of the Qt shared libraries.

You cannot pass Delphi runtime type information (RTTI) across DLLs or from a DLL to an executable. If you pass
an object from one DLL to another DLL or an executable, you will not be able to use the is or as operators with the
passed object. This is because the is and as operators need to compare RTTI. If you need to pass objects from a
library, use packages instead, as these can share RTTI. Similarly, you should use packages instead of DLLs in Web
Services because they are rely on Delphi RTTI.

Creating DLLs Containing VCL Components (C++)
One of the strengths of DLLs is that a DLL created with one development tool can often be used by application
written using a different development tool. When your DLL contains VCL or CLX components (such as forms) that
are to be used by the calling application, you need to provide exported interface routines that use standard calling
conventions, avoid C++ name mangling, and do not require the calling application to support the VCL and CLX
libraries in order to work. To create VCL or CLX components that can be exported, use runtime packages.

For example, suppose you want to create a DLL to display the following simple dialog box:

1569

The code for the dialog box DLL is as follows:

// DLLMAIN.H
//---
#ifndef dllMainH
#define dllMainH
//---
#include <Classes.hpp>
#include <vcl\Controls.hpp>
#include <vcl\StdCtrls.hpp>
#include <vcl\Forms.hpp>
//---
class TYesNoDialog : public TForm
{
 __published: // IDE-managed Components
 TLabel *LabelText;
 TButton *YesButton;
 TButton *NoButton;
 void __fastcall YesButtonClick(TObject *Sender);
 void __fastcall NoButtonClick(TObject *Sender);
 private: // User declarations
 bool returnValue;
 public: // User declarations
 virtual __fastcall TYesNoDialog(TComponent *Owner);
 bool __fastcall GetReturnValue();
};
// exported interface function
extern "C" __declspec(dllexport) bool InvokeYesNoDialog();
//---
extern TYesNoDialog *YesNoDialog;
//---
#endif
// DLLMAIN.CPP
//---
#include <vcl\vcl.h>
#pragma hdrstop
#include "dllMain.h"
//---
#pragma resource "*.dfm"
TYesNoDialog *YesNoDialog;
//---
__fastcall TYesNoDialog::TYesNoDialog(TComponent *Owner)
 : TForm(Owner)
{
 returnValue = false;
}
//---
void __fastcall TYesNoDialog::YesButtonClick(TObject *Sender)

1570

{
 returnValue = true;
 Close();
}
//---
void __fastcall TYesNoDialog::NoButtonClick(TObject *Sender)
{
 returnValue = false;
 Close();
}
//---
bool __fastcall TYesNoDialog::GetReturnValue()
{
 return returnValue;
}
//---
// exported standard C++ interface function that calls into VCL
bool InvokeYesNoDialog()
{
 bool returnValue;
 TYesNoDialog *YesNoDialog = new TYesNoDialog(NULL);
 YesNoDialog->ShowModal();
 returnValue = YesNoDialog->GetReturnValue();
 delete YesNoDialog;
 return returnValue;
}
//---

The code in this example displays the dialog and stores the value true in the private data member returnValue if
the "Yes" button is pressed. Otherwise, returnValue is false. The public GetReturnValue() function retrieves
the current value of returnValue.

To invoke the dialog and determine which button was pressed, the calling application calls the exported function
InvokeYesNoDialog(). This function is declared in DLLMAIN.H as an exported function using C linkage (to avoid
C++ name mangling) and the standard C calling convention. The function is defined in DLLMAIN.CPP.

By using a standard C function as the interface into the DLL, any calling application, whether or not it was created
with Developer Studio 2006, can use the DLL. The VCL and CLX functionality required to support the dialog is linked
into the DLL itself, and the calling application does not need to know anything about it.

Note: When creating a DLL that uses the VCL or CLX, the required VCL or CLX components are linked into the
DLL resulting in a certain amount of overhead. The impact of this overhead on the overall size of the
application can be minimized by combining several components into one DLL that only needs one copy of
the VCL and CLX support components.

Using DLLs in Developer Studio 2006 (C++)
A Windows DLL can be used in a Developer Studio 2006 application just as it would be in any C++ application.

To statically load a DLL when your C++ application is loaded, link the import library file for that DLL into your C++
application at link time. To add an import library to a C++ application, choose Project Add to Project and select
the .lib file you want to add to the libraries to be linked.

The exported functions of that DLL then become available for use by your application. Prototype the DLL functions
your application uses with the __declspec (dllimport) modifier:

__declspec(dllimport) return_type imported_function_name(parameters);

1571

To dynamically load a DLL during the run of a C++ application, include the import library, just as you would for static
loading, and set the Delay load a DLL option for ilink32. You can also use the Windows API function LoadLibrary
() to load the DLL, then use the API function GetProcAddress() to obtain pointers to the individual functions you
want to use.

Linking DLLs
You can set the linker options for your DLL on the Linker page of the Project Options dialog box. The default check
box on this page also creates an import library for your DLL. If compiling from the command line, invoke the linker,
ilink32.exe, with the -Tpd switch. For example:

ilink32 /c /aa /Tpd c0d32.obj mydll.obj, mydll.dll, mydll.map, import32.lib cw32mt.lib

If you need an import library, use the -Gi switch to generate an import library.

You can optionally create an import library with the command line utility implib.exe. For more information on implib.
exe, type implib —h at the command line.

Writing Database Applications
You can create advanced database applications using tools to connect to SQL servers and databases such as
Oracle, Sybase, InterBase, MySQL, MS-SQL, Informix, PostgreSQL, and DB2 while providing transparent data
sharing between applications.

The Tool palette includes many components for accessing databases and representing the information they contain.
The database components are grouped according to the data access mechanism and function.

Database pages on the Tool palette
Palette page Contents

BDE Components that use the Borland Database Engine (BDE), a large API for interacting with databases. The
BDE supports the broadest range of functions and comes with the most supporting utilities including Database
Desktop and Database Explorer . See Using the Borland Database Engine for details.

ADO Components that use ActiveX Data Objects (ADO), developed by Microsoft, to access database information.
Many ADO drivers are available for connecting to different database servers. ADO-based components let you
integrate your application into an ADO-based environment. See Working with ADO Components for details.

dbExpress Cross-platform components that use dbExpress to access database information. dbExpress drivers provide
fast access to databases but need to be used with TClientDataSet and TDataSetProvider to perform updates.
See Using Unidirectional Datasets for details.

InterBase Components that access InterBase databases directly, without going through a separate engine layer.

Data Access Components that can be used with any data access mechanism such as TClientDataSet and
TDataSetProvider. See Using Client Datasets: Overview for information about client datasets. See Using
Provider Components for information about providers.

Data Controls Data-aware controls that can access information from a data source. See Using Data Controls for details.

When designing a database application, you must decide which data access mechanism to use. Each data access
mechanism differs in its range of functional support, the ease of deployment, and the availability of drivers to support
different database servers.

Refer to Designing database applications for details on what type of database support is available and considerations
when designing database client applications and application servers.

Note: Not all editions of Delphi include database support.

1572

Distributing Database Applications
You can create distributed database applications using a coordinated set of components. Distributed database
applications can be built on a variety of communications protocols, including DCOM, CORBA, TCP/IP, and SOAP.

For more information about building distributed database applications, see Creating Multi-tiered Applications.

Distributing database applications often requires you to distribute the Borland Database Engine (BDE) in addition
to the application files. For information on deploying the BDE, see Deploying Database Applications.

Creating Web Server Applications
Web server applications are applications that run on servers that deliver Web content such as HTML Web pages or
XML documents over the Internet. Examples of Web server applications include those which control access to a
Web site, generate purchase orders, or respond to information requests.

You can create several different types of Web server applications using the following technologies:

Web Broker
WebSnap
IntraWeb
Web Services

Creating Web Broker Applications
You can use Web Broker (also called NetCLX architecture) to create Web server applications such as CGI
applications or dynamic-link libraries (DLLs). These Web server applications can contain any nonvisual component.
Components on the Internet category of the Tool palette enable you to create event handlers, programmatically
construct HTML or XML documents, and transfer them to the client.

To create a new Web server application using the Web Broker architecture, choose File New Other. In the
New Items dialog box, select the Delphi Projects tab. Then select the New tab and double-click the Web Server
Application. Then select the Web server application type:

Web server applications
Web server application type Description

ISAPI and NSAPI Dynamic Link Library ISAPI and NSAPI Web server applications are DLLs that are loaded by the Web
server. Client request information is passed to the DLL as a structure and
evaluated by TISAPIApplication. Each request message is handled in a
separate execution thread.

Selecting this type of application adds the library header of the project files and
required entries to the uses list and exports clause of the project file.

CGI Stand-alone executable CGI Web server applications are console applications that receive requests from
clients on standard input, process those requests, and sends back the results
to the server on standard output to be sent to the client.

Selecting this type of application adds the required entries to the uses clause of
the project file and adds the appropriate $APPTYPE directive to the source.

Apache Shared Module (DLL) Selecting this type of application sets up your project as a DLL. Apache Web
server applications are DLLs loaded by the Web server. Information is passed
to the DLL, processed, and returned to the client by the Web server.

Web App Debugger stand-alone executable Selecting this type of application sets up an environment for developing and
testing Web server applications. Web App Debugger applications are

1573

executable files loaded by the Web server. This type of application is not
intended for deployment.

CGI applications use more system resources on the server, so complex applications are better created as ISAPI,
NSAPI, or Apache DLL applications. When writing cross-platform applications, you should select CGI stand-alone
or Apache Shared Module (DLL) for Web server development. These are also the same options you see when
creating WebSnap and Web Service applications.

For more information on building Web server applications, see Creating Internet Server Applications.

Creating WebSnap Applications
WebSnap provides a set of components and wizards for building advanced Web servers that interact with Web
browsers. WebSnap components generate HTML or other MIME content for Web pages. WebSnap is for server-
side development.

To create a new WebSnap application, select File New Other and select the WebSnap tab in the New Items
dialog box. Choose WebSnap Application. Then select the Web server application type (ISAPI/NSAPI, CGI, Apache).
See the table in the topic Using Web Broker for details.

If you want to do client-side scripting instead of server-side scripting, you can use the InternetExpress technology.
For more information on InternetExpress, see Building Web applications using InternetExpress.

For more information on WebSnap, see Creating Internet Server Applications.

Creating Web Services Applications
Web Services are self-contained modular applications that can be published and invoked over a network (such as
the World Wide Web). Web Services provide well-defined interfaces that describe the services provided. You use
Web Services to produce or consume programmable services over the Internet using emerging standards such as
XML, XML Schema, SOAP (Simple Object Access Protocol), and WSDL (Web Service Definition Language).

Web Services use SOAP, a standard lightweight protocol for exchanging information in a distributed environment.
It uses HTTP as a communications protocol and XML to encode remote procedure calls.

You can build servers to implement Web Services and clients that call on those services. You can write clients for
arbitrary servers to implement Web Services that respond to SOAP messages, and servers to publish Web Services
for use by arbitrary clients.

Refer to Using Web Services for more information on Web Services.

Writing Applications Using COM
COM is the Component Object Model, a Windows-based distributed object architecture designed to provide object
interoperability using predefined routines called interfaces. COM applications use objects that are implemented by
a different process or, if you use DCOM, on a separate machine. You can also use COM+, ActiveX and Active Server
Pages.

COM is a language-independent software component model that enables interaction between software components
and applications running on a Windows platform. The key aspect of COM is that it enables communication between
components, between applications, and between clients and servers through clearly defined interfaces. Interfaces
provide a way for clients to ask a COM component which features it supports at runtime. To provide additional
features for your component, you simply add an additional interface for those features.

Using COM and DCOM
Various classes and wizards that make it easy to create COM, OLE, or ActiveX applications. You can create COM
clients or servers that implement COM objects, Automation servers (including Active Server Objects), ActiveX

1574

controls, or ActiveForms. COM also severs as the basis for other technologies such as Automation, ActiveX controls,
Active Documents, and Active Directories.

Using Delphi to create COM-based applications offers a wide range of possibilities, from improving software design
by using interfaces internally in an application, to creating objects that can interact with other COM-based API objects
on the system, such as the Win9x Shell extensions and DirectX multimedia support. Applications can access the
interfaces of COM components that exist on the same computer as the application or that exist on another computer
on the network using a mechanism called Distributed COM (DCOM).

For more information on COM and Active X controls, see Overview of COM technologies,Creating an ActiveX Control
and Distributing a Client Application as an ActiveX Control.

For more information on DCOM, see Using DCOM connections.

Using MTS and COM+
COM applications can be augmented with special services for managing objects in a large distributed environment.
These services include transaction services, security, and resource management supplied by Microsoft Transaction
Server (MTS) on versions of Windows prior to Windows 2000) or COM+ (for Windows 2000 and later).

For more information on MTS and COM+, see Creating MTS or COM+ objects and Using transactional data modules.

Using Data Modules
A data module is like a special form that contains nonvisual components. All the components in a data module
could be placed on ordinary forms alongside visual controls. But if you plan on reusing groups of database and
system objects, or if you want to isolate the parts of your application that handle database connectivity and business
rules, then data modules provide a convenient organizational tool.

There are several types of data modules, including standard, remote, Web modules, applet modules, and services,
depending on which edition of Delphi you have. Each type of data module serves a special purpose.

Standard data modules are particularly useful for single- and two-tiered database applications, but can be used
to organize the nonvisual components in any application. For more information, see Creating and Editing Data
Modules.
Remote data modules form the basis of an application server in a multi-tiered database application. They are
not available in all editions. In addition to holding the nonvisual components in the application server, remote
data modules expose the interface that clients use to communicate with the application server. For more
information about using them, see Adding a remote data module to an application server project.
Web modules form the basis of Web server applications. In addition to holding the components that create the
content of HTTP response messages, they handle the dispatching of HTTP messages from client applications.
See Creating Internet Server Applications for more information about using Web modules.
Applet modules form the basis of control panel applets. In addition to holding the nonvisual controls that
implement the control panel applet, they define the properties that determine how the applet's icon appears in
the control panel and include the events that are called when users execute the applet.
Services encapsulate individual services in an NT service application. In addition to holding any nonvisual
controls used to implement a service, services include the events that are called when the service is started or
stopped. For more information about services, see Service Applications.

1575

Creating and Editing Standard Data Modules
To create a standard data module for a project, choose File New Data Module. The IDE opens a data module
container on the desktop, displays the unit file for the new module in the Code editor, and adds the module to the
current project.

At design time, a data module looks like a standard form with a white background and no alignment grid. As with
forms, you can place nonvisual components from the Tool palette onto a module, and edit their properties in the
Object Inspector. You can resize a data module to accommodate the components you add to it.

You can also right-click a module to display a context menu for it. The following table summarizes the context menu
options for a data module.

Context menu options for data modules
Menu item Purpose

Edit Displays a context menu with which you can cut, copy, paste, delete, and select the components in the
data module.

Position Aligns nonvisual components to the module's invisible grid (Align To Grid) or according to criteria you
supply in the Alignment dialog box (Align).

Tab Order Enables you to change the order that the focus jumps from component to component when you press the
tab key.

Creation Order Enables you to change the order that data access components are created at start-up.

Revert to Inherited Discards changes made to a module inherited from another module in the Object Repository, and reverts
to the originally inherited module.

Add to Repository Stores a link to the data module in the Object Repository.

View as Text Displays the text representation of the data module's properties.

Text DFM Toggles between the formats (binary or text) in which this particular form file is saved.

Naming a Data Module and Its Unit File
The title bar of a data module displays the module's name. The default name for a data module is "DataModuleN"
where N is a number representing the lowest unused unit number in a project. For example, if you start a new project,
and add a module to it before doing any other application building, the name of the module defaults to "DataModule2.
" The corresponding unit file for DataModule2 defaults to "Unit2."

You should rename your data modules and their corresponding unit files at design time to make them more
descriptive. You should especially rename data modules you add to the Object Repository to avoid name conflicts
with other data modules in the Repository or in applications that use your modules.

To rename a data module:
1 Select the module.
2 Edit the Name property for the module in the Object Inspector.

The new name for the module appears in the title bar when the Name property in the Object Inspector no longer
has focus.

Changing the name of a data module at design time changes its variable name in the interface section of code. It
also changes any use of the type name in procedure declarations. You must manually change any references to the
data module in code you write.

To rename a unit file for a data module, select the unit file.

1576

Placing and Naming Components
You place nonvisual components in a data module just as you place visual components on a form. Click the desired
component on the appropriate category of the Tool palette, then click in the data module to place the component.
You cannot place visual controls, such as grids, on a data module. If you attempt it, you receive an error message.

For ease of use, components are displayed with their names in a data module. When you first place a component,
the module assigns it a generic name that identifies what kind of component it is, followed by a 1. For example, the
TDataSource component adopts the name DataSource1. This makes it easy to select specific components whose
properties and methods you want to work with.

You may still want to name a component a different name that reflects the type of component and what it is used for.

To change the name of a component in a data module:
1 Select the component.
2 Edit the component's Name property in the Object Inspector.

The new name for the component appears under its icon in the data module as soon as the Name property in the
Object Inspector no longer has focus.

For example, suppose your database application uses the CUSTOMER table. To access the table, you need a
minimum of two data access components: a data source component (TDataSource) and a table component
(TClientDataSet). When you place these components in your data module, the module assigns them the names
DataSource1 and ClientDataSet1. To reflect the type of component and the database they access, CUSTOMER,
you could change these names to CustomerSource and CustomerTable.

Using Component Properties and Events in a Data Module
Placing components in a data module centralizes their behavior for your entire application. For example, you can
use the properties of dataset components, such as TClientDataSet, to control the data available to the data source
components that use those datasets. Setting the ReadOnly property to True for a dataset prevents users from editing
the data they see in a data-aware visual control on a form. You can also invoke the Fields editor for a dataset, by
double-clicking on ClientDataSet1, to restrict the fields within a table or query that are available to a data source and
therefore to the data-aware controls on forms. The properties you set for components in a data module apply
consistently to all forms in your application that use the module.

In addition to properties, you can write event handlers for components. For example, a TDataSource component
has three possible events: OnDataChange, OnStateChange, and OnUpdateData. A TClientDataSet component has
over 20 potential events. You can use these events to create a consistent set of business rules that govern data
manipulation throughout your application.

Creating Business Rules in a Data Module
Besides writing event handlers for the components in a data module, you can code methods directly in the unit file
for a data module. These methods can be applied to the forms that use the data module as business rules. For
example, you might write a procedure to perform month-, quarter-, or year-end bookkeeping. You might call the
procedure from an event handler for a component in the data module.

The prototypes for the procedures and functions you write for a data module should appear in the module's type
declaration:

type
 TCustomerData = class(TDataModule)
 Customers: TClientDataSet;

1577

 Orders: TClientDataSet;
 .
 .
 .
 private
 { Private declarations }
 public
 { Public declarations }
 procedure LineItemsCalcFields(DataSet: TDataSet); { A procedure you add }
 end;
var
 CustomerData: TCustomerData;

The procedures and functions you write should follow in the implementation section of the code for the module.

Accessing a Data Module from a Form
To associate visual controls on a form with a data module, you must first add the data module to the form's uses
clause. You can do this in several ways:

In the Code editor, open the form's unit file and add the name of the data module to the uses clause in the
interface section.
Click the form's unit file, choose File Use Unit, and enter the name of the module or pick it from the list box
in the Use Unit dialog.
For database components, in the data module click a dataset or query component to open the Fields editor and
drag any existing fields from the editor onto the form. The IDE prompts you to confirm that you want to add the
module to the form's uses clause, then creates controls (such as edit boxes) for the fields.

For example, if you've added the TClientDataSet component to your data module, double-click it to open the Fields
editor. Select a field and drag it to the form. An edit box component appears.

Because the data source is not yet defined, Delphi adds a new data source component, DataSource1, to the form
and sets the edit box's DataSource property to DataSource1. The data source automatically sets its DataSet property
to the dataset component, ClientDataSet1, in the data module.

You can define the data source before you drag a field to the form by adding a TDataSource component to the data
module. Set the data source's DataSet property to ClientDataSet1. After you drag a field to the form, the edit box
appears with its TDataSource property already set to DataSource1. This method keeps your data access model
cleaner.

Adding a Remote Data Module to an Application Server Project
Some editions of Delphi allow you to add remote data modules to application server projects. A remote data module
has an interface that clients in a multi-tiered application can access across networks.

To add a remote data module to a project:
1 Choose File New Other.
2 Select the ActiveX page in the New Items dialog box.
3 Double-click the Remote Data Module icon to open the Remote Data Module wizard.

Once you add a remote data module to a project, use it just like a standard data module.

For more information about multi-tiered database applications, see Creating multi-tiered applications.

1578

Using the Object Repository
The Object Repository (Tools Options Repository (under Translation Tools Options)) makes it easy share
forms, dialog boxes, frames, and data modules. It also provides templates for new projects and wizards that guide
the user through the creation of forms and projects. The Object Repository is maintained in DELPHI32.DRO (by
default in the BIN directory), a text file that contains references to the items that appear in the Repository and New
Items dialogs.

Sharing Items Within a Project
You can share items within a project without adding them to the Object Repository. When you open the New Items
dialog box (File New Other), you"ll see a page tab with the name of the current project. This page lists all
the forms, dialog boxes, and data modules in the project. You can derive a new item from an existing item and
customize it as needed.

Adding Items to the Object Repository
You can add your own projects, forms, frames, and data modules to those already available in the Object Repository.

To add an item to the Object Repository
1 If the item is a project or is in a project, open the project.
2 For a project, choose Project Add To Repository. For a form or data module, right-click the item and choose

Add To Repository.
3 Type a description, title, and author.
4 Decide which page you want the item to appear on in the New Items dialog box, then type the name of the page

or select it from the Page combo box. If you type the name of a page that doesn't exist, the Object Repository
creates a new page.

5 Choose Browse to select an icon to represent the object in the Object Repository.
6 Choose OK.

Sharing Objects in a Team Environment
You can share objects with your workgroup or development team by making a repository available over a network.

To use a shared repository, all team members must select the same Shared Repository
directory in the Environment Options dialog:
1 Choose Tools Options Environment Options.
2 On the Preferences page, locate the Shared Repository panel. In the Directory edit box, enter the directory where

you want to locate the shared repository. Be sure to specify a directory that's accessible to all team members.

The first time an item is added to the Repository, a DELPHI32.DRO file is created in the Shared Repository directory
if one doesn't exist already.

1579

Using an Object Repository Item in a Project
To access items in the Object Repository, choose File New Other. The New Items dialog appears, showing
all the items available. Depending on the type of item you want to use, you have up to three options for adding the
item to your project:

Copy
Inherit
Use

Copying an Item
Choose Copy to make an exact copy of the selected item and add the copy to your project. Future changes made
to the item in the Object Repository will not be reflected in your copy, and alterations made to your copy will not
affect the original Object Repository item.

Copy is the only option available for project templates.

Inheriting an Item
Choose Inherit to derive a new class from the selected item and add the new class to your project. When you
recompile your project, any changes that have been made to the item Will be reflected in your derived class, in
addition to changes you make to the item in your project. Changes made to your derived class do not affect the
shared item in the Object Repository.

Inherit is available for forms, dialog boxes, and data modules, but not for project templates. It is the only option
available for reusing items within the same project.

Using an Item
Choose Use when you want the selected item itself to become part of your project. Changes made to the item in
your project will appear in all other projects that have added the item with the Inherit or Use option. Select this option
with caution.

The Use option is available for forms, dialog boxes, and data modules.

Using Project Templates
Templates are predesigned projects that you can use as starting points for your own work.

To create a new project from a template:
1 Choose File New Other to display the New Items dialog box.
2 Choose the Projects tab.
3 Select the project template you want and choose OK.
4 In the Select Directory dialog, specify a directory for the new project's files.

The template files are copied to the specified directory, where you can modify them. The original project template
is unaffected by your changes.

To add projects and project templates to the Object Repository, see Adding items to the Object Repository.

1580

Modifying Shared Items
If you modify an item in the Object Repository, your changes will affect all future projects that use the item as well
as existing projects that have added the item with the Use or Inherit option. To avoid propagating changes to other
projects, you have several alternatives:

Copy the item and modify it in your current project only.
Copy the item to the current project, modify it, then add it to the Repository under a different name.
Create a component, DLL, component template, or frame from the item. If you create a component or DLL, you
can share it with other developers.

Enabling Help in Applications
VCL applications support displaying Help using an object-based mechanism that allows Help requests to be passed
on to one of multiple external Help viewers. To support this, an application must include a class that implements the
ICustomHelpViewer interface (and, optionally, one of several interfaces descended from it), and registers itself with
the global Help Manager.

VCL applications provide an instance of TWinHelpViewer, which implements all of these interfaces and provides a
link between applications and WinHelp.

The Help Manager maintains a list of registered viewers and passes requests to them in a two-phase process: it first
asks each viewer if it can provide support for a particular Help keyword or context, and then it passes the Help
request on to the viewer which says it can provide such support.

If more than one viewer supports the keyword, as would be the case in an application that had registered viewers
for both WinHelp and HyperHelp on Windows, the Help Manager can display a selection box through which the user
of the application can determine which Help viewer to invoke. Otherwise, it displays the first responding Help system
encountered.

Help System Interfaces
The Help system allows communication between your application and Help viewers through a series of interfaces.
These interfaces are all defined in the HelpIntfs.pas, which also contains the implementation of the Help Manager.

ICustomHelpViewer provides support for displaying Help based upon a provided keyword and for displaying a table
of contents listing all Help available in a particular viewer.

IExtendedHelpViewer provides support for displaying Help based upon a numeric Help context and for displaying
topics; in most Help systems, topics function as high-level keywords (for example, "IntToStr" might be a keyword in
the Help system, but "String manipulation routines" could be the name of a topic).

ISpecialWinHelpViewer provides support for responding to specialized WinHelp messages that an application
running under Windows may receive and which are not easily generalizable. In general, only applications operating
in the Windows environment need to implement this interface, and even then it is only required for applications that
make extensive use of non-standard WinHelp messages.

IHelpManager provides a mechanism for the Help viewer to communicate back to the application's Help Manager
and request additional information. IHelpManager is obtained at the time the Help viewer registers itself.

IHelpSystem provides a mechanism through which TApplication passes Help requests on to the Help system.
TApplication obtains an instance of an object which implements both IHelpSystem and IHelpManager at application
load time and exports that instance as a property; this allows other code within the application to file Help requests
directly when appropriate.

IHelpSelector provides a mechanism through which the Help system can invoke the user interface to ask which Help
viewer should be used in cases where more than one viewer is capable of handling a Help request, and to display

1581

a Table of Contents. This display capability is not built into the Help Manager directly to allow the Help Manager
code to be identical regardless of which widget set or class library is in use.

Implementing ICustomHelpViewer
The ICustomHelpViewer interface contains three types of methods: methods used to communicate system-level
information (for example, information not related to a particular Help request) with the Help Manager; methods related
to showing Help based upon a keyword provided by the Help Manager; and methods for displaying a table of
contents.

For information on ICustomHelpViewer methods, see

Communicating with the Help Manager
Displaying keyword-based Help
Asking the Help Manager for information

Communicating with the Help Manager
The ICustomHelpViewer provides four functions that can be used to communicate system information with the Help
Manager:

GetViewerName
NotifyID
ShutDown
SoftShutDown

The Help Manager calls through these functions in the following circumstances:

ICustomHelpViewer.GetViewerName : String is called when the Help Manager wants to know the name of the
viewer (for example, if the application is asked to display a list of all registered viewers). This information is
returned via a string, and is required to be logically static (that is, it cannot change during the operation of the
application). Multibyte character sets are not supported.
ICustomHelpViewer.NotifyID(const ViewerID: Integer) is called immediately following registration to provide
the viewer with a unique cookie that identifies it. This information must be stored off for later use; if the viewer
shuts down on its own (as opposed to in response to a notification from the Help Manager), it must provide the
Help Manager with the identifying cookie so that the Help Manager can release all references to the viewer.
(Failing to provide the cookie, or providing the wrong one, causes the Help Manager to potentially release
references to the wrong viewer.)
ICustomHelpViewer.ShutDown is called by the Help Manager to notify the Help viewer that the Manager is
shutting down and that any resources the Help viewer has allocated should be freed. It is recommended that
all resource freeing be delegated to this method.
ICustomHelpViewer.SoftShutDown is called by the Help Manager to ask the Help viewer to close any externally
visible manifestations of the Help system (for example, windows displaying Help information) without unloading
the viewer.

Asking the Help Manager for Information
Help viewers communicate with the Help Manager through the IHelpManager interface, an instance of which is
returned to them when they register with the Help Manager. IHelpManager allows the Help viewer to communicate
four things:

1582

A request for the window handle of the currently active control.
A request for the name of the Help file which the Help Manager believes should contain help for the currently
active control.
A request for the path to that Help file.
A notification that the Help viewer is shutting itself down in response to something other than a request from
the Help Manager that it do so.

IHelpManager.GetHandle : LongInt is called by the Help viewer if it needs to know the handle of the currently active
control; the result is a window handle.

IHelpManager.GetHelpFile: String is called by the Help viewer if it needs to know the name of the Help file which
the currently active control believes contains its Help.

IHelpManager.Release is called to notify the Help Manager when a Help viewer is disconnecting. It should never be
called in response to a request through ICustomHelpViewer.ShutDown; it is only used to notify the Help Manager
of unexpected disconnects.

Displaying Keyword-based Help
Help requests typically come through to the Help viewer as either keyword-based Help, in which case the viewer is
asked to provide help based upon a particular string, or as context-based Help, in which case the viewer is asked
to provide help based upon a particular numeric identifier.

Note: Numeric Help contexts are the default form of Help requests in applications running under Windows, which
use the WinHelp system; while CLX supports them, they are not recommended for use in CLX applications
because most Linux Help systems do not understand them.

ICustomHelpViewer implementations are required to provide support for keyword-based Help requests, while
IExtendedHelpViewer implementations are required to support context-based Help requests.

ICustomHelpViewer provides three methods for handling keyword-based Help:

UnderstandsKeyword
GetHelpStrings
ShowHelp

[Delphi]
ICustomHelpViewer.UnderstandsKeyword(const HelpString: String): Integer

[C++]
int__fastcall ICustomHelpViewer::UnderstandsKeyword(const AnsiString HelpString)

is the first of the three methods called by the Help Manager, which will call each registered Help viewer with the
same string to ask if the viewer provides help for that string; the viewer is expected to respond with an integer
indicating how many different Help pages it can display in response to that Help request. The viewer can use any
method it wants to determine this—inside the IDE, the HyperHelp viewer maintains its own index and searches it. If
the viewer does not support help on this keyword, it should return zero. Negative numbers are currently interpreted
as meaning zero, but this behavior is not guaranteed in future releases.

[Delphi]
ICustomHelpViewer.GetHelpStrings(const HelpString: String): TStringList

1583

[C++]
Classes::TStringList*__fastcall ICustomHelpViewer::GetHelpStrings(const AnsiString
HelpString)

is called by the Help Manager if more than one viewer can provide Help on a topic. The viewer is expected to return
a TStringList, which is freed by the Help Manager. The strings in the returned list should map to the pages available
for that keyword, but the characteristics of that mapping can be determined by the viewer. In the case of the WinHelp
viewer on Windows and the HyperHelp viewer on Linux, the string list always contains exactly one entry. HyperHelp
provides its own indexing, and duplicating that elsewhere would be pointless duplication. In the case of the Man
page viewer (Linux), the string list consists of multiple strings, one for each section of the manual which contains a
page for that keyword.

[Delphi]
ICustomHelpViewer.ShowHelp(const HelpString: String)

[C++]
void__fastcall ICustomHelpViewer::ShowHelp(const AnsiString HelpString)

is called by the Help Manager if it needs the Help viewer to display help for a particular keyword. This is the last
method call in the operation; it is guaranteed to never be called unless the UnderstandsKeyword method is invoked
first.

Displaying Tables of Contents
ICustomHelpViewer provides two methods relating to displaying tables of contents:

CanShowTableOfContents
ShowTableOfContents

The theory behind their operation is similar to the operation of the keyword Help request functions: the Help Manager
first queries all Help viewers by calling ICustomHelpViewer.CanShowTableOfContents : Boolean and then invokes
a particular Help viewer by calling ICustomHelpViewer.ShowTableOfContents.

It is reasonable for a particular viewer to refuse to allow requests to support a table of contents. The Man page viewer
does this, for example, because the concept of a table of contents does not map well to the way Man pages work;
the HyperHelp viewer supports a table of contents, on the other hand, by passing the request to display a table of
contents directly to WinHelp on Windows and HyperHelp on Linux. It is not reasonable, however, for an
implementation of ICustomHelpViewer to respond to queries through CanShowTableOfContents with the answer
True, and then ignore requests through ShowTableOfContents.

Implementing IExtendedHelpViewer
ICustomHelpViewer only provides direct support for keyword-based Help. Some Help systems (especially WinHelp)
work by associating numbers (known as context IDs) with keywords in a fashion which is internal to the Help system
and therefore not visible to the application. Such systems require that the application support context-based Help in
which the application invokes the Help system with that context, rather than with a string, and the Help system
translates the number itself.

Applications can talk to systems requiring context-based Help by extending the object that implements
ICustomHelpViewer to also implement IExtendedHelpViewer. IExtendedHelpViewer also provides support for
talking to Help systems that allow you to jump directly to high-level topics instead of using keyword searches. The
built-in WinHelp viewer does this for you automatically.

1584

IExtendedHelpViewer exposes four functions. Two of them—UnderstandsContext and DisplayHelpByContext—are
used to support context-based Help; the other two—UnderstandsTopic and DisplayTopic—are used to support
topics.

When an application user presses F1, the Help Manager calls

[Delphi]
IExtendedHelpViewer.UnderstandsContext(const ContextID: Integer;
const HelpFileName: String): Boolean

[C++]
int__fastcall IExtendedHelpViewer::UnderstandsContext(const int ContextID, AnsiString
HelpFileName)

and the currently activated control supports context-based, rather than keyword-based Help. As with
ICustomHelpViewer.UnderstandsKeyword, the Help Manager queries all registered Help viewers iteratively. Unlike
the case with ICustomHelpViewer.UnderstandsKeyword, however, if more than one viewer supports a specified
context, the first registered viewer with support for a given context is invoked.

The Help Manager calls

[Delphi]
IExtendedHelpViewer.DisplayHelpByContext(const ContextID: Integer;
const HelpFileName: String)

[C++]
void__fastcall IExtendedHelpViewer::DisplayHelpByContext(const int ContextID, AnsiString
HelpFileName)

after it has polled the registered Help viewers.

The topic support functions work the same way:

[Delphi]
IExtendedHelpViewer.UnderstandsTopic(const Topic: String): Boolean

[C++]
bool__fastcall IExtendedHelpViewer::UnderstandsTopic(const AnsiString Topic)

is used to poll the Help viewers asking if they support a topic;

[Delphi]
IExtendedHelpViewer.DisplayTopic(const Topic: String)

[C++]
void__fastcall IExtendedHelpViewer::DisplayTopic(const AnsiString Topic)

is used to invoke the first registered viewer which reports that it is able to provide help for that topic.

Implementing IHelpSelector
IHelpSelector is a companion to ICustomHelpViewer. When more than one registered viewer claims to provide
support for a given keyword, context, or topic, or provides a table of contents, the Help Manager must choose
between them. In the case of contexts or topics, the Help Manager always selects the first Help viewer that claims

1585

to provide support. In the case of keywords or the table of context, the Help Manager will, by default, select the first
Help viewer. This behavior can be overridden by an application.

To override the decision of the Help Manager in such cases, an application must register a class that provides an
implementation of the IHelpSelector interface. IHelpSelector exports two functions: SelectKeyword, and
TableOfContents. Both take as arguments a TStrings containing, one by one, either the possible keyword matches
or the names of the viewers claiming to provide a table of contents. The implementor is required to return the index
(in the TStringList) that represents the selected string; the TStringList is then freed by the Help Manager.

Note: The Help Manager may get confused if the strings are rearranged; it is recommended that implementors
of IHelpSelector refrain from doing this. The Help system only supports one HelpSelector; when new selectors
are registered, any previously existing selectors are disconnected.

Registering Help System Objects
For the Help Manager to communicate with them, objects that implement ICustomHelpViewer,
IExtendedHelpViewer, ISpecialWinHelpViewer, and IHelpSelector must register with the Help Manager.

To register Help system objects with the Help Manager, you need to:

Register the Help viewer.
Register the Help Selector.

Registering Help viewers
The unit that contains the object implementation must use HelpIntfs. An instance of the object must be declared in
the var section of the implementing unit.

The initialization section of the implementing unit must assign the instance variable and pass it to the function
RegisterViewer. RegisterViewer is a flat function exported by the HelpIntfs unit, which takes as an argument an
ICustomHelpViewer and returns an IHelpManager. The IHelpManager should be stored for future use.

[Delphi]

Registering Help selectors
The unit that contains the object implementation must use either Forms in the VCL or QForms in CLX. An instance
of the object must be declared in the var section of the implementing unit.

The initialization section of the implementing unit must register the Help selector through the HelpSystem property
of the global Application object:

[Delphi]
Application.HelpSystem.AssignHelpSelector(myHelpSelectorInstance)

[C++]
Application->HelpSystem->AssignHelpSelector(myHelpSelectorInstance)

This procedure does not return a value.

1586

Using Help in a VCL Application
The following sections explain how to use Help within a VCL application.

How TApplication Processes VCL Help
How VCL controls process Help
Calling a Help system directly
Using IHelpSystem

How TApplication Processes VCL Help
TApplication in the VCL provides four methods that are accessible from application code:

Help methods in TApplication
Method Description

HelpCommand Takes a Windows Help style HELP_COMMAND and passes it off to WinHelp. Help requests forwarded
through this mechanism are passed only to implementations of IspecialWinHelpViewer.

HelpContext Invokes the Help System with a request for context-based Help.

HelpKeyword Invokes the HelpSystem with a request for keyword-based Help.

HelpJump Requests the display of a particular topic.

All four functions take the data passed to them and forward it through a data member of TApplication, which
represents the Help system. That data member is directly accessible through the property HelpSystem.

How VCL Controls Process Help
All VCL controls that derive from TControl expose several properties that are used by the Help system: HelpType,
HelpContext, and HelpKeyword.

The HelpType property contains an instance of an enumerated type that determines if the control's designer expects
help to be provided via keyword-based Help or context-based Help. If the HelpType is set to htKeyword, then the
Help system expects the control to use keyword-based Help, and the Help system only looks at the contents of the
HelpKeyword property. Conversely, if the HelpType is set to htContext, the Help system expects the control to use
context-based Help and only looks at the contents of the HelpContext property.

In addition to the properties, controls expose a single method, InvokeHelp, that can be called to pass a request to
the Help system. It takes no parameters and calls the methods in the global Application object, which correspond
to the type of Help the control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown method of TWinControl calls
InvokeHelp.

Calling a Help System Directly
For additional Help system functionality not provided by VCL or CLX applications, TApplication provides a read-only
property that allows direct access to the Help system. This property is an instance of an implementation of the
interface IHelpSystem. IHelpSystem and IHelpManager are implemented by the same object, but one interface is
used to allow the application to talk to the Help Manager, and one is used to allow the Help viewers to talk to the
Help Manager.

1587

Using IHelpSystem
IHelpSystem allows an application to do three things:

Provides path information to the Help Manager.
Provides a new Help selector.
Asks the Help Manager to display Help.

Providing path information is important because the Help Manager is platform-independent and Help system-
independent and so is not able to ascertain the location of Help files. If an application expects Help to be provided
by an external Help system that is not able to ascertain file locations itself, it must provide this information through
the IHelpSystem's ProvideHelpPath method, which allows the information to become available through the
IHelpManager's GetHelpPath method. (This information propagates outward only if the Help viewer asks for it.)

Assigning a Help selector allows the Help Manager to delegate decision-making in cases where multiple external
Help systems can provide Help for the same keyword. For more information, see the topic Implementing
IHelpSelector.

IHelpSystem exports four procedures and one function to request the Help Manager to display Help:

ShowHelp
ShowContextHelp
ShowTopicHelp
ShowTableOfContents
Hook

Hook is intended entirely for WinHelp compatibility and should not be used in a CLX application; it allows processing
of WM_HELP messages that cannot be mapped directly onto requests for keyword-based, context-based, or topic-
based Help. The other methods each take two arguments: the keyword, context ID, or topic for which help is being
requested, and the Help file in which it is expected that help can be found.

In general, unless you are asking for topic-based help, it is equally effective and more clear to pass help requests
to the Help Manager through the InvokeHelp method of your control.

Customizing the IDE Help System
The IDE supports multiple Help viewers in exactly the same way that a VCL or CLX application does: it delegates
Help requests to the Help Manager, which forwards them to registered Help viewers. The IDE makes use of the
same WinHelpViewer that the VCL uses.

The IDE comes with two Help viewers installed: the HyperHelp viewer, which allows Help requests to be forwarded
to HyperHelp, an external WinHelp emulator under which the Kylix Help files are viewed, and the Man page viewer,
which allows you to access the Man system installed on most Unix machines. Because it is necessary for Kylix Help
to work, the HyperHelp viewer may not be removed; the Man page viewer ships in a separate package whose source
is available in the examples directory.

To install a new Help viewer in the IDE, you do exactly what you would do in a VCL or CLX application, with one
difference. You write an object that implements ICustomHelpViewer (and, if desired, IExtendedHelpViewer) to
forward Help requests to the external viewer of your choice, and you register the ICustomHelpViewer with the IDE.

To register a custom Help viewer with the IDE:
1 Make sure that the unit implementing the Help viewer contains HelpIntfs.pas.
2 Build the unit into a design-time package registered with the IDE, and build the package with runtime packages

turned on. (This is necessary to ensure that the Help Manager instance used by the unit is the same as the Help
Manager instance used by the IDE.)

1588

3 Make sure that the Help viewer exists as a global instance within the unit.
4 In the initialization section of the unit, make sure that the instance is passed to the RegisterHelpViewer function.

1589

Developing the application user interface

Developing the Application User Interface: Overview
When you open the IDE or create a new project, a blank form is displayed on the screen. You design your application's
user interface (UI) by placing and arranging visual components, such as windows, menus, and dialog boxes, from
the Tool palette onto the form.

Once a visual component is on the form, you can adjust its position, size, and other design-time properties, and code
its event handlers. The form takes care of the underlying programming details.

The following topics describe some of the major interface tasks, such as working with forms, creating component
templates, adding dialog boxes, and organizing actions for menus and toolbars.

Controlling Application Behavior
TApplication, TScreen, and TForm are the classes that form the backbone of all applications by controlling the
behavior of your project. The TApplication class forms the foundation of an application by providing properties and
methods that encapsulate the behavior of a standard program. TScreen is used at runtime to keep track of forms
and data modules that have been loaded as well as maintaining system-specific information such as screen
resolution and available display fonts. Instances of the TForm class are the building blocks of your application's user
interface. The windows and dialog boxes in your application are based on TForm.

Working at the Application Level
The global variable Application, of type TApplication, is in every VCL- or CLX-based application. Application
encapsulates your application as well as providing many functions that occur in the background of the program. For
instance, Application handles how you call a Help file from the menu of your program. Understanding how
TApplication works is more important to a component writer than to developers of stand-alone applications, but you
should set the options that Application handles in the Project Options Application page when you create a project.

In addition, Application receives many events that apply to the application as a whole. For example, the
OnActivate event lets you perform actions when the application first starts up, the OnIdle event lets you perform
background processes when the application is not busy, the OnMessage event lets you intercept Windows messages
(on Windows only), the OnEvent event lets you intercept events, and so on. Although you can't use the IDE to
examine the properties and events of the global Application variable, another component, TApplicationEvents,
intercepts the events and lets you supply event-handlers using the IDE.

1590

Handling the Screen
A global variable of type TScreen called Screen is created when you create a project. Screen encapsulates the state
of the screen on which your application is running. Common tasks performed by Screen include specifying:

The look of the cursor.
The size of the window in which your application is running.
A list of fonts available to the screen device.
Multiple screen behavior (Windows only).

If your Windows application runs on multiple monitors, Screen maintains a list of monitors and their dimensions so
that you can effectively manage the layout of your user interface.

For CLX applications, the default behavior is that applications create a screen component based on information
about the current screen device and assign it to Screen.

Using the Main Form
The first form you create and save in a project becomes, by default, the project's main form, which is the first form
created at runtime. As you add forms to your projects, you might decide to designate a different form as your
application's main form. Also, specifying a form as the main form is an easy way to test it at runtime, because unless
you change the form creation order, the main form is the first form displayed in the running application.

To change the project main form:
1 Choose Project Options and select the Forms page.
2 In the Main Form combo box, select the form you want to use as the project's main form and choose OK.

Now if you run the application, the form you selected as the main form is displayed.

Hiding the Main Form
You can prevent the main form from appearing when your application starts by using the global Application variable.

To hide the main form at startup:
1 Choose Project View Source to display the main project file.
2 Add the following code after the call to Application.CreateForm and before the call to Application.Run.

[Delphi]
Application.ShowMainForm := False;
Form1.Visible := False; { the name of your main form may differ }

[C++]
Application->ShowMainForm = false;

Note: You can set the form's Visible property to False using the Object Inspector at design time rather than setting
it at runtime as in the previous example.

1591

Adding Forms
To add a form to your project, select File New Form. You can see all your project's forms and their associated
units listed in the Project Manager (View Project Manager) and you can display a list of the forms alone by
choosing View Forms.

Linking forms
Adding a form to a project adds a reference to it in the project file, but not to any other units in the project. Before
you can write code that references the new form, you need to add a reference to it in the referencing forms' unit files.
This is called form linking.

A common reason to link forms is to provide access to the components in that form. For example, you'll often use
form linking to enable a form that contains data-aware components to connect to the data-access components in a
data module.

To link a form to another form:
1 Select the form that needs to refer to another.
2 Choose File Use Unit.
3 Select the name of the form unit for the form to be referenced.
4 Choose OK.

Linking a form to another just means that the uses clauses of one form unit contains a reference to the other's form
unit, meaning that the linked form and its components are now in scope for the linking form.

Avoiding circular unit references
When two forms must reference each other, it's possible to cause a "Circular reference" error when you compile
your program. To avoid such an error, do one of the following:

Place both uses clauses, with the unit identifiers, in the implementation parts of the respective unit files. (This
is what the File Use Unit command does.)
Place one uses clause in an interface part and the other in an implementation part. (You rarely need to place
another form's unit identifier in this unit's interface part.)

Do not place both uses clauses in the interface parts of their respective unit files. This generates the "Circular
reference" error at compile time.

Managing Layout
At its simplest, you control the layout of your user interface by where you place controls in your forms. The placement
choices you make are reflected in the control's Top, Left, Width, and Height properties. You can change these values
at runtime to change the position and size of the controls in your forms.

Controls have a number of other properties, however, that allow them to automatically adjust to their contents or
containers. This allows you to lay out your forms so that the pieces fit together into a unified whole.

Two properties affect how a control is positioned and sized in relation to its parent. The Align property lets you force
a control to fit perfectly within its parent along a specific edge or filling up the entire client area after any other controls
have been aligned. When the parent is resized, the controls aligned to it are automatically resized and remain
positioned so that they fit against a particular edge.

1592

If you want to keep a control positioned relative to a particular edge of its parent, but don't want it to necessarily
touch that edge or be resized so that it always runs along the entire edge, you can use the Anchors property.

If you want to ensure that a control does not grow too big or too small, you can use the Constraints property.
Constraints lets you specify the control's maximum height, minimum height, maximum width, and minimum width.
Set these to limit the size (in pixels) of the control's height and width. For example, by setting the MinWidth and
MinHeight of the constraints on a container object, you can ensure that child objects are always visible.

The value of Constraints propagates through the parent/child hierarchy so that an object's size can be constrained
because it contains aligned children that have size constraints. Constraints can also prevent a control from being
scaled in a particular dimension when its ChangeScale method is called.

TControl introduces a protected event, OnConstrainedResize, of type TConstrainedResizeEvent:

[Delphi]
TConstrainedResizeEvent = procedure(Sender: TObject; var MinWidth, MinHeight, MaxWidth,
MaxHeight: Integer) of object;

[C++]
void __fastcall (__closure *TConstrainedResizeEvent)(System::TObject* Sender, int
&MinWidth, int &MinHeight, int &MaxWidth, int &MaxHeight);

This event allows you to override the size constraints when an attempt is made to resize the control. The values of
the constraints are passed as var parameters which can be changed inside the event handler.
OnConstrainedResize is published for container objects (TForm, TScrollBox, TControlBar, and TPanel). In addition,
component writers can use or publish this event for any descendant of TControl.

Controls that have contents that can change in size have an AutoSize property that causes the control to adjust its
size to its font or contained objects.

Using Forms
When you create a form from the IDE, Delphi automatically creates the form in memory by including code in the
main entry point of your application function. Usually, this is the desired behavior and you don't have to do anything
to change it. That is, the main window persists through the duration of your program, so you would likely not change
the default behavior when creating the form for your main window.

However, you may not want all your application's forms in memory for the duration of the program execution. That
is, if you do not want all your application's dialogs in memory at once, you can create the dialogs dynamically when
you want them to appear.

Forms can be modal or modeless. Modal forms are forms with which the user must interact before switching to
another form (for example, a dialog box requiring user input). Modeless forms are windows that are displayed until
they are either obscured by another window or until they are closed or minimized by the user.

Controlling When Forms Reside in Memory
By default, Delphi automatically creates the application's main form in memory by including the following code in the
application's main entry point:

[Delphi]
Application.CreateForm(TForm1, Form1);

1593

[C++]
Application ->CreateForm(__classid(TForm1), &Form1);

This function creates a global variable with the same name as the form. So, every form in an application has an
associated global variable. This variable is a pointer to an instance of the form's class and is used to reference the
form while the application is running. Any unit that includes the form's unit in its uses clause can access the form
via this variable.

All forms created in this way in the project unit appear when the program is invoked and exist in memory for the
duration of the application.

Displaying an Auto-created Form
If you choose to create a form at startup, and do not want it displayed until sometime later during program execution,
the form's event handler uses the ShowModal method to display the form that is already loaded in memory:

[Delphi]
procedure TMainForm.Button1Click(Sender: TObject);
begin
ResultsForm.ShowModal;
end;

[C++]
void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{
ResultsForm->ShowModal();
}

In this case, since the form is already in memory, there is no need to create another instance or destroy that instance.

Creating Forms Dynamically
You may not always want all your application's forms in memory at once. To reduce the amount of memory required
at load time, you may want to create some forms only when you need to use them. For example, a dialog box needs
to be in memory only during the time a user interacts with it.

To create a form at a different stage during execution using the IDE:
1 Select the File New Form from the main menu to display the new form.
2 Remove the form from the Auto-create forms list of the Project Options Forms page.

This removes the form's invocation at startup. As an alternative, you can manually remove the following line from
program's main entry point:

[Delphi]
Application.CreateForm(TResultsForm, ResultsForm);

[C++]
Application->CreateForm(__classid(TResultsForm), &ResultsForm);

1594

3 Invoke the form when desired by using the form's Show method, if the form is modeless, or ShowModal method,
if the form is modal.

An event handler for the main form must create an instance of the result form and destroy it. One way to invoke the
result form is to use the global variable as follows. Note that ResultsForm is a modal form so the handler uses
the ShowModal method.

[Delphi]
procedure TMainForm.Button1Click(Sender: TObject);
begin
 ResultsForm := TResultForm.Create(self);
 try
 ResultsForm.ShowModal;
 finally
 ResultsForm.Free;
 end;
end;

[C++]
void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{
ResultsForm = new TResultsForm(this);
ResultsForm->ShowModal();
delete ResultsForm;
}

In the above example, note the use of try..finally. Putting in the line ResultsForm.Free; in the finally clause ensures
that the memory for the form is freed even if the form raises an exception.

The event handler in the example deletes the form after it is closed, so the form would need to be recreated if you
needed to use ResultsForm elsewhere in the application. If the form were displayed using Show you could not delete
the form within the event handler because Show returns while the form is still open.

Note: If you create a form using its constructor, be sure to check that the form is not in the Auto-create forms list
on the Project Options Forms page. Specifically, if you create the new form without deleting the form
of the same name from the list, Delphi creates the form at startup and this event-handler creates a new
instance of the form, overwriting the reference to the auto-created instance. The auto-created instance still
exists, but the application can no longer access it. After the event-handler terminates, the global variable no
longer points to a valid form. Any attempt to use the global variable will likely crash the application.

Creating Modeless Forms Such as Windows
You must guarantee that reference variables for modeless forms exist for as long as the form is in use. This means
that these variables should have global scope. In most cases, you use the global reference variable that was created
when you made the form (the variable name that matches the name property of the form). If your application requires
additional instances of the form, declare separate global variables for each instance.

Creating a Form Instance Using a Local Variable
A safer way to create a unique instance of a modal form is to use a local variable in the event handler as a reference
to a new instance. If a local variable is used, it does not matter whether ResultsForm is auto-created or not. The
code in the event handler makes no reference to the global form variable. For example:

1595

[Delphi]
procedure TMainForm.Button1Click(Sender: TObject);
var
 RF:TResultForm;
begin
 RF:=TResultForm.Create(self)
 RF.ShowModal;
 RF.Free;
end;

[C++]
void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{
TResultsForm *rf = new TResultsForm(this);
rf->ShowModal();
delete rf;
}

Notice how the global instance of the form is never used in this version of the event handler.

Typically, applications use the global instances of forms. However, if you need a new instance of a modal form, and
you use that form in a limited, discrete section of the application, such as a single function, a local instance is usually
the safest and most efficient way of working with the form.

Of course, you cannot use local variables in event handlers for modeless forms because they must have global
scope to ensure that the forms exist for as long as the form is in use. Show returns as soon as the form opens, so
if you used a local variable, the local variable would go out of scope immediately.

Passing Additional Arguments to Forms
Typically, you create forms for your application from within the IDE. When created this way, the forms have a
constructor that takes one argument, Owner, which is the owner of the form being created. (The owner is the calling
application object or form object.) Owner can be nil.

To pass additional arguments to a form, create a separate constructor and instantiate the form using this new
constructor. The example form class below shows an additional constructor, with the extra argument whichButton.
This new constructor is added to the form class manually.

[Delphi]
TResultsForm = class(TForm)
 ResultsLabel: TLabel;
 OKButton: TButton;
 procedure OKButtonClick(Sender: TObject);
private
public
 constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
end;

[C++]
class TResultsForm : public TForm
{
__published: // IDE-managed Components
TLabel *ResultsLabel;
TButton *OKButton;
void __fastcall OKButtonClick(TObject *Sender);
private: // User declarations

1596

public: // User declarations
virtual __fastcall TResultsForm(TComponent* Owner);
 virtual __fastcall TResultsForm(int whichButton, TComponent* Owner);
};

Here's the manually coded constructor that passes the additional argument, whichButton. This constructor uses the
whichButton parameter to set the Caption property of a Label control on the form.

[Delphi]
constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
begin
 inherited Create(Owner);
 case whichButton of
 1: ResultsLabel.Caption := "You picked the first button.";
 2: ResultsLabel.Caption := "You picked the second button.";
 3: ResultsLabel.Caption := "You picked the third button.";
 end;
end;

[C++]
void__fastcall TResultsForm::TResultsForm(int whichButton, TComponent* Owner)
: TForm(Owner)
{
switch (whichButton) {
case 1:
ResultsLabel->Caption = "You picked the first button!";
break;
case 2:
ResultsLabel->Caption = "You picked the second button!";
break;
case 3:
ResultsLabel->Caption = "You picked the third button!";
}
}

When creating an instance of a form with multiple constructors, you can select the constructor that best suits your
purpose. For example, the following OnClick handler for a button on a form calls creates an instance of
TResultsForm that uses the extra parameter:

[Delphi]
procedure TMainForm.SecondButtonClick(Sender: TObject);
var
 rf: TResultsForm;
begin
 rf := TResultsForm.CreateWithButton(2, self);
 rf.ShowModal;
 rf.Free;
end;

[C++]
void __fastcall TMainMForm::SecondButtonClick(TObject *Sender)
{
TResultsForm *rf = new TResultsForm(2, this);
rf->ShowModal();
delete rf;
}

1597

Retrieving Data from Forms
Most real-world applications consist of several forms. Often, information needs to be passed between these forms.
Information can be passed to a form by means of parameters to the receiving form's constructor, or by assigning
values to the form's properties. The way you get information from a form depends on whether the form is modal or
modeless.

Retrieving Data from Modeless Forms
You can easily extract information from modeless forms by calling public member functions of the form or by querying
properties of the form. For example, assume an application contains a modeless form called ColorForm that contains
a listbox called ColorListBox with a list of colors ("Red," "Green," "Blue," and so on). The selected color name string
in ColorListBox is automatically stored in a property called CurrentColor each time a user selects a new color. The
class declaration for the form is as follows:

[Delphi]
TColorForm = class(TForm)
 ColorListBox:TListBox;
 procedure ColorListBoxClick(Sender: TObject);
private
 FColor:String;
public
 property CurColor:String read FColor write FColor;
end;

[C++]
class TColorForm : public TForm
{
__published: // IDE-managed Components
TListBox *ColorListBox;
void __fastcall ColorListBoxClick(TObject *Sender);
private: // User declarations
String getColor();
void setColor(String);
String curColor;
public: // User declarations
virtual __fastcall TColorForm(TComponent* Owner);
__property String CurrentColor = {read=getColor, write=setColor};
};

The OnClick event handler for the listbox, ColorListBoxClick, sets the value of the CurrentColor property each time
a new item in the listbox is selected. The event handler gets the string from the listbox containing the color name
and assigns it to CurrentColor. The CurrentColor property uses the setter function, SetColor, to store the actual value
for the property in the private data member FColor:

[Delphi]
procedure TColorForm.ColorListBoxClick(Sender: TObject);
var
 Index: Integer;
begin
 Index := ColorListBox.ItemIndex;
 if Index >= 0 then
 CurrentColor := ColorListBox.Items[Index]
 else
 CurrentColor := '';
end;

1598

[C++]
void __fastcall TColorForm::ColorListBoxClick(TObject *Sender)
{
int index = ColorListBox->ItemIndex;
if (index >= 0) {
CurrentColor = ColorListBox->Items->Strings[index];
}
else
CurrentColor = "";
}
//---
void TColorForm::setColor(String s)
{
curColor = s;
}

Now suppose that another form within the application, called ResultsForm, needs to find out which color is currently
selected on ColorForm whenever a button (called UpdateButton) on ResultsForm is clicked. The OnClick event
handler for UpdateButton might look like this:

[Delphi]
procedure TResultForm.UpdateButtonClick(Sender: TObject);
var
 MainColor: String;
begin
 if Assigned(ColorForm) then
 begin
 MainColor := ColorForm.CurrentColor;
 {do something with the string MainColor}
 end;
end;

[C++]
void __fastcall TResultsForm::UpdateButtonClick(TObject *Sender)
{
if (ColorForm) {
String s = ColorForm->CurrentColor;
// do something with the color name string
}
}

The event handler first verifies that ColorForm exists using the Assigned function. It then gets the value of
ColorForm's CurrentColor property.

Alternatively, if ColorForm had a public function named GetColor, another form could get the current color without
using the CurrentColor property (for example, MainColor := ColorForm.GetColor;). In fact, there's nothing
to prevent another form from getting the ColorForm's currently selected color by checking the listbox selection
directly:

[Delphi]
with ColorForm.ColorListBox do
 MainColor := Items[ItemIndex];

[C++]
String TColorForm::getColor()
{

1599

return curColor;
}

[C++]
String s = ColorListBox->Items->Strings[ColorListBox->ItemIndex];

However, using a property makes the interface to ColorForm very straightforward and simple. All a form needs to
know about ColorForm is to check the value of CurrentColor.

Retrieving Data from Modal Forms
Just like modeless forms, modal forms often contain information needed by other forms. The most common example
is when form A launches modal form B. When form B is closed, form A needs to know what the user did with form
B to decide how to proceed with the processing of form A. If form B is still in memory, it can be queried through
properties or member functions just as in the modeless forms example above. But how do you handle situations
where form B is deleted from memory upon closing? Since a form does not have an explicit return value, you must
preserve important information from the form before it is destroyed.

To illustrate, consider a modified version of the ColorForm form that is designed to be a modal form. The class
declaration is as follows:

[Delphi]
TColorForm = class(TForm)
 ColorListBox:TListBox;
 SelectButton: TButton;
 CancelButton: TButton;
 procedure CancelButtonClick(Sender: TObject);
 procedure SelectButtonClick(Sender: TObject);
private
 FColor: Pointer;
public
 constructor CreateWithColor(Value: Pointer; Owner: TComponent);
end;

[C++]
class TColorForm : public TForm
{
__published: // IDE-managed Components
TListBox *ColorListBox;
TButton *SelectButton;
TButton *CancelButton;
void __fastcall CancelButtonClick(TObject *Sender);
void __fastcall SelectButtonClick(TObject *Sender);
private: // User declarations
String* curColor;
public: // User declarations
virtual __fastcall TColorForm(TComponent* Owner);
virtual __fastcall TColorForm(String* s, TComponent* Owner);
};

The form has a listbox called ColorListBox with a list of names of colors. When pressed, the button called
SelectButton makes note of the currently selected color name in ColorListBox then closes the form. CancelButton
is a button that simply closes the form.

1600

Note that a user-defined constructor was added to the class that takes a Pointer argument. Presumably, this
Pointer points to a string that the form launching ColorForm knows about. The implementation of this constructor is
as follows:

[Delphi]
constructor TColorForm(Value: Pointer; Owner: TComponent);
begin
 FColor := Value;
 String(FColor^) := '';
end;

[C++]
void__fastcall TColorForm::TColorForm(String* s, TComponent* Owner)
: TForm(Owner)
{
curColor = s;
*curColor = "";
}

The constructor saves the pointer to a private data member FColor and initializes the string to an empty string.

Note: To use the above user-defined constructor, the form must be explicitly created. It cannot be auto-created
when the application is started. For details, see Controlling when forms reside in memory.

In the application, the user selects a color from the listbox and presses SelectButton to save the choice and close
the form. The OnClick event handler for SelectButton might look like this:

[Delphi]
procedure TColorForm.SelectButtonClick(Sender: TObject);
begin
 with ColorListBox do
 if ItemIndex >= 0 then
 String(FColor^) := ColorListBox.Items[ItemIndex];
 end;
 Close;
end;

[C++]
void __fastcall TColorForm::SelectButtonClick(TObject *Sender)
{
int index = ColorListBox->ItemIndex;
if (index >= 0)
*curColor = ColorListBox->Items->Strings[index];
Close();
}

Notice that the event handler stores the selected color name in the string referenced by the pointer that was passed
to the constructor.

To use ColorForm effectively, the calling form must pass the constructor a pointer to an existing string. For example,
assume ColorForm was instantiated by a form called ResultsForm in response to a button called UpdateButton
on ResultsForm being clicked. The event handler would look as follows:

[Delphi]
procedure TResultsForm.UpdateButtonClick(Sender: TObject);
var
 MainColor: String;

1601

begin
 GetColor(Addr(MainColor));
 if MainColor <> '' then
 {do something with the MainColor string}
 else
 {do something else because no color was picked}
end;
procedure GetColor(PColor: Pointer);
begin
 ColorForm := TColorForm.CreateWithColor(PColor, Self);
 ColorForm.ShowModal;
 ColorForm.Free;
end;

[C++]
void __fastcall TResultsForm::UpdateButtonClick(TObject *Sender)
{
String s;
GetColor(&s);
if (s != "") {
// do something with the color name string
}
else {
// do something else because no color was picked
}
}
//---
void TResultsForm::GetColor(String *s)
{
ColorForm = new TColorForm(s, this);
ColorForm->ShowModal();
delete ColorForm;
ColorForm = 0; // NULL the pointer
}

UpdateButtonClick creates a String called MainColor. The address of MainColor is passed to the GetColor function
which creates ColorForm, passing the pointer to MainColor as an argument to the constructor. As soon as
ColorForm is closed it is deleted, but the color name that was selected is still preserved in MainColor, assuming that
a color was selected. Otherwise, MainColor contains an empty string which is a clear indication that the user exited
ColorForm without selecting a color.

This example uses one string variable to hold information from the modal form. Of course, more complex objects
can be used depending on the need. Keep in mind that you should always provide a way to let the calling form know
if the modal form was closed without making any changes or selections (such as having MainColor default to an
empty string).

Reusing Components and Groups of Components
You can save and reuse work you've done with components using several tools:

Configure and save groups of components in component templates.
Save forms, data modules, and projects in the Object Repository. The Repository gives you a central database
of reusable elements and lets you use form inheritance to propagate changes.
Save frames on the Tool palette or in the Repository. Frames use form inheritance and can be embedded into
forms or other frames.

1602

Create a custom component, the most complicated but most flexible way of reusing code. See Overview of
Component Creation.

Creating and Using Component Templates
You can create templates that are made up of one or more components. After arranging components on a form,
setting their properties, and writing code for them, save them as a component template. Later, by selecting the
template from the Tool palette, you can place the preconfigured components on a form in a single step; all associated
properties and event-handling code are added to your project at the same time.

Once you place a template on a form, you can reposition the components independently, reset their properties, and
create or modify event handlers for them just as if you had placed each component in a separate operation.

To create a component template:
1 Place and arrange components on a form. In the Object Inspector, set their properties and events as desired.
2 Select the components. The easiest way to select several components is to drag the mouse over all of them.

Gray handles appear at the corners of each selected component.
3 Choose Component Create Component Template.
4 Specify a name for the component template in the Component Template Information edit box. The default

proposal is the component type of the first component selected in step 2 followed by the word "Template." For
example, if you select a label and then an edit box, the proposed name will be "TLabelTemplate." You can change
this name, but be careful not to duplicate existing component names.

5 In the Palette page edit box, specify the Tool palette page where you want the template to reside. If you specify
a page that does not exist, a new page is created when you save the template.

6 Next to Palette Icon, select a bitmap to represent the template on the palette. The default proposal will be the
bitmap used by the component type of the first component selected in step 2. To browse for other bitmaps, click
Change. The bitmap you choose must be no larger than 24 pixels by 24 pixels.

7 Click OK.

To remove templates from the Tool palette, choose Component Configure Palette.

Working with Frames
A frame (TFrame), like a form, is a container for other components. It uses the same ownership mechanism as forms
for automatic instantiation and destruction of the components on it, and the same parent-child relationships for
synchronization of component properties.

In some ways, however, a frame is more like a customized component than a form. Frames can be saved on the
Tool palette for easy reuse, and they can be nested within forms, other frames, or other container objects. After a
frame is created and saved, it continues to function as a unit and to inherit changes from the components (including
other frames) it contains. When a frame is embedded in another frame or form, it continues to inherit changes made
to the frame from which it derives.

Frames are useful to organize groups of controls that are used in multiple places in your application. For example,
if you have a bitmap that is used on multiple forms, you can put it in a frame and only one copy of that bitmap is
included in the resources of your application. You could also describe a set of edit fields that are intended to edit a
table with a frame and use that whenever you want to enter data into the table.

Creating frames

Using and modifying frames

1603

Sharing frames

Creating Frames
To create an empty frame, choose File New Frame, or choose File New Other and double-click Frame.
You can then drop components (including other frames) onto your new frame.

It is usually best—though not necessary—to save frames as part of a project. If you want to create a project that
contains only frames and no forms, choose File New Application, close the new form and unit without saving
them, then choose File New Frame and save the project.

Note: When you save frames, avoid using the default names Unit1, Project1, and so forth, since these are likely to
cause conflicts when you try to use the frames later.

At design time, you can display any frame included in the current project by choosing View Forms and selecting
a frame. As with forms and data modules, you can toggle between the Form Designer and the frame's form file by
right-clicking and choosing View as Form or View as Text.

Adding frames to the Tool palette
Frames are added to the Tool palette as component templates. To add a frame to the Tool palette, open the frame
in the Form Designer (you cannot use a frame embedded in another component for this purpose), right-click the
frame, and choose Add to Palette. When the Component Template Information dialog opens, select a name, palette
page, and icon for the new template.

Using and Modifying Frames
To use a frame in an application, you must place it, directly or indirectly, on a form. You can add frames directly to
forms, to other frames, or to other container objects such as panels and scroll boxes.

The Form Designer provides two ways to add a frame to an application:

Select a frame from the Tool palette and drop it onto a form, another frame, or another container object. If
necessary, the Form Designer asks for permission to include the frame's unit file in your project.
Select Frames from the Standard category of the Tool palette and click on a form or another frame. A dialog
appears with a list of frames that are already included in your project; select one and click OK.

When you drop a frame onto a form or other container, Delphi declares a new class that descends from the frame
you selected. (Similarly, when you add a new form to a project, Delphi declares a new class that descends from
TForm.) This means that changes made later to the original (ancestor) frame propagate to the embedded frame,
but changes to the embedded frame do not propagate backward to the ancestor.

Suppose, for example, that you wanted to assemble a group of data-access components and data-aware controls
for repeated use, perhaps in more than one application. One way to accomplish this would be to collect the
components into a component template; but if you started to use the template and later changed your mind about
the arrangement of the controls, you would have to go back and manually alter each project where the template was
placed.

If, on the other hand, you put your database components into a frame, later changes would need to be made in only
one place; changes to an original frame automatically propagate to its embedded descendants when your projects
are recompiled. At the same time, you are free to modify any embedded frame without affecting the original frame
or other embedded descendants of it. The only limitation on modifying embedded frames is that you cannot add
components to them.

A frame with data-aware controls and a data source component:

1604

In addition to simplifying maintenance, frames can help you to use resources more efficiently. For example, to use
a bitmap or other graphic in an application, you might load the graphic into the Picture property of a TImage control.
If, however, you use the same graphic repeatedly in one application, each Image object you place on a form will
result in another copy of the graphic being added to the form's resource file. (This is true even if you set TImage.
Picture once and save the Image control as a component template.) A better solution is to drop the Image object
onto a frame, load your graphic into it, then use the frame where you want the graphic to appear. This results in
smaller form files and has the added advantage of letting you change the graphic everywhere it occurs simply by
modifying the Image on the original frame.

Sharing Frames
You can share a frame with other developers in two ways:

Add the frame to the Object Repository.
Distribute the frame's unit (.pas) and form (.dfm or .xfm) files.

To add a frame to the Repository, open any project that includes the frame, right-click in the Form Designer, and
choose Add to Repository. For more information, see Using the Object Repository.

If you send a frame's unit and form files to other developers, they can open them and add them to the Tool
palette. If the frame has other frames embedded in it, they will have to open it as part of a project.

Developing Dialog Boxes
The dialog box components on the Dialogs category of the Tool palette make various dialog boxes available to your
applications. These dialog boxes provide applications with a familiar, consistent interface that enables the user to
perform common file operations such as opening, saving, and printing files. Dialog boxes display and/or obtain data.

Each dialog box opens when its Execute method is called. Execute returns a Boolean value: if the user chooses OK
to accept any changes made in the dialog box, Execute returns True; if the user chooses Cancel to escape from the
dialog box without making or saving changes, Execute returns False.

Note: For CLX applications, you can use the dialogs provided in the QDialogs unit. For operating systems that have
native dialog box types for common tasks, such as for opening or saving a file or for changing font or color,
you can use the UseNativeDialog property. Set UseNativeDialog to True if your application will run in such
an environment, and if you want it to use the native dialogs instead of the Qt dialogs.

1605

Using Windows Common Dialog Boxes
One of the commonly used dialog box components is TOpenDialog. This component is usually invoked by a New
or Open menu item under the File option on the main menu bar of a form. The dialog box contains controls that let
you select groups of files using a wildcard character and navigate through directories.

The TOpenDialog component makes an Open dialog box available to your application. The purpose of this dialog
box is to let a user specify a file to open. You use the Execute method to display the dialog box.

When the user chooses OK in the dialog box, the user's file is stored in the TOpenDialog FileName property, which
you can then process as you want.

The following code can be placed in an Action and linked to the Action property of a TMainMenu subitem or be
placed in the subitem's OnClick event:

[Delphi]
if OpenDialog1.Execute then
 filename := OpenDialog1.FileName;

[C++]
if(OpenDialog1->Execute()){
 filename = OpenDialog1->FileName;
};

This code will show the dialog box and if the user presses the OK button, it will copy the name of the file into a
previously declared AnsiString variable named filename.

Organizing Actions for Toolbars and Menus
Several features simplify the work of creating, customizing, and maintaining menus and toolbars. These features
allow you to organize lists of actions that users of your application can initiate by pressing a button on a toolbar,
choosing a command on a menu, or pointing and clicking on an icon.

Often a set of actions is used in more than one user interface element. For example, the Cut, Copy, and Paste
commands often appear on both an Edit menu and on a toolbar. You only need to add the action once to use it in
multiple UI elements in your application.

On the Windows platform, tools are provided to make it easy to define and group actions, create different layouts,
and customize menus at design time or runtime. These tools are known collectively as ActionBand tools, and the
menus and toolbars you create with them are known as action bands. In general, you can create an ActionBand
user interface as follows:

Build the action list to create a set of actions that will be available for your application (use the Action Manager,
TActionManager)
Add the user interface elements to the application (use ActionBand components such as
TActionMainMenuBarand TActionToolBar)
Drag-and-drop actions from the Action Manager onto the user interface elements

The following table defines the terminology related to setting up menus and toolbars:

Action setup terminology
Term Definition

Action A response to something a user does, such as clicking a menu item. Many standard actions that are
frequently required are provided for you to use in your applications as is. For example, file operations such
as File Open, File SaveAs, File Run, and File Exit are included along with many others for editing, formatting,

1606

searches, help, dialogs, and window actions. You can also program custom actions and access them using
action lists and the Action Manager.

Action band A container for a set of actions associated with a customizable menu or toolbar. The ActionBand components
for main menus and toolbars (TActionMainMenuBar and TActionToolBar) are examples of action bands.

Action category Lets you group actions and drop them as a group onto a menu or toolbar. For example, one of the standard
action categories is Search which includes Find, FindFirst, FindNext, and Replace actions all at once.

Action classes Classes that perform the actions used in your application. All of the standard actions are defined in action
classes such as TEditCopy, TEditCut, and TEditUndo. You can use these classes by dragging and dropping
them from the Customize dialog onto an action band.

Action client Most often represents a menu item or a button that receives a notification to initiate an action. When the
client receives a user command (such as a mouse click), it initiates an associated action.

Action list Maintains a list of actions that your application can take in response to something a user does.

Action Manager Groups and organizes logical sets of actions that can be reused on ActionBand components. See
TActionManager.

Menu Lists commands that the user of the application can execute by clicking on them. You can create menus by
using the ActionBand menu class TActionMainMenuBar, or by using cross-platform components such as
TMainMenu or TPopupMenu.

Target Represents the item an action does something to. The target is usually a control, such as a memo or a data
control. Not all actions require a target. For example, the standard help actions ignore the target and simply
launch the help system.

Toolbar Displays a visible row of button icons which, when clicked, cause the program to perform some action, such
as printing the current document. You can create toolbars by using the ActionBand toolbar component
TActionToolBar, or by using the cross-platform component TToolBar.

If you are doing cross-platform development, refer to Using action lists for details.

What Is an Action?
As you are developing your application, you can create a set of actions that you can use on various UI elements.
You can organize them into categories that can be dropped onto a menu as a set (for example, Cut, Copy, and
Paste) or one at a time (for example, Tools Customize).

An action corresponds to one or more elements of the user interface, such as menu commands or toolbar buttons.
Actions serve two functions: (1) they represent properties common to the user interface elements, such as whether
a control is enabled or checked, and (2) they respond when a control fires, for example, when the application user
clicks a button or chooses a menu item. You can create a repertoire of actions that are available to your application
through menus, through buttons, through toolbars, context menus, and so on.

Actions are associated with other components:

Clients: One or more clients use the action. The client most often represents a menu item or a button (for
example, TToolButton, TSpeedButton, TMenuItem, TButton, TCheckBox, TRadioButton, and so on). Actions
also reside on ActionBand components such as TActionMainMenuBar and TActionToolBar. When the client
receives a user command (such as a mouse click), it initiates an associated action. Typically, a client's
OnClick event is associated with its action's OnExecute event.
Target: The action acts on the target. The target is usually a control, such as a memo or a data control.
Component writers can create actions specific to the needs of the controls they design and use, and then
package those units to create more modular applications. Not all actions use a target. For example, the standard
help actions ignore the target and simply launch the help system.

A target can also be a component. For example, data controls change the target to an associated dataset.

1607

The client influences the action—the action responds when a client fires the action. The action also influences the
client—action properties dynamically update the client properties. For example, if at runtime an action is disabled
(by setting its Enabled property to False), every client of that action is disabled, appearing grayed.

You can add, delete, and rearrange actions using the Action Manager or the Action List editor (displayed by double-
clicking an action list object, TActionList). These actions are later connected to client controls. See Creating toolbars
and menus and, for cross-platform development, Setting up action lists for details.

Setting Up Action Bands
Because actions do not maintain any "layout" (either appearance or positional) information, Delphi provides action
bands which are capable of storing this data. Action bands provide a mechanism that allows you to specify layout
information and a set of controls. You can render actions as UI elements such as toolbars and menus.

You organize sets of actions using the Action Manager (TActionManager). You can use standard actions provided
or create new actions of your own.

You then create the action bands:

Use TActionMainMenuBar to create a main menu.
Use TActionToolBarto create a toolbar.

The action bands act as containers that hold and render sets of actions. You can drag and drop items from the Action
Manager editor onto the action band at design time. At runtime, application users can also customize the application's
menus or toolbars using a dialog box similar to the Action Manager editor.

Creating Toolbars and Menus

Note: This topic describes the recommended method for creating menus and toolbars in Windows applications.
For cross-platform development, you need to use TToolBar and the menu components, such as
TMainMenu, organizing them using action lists (TActionList). See Setting up action lists for details.

You use the Action Manager to automatically generate toolbars and main menus based on the actions contained in
your application. The Action Manager manages standard actions and any custom actions that you have written. You
then create UI elements based on these actions and use action bands to render the actions items as either menu
items or as buttons on a toolbar.

The general procedure for creating menus, toolbars, and other action bands involves these steps:

Drop an Action Manager onto a form.
Add actions to the Action Manager, which organizes them into appropriate action lists.
Create the action bands (that is, the menu or the toolbar) for the user interface.
Drag and drop the actions into the application interface.

The following procedure explains these steps in more detail.

To create menus and toolbars using action bands:
1 From the Additional category of the Tool palette, drop an Action Manager component (TActionManager) onto

the form where you want to create the toolbar or menu.
2 If you want images on the menu or toolbar, drop an ImageList component from the Win32 category of the Tool

palette onto a form. (You need to add the images you want to use to the ImageList or use the one provided.)
3 From the Additional category of the Tool palette, drop one or more of the following action bands onto the form:

TCustomActionMainMenuBar(for designing main menus)

1608

TActionToolBar(for designing toolbars)

4 Connect the ImageList to the Action Manager: with focus on the Action Manager and in the Object Inspector,
select the name of the ImageList from the Images property.

5 Add actions to the Action Manager editor's action pane:

Double-click the Action Manager to display the Action Manager editor.
Click the drop-down arrow next to the New Action button (the leftmost button at the top right corner of the Actions
tab) and select New Action or New Standard Action. A tree view is displayed. Add one or more actions or
categories of actions to the Action Manager's actions pane. The Action Manager adds the actions to its action
lists.

6 Drag and drop single actions or categories of actions from the Action Manager editor onto the menu or toolbar
you are designing.

To add user-defined actions, create a new TAction by pressing the New Action button and writing an event handler
that defines how it will respond when fired. See What happens when an action fires for details. Once you've defined
the actions, you can drag and drop them onto menus or toolbars like the standard actions.

Adding Color, Patterns, or Pictures to Menus, Buttons, and Toolbars
You can use the Background and BackgroundLayout properties to specify a color, pattern, or bitmap to use on a
menu item or button. These properties also let you set up a banner the runs up the left or right side of a menu.

You assign backgrounds and layouts to subitems from their action client objects. If you want to set the background
of the items in a menu, in the form designer click on the menu item that contains the items. For example, selecting
File lets you change the background of items appearing on the File menu. You can assign a color, pattern, or bitmap
in the Background property in the Object Inspector.

Use the BackgroundLayout property to describe how to place the background on the element. Colors or images can
be placed behind the caption normally, stretched to fit the item area, or tiled in small squares to cover the area.

Items with normal (blNormal), stretched (blStretch), or tiled (blTile) backgrounds are rendered with a transparent
background. If you create a banner, the full image is placed on the left (blLeftBanner) or the right (blRightBanner)
of the item. You need to make sure it is the correct size because it is not stretched or shrunk to fit.

To change the background of an action band (that is, on a main menu or toolbar), select the action band and choose
the TActionClientBar through the action band collection editor. You can set Background and BackgroundLayout
properties to specify a color, pattern, or bitmap to use on the entire toolbar or menu.

Adding Icons to Menus and Toolbars
You can add icons next to menu items or replace captions on toolbars with icons. You organize bitmaps or icons
using an ImageList component.

To add icons to menus and toolbars:
1 Drop an ImageList component from the Win32 category of the Tool palette onto a form.
2 Add the images you want to use to the image list: Double-click the ImageList icon. Click Add and navigate to the

images you want to use and click OK when done. Some sample images are included in Program Files\Common
Files\Borland Shared\Images. (The buttons images include two views of each for active and inactive buttons.)

3 From the Additional category of the Tool palette, drop one or more of the following action bands onto the form:

TActionMainMenuBar(for designing main menus)

1609

TActionToolBar (for designing toolbars)

4 Connect the image list to the Action Manager. First, set the focus on the Action Manager. Next, in the Object
Inspector, select the name of the image list from the Images property, such as ImageList1.

5 Use the Action Manager editor to add actions to the Action Manager. You can associate an image with an action
by setting its ImageIndex property to its number in the image list.

6 Drag and drop single actions or categories of actions from the Action Manager editor onto the menu or toolbar.
7 For toolbars where you only want to display the icon and no caption: select the Toolbar action band and double-

click its Items property. In the collection editor, you can select one or more items and set their Caption properties.
8 The images automatically appear on the menu or toolbar.

Selecting Menu and Toolbar Styles
Just as you can add different colors and icons to individual menus and toolbars, you can select different menu and
toolbar styles to give your application a comprehensive look and feel. In addition to the standard style, your
application can take on the look of Windows XP, Encarta™, or a custom presentation using a coordinated color
scheme. To give your application a coherent look and feel, the IDE uses colormaps.

A colormap can be simple, merely adding the appropriate colors to existing menus and toolbars. Or, a colormap can
be complex, altering numerous subtle details of a menu's or toolbar's look and feel, including the smallest button
edges or menu shadows. The XP colormap, for example, has numerous subtle refinements for menu and toolbar
classes. The IDE handles the details for you, automatically using the appropriate colormaps.

By default, the component library uses the XP style. To centrally select an alternate style for all your application's
menus and toolbars, use the Style property on the ActionManager component.

To select menu and toolbar styles:
1 From the Additional category of the Tool palette, drop an ActionManager component onto a form.
2 In the Object Inspector, select the Style property. You can choose from a number of different styles.
3 Once you've selected a style, your application's menus and toolbars will take on the look of the new colormap.

You can customize the look and feel of a style using colormap components.

To customize the look and feel of a colormap:
1 From the Additional category of the Tool palette, drop the appropriate colormap component onto a form (for

example, XPColorMap or StandardColorMap). In the Object Inspector, you will see numerous properties to
adjust appearance, many with drop downs from which you can select alternate values.

2 Change each ToolBar or menu's ColorMap property to point to the colormap object that you dropped on the form.
3 In the Object Inspector, adjust the colormap's properties to change the appearance of your toolbars and menus

as desired.

Note: Be careful when customizing a colormap. When you select a new, alternate colormap, your old settings will
be lost. You may want to save a copy of your application if you want to experiment with alternate settings
and possibly return to a previous customization.

1610

Creating Dynamic Menus
Dynamic menus and toolbars allow users to modify the application in various ways at run time. Some examples of
dynamic usage include customizing the appearance of toolbars and menus, hiding unused items, and responding
to most recently used lists (MRUs).

Creating Customizable Toolbars and Menus
You can use action bands with the Action Manager to create customizable toolbars and menus. At runtime, users
of your application can customize the toolbars and menus (action bands) in the application user interface using a
customization dialog similar to the Action Manager editor.

To allow the user of your application to customize an action band in your application:
1 Drop an Action Manager component onto a form.
2 Drop your action band components (TCustomActionMainMenuBar,TActionToolBar).
3 Double-click the Action Manager to display the Action Manager editor:

Add the actions you want to use in your application. Also add the Customize action, which appears at the bottom
of the standard actions list.
Drop a TCustomizeDlg component from the Additional tab onto the form, and connect it to the Action Manager
using its ActionManager property. You specify a filename for where to stream customizations made by users.
Drag and drop the actions onto the action band components. (Make sure you add the Customize action to the
toolbar or menu.)

4 Complete your application.

When you compile and run the application, users can access a Customize command that displays a customization
dialog box similar to the Action Manager editor. They can drag and drop menu items and create toolbars using the
same actions you supplied in the Action Manager.

Hiding Unused Items and Categories in Action Bands
One benefit of using ActionBands is that unused items and categories can be hidden from the user. Over time, the
action bands become customized for the application users, showing only the items that they use and hiding the rest
from view. Hidden items can become visible again when the user presses a drop-down button. Also, the user can
restore the visibility of all action band items by resetting the usage statistics from the customization dialog. Item
hiding is the default behavior of action bands, but that behavior can be changed to prevent hiding of individual items,
all the items in a particular collection (like the File menu), or all of the items in a given action band.

The action manager keeps track of the number of times an action has been called by the user, which is stored in
the associated TActionClientItem's UsageCount field. The action manager also records the number of times the
application has been run, which we shall call the session number, as well as the session number of the last time an
action was used. The value of UsageCount is used to look up the maximum number of sessions the item can go
unused before it becomes hidden, which is then compared with the difference between the current session number
and the session number of the last use of the item. If that difference is greater than the number determined in
PrioritySchedule, the item is hidden. The default values of PrioritySchedule are shown in the table below:

Default values of the action manager's PrioritySchedule property
Number of sessions in which an action band item was used Number of sessions an item will remain unhidden after its last

use

0, 1 3

1611

2 6

3 9

4, 5 12

6-8 17

9-13 23

14-24 29

25 or more 31

It is possible to disable item hiding at design time. To prevent a specific action (and all the collections containing it)
from becoming hidden, find its TActionClientItem object and set its UsageCount to -1. To prevent hiding for an entire
collection of items, such as the File menu or even the main menu bar, find the TActionClients object associated with
the collection and set its HideUnused property to False.

Creating Most Recently Used Lists
A most recently used list (MRU) reflects the user's most recently accessed files in a specific application. Using action
bands, you can code MRU lists in your applications.

When building MRUs for your applications, it is important not to hard code references to specific numerical indexes
into the Action Manager's ActionBars property. At runtime, the user may change the order of items or even delete
them from the action bands, which in turn will change the numerical ordering of the index. Instead of referring to
index numbering, TActionManager includes methods that facilitate finding items by action or by caption.

For more information about MRU lists, sample code, and methods for finding actions in lists, see FindItemByAction
and FindItemByCaption in the online Help.

Using Action Lists

Note: The contents of this topic apply to setting up toolbars and menus for cross-platform development. For
Windows development you can also use the methods described here. However, using action bands instead
is simpler and offers more options. The action lists will be handled automatically by the Action Manager. See
Organizing actions for toolbars and menus for details.

Action lists maintain a list of actions that your application can take in response to something a user does. By using
action objects, you centralize the functions performed by your application from the user interface. This lets you share
common code for performing actions (for example, when a toolbar button and menu item do the same thing), as well
as providing a single, centralized way to enable and disable actions depending on the state of your application.

Setting Up Action Lists
Setting up action lists is fairly easy once you understand the basic steps involved:

Create the action list.
Add actions to the action list.
Set properties on the actions.
Attach clients to the action.

1612

Here are the steps in more detail:
1 Drop a TActionList object onto your form or data module. (ActionList is on the Standard category of the Tool

palette.)
2 Double-click the TActionList object to display the Action List editor.

Use one of the predefined actions listed in the editor: right-click and choose New Standard Action.
The predefined actions are organized into categories (such as Dataset, Edit, Help, and Window) in the Standard
Action Classes dialog box. Select all the standard actions you want to add to the action list and click OK.
Or, create a new action of your own: right-click and choose New Action.

3 Set the properties of each action in the Object Inspector. (The properties you set affect every client of the action.)
The Name property identifies the action, and the other properties and events (Caption, Checked, Enabled,
HelpContext, Hint, ImageIndex, ShortCut, Visible, and Execute) correspond to the properties and events of its
client controls. The client's corresponding properties are typically, but not necessarily, the same name as the
corresponding client property. For example, an action's Enabled property corresponds to a TToolButton's
Enabled property. However, an action's Checked property corresponds to a TToolButton's Down property.

4 If you use the predefined actions, the action includes a standard response that occurs automatically. If creating
your own action, you need to write an event handler that defines how the action responds when fired. See What
happens when an action fires for details.

5 Attach the actions in the action list to the clients that require them:

Click on the control (such as the button or menu item) on the form or data module. In the Object Inspector, the
Action property lists the available actions.
Select the one you want.

The standard actions, such as TEditDelete or TDataSetPost, all perform the action you would expect. You can look
at the online reference Help for details on how all of the standard actions work if you need to. If writing your own
actions, you'll need to understand more about what happens when the action is fired. See What happens when an
action fires for details.

What Happens When an Action Fires
When an event fires, a series of events intended primarily for generic actions occurs. Then if the event doesn't handle
the action, another sequence of events occurs.

Responding with events
When a client component or control is clicked or otherwise acted on, a series of events occurs to which you can
respond. For example, the following code illustrates the event handler for an action that toggles the visibility of a
toolbar when the action is executed:

[Delphi]
procedure TForm1.Action1Execute(Sender: TObject);
begin
{ Toggle Toolbar1's visibility }
ToolBar1.Visible := not ToolBar1.Visible;
end;

1613

[C++]
void __fastcall TForm1::Action1Execute(TObject *Sender)
{
// Toggle Toolbar1's visibility
ToolBar1->Visible = !ToolBar1->Visible;
}

Note: For general information about events and event handlers, see Working with Events and Event Handlers.

You can supply an event handler that responds at one of three different levels: the action, the action list, or the
application. This is only a concern if you are using a new generic action rather than a predefined standard action.
You do not have to worry about this if using the standard actions because standard actions have built-in behavior
that executes when these events occur.

The order in which the event handlers will respond to events is as follows:

Action list
Application
Action

When the user clicks on a client control, Delphi calls the action's Execute method which defers first to the action list,
then the Application object, then the action itself if neither action list nor Application handles it. To explain this in
more detail, Delphi follows this dispatching sequence when looking for a way to respond to the user action:

If you supply an OnExecute event handler for the action list and it handles the action, the application proceeds.

The action list's event handler has a parameter called Handled, that returns False by default. If the handler is assigned
and it handles the event, it returns True, and the processing sequence ends here. For example:

[Delphi]
procedure TForm1.ActionList1ExecuteAction(Action: TBasicAction; var Handled: Boolean);
begin
Handled := True;
end;

[C++]
void __fastcall TForm1::ApplicationExecuteAction(TBasicAction *Action, bool &Handled)
{
 // Prevent execution of all actions in Application
Handled = true;
}

[C++]
void __fastcall TForm1::ActionList1ExecuteAction(TBasicAction *Action, bool &Handled)
{
Handled = true;
}

If you don't set Handled to True in the action list event handler, then processing continues.

If you did not write an OnExecute event handler for the action list or if the event handler doesn't handle the action,
the application's OnActionExecute event handler fires. If it handles the action, the application proceeds.

The global Application object receives an OnActionExecute event if any action list in the application fails to handle
an event. Like the action list's OnExecute event handler, the OnActionExecute handler has a parameter Handled
that returns False by default. If an event handler is assigned and handles the event, it returns True, and the
processing sequence ends here. For example:

1614

[Delphi]
procedure TForm1.ApplicationExecuteAction(Action: TBasicAction; var Handled: Boolean);
begin
{ Prevent execution of all actions in Application }
Handled := True;
end;

If the application's OnExecute event handler doesn't handle the action, the action's OnExecute event handler fires.

You can use built-in actions or create your own action classes that know how to operate on specific target classes
(such as edit controls). When no event handler is found at any level, the application next tries to find a target on
which to execute the action. When the application locates a target that the action knows how to address, it invokes
the action. See how actions find their targets for details on how the application locates a target that can respond to
a predefined action class.

How Actions Find Their Targets
What happens when an action fires describes the execution cycle that occurs when a user invokes an action. If no
event handler is assigned to respond to the action, either at the action list, application, or action level, then the
application tries to identify a target object to which the action can apply itself.

The application looks for the target using the following sequence:

1 Active control: The application looks first for an active control as a potential target.
2 Active form: If the application does not find an active control or if the active control can't act as a target, it looks

at the screen's ActiveForm.
3 Controls on the form: If the active form is not an appropriate target, the application looks at the other controls on

the active form for a target.

If no target is located, nothing happens when the event is fired.

Some controls can expand the search to defer the target to an associated component; for example, data-aware
controls defer to the associated dataset component. Also, some predefined actions do not use a target; for example,
the File Open dialog.

Updating Actions
When the application is idle, the OnUpdate event occurs for every action that is linked to a control or menu item that
is showing. This provides an opportunity for applications to execute centralized code for enabling and disabling,
checking and unchecking, and so on. For example, the following code illustrates the OnUpdate event handler for an
action that is "checked" when the toolbar is visible:

[Delphi]
procedure TForm1.Action1Update(Sender: TObject);
begin
{ Indicate whether ToolBar1 is currently visible }
(Sender as TAction).Checked := ToolBar1.Visible;
end;

1615

[C++]
void __fastcall TForm1::Action1Update(TObject *Sender)
{
// Indicate whether ToolBar1 is currently visible
((TAction *)Sender)->Checked = ToolBar1->Visible;
}

Warning: Do not add time-intensive code to the OnUpdate event handler. This executes whenever the application
is idle. If the event handler takes too much time, it will adversely affect performance of the entire
application.

Predefined Action Classes
You can add predefined actions to your application by right-clicking on the Action Manager and choosing New
Standard Action. The New Standard Action Classes dialog box is displayed listing the predefined action classes and
the associated standard actions. These are actions that are included with Delphi and they are objects that
automatically perform actions. The predefined actions are organized within the following classes:

Class Description

Edit Standard edit actions: Used with an edit control target. TEditAction is the base class for descendants that each
override the ExecuteTarget method to implement copy, cut, and paste tasks by using the clipboard.

Format Standard formatting actions: Used with rich text to apply text formatting options such as bold, italic, underline,
strikeout, and so on. TRichEditAction is the base class for descendants that each override the ExecuteTarget
and UpdateTarget methods to implement formatting of the target.

Help Standard Help actions: Used with any target. THelpAction is the base class for descendants that each override the
ExecuteTarget method to pass the command onto a Help system.

Window Standard window actions: Used with forms as targets in an MDI application. TWindowAction is the base class for
descendants that each override the ExecuteTarget method to implement arranging, cascading, closing, tiling, and
minimizing MDI child forms.

File File actions: Used with operations on files such as File Open, File Run, or File Exit.

Search Search actions: Used with search options. TSearchAction implements the common behavior for actions that display
a modeless dialog where the user can enter a search string for searching an edit control.

Tab Tab control actions: Used to move between tabs on a tab control such as the Prev and Next buttons on a wizard.

List List control actions: Used for managing items in a list view.

Dialog Dialog actions: Used with dialog components. TDialogAction implements the common behavior for actions that
display a dialog when executed. Each descendant class represents a specific dialog.

Internet Internet actions: Used for functions such as Internet browsing, downloading, and sending mail.

DataSet DataSet actions: Used with a dataset component target. TDataSetAction is the base class for descendants that each
override the ExecuteTarget and UpdateTarget methods to implement navigation and editing of the target.

TDataSetAction introduces a DataSource property that ensures actions are performed on that dataset. If
DataSource is nil, the currently focused data-aware control is used.

Tools Tools: Additional tools such as TCustomizeActionBars for automatically displaying the customization dialog for action
bands.

All of the action objects are described under the action object names in the online Help.

1616

Writing Action Components
You can also create your own predefined action classes. When you write your own action classes, you can build in
the ability to execute on certain target classes of objects. Then, you can use your custom actions in the same way
you use predefined action classes. That is, when the action can recognize and apply itself to a target class, you can
simply assign the action to a client control, and it acts on the target with no need to write an event handler.

Component writers can use the classes in the QStdActns and DBActns units as examples for deriving their own
action classes to implement behaviors specific to certain controls or components. The base classes for these
specialized actions (TEditAction, TWindowAction, and so on) generally override HandlesTarget, UpdateTarget, and
other methods to limit the target for the action to a specific class of objects. The descendant classes typically override
ExecuteTarget to perform a specialized task. These methods are described here:

Methods overriden by base classes of specific actions
Method Description

HandlesTarget Called automatically when the user invokes an object (such as a tool button or menu item) that is linked to
the action. The HandlesTarget method lets the action object indicate whether it is appropriate to execute at
this time with the object specified by the Target parameter as a "target". See How actions find their targets
for details.

UpdateTarget Called automatically when the application is idle so that actions can update themselves according to current
conditions. Use in place of OnUpdateAction. See Updating actions for details.

ExecuteTarget Called automatically when the action fires in response to a user action in place of OnExecute (for example,
when the user selects a menu item or presses a tool button that is linked to this action). See What happens
when an action fires for details.

When you write your own action classes, it is important to understand the following:

How actions find their targets
Registering actions

Registering Actions
When you write your own actions, you can register actions to enable them to appear in the Action List editor. You
register and unregister actions by using the global routines in the Actnlist unit:

[Delphi]
procedure RegisterActions(const CategoryName: string; const AClasses: array of
TBasicActionClass; Resource: TComponentClass);
procedure UnRegisterActions(const AClasses: array of TBasicActionClass);

[C++]
extern PACKAGE void __fastcall UnRegisterActions(TMetaClass* const * AClasses, const int
AClasses_Size);

[C++]
extern PACKAGE void __fastcall RegisterActions(const AnsiString CategoryName, TMetaClass*
const * AClasses, const int AClasses_Size, TMetaClass* Resource);

When you call RegisterActions, the actions you register appear in the Action List editor for use by your applications.
You can supply a category name to organize your actions, as well as a Resource parameter that lets you supply
default property values.

For example, the following code registers the standard actions with the IDE:

1617

[Delphi]
{ Standard action registration }
RegisterActions('', [TAction], nil);
RegisterActions('Edit', [TEditCut, TEditCopy, TEditPaste], TStandardActions);
RegisterActions('Window', [TWindowClose, TWindowCascade, TWindowTileHorizontal,
TWindowTileVertical, TWindowMinimizeAll, TWindowArrange], TStandardActions);

[C++]
namespace MyAction
{
 void __fastcall PACKAGE Register()
 {
 // code goes here to register any components and editors
TMetaClass classes[2] = {__classid(TMyAction1), __classid(TMyAction2)};
RegisterActions("MySpecialActions", classes, 1, NULL);
}
}

When you call UnRegisterActions, the actions no longer appear in the Action List editor.

Creating and Managing Menus
Menus provide an easy way for your users to execute logically grouped commands. The Menu Designer enables
you to easily add a menu—either predesigned or custom tailored—to your form. You add a menu component to the
form, open the Menu Designer, and type menu items directly into the Menu Designer window. You can add or delete
menu items, or drag and drop them to rearrange them during design time.

You don't even need to run your program to see the results—your design is immediately visible in the form, appearing
just as it will during runtime. Your code can also change menus at runtime, to provide more information or options
to the user.

This topic explains how to use the Menu Designer to design menu bars and pop-up (local) menus. It discusses the
following ways to work with menus at design time and runtime:

Opening the Menu Designer.
Building menus.
Editing menu items in the Object Inspector.
Using the Menu Designer context menu.
Using menu templates.
Saving a menu as a template.
Adding images to menu items.

For information about hooking up menu items to the code that executes when they are selected, see .

Opening the Menu Designer
You design menus for your application using the Menu Designer. Before you can start using the Menu Designer,
first add either a TMainMenu or TPopupMenu component to your form. Both menu components are located on the
Standard category of the Tool palette.

1618

A MainMenu component creates a menu that's attached to the form's title bar. A PopupMenu component creates a
menu that appears when the user right-clicks in the form. Pop-up menus do not have a menu bar.

To open the Menu Designer, select a menu component on the form, and then either:

Double-click the menu component.
Or, from the Properties page of the Object Inspector, select the Items property, and then either double-click
[Menu] in the Value column, or click the ellipsis (...) button.

The Menu Designer appears, with the first (blank) menu item highlighted in the Designer, and the Caption property
selected in the Object Inspector.

Building Menus
You add a menu component to your form, or forms, for every menu you want to include in your application. You can
build each menu structure entirely from scratch, or you can start from one of the predesigned menu templates.

For more information about menu templates, see Using menu templates.

For more information about creating a menu using the menu designer see

Naming menus
Naming the menu items
Adding, inserting, and deleting menu items
Creating submenus
Adding images to menu items
Viewing the menu

Naming Menus
As with all components, when you add a menu component to the form, the form gives it a default name; for example,
MainMenu1. You can give the menu a more meaningful name that follows language naming conventions.

The menu name is added to the form's type declaration, and the menu name then appears in the Component list.

Naming the Menu Items
In contrast to the menu component itself, you need to explicitly name menu items as you add them to the form. You
can do this in one of two ways:

Directly type the value for the Name property.
Type the value for the Caption property first, and let Delphi derive the Name property from the caption.

For example, if you give a menu item a Caption property value of File, Delphi assigns the menu item a Name property
of File1. If you fill in the Name property before filling in the Caption property, Delphi leaves the Caption property
blank until you type a value.

1619

Note: If you enter characters in the Caption property that are not valid for Delphi identifiers, Delphi modifies the
Name property accordingly. For example, if you want the caption to start with a number, Delphi precedes the
number with a character to derive the Name property.

The following table demonstrates some examples of this, assuming all menu items shown appear in the same menu
bar.

Sample captions and their derived names
Component caption Derived name Explanation

&File File1 Removes ampersand

&File (2nd occurrence) File2 Numerically orders duplicate items

1234 N12341 Adds a preceding letter and numerical order

1234 (2nd occurrence) N12342 Adds a number to disambiguate the derived name

$@@@# N1 Removes all non-standard characters, adding preceding letter and numerical order

- (hyphen) N2 Numerical ordering of second occurrence of caption with no standard characters

As with the menu component, Delphi adds any menu item names to the form's type declaration, and those names
then appear in the Component list.

Adding, Inserting, and Deleting Menu Items
The following procedures describe how to perform the basic tasks involved in building your menu structure. Each
procedure assumes you have the Menu Designer window open.

To add menu items at design time:
1 Select the position where you want to create the menu item.
2 If you've just opened the Menu Designer, the first position on the menu bar is already selected.

Begin typing to enter the caption. Or enter the Name property first by specifically placing your cursor in the Object
Inspector and entering a value. In this case, you then need to reselect the Caption property and enter a value.

3 Press Enter.
The next placeholder for a menu item is selected.

If you entered the Caption property first, use the arrow keys to return to the menu item you just entered. You'll
see that Delphi has filled in the Name property based on the value you entered for the caption. (See Naming the
menu items.)

4 Continue entering values for the Name and Caption properties for each new item you want to create, or press
Esc to return to the menu bar.
Use the arrow keys to move from the menu bar into the menu, and to then move between items in the list; press
Enter to complete an action. To return to the menu bar, press Esc .

To insert a new, blank menu item:
1 Place the cursor on a menu item.
2 Press Ins.

1620

Menu items are inserted to the left of the selected item on the menu bar, and above the selected item in the menu
list.

To delete a menu item or command:
1 Place the cursor on the menu item you want to delete.
2 Press Del.

Note: You cannot delete the default placeholder that appears below the item last entered in a menu list, or next to
the last item on the menu bar. This placeholder does not appear in your menu at runtime.

Separator bars insert a line between menu items and items on a toolbar. You can use separator bars to indicate
groupings within the menu list or toolbar, or simply to provide a visual break in a list.

To add a separator bar to a menu:

Add a menu item as described above and type a hyphen (-) for the caption.
Or press the hyphen (-) key while the cursor is positioned on the menu where you want a separator to appear.

To add a separator bar onto a TActionToolBar, press the insert key and set the new item's caption to a separtor bar
(|) or hyphen (-).

To add accelerators or shortcuts to menu items, see Specifying accelerator keys and keyboard shortcuts.

Specifying Accelerator Keys and Keyboard Shortcuts
Accelerator keys enable the user to access a menu command from the keyboard by pressing Alt+ the appropriate
letter, indicated in your code by the preceding ampersand. The letter after the ampersand appears underlined in the
menu.

Delphi automatically checks for duplicate accelerators and adjusts them at runtime. This ensures that menus built
dynamically at runtime contain no duplicate accelerators and that all menu items have an accelerator. You can turn
off this automatic checking by setting the AutoHotkeys property of a menu item to maManual .

To specify an accelerator, add an ampersand in front of the appropriate letter. For example, to add a Save menu
command with the S as an accelerator key, type &Save.

Keyboard shortcuts enable the user to perform the action without using the menu directly, by typing in the shortcut
key combination.

To specify a keyboard shortcut, use the Object Inspector to enter a value for the ShortCut property, or select a key
combination from the drop-down list. This list is only a subset of the valid combinations you can type in.

When you add a shortcut, it appears next to the menu item caption.

Warning: Keyboard shortcuts, unlike accelerator keys, are not checked automatically for duplicates. You must
ensure uniqueness yourself.

Creating Submenus
Many application menus contain drop-down lists that appear next to a menu item to provide additional, related
commands. Such lists are indicated by an arrow to the right of the menu item. Delphi supports as many levels of
such submenus as you want to build into your menu.

1621

Organizing your menu structure this way can save vertical screen space. However, for optimal design purposes you
probably want to use no more than two or three menu levels in your interface design. (For pop-up menus, you might
want to use only one submenu, if any.)

To create a submenu:
1 Select the menu item under which you want to create a submenu.
2 Press Ctrl+RIGHT ARROW to create the first placeholder, or right-click and choose Create Submenu.
3 Type a name for the submenu item, or drag an existing menu item into this placeholder.
4 Press ENTER, or DOWN ARROW, to create the next placeholder.
5 Repeat steps 3 and 4 for each item you want to create in the submenu.
6 Press ESC to return to the previous menu level.

Creating submenus by demoting existing menus
You can create a submenu by inserting a menu item from the menu bar (or a menu template) between menu items
in a list. When you move a menu into an existing menu structure, all its associated items move with it, creating a
fully intact submenu. This pertains to submenus as well. Moving a menu item into an existing submenu just creates
one more level of nesting.

Moving Menu Items
During design time, you can move menu items simply by dragging and dropping. You can move menu items along
the menu bar, or to a different place in the menu list, or into a different menu entirely.

The only exception to this is hierarchical: you cannot demote a menu item from the menu bar into its own menu; nor
can you move a menu item into its own submenu. However, you can move any item into a different menu, no matter
what its original position is.

While you are dragging, the cursor changes shape to indicate whether you can release the menu item at the new
location. When you move a menu item, any items beneath it move as well.

To move a menu item along the menu bar:
1 Drag the menu item along the menu bar until the arrow tip of the drag cursor points to the new location.
2 Release the mouse button to drop the menu item at the new location.

To move a menu item into a menu list:
1 Drag the menu item along the menu bar until the arrow tip of the drag cursor points to the new menu.

This causes the menu to open, enabling you to drag the item to its new location.

2 Drag the menu item into the list, releasing the mouse button to drop the menu item at the new location.

Adding Images to Menu Items
Images can help users navigate in menus by matching glyphs and images to menu item action, similar to toolbar
images. You can add single bitmaps to menu items, or you can organize images for your application into an image

1622

list and add them to a menu from the image list. If you're using several bitmaps of the same size in your application,
it's useful to put them into an image list.

To add a single image to a menu or menu item, set its Bitmap property to reference the name of the bitmap to use
on the menu or menu item.

To add an image to a menu item using an image list:
1 Drop a TMainMenu or TPopupMenu object on a form.
2 Drop a TImageList object on the form.
3 Open the ImageList editor by double clicking on the TImageList object.
4 Click Add to select the bitmap or bitmap group you want to use in the menu. Click OK.
5 Set the TMainMenu or TPopupMenu object's Images property to the ImageList you just created.
6 Create your menu items and submenu items as described in this topic group.
7 Select the menu item you want to have an image in the Object Inspector and set the ImageIndex property to

the corresponding number of the image in the ImageList (the default value for ImageIndex is -1, which doesn't
display an image).

Note: Use images that are 16 by 16 pixels for proper display in the menu. Although you can use other sizes for the
menu images, alignment and consistency problems may result when using images greater than or smaller
than 16 by 16 pixels.

Viewing the Menu
You can view your menu in the form at design time without first running your program code. (Pop-up menu
components are visible in the form at design time, but the pop-up menus themselves are not. Use the Menu Designer
to view a pop-up menu at design time.)

To view the menu:
1 If the form is visible, click the form, or from the View menu, choose the form whose menu you want to view.
2 If the form has more than one menu, select the menu you want to view from the form's Menu property drop-down

list.
The menu appears in the form exactly as it will when you run the program.

Editing Menu Items in the Object Inspector
This topic has discussed how to set several properties for menu items—for example, the Name and Caption
properties—by using the Menu Designer.

The section has also described how to set menu item properties, such as the ShortCut property, directly in the
Object Inspector, just as you would for any component selected in the form.

When you edit a menu item by using the Menu Designer, its properties are still displayed in the Object Inspector.
You can switch focus to the Object Inspector and continue editing the menu item properties there. Or you can select
the menu item from the Component list in the Object Inspector and edit its properties without ever opening the
Menu Designer.

1623

To close the Menu Designer window and continue editing menu items:
1 Switch focus from the Menu Designer window to the Object Inspector by clicking the properties page of the

Object Inspector.
2 Close the Menu Designer as you normally would.

The focus remains in the Object Inspector, where you can continue editing properties for the selected menu
item. To edit another menu item, select it from the Component list.

Using the Menu Designer Context Menu
The Menu Designer context menu provides quick access to the most common Menu Designer commands, and to
the menu template options. (For more information about menu templates, refer to Using menu templates.)

To display the context menu, right-click the Menu Designer window, or press Alt+F10 when the cursor is in the Menu
Designer window.

Commands on the context menu
The following table summarizes the commands on the Menu Designer context menu.

Menu Designer context menu commands
Menu command Action

Insert Inserts a placeholder above or to the left of the cursor.

Delete Deletes the selected menu item (and all its sub-items, if any).

Create Submenu Creates a placeholder at a nested level and adds an arrow to the right of the selected menu item.

Select Menu Opens a list of menus in the current form. Double-clicking a menu name opens the designer window
for the menu.

Save As Template Opens the Save Template dialog box, where you can save a menu for future reuse.

Insert From Template Opens the Insert Template dialog box, where you can select a template to reuse.

Delete Templates Opens the Delete Templates dialog box, where you can choose to delete any existing templates.

Insert From Resource Opens the Insert Menu from Resource file dialog box, where you can choose a .rc or .mnu file to open
in the current form.

Switching Between Menus at Design Time
If you're designing several menus for your form, you can use the Menu Designer context menu or the Object
Inspector to easily select and move among them.

To use the context menu to switch between menus in a form:
1 Right-click in the Menu Designer and choose Select Menu.

The Select Menu dialog box appears.

1624

This dialog box lists all the menus associated with the form whose menu is currently open in the Menu Designer.

2 From the list in the Select Menu dialog box, choose the menu you want to view or edit.

To use the Object Inspector to switch between menus in a form:
1 Give focus to the form whose menus you want to choose from.
2 From the Component list, select the menu you want to edit.
3 On the Properties page of the Object Inspector, select the Items property for this menu, and then either click

the ellipsis button, or double-click [Menu].

Using Menu Templates
Several predesigned menus, or menu templates, contain frequently used commands. You can use these menus in
your applications without modifying them (except to write code), or you can use them as a starting point, customizing
them as you would a menu you originally designed yourself. Menu templates do not contain any event handler code.

The menu templates are stored in the BIN subdirectory in a default installation and have a .dmt extension.

You can also save as a template any menu that you design using the Menu Designer. After saving a menu as a
template, you can use it as you would any predesigned menu. If you decide you no longer want a particular menu
template, you can delete it from the list.

To add a menu template to your application
1 Right-click the Menu Designer and choose Insert From Template.

(If there are no templates, the Insert From Template option appears dimmed in the context menu.)

1625

The Insert Template dialog box opens, displaying a list of available menu templates.

2 Select the menu template you want to insert, then press Enter or choose OK.
This inserts the menu into your form at the cursor's location. For example, if your cursor is on a menu item in a
list, the menu template is inserted above the selected item. If your cursor is on the menu bar, the menu template
is inserted to the left of the cursor.

To delete a menu template
1 Right-click the Menu Designer and choose Delete Templates.

(If there are no templates, the Delete Templates option appears dimmed in the context menu.)

The Delete Templates dialog box opens, displaying a list of available templates.

2 Select the menu template you want to delete, and press Del.
Delphi deletes the template from the templates list and from your hard disk.

Saving a Menu as a Template
Any menu you design can be saved as a template so you can use it again. You can use menu templates to provide
a consistent look to your applications, or use them as a starting point which you then further customize.

The menu templates you save are stored in your BIN subdirectory as .dmt files.

1626

To save a menu as a template
1 Design the menu you want to be able to reuse.

This menu can contain as many items, commands, and submenus as you like; everything in the active Menu
Designer window will be saved as one reusable menu.

2 Right-click in the Menu Designer and choose Save As Template.
The Save Template dialog box appears.

3 In the Template Description edit box, type a brief description for this menu, and then choose OK.
The Save Template dialog box closes, saving your menu design and returning you to the Menu Designer window.

Note: The description you enter is displayed only in the Save Template, Insert Template, and Delete Templates
dialog boxes. It is not related to the Name or Caption property for the menu.

Naming Conventions for Template Menu Items and Event Handlers
When you save a menu as a template, Delphi does not save its Name property, since every menu must have a
unique name within the scope of its owner (the form). However, when you insert the menu as a template into a new
form by using the Menu Designer, Delphi then generates new names for it and all of its items.

1627

For example, suppose you save a File menu as a template. In the original menu, you name it MyFile. If you insert it
as a template into a new menu, Delphi names it File1. If you insert it into a menu with an existing menu item named
File1, Delphi names it File2.

Delphi also does not save any OnClick event handlers associated with a menu saved as a template, since there is
no way to test whether the code would be applicable in the new form. When you generate a new event handler for
the menu template item, Delphi still generates the event handler name. You can easily associate items in the menu
template with existing OnClick event handlers in the form.

For more information, see Associating menu events with event handlers.

Manipulating Menu Items at Runtime
Sometimes you want to add menu items to an existing menu structure while the application is running, to provide
more information or options to the user. You can insert a menu item by using the menu item's Add or Insert method,
or you can alternately hide and show the items in a menu by changing their Visible property. The Visible property
determines whether the menu item is displayed in the menu. To dim a menu item without hiding it, use the Enabled
property.

For examples that use the menu item's Visible and Enabled properties, see Disabling menu items.

In multiple document interface (MDI) and Object Linking and Embedding (OLE) applications, you can also merge
menu items into an existing menu bar. See Merging menus for more information.

Merging Menus
For MDI applications, such as the text editor sample application, and for OLE client applications, your application's
main menu needs to be able to receive menu items either from another form or from the OLE server object. This is
often called merging menus. Note that OLE technology is limited to Windows applications only and is not available
for use in cross-platform programming.

You prepare menus for merging by specifying values for two properties:

Menu, a property of the form
GroupIndex, a property of menu items in the menu

Specifying the Active Menu: Menu Property
The Menu property specifies the active menu for the form. Menu-merging operations apply only to the active menu.
If the form contains more than one menu component, you can change the active menu at runtime by setting the
Menu property in code. For example,

[Delphi]
Form1.Menu := SecondMenu;

[C++]
Form1->Menu = SecondMenu;

Determining the Order of Merged Menu Items: GroupIndex Property
The GroupIndex property determines the order in which the merging menu items appear in the shared menu bar.
Merging menu items can replace those on the main menu bar, or can be inserted.

1628

The default value for GroupIndex is 0. Several rules apply when specifying a value for GroupIndex:

Rules Description

Lower numbers appear first (farther left) in the menu. For instance, set the GroupIndex property to 0 (zero) for a
menu that you always want to appear leftmost, such as a File
menu. Similarly, specify a high number (it needn't be in
sequence) for a menu that you always want to appear
rightmost, such as a Help menu.

To replace items in the main menu, give items on the child
menu the same GroupIndex value.

This can apply to groupings or to single items. For example, if
your main form has an Edit menu item with a GroupIndex value
of 1, you can replace it with one or more items from the child
form's menu by giving them a GroupIndex value of 1 as well.

Giving multiple items in the child menu the same GroupIndex
value keeps their order intact when they merge into the main
menu.

To insert items without replacing items in the main menu, leave
room in the numeric range of the main menu's items and "plug
in" numbers from the child form.

For example, number the items in the main menu 0 and 5, and
insert items from the child menu by numbering them 1, 2, 3,
and 4.

Importing Resource Files
You can build menus with other applications, so long as the menus are in the standard Windows resource (.RC) file
format. You can import such menus directly into your project, saving you the time and effort of rebuilding menus that
you created elsewhere.

To load existing .RC menu files
1 In the Menu Designer, place your cursor where you want the menu to appear.

The imported menu can be part of a menu you are designing, or an entire menu in itself.

2 Right-click and choose Insert From Resource.
The Insert Menu From Resource dialog box appears.

3 In the dialog box, select the resource file you want to load, and choose OK.
The menu appears in the Menu Designer window.

Note: If your resource file contains more than one menu, you first need to save each menu as a separate resource
file before importing it.

Designing Toolbars and Cool Bars
A toolbar is a panel, usually across the top of a form (under the menu bar), that holds buttons and other controls. A
cool bar (also called a rebar) is a kind of toolbar that displays controls on movable, resizable bands. If you have
multiple panels aligned to the top of the form, they stack vertically in the order added.

Note: Cool bars are not available in CLX applications.

You can put controls of any sort on a toolbar. In addition to buttons, you may want to put use color grids, scroll bars,
labels, and so on.

You can add a toolbar to a form in several ways:

1629

Place a panel (TPanel) on the form and add controls (typically speed buttons) to it.
Use a toolbar component (TToolBar) instead of TPanel, and add controls to it. TToolBar manages buttons and
other controls, arranging them in rows and automatically adjusting their sizes and positions. If you use tool button
(TToolButton) controls on the toolbar, TToolBar makes it easy to group the buttons functionally and provides
other display options.
Use a cool bar (TCoolBar) component and add controls to it. The cool bar displays controls on independently
movable and resizable bands.

How you implement your toolbar depends on your application. The advantage of using the Panel component is that
you have total control over the look and feel of the toolbar.

By using the toolbar and cool bar components, you are ensuring that your application has the look and feel of a
Windows application because you are using the native Windows controls. If these operating system controls change
in the future, your application could change as well. Also, since the toolbar and cool bar rely on common components
in Windows, your application requires the COMCTL32.DLL. Toolbars and cool bars are not supported in WinNT 3.51
applications.

The following sections describe how to:

Adding a toolbar using a panel component.
Adding a toolbar using the toolbar component.
Adding a cool bar component.
Responding to clicks.
Adding hidden toolbars.
Hiding and showing toolbars.

Adding a Toolbar Using a Panel Component

To add a toolbar to a form using the panel component
1 Add a panel component to the form (from the Standard category of the Tool palette).
2 Set the panel's Align property to alTop. When aligned to the top of the form, the panel maintains its height, but

matches its width to the full width of the form's client area, even if the window changes size.
3 Add speed buttons or other controls to the panel.

Speed buttons are designed to work on toolbar panels. A speed button usually has no caption, only a small graphic
(called a glyph), which represents the button's function.

Speed buttons have three possible modes of operation. They can

Act like regular pushbuttons
Toggle on and off when clicked
Act like a set of radio buttons

To implement speed buttons on toolbars, do the following:

Adding a speed button to a panel.
Assigning a speed button's glyph.
Setting the initial condition of a speed button.
Creating a group of speed buttons.

1630

Allowing toggle buttons.

Adding a Speed Button to a Panel
To add a speed button to a toolbar panel, place the speed button component (from the Additional category of the
Tool palette) on the panel.

The panel, rather than the form, "owns" the speed button, so moving or hiding the panel also moves or hides the
speed button.

The default height of the panel is 41, and the default height of speed buttons is 25. If you set the Top property of
each button to 8, they'll be vertically centered. The default grid setting snaps the speed button to that vertical position
for you.

Assigning a Speed Button's Glyph
Each speed button needs a graphic image called a glyph to indicate to the user what the button does. If you supply
the speed button only one image, the button manipulates that image to indicate whether the button is pressed,
unpressed, selected, or disabled. You can also supply separate, specific images for each state if you prefer.

You normally assign glyphs to speed buttons at design time, although you can assign different glyphs at runtime.

To assign a glyph to a speed button at design time
1 Select the speed button.
2 In the Object Inspector, select the Glyph property.
3 Double-click the Value column beside Glyph to open the Picture Editor and select the desired bitmap.

Setting the Initial Condition of a Speed Button
Speed buttons use their appearance to give the user clues as to their state and purpose. Because they have no
caption, it's important that you use the right visual cues to assist users.

The table below lists some actions you can set to change a speed button's appearance:

Setting speed buttons' appearance
To make a speed button: Set the toolbar's:

Appear pressed GroupIndex property to a value other than zero and its Down property to True.

Appear disabled Enabled property to False.

Have a left margin Indent property to a value greater than 0.

If your application has a default drawing tool, ensure that its button on the toolbar is pressed when the application
starts. To do so, set its GroupIndex property to a value other than zero and its Down property to True.

Creating a Group of Speed Buttons
A series of speed buttons often represents a set of mutually exclusive choices. In that case, you need to associate
the buttons into a group, so that clicking any button in the group causes the others in the group to pop up.

1631

To associate any number of speed buttons into a group, assign the same number to each speed button's
GroupIndex property.

The easiest way to do this is to select all the buttons you want in the group, and, with the whole group selected, set
GroupIndex to a unique value.

Allowing Toggle Buttons
Sometimes you want to be able to click a button in a group that's already pressed and have it pop up, leaving no
button in the group pressed. Such a button is called a toggle. Use AllowAllUp to create a grouped button that acts
as a toggle: click it once, it's down; click it again, it pops up.

To make a grouped speed button a toggle, set its AllowAllUp property to True.

Setting AllowAllUp to True for any speed button in a group automatically sets the same property value for all buttons
in the group. This enables the group to act as a normal group, with only one button pressed at a time, but also allows
every button to be up at the same time.

Adding a Toolbar Using the Toolbar Component
The toolbar component (TToolBar) offers button management and display features that panel components do not.

To add a toolbar to a form using the toolbar component
1 Add a toolbar component to the form (from the Win32/Common Controls category of the Tool palette). The

toolbar automatically aligns to the top of the form.
2 Add tool buttons or other controls to the bar.

Tool buttons are designed to work on toolbar components. Like speed buttons, tool buttons can:

Act like regular pushbuttons.
Toggle on and off when clicked.
Act like a set of radio buttons.

To implement tool buttons on a toolbar, do the following:

Adding a tool button
Assigning images to tool buttons
Setting tool button appearance and initial conditions
Creating groups of tool buttons
Allowing toggled tool buttons

Adding a Tool Button
To add a tool button to a toolbar, right-click on the toolbar and choose New Button.

The toolbar "owns" the tool button, so moving or hiding the toolbar also moves or hides the button. In addition, all
tool buttons on the toolbar automatically maintain the same height and width. You can drop other controls from the
Tool palette onto the toolbar, and they will automatically maintain a uniform height. Controls will also wrap around
and start a new row when they do not fit horizontally on the toolbar.

1632

Assigning Images to Tool Buttons
Each tool button has an ImageIndex property that determines what image appears on it at runtime. If you supply the
tool button only one image, the button manipulates that image to indicate whether the button is disabled.

To assign images to tool buttons at design time
1 Select the toolbar on which the buttons appear.
2 In the Object Inspector, assign a TImageList object to the toolbar's Images property. An image list is a collection

of same-sized icons or bitmaps.
3 Select a tool button.
4 In the Object Inspector, assign an integer to the tool button's ImageIndex property that corresponds to the image

in the image list that you want to assign to the button.

You can also specify separate images to appear on the tool buttons when they are disabled and when they are under
the mouse pointer. To do so, assign separate image lists to the toolbar's DisabledImages and HotImages properties.

Setting Tool Button Appearance and Initial Conditions
The table below lists some actions you can set to change a tool button's appearance:

Setting tool buttons' appearance
To make a tool button: Set the toolbar's:

Appear pressed (on tool button) Style property to tbsCheck and Down property
to True.

Appear disabled Enabled property to False.

Have a left margin Indent property to a value greater than 0.

Appear to have "pop-up" borders, thus making the toolbar
appear transparent

Flat property to True.

Note: Using the Flat property of TToolBar requires version 4.70 or later of COMCTL32.DLL.

To force a new row of controls after a specific tool button, Select the tool button that you want to appear last in the
row and set its Wrap property to True.

To turn off the auto-wrap feature of the toolbar, set the toolbar's Wrapable property to False.

Creating Groups of Tool Buttons
To create a group of tool buttons, select the buttons you want to associate and set their Style property to
tbsCheck; then set their Grouped property to True. Selecting a grouped tool button causes other buttons in the group
to pop up, which is helpful to represent a set of mutually exclusive choices.

Any unbroken sequence of adjacent tool buttons with Style set to tbsCheck and Grouped set to True forms a single
group. To break up a group of tool buttons, separate the buttons with any of the following:

A tool button whose Grouped property is False.
A tool button whose Style property is not set to tbsCheck. To create spaces or dividers on the toolbar, add a
tool button whose Style is tbsSeparator or tbsDivider.
Another control besides a tool button.

1633

Allowing Toggled Tool Buttons
Use AllowAllUp to create a grouped tool button that acts as a toggle: click it once, it is down; click it again, it pops
up. To make a grouped tool button a toggle, set its AllowAllUp property to True.

As with speed buttons, setting AllowAllUp to True for any tool button in a group automatically sets the same property
value for all buttons in the group.

Adding a Cool Bar Component

Note: The TCoolBar component requires version 4.70 or later of COMCTL32.DLL and is not available in CLX
applications.

The cool bar component (TCoolBar)—also called a rebar—displays windowed controls on independently movable,
resizable bands. The user can position the bands by dragging the resizing grips on the left side of each band.

To add a cool bar to a form in a VCL application:
1 Add a cool bar component to the form (from the Win32 page of the Tool palette). The cool bar automatically

aligns to the top of the form.
2 Add windowed controls from the Tool palette to the bar.

Only VCL components that descend from TWinControl are windowed controls. You can add graphic controls—such
as labels or speed buttons—to a cool bar, but they will not appear on separate bands.

Setting the Appearance of the Cool Bar
The cool bar component offers several useful configuration options. The table below lists some actions you can set
to change a tool button's appearance:

Setting a cool button's appearance
To make the cool bar: Set the toolbar's:

Resize automatically to accommodate the bands it contains AutoSize property to True .

Bands maintain a uniform height FixedSize property to True.

Reorient to vertical rather than horizontal Vertical property to True. This changes the effect of the
FixedSize property.

Prevent the Text properties of the bands from displaying at
runtime

ShowText property to False. Each band in a cool bar has its own
Text property.

Remove the border around the bar BandBorderStyle to bsNone.

Keep users from changing the bands' order at runtime. (The
user can still move and resize the bands.)

FixedOrder to True.

Create a background image for the cool bar Bitmap property to TBitmap object.

Choose a list of images to appear on the left of any band Images property to TImageList object.

To assign images to individual bands, select the cool bar and double-click on the Bands property in the Object
Inspector. Then select a band and assign a value to its ImageIndex property.

Note: The cool bar component is not available in CLX applications.

1634

Responding to Clicks
When the user clicks a control, such as a button on a toolbar, the application generates an OnClick event which you
can respond to with an event handler. Since OnClick is the default event for buttons, you can generate a skeleton
handler for the event by double-clicking the button at design time. For general information about events and event
handlers, see Working with Events and Event Handlers and Generating a handler for a component's default event.

Assigning a Menu to a Tool Button
If you are using a toolbar (TToolBar) with tool buttons (TToolButton), you can associate menu with a specific button:

To assign a menu to a tool button
1 Select the tool button.
2 In the Object Inspector, assign a pop-up menu (TPopupMenu) to the tool button's DropDownMenu property.

If the menu's AutoPopup property is set to True, it will appear automatically when the button is pressed.

Adding Hidden Toolbars
Toolbars do not have to be visible all the time. In fact, it is often convenient to have a number of toolbars available,
but show them only when the user wants to use them. Often you create a form that has several toolbars, but hide
some or all of them.

To create a hidden toolbar:
1 Add a toolbar, cool bar, or panel component to the form.
2 Set the component's Visible property to False.

Although the toolbar remains visible at design time so you can modify it, it remains hidden at runtime until the
application specifically makes it visible.

Hiding and Showing Toolbars
Often, you want an application to have multiple toolbars, but you do not want to clutter the form with them all at once.
Or you may want to let users decide whether to display toolbars. As with all components, toolbars can be shown or
hidden at runtime as needed.

To show or hide a toolbar at runtime, set its Visible property to False or True, respectively. Usually you do this in
response to particular user events or changes in the operating mode of the application. To do this, you typically have
a close button on each toolbar. When the user clicks that button, the application hides the corresponding toolbar.

You can also provide a means of toggling the toolbar. In the following example, a toolbar of pens is toggled from a
button on the main toolbar. Since each click presses or releases the button, an OnClick event handler can show or
hide the Pen toolbar depending on whether the button is up or down.

[Delphi]
procedure TForm1.PenButtonClick(Sender: TObject);
begin
 PenBar.Visible := PenButton.Down;
end;

1635

[C++]
void __fastcall TForm1::PenButtonClick(TObject *Sender)
{
 PenBar->Visible = PenButton->Down;
}

Demo Programs: Actions, Action Lists, Menus, and Toolbars
For examples of Windows applications that use actions, action lists, menus, and toolbars, refer to Program Files
\Borland\Delphi9\Demos\RichEdit. In addition, the Application wizard (File New Other), MDI Application, SDI
Application, and Winx Logo Applications can use the action and action list objects. For examples of cross-platform
applications, refer to Demos\CLX.

Common Controls and XP Themes
Microsoft has forked Windows common controls into two separate versions. Version 5 is available on all Windows
versions from Windows 95 or later; it displays controls using a "3D chiseled" look. Version 6 became available with
Windows XP. Under version 6, controls are rendered by a theme engine which matches the current Windows XP
theme. If the user changes the theme, version 6 common controls will match the new theme automatically. You don't
need to recompile the application.

The VCL can now accommodate both types of common controls. Borland has added a number of components to
the VCL to handle common control issues automatically and transparently. These components will be present in any
VCL application you build. By default, any VCL applications will display version 5 common controls. To display
version 6 controls, you (or your application's users) must add a manifest file to your application.

A manifest file contains an XML list of dependencies for your application. The file itself shares the name of your
application, with ".manifest" appended to the end. For example, if your project creates Project1.exe as its executable,
its manifest file should be named Project1.exe.manifest. Here is an example of a manifest file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
<assemblyIdentity
version="1.0.0.0"
processorArchitecture="X86"
name="CompanyName.ProductName.YourApp"
type="win32"
/>
<description>Your application description here.</description>
<dependency>
<dependentAssembly>
<assemblyIdentity
type="win32"
name="Microsoft.Windows.Common-Controls"
version="6.0.0.0"
processorArchitecture="X86"
publicKeyToken="6595b64144ccf1df"
language="*"
/>
</dependentAssembly>
</dependency>
</assembly>

1636

Use the example above to create a manifest file for your application. If you place your manifest file in the same
directory as your application, its controls will be rendered using the common controls version 6 theme engine. Your
application now supports Windows XP themes.

For more information on Windows XP common controls, themes, and manifest files, consult Microsoft's online
documentation.

1637

Types of controls

Text Controls
Many applications use text controls to display text to the user. You can use:

Edit controls, which allow the user to add text.
Text viewing controls and labels, which do not allow user to add text.

Edit Controls
Edit controls display text to the user and allow the user to enter text. The type of control used for this purpose depends
on the size and format of the information.

Use this component: When you want users to do this:

TEdit Edit a single line of text.

TMemo Edit multiple lines of text.

TMaskEdit Adhere to a particular format, such as a postal code or phone number.

TRichEdit Edit multiple lines of text using rich text format (VCL only).

TEdit and TMaskEdit are simple edit controls that include a single line text edit box in which you can type information.
When the edit box has focus, a blinking insertion point appears.

You can include text in the edit box by assigning a string value to its Text property. You control the appearance of
the text in the edit box by assigning values to its Font property. You can specify the typeface, size, color, and attributes
of the font. The attributes affect all of the text in the edit box and cannot be applied to individual characters.

An edit box can be designed to change its size depending on the size of the font it contains. You do this by setting
the AutoSize property to True. You can limit the number of characters an edit box can contain by assigning a value
to the MaxLength property.

TMaskEdit is a special edit control that validates the text entered against a mask that encodes the valid forms the
text can take. The mask can also format the text that is displayed to the user.

TMemo and TRichEditcontrols allow the user to add several lines of text.

Edit controls have some of the following important properties:

Edit control properties

1638

Property Description

Text Determines the text that appears in the edit box or memo control.

Font Controls the attributes of text written in the edit box or memo control.

AutoSize Enables the edit box to dynamically change its height depending on the currently selected font.

ReadOnly Specifies whether the user is allowed to change the text.

MaxLength Limits the number of characters in simple edit controls.

SelText Contains the currently selected (highlighted) part of the text.

SelStart, SelLength Indicate the position and length of the selected part of the text.

Memo and Rich Edit Controls
Both the TMemo and TRichEdit controls handle multiple lines of text.

TMemo is another type of edit box that handles multiple lines of text. The lines in a memo control can extend beyond
the right boundary of the edit box, or they can wrap onto the next line. You control whether the lines wrap using the
WordWrap property.

TRichEdit is a memo control that supports rich text formatting, printing, searching, and drag-and-drop of text. It allows
you to specify font properties, alignment, tabs, indentation, and numbering.

Note: The rich edit control is available for VCL applications only.

In addition to the properties that all edit controls have, memo and rich edit controls include other properties, such as
the following:

Alignment specifies how text is aligned (left, right, or center) in the component.
The Text property contains the text in the control. Your application can tell if the text changes by checking the
Modified property.
Lines contains the text as a list of strings.
OEMConvert determines whether the text is temporarily converted from ANSI to OEM as it is entered. This is
useful for validating file names (VCL only).
WordWrap determines whether the text will wrap at the right margin.
WantReturns determines whether the user can insert hard returns in the text.
WantTabs determines whether the user can insert tabs in the text.
AutoSelect determines whether the text is automatically selected (highlighted) when the control becomes active.

At runtime, you can select all the text in the memo with the SelectAll method.

Text Viewing Controls
In CLX applications only, the text viewing controls display text but are read-only.

Use this component: When you want users to do this:

TTextBrowser Display a text file or simple HTML page that users can scroll through.

TTextViewer Display a text file or simple HTML page. Users can scroll through the page or click links to view other
pages and images.

1639

TLCDNumber Display numeric information in a digital display form.

TTextViewer acts as a simple viewer so that users can read and scroll through documents. With TTextBrowser,
users can also click links to navigate to other documents and other parts of the same document. Documents visited
are stored in a history list, which can be navigated using the Backward, Forward, and Home methods.
TTextViewer and TTextBrowser are best used to display HTML-based text or to implement an HTML-based Help
system.

TTextBrowser has the same properties as TTextViewer plus Factory. Factory determines the MIME factory object
used to determine file types for embedded images. For example, you can associate filename extensions—such as .
txt, .html, and .xml—with MIME types and have the factory load this data into the control.

Use the FileName property to add a text file, such as .html, to appear in the control at runtime.

To see an application using the text browser control, see ..\Delphi7\Demos\Clx\TextBrowser.

Labels
Labels display text and are usually placed next to other controls.

Use this component: When you want users to do this:

TLabel Display text on a nonwindowed control.

TStaticText Display text on a windowed control.

You place a label on a form when you need to identify or annotate another component such as an edit box or when
you want to include text on a form. The standard label component, TLabel, is a non-windowed control (widget-based
control in CLX applications), so it cannot receive focus; when you need a label with a window handle, use
TStaticText instead.

Label properties include the following:

Caption contains the text string for the label.
Font, Color, and other properties determine the appearance of the label. Each label can use only one typeface,
size, and color.
FocusControl links the label to another control on the form. If Caption includes an accelerator key, the control
specified by FocusControl receives focus when the user presses the accelerator key.
ShowAccelChar determines whether the label can display an underlined accelerator character. If
ShowAccelChar is True, any character preceded by an ampersand (&) appears underlined and enables an
accelerator key.
Transparent determines whether items under the label (such as graphics) are visible.

Labels usually display read-only static text that cannot be changed by the application user. The application can
change the text while it is executing by assigning a new value to the Caption property. To add a text object to a form
that a user can scroll or edit, use TEdit.

Specialized Input Controls
The following components provide additional ways of capturing input.

Use this component: When you want users to do this:

TScrollBar Select values on a continuous range

TTrackBar Select values on a continuous range (more visually effective than a scroll bar)

1640

TUpDown Select a value from a spinner attached to an edit component (VCL applications only)

THotKey Enter Ctrl/ Shift/ Alt keyboard sequences (VCL applications only)

Scroll Bars
The scroll bar component creates a scroll bar that you can use to scroll the contents of a window, form, or other
control. In the OnScroll event handler, you write code that determines how the control behaves when the user moves
the scroll bar.

The scroll bar component is not used very often, because many visual components include scroll bars of their own
and thus don't require additional coding. For example, TForm has VertScrollBar and HorzScrollBar properties that
automatically configure scroll bars on the form. To create a scrollable region within a form, use TScrollBox.

Track Bars
A track bar can set integer values on a continuous range. It is useful for adjusting properties like color, volume and
brightness. The user moves the slide indicator by dragging it to a particular location or clicking within the bar.

Use the Max and Min properties to set the upper and lower range of the track bar.
Use SelEnd and SelStart to highlight a selection range.
The Orientation property determines whether the track bar is vertical or horizontal.
By default, a track bar has one row of ticks along the bottom. Use the TickMarks property to change their location.
To control the intervals between ticks, use the TickStyle property and SetTick method.

Three views of the track bar component:

Position sets a default position for the track bar and tracks the position at runtime.
By default, users can move one tick up or down by pressing the up and down arrow keys. Set LineSize to change
that increment.
Set PageSize to determine the number of ticks moved when the user presses Page Up and Page Down.

1641

Up-down Controls (VCL Only)
In VCL applications only, an up-down control (TUpDown) consists of a pair of arrow buttons that allow users to
change an integer value in fixed increments. The current value is given by the Position property; the increment, which
defaults to 1, is specified by the Increment property. Use the Associate property to attach another component (such
as an edit control) to the up-down control.

Hot Key Controls (VCL Only)
Use the hot key component (THotKey) to assign a keyboard shortcut that transfers focus to any control. The HotKey
property contains the current key combination and the Modifiers property determines which keys are available for
HotKey.

The hot key component can be assigned as the ShortCut property of a menu item. Then, when a user enters the
key combination specified by the HotKey and Modifiers properties, Windows activates the menu item.

Splitter Controls
A splitter (TSplitter) placed between aligned controls allows users to resize the controls. Used with components like
panels and group boxes, splitters let you divide a form into several panes with multiple controls on each pane.

After placing a panel or other control on a form, add a splitter with the same alignment as the control. The last control
should be client-aligned, so that it fills up the remaining space when the others are resized. For example, you can
place a panel at the left edge of a form, set its Alignment to alLeft, then place a splitter (also aligned to alLeft) to the
right of the panel, and finally place another panel (aligned to alLeft or alClient) to the right of the splitter.

Set MinSize to specify a minimum size the splitter must leave when resizing its neighboring control. Set Beveled to
True to give the splitter's edge a 3D look.

Buttons and Similar Controls
Aside from menus, buttons provide the most common way to initiate an action or command in an application. Button-
like controls include:

Use this component: To do this:

TButton Present command choices on buttons with text

TBitBtn Present command choices on buttons with text and glyphs

TSpeedButton Create grouped toolbar buttons

TCheckBox Present on/off options

TRadioButton Present a set of mutually exclusive choices

TToolBar Arrange tool buttons and other controls in rows and automatically adjust their sizes and positions

TCoolBar Display a collection of windowed controls within movable, resizable bands (VCL only)

Action lists let you centralize responses to user commands (actions) for objects such as menus and buttons that
respond to those commands. See Using action lists for details on how to use action lists with buttons, toolbars, and
menus.

You can custom draw buttons individually or application wide. See Developing the user interface.

1642

Button Controls
Users click button controls to initiate actions. You can assign an action to a TButton component by creating an
OnClick event handler for it. Double-clicking a button at design time takes you to the button's OnClick event handler
in the Code editor.

Set Cancel to True if you want the button to trigger its OnClick event when the user presses Esc.
Set Default to True if you want the Enter key to trigger the button's OnClick event.

Bitmap Buttons
A bitmap button (TBitBtn) is a button control that presents a bitmap image on its face.

To choose a bitmap for your button, set the Glyph property.
Use Kind to automatically configure a button with a glyph and default behavior.
By default, the glyph appears to the left of any text. To move it, use the Layout property.
The glyph and text are automatically centered on the button. To move their position, use the Margin
property. Margin determines the number of pixels between the edge of the image and the edge of the button.
By default, the image and the text are separated by 4 pixels. Use Spacing to increase or decrease the distance.
Bitmap buttons can have 3 states: up, down, and held down. Set the NumGlyphs property to 3 to show a different
bitmap for each state.

Speed Buttons
Speed buttons (TSpeedButton), which usually have images on their faces, can function in groups. They are
commonly used with panels to create toolbars.

To make speed buttons act as a group, give the GroupIndex property of all the buttons the same nonzero value.
By default, speed buttons appear in an up (unselected) state. To initially display a speed button as selected,
set the Down property to True.
If AllowAllUp is True, all of the speed buttons in a group can be unselected. Set AllowAllUp to False if you want
a group of buttons to act like a radio group.

Check Boxes
A check box is a toggle that lets the user select an on or off state. When the choice is turned on, the check box is
checked. Otherwise, the check box is blank. You create check boxes using TCheckBox.

Set Checked to True to make the box appear checked by default.
Set AllowGrayed to True to give the check box three possible states: checked, unchecked, and grayed.
The State property indicates whether the check box is checked (cbChecked), unchecked (cbUnchecked), or
grayed (cbGrayed).

Note: Check box controls display one of two binary states. The indeterminate state is used when other settings
make it impossible to determine the current value for the check box.

1643

Radio Buttons
Radio buttons, also called option buttons, present a set of mutually exclusive choices. You can create individual
radio buttons using TRadioButton or use the radio group component (TRadioGroup) to arrange radio buttons into
groups automatically. You can group radio buttons to let the user select one from a limited set of choices. See
Grouping Controls for more information.

A selected radio button is displayed as a circle filled in the middle. When not selected, the radio button shows an
empty circle. Assign the value True or False to the Checked property to change the radio button's visual state.

Toolbars
Toolbars provide an easy way to arrange and manage visual controls. You can create a toolbar out of a panel
component and speed buttons, or you can use the TToolBar component, then right-click and choose New Button to
add buttons to the toolbar.

The TToolBar component has several advantages: buttons on a toolbar automatically maintain uniform dimensions
and spacing; other controls maintain their relative position and height; controls can automatically wrap around to
start a new row when they do not fit horizontally; and TToolBar offers display options like transparency, pop-up
borders, and spaces and dividers to group controls.

You can use a centralized set of actions on toolbars and menus, by using action lists or action bands.

Toolbars can also parent other controls such as edit boxes, combo boxes, and so on.

Cool Bars (VCL Only)
A cool bar contains child controls that can be moved and resized independently. Each control resides on an individual
band. The user positions the controls by dragging the sizing grip to the left of each band.

The cool bar requires version 4.70 or later of COMCTL32.DLL (usually located in the Windows\System or Windows
\System32 directory) at both design time and runtime. Cool bars cannot be used in cross-platform applications.

The Bands property holds a collection of TCoolBand objects. At design time, you can add, remove, or modify
bands with the Bands editor. To open the Bands editor, select the Bands property in the Object Inspector, then
double-click in the Value column to the right, or click the ellipsis (...) button. You can also create bands by adding
new windowed controls from the palette.
The FixedOrder property determines whether users can reorder the bands.
The FixedSize property determines whether the bands maintain a uniform height.

List Controls
Lists present the user with a collection of items to select from. Several components display lists:

Use this component: To display:

TListBox A list of text strings

TCheckListBox A list with a check box in front of each item

TComboBox An edit box with a scrollable drop-down list

TTreeView A hierarchical list

TListView A list of (draggable) items with optional icons, columns, and headings

TDateTimePicker A list box for entering dates or times (VCL applications only)

1644

TMonthCalendar A calendar for selecting dates (VCL applications only)

Use the nonvisual TStringList and TImageList components to manage sets of strings and images. For more
information about string lists, see Working with string lists.

List Boxes and Check-list Boxes
List boxes (TListBox) and check-list boxes display lists from which users can select one or more choices from a list
of possible options. The choices are represented using text, graphics, or both.

Items uses a TStrings object to fill the control with values.
ItemIndex indicates which item in the list is selected.
MultiSelect specifies whether a user can select more than one item at a time.
Sorted determines whether the list is arranged alphabetically.
Columns specifies the number of columns in the list control.
IntegralHeight specifies whether the list box shows only entries that fit completely in the vertical space (VCL
only).
ItemHeight specifies the height of each item in pixels. The Style property can cause ItemHeight to be ignored.
The Style property determines how a list control displays its items. By default, items are displayed as strings.
By changing the value of Style, you can create owner-draw list boxes that display items graphically or in varying
heights. For information on owner-draw controls, see Adding Graphics to Controls.

To create a simple list box
1 Within your project, drop a list box component from the Tool palette onto a form.
2 Size the list box and set its alignment as needed.
3 Double-click the right side of the Items property or choose the ellipsis button to display the String List Editor.
4 Use the editor to enter free form text arranged in lines for the contents of the list box.
5 Then choose OK.

To let users select multiple items in the list box, you can use the ExtendedSelect and MultiSelect properties.

Combo Boxes
A combo box (TComboBox) combines an edit box with a scrollable list. When users enter data into the control—by
typing or selecting from the list—the value of the Text property changes. If AutoComplete is enabled, the application
looks for and displays the closest match in the list as the user types the data.

Three types of combo boxes are: standard, drop-down (the default), and drop-down list.

To create a combo box
1 Set the Style property to select the type of combo box you need:

Use csDropDown to create an edit box with a drop-down list. Use csDropDownList to make the edit box read-
only (forcing users to choose from the list).
Use csOwnerDrawFixed or csOwnerDrawVariable to create owner-draw combo boxes that display items
graphically or in varying heights. For information on owner-draw controls, see Adding Graphics to Controls.

1645

Use csSimple to create a combo box with a fixed list that does not close. Be sure to resize the combo box so
that the list items are displayed (VCL only).

2 Set the DropDownCount property to change the number of items displayed in the list.

At runtime, CLX combo boxes work differently than VCL combo boxes. With the CLX combo box, you can add an
item to a drop-down list by entering text and pressing Enter in the edit field of a combo box. You can turn this feature
off by setting InsertMode to ciNone. It is also possible to add empty (no string) items to the list in the combo box.
Also, if you keep pressing the down arrow key, it does not stop at the last item of the combo box list. It cycles around
to the top again.

Tree Views
A tree view (TTreeView) displays items in an indented outline. The control provides buttons that allow nodes to be
expanded and collapsed. You can include icons with items' text labels and display different icons to indicate whether
a node is expanded or collapsed. You can also include graphics, such as check boxes, that reflect state information
about the items.

Indent sets the number of pixels horizontally separating items from their parents.
ShowButtons enables the display of "+" and "–" buttons to indicate whether an item can be expanded.
ShowLines enables display of connecting lines to show hierarchical relationships (VCL only).
ShowRoot determines whether lines connecting the top-level items are displayed (VCL only).

To add items to a tree view control at design time, double-click on the control to display the TreeView Items editor.
The items you add become the value of the Items property. You can change the items at runtime by using the
methods of the Items property, which is an object of type TTreeNodes. TTreeNodes has methods for adding, deleting,
and navigating the items in the tree view.

Tree views can display columns and subitems similar to list views in vsReport mode.

List Views
List views, created using TListView, display lists in various formats. Use the ViewStyle property to choose the kind
of list you want:

vsIcon and vsSmallIcon display each item as an icon with a label. Users can drag items within the list view
window (VCL only).
vsList displays items as labeled icons that cannot be dragged.
vsReport displays items on separate lines with information arranged in columns. The leftmost column contains
a small icon and label, and subsequent columns contain subitems specified by the application. Use the
ShowColumnHeaders property to display headers for the columns.

Date-time Pickers and Month Calendars
In CLX applications, the DateTimePicker component displays a list box for entering dates or times, while the
MonthCalendar component presents a calendar for entering dates or ranges of dates. To use these components,
you must have version 4.70 or later of COMCTL32.DLL (usually located in the Windows\System or Windows
\System32 directory) at both design time and runtime. They are not available for use in cross-platform applications.

1646

Grouping Controls
A graphical interface is easier to use when related controls and information are presented in groups. Components
for grouping components include:

Use this component: When you want this:

TGroupBox A standard group box with a title

TRadioGroup A simple group of radio buttons

TPanel A more visually flexible group of controls

TScrollBox A scrollable region containing controls

TTabControl A set of mutually exclusive notebook-style tabs

TPageControl A set of mutually exclusive notebook-style tabs with corresponding pages, each of which may contain
other controls

THeaderControl Resizable column headers

Group Boxes and Radio Groups
A group box (TGroupBox) arranges related controls on a form. The most commonly grouped controls are radio
buttons. After placing a group box on a form, select components from the Tool palette and place them in the group
box. The Caption property contains text that labels the group box at runtime.

The radio group component (TRadioGroup) simplifies the task of assembling radio buttons and making them work
together. To add radio buttons to a radio group, edit the Items property in the Object Inspector; each string in
Items makes a radio button appear in the group box with the string as its caption. The value of the ItemIndex property
determines which radio button is currently selected. Display the radio buttons in a single column or in multiple
columns by setting the value of the Columns property. To respace the buttons, resize the radio group component.

Panels
The TPanel component provides a generic container for other controls. Panels are typically used to visually group
components together on a form. Panels can be aligned with the form to maintain the same relative position when
the form is resized. The BorderWidth property determines the width, in pixels, of the border around a panel.

You can also place other controls onto a panel and use the Align property to ensure proper positioning of all the
controls in the group on the form. You can make a panel alTop aligned so that its position will remain in place even
if the form is resized.

The look of the panel can be changed to a raised or lowered look by using the BevelOuter and BevelInner properties.
You can vary the values of these properties to create different visual 3-D effects. Note that if you merely want a
raised or lowered bevel, you can use the less resource intensive TBevel control instead.

You can also use one or more panels to build various status bars or information display areas.

Scroll Boxes
Scroll boxes (TScrollBox) create scrolling areas within a form. Applications often need to display more information
than will fit in a particular area. Some controls—such as list boxes, memos, and forms themselves—can automatically
scroll their contents.

Another use of scroll boxes is to create multiple scrolling areas (views) in a window. Views are common in commercial
word-processor, spreadsheet, and project management applications. Scroll boxes give you the additional flexibility
to define arbitrary scrolling subregions of a form.

1647

Like panels and group boxes, scroll boxes contain other controls, such as TButton and TCheckBox objects. But a
scroll box is normally invisible. If the controls in the scroll box cannot fit in its visible area, the scroll box automatically
displays scroll bars.

Another use of a scroll box is to restrict scrolling in areas of a window, such as a toolbar or status bar (TPanel
components). To prevent a toolbar and status bar from scrolling, hide the scroll bars, and then position a scroll box
in the client area of the window between the toolbar and status bar. The scroll bars associated with the scroll box
will appear to belong to the window, but will scroll only the area inside the scroll box.

Tab Controls
The tab control component (TTabControl) creates a set of tabs that look like notebook dividers. You can create tabs
by editing the Tabs property in the Object Inspector; each string in Tabs represents a tab. The tab control is a single
panel with one set of components on it. To change the appearance of the control when the tabs are clicked, you
need to write an OnChange event handler. To create a multipage dialog box, use a page control instead.

Page Controls
The page control component (TPageControl) is a page set suitable for multipage dialog boxes. A page control
displays multiple overlapping pages that are TTabSheet objects. A page is selected in the user interface by clicking
a tab on top of the control.

To create a new page in a page control at design time, right-click the control and choose New Page. At runtime, you
add new pages by creating the object for the page and setting its PageControl property:

[Delphi]
NewTabSheet = TTabSheet.Create(PageControl1);
NewTabSheet.PageControl := PageControl1;

[C++]
TTabSheet *pTabSheet = new TTabSheet(PageControl1);
pTabSheet->PageControl = PageControl1;

To access the active page, use the ActivePage property. To change the active page, you can set either the
ActivePage or the ActivePageIndex property.

Header Controls
A header control (THeaderControl) is a is a set of column headers that the user can select or resize at runtime. Edit
the control's Sections property to add or modify headers. You can place the header sections above columns or fields.
For example, header sections might be placed over a list box (TListBox).

Display Controls
There are many ways to provide users with information about the state of an application. For example, some
components—including TForm—have a Caption property that can be set at runtime. You can also create dialog
boxes to display messages. In addition, the following components are especially useful for providing visual feedback
at runtime to identify the object.

Use this component or property: To do this:

TStatusBar Display a status region (usually at the bottom of a window)

TProgressBar Show the amount of work completed for a particular task

1648

Hint and ShowHint Activate fly-by or "tooltip" Help

HelpContext and HelpFile Link context-sensitive online Help

Status Bars
Although you can use a panel to make a status bar, it is simpler to use the TStatusBar component. By default, the
status bar's Align property is set to alBottom, which takes care of both position and size.

If you only want to display one text string at a time in the status bar, set its SimplePanel property to True and use
the SimpleText property to control the text displayed in the status bar.

You can also divide a status bar into several text areas, called panels. To create panels, edit the Panels property in
the Object Inspector, setting each panel's Width, Alignment, and Text properties from the Panels editor. Each
panel's Text property contains the text displayed in the panel.

Progress Bars
When your application performs a time-consuming operation, you can use a progress bar (TProgressBar) to show
how much of the task is completed. A progress bar displays a dotted line that grows from left to right.

The Position property tracks the length of the dotted line. Max and Min determine the range of Position. To make
the line grow, increment Position by calling the StepBy or StepIt method. The Step property determines the increment
used by StepIt.

Help and Hint Properties
Most visual controls can display context-sensitive Help as well as fly-by hints at runtime. The HelpContext and
HelpFile properties establish a Help context number and Help file for the control.

The Hint property contains the text string that appears when the user moves the mouse pointer over a control or
menu item. To enable hints, set ShowHint to True; setting ParentShowHint to True causes the control's ShowHint
property to have the same value as its parent's.

Grids
Grids display information in rows and columns. If you're writing a database application, use the TDBCtrlGrid or
TDBCtrlGrid component. Otherwise, use a standard draw grid or string grid.

Draw Grids
A draw grid (TDrawGrid) displays arbitrary data in tabular format. Write an OnDrawCell event handler to fill in the
cells of the grid.

The CellRect method returns the screen coordinates of a specified cell, while the MouseToCell method returns
the column and row of the cell at specified screen coordinates. The Selection property indicates the boundaries
of the currently selected cells.
The TopRow property determines which row is currently at the top of the grid. The LeftCol property determines
the first visible column on the left. VisibleColCount and VisibleRowCount are the number of columns and rows
visible in the grid.
You can change the width or height of a column or row with the ColWidths and RowHeights properties. Set the
width of the grid lines with the GridLineWidth property. Add scroll bars to the grid with the ScrollBars property.

1649

You can choose to have fixed or non-scrolling columns and rows with the FixedCols and FixedRows properties.
Assign a color to the fixed columns and rows with the FixedColor property.
The Options, DefaultColWidth, and DefaultRowHeight properties also affect the appearance and behavior of
the grid.

String Grids
The string grid component is a descendant of TDrawGrid that adds specialized functionality to simplify the display
of strings. The Cells property lists the strings for each cell in the grid; the Objects property lists objects associated
with each string. All the strings and associated objects for a particular column or row can be accessed through
the Cols or Rows property.

Value List Editors (VCL Only)
TValueListEditor is a specialized grid for editing string lists that contain name/value pairs in the form Name=Value.
The names and values are stored as a TStrings descendant that is the value of the Strings property. You can look
up the value for any name using the Values property. TValueListEditor is not available for cross-platform
programming.

The grid contains two columns, one for the names and one for the values. By default, the Name column is named
"Key" and the Value column is named "Value". You can change these defaults by setting the TitleCaptions property.
You can omit these titles using the DisplayOptions property (which also controls resize when you resize the control.)

You can control whether users can edit the Name column using the KeyOptions property. KeyOptions contains
separate options to allow editing, adding new names, deleting names, and controlling whether new names must be
unique.

You can control how users edit the entries in the Value column using the ItemProps property. Each item has a
separate TItemProp object that lets you

Supply an edit mask to limit the valid input.
Specify a maximum length for values.
Mark the value as read-only.
Specify that the value list editor displays a drop-down arrow that opens a pick list of values from which the user
can choose or an ellipsis button that triggers an event you can use for displaying a dialog in which users enter
values.

If you specify that there is a drop-down arrow, you must supply the list of values from which the user chooses. These
can be a static list (the PickList property of the TItemProp object) or they can be dynamically added at runtime using
the value list editor's OnGetPickList event. You can also combine these approaches and have a static list that the
OnGetPickList event handler modifies.

If you specify that there is an ellipsis button, you must supply the response that occurs when the user clicks that
button (including the setting of a value, if appropriate). You provide this response by writing an OnEditButtonClick
event handler.

Graphic Controls
The following components make it easy to incorporate graphics into an application.

Use this component: To display:

TImage Graphics files

1650

TShape Geometric shapes

TBevel 3-D lines and frames

TPaintBox Graphics drawn by your program at runtime

TAnimate AVI files (VCL applications only); GIF files (CLX applications only)

Notice that these include common paint routines (Repaint, Invalidate, and so on) that never need to receive focus.

To create a graphic control, see Creating a graphic control.

Images
The image component (TImage) displays a graphical image, like a bitmap, icon, or metafile. The Picture property
determines the graphic to be displayed. Use Center, AutoSize, Stretch, and Transparent to set display options. For
more information, see Overview of Graphics Programming.

Shapes
The shape component displays a geometric shape. It is a nonwindowed control (a widget-based control in CLX
applications) and therefore, cannot receive user input. The Shape property determines which shape the control
assumes. To change the shape's color or add a pattern, use the Brush property, which holds a TBrush object. How
the shape is painted depends on the Color and Style properties of TBrush.

Bevels
The bevel component (TBevel) is a line that can appear raised or lowered. Some components, such as TPanel, have
built-in properties to create beveled borders. When such properties are unavailable, use TBevel to create beveled
outlines, boxes, or frames.

Paint Boxes
The paint box (TPaintBox) allows your application to draw on a form. Write an OnPaint event handler to render an
image directly on the paint box's Canvas. Drawing outside the boundaries of the paint box is prevented. For more
information, see Overview of Graphics Programming.

Animation Control
The animation component is a window that silently displays an Audio Video Interleaved (AVI) clip (VCL applications)
or a GIF clip (CLX applications). An AVI clip is a series of bitmap frames, like a movie. Although AVI clips can have
sound, animation controls work only with silent AVI clips. The files you use must be either uncompressed AVI files
or AVI clips compressed using run-length encoding (RLE).

Following are some of the properties of an animation component:

ResHandle is the Windows handle for the module that contains the AVI clip as a resource. Set ResHandle at
runtime to the instance handle or module handle of the module that includes the animation resource. After set
ting ResHandle, set the ResID or ResName property to specify which resource in the indicated module is the
AVI clip that should be displayed by the animation control.
Set AutoSize to True to have the animation control adjust its size to the size of the frames in the AVI clip.
StartFrame and StopFrame specify in which frames to start and stop the clip.
Set CommonAVI to display one of the common Windows AVI clips provided in Shell32.DLL.

1651

Specify when to start and interrupt the animation by setting the Active property to True and False, respectively,
and how many repetitions to play by setting the Repetitions property.
The Timers property lets you display the frames using a timer. This is useful for synchronizing the animation
sequence with other actions, such as playing a sound track.

1652

Working with graphics and multimedia

Working with Graphics and Multimedia: Overview
Graphics and multimedia elements can add polish to your applications. You can introduce these features into your
application in a variety of ways. To add graphical elements, you can insert pre-drawn pictures at design time, create
them using graphical controls at design time, or draw them dynamically at runtime. To add multimedia capabilities,
you can use special components that can play audio and video clips.

This following topics describe how to enhance your applications by introducing graphics or multimedia elements:

Overview of Graphics Programming
Working with multimedia

Overview of Graphics Programming
In VCL applications, the graphics components defined in the Graphics unit encapsulate the Windows Graphics
Device Interface (GDI), making it easy to add graphics to your Windows applications. CLX graphics components
defined in the QGraphics unit encapsulate the Qt graphics widgets for adding graphics to cross-platform applications.

To draw graphics in an application, you draw on an object's canvas, rather than directly on the object. The canvas
is a property of the object, and is itself an object. A main advantage of the canvas object is that it handles resources
effectively and it manages the device context for you, so your programs can use the same methods regardless of
whether you are drawing on the screen, to a printer, or on bitmaps or metafiles (drawings in CLX applications).
Canvases are available only at runtime, so you do all your work with canvases by writing code.

Note: Since TCanvas is a wrapper resource manager around the Windows device context, you can also use all
Windows GDI functions on the canvas. The Handle property of the canvas is the device context Handle.

In CLX applications, TCanvas is a wrapper resource manager around a Qt painter. The Handle property of the canvas
is a typed pointer to an instance of a Qt painter object. Having this instance pointer exposed allows you to use low-
level Qt graphics library functions that require an instance pointer to a painter object QPainterH.

How graphic images appear in your application depends on the type of object whose canvas you draw on. If you are
drawing directly onto the canvas of a control, the picture is displayed immediately. However, if you draw on an
offscreen image such as a TBitmap canvas, the image is not displayed until a control copies from the bitmap onto
the control's canvas. That is, when drawing bitmaps and assigning them to an image control, the image appears
only when the control has an opportunity to process its OnPaint message (VCL applications) or event (CLX
applications).

When working with graphics, you often encounter the terms drawing and painting:

1653

Drawing is the creation of a single, specific graphic element, such as a line or a shape, with code. In your code,
you tell an object to draw a specific graphic in a specific place on its canvas by calling a drawing method of the
canvas.
Painting is the creation of the entire appearance of an object. Painting usually involves drawing. That is, in
response to OnPaint events, an object generally draws some graphics. An edit box, for example, paints itself
by drawing a rectangle and then drawing some text inside. A shape control, on the other hand, paints itself by
drawing a single graphic.

The following topics describe how to use graphics components to simplify your coding.

Refreshing the screen
Types of graphic objects
Common properties and methods of canvases
Handling multiple drawing objects in an application
Drawing on a bitmap
Loading and saving graphics files
Using the Clipboard with Graphics
Rubber banding example

Refreshing the Screen
At certain times, the operating system determines that objects onscreen need to refresh their appearance, so it
generates WM_PAINT messages on Windows, which the VCL routes to OnPaint events. (In CLX applications, a
paint event is generated, and routed to OnPaint events.) If you have written an OnPaint event handler for that object,
it is called when you use the Refresh method. The default name generated for the OnPaint event handler in a form
is FormPaint. You may want to use the Refresh method at times to refresh a component or form. For example, you
might call Refresh in the form's OnResize event handler to redisplay any graphics or if using the VCL, you want to
paint a background on a form.

While some operating systems automatically handle the redrawing of the client area of a window that has been
invalidated, Windows does not. In the Windows operating system anything drawn on the screen is permanent. When
a form or control is temporarily obscured, for example during window dragging, the form or control must repaint the
obscured area when it is re-exposed. For more information about the WM_PAINT message, see the Windows online
Help.

If you use the TImage control to display a graphical image on a form, the painting and refreshing of the graphic
contained in the TImage is handled automatically. The Picture property specifies the actual bitmap, drawing, or other
graphic object that TImage displays. You can also set the Proportional property to ensure that the image can be fully
displayed in the image control without any distortion. Drawing on a TImage creates a persistent image. Consequently,
you do not need to do anything to redraw the contained image. In contrast, TPaintBox's canvas maps directly onto
the screen device (VCL applications) or the painter (CLX applications), so that anything drawn to the PaintBox's
canvas is transitory. This is true of nearly all controls, including the form itself. Therefore, if you draw or paint on a
TPaintBox in its constructor, you will need to add that code to your OnPaint event handler in order for the image to
be repainted each time the client area is invalidated.

Types of Graphic Objects
The component library provides the following graphic objects. These objects have methods to draw on the canvas,
which are described in Using Canvas methods to draw graphic objects and to load and save to graphics files, as
described in Loading and saving graphics files

Graphic object types

1654

Object Description

Picture Used to hold any graphic image. To add additional graphic file formats, use the Picture
Register method. Use this to handle arbitrary files such as displaying images in an image
control.

Bitmap A powerful graphics object used to create, manipulate (scale, scroll, rotate, and paint), and
store images as files on a disk. Creating copies of a bitmap is fast since the handle is copied,
not the image.

Clipboard Represents the container for any text or graphics that are cut, copied, or pasted from or to
an application. With the clipboard, you can get and retrieve data according to the appropriate
format; handle reference counting, and opening and closing the clipboard; manage and
manipulate formats for objects in the clipboard.

Icon Represents the value loaded from an icon file (::ICO file).

Metafile (VCL applications only)

Drawing (CLX applications only)

Contains a file that records the operations required to construct an image, rather than
contain the actual bitmap pixels of the image. Metafiles or drawings are extremely scalable
without the loss of image detail and often require much less memory than bitmaps,
particularly for high-resolution devices, such as printers. However, metafiles and drawings
do not display as fast as bitmaps. Use a metafile or drawing when versatility or precision is
more important than performance.

Common Properties and Methods of Canvas
The following table lists the commonly used properties of the Canvas object.

Common properties of the Canvas object
Properties Descriptions

Font Specifies the font to use when writing text on the image. Set the properties of the TFont object to specify the font
face, color, size, and style of the font.

Brush Determines the color and pattern the canvas uses for filling graphical shapes and backgrounds. Set the properties
of the TBrush object to specify the color and pattern or bitmap to use when filling in spaces on the canvas.

Pen Specifies the kind of pen the canvas uses for drawing lines and outlining shapes. Set the properties of the TPen
object to specify the color, style, width, and mode of the pen.

PenPos Specifies the current drawing position of the pen.

Pixels Specifies the color of the area of pixels within the current ClipRect.

These properties are described in more detail in Using the properties of the Canvas object.

Here is a list of several methods you can use:

Common methods of the Canvas object
Method Descriptions

Arc Draws an arc on the image along the perimeter of the ellipse bounded by the specified rectangle.

Chord Draws a closed figure represented by the intersection of a line and an ellipse.

CopyRect Copies part of an image from another canvas into the canvas.

Draw Renders the graphic object specified by the Graphic parameter on the canvas at the location given
by the coordinates (X, Y).

Ellipse Draws the ellipse defined by a bounding rectangle on the canvas.

FillRect Fills the specified rectangle on the canvas using the current brush.

FloodFill (VCL only) Fills an area of the canvas using the current brush.

1655

FrameRect (VCL only) Draws a rectangle using the Brush of the canvas to draw the border.

LineTo Draws a line on the canvas from PenPos to the point specified by X and Y, and sets the pen position
to (X, Y).

MoveTo Changes the current drawing position to the point (X,Y).

Pie Draws a pie-shaped the section of the ellipse bounded by the rectangle (X1, Y1) and (X2, Y2) on the
canvas.

Polygon Draws a series of lines on the canvas connecting the points passed in and closing the shape by
drawing a line from the last point to the first point.

Polyline Draws a series of lines on the canvas with the current pen, connecting each of the points passed to
it in Points.

Rectangle Draws a rectangle on the canvas with its upper left corner at the point (X1, Y1) and its lower right
corner at the point (X2, Y2). Use Rectangle to draw a box using Pen and fill it using Brush.

RoundRect Draws a rectangle with rounded corners on the canvas.

StretchDraw Draws a graphic on the canvas so that the image fits in the specified rectangle. The graphic image
may need to change its magnitude or aspect ratio to fit.

TextHeight, TextWidth Returns the height and width, respectively, of a string in the current font. Height includes leading
between lines.

TextOut Writes a string on the canvas, starting at the point (X,Y), and then updates the PenPos to the end of
the string.

TextRect Writes a string inside a region; any portions of the string that fall outside the region do not appear.

These methods are described in more detail in Using Canvas methods to draw graphic objects.

Using the Properties of the Canvas Object
With the Canvas object, you can set the properties of a pen for drawing lines, a brush for filling shapes, a font for
writing text, and an array of pixels to represent the image.

This topic describes:

Using pens.
Using brushes.
Reading and setting pixels.

Using Pens
The Pen property of a canvas controls the way lines appear, including lines drawn as the outlines of shapes. Drawing
a straight line is really just changing a group of pixels that lie between two points.

The pen itself has four properties you can change:

Color property changes the pen color.
Width property changes the pen width.
Style property changes the pen style.
Mode property changes the pen mode.

The values of these properties determine how the pen changes the pixels in the line. By default, every pen starts
out black, with a width of 1 pixel, a solid style, and a mode called copy that overwrites anything already on the canvas.

1656

You can use TPenRecall for quick saving off and restoring the properties of pens.

Changing the Pen Color
You can set the color of a pen as you would any other Color property at runtime. A pen's color determines the color
of the lines the pen draws, including lines drawn as the boundaries of shapes, as well as other lines and polylines.
To change the pen color, assign a value to the Color property of the pen.

To let the user choose a new color for the pen, put a color grid on the pen's toolbar. A color grid can set both
foreground and background colors. For a non-grid pen style, you must consider the background color, which is drawn
in the gaps between line segments. Background color comes from the Brush color property.

Since the user chooses a new color by clicking the grid, this code changes the pen's color in response to the
OnClick event:

[Delphi]
procedure TForm1.PenColorClick(Sender: TObject);
begin
Canvas.Pen.Color := PenColor.ForegroundColor;
end;

[C++]
void __fastcall TForm1::PenColorClick(TObject *Sender)
{
 Canvas->Pen->Color = PenColor->ForegroundColor;
}

Changing the Pen Width
A pen's width determines the thickness, in pixels, of the lines it draws.

Note: When the thickness is greater than 1, Windows always draws solid lines, regardless of the value of the pen's
Style property.

To change the pen width, assign a numeric value to the pen's Width property.

Suppose you have a scroll bar on the pen's toolbar to set width values for the pen. And suppose you want to update
the label next to the scroll bar to provide feedback to the user. Using the scroll bar's position to determine the pen
width, you update the pen width every time the position changes.

This is how to handle the scroll bar's OnChange event:

[Delphi]
procedure TForm1.PenWidthChange(Sender: TObject);
begin
Canvas.Pen.Width := PenWidth.Position;{ set the pen width directly }
PenSize.Caption := IntToStr(PenWidth.Position);{ convert to string for caption }
end;

1657

[C++]
void __fastcall TForm1::PenWidthChange(TObject *Sender)
{
 Canvas->Pen->Width = PenWidth->Position; // set the pen width directly
 PenSize->Caption = IntToStr(PenWidth->Position); // convert to string
}

Changing the Pen Style
A pen's Style property allows you to set solid lines, dashed lines, dotted lines, and so on.

Note: For CLX applications deployed under Windows, Windows does not support dashed or dotted line styles for
pens wider than one pixel and makes all larger pens solid, no matter what style you specify.

The task of setting the properties of pen is an ideal case for having different controls share same event handler to
handle events. To determine which control actually got the event, you check the Sender parameter.

To create one click-event handler for six pen-style buttons on a pen's toolbar, do the
following:
1 Select all six pen-style buttons and select the Object Inspector Events OnClick event and in the Handler

column, type SetPenStyle.
The Code editor generates an empty click-event handler called SetPenStyle and attaches it to the OnClick events
of all six buttons.

2 Fill in the click-event handler by setting the pen's style depending on the value of Sender, which is the control
that sent the click event:

[Delphi]
procedure TForm1.SetPenStyle(Sender: TObject);
begin
with Canvas.Pen do
begin
if Sender = SolidPen then Style := psSolid
else if Sender = DashPen then Style := psDash
else if Sender = DotPen then Style := psDot
else if Sender = DashDotPen then Style := psDashDot
else if Sender = DashDotDotPen then Style := psDashDotDot
else if Sender = ClearPen then Style := psClear;
end;
end;

[C++]
void __fastcall TForm1::SetPenStyle(TObject *Sender)
{
 if (Sender == SolidPen)
 Canvas->Pen->Style = psSolid;
 else if (Sender == DashPen)
 Canvas->Pen->Style = psDash;
 else if (Sender == DotPen)
 Canvas->Pen->Style = psDot;
 else if (Sender == DashDotPen)
 Canvas->Pen->Style = psDashDot;
 else if (Sender == DashDotDotPen)

1658

 Canvas->Pen->Style = psDashDotDot;
' else if (Sender == ClearPen)
 Canvas->Pen->Style = psClear;
}

[C++]
void __fastcall TForm1::SetPenStyle(TObject *Sender)
{
 if (Sender->InheritsFrom (__classid(TSpeedButton))
 Canvas->Pen->Style = (TPenStyle) ((TSpeedButton *)Sender)->Tag;
}

Changing the Pen Mode
A pen's Mode property lets you specify various ways to combine the pen's color with the color on the canvas. For
example, the pen could always be black, be an inverse of the canvas background color, inverse of the pen color,
and so on.

Getting the Pen Position
The current drawing position—the position from which the pen begins drawing its next line—is called the pen position.
The canvas stores its pen position in its PenPos property. Pen position affects the drawing of lines only; for shapes
and text, you specify all the coordinates you need.

To set the pen position, call the MoveTo method of the canvas. For example, the following code moves the pen
position to the upper left corner of the canvas:

[Delphi]
Canvas.MoveTo(0, 0);

[C++]
Canvas->MoveTo(0, 0);

Note: Drawing a line with the LineTo method also moves the current position to the endpoint of the line.

Using Brushes
The Brush property of a canvas controls the way you fill areas, including the interior of shapes. Filling an area with
a brush is a way of changing a large number of adjacent pixels in a specified way.

The brush has three properties you can manipulate:

Color property changes the fill color.
Style property changes the brush style.
Bitmap property uses a bitmap as a brush pattern.

The values of these properties determine the way the canvas fills shapes or other areas. By default, every brush
starts out white, with a solid style and no pattern bitmap.

You can use TBrushRecall for quick saving off and restoring the properties of brushes.

1659

Changing the Brush Color
A brush's color determines what color the canvas uses to fill shapes. To change the fill color, assign a value to the
brush's Color property. Brush is used for background color in text and line drawing so you typically set the background
color property.

You can set the brush color just as you do the pen color, in response to a click on a color grid on the brush's toolbar :

[Delphi]
procedure TForm1.BrushColorClick(Sender: TObject);
begin
Canvas.Brush.Color := BrushColor.ForegroundColor;
end;

[C++]
void __fastcall TForm1::BrushColorClick(TObject *Sender)
{
 Canvas->Brush->Color = BrushColor->BackgroundColor;
}

Changing the Brush Style
A brush style determines what pattern the canvas uses to fill shapes. It lets you specify various ways to combine
the brush’s color with any colors already on the canvas. The predefined styles include solid color, no color, and
various line and hatch patterns.

To change the style of a brush, set its Style property to one of the predefined values: bsBDiagonal, bsClear, bsCross,
bsDiagCross, bsFDiagonal, bsHorizontal, bsSolid, or bsVertical. Cross-platform applications include the predefined
values of bsDense1 through bsDense7.

This example sets brush styles by sharing a click-event handler for a set of eight brush-style buttons. All eight buttons
are selected, the Object Inspector Events OnClick is set, and the OnClick handler is named SetBrushStyle.

Here is the handler code:

[Delphi]
procedure TForm1.SetBrushStyle(Sender: TObject);
begin
 with Canvas.Brush do
 begin
 if Sender = SolidBrush then Style := bsSolid
 else if Sender = ClearBrush then Style := bsClear
 else if Sender = HorizontalBrush then Style := bsHorizontal
 else if Sender = VerticalBrush then Style := bsVertical
 else if Sender = FDiagonalBrush then Style := bsFDiagonal
 else if Sender = BDiagonalBrush then Style := bsBDiagonal
 else if Sender = CrossBrush then Style := bsCross
 else if Sender = DiagCrossBrush then Style := bsDiagCross;
 end;
end;

[C++]
void __fastcall TForm1::SetBrushStyle(TObject *Sender)
{
 if (Sender == SolidBrush)
 Canvas->Brush->Style = bsSolid;

1660

 else if (Sender == ClearBrush)
 Canvas->Brush->Style = bsClear;
 else if (Sender == HorizontalBrush)
 Canvas->Brush->Style = bsHorizontal;
 else if (Sender == VerticalBrush)
 Canvas->Brush->Style = bsVertical;
 else if (Sender == FDiagonalBrush)
 Canvas->Brush->Style = bsFDiagonal;
 else if (Sender == BDiagonalBrush)
 Canvas->Brush->Style = bsBDiagonal;
 else if (Sender == CrossBrush)
 Canvas->Brush->Style = bsCross;
 else if (Sender == DiagCrossBrush)
 Canvas->Brush->Style = bsDiagCross;
}

[C++]
void __fastcall TForm1::SetBrushStyle(TObject *Sender)
{
 if (Sender->InheritsFrom (__classid(TSpeedButton))
 Canvas->Brush->Style = (TBrushStyle) ((TSpeedButton *)Sender)->Tag;
}

Setting the Brush Bitmap Property
A brush's Bitmap property lets you specify a bitmap image for the brush to use as a pattern for filling shapes and
other areas.

The following example loads a bitmap from a file and assigns it to the Brush of the Canvas of Form1:

[Delphi]
var
Bitmap: TBitmap;
begin
Bitmap := TBitmap.Create;
try
Bitmap.LoadFromFile('MyBitmap.bmp');
Form1.Canvas.Brush.Bitmap := Bitmap;
Form1.Canvas.FillRect(Rect(0,0,100,100));
finally
Form1.Canvas.Brush.Bitmap := nil;
Bitmap.Free;
end;
end;

[C++]
BrushBmp->LoadFromFile("MyBitmap.bmp");
Form1->Canvas->Brush->Bitmap = BrushBmp;
Form1->Canvas->FillRect(Rect(0,0,100,100));

Note: The brush does not assume ownership of a bitmap object assigned to its Bitmap property. You must ensure
that the Bitmap object remains valid for the lifetime of the Brush, and you must free the Bitmap object yourself
afterwards.

1661

Reading and Setting Pixels
You will notice that every canvas has an indexed Pixels property that represents the individual colored points that
make up the image on the canvas. You rarely need to access Pixels directly, it is available only for convenience to
perform small actions such as finding or setting a pixel's color.

Note: Setting and getting individual pixels is thousands of times slower than performing graphics operations on
regions. Do not use the Pixel array property to access the image pixels of a general array. For high-
performance access to image pixels, see the TBitmap.ScanLine property

Using Canvas Methods to Draw Graphic Objects
This topic shows how to use some common methods to draw graphic objects. It covers:

Drawing lines and polylines.
Drawing shapes.
Drawing rounded rectangles.
Drawing polygons.

Drawing Lines and Polylines
A canvas can draw straight lines and polylines. A straight line is just a line of pixels connecting two points. A polyline
is a series of straight lines, connected end-to-end. The canvas draws all lines using its pen.

Drawing Lines
To draw a straight line on a canvas, use the LineTo method of the canvas.

LineTo draws a line from the current pen position to the point you specify and makes the endpoint of the line the
current position. The canvas draws the line using its pen.

For example, the following method draws crossed diagonal lines across a form whenever the form is painted:

[Delphi]
procedure TForm1.FormPaint(Sender: TObject);
begin
with Canvas do
begin
MoveTo(0, 0);
LineTo(ClientWidth, ClientHeight);
MoveTo(0, ClientHeight);
LineTo(ClientWidth, 0);
end;
end;

1662

[C++]
void __fastcall TForm1::FormPaint(TObject *Sender)
{
 Canvas->MoveTo(0,0);
 Canvas->LineTo(ClientWidth, ClientHeight);
 Canvas->MoveTo(0, ClientHeight);
 Canvas->LineTo(ClientWidth, 0);
}

Drawing Polylines
In addition to individual lines, the canvas can also draw polylines, which are groups of any number of connected line
segments.

To draw a polyline on a canvas, call the Polyline method of the canvas.

The parameter passed to the Polyline method is an array of points. You can think of a polyline as performing a
MoveTo on the first point and LineTo on each successive point. For drawing multiple lines, Polyline is faster than
using the MoveTo method and the LineTo method because it eliminates a lot of call overhead.

Drawing Shapes
Canvases have methods for drawing different kinds of shapes. The canvas draws the outline of a shape with its pen,
then fills the interior with its brush. The line that forms the border for the shape is controlled by the current Pen object.

This topic describes:

Drawing rectangles and ellipses.
Drawing rounded rectangles.
Drawing polygons.

Drawing Rectangles and Ellipses
To draw a rectangle or ellipse on a canvas, call the canvas's Rectangle method or Ellipse method, passing the
coordinates of a bounding rectangle.

The Rectangle method draws the bounding rectangle; Ellipse draws an ellipse that touches all sides of the rectangle.

Drawing Rounded Rectangles
To draw a rounded rectangle on a canvas, call the canvas's RoundRect method.

The first four parameters passed to RoundRect are a bounding rectangle, just as for the Rectangle method or the
Ellipse method. RoundRect takes two more parameters that indicate how to draw the rounded corners.

Drawing Polygons
To draw a polygon with any number of sides on a canvas, call the Polygon method of the canvas.

Polygon takes an array of points as its only parameter and connects the points with the pen, then connects the last
point to the first to close the polygon. After drawing the lines, Polygon uses the brush to fill the area inside the polygon.

1663

Handling Multiple Drawing Objects in Your Application
Various drawing methods (rectangle, shape, line, and so on) are typically available on the toolbar and button panel.
Applications can respond to clicks on speed buttons to set the desired drawing objects. This section describes how to:

Keep track of which drawing tool to use.
Change the tool with speed buttons.
Use drawing tools.

Keeping Track of Which Drawing Tool to Use
A graphics program needs to keep track of what kind of drawing tool (such as a line, rectangle, ellipse, or rounded
rectangle) a user might want to use at any given time.

You could assign numbers to each kind of tool, but then you would have to remember what each number stands for.
You can do that more easily by assigning mnemonic constant names to each number, but your code won"t be able
to distinguish which numbers are in the proper range and of the right type. Fortunately, Delphi provides a means to
handle both of these shortcomings. You can declare an enumerated type.

An enumerated type is really just a shorthand way of assigning sequential values to constants. Since it's also a type
declaration, you can use Delphi's type-checking to ensure that you assign only those specific values.

To declare an enumerated type, use the reserved work type, followed by an identifier for the type, then an equal
sign, and the identifiers for the values in the type in parentheses, separated by commas.

For example, the following code declares an enumerated type for each drawing tool available in a graphics
application:

[Delphi]
type
TDrawingTool = (dtLine, dtRectangle, dtEllipse, dtRoundRect);

[C++]
typedef enum {dtLine, dtRectangle, dtEllipse, dtRoundRect} TDrawingTool;

By convention, type identifiers begin with the letter T, and groups of similar constants (such as those making up an
enumerated type) begin with a 2-letter prefix (such as dt for "drawing tool").

The declaration of the TDrawingTool type is equivalent to declaring a group of constants:

[Delphi]
const
 dtLine = 0;
 dtRectangle = 1;
 dtEllipse = 2;
 dtRoundRect = 3;

The main difference is that by declaring the enumerated type, you give the constants not just a value, but also a
type, which enables you to use the Delphi language's type-checking to prevent many errors. A variable of type
TDrawingTool can be assigned only one of the constants dtLine..dtRoundRect. Attempting to assign some other
number (even one in the range 0..3) generates a compile-time error.

In the following code, a field added to a form keeps track of the form's drawing tool:

[Delphi]
type

1664

TDrawingTool = (dtLine, dtRectangle, dtEllipse, dtRoundRect);
TForm1 = class(TForm)
...{ method declarations }
public
Drawing: Boolean;
Origin, MovePt: TPoint;
DrawingTool: TDrawingTool;{ field to hold current tool }
end;

[C++]
enum TDrawingTool {dtLine, dtRectangle, dtEllipse, dtRoundRect};
class TForm1 : public TForm
{
__published: // IDE-managed Components
 void __fastcall FormMouseDown(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y);
 void __fastcall FormMouseMove(TObject *Sender, TShiftState Shift, int X,
 int Y);
 void __fastcall FormMouseUp(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y);
private:
public:
 __fastcall TForm1(TComponent* Owner);
 bool Drawing; //field to track whether button was pressed
 TDrawingTool DrawingTool; // field to hold current tool
};

Changing the Tool with Speed Buttons
Each drawing tool needs an associated OnClick event handler. Suppose your application had a toolbar button for
each of four drawing tools: line, rectangle, ellipse, and rounded rectangle. You would attach the following event
handlers to the OnClick events of the four drawing-tool buttons, setting DrawingTool to the appropriate value for each:

[Delphi]
procedure TForm1.LineButtonClick(Sender: TObject);{ LineButton }
begin
DrawingTool := dtLine;
end;
procedure TForm1.RectangleButtonClick(Sender: TObject);{ RectangleButton }
begin
DrawingTool := dtRectangle;
end;
procedure TForm1.EllipseButtonClick(Sender: TObject);{ EllipseButton }
begin
DrawingTool := dtEllipse;
end;
procedure TForm1.RoundedRectButtonClick(Sender: TObject);{ RoundRectButton }
begin
DrawingTool := dtRoundRect;
end;

[C++]
void __fastcall TForm1::LineButtonClick(TObject *Sender) // LineButton
{
 DrawingTool = dtLine;
}

1665

void __fastcall TForm1::RectangleButtonClick(TObject *Sender) // RectangleButton
{
 DrawingTool = dtRectangle;
}
void __fastcall TForm1::EllipseButtonClick(TObject *Sender) // EllipseButton
{
 DrawingTool = dtEllipse;
}
void __fastcall TForm1::RoundedRectButtonClick(TObject *Sender) // RoundRectBtn
{
 DrawingTool = dtRoundRect;
}

Using Drawing Tools
Now that you can tell what tool to use, you must indicate how to draw the different shapes. The only methods that
perform any drawing are the mouse-move and mouse-up handlers, and the only drawing code draws lines, no matter
what tool is selected.

To use different drawing tools, your code needs to specify how to draw, based on the selected tool. You add this
instruction to each tool's event handler.

This topic describes:

Drawing shapes.
Sharing code among event handlers.

Drawing Shapes
Drawing shapes is just as easy as drawing lines. Each one takes a single statement; you just need the coordinates.

Here's a rewrite of the OnMouseUp event handler that draws shapes for all four tools:

[Delphi]
procedure TForm1.FormMouseUp(Sender: TObject; Button TMouseButton; Shift: TShiftState;
 X,Y: Integer);
begin
case DrawingTool of
dtLine:
begin
Canvas.MoveTo(Origin.X, Origin.Y);
Canvas.LineTo(X, Y)
end;
dtRectangle: Canvas.Rectangle(Origin.X, Origin.Y, X, Y);
dtEllipse: Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
dtRoundRect: Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
(Origin.X - X) div 2, (Origin.Y - Y) div 2);
end;
Drawing := False;
end;

[C++]
void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y){
 switch (DrawingTool)

1666

 {
 case dtLine:
 Canvas->MoveTo(Origin.x, Origin.y);
 Canvas->LineTo(X, Y);
 break;
 case dtRectangle:
 Canvas->Rectangle(Origin.x, Origin.y, X, Y);
 break;
 case dtEllipse:
 Canvas->Ellipse(Origin.x, Origin.y, X, Y);
 break;
 case dtRoundRect:
 Canvas->Rectangle(Origin.x, Origin.y, X, Y, (Origin.x - X)/2,
 (Origin.y - Y)/2);
 break;
 }
 Drawing = false;
}

Of course, you also need to update the OnMouseMove handler to draw shapes:

[Delphi]
procedure TForm1.FormMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
begin
if Drawing then
begin
Canvas.Pen.Mode := pmNotXor;
case DrawingTool of
dtLine: begin
Canvas.MoveTo(Origin.X, Origin.Y);
Canvas.LineTo(MovePt.X, MovePt.Y);
Canvas.MoveTo(Origin.X, Origin.Y);
Canvas.LineTo(X, Y);
end;
dtRectangle: begin
Canvas.Rectangle(Origin.X, Origin.Y, MovePt.X, MovePt.Y);
Canvas.Rectangle(Origin.X, Origin.Y, X, Y);
end;
dtEllipse: begin
Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
end;
dtRoundRect: begin
Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
(Origin.X - X) div 2, (Origin.Y - Y) div 2);
Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
(Origin.X - X) div 2, (Origin.Y - Y) div 2);
end;
end;
MovePt := Point(X, Y);
end;
Canvas.Pen.Mode := pmCopy;
end;

[C++]
void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y)
{
 if (Drawing)

1667

 {
 Canvas->Pen->Mode = pmNotXor; // use XOR mode to draw/erase
 switch (DrawingTool)
 {
 case dtLine:
 Canvas->MoveTo(Origin.x, Origin.y);
 Canvas->LineTo(MovePt.x, MovePt.y);
 Canvas->MoveTo(Origin.x, Origin.y);
 Canvas->LineTo(X, Y);
 break;
 case dtRectangle:
 Canvas->Rectangle(Origin.x, Origin.y, MovePt.x, MovePt.y);
 Canvas->Rectangle(Origin.x, Origin.y, X, Y);
 break;
 case dtEllipse:
 Canvas->Ellipse(Origin.x, Origin.y, MovePt.x, MovePt.y);
 Canvas->Ellipse(Origin.x, Origin.y, X, Y);
 break;
 case dtRoundRect:
 Canvas->Rectangle(Origin.x, Origin.y, MovePt.x, MovePt.y,
 (Origin.x - MovePt.x)/2,(Origin.y - MovePt.y)/2);
 Canvas->Rectangle(Origin.x, Origin.y, X, Y,
 (Origin.x - X)/2, (Origin.y - Y)/2);
 break;
 }
 MovePt = Point(X, Y);
 }
 Canvas->Pen->Mode = pmCopy;
}

Typically, all the repetitious code that is in the above example would be in a separate routine. The next topic shows
all the shape-drawing code in a single routine that all mouse-event handlers can call.

Sharing Code Among Event Handlers
Any time you find that many your event handlers use the same code, you can make your application more efficient
by moving the repeated code into a routine that all event handlers can share.

To add a method to a form:
1 Add the method declaration to the form object.

You can add the declaration in either the public or private parts at the end of the form object's declaration. If
the code is just sharing the details of handling some events, it's probably safest to make the shared method
private.

2 Write the method implementation in the implementation part of the form unit.

The header for the method implementation must match the declaration exactly, with the same parameters in the
same order.

Drawing On a Graphic
You don't need any components to manipulate your application's graphic objects. You can construct, draw on, save,
and destroy graphic objects without ever drawing anything on screen. In fact, your applications rarely draw directly
on a form. More often, an application operates on graphics and then uses an image control component to display
the graphic on a form.

1668

Once you move the application's drawing to the graphic in the image control, it is easy to add printing, clipboard,
and loading and saving operations for any graphic objects. graphic objects can be bitmap files, drawings, icons or
whatever other graphics classes that have been installed such as jpeg graphics.

Note: Because you are drawing on an offscreen image such as a TBitmap canvas, the image is not displayed until
a control copies from a bitmap onto the control's canvas. That is, when drawing bitmaps and assigning them
to an image control, the image appears only when the control has an opportunity to process its paint message.
But if you are drawing directly onto the canvas property of a control, the picture object is displayed
immediately.

Making Scrollable Graphics
The graphic need not be the same size as the form: it can be either smaller or larger. By adding a scroll box control
to the form and placing the graphic image inside it, you can display graphics that are much larger than the form or
even larger than the screen. To add a scrollable graphic first you add a TScrollBox component and then you add
the image control.

Adding an Image Control
An image control is a container component that allows you to display your bitmap objects. You use an image control
to hold a bitmap that is not necessarily displayed all the time, or which an application needs to use to generate other
pictures.

Note: Adding Graphics to Controls shows how to use graphics in controls.

Placing the Control
You can place an image control anywhere on a form. If you take advantage of the image control's ability to size itself
to its picture, you need to set the top left corner only. If the image control is a nonvisible holder for a bitmap, you can
place it anywhere, just as you would a nonvisual component.

If you drop the image control on a scroll box already aligned to the form's client area, this assures that the scroll box
adds any scroll bars necessary to access offscreen portions of the image's picture. Then set the image control's
properties.

Setting the Initial Bitmap Size
When you place an image control, it is simply a container. However, you can set the image control's Picture property
at design time to contain a static graphic. The control can also load its picture from a file at runtime, as described in
Loading And Saving Graphics Files.

To create a blank bitmap when the application starts
1 Attach a handler to the OnCreate event for the form that contains the image.
2 Create a bitmap object, and assign it to the image control's Picture.Graphic property.

In this example, the image is in the application's main form, Form1, so the code attaches a handler to Form1's
OnCreate event:

1669

[Delphi]

procedure TForm1.FormCreate(Sender: TObject);
var
Bitmap: TBitmap;{ temporary variable to hold the bitmap }
begin
Bitmap := TBitmap.Create;{ construct the bitmap object }
 Bitmap.Width := 200;{ assign the initial width... }
 Bitmap.Height := 200;{ ...and the initial height }
 Image.Picture.Graphic := Bitmap;{ assign the bitmap to the image control }
 Bitmap.Free; {We are done with the bitmap, so free it }
end;

[C++]
void __fastcall TForm1::FormCreate(TObject *Sender)
{
 Graphics::TBitmap *Bitmap = new Graphics::TBitmap(); // create the bitmap object
 Bitmap->Width = 200; // assign the initial width...
 Bitmap->Height = 200; // ...and the initial height
 Image->Picture->Graphic = Bitmap; // assign the bitmap to the image control
 delete Bitmap; // free the bitmap object
}

Assigning the bitmap to the picture's Graphic property copies the bitmap to the picture object. However, the picture
object does not take ownership of the bitmap, so after making the assignment, you must free it.

If you run the application now, you see that client area of the form has a white region, representing the bitmap. If
you size the window so that the client area cannot display the entire image, you'll see that the scroll box automatically
shows scroll bars to allow display of the rest of the image. But if you try to draw on the image, you don't get any
graphics, because the application is still drawing on the form, which is now behind the image and the scroll box.

Drawing On the Bitmap
To draw on a bitmap, use the image control's canvas and attach the mouse-event handlers to the appropriate events
in the image control. Typically, you would use region operations (fills, rectangles, polylines, and so on). These are
fast and efficient methods of drawing.

An efficient way to draw images when you need to access individual pixels is to use the bitmap ScanLine property.
For general-purpose usage, you can set up the bitmap pixel format to 24 bits and then treat the pointer returned
from ScanLine as an array of RGB. Otherwise, you will need to know the native format of the ScanLine property.
This example shows how to use ScanLine to get pixels one line at a time.

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
// This example shows drawing directly to the Bitmap
var
x,y : integer;
Bitmap : TBitmap;
P : PByteArray;
begin
Bitmap := TBitmap.create;
try
Bitmap.LoadFromFile("C:\Program Files\Borland\Delphi 4\Images\Splash\256color
\factory.bmp");
for y := 0 to Bitmap.height -1 do
begin
P := Bitmap.ScanLine[y];

1670

for x := 0 to Bitmap.width -1 do
P[x] := y;
end;
canvas.draw(0,0,Bitmap);
finally
Bitmap.free;
end;
end;

[C++]
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Graphics::TBitmap *pBitmap = new Graphics::TBitmap();
// This example shows drawing directly to the Bitmap
Byte *ptr;
try
{
pBitmap->LoadFromFile("C:\\Program Files\\Borland\\CBuilder\\Images\\Splash\\256color\
\factory.bmp ");
for (int y = 0; y < pBitmap->Height; y++)
{
ptr = pBitmap->ScanLine[y];
for (int x = 0; x < pBitmap->Width; x++)
ptr[x] = (Byte)y;
}
Canvas->Draw(0,0,pBitmap);
}
catch (...)
{
ShowMessage("Could not load or alter bitmap");
}
delete pBitmap;
}

Note: For CLX applications, change Windows- and VCL-specific code so that your application can run on Linux.
For example, the pathnames in Linux use a forward slash / as a delimiter.

Loading and Saving Graphics Files
Graphic images that exist only for the duration of one running of an application are of very limited value. Often, you
either want to use the same picture every time, or you want to save a created picture for later use. The image
component makes it easy to load pictures from a file and save them again.

The components you use to load, save, and replace graphic images support many graphic formats including bitmap
files, metafiles, glyphs, (pngs and xpms in CLX applications) and so on. They also support installable graphic classes.

The way to load and save graphics files is the similar to any other files and is described in these topics:

Loading a picture from a file.
Saving a picture to a file.
Replacing the picture.

1671

Loading a Picture from a File
Your application should provide the ability to load a picture from a file if your application needs to modify the picture
or if you want to store the picture outside the application so a person or another application can modify the picture.

To load a graphics file into an image control, call the LoadFromFile method of the image control's Picture object.

The following code gets a file name from an open picture file dialog box, and then loads that file into an image control
named Image:

[Delphi]
procedure TForm1.Open1Click(Sender: TObject);
begin
if OpenPictureDialog1.Execute then
begin
CurrentFile := OpenPictureDialog1.FileName;
Image.Picture.LoadFromFile(CurrentFile);
end;
end;

[C++]
void __fastcall TForm1::Open1Click(TObject *Sender)
{
 if (OpenPictureDialog1->Execute())
 {
 CurrentFile = OpenPictureDialog1->FileName;
 Image->Picture->LoadFromFile(CurrentFile);
 }
}

Saving a Picture to a File
The picture object can load and save graphics in several formats, and you can create and register your own graphic-
file formats so that picture objects can load and store them as well.

To save the contents of an image control in a file, call the SaveToFile method of the image control's Picture object.

The SaveToFile method requires the name of a file in which to save. If the picture is newly created, it might not have
a file name, or a user might want to save an existing picture in a different file. In either case, the application needs
to get a file name from the user before saving, as shown in the next topic.

The following pair of event handlers, attached to the File Save and File Save As menu items, respectively,
handle the resaving of named files, saving of unnamed files, and saving existing files under new names.

[Delphi]
procedure TForm1.Save1Click(Sender: TObject);
begin
if CurrentFile <> '' then
Image.Picture.SaveToFile(CurrentFile){ save if already named }
else SaveAs1Click(Sender);{ otherwise get a name }
end;
procedure TForm1.Saveas1Click(Sender: TObject);
begin
if SaveDialog1.Execute then{ get a file name }
begin
CurrentFile := SaveDialog1.FileName;{ save the user-specified name }
Save1Click(Sender);{ then save normally }

1672

end;
end;

[C++]
void __fastcall TForm1::Save1Click(TObject *Sender)
{
 if (!CurrentFile.IsEmpty())
 Image->Picture->SaveToFile(CurrentFile); // save if already named
else SaveAs1Click(Sender); // otherwise get a name
}
void __fastcall TForm1::SaveAs1Click(TObject *Sender)
{
 if (SaveDialog1->Execute()) // get a file name
 {
 CurrentFile = SaveDialog1->FileName; // save user-specified name
 Save1Click(Sender); // then save normally
 }
}

Replacing the Picture
You can replace the picture in an image control at any time. If you assign a new graphic to a picture that already
has a graphic, the new graphic replaces the existing one.

To replace the picture in an image control, assign a new graphic to the image control's Picture object.

Creating the new graphic is the same process you used to create the initial graphic , but you should also provide a
way for the user to choose a size other than the default size used for the initial graphic. An easy way to provide that
option is to present a dialog box.

With such a dialog box in your project, add it to the uses clause in the unit for your main form. You can then attach
an event handler to the File New menu item's OnClick event. Here's an example:

[Delphi]
procedure TForm1.New1Click(Sender: TObject);
var
Bitmap: TBitmap;{ temporary variable for the new bitmap }
begin
with NewBMPForm do
begin
ActiveControl := WidthEdit;{ make sure focus is on width field }
WidthEdit.Text := IntToStr(Image.Picture.Graphic.Width);{ use current dimensions... }
HeightEdit.Text := IntToStr(Image.Picture.Graphic.Height);{ ...as default }
if ShowModal <> idCancel then{ continue if user doesn"t cancel dialog box }
begin
Bitmap := TBitmap.Create;{ create fresh bitmap object }
Bitmap.Width := StrToInt(WidthEdit.Text);{ use specified width }
Bitmap.Height := StrToInt(HeightEdit.Text);{ use specified height }
Image.Picture.Graphic := Bitmap;{ replace graphic with new bitmap }
CurrentFile := "";{ indicate unnamed file }
 Bitmap.Free;
end;
end;
end;

[C++]
void __fastcall TForm1::New1Click(TObject *Sender)

1673

{
Graphics::TBitmap *Bitmap;
 // make sure focus is on width field
 NewBMPForm->ActiveControl = NewBMPForm->WidthEdit;
 // initialize to current dimensions as default ...
 NewBMPForm->WidthEdit->Text = IntToStr(Image->Picture->Graphic->Width);
NewBMPForm->HeightEdit->Text = IntToStr(Image->Picture->Graphic->Height);
 if (NewBMPForm->ShowModal() != IDCANCEL){ // if user does not cancel dialog...
Bitmap = new Graphics::TBitmap(); // create a new bitmap object
 // use specified dimensions
 Bitmap->Width = StrToInt(NewBMPForm->WidthEdit->Text);
Bitmap->Height = StrToInt(NewBMPForm->HeightEdit->Text);
Image->Picture->Graphic = Bitmap; // replace graphic with new bitmap
CurrentFile = EmptyStr; //indicate unnamed file
 delete Bitmap;
}
}

Note: Assigning a new bitmap to the picture object's Graphic property causes the picture object to copy the new
graphic, but it does not take ownership of it. The picture object maintains its own internal graphic object.
Because of this, the previous code frees the bitmap object after making the assignment.

Using the Clipboard with Graphics
You can use the Windows clipboard to copy and paste graphics within your applications or to exchange graphics
with other applications. The VCL's clipboard object makes it easy to handle different kinds of information, including
graphics.

Before you can use the clipboard object in your application, you must add the Clipbrd (QClipbrd in CLX applications)
unit to the uses clause of any unit that needs to access clipboard data.

For CLX applications, data that is stored on the clipboard is stored as a MIME type with an associated TStream
object. CLX applications provide predefined constants for the following MIME types.

CLX MIME types and constants
MIME type CLX constant

'image/delphi.bitmap' SDelphiBitmap

'image/delphi.component' SDelphiComponent

'image/delphi.picture' SDelphiPicture

'image/delphi.drawing' SDelphiDrawing

Copying Graphics to the Clipboard
You can copy any picture, including the contents of image controls, to the clipboard. Once on the clipboard, the
picture is available to all applications.

To copy a picture to the clipboard, assign the picture to the clipboard object using the Assign method.

This code shows how to copy the picture from an image control named Image to the clipboard in response to a click
on an Edit Copy menu item:

[Delphi]
procedure TForm1.Copy1Click(Sender: TObject);
begin

1674

 Clipboard.Assign(Image.Picture)
end.

[C++]
void __fastcall TForm1::Copy1Click(TObject *Sender)
{
 Clipboard()->Assign(Image->Picture);
}

Cutting Graphics to the Clipboard
Cutting a graphic to the clipboard is exactly like copying it, but you also erase the graphic from the source.

To cut a graphic from a picture to the clipboard, first copy it to the clipboard, then erase the original.

In most cases, the only issue with cutting is how to show that the original image is erased. Setting the area to white
is a common solution, as shown in the following code that attaches an event handler to the OnClick event of the
Edit Cut menu item:

[Delphi]
procedure TForm1.Cut1Click(Sender: TObject);
var
ARect: TRect;
begin
Copy1Click(Sender);{ copy picture to clipboard }
with Image.Canvas do
begin
CopyMode := cmWhiteness;{ copy everything as white }
ARect := Rect(0, 0, Image.Width, Image.Height);{ get bitmap rectangle }
CopyRect(ARect, Image.Canvas, ARect);{ copy bitmap over itself }
CopyMode := cmSrcCopy;{ restore normal mode }
end;
end;

[C++]
void __fastcall TForm1::Cut1Click(TObject *Sender)
{
 TRect ARect;
 Copy1Click(Sender); // copy picture to clipboard
 Image->Canvas->CopyMode = cmWhiteness; // copy everything as white
 ARect = Rect(0, 0, Image->Width, Image->Height); // get dimensions of image
 Image->Canvas->CopyRect(ARect, Image->Canvas, ARect); // copy bitmap over self
 Image->Canvas->CopyMode = cmSrcCopy; // restore default mode
}

Pasting Graphics from the Clipboard
If the clipboard contains a bitmapped graphic, you can paste it into any image object, including image controls and
the surface of a form.

To paste a graphic from the clipboard:
1 Call the clipboard's HasFormat method (VCL applications) to see whether the clipboard contains a graphic.

1675

HasFormat (or Provides in CLX applications) is a Boolean function. It returns True if the clipboard contains an
item of the type specified in the parameter. To test for graphics on the Windows platform, you pass
CF_BITMAP. In CLX applications, you pass SDelphiBitmap.

2 Assign the clipboard to the destination.

Note: The following VCL code shows how to paste a picture from the clipboard into an image control in response
to a click on an Edit Paste menu item:

[Delphi]
procedure TForm1.PasteButtonClick(Sender: TObject);
var
Bitmap: TBitmap;
begin
if Clipboard.HasFormat(CF_BITMAP) then { is there a bitmap on the Windows clipboard?)
begin
Image1.Picture.Bitmap.Assign(Clipboard);
 end;
end;

[C++]
void __fastcall TForm1::Paste1Click(TObject *Sender)
{
Graphics::TBitmap *Bitmap;
if (Clipboard()->HasFormat(CF_BITMAP)){
Image1->Picture->Bitmap->Assign(Clipboard());
 }
}

Note: The same example in a CLX application would look as follows:

[Delphi]
procedure TForm1.PasteButtonClick(Sender: TObject);
var
Bitmap: TBitmap;
begin
if Clipboard.Provides(SDelphiBitmap) then { is there a bitmap on the clipboard?)
begin
Image1.Picture.Bitmap.Assign(Clipboard);
 end;
end;

[C++]
void __fastcall TForm1::Paste1Click(TObject *Sender)
{
QGraphics::TBitmap *Bitmap;
if (Clipboard()->Provides(SDelphiBitmap)){
Image1->Picture->Bitmap->Assign(Clipboard());
 }
}

The graphic on the clipboard could come from this application, or it could have been copied from another application,
such as Microsoft Paint. You do not need to check the clipboard format in this case because the paste menu should
be disabled when the clipboard does not contain a supported format.

1676

Rubber Banding Example
This example describes the details of implementing the "rubber banding" effect in an graphics application that tracks
mouse movements as the user draws a graphic at runtime. The example code covered in this topic is taken from a
sample application located in the Demos\Doc\Graphexdirectory. The application draws lines and shapes on a
window's canvas in response to clicks and drags: pressing a mouse button starts drawing, and releasing the button
ends the drawing.

To start with, the example code shows how to draw on the surface of the main form. Later examples demonstrate
drawing on a bitmap.

The following topics describe the example:

Responding to the mouse.
Adding a field to a form object to track mouse actions.
Refining line drawing.

Responding to the Mouse
Your application can respond to the mouse actions: mouse-button down, mouse moved, and mouse-button up. It
can also respond to a click (a complete press-and-release, all in one place) that can be generated by some kinds
of keystrokes (such as pressing Enter in a modal dialog box).

This topic describes:

What's in a mouse event.
Responding to a mouse-down action.
Responding to a mouse-up action.
Responding to a mouse move.

What's in a Mouse Event
A mouse event occurs when a user moves the mouse in the user interface of an application. The VCL has three
mouse events.

Mouse events
Event Description

OnMouseDown event Occurs when the user presses a mouse button with the mouse pointer over a control.

OnMouseMove event Occurs when the user moves the mouse while the mouse pointer is over a control.

OnMouseUp event Occurs when the user releases a mouse button that was pressed with the mouse pointer over a
component.

When an application detects a mouse action, it calls whatever event handler you've defined for the corresponding
event, passing five parameters. Use the information in those parameters to customize your responses to the events.
The five parameters are as follows:

Mouse-event parameters
Parameter Meaning

Sender The object that detected the mouse action

Button Indicates which mouse button was involved: mbLeft, mbMiddle, or mbRight

1677

Shift Indicates the state of the Alt, Ctrl, and Shift keys at the time of the mouse action

X, Y The coordinates where the event occurred

Most of the time, you need the coordinates returned in a mouse-event handler, but sometimes you also need to
check Button to determine which mouse button caused the event.

Note: Delphi uses the same criteria as Microsoft Windows in determining which mouse button has been pressed.
Thus, if you have switched the default "primary" and "secondary" mouse buttons (so that the right mouse
button is now the primary button), clicking the primary (right) button will record mbLeft as the value of the
Button parameter.

Responding to a Mouse-down Action
Whenever the user presses a button on the mouse, an OnMouseDown event goes to the object the pointer is over.
The object can then respond to the event.

To respond to a mouse-down action, attach an event handler to the OnMouseDown event.

The Code editor generates an empty handler for a mouse-down event on the form:

[Delphi]
procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
begin
end;

[C++]
void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y)
{
}

Responding to a Mouse-up Action
An OnMouseUp event occurs whenever the user releases a mouse button. The event usually goes to the object the
mouse cursor is over when the user presses the button, which is not necessarily the same object the cursor is over
when the button is released. This enables you, for example, to draw a line as if it extended beyond the border of the
form.

To respond to mouse-up actions, define a handler for the OnMouseUp event.

Responding to a Mouse Move
An OnMouseMove event occurs periodically when the user moves the mouse. The event goes to the object that was
under the mouse pointer when the user pressed the button. This allows you to give the user some intermediate
feedback by drawing temporary lines while the mouse moves.

To respond to mouse movements, define an event handler for the OnMouseMove event. This example uses mouse-
move events to draw intermediate shapes on a form while the user holds down the mouse button, thus providing
some feedback to the user. The OnMouseMove event handler draws a line on a form to the location of the
OnMouseMove event:

1678

[Delphi]
procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
begin
Canvas.LineTo(X, Y);{ draw line to current position }
end;

[C++]
void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y)
{
 Canvas->LineTo(X, Y);
}

With this code, moving the mouse over the form causes drawing to follow the mouse, even before the mouse button
is pressed.

Mouse-move events occur even when you haven't pressed the mouse button.

If you want to track whether there is a mouse button pressed, you need to add an object field to the form object.

Adding a Field to a Form Object to Track Mouse Actions
To track whether a mouse button was pressed, you must add an object field to the form object. When you add a
component to a form, Delphi adds a field that represents that component to the form object, so that you can refer to
the component by the name of its field. You can also add your own fields to forms by editing the type declaration in
the form unit's header file.

In the following example, the form needs to track whether the user has pressed a mouse button. To do that, it adds
a Boolean field and sets its value when the user presses the mouse button.

To add a field to an object, edit the object's type definition, specifying the field identifier and type after the public
directive at the bottom of the declaration.

Delphi "owns" any declarations before the public directive: that's where it puts the fields that represent controls and
the methods that respond to events.

Refining Line Drawing
With fields in place to track various points, you can refine an application's line drawing.

Tracking the Origin Point
When drawing lines, track the point where the line starts with the Origin field. Origin must be set to the point where
the mouse-down event occurs, so the mouse-up event handler can use Origin to place the beginning of the line, as
in this code:

[Delphi]
procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
begin
Drawing := True;
Canvas.MoveTo(X, Y);
Origin := Point(X, Y);{ record where the line starts }
end;
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;

1679

Shift: TShiftState; X, Y: Integer);
begin
Canvas.MoveTo(Origin.X, Origin.Y);{ move pen to starting point }
Canvas.LineTo(X, Y);
Drawing := False;
end;

[C++]
void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y)
{
 Drawing = true; // set the Drawing flag
 Canvas->MoveTo(X, Y); // set pen position
 Origin = Point(X, Y); // record where the line starts
}
void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y)
{
 Canvas->MoveTo(Origin.x, Origin.y); // move pen to starting point
 Canvas->LineTo(X, Y); // draw line from PenPos to (X, Y)
 Drawing = false; // clear the Drawing flag
}

Those changes get the application to draw the final line again, but they do not draw any intermediate actions—the
application does not yet support "rubber banding."

Tracking Movement
The problem with this example as the OnMouseMove event handler is currently written is that it draws the line to
the current mouse position from the last mouse position, not from the original position. You can correct this by moving
the drawing position to the origin point, then drawing to the current point:

[Delphi]
procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
begin
if Drawing then
begin
Canvas.MoveTo(Origin.X, Origin.Y);{ move pen to starting point }
Canvas.LineTo(X, Y);
end;
end;

[C++]
void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y)
{
 if (Drawing)
 {
 Canvas->MoveTo(Origin.x, Origin.y); // move pen to starting point
 Canvas->LineTo(X, Y);
 }
}

1680

The above tracks the current mouse position, but the intermediate lines do not go away, so you can hardly see the
final line. The example needs to erase each line before drawing the next one, by keeping track of where the previous
one was. The MovePt field allows you to do this.

MovePt must be set to the endpoint of each intermediate line, so you can use MovePt and Origin to erase that line
the next time a line is drawn:

[Delphi]
procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
begin
Drawing := True;
Canvas.MoveTo(X, Y);
Origin := Point(X, Y);
MovePt := Point(X, Y);{ keep track of where this move was }
end;
procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
begin
if Drawing then
begin
Canvas.Pen.Mode := pmNotXor;{ use XOR mode to draw/erase }
Canvas.MoveTo(Origin.X, Origin.Y);{ move pen back to origin }
Canvas.LineTo(MovePt.X, MovePt.Y);{ erase the old line }
Canvas.MoveTo(Origin.X, Origin.Y);{ start at origin again }
Canvas.LineTo(X, Y);{ draw the new line }
end;
MovePt := Point(X, Y);{ record point for next move }
Canvas.Pen.Mode := pmCopy;
end;

[C++]
void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y)
{
 Drawing = true; // set the Drawing flag
 Canvas->MoveTo(X, Y); // set pen position
 Origin = Point(X, Y); // record where the line starts
 MovePt = Point(X, Y); // record last endpoint
}
void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y)
{
 if (Drawing)
 {
 Canvas->Pen->Mode = pmNotXor; // use XOR mode to draw/erase
 Canvas->MoveTo(Origin.x, Origin.y); // move pen to starting point
 Canvas->LineTo(MovePt.x, MovePt.y); // erase old line
 Canvas->MoveTo(Origin.x, Origin.y); // move pen to starting point again
 Canvas->LineTo(X, Y); // draw new line
 }
 MovePt = Point(X, Y); // record new endpoint
 Canvas->Pen->Mode = pmCopy;
}

Now you get a "rubber band" effect when you draw the line. By changing the pen's mode to pmNotXor, you have it
combine your line with the background pixels. When you go to erase the line, you're actually setting the pixels back
to the way they were. By changing the pen mode back to pmCopy (its default value) after drawing the lines, you
ensure that the pen is ready to do its final drawing when you release the mouse button.

1681

Working with Multimedia
You can add multimedia components to your applications. To do this, you can use either the TAnimate component
on the Win32 (Common Controls in CLX applications) page or the TMediaPlayer component (not available in CLX
applications) on the System category of the Tool palette. Use the animate component when you want to add silent
video clips to your application. Use the media player component when you want to add audio and/or video clips to
an application.

This topic discusses:

Adding silent video clips to an application
Adding audio and/or video clips to an application

Adding Silent Video Clips to an Application
With the animation control, you can add silent video clips to your application:

To add silent videop clips
1 Double-click the TAnimate icon on the Win32 (Common Control in CLX applications) catgory of the Tool

palette. This automatically puts an animation control on the form window in which you want to display the video
clip.

2 Using the Object Inspector, select the Name property and enter a new name for your animation control. You
will use this name when you call the animation control. (Follow the standard rules for naming Delphi identifiers).
Always work directly with the Object Inspector when setting design time properties and creating event handlers.

3 Do one of the following:

Select the CommonAVI property and choose one of the AVIs available from the drop-down list; or
Select the resource of an AVI using the ResName or ResID properties. Use ResHandle to indicate the module
that contains the resource identified by ResName or ResID; or
Select the FileName property and click the ellipsis (...) button, choose an AVI file (GIF in CLX applications) from
any available local or network directories and click Open in the Open AVI or Open GIF dialog (Windows and
cross-platform applications).

This loads the AVI or GIF file into memory. If you want to display the first frame of the AVI or GIF clip on-screen
until it is played using the Active property or the Play method, then set the Open property to True.

4 Set the Repetitions property to the number of times you want to the AVI or GIF clip to play. If this value is 0, then
the sequence is repeated until the Stop method is called.

5 Make any other changes to the animation control settings. For example, if you want to change the first frame
displayed when animation control opens, then set the StartFrameproperty to the desired frame value.

6 Set the Active property to True using the drop-down list or write an event handler to run the AVI or GIF clip when
a specific event takes place at runtime. For example, to activate the AVI or GIF clip when a button object is
clicked, write the button's OnClick event specifying that. You may also call the Play method to specify when to
play the AVI (VCL only).

Note: If you make any changes to the form or any of the components on the form after setting Active to True,
the Active property becomes False and you have to reset it to True. Do this either just before runtime or at
runtime.

For more information on using the animation control, see the topic called Example of adding silent video clips.

1682

Example of Adding Silent Video Clips
Suppose you want to display an animated logo as the first screen that appears when your application starts. After
the logo finishes playing the screen disappears.

To run this example, create a new project and save the Unit1.pas file as Frmlogo.pas and
save the Project1.dpr file as Logo.dpr. Then:
1 Double-click the animate icon from the Win32 category of the Tool palette.
2 Using the Object Inspector, set its Name property to Logo1.
3 Select its FileName property, click the ellipsis (...) button, locate and choose an AVI file. Then click Open in the

Open AVI dialog.
This loads the AVI file into memory.

4 Position the animation control box on the form by clicking and dragging it to the top right hand side of the form.
5 Set its Repetitions property to 5.
6 Click the form to bring focus to it and set its Name property to LogoForm1 and its Caption property to Logo

Window. Now decrease the height of the form to right-center the animation control on it.
7 Double-click the form's OnActivate event and write the following code to run the AVI clip when the form is in focus

at runtime:

[Delphi]
Logo1.Active := True;

[C++]
Logo1->Active = true;

8 Double-click the Label icon on the Standard category of the Tool palette. Select its Caption property and enter
Welcome to Cool Images 4.0. Now select its Font property, click the ellipsis (...) button and choose Font Style:
Bold, Size: 18, Color: Navy from the Font dialog and click OK. Click and drag the label control to center it on the
form.

9 Click the animation control to bring focus back to it. Double-click its OnStop event and write the following code
to close the form when the AVI file stops:

[Delphi]
LogoForm1.Close;

[C++]
LogoForm1->Close();

Select Run Run to execute the animated logo window.

Adding Audio and/or Video Clips to an Application
With the media player component, you can add audio and/or video clips to your application. It opens a media device
and plays, stops, pauses, records, etc., the audio and/or video clips used by the media device. The media device
may be hardware or software.

1683

Note: Audio support is not available in cross-platform applications.

To add an audio and/or video clip to an application:
1 Double-click the media player icon on the System category of the Tool palette. This automatically put a media

player control on the form window in which you want the media feature.
2 Using the Object Inspector, select the Nameproperty and enter a new name for your media player control. You

will use this when you call the media player control. (Follow the standard rules for naming Delphi identifiers.)
Always work directly with the Object Inspector when setting design time properties and creating event handlers.

3 Select the DeviceType property and choose the appropriate device type to open using the AutoOpen property
or the Open method. (If DeviceType is dtAutoSelect the device type is selected based on the file extension of
the media file specified by the FileName property.) For more information on device types and their functions, see
the table below.

4 If the device stores its media in a file, specify the name of the media file using the FileName property. Select the
FileName property, click the ellipsis (...) button, and choose a media file from any available local or network
directories and click Open in the Open dialog. Otherwise, insert the hardware the media is stored in (disk,
cassette, and so on) for the selected media device, at runtime.

5 Set the AutoOpen property to True. This way the media player automatically opens the specified device when
the form containing the media player control is created at runtime. If AutoOpen is False, the device must be
opened with a call to the Open method.

6 Set the AutoEnable property to True to automatically enable or disable the media player buttons as required at
runtime; or, double-click the EnabledButtons property to set each button to True or False depending on which
ones you want to enable or disable.
The multimedia device is played, paused, stopped, and so on when the user clicks the corresponding button on
the media player component. The device can also be controlled by the methods that correspond to the buttons
(Play, Pause, Stop, Next, Previous, and so on).

7 Position the media player control bar on the form by either clicking and dragging it to the appropriate place on
the form or by selecting the Align property and choosing the appropriate align position from the drop down list.
If you want the media player to be invisible at runtime, set the Visible property to False and control the device by
calling the appropriate methods (Play, Pause, Stop, Next, Previous, Step, Back, StartRecording, Eject).

8 Make any other changes to the TMediaPlayer control settings. For example, if the media requires a display
window, set the Display property to the control that displays the media. If the device uses multiple tracks, set the
Tracks property to the desired track.

Multimedia device types and their functions
Device Type Software/Hardware used Plays Uses Tracks Uses a Display Window

dtAVIVideo AVI Video Player for Windows AVI Video files No Yes

dtCDAudio CD Audio Player for Windows or a
CD Audio Player

CD Audio Disks Yes No

dtDAT Digital Audio Tape Player Digital Audio Tapes Yes No

dtDigitalVideo Digital Video Player for Windows AVI, MPG, MOV files No Yes

dtMMMovie MM Movie Player MM film No Yes

dtOverlay Overlay device Analog Video No Yes

dtScanner Image Scanner N/A for Play (scans images on
Record)

No No

1684

dtSequencer MIDI Sequencer for Windows MIDI files Yes No

dtVCR Video Cassette Recorder Video Cassettes No Yes

dtWaveAudio Wave Audio Player for Windows WAV files No No

For more information on using the media player control, see the topic called Example of Adding Audio and/or Video
Clips.

Example of Adding Audio and/or Video Clips (VCL Only)
This example runs an AVI video clip of a multimedia advertisement.

To run this example, create a new project and save the Unit1.pas file to FrmAd.pas and
save the Project1.dpr file to DelphiAd.dpr. Then:
1 Double-click the media player icon on the System category of the Tool palette.
2 Using the Object Inspector, set the Name property of the media player to VideoPlayer1.
3 Select its DeviceType property and choose dtAVIVideo from the drop-down list.
4 Select its FileName property, click the ellipsis (...) button, locate and choose an AVI file. Click Open in the Open

dialog.
5 Set its AutoOpen property to True and its Visible property to False.
6 Double-click the Animate icon from the Win32 category of the Tool palette. Set its AutoSize property to False,

its Height property to 175 and Width property to 200. Click and drag the animation control to the top left corner
of the form.

7 Click the media player to bring back focus to it. Select its Display property and choose Animate1 from the drop
down list.

8 Click the form to bring focus to it and select its Name property and enter Delphi_Ad. Now resize the form to the
size of the animation control.

9 Double-click the form's OnActivate event and write the following code to run the AVI video when the form is in
focus:

[Delphi]
VideoPlayer1.Play;

[C++]
VideoPlayer1->Play();

Choose Run Run to execute the AVI video.

1685

Writing multi-threaded applications

Writing Multi-threaded Applications
Several objects make writing multi-threaded applications easier. Multi-threaded applications are applications that
include several simultaneous paths of execution. While using multiple threads requires careful thought, it can
enhance your programs by:

Avoiding bottlenecks. With only one thread, a program must stop all execution when waiting for slow
processes such as accessing files on disk, communicating with other machines, or displaying multimedia
content. The CPU sits idle until the process completes. With multiple threads, your application can continue
execution in separate threads while one thread waits for the results of a slow process.
Organizing program behavior. Often, a program's behavior can be organized into several parallel processes
that function independently. Use threads to launch a single section of code simultaneously for each of these
parallel cases. Use threads to assign priorities to various program tasks so that you can give more CPU time
to more critical tasks.
Multiprocessing. If the system running your program has multiple processors, you can improve performance
by dividing the work into several threads and letting them run simultaneously on separate processors.

Note: Not all operating systems implement true multi-processing, even when it is supported by the underlying
hardware. For example, Windows 9x only simulates multiprocessing, even if the underlying hardware
supports it.

The following topics discuss support for threads:

Defining Thread Objects
Coordinating Threads
Executing Thread Objects
Debugging Multi-threaded Applications

Defining Thread Objects
For most applications, you can use a thread object to represent an execution thread in your application. Thread
objects simplify writing multi-threaded applications by encapsulating the most commonly needed uses of threads.

1686

Note: Thread objects do not allow you to control the security attributes or stack size of your threads. If you need to
control these, you must use the BeginThread function. Even when using BeginThread, you can still benefit
from some of the thread synchronization objects and methods described in Coordinating Threads.

To use a thread object in your application
1 Create a new descendant of TThread, choose File New Other from the main menu.
2 In the New Items dialog box under Delphi Files, double-click Thread Object and enter a class name, such as

TMyThread.
3 Check the Named Thread check box and enter a thread name (VCL applications only).
4 Click OK, the Code Editor creates a new unit file to implement the thread.

For more information on naming threads, see Naming a Thread.

Note: Unlike most dialog boxes in the IDE that require a class name, the New Thread Object dialog box does not
automatically prepend a 'T' to the front of the class name you provide.

The automatically generated unit file contains the skeleton code for your new thread class. If you named your thread
TMyThread, it would look like the following:

[Delphi]
unit Unit2;
interface
uses
Classes;
type
TMyThread = class(TThread)
private
{ Private declarations }
protected
procedure Execute; override;
end;
implementation
{ TMyThread }
procedure TMyThread.Execute;
begin
{ Place thread code here }
end;
end.

[C++]
//---
#include <vcl.h>
#pragma hdrstop
#include "Unit2.h"
#pragma package(smart_init)
//---
__fastcall TMyThread::TMyThread(bool CreateSuspended): TThread(CreateSuspended)
{
}
//---
void __fastcall TMyThread::Execute()
{
// ---- Place thread code here ----

1687

}
//---

In the automatically generated unit file, you

Optionally, initialize the thread.
Write the thread function by filling in the Execute method.
Optionally, write clean-up code.

Initializing the Thread
If you want to write initialization code for your new thread class, you must override the Create method. Add a new
constructor to the declaration of your thread class and write the initialization code as its implementation. This is
where you can assign a default priority for your thread and indicate whether it should be freed automatically when
it finishes executing.

Assigning a default priority
Priority indicates how much preference the thread gets when the operating system schedules CPU time among all
the threads in your application. Use a high priority thread to handle time critical tasks, and a low priority thread to
perform other tasks. To indicate the priority of your thread object, set the Priority property.

If writing a Windows-only application, Priority values fall along a scale, as described in the following table:

Thread priorities
Value Priority

tpIdle The thread executes only when the system is idle. Windows won't interrupt other threads to execute a thread
with tpIdle priority.

tpLowest The thread's priority is two points below normal.

tpLower The thread's priority is one point below normal.

tpNormal The thread has normal priority.

tpHigher The thread's priority is one point above normal.

tpHighest The thread's priority is two points above normal.

tpTimeCritical The thread gets highest priority.

Warning: Boosting the thread priority of a CPU intensive operation may "starve" other threads in the application.
Only apply priority boosts to threads that spend most of their time waiting for external events.

The following code shows the constructor of a low-priority thread that performs background tasks which should not
interfere with the rest of the application's performance:

[Delphi]
constructor TMyThread.Create(CreateSuspended: Boolean);
begin
 inherited Create(CreateSuspended);
Priority := tpIdle;
end;

1688

[C++]
//---
__fastcall TMyThread::TMyThread(bool CreateSuspended): TThread(CreateSuspended)
{
Priority = tpIdle;
}
//---

Indicating when threads are freed
Usually, when threads finish their operation, they can simply be freed. In this case, it is easiest to let the thread object
free itself. To do this, set the FreeOnTerminate property to True.

There are times, however, when the termination of a thread must be coordinated with other threads. For example,
you may be waiting for one thread to return a value before performing an action in another thread. To do this, you
do not want to free the first thread until the second has received the return value. You can handle this situation by
setting FreeOnTerminate to False and then explicitly freeing the first thread from the second.

Writing the Thread Function
The Execute method is your thread function. You can think of it as a program that is launched by your application,
except that it shares the same process space. Writing the thread function is a little trickier than writing a separate
program because you must make sure that you don't overwrite memory that is used by other threads in your
application. On the other hand, because the thread shares the same process space with other threads, you can use
the shared memory to communicate between threads.

When implementing the Execute method, you can manage these issues by:

Using thread-local variables
Avoiding simultaneous access
Waiting for other threads
Checking for termination by other threads
Handling exceptions in the thread function

Using the Main VCL Thread
When you use objects from the class hierarchy, their properties and methods are not guaranteed to be thread-safe.
That is, accessing properties or executing methods may perform some actions that use memory which is not
protected from the actions of other threads. Because of this, a main thread is set aside to access VCL objects. This
is the thread that handles all Windows messages received by components in your application.

If all objects access their properties and execute their methods within this single thread, you need not worry about
your objects interfering with each other. To use the main thread, create a separate routine that performs the required
actions. Call this separate routine from within your thread's Synchronize method. For example:

[Delphi]
procedure TMyThread.PushTheButton;
begin
Button1.Click;
end;
...
procedure TMyThread.Execute;

1689

begin
...
Synchronize(PushTheButton);
...
end;

[C++]
void __fastcall TMyThread::PushTheButton(void)
{
Button1->Click();
}
void __fastcall TMyThread::Execute()
{
...
Synchronize((TThreadMethod)PushTheButton);
...
}

Synchronize waits for the main thread to enter the message loop and then executes the passed method.

Note: Because Synchronize uses the message loop, it does not work in console applications. You must use other
mechanisms, such as critical sections, to protect access to VCL objects in console applications.

You do not always need to use the main thread. Some objects are thread-aware. Omitting the use of the
Synchronize method when you know an object's methods are thread-safe will improve performance because you
don't need to wait for the VCL thread to enter its message loop. You do not need to use the Synchronize method for
the following objects:

Object Description

Data access component Data access components are thread-safe as follows: For BDE-enabled datasets, each thread must
have its own database session component. The one exception to this is when you are using Microsoft
Access drivers, which are built using a Microsoft library that is not thread-safe. For dbExpress, as
long as the vendor client library is thread-safe, the dbExpress components will be thread-safe. ADO
and InterBaseExpress components are thread-safe.

When using data access components, you must still wrap all calls that involve data-aware controls
in the Synchronize method. Thus, for example, you need to synchronize calls that link a data control
to a dataset by setting the DataSet property of the data source object, but you don't need to
synchronize to access the data in a field of the dataset.

For more information about using database sessions with threads in BDE-enabled applications, see
Managing multiple sessions.

Control Controls are not thread-safe.

Graphic Graphics objects are thread-safe. You do not need to use the main VCL thread to access TFont,
TPen, TBrush, TBitmap, TMetafile (VCL only), or TTIcon. Canvas objects can be used outside
the Synchronize method by locking them.

List While list objects are not thread-safe, you can use a thread-safe version, TThreadList, instead of
TList.

Call the CheckSynchronize routine periodically within the main thread of your application so that background threads
can synchronize their execution with the main thread. The best place to call CheckSynchronize is when the
application is idle (for example, from an OnIdle event handler). This ensures that it is safe to make method calls in
the background thread.

1690

Using Thread-local Variables
The thread function and any of the routines it calls have their own local variables, just like any other Dephi language
routines. These routines also can access any global variables. In fact, global variables provide a powerful mechanism
for communicating between threads.

Sometimes, however, you may want to use variables that are global to all the routines running in your thread, but
not shared with other instances of the same thread class. You can do this by declaring thread-local variables. Make
a variable thread-local by declaring it in a threadvar section (Delphi) or adding the __thread modifier (C++). For
example,

[Delphi]
threadvar
x : integer;

[C++]
int __thread x;

declares an integer type variable that is private to each thread in the application, but global within each thread.

The threadvar section can only be used for global variables. Pointer and Function variables can't be thread variables.
Types that use copy-on-write semantics, such as long strings don't work as thread variables either.

In C++, the following declarations require runtime initialization and are therefore illegal:

[C++]
int f();
int __thread x = f(); // illegal

Instantiation of a class with a user-defined constructor or destructor requires runtime initialization and is therefore
illegal:

[C++]
class X {
 X();
 ~X();
};
X __thread myclass; // illegal

Checking for Termination by Other Threads
Your thread object begins running when the Execute method is called (see Executing thread objects) and continues
until Execute finishes. This reflects the model that the thread performs a specific task, and then stops when it is
finished. Sometimes, however, an application needs a thread to execute until some external criterion is satisfied.

You can allow other threads to signal that it is time for your thread to finish executing by checking the Terminated
property. When another thread tries to terminate your thread, it calls the Terminate method. Terminate sets your
thread's Terminated property to True. It is up to your Execute method to implement the Terminate method by
checking and responding to the Terminated property. The following example shows one way to do this:

[Delphi]
procedure TMyThread.Execute;
begin
while not Terminated do

1691

PerformSomeTask;
end;

[C++]
void __fastcall TMyThread::Execute()
{
while (!Terminated)
PerformSomeTask();
}

Handling Exceptions in the Thread Function
The Execute method must catch all exceptions that occur in the thread. If you fail to catch an exception in your thread
function, your application can cause access violations. This may not be obvious when you are developing your
application, because the IDE catches the exception, but when you run your application outside of the debugger, the
exception will cause a runtime error and the application will stop running.

To catch the exceptions that occur inside your thread function, add a try...except block to the implementation of the
Execute method:

[Delphi]
procedure TMyThread.Execute;
begin
 try
 while not Terminated do
 PerformSomeTask;
 except
 { do something with exceptions }
 end;
end;

[C++]
void __fastcall TMyThread::Execute()
{
 try
 {
 while (!Terminated)
 PerformSomeTask();
 }
 catch (...)
 {
 // do something with exceptions
 }
}

Writing Clean-up Code
You can centralize the code that cleans up when your thread finishes executing. Just before a thread shuts down,
an OnTerminate event occurs. Put any clean-up code in the OnTerminate event handler to ensure that it is always
executed, no matter what execution path the Execute method follows.

The OnTerminate event handler is not run as part of your thread. Instead, it is run in the context of the main VCL
thread of your application. This has two implications:

1692

You can't use any thread-local variables in an OnTerminate event handler (unless you want the main VCL thread
values).
You can safely access any objects from the OnTerminate event handler without worrying about clashing with
other threads.

Coordinating Threads
When writing the code that runs when your thread is executed, you must consider the behavior of other threads that
may be executing simultaneously. In particular, care must be taken to avoid two threads trying to use the same global
object or variable at the same time. In addition, the code in one thread can depend on the results of tasks performed
by other threads.

Whether using thread objects or generating threads using BeginThread, the following topics describe techniques for
coordinating threads:

Avoiding Simultaneous Access
Waiting for Other Threads
Using the Main VCL Thread

When global memory does not need to be shared by multiple threads, consider using thread-local variables instead
of global variables. By using thread-local variables, your thread does not need to wait for or lock out any other threads.

Avoiding Simultaneous Access
To avoid clashing with other threads when accessing global objects or variables, you may need to block the execution
of other threads until your thread code has finished an operation. Be careful not to block other execution threads
unnecessarily. Doing so can cause performance to degrade seriously and negate most of the advantages of using
multiple threads.

Three techniques prevent other threads from accessing the same memory as your thread:

Locking Objects
Using Critical Sections
Using a Multi-read Exclusive-write Synchronizer

Locking Objects
Some objects have built-in locking that prevents the execution of other threads from using that object instance.

For example, canvas objects (TCanvas and descendants) have a Lock method that prevents other threads from
accessing the canvas until the Unlock method is called.

VCL applications also include a thread-safe list object, TThreadList. Calling LockList returns the list object while also
blocking other execution threads from using the list until the UnlockList method is called. Calls to TCanvas.Lock or
TThreadList.LockList can be safely nested. The lock is not released until the last locking call is matched with a
corresponding unlock call in the same thread.

Using Critical Sections
If objects do not provide built-in locking, you can use a critical section. Critical sections work like gates that allow
only a single thread to enter at a time. To use a critical section, create a global instance of TCriticalSection.

1693

TCriticalSection has two methods, Acquire(which blocks other threads from executing the section) and Release
(which removes the block).

Each critical section is associated with the global memory you want to protect. Every thread that accesses that global
memory should first use the Acquire method to ensure that no other thread is using it. When finished, threads call
the Release method so that other threads can access the global memory by calling Acquire.

Warning: Critical sections only work if every thread uses them to access the associated global memory. Threads
that ignore the critical section and access the global memory without calling Acquire can introduce
problems of simultaneous access.

For example, consider an application that has a global critical section variable, LockXY, that blocks access to global
variables X and Y. Any thread that uses X or Y must surround that use with calls to the critical section such as the
following:

[Delphi]
LockXY.Acquire; { lock out other threads }
try
Y := sin(X);
finally
LockXY.Release;
end;

[C++]
pLockXY->Acquire(); // lock out other threads
try
{
Y = sin(X);
}
__finally
{
pLockXY->Release();
}

Using the Multi-read Exclusive-write Synchronizer
When you use critical sections to protect global memory, only one thread can use the memory at a time. This can
be more protection than you need, especially if you have an object or variable that must be read often but to which
you very seldom write. There is no danger in multiple threads reading the same memory simultaneously, as long as
no thread is writing to it.

When you have some global memory that is read often, but to which threads occasionally write, you can protect it
using TMultiReadExclusiveWriteSynchronizer. This object acts like a critical section, but allows multiple threads to
read the memory it protects as long as no thread is writing to it. Threads must have exclusive access to write to
memory protected by TMultiReadExclusiveWriteSynchronizer.

To use a multi-read exclusive-write synchronizer, create a global instance of
TMultiReadExclusiveWriteSynchronizer that is associated with the global memory you want to protect. Every thread
that reads from this memory must first call the BeginRead method. BeginRead ensures that no other thread is
currently writing to the memory. When a thread finishes reading the protected memory, it calls the EndRead method.
Any thread that writes to the protected memory must call BeginWrite first. BeginWrite ensures that no other thread
is currently reading or writing to the memory. When a thread finishes writing to the protected memory, it calls the
EndWrite method, so that threads waiting to read the memory can begin.

1694

Warning: Like critical sections, the multi-read exclusive-write synchronizer only works if every thread uses it to
access the associated global memory. Threads that ignore the synchronizer and access the global
memory without calling BeginRead or BeginWrite introduce problems of simultaneous access.

Other Techniques for Sharing Memory
When using VCL objects, use the main thread to execute your code. Using the main thread ensures that the object
does not indirectly access any memory that is also used by VCL objects in other threads. See Using the Main VCL
Thread for more information on the main thread.

If the global memory does not need to be shared by multiple threads, consider using thread-local variables instead
of global variables. By using thread-local variables, your thread does not need to wait for or lock out any other threads.
See Using Thread-local Variables for more information about thread-local variables.

Waiting for Other Threads
If your thread must wait for another thread to finish some task, you can tell your thread to temporarily suspend
execution. You can either

Wait for another thread to completely finish executing, or
Wait for a task to be completed.

Waiting for a Thread to Finish Executing
To wait for another thread to finish executing, use the WaitFor method of that other thread. WaitFor doesn't return
until the other thread terminates, either by finishing its own Execute method or by terminating due to an exception.
For example, the following code waits until another thread fills a thread list object before accessing the objects in
the list:

[Delphi]
if ListFillingThread.WaitFor then
begin
with ThreadList1.LockList do
begin
for I := 0 to Count - 1 do
ProcessItem(Items[I]);
end;
ThreadList1.UnlockList;
end;

[C++]
if (pListFillingThread->WaitFor())
{
 TList *pList = ThreadList1->LockList();
for (int i = 0; i < pList->Count; i++)
ProcessItem(pList->Items[i]);
ThreadList1->UnlockList();
}

In the previous example, the list items were only accessed when the WaitFor method indicated that the list was
successfully filled. This return value must be assigned by the Execute method of the thread that was waited for.
However, because threads that call WaitFor want to know the result of thread execution, not code that calls
Execute, the Execute method does not return any value. Instead, the Execute method sets the ReturnValue property.

1695

ReturnValue is then returned by the WaitFor method when it is called by other threads. Return values are integers.
Your application determines their meaning.

Waiting for a Task to Be Completed
Sometimes, you need to wait for a thread to finish some operation rather than waiting for a particular thread to
complete execution. To do this, use an event object. Event objects (TEvent) should be created with global scope so
that they can act like signals that are visible to all threads.

When a thread completes an operation that other threads depend on, it calls TEvent.SetEvent. SetEvent turns on
the signal, so any other thread that checks will know that the operation has completed. To turn off the signal, use
the ResetEvent method.

For example, consider a situation where you must wait for several threads to complete their execution rather than
a single thread. Because you don't know which thread will finish last, you can't simply use the WaitFor method of
one of the threads. Instead, you can have each thread increment a counter when it is finished, and have the last
thread signal that they are all done by setting an event.

The following code shows the end of the OnTerminate event handler for all of the threads that must complete.
CounterGuard is a global critical section object that prevents multiple threads from using the counter at the same
time. Counter is a global variable that counts the number of threads that have completed.

[Delphi]
procedure TDataModule.TaskThreadTerminate(Sender: TObject);
begin
...
CounterGuard.Acquire; { obtain a lock on the counter }
Dec(Counter); { decrement the global counter variable }
if Counter = 0 then
Event1.SetEvent; { signal if this is the last thread }
CounterGuard.Release; { release the lock on the counter }
...
end;

[C++]
void __fastcall TDataModule::TaskThreadTerminate(TObject *Sender)
{
...
CounterGuard->Acquire(); // lock the counter
if (--Counter == 0) // decrement the global counter
Event1->SetEvent(); // signal if this is the last thread
CounterGuard->Release(); // release the lock on the counter
}

The main thread initializes the Counter variable, launches the task threads, and waits for the signal that they are all
done by calling the WaitFor method. WaitFor waits for a specified time period for the signal to be set, and returns
one of the values from the following table:

WaitFor return values
Value Meaning

wrSignaled The signal of the event was set.

wrTimeout The specified time elapsed without the signal being set.

wrAbandoned The event object was destroyed before the time-out period elapsed.

wrError An error occurred while waiting.

1696

The following shows how the main thread launches the task threads and then resumes when they have all completed:

[Delphi]
Event1.ResetEvent; { clear the event before launching the threads }
for i := 1 to Counter do
TaskThread.Create(False); { create and launch task threads }
if Event1.WaitFor(20000) <> wrSignaled then
raise Exception;
{ now continue with the main thread. All task threads have finished }

[C++]
Event1->ResetEvent(); // clear the event before launching the threads
for (int i = 0; i < Counter; i++)
new TaskThread(false); // create and launch task threads
if (Event1->WaitFor(20000) != wrSignaled)
throw Exception;
// now continue with the main thread, all task threads have finished

Note: If you do not want to stop waiting for an event after a specified time period, pass the WaitFor method a
parameter value of INFINITE. Be careful when using INFINITE, because your thread will hang if the
anticipated signal is never received.

Executing Thread Objects
Once you have implemented a thread class by giving it an Execute method, you can use it in your application to
launch the code in the Execute method. To use a thread, first create an instance of the thread class. You can create
a thread instance that starts running immediately, or you can create your thread in a suspended state so that it only
begins when you call the Resume method. To create a thread so that it starts up immediately, set the constructor's
CreateSuspended parameter to False. For example, the following line creates a thread and starts its execution:

[Delphi]
SecondThread := TMyThread.Create(false); {create and run the thread }

[C++]
TMyThread *SecondThread = new TMyThread(false); // create and run the thread

Warning: Do not create too many threads in your application. The overhead in managing multiple threads can
impact performance. The recommended limit is 16 threads per process on single processor systems.
This limit assumes that most of those threads are waiting for external events. If all threads are active,
you will want to use fewer.

You can create multiple instances of the same thread type to execute parallel code. For example, you can launch a
new instance of a thread in response to some user action, allowing each thread to perform the expected response.

The following topics discuss how to use the threads in your application:

Overriding the Default Priority.
Starting and Stopping Threads

1697

Overriding the Default Priority
When the amount of CPU time the thread should receive is implicit in the thread's task, its priority is set in the
constructor. This is described in Initializing the thread. However, if the thread priority varies depending on when the
thread is executed, create the thread in a suspended state, set the priority, and then start the thread running:

[Delphi]
SecondThread := TMyThread.Create(True); { create but don't run }
SecondThread.Priority := tpLower; { set the priority lower than normal }
SecondThread.Resume; { now run the thread }

[C++]
TMyThread *SecondThread = new TMyThread(true); // create but don't run
SecondThread->Priority = tpLower; // set the priority lower than normal
SecondThread->Resume(); // now run the thread

Starting and Stopping Threads
A thread can be started and stopped any number of times before it finishes executing. To stop a thread temporarily,
call its Suspend method. When it is safe for the thread to resume, call its Resume method. Suspend increases an
internal counter, so you can nest calls to Suspend and Resume. The thread does not resume execution until all
suspensions have been matched by a call to Resume.

You can request that a thread end execution prematurely by calling the Terminate method. Terminate sets the
thread's Terminated property to True. If you have implemented the Execute method properly, it checks the
Terminated property periodically, and stops execution when Terminated is True.

Debugging Multi-threaded Applications
When debugging multi-threaded applications, it can be confusing trying to keep track of the status of all the threads
that are executing simultaneously, or even to determine which thread is executing when you stop at a breakpoint.
You can use the Thread Status box to help you keep track of and manipulate all the threads in your application. To
display the Thread status box, choose View Debug Windows Threads from the main menu.

When a debug event occurs (breakpoint, exception, paused), the thread status view indicates the status of each
thread. Right-click the Thread Status box to access commands that locate the corresponding source location or
make a different thread current. When a thread is marked as current, the next step or run operation is relative to that
thread.

The Thread Status box lists all your application’s execution threads by their thread ID. If you are using thread objects,
the thread ID is the value of the ThreadID property. If you are not using thread objects, the thread ID for each thread
is returned by the call to BeginThread.

Naming a Thread
Because it is difficult to tell which thread ID refers to which thread in the Thread Status box, you can name your
thread classes. When you are creating a thread class in the Thread Object dialog box, besides entering a class
name, also check the Named Thread check box, enter a thread name, and click OK.

Naming the thread class adds a method to your thread class called SetName. When the thread starts running, it
calls the SetName method first.

Note: You can name threads in VCL applications only.

1698

You can also:

Convert an unnamed thread to a named thread.
Assign separate names to similar threads.

Converting an Unnamed Thread to a Named Thread
You can convert an unnamed thread to a named thread. For example, if you have a thread class that was created
using Delphi 6 or earlier, convert it into a named thread.

To convert an unnamed thread to a named thread
1 Add the Windows unit to the uses clause of the unit your thread is declared in:

[Delphi]
//---
uses
Classes {$IFDEF MSWINDOWS} , Windows {$ENDIF};
//---

2 Add the SetName method to your thread class in the interface section:

[Delphi]
//---
type
TMyThread = class(TThread)
private
procedure SetName;
protected
procedure Execute; override;
end;
//---

[C++]
//---
void TMyThread::SetName()
{
THREADNAME_INFO info;
info.dwType = 0x1000;
info.szName = "MyThreadName";
info.dwThreadID = -1;
info.dwFlags = 0;
__try
{
RaiseException(0x406D1388, 0, sizeof(info)/sizeof(DWORD),(DWORD*)&info);
}
__except (EXCEPTION_CONTINUE_EXECUTION)
{
}
}
//---

3 Add the TThreadNameInfo record and SetName method in the implementation section:

1699

[Delphi]
//---
{$IFDEF MSWINDOWS}
type
TThreadNameInfo = record
FType: LongWord; // must be 0x1000
FName: PChar; // pointer to name (in user address space)
FThreadID: LongWord; // thread ID (-1 indicates caller thread)
FFlags: LongWord; // reserved for future use, must be zero
 end;
{$ENDIF}
{ TMyThread }
procedure TMyThread.SetName;
{$IFDEF MSWINDOWS}
var
ThreadNameInfo: TThreadNameInfo;
{$ENDIF}
begin
{$IFDEF MSWINDOWS}
ThreadNameInfo.FType := $1000;
ThreadNameInfo.FName := 'MyThreadName';
ThreadNameInfo.FThreadID := $FFFFFFFF;
ThreadNameInfo.FFlags := 0;
try
RaiseException($406D1388, 0, sizeof(ThreadNameInfo) div sizeof(LongWord),
@ThreadNameInfo);
 except
 end;
{$ENDIF}
end;
//---

Note: Set TThreadNameInfo to the name of your thread class.
The debugger sees the exception and looks up the thread name in the structure you pass in. When debugging,
the debugger displays the name of the thread in the Thread Status box's thread ID field.

4 Add a call to the new SetName method at the beginning of your thread's Execute method:

[Delphi]
//---
procedure TMyThread.Execute;
begin
SetName;
{ Place thread code here }
end;
//---

[C++]
//---
void __fastcall TMyThread::Execute()
{
SetName();
//---- Place existing Execute method code here ----
}
//---

1700

Assigning Separate Names to Similar Threads
All thread instances from the same thread class have the same name. However, you can assign a different name
for each thread instance at runtime using the following steps.

To assign separate names to similar threads
1 Add a ThreadName property to the thread class by adding the following in the class definition:

[Delphi]
property ThreadName: string read FName write FName;

[C++]
__property AnsiString ThreadName = {read=FName, write=FName};

2 In the SetName method, change where it says:

[Delphi]
ThreadNameInfo.FName := 'MyThreadName';

[C++]
info.szName = "MyThreadName";

to:

[Delphi]
ThreadNameInfo.FName := ThreadName;

[C++]
info.szName = ThreadName;

To create the thread object
1 Create it suspended. See Executing Thread Objects.
2 Assign a name, such as MyThread.ThreadName := 'SearchForFiles';
3 Resume the thread. See Starting and Stopping Threads.

1701

Exception handling

Exception Handling
Exceptions are exceptional conditions that require special handling. They include errors that occur at runtime, such
as divide by zero, and the exhaustion of free store. Exception handling provides a standard way of dealing with
errors, discovering both anticipated and unanticipated problems, and enables developers to recognize, track down,
and fix bugs.

When an error occurs, the program raises an exception, meaning it creates an exception object and rolls back the
stack to the first point it finds where you have code to handle the exception. The exception object usually contains
information about what happened. This allows another part of the program to diagnose the cause of the exception.

To make your applications robust, your code needs to recognize exceptions when they occur and respond to them.
If you don't specify a response, the application presents a message box describing the error. Your job, then, is to
recognize places where errors might happen, and define responses, particularly in areas where errors could cause
the loss of data or system resources.

When you create a response to an exception, you do so on blocks of code. When you have a series of statements
that all require the same kind of response to errors, you can group them into a block and define error responses that
apply to the whole block.

Blocks with specific responses to exceptions are called protected blocks because they can guard against errors that
might otherwise either terminate the application or damage data.

See Defining Protected Blocks for details on how to create and handle exceptions.

For information on using exceptions with the routines and classes in VCL, see Handling Exceptions in VCL
Applications.

Defining Protected Blocks
To prepare for exceptions, you place statements that might raise them in a try block. If one of these statements does
raise an exception, control is transferred to an exception handler that handles that type of exception, then leaves
the block. The exception handler is said to catch the exception and specifies the actions to take. By using try blocks
and exception handlers, you can move error checking and error handling out of the main flow of your algorithms,
resulting in simpler, more readable code.

You start a protected block using the keyword try. The exception handler must immediately follow the try block. It
is introduced by the keyword except, and signals the end of the try block. This syntax is illustrated in the following
code. If the SetFieldValue method fails and raises an EIntegerRange exception, execution jumps to the exception-
handling part, which displays an error message. Execution resumes outside the block.

1702

[Delphi]
try
 SetFieldValue(dataField, userValue);
except
 on E: EIntegerRange do
 ShowMessage(Format('Expected value between %d and %d, but got %d',
 E.Min, E.Max, E.Value));
end;
 . { execution resumes here, outside the protected block }
 .
 .

[C++]
try
{
SetFieldValue(dataField, userValue);
}
catch (EIntegerRange &E)
{
 ShowMessage(Format("Expected value between %d and %d, but got %d\n",
 E.Min, E.Max, E.Value));
}
// execution resumes here, outside the protected block

You must have an exception handling block (described in Writing Exception Handlers) or a finally block (described
in Writing Finally Blocks) immediately after the try block. An exception handling block should include a handler for
each exception that the statements in the try block can generate.

Writing the Try Block
The first part of a protected block is the try block. The try block contains code that can potentially raise an exception.
The exception can be raised either directly in the try block, or by code that is called by statements in the try block.
That is, if code in a try block calls a routine that doesn't define its own exception handler, then any exceptions raised
inside that routine cause execution to pass to the exception-handler associated with the try block. Keep in mind that
exceptions don't come just from your code. A call to an RTL routine or another component in your application can
also raise an exception.

The following example demonstrates catching an exception thrown from a TFileStream object.

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
var
 fileStream: TFileStream;
begin
 try
 (* Attempt to open a non-existant file *)
 fileStream := TFileStream.Create('NOT_THERE.FILE', fmOpenRead);
 (* Process the file contents... *)
 fileStream.Free;
 except
 on EFOpenError do ShowMessage('EFOpenError Raised');
 else
 ShowMessage('Exception Raised');
 end;
end;

1703

[C++]
void __fastcall TForm1::Button1Click(TObject *Sender)
{
 TFileStream *fileStream;
 try {
// Attempt to open a non-existent file
 fileStream = new TFileStream("NOT_THERE.FILE", fmOpenRead);
// Process the file contents...
 delete fileStream;
 }
 catch(EFOpenError &e) {
 ShowMessage("EFOpenError Raised");
 }
 catch(...) {
 ShowMessage("Exception Raised");
 }
}

Using a try block makes your code easier to read. Instead of sprinkling error-handling code throughout your program,
you isolate it in exception handlers so that the flow of your algorithms is more obvious.

This is especially true when performing complex calculations involving hundreds of steps, any one of which could
fail if one of dozens of inputs were invalid. By using exceptions, you can spell out the normal expression of your
algorithm, then provide for those exceptional cases when it doesn't apply. Without exceptions, you have to test every
time to make sure you can proceed with each step in the calculation.

For details on raising exceptions from the code in your try block, see Raising an Exception.

Raising an Exception
To indicate a disruptive error condition, you can raise an exception by constructing an instance of an exception object
that describes the error condition and calling the reserved word raise.

To raise an exception, call the reserved word raise, followed by an instance of an exception object. This establishes
the exception as coming from a particular address. When an exception handler actually handles the exception, it
finishes by destroying the exception instance, so you never need to do that yourself.

For example, given the following declaration,

type
 EPasswordInvalid = class(Exception);

you can raise a "password invalid" exception at any time by calling raise with an instance of EPasswordInvalid, like
this:

if Password <> CorrectPassword then
 raise EPasswordInvalid.Create('Incorrect password entered');

Raising an exception sets the ErrorAddr variable in the System unit to the address where the application raised the
exception. You can refer to ErrorAddr in your exception handlers, for example, to notify the user where the error
occurred. You can also specify a value in the raise clause that appears in ErrorAddr when an exception occurs.

Warning: Do not assign a value to ErrorAddr yourself. It is intended as read-only.

To specify an error address for an exception, add the reserved word at after the exception instance, followed by an
address expression such as an identifier.

1704

Writing Exception Handlers
The exception handling block appears immediately after the try block. This block incudes one or more exception
handlers. An exception handler provides a specific response to a specific kind of exception. Handling an exception
clears the error condition and destroys the exception object, which allows the application to continue execution. You
typically define exception handlers to allow your applications to recover from errors and continue running. Types of
exceptions you might handle include attempts to open files that don't exist, writing to full disks, or calculations that
exceed legal bounds. Some of these, such as "File not found," are easy to correct and retry, while others, such as
running out of memory, can be more difficult for the application or the user to correct.

The application executes the statements in and exception handler only if an exception occurs during execution of
the statements in the preceding try block. When a statement in the try block raises an exception, execution
immediately jumps to the exception handler, where it steps through the specified exception-handling statements,
until it finds a handler that applies to the current exception.

Once the application locates an exception handler that handles the exception, it executes the statement, then
automatically destroys the exception object. Execution continues at the end of the current block.

The following topics provide details on writing exception handlers:

Exception-handling Statements
Handling Classes of Exceptions
Scope of Exception Handlers
Reraising Exceptions

Exception-handling Statements
The exception handling block starts with the except keyword and ends with the keyword end. These two keywords
are actually part of the same statement as the try block. That is, both the try block and the exception handling block
are considered part of a single try...except statement.

Inside the exception handling block, you include one or more exception handlers. An exception handler is a statement
of the form

on <type of exception> do <statement>;

For example, the following exception handling block includes multiple exception handlers for different exceptions
that can arise from an arithmetic computation:

try
{ calculation statements }
except
 on EZeroDivide do Value := MAXINT;
 on EIntOverflow do Value := 0;
 on EIntUnderflow do Value := 0;
end;

Much of the time, as in the previous example, the exception handler doesn't need any information about an exception
other than its type, so the statements following on..do are specific only to the type of exception. In some cases,
however, you might need some of the information contained in the exception instance.

To read specific information about an exception instance in an exception handler, you use a special variation of on..
do that gives you access to the exception instance. The special form requires that you provide a temporary variable
to hold the instance. For example:

1705

on E: EIntegerRange do
 ShowMessage(Format('Expected value between %d and %d', E.Min, E.Max));

The temporary variable (E in this example) is of the type specified after the colon (EIntegerRange in this example).
You can use the as operator to typecast the exception into a more specific type if needed.

Warning: Never destroy the temporary exception object. Handling an exception automatically destroys the
exception object. If you destroy the object yourself, the application attempts to destroy the object again,
generating an access violation.

You can provide a single default exception handler to handle any exceptions for which you haven't provided specific
handlers. To do that, add an else part to the exception-handling block:

try
{ statements }
except
 on ESomething do
 { specific exception-handling code };
 else
 { default exception-handling code };
end;

Adding default exception handling to a block guarantees that the block handles every exception in some way, thereby
overriding all handling from any containing block.

Warning: It is not advisable to use this all-encompassing default exception handler. The else clause handles all
exceptions, including those you know nothing about. In general, your code should handle only exceptions
you actually know how to handle. If you want to handle cleanup and leave the exception handling to code
that has more information about the exception and how to handle it, then you can do so using a finally
block. For details about finally blocks, see Writing Finally Blocks.

Handling Classes of Exceptions
Exceptions are always represented by classes. As such, you usually work with a hierarchy of exception classes. For
example, VCL defines the ERangeError exception as a descendant of EIntError.

When you provide an exception handler for a base exception class, it catches not only direct instances of that class,
but instances of any of its descendants as well. For example, the following exception handler handles all integer
math exceptions, including ERangeError, EDivByZero, and EIntOverflow:

[Delphi]
try
{ statements that perform integer math operations }
except
 on EIntError do { special handling for integer math errors };
end;

[C++]
try
{
 // statements that perform integer math operations
}
catch (EIntError &E)
{

1706

 // special handling for integer math errors
}

You can combine error handlers for the base class with specific handlers for more specific (derived) exceptions. You
do this by placing the catch statements in the order that you want them to be searched when an exception is thrown.
For example, this block provides special handling for range errors, and other handling for all other integer math errors:

[Delphi]
try
{ statements performing integer math }
except
 on ERangeError do { out-of-range handling };
 on EIntError do { handling for other integer math errors };
end;

[C++]
try
{
 // statements performing integer math
}
catch (const ERangeError &rangeErr)
{
 // out-of-range handling
}
catch (const EIntError &intErr)
{
 // handling for other integer math errors
}

Note that if the handler for EIntError came before the handler for ERangeError, execution would never reach the
specific handler for ERangeError.

Scope of Exception Handlers
You do not need to provide handlers for every kind of exception in every block. You only need handlers for exceptions
that you want to handle specially within a particular block.

If a block does not handle a particular exception, execution leaves that block and returns to the block that contains
it (or returns to the code that called the block), with the exception still raised. This process repeats with increasingly
broad scope until either execution reaches the outermost scope of the application or a block at some level handles
the exception.

Thus, you can nest your exception handling code. That is, you can use nested blocks to define local handling for
specific exceptions that overrides the handling in the surrounding block. For example:

[Delphi]
try
{ statements }
 try
{ special statements }
 except
 on ESomething do
 begin
{ handling for only the special statements }
 end;
 end;
 { more statements }

1707

except
 on ESomething do
 begin
 {handling for statements and more statements, but not special statements}
 end;
end;

[C++]
try
{
 // statements
 try
 {
 // special statements
 }
 catch (const ESomething &E)
 {
 // handling for only the special statements;
 }
 // more statements
}
catch (const ESomething &E)
{
 // handling for statements and more statements, but not special statements
}

Note: This type of nesting is not limited to exception-handling blocks. You can also use it with finally blocks
(described in Writing Finally Blocks) or a mix of exception-handling and finally blocks.

Reraising Exceptions
Sometimes when you handle an exception locally, you want to augment the handling in the enclosing block, rather
than replace it. Of course, when your local handler finishes its handling, it destroys the exception instance, so the
enclosing block's handler never gets to act. You can, however, prevent the handler from destroying the exception,
giving the enclosing handler a chance to respond. You do this by using the raise command with no arguments. This
is called reraising or rethrowing the exception. The following example illustrates this technique:

[Delphi]
try
{ statements }
 try
{ special statements }
 except
 on ESomething do
 begin
{ handling for only the special statements }
 raise;{ reraise the exception }
 end;
 end;
except
 on ESomething do ...;{ handling you want in all cases }
end;

[C++]
try

1708

{
 // statements
 try
 {
 // special statements
 }
 catch (const ESomething &E)
 {
 // handling for only the special statements;
 }
}
catch (const ESomething &E)
{
 // handling you want in all cases
}

If code in the statements part raises an ESomething exception, only the handler in the outer exception-handling
block executes. However, if code in the special statements part raises ESomething, the handling in the inner
exception-handling block executes, followed by the more general handling in the outer exception-handling block. By
reraising exceptions, you can easily provide special handling for exceptions in special cases without losing (or
duplicating) the existing handlers.

If the handler wants to throw a different exception, it can use the raise or throw statement in the normal way, as
described in Raising an Exception.

Writing finally Blocks
An exception handler is code that handles a specific exception or exceptions that occur within a protected block of
code. However, there are times when you do not need to handle the exception, but you do have code that you want
to execute after the protected block, even if an exception occurs. Typically, such code handles cleanup issues, such
as freeing resources that were allocated before the protected block.

By using finally blocks, you can ensure that if your application allocates resources, it also releases them, even if an
exception occurs. Thus, if your application allocates memory, you can make sure it eventually releases the memory,
too. If it opens a file, you can make sure it closes the file later. Under normal circumstances, you can ensure that an
application frees allocated resources by including code for both allocating and freeing. When exceptions occur,
however, you need to ensure that the application still executes the resource-freeing code.

Some common resources that you should always be sure to release are:

Files
Memory
Windows resources or widget library resources (Qt objects)
Objects (instances of classes in your application)

The following event handler illustrates how an exception can prevent an application from freeing memory that it
allocates:

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
var
APointer: Pointer;
AnInteger, ADividend: Integer;
begin
 ADividend := 0;
 GetMem(APointer, 1024);{ allocate 1K of memory }
 AnInteger := 10 div ADividend;{ this generates an exception }

1709

 FreeMem(APointer, 1024);{ this never gets called because of the exception}
end;

[C++]
void __fastcall TForm1::Button1Click(TObject* Sender)
{
 int ADividend = 0;
 void *ptr = malloc(1024); // allocate 1K of memory;
 int AnInteger = 10/ADividend; // this generates an exception
 free(ptr); // this never gets called because of the exception
}

Although most errors are not that obvious, the example illustrates an important point: When an exception occurs,
execution jumps out of the block, so the statement that frees the memory never gets called.

To ensure that the memory is freed, you can use a try block with a finally block.

For details on writing finally blocks, see Writing a Finally Block.

Writing a Finally Block
Finally blocks are introduced by the keyword finally. They are part of a try..finally statement, which has the following
form:

try
{ statements that may raise an exception}
finally
{ statements that are called even if there is an exception in the try block}
end;

In a try..finally statement, the application always executes any statements in the finally part, even if an exception
occurs in the try block. When any code in the try block (or any routine called by code in the try block) raises an
exception, execution halts at that point. Once an exception handler is found, execution jumps to the finally part, which
is called the cleanup code. After the finally part executes, the exception handler is called. If no exception occurs, the
cleanup code is executed in the normal order, after all the statements in the try block.

The following code illustrates an event handler that uses a finally block so that when it allocates memory and
generates an error, it still frees the allocated memory:

procedure TForm1.Button1Click(Sender: TObject);
var
APointer: Pointer;
AnInteger, ADividend: Integer;
begin
 ADividend := 0;
 GetMem(APointer, 1024);{ allocate 1K of memory }
 try
 AnInteger := 10 div ADividend;{ this generates an exception }
 finally
 FreeMem(APointer, 1024);{ execution resumes here, despite the exception }
 end;
end;

The statements in the finally block do not depend on an exception occurring. If no statement in the try part raises an
exception, execution continues through the finally block.

1710

Handling Exceptions in VCL Applications
If you use VCL components or the VCL runtime library in your applications, you need to understand the VCL
exception handling mechanism. Exceptions are built into many VCL classes and routines and they are thrown
automatically when something unexpected occurs. Typically, these exceptions indicate programming errors that
would otherwise generate a runtime error. A limited number of these classes is described in VCL Exception Classes.

The mechanics of handling component exceptions are no different than handling any other type of exception.

If you do not handle the exception, VCL handles it in a default manner. Typically, a message displays describing the
type of error that occurred. While debugging your application, you can look up the exception class in online Help.
The information provided will often help you to determine where the error occurred and its cause.

Certain classes of exceptions do not display an error message when caught by the default handlers. These are
described in Silent Exceptions.

A common source of errors in components is range errors in indexed properties. For example, if a list box has three
items in its list (0..2) and your application attempts to access item number 3, the list box raises a "List index out of
bounds" exception.

The following event handler contains an exception handler to notify the user of invalid index access in a list box:

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Add('a string');{ add a string to list box }
 ListBox1.Items.Add('another string');{ add another string... }
 ListBox1.Items.Add('still another string');{ ...and a third string }
 try
 Caption :=

ListBox1.Items[3]

;{ set form caption to fourth string }
 except
 on EStringListError do
 ShowMessage('List box contains fewer than four strings');
 end;
end;

[C++]
void __fastcall TForm1::Button1Click(TObject* Sender)
{
 ListBox1->Items->Add("a string"); // add a string to list box
 ListBox1->Items->Add("another string"); // add another string ...
 ListBox1->Items->Add("still another string"); // ... and a third string
 try
 Caption =
ListBox1->Items->Strings[3]
; // set form caption to 4th string
 catch (EStringListError &E)
 ShowMessage("List box contains fewer than four strings");
}

If you click the button once, the list box has only three strings, so accessing the fourth string raises an exception.
Clicking a second time adds more strings to the list, so it no longer causes the exception.

In addition to handling the exceptions that VCL raises, you can define and raise your own VCL-based exception
classes. This is discussed in Defining Your Own VCL Exceptions.

1711

VCL Exception Classes
VCL includes a large set of built-in exception classes for automatically handling divide-by-zero errors, file I/O errors,
invalid typecasts, and many other exception conditions. All VCL exception classes descend from one root object
called Exception. Exception provides a consistent interface for applications to handle exceptions. It provides the
string for the message that VCL exceptions display by default.

The following table lists a selection of the exception classes defined in VCL:

Selected exception classes
Exception class Description

EAbort Stops a sequence of events without displaying an error message dialog box.

EAccessViolation Checks for invalid memory access errors.

EBitsError Prevents invalid attempts to access a Boolean array.

EComponentError Signals an invalid attempt to register or rename a component.

EConvertError Indicates string or object conversion errors.

EDatabaseError Specifies a database access error.

EDBEditError Catches data incompatible with a specified mask.

EDivByZero Catches integer divide-by-zero errors.

EExternalException Signifies an unrecognized exception code.

EInOutError Represents a file I/O error.

EIntOverflow Specifies integer calculations whose results are too large for the allocated register.

EInvalidCast Checks for illegal typecasting.

EInvalidGraphic Indicates an attempt to work with an unrecognized graphic file format.

EInvalidOperation Occurs when invalid operations are attempted on a component.

EInvalidPointer Results from invalid pointer operations.

EMenuError Involves a problem with menu item.

EOleCtrlError Detects problems with linking to ActiveX controls.

EOleError Specifies OLE automation errors.

EPrinterError Signals a printing error.

EPropertyError Occurs on unsuccessful attempts to set the value of a property.

ERangeError Indicates an integer value that is too large for the declared type to which it is assigned.

ERegistryException Specifies registry errors.

EZeroDivide Catches floating-point divide-by-zero errors.

There are other times when you will need to create your own exception classes to handle unique situations. You
can declare a new exception class by making it a descendant of type Exception and creating as many constructors
as you need (or copy the constructors from an existing class in the SysUtils unit).

Default Exception Handling in VCL
If your application code does not catch and handle the exceptions that are raised, the exceptions are ultimately
caught and handled by the HandleException method of the global Application object. For all exceptions but EAbort,
HandleException calls the OnException event handler, if one exists. If there is no OnException event handler (and

1712

the exception is not EAbort), HandleException displays a message box with the error message associated with the
exception.

There are certain circumstances where HandleException does not get called. Exceptions that occur before or after
the execution of the application's Run method are not caught and handled by HandleException. When you write a
callback function or a library (.dll or shared object) with functions that can be called by an external application,
exceptions can escape the Application object. To prevent exceptions from escaping in this manner, you can insert
your own call to the HandleException method:

[Delphi]
try
{ special statements }
except
 on Exception do
 begin
 Application.HandleException(Self);{ call HandleException }
 end;
end;

[C++]
try
{
 // special statements
}
catch (Exception &E)
{
 Application->HandleException(this);
}

Warning: Do not call HandleException from a thread's exception handling code.

Silent Exceptions
VCL applications handle most exceptions that your code doesn't specifically handle by displaying a message box
that shows the message string from the exception object. You can also define "silent" exceptions that do not, by
default, cause the application to show the error message.

Silent exceptions are useful when you don't intend to report an exception to the user, but you want to abort an
operation. Aborting an operation is similar to using the Break or Exit procedures to break out of a block, but can
break out of several nested levels of blocks.

Silent exceptions all descend from the standard exception type EAbort. The default exception handler for VCL
applications displays the error-message dialog box for all exceptions that reach it except those descended from
EAbort.

Note: For console applications, an error-message dialog is displayed on any unhandled EAbort exceptions.

There is a shortcut for raising silent exceptions. Instead of manually constructing the object, you can call the Abort
procedure. Abort automatically raises an EAbort exception, which breaks out of the current operation without
displaying an error message.

Note: There is a distinction between Abort and abort. abort kills the application.

The following code shows a simple example of aborting an operation. On a form containing an empty list box and a
button, attach the following code to the button's OnClick event:

1713

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
var
I, J: Integer;
begin
 for I := 1 to 10 do{ loop ten times }
 for J := 1 to 10 do {loop ten times }
 begin
 ListBox1.Items.Add(IntToStr(I) + IntToStr(J));
 if I = 7 then Abort;{ abort after the 7th iteration of outer loop}
 end;
end;

[C++]
void __fastcall TForm1::Button1Click(TObject* Sender)
{
 for (int i = 1; i <= 10; i++) // loop ten times
 for (int j = 1; j <= 10; j++) // loop ten times
 {
 ListBox1->Items->Add(IntToStr(i) + IntToStr(j));
 if (i == 7)
 Abort(); // abort after 7th iteration of outer loop
 }
}

Note that in this example, Abort causes the flow of execution to break out of both the inner and outer loops, not just
the inner loop.

Defining Your Own VCL Exceptions
Because VCL exceptions are classes, defining a new kind of exception is as simple as declaring a new class type.
Although you can raise any object instance as an exception, the standard VCL exception handlers handle only
exceptions that descend from Exception.

New exception classes should be derived from Exception or one of the other standard exceptions. That way, if you
raise your new exception in a block of code that isn't protected by an exception handler specific to that exception,
one of the standard handlers will handle it instead.

For example, consider the following declaration:

[Delphi]
type
 EMyException = class(Exception);

[C++]
class EMyException : public Exception
{
};

If you raise EMyException but don't provide a specific handler for it, a handler for Exception (or a default exception
handler) will still handle it. Because the standard handling for Exception displays the name of the exception raised,
you can see that it is your new exception that is raised.

1714

Throwing An Exception (C++)
To raise an exception in C++, use the throw keyword. Objects in C++ can be thrown by value, or pointer:

// throw an object, to be caught by value or reference
throw EIntegerRange(0, 10, userValue);
// throw an object to be caught by pointer
throw new EIntegerRange(0, 10, userValue);

Tip: Throw exceptions by value and catch exceptions by reference to prevent memory leaks. If you catch an
exception by pointer, you may not be able to delete the exception object.

Note: To throw an exception by value, it must have a public copy constructor and public destructor.

In addition, the throw statement can throw other types as well. Although it is not recommended, C++ lets you throw
primitive types, such as integers or pointers:

throw 1; // throw an int
throw "catastrophic error"; // throw a char *

In most cases, you want to throw exception objects because they can provide a more complete description of an error.

Constructors In Exception Handling (C++)
Class constructors can throw exceptions if they cannot successfully construct an object. If a constructor throws an
exception, that object's destructor is not necessarily called. Destructors are called only for the base classes and for
those objects that were fully constructed inside the classes since entering the try block.

Note: This does not apply to VCL base classes.

Writing A finally Block
bcc32 includes extensions to the C++ language that let it use finally blocks as well. Like exception handlers, a finally
block must appear directly after the try block, but it is introduced by the__finally keyword instead of catch.

try
{
 // statements that may raise an exception
}
__finally
{
 // statements that are called even if there is an exception in the try block
}

The application always executes any statements in the finally part, even if an exception occurs in the try block. When
any code in the try block (or any routine called by code in the try block) raises an exception, execution halts at that
point. Once an exception handler is found, execution jumps to the finally part. After the finally part executes, the
exception handler is called. If no exception occurs, the code in the finally block executes in the normal order, after
all the statements in the try block.

The following code illustrates an event handler that uses a finally block so that when it allocates memory and
generates an error, it still frees the allocated memory:

1715

void __fastcall TForm1::Button1Click(TObject* Sender)
{
 int ADividend = 0;
 void *ptr = malloc(1024); // allocate 1K of memory;
 try
 int AnInteger = 10/ADividend; // this generates an exception
 __finally
 free(ptr); // this gets called anyway, despite the exception
}

The statements in the finally block do not depend on an exception occurring. If no statement in the try part raises an
exception, execution continues through the finally block.

Note: Traditional C++ code does not include support for finally block. Instead, it tends to use destructors to handle
the freeing of resources. However, when working with VCL, which is written in Delphi, finally blocks are an
important tool because of the way VCL objects must be allocated on the heap.

Tip: You can also use std::auto_ptr to ensure that allocated objects are deleted.

Unwinding Exceptions (C++)
When an exception is thrown, the runtime library takes the thrown object, gets the type of the object, and looks
upward in the call stack for a handler whose type matches the type of the thrown object. Once a handler is found,
the RTL unwinds the stack to the point of the handler, and executes the handler.

In the unwind process, the RTL calls destructors for all local objects in the stack frames between where the exception
was thrown and where it is caught. If a destructor causes an exception to be raised during stack unwinding and does
not handle it, terminate is called. Destructors are called by default, but you can switch off the default by using the
-xd compiler option.

Note: During the unwind process, the RTL does not call destructors for objects that are allocated on the heap rather
than the stack. This is why, for example, VCL applications use finally blocks to ensure that VCL objects, which
are always allocated on the heap, are properly freed. There is one exception to this rule, which is the use of
safe pointers.

Smart Pointers (C++)
If you have local variables that are pointers to objects and an exception is thrown, these pointers are not automatically
deleted. This is because there is no good way for the compiler to distinguish between a pointer to data that was
allocated for this function only and any other pointer. The class that you can use to ensure that objects allocated for
local use are destroyed in the even of an exception is auto_ptr. There is a special case in which memory is freed
for a pointer allocated in a function:

auto_ptr< TMyObject > pMyObject(new TMyObject);

In this example, if the constructor for TMyObject throws an exception, then the pointer to the object allocated for
TMYObject will be deleted by the RTL when it unwinds the exception. This is the only time that the compiler
automatically deletes a pointer value for you.

Exception Handling Options (C++)
The following exception handling options are available for bcc32:

1716

-x Enables C++ exception handling. Enabled by default.
-xd Enables destructor cleanup. Calls destructors for all automatically declared objects between the scope of the

catch and throw statements when an exception is thrown. Enabled by default.
-xp Enables the program to use the __ThrowFileName global to obtain the file where the exception occurred

and the __ThrowLineNumber global to access the line number from where the C++ exception was thrown.
Disabled by default.

1717

Working with packages and components

Working with Packages and Components: Overview
A package is a special dynamic-link library used by applications, the IDE, or both. Runtime packages provide
functionality when a user runs an application. Design-time packages are used to install components in the IDE and
to create special property editors for custom components. A single package can function at both design time and
runtime, and design-time packages frequently work by calling runtime packages. To distinguish them from other
DLLs, package libraries are stored in files that end with the .bpl (Borland package library) extension.

Like other runtime libraries, packages contain code that can be shared among applications. For example, the most
frequently used VCL components reside in a package called vcl . Each time you create a new default VCL application,
it automatically uses vcl. When you compile an application created this way, the application's executable image
contains only the code and data unique to it; the common code is in the runtime package called vcl90.bpl. A computer
with several package-enabled applications installed on it needs only a single copy of vcl90.bpl, which is shared by
all the applications and the IDE itself.

Several runtime packages encapsulate VCL components while several design-time packages manipulate
components in the IDE.

You can build applications with or without packages. However, if you want to add custom components to the IDE,
you must install them as design-time packages.

You can create your own runtime packages to share among applications. If you write Delphi components, you can
compile your components into design-time packages before installing them.

Why Use Packages?
Design-time packages simplify the tasks of distributing and installing custom components. Runtime packages, which
are optional, offer several advantages over conventional programming. By compiling reused code into a runtime
library, you can share it among applications. For example, all of your applications—including Delphi itself—can
access standard components through packages. Since the applications don't have separate copies of the component
library bound into their executables, the executables are much smaller, saving both system resources and hard disk
storage. Moreover, packages allow faster compilation because only code unique to the application is compiled with
each build.

Packages and Standard DLLs
Create a package when you want to make a custom component that's available through the IDE. Create a standard
DLL when you want to build a library that can be called from any application, regardless of the development tool
used to build the application.

1718

The following table lists the file types associated with packages:

Package files
File extension Contents

.bpf A source file required for a package.

bpi A Borland package import library. A .bpi is created for each package. The bpis for bpls is analogous to import
libraries for dlls. This file is passed to the linker by applications using the package to resolve references to
functions in the package. The base name for the bpi is the base name for the package source file.

bpk and bpkw The project options source file. This file is the XML portion of the package project. The ProjectName.bpk and
ProjectName.cpp combined are used to manage settings, options, and files used by the package project. .bpk
and .bpkw packages are identical, but use the .bpkw extension for packages that you want to use in cross-
platform applications.

bpl The runtime package. This file is a Windows .dll with special -specific features. The base name for the .bpl is
the base name of the .bpk or .bpkw source file.

cpp ProjectName.cpp contains the entry point for the package. Additionally, each component contained within the
package generally resides within a .cpp file.

h The header file or interface for the component. C omponentN ame.h is the companion to C omponentN ame.
cpp.

lib A static library, or collection of .objs , used in place of a .bpi when the application does not use runtime
packages. Generated only if the -Gl (Generate .lib file) linker option is selected.

obj A binary image for a unit file contained in a package. One .obj is created, when necessary, for each .cpp file.

Note: Packages share their global data with other modules in an application.

Runtime Packages
Runtime packages are deployed with your applications. They provide functionality when a user runs the application.

To run an application that uses packages, a computer must have both the application's executable file and all the
packages (.bpl files) that the application uses. The .bpl files must be on the system path for an application to use
them. When you deploy an application, you must make sure that users have correct versions of any required .bpls.

Loading packages in an application
Deciding which runtime packages to use
Custom packages

Loading Packages in an Application
You can dynamically load packages by either:

Choosing Project Options dialog box in the IDE; or
Using the LoadPackage function.

To load packages using the >Project>Options dialog box
1 Load or create a project in the IDE.
2 Choose Project Options.
3 Choose the Packages tab.

1719

4 Select the Build with Runtime Packages check box, and enter one or more package names in the edit box
underneath. Each package is loaded implicitly only when it is needed (that is, when you refer to an object defined
in one of the units in that package). (Runtime packages associated with installed design-time packages are
already listed in the edit box.)

5 To add a package to an existing list, click the Add button and enter the name of the new package in the Add
Runtime Package dialog. To browse from a list of available packages, click the Add button, then click the Browse
button next to the Package Name edit box in the Add Runtime Package dialog.
If you edit the Search Path edit box in the Add Runtime Package dialog, you can change the global Library Path.

You do not need to include file extensions with package names (or the version number representing the Delphi
release); that is, vcl90.bpl in a VCL application is written as vcl. If you type directly into the Runtime Package edit
box, be sure to separate multiple names with semicolons. For example:

rtl;vcl;vcldb;vclado;

vclbde;

Packages listed in the Runtime Packages edit box are automatically linked to your application when you compile.
Duplicate package names are ignored, and if the Build with runtime packages check box is unchecked, the
application is compiled without packages.

Runtime packages are selected for the current project only. To make the current choices into automatic defaults
for new projects, select the Defaults check box at the bottom of the dialog.

Note: When you create an application with packages, you must include the names of the original Delphi units in
the uses clause of your source files. For example, the source file for your main form might begin like this:

[Delphi]
unit MainForm;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs;

[C++]
#include "vcldb.h"

The units referenced in this VCL example are contained in the vcl and rtl packages. Nonetheless, you must keep
these references in the uses clause, even if you use vcl and rtl in your application, or you will get compiler errors.
In generated source files, the Form Designer adds these units to the uses clause automatically.

Loading Packages with the LoadPackage Function
You can also load a package at runtime by calling the LoadPackage function. LoadPackage loads the package
specified by its name parameter, checks for duplicate units, and calls the initialization blocks of all units contained
in the package. For example, the following code could be executed when a file is chosen in a file-selection dialog.

[Delphi]
with OpenDialog1 do
 if Execute then
 with PackageList.Items do
 AddObject(FileName, Pointer(LoadPackage(FileName)));

1720

[C++]
if (OpenDialog1->Execute())
 PackageList->Items->AddObject(OpenDialog1->FileName, (TObject *)LoadPackage(OpenDialog1-
>FileName));

To unload a package dynamically, call UnloadPackage. Be careful to destroy any instances of classes defined in
the package and to unregister classes that were registered by it.

Deciding Which Runtime Packages to Use
Several runtime packages, including rtl and vcl (VCL application) , supply basic language and component support.
The vcl (VCL) package contains the most commonly used components; the rtl package includes all the non-
component system functions and Windows interface elements. It does not include database or other special
components, which are available in separate packages.

To create a client/server database application that uses packages, you need several runtime packages, including
vcl, vcldb, rtl, and dbrtl (VCL) . If you want to use visual components in your application, you also need vclx (VCL) .
To use these packages, choose Project Options, select the Packages tab, and make sure the following list is
included in the Runtime Packages edit box. You need netclx for Web server applications, as well as baseclx and
probably visualclx.

vcl;rtl;vcldb;vclx; //For VCL applications

Note: In VCL applications, you don't have to manually include vcl and rtl, because they are referenced in the
Requires clause of vcldb. Your application compiles just the same whether or not vcl and rtl are included in
the Runtime Packages edit box.

Another way you can determine which packages are called by an application is to run it then review the event log
(choose View Debug Windows Event Log). The event log displays every module that is loaded including all
packages. The full package names are listed. So, for example, for vcl90.bpl , you would see a line similar to the
following in a VCL application:

Module Load: vcl90.bpl Has Debug Info. Base Address $400B0000. Process Project1.exe ($22C)

Custom Packages
A custom package is either a .bpl you code and compile yourself or an existing package from a third-party vendor.
To use a custom runtime package with an application, choose Project Options and add the name of the package
to the Runtime Packages edit box on the Packages page.

For example, suppose you have a statistical package called stats.bpl. To use it in an application, the line you enter
in the Runtime Packages edit box might look like this:

vcl;rtl;vcldb;stats //In VCL applications

If you create your own packages, add them to the list as needed.

Design-time Packages
Design-time packages are used to install components on the IDE's Tool palette and to create special property
editors for custom components. Which ones are installed depends on which edition of Delphi you are using and

1721

whether or not you have customized it. You can view a list of what packages are installed on your system by choosing
Component Installed .NET Components.

The design-time packages work by calling runtime packages, which they reference in their Requires clause. For
example, dclstd references vcl. The dclstd itself contains additional functionality that makes many of the standard
components available on the Tool palette.

In addition to preinstalled packages, you can install your own component packages, or component packages from
third-party developers, in the IDE. The dclusr design-time package is provided as a default container for new
components. See Installing Component Packages

Installing Component Packages
All components are installed in the IDE as packages. If you've written your own components, create and compile a
package that contains them. Your component source code must follow the model described in Overview of
component creation.

To install or uninstall your own components, or components from a third-party vendor
1 If you are installing a new package, copy or move the package files to a local directory. If the package is shipped

with .bpl, .dcp, and .dcu files, be sure to copy all of them.
The directory where you store the .dcp file—and the .dcu files, if they are included with the distribution—must be
in the Delphi Library Path.

If the package is shipped as a .dpc (package collection) file, only the one file needs to be copied; the .dpc file
contains the other files. (For more information about package collection files, see Package collection files.)

2 Choose Component Install Packages from the IDE menu, or choose Project Options and click the
Packages tab. A list of available packages appears in the Design packages list box.

To install a package in the IDE, select the check box next to it.
To uninstall a package, uncheck its check box.
To see a list of components included in an installed package, select the package and click Components.
To add a package to the list, click Add and browse in the Add Design Package dialog for the directory where
the .bpl file resides (see step 1). Select the .bpl or .dpc file and click Open. If you select a .dpc file, a new dialog
box appears to handle the extraction of the .bpl and other files from the package collection.
To remove a package from the list, select the package and click Remove.

3 Click OK.

The components in the package are installed on the Tool palette pages specified in the components'
RegisterComponents procedure, with the names they were assigned in the same procedure.

New projects are created with all available packages installed, unless you change the ddefault settings. To make
the current installation choices into the automatic default for new projects, check the Default check box at the bottom
of the Packages tab of the Project Options dialog box.

To remove components from the Tool palette without uninstalling a package, right-click the component to invoke
the context menu and choose Hide "<ComponentName>" Button.

Creating and Editing Packages
Creating a package involves specifying:

A name for the package.

1722

A list of other packages to be required by, or linked to, the new package.
A list of unit files to be contained by, or bound into, the package when it is compiled. The package is essentially
a wrapper for these source-code units . The Contains clause is where you put the source-code units for custom
components that you want to compile into a package.

Developer Studio 2006 generates a package source file (.dpk).

Creating a Package
Editing an Existing Package
Editing Package Source Files Manually
Understanding the Structure of a Package
Compiling packages

Creating a Package
Refer to Understanding the structure of a package for more information about the steps outlined here.

To create a package
1 Choose File New Other, select the Package icon under Delphi Projects, and click OK. The generated

package appears in the Project Manager. The Project Manager displays a Requires node and a Contains node
for the new package.

2 To add a unit to the contains clause, right-click the contains node in the Project Manager and select Add. In
the Add Unit page, type a .pas file name in the Unit file name edit box, or click Browse to browse for the file, and
then click OK. The unit you've selected appears under the Contains node in the Project Manager. You can add
additional units by repeating this step.

3 To add a package to the requires clause, right-click the requires node in the Project Manager and select Add
Reference. In the Requires page, type a .dcp file name in the Package name edit box, or click Browse to browse
for the file, and then click OK. The package you've selected appears under the Requires node in the Project
Manager. You can add additional packages by repeating this step.

4 In the Project Manager, right-click your package and select Compile.

Editing an Existing Package

To edit an existing package:
1 Choose File Open (or File Reopen) and select a dpk file.
2 In the Project Manager, select one of the packages in the Requires node, right-click, and choose Open.

The Project Options dialog has a Default check box in the lower left corner. If you click OK when this box is checked,
the options you've chosen are saved as default settings for new projects. To restore the original defaults, delete or
rename the defproj.dof file.

Understanding the Structure of a Package
Packages include the following parts:

1723

Package name
Requires clause
Contains clause

Naming packages
Package names must be unique within a project. If you name a package Stats, Developer Studio 2006 generates a
source file for it called Stats.dpk; the compiler generates an executable and a binary image called Stats.bpl and
Stats.dcp, respectively. Use Stats to refer to the package in the requires clause of another package, or when using
the package in an application.

Requires clause
The requires clause specifies other, external packages that are used by the current package. An external package
included in the requires clause is automatically linked at compile time into any application that uses both the current
package and one of the units contained in the external package.

If the unit files contained in your package make references to other packaged units, the other packages should
appear in your package's requires clause or you should add them. If the other packages are omitted from the
requires clause, the compiler will import them into your package 'implicitly contained units.'

Note: Most packages that you create require rtl. If using VCL components, you'll also need to include the vcl
package.

Avoiding circular package references
Packages cannot contain circular references in their requires clause. This means that:

A package cannot reference itself in its own requires clause.
A chain of references must terminate without rereferencing any package in the chain. If package A requires
package B, then package B cannot require package A; if package A requires package B and package B requires
package C, then package C cannot require package A.

Handling duplicate package references
Duplicate references in a package's requires clause—or the Runtime Packages edit box—are ignored by the
compiler. For programming clarity and readability, however, you should catch and remove duplicate package
references.

Contains clause
The contains clause identifies the unit files to be bound into the package. If you are writing your own package, put
your source code in pas files and include them in the contains clause.

Avoiding redundant source code uses
A package cannot appear in the containsclause of another package.

1724

All units included directly in a package's contains clause, or included indirectly in any of those units, are bound into
the package at compile time.

A unit cannot be contained (directly or indirectly) in more than one package used by the same application, including
the IDE. This means that if you create a package that contains one of the units in vcl (VCL) you won't be able to
install your package in the IDE. To use an already-packaged unit file in another package, put the first package in
the second package's requires clause.

Editing Package Source Files Manually
Package source files, like project files, are generated by Delphi from information you supply. Like project files, they
can also be edited manually. A package source file should be saved with the .dpk (Delphi package) extension to
avoid confusion with other files containing Del source code.

To open a package source file in the Code editor
1 Open the package in Developer Studio 2006.
2 Right-click the package in the Project Manager and choose View Source.

The package heading specifies the name for the package.
The requires clause lists other, external packages used by the current package. If a package does not contain
any units that use units in another package, then it doesn't need a requires clause.
The contains clause identifies the unit files to be compiled and bound into the package. All units used by
contained units which do not exist in required packages will also be bound into the package, although they won't
be listed in the contains clause (the compiler will give a warning).

For example, the following VCL code declares the vcldb package (in the source file vcldb90.bpl):

package MyPack;
{$R *.res}
 ...{compiler directives omitted}
requires
 rtl,
 vcl;
contains
 Db,
 NewComponent1 in 'NewComponent1.pas';
end.

Compiling Packages
You can compile a package from the IDE or from the command line.

To recompile a package by itself from the IDE
1 Choose File Open and select a package (.dpk or .dpkw).
2 Click Open.
3 When the package opens:

In the Project Manager, right-click the package and choose Compile.

1725

In the IDE, choose Project Build.

Note: Right-click the package project nodes for options to compile or build.

You can insert compiler directives into your package source code.

If you compile from the command line, you can use several package-specific switches.

Package-specific Compiler Directives
Weak Packaging
Using the Command-line Compiler and Linker
Package Files Created by a Successful Compilation

Package-specific Compiler Directives
The following table lists package-specific compiler directives that you can insert into your source code.

Package-specific compiler directives
Directive Purpose

#pragma package(smart_init) Assures that packaged units are initialized in the order determined by their
dependencies. (Included by default in package source file.)

#pragma package(smart_init, weak) Packages unit "weakly." See (Put directive in unit source file.)

Note: Including {$DENYPACKAGEUNIT ON} in your source code prevents the unit file from being packaged.
Including {$G-} or {$IMPORTEDDATA OFF} may prevent a package from being used in the same application
with other packages. Packages compiled with the {$DESIGNONLY ON} directive should not ordinarily be
used in applications, since they contain extra code required by the IDE. Other compiler directives may be
included, if appropriate, in package source code. See Compiler Directives for information on compiler
directives not discussed here.

See Package-specific Compiler Directives.

Refer to Creating Packages and DLLs for additional directives that can be used in all libraries.

Weak Packaging
The $WEAKPACKAGEUNIT directive affects the way a .dcu file is stored in a package's .dcp and .bpl files. (For
information about files generated by the compiler, see Package files created when compiling.) If
{$WEAKPACKAGEUNIT ON} appears in a unit file, the compiler omits the unit from bpls when possible, and creates
a non-packaged local copy of the unit when it is required by another application or package. A unit compiled with
this directive is said to be weakly packaged.

For example, suppose you've created a package called pack1 that contains only one unit, unit1. Suppose unit1 does
not use any additional units, but it makes calls to rare.dll. If you put the {$WEAKPACKAGEUNIT ON} directive in
unit1.pas (Delphi) or unit1.cpp (C++) when you compile your package, unit1 will not be included in pack1.bpl; you
will not have to distribute copies of rare.dll with pack1. However, unit1 will still be included in pack1.dcp. If unit1 is
referenced by another package or application that uses pack1, it will be copied from pack1.dcp and compiled directly
into the project.

Now suppose you add a second unit, unit2, to pack1. Suppose that unit2 uses unit1. This time, even if you compile
pack1 with {$WEAKPACKAGEUNIT ON} in unit1.pas, the compiler will include unit1 in pack1.bpl. But other
packages or applications that reference unit1 will use the (non-packaged) copy taken from pack1.dcp.

1726

Note: Unit files containing the {$WEAKPACKAGEUNIT ON} directive must not have global variables, initialization
sections, or finalization sections.

The {$WEAKPACKAGEUNIT ON} directive is an advanced feature intended for developers who distribute their
packages to other programmers. It can help you to avoid distribution of infrequently used DLLs, and to eliminate
conflicts among packages that may depend on the same external library.

For example, the PenWin unit references PenWin.dll. Most projects don't use PenWin, and most computers don't
have PenWin.dll installed on them. For this reason, the PenWin unit is weakly packaged in vcl. When you compile
a project that uses PenWin and the vcl package, PenWin is copied from vcl70.dcp and bound directly into your
project; the resulting executable is statically linked to PenWin.dll.

If PenWin were not weakly packaged, two problems would arise. First, vcl itself would be statically linked to PenWin.
dll, and so you could not load it on any computer which didn't have PenWin.dll installed. Second, if you tried to create
a package that contained PenWin, a compiler error would result because the PenWin unit would be contained in
both vcl and your package. Thus, without weak packaging, PenWin could not be included in standard distributions
of vcl.

Compiling and Linking from the Command Line
When you compile from the command line, you can use the package-specific switches listed in the following table.

Package-specific command-line compiler switches
Switch Purpose

-$G- Disables creation of imported data references. Using this switch increases memory-access efficiency, but
prevents packages compiled with it from referencing variables in other packages.

-LEpath Specifies the directory where the package file (.bpl) will be placed.

-LNpath Specifies the directory where the package file (.dcp) will be placed.

-LUpackage Use packages.

-Z Prevents a package from being implicitly recompiled later. Use when compiling packages that provide low-level
functionality, that change infrequently between builds, or whose source code will not be distributed.

Note: Using the -$G- switch may prevent a package from being used in the same application with other packages.
Other command-line options may be used, if appropriate, when compiling packages. See The Command-
line Compiler for information on command-line options not discussed here.

Package-specific command-line compiler and linker switches
Switch Purpose

tP Generates a project as a package (compiler switch).

-D "description" Saves the specified description with the package.

-Gb Generates the .bpl filename.

-Gi Saves the generated .bpi file. Included by default in package project files.

-Gpd Generates a design-time-only package.

-Gpr Generates a runtime-only package.

-Gl Generates a .lib file.

-Tpp Builds the project as a package. Included by default in package project files.

1727

Package Files Created by Compiling
To create a package, you compile a source file that has a .dpk extension. The base name of the .dpk file becomes
the base name of the files generated by the compiler. For example, if you compile a package source file called
traypak.dpk, the compiler creates a package called traypak.bpl.

<PROJECT value="Traypak.bpl"/>

A successfully compiled package includes .dcp, .dcu and bpl files. For a detailed description of these files, see
Packages and standard DLLs.

These files are generated by default in the directories specified in Library page of the Tools Options
Environment Options Delphi Options Library dialog. You can override the default settings by right-clicking
the package in the Project Manager and choosing Options to display the Project Options dialog; make any changes
on the Directories/Conditionals page.

Deploying Packages
You deploy packages much like you deploy other applications. The files you distribute with a deployed package may
vary. The bpl and any packages or dlls required by the bpl must be distributed.

Files deployed with a package
File Description

ComponentName.h Allows end users access to the class interfaces.

ComponentName.cpp Allows end users access to the component source.

.bpi, .obj, and .lib Allows end users to link applications.

For general deployment information, refer to Deploying applications.

Deploying applications that use packages
When distributing an application that uses runtime packages, make sure that your users have the application's .exe
file as well as all the library (.bpl or .dll) files that the application calls. If the library files are in a different directory
from the .exe file, they must be accessible through the user's Path. You may want to follow the convention of putting
library files in the Windows\System directory. If you use InstallShield Express, your installation script can check the
user's system for any packages it requires before blindly reinstalling them.

Distributing packages to other developers
If you distribute runtime or design-time packages to other Delphi developers, be sure to supply both .dcp and .bpl
files. You will probably want to include .dcu files as well.

Package Collection Files
Package collections (.dpc files) offer a convenient way to distribute packages to other developers. Each package
collection contains one or more packages, including bpls and any additional files you want to distribute with them.
When a package collection is selected for IDE installation, its constituent files are automatically extracted from their .
pce container; the Installation dialog box offers a choice of installing all packages in the collection or installing
packages selectively.

1728

To create package collection files
1 Choose Tools Package Collection Editor to open the Package Collection editor.
2 Either choose Edit Add Package or click the Add a package button, then select a bpl in the Select Package

dialog and click Open. To add more bpls to the collection, click the Add a package button again. A tree diagram
on the left side of the Package editor displays the bpls as you add them. To remove a package, select it and
either choose Edit Remove Package or click the Remove the selected package button.

3 Select the Collection node at the top of the tree diagram. On the right side of the Package Collection editor, two
fields appear:

In the Author/Vendor Name edit box, you can enter optional information about your package collection that
appear in the Installation dialog when users install packages.
Under Directory list, list the default directories where you want the files in your package collection to be installed.
Use the Add, Edit, and Delete buttons to edit this list. For example, suppose you want all source code files to
be copied to the same directory. In this case, you might enter Source as a Directory name with C:\MyPackage
\Source as the Suggested path. The Installation dialog box will display C:\MyPackage\Source as the suggested
path for the directory.

4 In addition to bpls, your package collection can contain .dcp, .dcu, and .pas (unit) files, documentation, and any
other files you want to include with the distribution. Ancillary files are placed in file groups associated with specific
packages (bpls); the files in a group are installed only when their associated bpl is installed. To place ancillary
files in your package collection, select a bpl in the tree diagram and click the Add a file group button; type a name
for the file group. Add more file groups, if desired, in the same way. When you select a file group, new fields will
appear on the right in the Package Collection editor.

In the Install Directory list box, select the directory where you want files in this group to be installed. The drop-
down list includes the directories you entered under Directory list in step 3, above.
Check the Optional Group check box if you want installation of the files in this group to be optional.
Under Include Files, list the files you want to include in this group. Use the Add, Delete, and Auto buttons to edit
the list. The Auto button allows you to select all files with specified extensions that are listed in the contains
clause of the package; the Package Collection editor uses the global Library Path to search for these files.

5 You can select installation directories for the packages listed in the requires clause of any package in your
collection. When you select a bpl in the tree diagram, four new fields appear on the right side of the Package
Collection editor:

In the Required Executables list box, select the directory where you want the .bpl files for packages listed in the
requires clause to be installed. (The drop-down list includes the directories you entered under Directory list in
step 3, above.) The Package Collection editor searches for these files using Delphi's global Library Path and
lists them under Required Executable Files.
In the Required Libraries list box, select the directory where you want the .dcp files for packages listed in the
requires clause to be installed. (The drop-down list includes the directories you entered under Directory List in
step 3, above.) The Package Collection editor searches for these files using the global Library Path and lists
them under Required Library Files.

6 To save your package collection source file, choose File Save. Package collection source files should be
saved with the .pce extension.

7 To build your package collection, click the Compile button. The Package Collection editor generates a .dpc file
with the same name as your source (.pce) file. If you have not yet saved the source file, the editor queries you
for a file name before compiling.

To edit or recompile an existing .pce file, select File Open in the Package Collection editor and locate the file you
want to work with.

1729

Creating international applications

Creating International Applications: Overview
This topic discusses guidelines for writing applications that you plan to distribute to an international market. By
planning ahead, you can reduce the amount of time and code necessary to make your application function in its
foreign market as well as in its domestic market.

The following topics are discussed in this section:

Internationalization and localization
Internationalizing applications
Localizing applications

Internationalization and Localization
To create an application that you can distribute to foreign markets, there are two major steps that need to be
performed:

Internationalization
Localization

If your edition includes the Translation Tools, you can use the them to manage localization.

Internationalization
Internationalization is the process of enabling your program to work in multiple locales. A locale is the user's
environment, which includes the cultural conventions of the target country as well as the language. Windows supports
many locales, each of which is described by a language and country pair.

Localization
Localization is the process of translating an application so that it functions in a specific locale. In addition to translating
the user interface, localization may include functionality customization. For example, a financial application may be
modified for the tax laws in different countries.

1730

Internationalizing Applications
You need to complete the following steps to create internationalized applications:

Enable your code to handle strings from international character sets.
Design your user interface to accommodate the changes that result from localization.
Isolate all resources that need to be localized.

Enabling Application Code
You must make sure that the code in your application can handle the strings it will encounter in the various target
locales. To do this, you must consider the following:

Character sets
OEM and ANSI character sets
Multibyte character sets
Wide characters
Locale-specific features

Character Sets
The Western editions (including English, French, and German) of Windows use the ANSI Latin-1 (1252) character
set. However, other editions of Windows use different character sets. For example, the Japanese version of Windows
uses the Shift-JIS character set (code page 932), which represents Japanese characters as multibyte character
codes.

There are generally three types of characters sets:

Single-byte
Multibyte
Wide characters

Windows and Linux both support single-byte and multibyte character sets as well as Unicode. With a single-byte
character set, each byte in a string represents one character. The ANSI character set used by many western
operating systems is a single-byte character set.

In a multibyte character set, some characters are represented by one byte and others by more than one byte. The
first byte of a multibyte character is called the lead byte. In general, the lower 128 characters of a multibyte character
set map to the 7-bit ASCII characters, and any byte whose ordinal value is greater than 127 is the lead byte of a
multibyte character. Only single-byte characters can contain the null value (#0). Multibyte character sets—especially
double-byte character sets (DBCS)—are widely used for Asian languages.

OEM and ANSI Character Sets
It is sometimes necessary to convert between the Windows character set (ANSI) and the character set specified by
the code page of the user's machine (called the OEM character set).

Multibyte Character Sets
The ideographic character sets used in Asia cannot use the simple 1:1 mapping between characters in the language
and the one byte (8-bit) char type. These languages have too many characters to be represented using the single-

1731

byte char. Instead, a multibyte string can contain one or more bytes per character. AnsiStrings can contain a mix of
single-byte and multibyte characters.

The lead byte of every multibyte character code is taken from a reserved range that depends on the specific character
set. The second and subsequent bytes can sometimes be the same as the character code for a separate one-byte
character, or it can fall in the range reserved for the first byte of multibyte characters. Thus, the only way to tell
whether a particular byte in a string represents a single character or is part of a multibyte character is to read the
string, starting at the beginning, parsing it into two or more byte characters when a lead byte from the reserved range
is encountered.

When writing code for Asian locales, you must be sure to handle all string manipulation using functions that are
enabled to parse strings into multibyte characters.

Delphi provides you with many of these runtime library functions, as listed in the following table:

Runtime library functions

AdjustLineBreaks AnsiStrLower ExtractFileDir

AnsiCompareFileName AnsiStrPos ExtractFileExt

AnsiExtractQuotedStr AnsiStrRScan ExtractFileName

AnsiLastChar AnsiStrScan ExtractFilePath

AnsiLowerCase AnsiStrUpper ExtractRelativePath

AnsiLowerCaseFileName AnsiUpperCase FileSearch

AnsiPos AnsiUpperCaseFileName IsDelimiter

AnsiQuotedStr ByteToCharIndex IsPathDelimiter

AnsiStrComp ByteToCharLen LastDelimiter

AnsiStrIComp ByteType StrByteType

AnsiStrLastChar ChangeFileExt StringReplace

AnsiStrLComp CharToByteIndex WrapText

AnsiStrLIComp CharToByteLen

Remember that the length of the strings in bytes does not necessarily correspond to the length of the string in
characters. Be careful not to truncate strings by cutting a multibyte character in half. Do not pass characters as a
parameter to a function or procedure, since the size of a character can't be known up front. Instead, always pass a
pointer to a character or a string.

Wide Characters
One approach to working with ideographic character sets is to convert all characters to a wide character encoding
scheme such as Unicode. Unicode characters and strings are also called wide characters and wide character strings.
In the Unicode character set, each character is represented by two bytes. Thus a Unicode string is a sequence not
of individual bytes but of two-byte words.

The first 256 Unicode characters map to the ANSI character set. The Windows operating system supports Unicode
(UCS-2). The Linux operating system supports UCS-4, a superset of UCS-2. Delphi supports UCS-2 on both
platforms. Because wide characters are two bytes instead of one, the character set can represent many more
different characters.

Using a wide character encoding scheme has the advantage that you can make many of the usual assumptions
about strings that do not work for MBCS systems. There is a direct relationship between the number of bytes in the
string and the number of characters in the string. You do not need to worry about cutting characters in half or
mistaking the second half of a character for the start of a different character.

1732

The biggest disadvantage of working with wide characters is that Windows supports a few wide character API
function calls. Because of this, the VCL components represent all string values as single byte or MBCS strings.
Translating between the wide character system and the MBCS system every time you set a string property or read
its value would require additional code and slow your application down. However, you may want to translate into
wide characters for some special string processing algorithms that need to take advantage of the 1:1 mapping
between characters and WideChars.

Including Bi-directional Functionality in Applications
Some languages do not follow the left to right reading order commonly found in western languages, but rather read
words right to left and numbers left to right. These languages are termed bi-directional (BiDi) because of this
separation. The most common bi-directional languages are Arabic and Hebrew, although other Middle East
languages are also bi-directional.

TApplication has two properties, BiDiKeyboard and NonBiDiKeyboard, that allow you to specify the keyboard layout.
In addition, the VCL supports bi-directional localization through the BiDiMode and ParentBiDiMode properties.

Note: Bi-directional properties are not available for cross-platform applications.

The BiDiMode property controls the reading order for the text, the placement of the vertical scrollbar, and whether
the alignment is changed. Controls that have a text property, such as Name, display the BiDiMode property on
the Object Inspector.

The BiDiMode property is a new enumerated type, TBiDiMode, with four states: bdLeftToRight, bdRightToLeft,
bdRightToLeftNoAlign, and bdRightToLeftReadingOnly.

bdLeftToRight
bdLeftToRight draws text using left to right reading order. The alignment and scroll bars are not changed. For
instance, when entering right to left text, such as Arabic or Hebrew, the cursor goes into push mode and the text is
entered right to left. Latin text, such as English or French, is entered left to right. bdLeftToRight is the default value.

bdRightToLeft
bdRightToLeft draws text using right to left reading order, the alignment is changed and the scroll bar is moved. Text
is entered as normal for right-to-left languages such as Arabic or Hebrew. When the keyboard is changed to a Latin
language, the cursor goes into push mode and the text is entered left to right.

bdRightToLeftNoAlign
bdRightToLeftNoAlign draws text using right to left reading order, the alignment is not changed, and the scroll bar
is moved.

bdRightToLeftReadingOnly
bdRightToLeftReadingOnly draws text using right to left reading order, and the alignment and scroll bars are not
changed.

ParentBiDiMode Property
ParentBiDiMode is a Boolean property. When True (the default) the control looks to its parent to determine what
BiDiMode to use. If the control is a TForm object, the form uses the BiDiMode setting from Application. If all the

1733

ParentBiDiMode properties are True, when you change Application's BiDiMode property, all forms and controls in
the project are updated with the new setting.

FlipChildren Method
The FlipChildren method allows you to flip the position of a container control's children. Container controls are
controls that can accept other controls, such as TForm, TPanel, and TGroupBox.FlipChildren has a single boolean
parameter, AllLevels. When False, only the immediate children of the container control are flipped. When True, all
the levels of children in the container control are flipped.

Delphi flips the controls by changing the Left property and the alignment of the control. If a control's left side is five
pixels from the left edge of its parent control, after it is flipped the edit control's right side is five pixels from the right
edge of the parent control. If the edit control is left aligned, calling FlipChildren will make the control right aligned.

To flip a control at design-time select Edit Flip Children and select either All or Selected, depending on whether
you want to flip all the controls, or just the children of the selected control. You can also flip a control by selecting
the control on the form, right-clicking, and selecting Flip Children from the context menu.

Note: Selecting an edit control and issuing a Flip Children|Selected command does nothing. This is because edit
controls are not containers.

Additional Methods
There are several other methods useful for developing applications for bi-directional users.

VCL methods that support BiDi
Method Description

OkToChangeFieldAlignment Used with database controls. Checks to see if the alignment of a control can be
changed.

DBUseRightToLeftAlignment A wrapper for database controls for checking alignment.

ChangeBiDiModeAlignment Changes the alignment parameter passed to it. No check is done for BiDiMode setting,
it just converts left alignment into right alignment and vice versa, leaving center-
aligned controls alone.

IsRightToLeft Returns True if any of the right to left options are selected. If it returns False the control
is in left to right mode.

UseRightToLeftReading Returns True if the control is using right to left reading.

UseRightToLeftAlignment Returns True if the control is using right to left alignment. It can be overridden for
customization.

UseRightToLeftScrollBar Returns True if the control is using a left scroll bar.

DrawTextBiDiModeFlags Returns the correct draw text flags for the BiDiMode of the control.

DrawTextBiDiModeFlagsReadingOnly Returns the correct draw text flags for the BiDiMode of the control, limiting the flag to
its reading order.

AddBiDiModeExStyle Adds the appropriate ExStyle flags to the control that is being created.

Locale-specific Features
You can add extra features to your application for specific locales. In particular, for Asian language environments,
you may want your application to control the input method editor (IME) that is used to convert the keystrokes typed
by the user into character strings.

1734

Controls offer support in programming the IME. Most windowed controls that work directly with text input have an
ImeName property that allows you to specify a particular IME that should be used when the control has input focus.
They also provide an ImeMode property that specifies how the IME should convert keyboard input. ImeName
introduces several protected methods that you can use to control the IME from classes you define. In addition, the
global Screen variable provides information about the IMEs available on the user's system.

The global Screen variable also provides information about the keyboard mapping installed on the user's system.
You can use this to obtain locale-specific information about the environment in which your application is running.

The IME is available in VCL applications only.

Designing the User Interface
When creating an application for several foreign markets, it is important to design your user interface so that it can
accommodate the changes that occur during translation.

The following topics are discussed in this section:

Text
Graphic images
Formats and sort order
Keyboard mappings

Text
All text that appears in the user interface must be translated. English text is almost always shorter than its translations.
Design the elements of your user interface that display text so that there is room for the text strings to grow. Create
dialogs, menus, status bars, and other user interface elements that display text so that they can easily display longer
strings. Avoid abbreviations—they do not exist in languages that use ideographic characters.

Short strings tend to grow in translation more than long phrases. The following table provides a rough estimate of
how much expansion you should plan for given the length of your English strings:

Estimating string lengths
Length of English String (in characters) Expected Increase

1-5 100%

6-12 80%

13-20 60%

21-30 40%

31-50 20%

over 50 10%

Graphic Images
Ideally, you will want to use images that do not require translation. Most obviously, this means that graphic images
should not include text, which will always require translation. If you must include text in your images, it is a good idea
to use a label object with a transparent background over an image rather than including the text as part of the image.

There are other considerations when creating graphic images. Try to avoid images that are specific to a particular
culture. For example, mailboxes in different countries look very different from each other. Religious symbols are not

1735

appropriate if your application is intended for countries that have different dominant religions. Even color can have
different symbolic connotations in different cultures.

Formats and Sort Order
The date, time, number, and currency formats used in your application should be localized for the target locale. If
you use only the Windows formats, there is no need to translate formats, as these are taken from the user's Windows
Registry. However, if you specify any of your own format strings, be sure to declare them as resourced constants
so that they can be localized.

The order in which strings are sorted also varies from country to country. Many European languages include
diacritical marks that are sorted differently, depending on the locale. In addition, in some countries, two-character
combinations are treated as a single character in the sort order. For example, in Spanish, the combination ch is
sorted like a single unique letter between c and d. Sometimes a single character is sorted as if it were two separate
characters, such as the German eszett.

Keyboard Mappings
Be careful with key-combinations shortcut assignments. Not all the characters available on the US keyboard are
easily reproduced on all international keyboards. Where possible, use number keys and function keys for shortcuts,
as these are available on virtually all keyboards.

Isolating Resources
The most obvious task in localizing an application is translating the strings that appear in the user interface. To create
an application that can be translated without altering code everywhere, the strings in the user interface should be
isolated into a single module. Delphi automatically creates a .dfm file that contains the resources for your menus,
dialogs, and bitmaps.

In addition to these obvious user interface elements, you will need to isolate any strings, such as error messages,
that you present to the user. String resources are not included in the form file. You can isolate them by declaring
constants for them using the resourcestring keyword. For more information about resource string constants, see
the Delphi Language Guide. It is best to include all resource strings in a single, separate unit.

For information on using resource DLLs in your applications see Creating Resource DLLs and Using Resource DLLs.

Creating Resource DLLs
Isolating resources simplifies the translation process. The next level of resource separation is the creation of a
resource DLL. A resource DLL contains all the resources and only the resources for a program. Resource DLLs
allow you to create a program that supports many translations simply by swapping the resource DLL.

Use the Resource DLL wizard to create a resource DLL for your program. The Resource DLL wizard requires an
open, saved, compiled project. It will create an RC file that contains the string tables from used RC files and
resourcestring strings of the project, and generate a project for a resource only DLL that contains the relevant forms
and the created RES file. The RES file is compiled from the new RC file.

You should create a resource DLL for each translation you want to support. Each resource DLL should have a file
name extension specific to the target locale. The first two characters indicate the target language, and the third
character indicates the country of the locale. If you use the Resource DLL wizard, this is handled for you. Otherwise,
use the following code to obtain the locale code for the target translation:

[Delphi]
unit locales;
interface

1736

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls;
type
 TForm1 = class(TForm)
 Button1: TButton;
 LocaleList: TListBox;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 Form1: TForm1;
implementation
{$R *.DFM}
function GetLocaleData(ID: LCID; Flag: DWORD): string;
var
 BufSize: Integer;
begin
 BufSize := GetLocaleInfo(ID, Flag, nil, 0);
 SetLength(Result, BufSize);
 GetLocaleinfo(ID, Flag, PChar(Result), BufSize);
 SetLength(Result, BufSize - 1);
end;
{ Called for each supported locale. }
function LocalesCallback(Name: PChar): Bool; stdcall;
var
 LCID: Integer;
begin
 LCID := StrToInt('$' + Copy(Name, 5, 4));
 Form1.LocaleList.Items.Add(GetLocaleData(LCID, LOCALE_SLANGUAGE));
 Result := Bool(1);
end;
procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 with Languages do
 begin
 for I := 0 to Count - 1 do
 begin
 ListBox1.Items.Add(Name[I]);
 end;
 end;
end;

[C++]
/* This callback fills a listbox with the strings and their associated languages and
countries*/
BOOL __stdcall EnumLocalesProc(char* lpLocaleString)
{
AnsiString LocaleName, LanguageName, CountryName;
LCID lcid;
lcid = StrToInt("$" + AnsiString(lpLocaleString));
LocaleName = GetLocaleStr(lcid, LOCALE_SABBREVLANGNAME, "");
LanguageName = GetLocaleStr(lcid, LOCALE_SNATIVELANGNAME, "");
CountryName = GetLocaleStr(lcid, LOCALE_SNATIVECTRYNAME, "");
if (lstrlen(LocaleName.c_str()) > 0)

1737

Form1->ListBox1->Items->Add(LocaleName + ":" + LanguageName + "-" + CountryName);
return TRUE;
}
/* This call causes the callback to execute for every locale */
EnumSystemLocales((LOCALE_ENUMPROC)EnumLocalesProc, LCID_SUPPORTED);

Using Resource DLLs
The executable, DLLs, and packages (bpls) that make up your application contain all the necessary resources.
However, to replace those resources by localized versions, you need only ship your application with localized
resource DLLs that have the same name as your executable, DLL, or package files.

When your application starts up, it checks the locale of the local system. If it finds any resource DLLs with the same
name as the EXE, DLL, or BPL files it is using, it checks the extension on those DLLs. If the extension of the resource
module matches the language and country of the system locale, your application will use the resources in that
resource module instead of the resources in the executable, DLL, or package. If there is not a resource module that
matches both the language and the country, your application will try to locate a resource module that matches just
the language. If there is no resource module that matches the language, your application will use the resources
compiled with the executable, DLL, or package.

If you want your application to use a different resource module than the one that matches the locale of the local
system, you can set a locale override entry in the Windows registry. Under the HKEY_CURRENT_USER\Software
\Borland\Locales key, add your application's path and file name as a string value and set the data value to the
extension of your resource DLLs. At startup, the application will look for resource DLLs with this extension before
trying the system locale. Setting this registry entry allows you to test localized versions of your application without
changing the locale on your system.

For example, the following procedure can be used in an install or setup program to set the registry key value that
indicates the locale to use when loading applications:

[Delphi]
procedure SetLocalOverrides(FileName: string, LocaleOverride: string);
var
Reg: TRegistry;
begin
Reg := TRegistry.Create;
try
if Reg.OpenKey('Software\Borland\Locales', True) then
Reg.WriteString(LocalOverride, FileName);
finally
Reg.Free;
 end;
end;

1738

[C++]
void SetLocalOverrides(char* FileName, char* LocaleOverride)
{
HKEY Key;
const char* LocaleOverrideKey = "Software\\Borland\\Locales";
if (RegOpenKeyEx(HKEY_CURRENT_USER, LocaleOverrideKey, 0, KEY_ALL_ACCESS, &Key)
== ERROR_SUCCESS) {
if (lstrlen(LocaleOverride) == 3)
RegSetValueEx(Key, FileName, 0, REG_SZ, (const BYTE*)LocaleOverride, 4);
RegCloseKey(Key);
}
}

Within your application, use the global FindResourceHInstance function to obtain the handle of the current resource
module. For example:

[Delphi]
LoadStr(FindResourceHInstance(HInstance), IDS_AmountDueName, szQuery, SizeOf(szQuery));

[C++]
LoadString(FindResourceHInstance(HInstance), IDS_AmountDueName, szQuery, sizeof(szQuery));

You can ship a single application that adapts itself automatically to the locale of the system it is running on, simply
by providing the appropriate resource DLLs.

Dynamic Switching of Resource DLLs
In addition to locating a resource DLL at application startup, it is possible to switch resource DLLs dynamically at
runtime. To add this functionality to your own applications, you need to include the ReInit unit in your uses statement.
(ReInit is located in the Richedit sample in the Demos directory.) To switch languages, you should call
LoadResourceModule, passing the LCID for the new language, and then call ReinitializeForms.

For example, the following code switches the interface language to French:

[Delphi]
const
 FRENCH = (SUBLANG_FRENCH shl 10) or LANG_FRENCH;
if LoadNewResourceModule(FRENCH) <> 0 then
 ReinitializeForms;

[C++]
const FRENCH = MAKELANGID(SUBLANG_FRENCH, LANG_FRENCH);
if (LoadNewResourceModule(FRENCH))
 ReinitializeForms();

The advantage of this technique is that the current instance of the application and all of its forms are used. It is not
necessary to update the registry settings and restart the application or re-acquire resources required by the
application, such as logging in to database servers.

When you switch resource DLLs the properties specified in the new DLL overwrite the properties in the running
instances of the forms.

1739

Note: Any changes made to the form properties at runtime will be lost. Once the new DLL is loaded, default values
are not reset. Avoid code that assumes that the form objects are reinitialized to the their startup state, apart
from differences due to localization.

Localizing Applications
Once your application is internationalized, you can create localized versions for the different foreign markets in which
you want to distribute it.

Localizing resources
Ideally, your resources have been isolated into a resource DLL that contains form files (.dfm in VCL applications)
and a resource file. You can open your forms in the IDE and translate the relevant properties.

Note: In a resource DLL project, you cannot add or delete components. It is possible, however, to change properties
in ways that could cause runtime errors, so be careful to modify only those properties that require translation.
To avoid mistakes, you can configure the Object Inspector to display only Localizable properties; to do so,
right-click in the Object Inspector and use the View menu to filter out unwanted property categories.

You can open the RC file and translate relevant strings. Use the StringTable editor by opening the RC file from the
Project Manager.

1740

Deploying applications

Deploying Applications: Overview
Once your application is up and running, you can deploy it. That is, you can make it available for others to run. A
number of steps must be taken to deploy an application to another computer so that the application is completely
functional. The steps required by a given application vary, depending on the type of application. The following
sections describe these steps when deploying the following applications:

Deploying General Applications
Deploying Database Applications
Deploying Web Applications
Programming for Varying Host Environments
Software License Requirements

Deploying General Applications
Beyond the executable file, an application may require a number of supporting files, such as DLLs, package files,
and helper applications. In addition, the Windows registry may need to contain entries for an application, from
specifying the location of supporting files to simple program settings. The process of copying an application's files
to a computer and making any needed registry settings can be automated by an installation program, such as
InstallShield Express. Nearly all types of applications include the following issues:

Using installation programs
Identifying application files
Helper applications
DLL locations

Database and Web applications require additional installation steps. For additional information on installing database
applications, see Deploying database applications. For more information on installing Web applications, see
Deploying Web applications.

Using Installation Programs
Simple applications that consist of only an executable file are easy to install on a target computer. Just copy the
executable file onto the computer. However, more complex applications that comprise multiple files require more
extensive installation procedures. These applications require dedicated installation programs.

1741

Setup toolkits automate the process of creating installation programs, often without needing to write any code.
Installation programs created with Setup toolkits perform various tasks inherent to installing Delphi applications,
including: copying the executable and supporting files to the host computer, making Windows registry entries, and
installing the Borland Database Engine for BDE database applications.

InstallShield Express is a setup toolkit that is bundled with Delphi. InstallShield Express is certified for use with Delphi
and the Borland Database Engine. It is based on Windows Installer (MSI) technology.

InstallShield Express is not automatically installed when Delphi is installed, so it must be manually installed if you
want to use it to create installation programs. Run the installation program from the Delphi CD to install InstallShield
Express. For more information on using InstallShield Express to create installation programs, see the InstallShield
Express online help.

Other setup toolkits are available. However, if deploying BDE database applications, you should only use toolkits
based on MSI technology and those which are certified to deploy the Borland Database Engine.

Identifying Application Files
Besides the executable file, a number of other files may need to be distributed with an application.

Application files, listed by file name extension
Package files
Merge modules
ActiveX controls

Application Files, Listed by File Name Extension
The following types of files may need to be distributed with an application.

Application files
Type File Name Extension

Program files .exe and .dll

Package files .bpl and .dcp

Help files .hlp, .cnt, and .toc (if used) or any other Help files your application supports

ActiveX files .ocx (sometimes supported by a DLL)

Local table files .dbf, .mdx, .dbt, .ndx, .db, .px, .y*, .x*, .mb, .val, .qbe, .gd*

Package Files
If the application uses runtime packages, those package files need to be distributed with the application. InstallShield
Express handles the installation of package files the same as DLLs, copying the files and making necessary entries
in the Windows registry. You can also use merge modules for deploying runtime packages with MSI-based setup
tools including InstallShield Express. See Merge modules for details.

Borland recommends installing the runtime package files supplied by Borland in the Windows\System directory. This
serves as a common location so that multiple applications would have access to a single instance of the files. For
packages you created, it is recommended that you install them in the same directory as the application. Only
the .bpl files need to be distributed.

If you are distributing packages to other developers, supply the .bpl and .dcp files.

1742

Merge Modules
InstallShield Express 3.0 is based on Windows Installer (MSI) technology. With MSI-based setup tools such as
InstallShield Express, you can use merge modules for deploying runtime packages. Merge modules provide a
standard method that you can use to deliver shared code, files, resources, Registry entries, and setup logic to
applications as a single compound file.

The runtime libraries have some interdependencies because of the way they are grouped together. The result of
this is that when one package is added to an install project, the install tool automatically adds or reports a dependency
on one or more other packages. For example, if you add the VCLInternet merge module to an install project, the
install tool should also automatically add or report a dependency on the VCLDatabase and StandardVCL modules.

The dependencies for each merge module are listed in the table below. The various install tools may react to these
dependencies differently. The InstallShield for Windows Installer automatically adds the required modules if it can
find them. Other tools may simply report a dependency or may generate a build failure if all required modules are
not included in the project.

Merge modules and their dependencies
Merge Module BPLs Included Dependencies

ADO adortl100.bpl DatabaseRTL, BaseRTL

BaseRTL rtl100.bpl No dependencies

BaseVCL vcl100.bpl, vclx100.bpl BaseRTL

BDEInternet inetdbbde100.bpl Internet, DatabaseRTL, BaseRTL, BDERTL

BDERTL bdertl100.bpl DatabaseRTL, BaseRTL

DatabaseRTL dbrtl100.bpl BaseRTL

DatabaseVCL vcldb100.bpl BaseVCL, DatabaseRTL, BaseRTL

DataSnap dsnap100.bpl DatabaseRTL, BaseRTL

DataSnapConnection dsnapcon100.bpl DataSnap, DatabaseRTL, BaseRTL

DataSnapEntera dsnapent100.bpl DataSnap, DatabaseRTL, BaseRTL, BaseVCL

DBCompatVCL vcldbx100.bpl DatabaseVCL, BaseVCL, BaseRTL,
DatabaseRTL

dbExpress dbexpress100.bpl DatabaseRTL, BaseRTL

dbExpressClientDataSet dbxcds100.bpl BaseClientDataSet, DataBaseRTL, BaseRTL,
DataSnap, dbExpress

DBXInternet inetdbxpress100.bpl Internet, DatabaseRTL, BaseRTL, dbExpress,
DatabaseVCL, BaseVCL

DecisionCube dss100.bpl TeeChart, BaseVCL, BaseRTL, DatabaseVCL,
DatabaseRTL, BDERTL

InterbaseVCL ibxpress100.bpl BaseClientDataSet, BaseRTL, BaseVCL,
DatabaseRTL, DatabaseVCL, DataSnap,
dbExpress

Internet inet100.bpl, inetdb100.bpl DatabaseRTL, BaseRTL

InternetDirect indy100.bpl BaseVCL, BaseRTL

Delphi Office2000Components dcloffice2k100.bpl DatabaseVCL, BaseVCL, DatabaseRTL,
BaseRTL

C++ Office2000Components bcboffice2k100.bpl BaseVCL, BaseRTL

Delphi OfficeXPComponents dclofficexp100.bpl DatabaseVCL, BaseVCL, DatabaseRTL,
BaseRTL

1743

C++ OfficeXPComponents bcbofficexp100.bpl BaseVCL, BaseRTL

SOAPRTL soaprtl100.bpl BaseRTL, XMLRTL, DatabaseRTL, DataSnap,
Internet

TeeChart tee100.bpl, teedb100.bpl, teeqr100.bpl,
teeui100.bpl

BaseVCL, BaseRTL

VCLActionBands vclactnband100.bpl BaseVCL, BaseRTL

VCLIE vclie100.bpl BaseVCL, BaseRTL

WebDataSnap webdsnap100.bpl XMLRTL, Internet, DataSnapConnection,
DataSnap, DatabaseRTL, BaseRTL

WebSnap websnap100.bpl, vcljpg100.bpl WebDataSnap, XMLRTL, Internet,
DataSnapConnection, DataSnap,
DatabaseRTL, BaseRTL, BaseVCL

XMLRTL xmlrtl100.bpl Internet, DatabaseRTL, BaseRTL

ActiveX Controls
Certain components bundled with Delphi are ActiveX controls. The component wrapper is linked into the application's
executable file (or a runtime package), but the .ocx file for the component also needs to be deployed with the
application. These components include:

Chart FX, copyright SoftwareFX Inc.
VisualSpeller Control, copyright Visual Components, Inc.
Formula One (spreadsheet), copyright Visual Components, Inc.
First Impression (VtChart), copyright Visual Components, Inc.
Graph Custom Control, copyright Bits Per Second Ltd.

ActiveX controls that you create need to be registered on the deployment computer before use. Installation programs
such as InstallShield Express automate this registration process. To manually register an ActiveX control, choose
Run ActiveX Server in the IDE, use the TRegSvr demo application in \Bin or use the Microsoft utility REGSRV32.
EXE (not included with Windows 9x versions).

DLLs that support an ActiveX control also need to be distributed with an application.

Helper Applications
Helper applications are separate programs without which your application would be partially or completely unable
to function. Helper applications may be those supplied with the operating system, by Borland, or by third-party
products. An example of a helper application is the InterBase utility program Server Manager, which administers
InterBase databases, users, and security.

If an application depends on a helper program, be sure to deploy it with your application, where possible. Distribution
of helper programs may be governed by redistribution license agreements. Consult the helper program
documentation for specific information.

DLL Locations
You can install DLL files used only by a single application in the same directory as the application. DLLs that will be
used by a number of applications should be installed in a location accessible to all of those applications. A common
convention for locating such community DLLs is to place them either in the Windows or the Windows\System

1744

directory. A better way is to create a dedicated directory for the common .DLL files, similar to the way the Borland
Database Engine is installed.

Deploying Database Applications
Applications that access databases involve special installation considerations beyond copying the application's
executable file onto the host computer. Database access is most often handled by a separate database engine, the
files of which cannot be linked into the application's executable file. The data files, when not created beforehand,
must be made available to the application. Multi-tier database applications require additional handling on installation,
because the files that make up the application are typically located on multiple computers.

Since several different database technologies (ADO, BDE, dbExpress, and InterBase Express) are supported,
deployment requirements differ for each. Regardless of which you are using, you need to make sure that the client-
side software is installed on the system where you plan to run the database application. ADO, BDE, dbExpress, and
InterBase Express also require drivers to interact with the client-side software of the database.

Specific information on how to deploy dbExpress, BDE, and multi-tiered database applications is described in the
following topics:

Deploying dbExpress Database Applications.
Deploying BDE Applications.
Deploying Multi-tiered Database Applications (DataSnap).

Database applications that use client datasets such as TClientDataSet or dataset providers require you to include
midaslib.dcu (for static linking when providing a stand-alone executable); if you are packaging your application (with
the executable and any needed DLLs), you need to include Midas.dll.

If deploying database applications that use ADO, you need to be sure that MDAC version 2.1 or later is installed on
the system where you plan to run the application. MDAC is automatically installed with software such as Windows
2000 and Internet Explorer version 5 or later. You also need to be sure the drivers for the database server you want
to connect to are installed on the client. No other deployment steps are required.

If deploying database applications that use InterBase Express, you need to be sure that the InterBase client is
installed on the system where you plan to run the application. InterBase requires gds32.dll and interbase.msg to be
located in an accessible directory. No other deployment steps are required. InterBase Express components
communicate directly with the InterBase Client API and do not require additional drivers. For more information, refer
to the Embedded Installation Guide posted on the Borland Web site.

In addition to the technologies described here, you can also use third-party database engines to provide database
access. Consult the documentation or vendor for the database engine regarding redistribution rights, installation,
and configuration.

Deploying dbExpress Database Applications
dbExpress is a set of thin, native drivers that provide fast access to database information.

You can deploy dbExpress applications either as a stand-alone executable file or as an executable file that includes
associated dbExpress driver DLLs.

To deploy dbExpress applications as stand-alone executable files, the dbExpress object files must be statically linked
into your executable. You do this by including the following DCUs, located in the lib directory:

dbExpress deployment as stand-alone executable
Database Unit When to Include

dbExpINT Applications connecting to InterBase databases

dbExpORA Applications connecting to Oracle databases

1745

dbExpDB2 Applications connecting to DB2 databases

dbExpMYS Applications connecting to MySQL 4.0.24 databases

MidasLib Required by dbExpress executables that use client datasets such as TClientDataSet

Note: For database applications using Informix, you cannot deploy a standalone executable. Instead, deploy an
executable file with the driver DLL (listed in the following table).

If you are not deploying a stand-alone executable, you can deploy associated dbExpress drivers and DataSnap
DLLs with your executable. The following table lists the appropriate DLLs and when to include them:

dbExpress deployment with driver DLLs
Database DLL When to Deploy

dbxinf30.dll Applications connecting to Informix databases

dbxint30.dll Applications connecting to InterBase databases

dbxora30.dll Applications connecting to Oracle databases

dbxdb230.dll. Applications connecting to DB2 databases

dbxmss30.dll Applications connecting to MSSQL databases

dbxmys30.dll Applications connecting to MySQL 4.0.24 databases

Midas.dll Required by database applications that use client datasets

See Using Unidirectional Datasets for more information about using the dbExpress components.

Deploying BDE Applications
The Borland Database Engine (BDE) defines a large API for interacting with databases. Of all the data access
mechanisms, the BDE supports the broadest range of functions and comes with the most supporting utilities. It is
the best way to work with data in Paradox or dBASE tables.

Database access for an application is provided by various database engines. An application can use the BDE or a
third-party database engine. Borland Database Engine describes installation of the database access elements of an
application.

Borland Database Engine
You can use the Borland Database Engine (BDE) to provide database access for standard Delphi data components.
See the BDEDEPLOY document for specific rights and limitations on redistributing the BDE.

You should use InstallShield Express (or other certified installation program) for installing the BDE. InstallShield
Express creates the necessary registry entries and defines any aliases the application may require. Using a certified
installation program to deploy the BDE files and subsets is important because:

Improper installation of the BDE or BDE subsets can cause other applications using the BDE to fail. Such
applications include not only Borland products, but many third-party programs that use the BDE.
Under 32-bit Windows 95/NT and later, BDE configuration information is stored in the Windows registry instead
of .ini files, as was the case under 16-bit Windows. Making the correct entries and deletions for install and
uninstall is a complex task.

It is possible to install only as much of the BDE as an application actually needs. For instance, if an application only
uses Paradox tables, it is only necessary to install that portion of the BDE required to access Paradox tables. This
reduces the disk space needed for an application. Certified installation programs, like InstallShield Express, are

1746

capable of performing partial BDE installations. Be sure to leave BDE system files that are not used by the deployed
application, but that are needed by other programs.

Deploying Multi-tiered Database Applications (DataSnap)
DataSnap provides multi-tier database capability to Delphi applications by allowing client applications to connect to
providers in an application server.

Install DataSnap along with a multi-tier application using InstallShield Express (or other Borland-certified installation
scripting utility). See the DEPLOY document (found in the main Delphi directory) for details on the files that need to
be redistributed with an application. Also see the REMOTE document for related information on what DataSnap files
can be redistributed and how.

Deploying Web Applications
Some Delphi applications are designed to be run over the World Wide Web, such as those in the form of Server-
side Extension DLLs (ISAPI and Apache), CGI applications, and ActiveForms.

The steps for deploying Web applications are the same as those for general applications, except the application's
files are deployed on the Web server.

Here are some special considerations for deploying Web applications:

For BDE database applications, the Borland Database Engine (or alternate database engine) is installed with
the application files on the Web server.
For dbExpress applications, the dbExpress DLLs must be included in the path. If included, the dbExpress driver
is installed with the application files on the Web server.
Security for the directories should be set so that the application can access all needed database files.
The directory containing an application must have read and execute attributes.
The application should not use hard-coded paths for accessing database or other files.
The location of an ActiveX control is indicated by the CODEBASE parameter of the <OBJECT> HTML tag.

For information on deploying database Web applications, see Deploying database applications.

For information on deploying applications on Apache servers, see Deploying on Apache servers.

Deploying On Apache Servers
WebBroker supports Apache version 1.3.9 and later for DLLs and CGI applications.

Modules and applications are enabled and configured by modifying Apache's httpd.conf file (normally located in your
Apache installation's \conf directory).

Enabling modules
Your DLLs should be physically located in the Apache Modules subdirectory.

Two modifications to httpd.conf are required to enable a module.

The first modification is to add a LoadModule entry to let Apache locate and load your DLL. For example:

LoadModule MyApache_module modules/Project1.dll

1747

Replace MyApache_module with the exported module name from your DLL. To find the module name, in your project
source, look for the exports line. For example:

exports
 apache_module name 'MyApache_module';

The second modification is to add a resource locator entry (may be added anywhere in httpd.conf after the
LoadModule entry). For example:

Sample location specification for a project named project1.
<Location /project1>
SetHandler project1-handler
</Location>

This allows all requests to http://www.somedomain.com/project1 to be passed on to the Apache module.

The SetHandler directive specifies the Web server application that handles the request. The SetHandler argument
should be set to the value of the ContentType global variable.

CGI applications
When creating CGI applications, the physical directory (specified in the Directory directive of the httpd.conf file) must
have the ExecCGI option and the SetHandler clause set to allow execution of programs so the CGI script can be
executed. To ensure that permissions are set up properly, use the Alias directive with both Options ExecCGI and
SetHandler enabled.

Note: An alternative approach is to use the ScriptAlias directive (without Options ExecCGI), but using this approach
can prevent your CGI application from reading any files in the ScriptAlias directory.

The following httpd.conf line is an example of using the Alias directive to create a virtual directory on your server
and mark the exact location of your CGI script:

Alias/MyWeb/"c:/httpd/docs/MyWeb/"

This would allow requests such as /MyWeb/mycgi.exe to be satisfied by running the script c:\httpd\docs\MyWeb
\mycgi.exe.

You can also set Options to All or to ExecCGI using the Directory directive in httpd.conf. The Options directive
controls which server features are available in a particular directory.

Directory directives are used to enclose a set of directives that apply to the named directory and its subdirectories.
An example of the Directory directive is shown below:

<Directory "c:/httpd/docs/MyWeb">
AllowOverride None
Options ExecCGI
Order allow,deny
Allow from all
AddHandler cgi-script exe cgi
</Directory>

In this example, Options is set to ExecCGI permitting execution of CGI scripts in the directory MyWeb. The
AddHandler clause lets Apache know that files with extensions such as exe and cgi are CGI scripts (executables).

Note: Apache executes locally on the server within the account specified in the User directive in the httpd.conf file.
Make sure that the user has the appropriate rights to access the resources needed by the application.

1748

See the Apache LICENSE file, included with your Apache distribution, for additional deployment information. For
additional Apache configuration information, see http://www.apache.org.

Programming for Varying Host Environments
Due to the nature of various operating system environments, there are a number of factors that vary with user
preference or configuration. The following factors can affect an application deployed to another computer:

Screen resolutions and color depths
Fonts
Operating system versions
Helper applications
DLL locations

Screen Resolutions and Color Depths
The size of the desktop and number of available colors on a computer is configurable and dependent on the hardware
installed. These attributes are also likely to differ on the deployment computer compared to those on the development
computer.

An application's appearance (window, object, and font sizes) on computers configured for different screen resolutions
can be handled in various ways:

Design the application for the lowest resolution users will have (typically, 640x480). Take no special actions to
dynamically resize objects to make them proportional to the host computer's screen display. Visually, objects
will appear smaller the higher the resolution is set.
Design using any screen resolution on the development computer and, at runtime, dynamically resize all forms
and objects proportional to the difference between the screen resolutions for the development and deployment
computers (a screen resolution difference ratio).
Design using any screen resolution on the development computer and, at runtime, dynamically resize only the
application's forms. Depending on the location of visual controls on the forms, this may require the forms be
scrollable for the user to be able to access all controls on the forms.

The following topics are discussed in this section:

Considerations When Not Dynamically Resizing
Considerations When Dynamically Resizing Forms and Controls
Accommodating Varying Color Depths

Considerations When Not Dynamically Resizing
If the forms and visual controls that make up an application are not dynamically resized at runtime, design the
application's elements for the lowest resolution. Otherwise, the forms of an application run on a computer configured
for a lower screen resolution than the development computer may overlap the boundaries of the screen.

For example, if the development computer is set up for a screen resolution of 1024x768 and a form is designed with
a width of 700 pixels, not all of that form will be visible within the desktop on a computer configured for a 640x480
screen resolution.

1749

Considerations When Dynamically Resizing Forms and Controls
If the forms and visual controls for an application are dynamically resized, accommodate all aspects of the resizing
process to ensure optimal appearance of the application under all possible screen resolutions. Here are some factors
to consider when dynamically resizing the visual elements of an application:

The resizing of forms and visual controls is done at a ratio calculated by comparing the screen resolution of the
development computer to that of the computer onto which the application installed. Use a constant to represent
one dimension of the screen resolution on the development computer: either the height or the width, in pixels.
Retrieve the same dimension for the user's computer at runtime using the TScreen.Height or TScreen.Width
property. Divide the value for the development computer by the value for the user's computer to derive the
difference ratio between the two computers' screen resolutions.
Resize the visual elements of the application (forms and controls) by reducing or increasing the size of the
elements and their positions on forms. This resizing is proportional to the difference between the screen
resolutions on the development and user computers. Resize and reposition visual controls on forms
automatically by setting the CustomForm.Scaled form's Scaled property to True and calling
TWinControl.ScaleBy its ScaleBy method . The ScaleBy method does not change the form's height and width,
though. Do this manually by multiplying the current values for the Height and Width properties by the screen
resolution difference ratio.
The controls on a form can be resized manually, instead of automatically with the TWinControl.ScaleBy method ,
by referencing each visual control in a loop and setting its dimensions and position. The Height and Width
property values for visual controls are multiplied by the screen resolution difference ratio. Reposition visual
controls proportional to screen resolution differences by multiplying the Top and Left property values by the
same ratio.
If an application is designed on a computer configured for a higher screen resolution than that on the user's
computer, font sizes will be reduced in the process of proportionally resizing visual controls. If the size of the
font at design time is too small, the font as resized at runtime may be unreadable. For example, the default font
size for a form is 8. If the development computer has a screen resolution of 1024x768 and the user's computer
640x480, visual control dimensions will be reduced by a factor of 0.625 (640 / 1024 = 0.625). The original font
size of 8 is reduced to 5 (8 * 0.625 = 5). Text in the application appears jagged and unreadable as it is displayed
in the reduced font size.
Some visual controls, such as TLabel and TEdit, dynamically resize when the size of the font for the control
changes. This can affect deployed applications when forms and controls are dynamically resized. The resizing
of the control due to font size changes are in addition to size changes due to proportional resizing for screen
resolutions. This effect is offset by setting the AutoSize property of these controls to False.
Avoid making use of explicit pixel coordinates, such as when drawing directly to a canvas. Instead, modify the
coordinates by a ratio proportionate to the screen resolution difference ratio between the development and user
computers. For example, if the application draws a rectangle to a canvas ten pixels high by twenty wide, instead
multiply the ten and twenty by the screen resolution difference ratio. This ensures that the rectangle visually
appears the same size under different screen resolutions.

Accommodating Varying Color Depths
To account for all deployment computers not being configured with the same color availability, the safest way is to
use graphics with the least possible number of colors. This is especially true for control glyphs, which should typically
use 16-color graphics. For displaying pictures, either provide multiple copies of the images in different resolutions
and color depths or explain in the application the minimum resolution and color requirements for the application.

1750

Fonts
Windows comes with a standard set of TrueType and raster fonts. Linux comes with a standard set of fonts,
depending on the distribution. When designing an application to be deployed on other computers, realize that not
all computers have fonts outside the standard sets.

Text components used in the application should all use fonts that are likely to be available on all deployment
computers.

When use of a nonstandard font is absolutely necessary in an application, you need to distribute that font with the
application. Either the installation program or the application itself must install the font on the deployment computer.
Distribution of third-party fonts may be subject to limitations imposed by the font creator.

Windows has a safety measure to account for attempts to use a font that does not exist on the computer. It substitutes
another, existing font that it considers the closest match. While this may circumvent errors concerning missing fonts,
the end result may be a degradation of the visual appearance of the application. It is better to prepare for this
eventuality at design time.

To make a nonstandard font available to a Windows application, use the Windows API functions
AddFontResource and DeleteFontResource. Deploy the .fot file for the nonstandard font with the application.

Operating System Versions
When using operating system APIs or accessing areas of the operating system from an application, there is the
possibility that the function, operation, or area may not be available on computers with different operating system
versions.

To account for this possibility, you have a few options:

Specify in the application's system requirements the versions of the operating system on which the application
can run. It is the user's responsibility to install and use the application only under compatible operating system
versions.
Check the version of the operating system as the application is installed. If an incompatible version of the
operating system is present, either halt the installation process or at least warn the installer of the problem.
Check the operating system version at runtime, just prior to executing an operation not applicable to all versions.
If an incompatible version of the operating system is present, abort the process and alert the user. Alternately,
provide different code to run dependent on different operating system versions.

Note: Some operations are performed differently on Windows 95/98 than on Windows NT/2000/XP. Use the
Windows API function GetVersionEx to determine the Windows version.

Software License Requirements
The distribution of some files associated with Delphi applications is subject to limitations or cannot be redistributed
at all. The following documents describe the legal stipulations regarding the distribution of these files:

DEPLOY
The DEPLOY document covers the some of the legal aspects of distributing of various components and utilities, and
other product areas that can be part of or associated with a Delphi application. The DEPLOY document is installed
in the main Delphi directory. The topics covered include:

.exe, .dll, and .bpl files
Components and design-time packages
Borland Database Engine (BDE)

1751

ActiveX controls
Sample images

README
The README document contains last minute information about Delphi, possibly including information that could
affect the redistribution rights for components, or utilities, or other product areas. The README document is installed
in the main Delphi directory.

No-nonsense license agreement
The Delphi no-nonsense license agreement, a printed document, covers other legal rights and obligations
concerning Delphi.

Third-party product documentation
Redistribution rights for third-party components, utilities, helper applications, database engines, and other products
are governed by the vendor supplying the product. Consult the documentation for the product or the vendor for
information regarding the redistribution of the product with Delphi applications prior to distribution.

1752

Developing Database Applications

1753

Designing database applications

Designing Database Applications: Overview
Database applications let users interact with information that is stored in databases. Databases provide structure
for the information, and allow it to be shared among different applications.

Delphi provides support for relational database applications. Relational databases organize information into tables,
which contain rows (records) and columns (fields). These tables can be manipulated by simple operations known
as the relational calculus.

When designing a database application, you must understand how the data is structured. Based on that structure,
you can then design a user interface to display data to the user and allow the user to enter new information or modify
existing data.

The following topics introduce common considerations when designing a database application:

Using Databases
Database Architecture
Designing the User Interface

Using Databases
Delphi includes many components for accessing databases and representing the information they contain. They are
grouped according to the data access mechanism:

The BDE page of the Component palette contains components that use the Borland Database Engine (BDE).
The BDE defines a large API for interacting with databases. Of all the data access mechanisms, the BDE
supports the broadest range of functions and comes with the most supporting utilities. It is the best way to work
with data in Paradox or dBASE tables. However, it is also the most complicated mechanism to deploy. For more
information about using the BDE components, see Using the Borland Database Engine.
The ADO page of the Component palette contains components that use ActiveX Data Objects (ADO) to access
database information through OLEDB. ADO is a Microsoft Standard. There is a broad range of ADO drivers
available for connecting to different database servers. Using ADO-based components lets you integrate your
application into an ADO-based environment (for example, making use of ADO-based application servers). For
more information about using the ADO components, see Working with ADO Components
The dbExpress page of the Component palette contains components that use dbExpress to access database
information. dbExpress is a lightweight set of drivers that provide the fastest access to database information.
However, dbExpress database components also support the narrowest range of data manipulation functions.
For more information about using the dbExpress components, see Using unidirectional datasets

1754

The InterBase page of the Component palette contains components that access InterBase databases directly,
without going through a separate engine layer.
The Data Access page of the Component palette contains components that can be used with any data access
mechanism. This page includes TClientDataset, which can work with data stored on disk or, using the
TDataSetProvider component also on this page, with components from one of the other groups. For more
information about using client datasets, see Using client datasets For more information about
TDataSetProvider, see Using provider components

Note: Different versions of Delphi include different drivers for accessing database servers using the BDE, ADO, or
dbExpress.

When designing a database application, you must decide which set of components to use. Each data access
mechanism differs in its range of functional support, the ease of deployment, and the availability of drivers to support
different database servers.

In addition to choosing a data access mechanism, you must choose a database server. There are different types of
databases and you will want to consider the advantages and disadvantages of each type before settling on a
particular database server.

All types of databases contain tables which store information. In addition, most (but not all) servers support additional
features such as

Database security
Transactions
Referential integrity, stored procedures, and triggers

Types of Databases
Relational database servers vary in the way they store information and in the way they allow multiple users to access
that information simultaneously. Delphi provides support for two types of relational database server:

Remote database servers reside on a separate machine. Sometimes, the data from a remote database server
does not even reside on a single machine, but is distributed over several servers. Although remote database
servers vary in the way they store information, they provide a common logical interface to clients. This common
interface is Structured Query Language (SQL). Because you access them using SQL, they are sometimes called
SQL servers. (Another name is Remote Database Management system, or RDBMS.) In addition to the common
commands that make up SQL, most remote database servers support a unique "dialect" of SQL. Examples of
SQL servers include InterBase, Oracle, Sybase, Informix, Microsoft SQL server, and DB2.
Local databases reside on your local drive or on a local area network. They often have proprietary APIs for
accessing the data. When they are shared by several users, they use file-based locking mechanisms. Because
of this, they are sometimes called file-based databases. Examples of local databases include Paradox, dBASE,
FoxPro, and Access.

Applications that use local databases are called single-tiered applications because the application and the
database share a single file system. Applications that use remote database servers are called two-tiered
applications or multi-tiered applications because the application and the database operate on independent
systems (or tiers).

Choosing the type of database to use depends on several factors. For example, your data may already be stored in
an existing database. If you are creating the database tables your application uses, you may want to consider the
following questions:

How many users will be sharing these tables? Remote database servers are designed for access by several
users at the same time. They provide support for multiple users through a mechanism called transactions. Some

1755

local databases (such as Local InterBase) also provide transaction support, but many only provide file-based
locking mechanisms, and some (such as client dataset files) provide no multi-user support at all.
How much data will the tables hold? Remote database servers can hold more data than local databases. Some
remote database servers are designed for warehousing large quantities of data while others are optimized for
other criteria (such as fast updates).
What type of performance (speed) do you require from the database? Local databases are usually faster than
remote database servers because they reside on the same system as the database application. Different remote
database servers are optimized to support different types of operations, so you may want to consider
performance when choosing a remote database server.
What type of support will be available for database administration? Local databases require less support than
remote database servers. Typically, they are less expensive to operate because they do not require separately
installed servers or expensive site licenses.

Database Security
Databases often contain sensitive information. Different databases provide security schemes for protecting that
information. Some databases, such as Paradox and dBASE, only provide security at the table or field level. When
users try to access protected tables, they are required to provide a password. Once users have been authenticated,
they can see only those fields (columns) for which they have permission.

Most SQL servers require a password and user name to use the database server at all. Once the user has logged
in to the database, that username and password determine which tables can be used. For information on providing
passwords to SQL servers, see Controlling server login.

When designing database applications, you must consider what type of authentication is required by your database
server. Often, applications are designed to hide the explicit database login from users, who need only log in to the
application itself. If you do not want to require your users to provide a database password, you must either use a
database that does not require one or you must provide the password and username to the server programmatically.
When providing the password programmatically, care must be taken that security can't be breached by reading the
password from the application.

If you require your user to supply a password, you must consider when the password is required. If you are using a
local database but intend to scale up to a larger SQL server later, you may want to prompt for the password at the
point when you will eventually log in to the SQL database, rather than when opening individual tables.

If your application requires multiple passwords because you must log in to several protected systems or databases,
you can have your users provide a single master password that is used to access a table of passwords required by
the protected systems. The application then supplies passwords programmatically, without requiring the user to
provide multiple passwords.

In multi-tiered applications, you may want to use a different security model altogether. You can use HTTPs or COM
+ to control access to middle tiers, and let the middle tiers handle all details of logging into database servers.

Transactions
A transaction is a group of actions that must all be carried out successfully on one or more tables in a database
before they are committed (made permanent). If any of the actions in the group fails, then all actions are rolled back
(undone).

Transactions ensure that

All updates in a single transaction are either committed or aborted and rolled back to their previous state. This
is referred to as atomicity.
A transaction is a correct transformation of the system state, preserving the state invariants. This is referred to
as consistency.

1756

Concurrent transactions do not see each other's partial or uncommitted results, which might create
inconsistencies in the application state. This is referred to as isolation.
Committed updates to records survive failures, including communication failures, process failures, and server
system failures. This is referred to as durability.

Thus, transactions protect against hardware failures that occur in the middle of a database command or set of
commands. Transactional logging allows you to recover the durable state after disk media failures. Transactions
also form the basis of multi-user concurrency control on SQL servers. When each user interacts with the database
only through transactions, one user's commands can't disrupt the unity of another user's transaction. Instead, the
SQL server schedules incoming transactions, which either succeed as a whole or fail as a whole.

Transaction support is not part of most local databases, although it is provided by local InterBase. In addition, the
BDE drivers provide limited transaction support for some local databases. Database transaction support is provided
by the component that represents the database connection. For details on managing transactions using a database
connection component, see Managing transactions.

In multi-tiered applications, you can create transactions that include actions other than database operations or that
span multiple databases. For details on using transactions in multi-tiered applications, see Managing transactions
in multi-tiered applications.

Referential Integrity, Stored Procedures, and Triggers
All relational databases have certain features in common that allow applications to store and manipulate data. In
addition, databases often provide other, database-specific, features that can prove useful for ensuring consistent
relationships between the tables in a database. These include

Referential integrity. Referential integrity provides a mechanism to prevent master/detail relationships
between tables from being broken. When the user attempts to delete a field in a master table which would result
in orphaned detail records, referential integrity rules prevent the deletion or automatically delete the orphaned
detail records.
Stored procedures. Stored procedures are sets of SQL statements that are named and stored on an SQL
server. Stored procedures usually perform common database-related tasks on the server, and sometimes return
sets of records (datasets).
Triggers. Triggers are sets of SQL statements that are automatically executed in response to a particular
command.

Database Architecture
Database applications are built from user interface elements, components that represent database information
(datasets), and components that connect these to each other and to the source of the database information. How
you organize these pieces is the architecture of your database application.

While there are many distinct ways to organize the components in a database application, most follow the general
scheme illustrated in the following figure:

1757

The user interface form
It is a good idea to isolate the user interface on a form that is completely separate from the rest of the application.
This has several advantages. By isolating the user interface from the components that represent the database
information itself, you introduce a greater flexibility into your design: Changes to the way you manage the database
information do not require you to rewrite your user interface, and changes to the user interface do not require you
to change the portion of your application that works with the database. In addition, this type of isolation lets you
develop common forms that you can share between multiple applications, thereby providing a consistent user
interface. By storing links to well-designed forms in the Object Repository, you and other developers can build on
existing foundations rather than starting over from scratch for each new project. Sharing forms also makes it possible
for you to develop corporate standards for application interfaces. For more information about creating the user
interface for a database application, see Designing the user interface.

The data module
If you have isolated your user interface into its own form, you can use a data module to house the components that
represent database information (datasets), and the components that connect these datasets to the other parts of
your application. Like the user interface forms, you can share data modules in the Object Repository so that they
can be reused or shared between applications.

The data source
The first item in the data module is a data source. The data source acts as a conduit between the user interface and
a dataset that represents information from a database. Several data-aware controls on a form can share a single
data source, in which case the display in each control is synchronized so that as the user scrolls through records,
the corresponding value in the fields for the current record is displayed in each control.

The dataset
The heart of your database application is the dataset. This component represents a set of records from the underlying
database. These records can be the data from a single database table, a subset of the fields or records in a table,
or information from more than one table joined into a single view. By using datasets, your application logic is buffered
from restructuring of the physical tables in your databases. When the underlying database changes, you might need
to alter the way the dataset component specifies the data it contains, but the rest of your application can continue
to work without alteration. For more information on the common properties and methods of datasets, see
Understanding datasets

1758

The data connection
Different types of datasets use different mechanisms for connecting to the underlying database information. These
different mechanisms, in turn, make up the major differences in the architecture of the database applications you
can build. There are four basic mechanisms for connecting to the data:

Connecting directly to a database server. Most datasets use a descendant of TCustomConnection to represent
the connection to a database server.
Using a dedicated file on disk. Client datasets support the ability to work with a dedicated file on disk. No separate
connection component is needed when working with a dedicated file because the client dataset itself knows
how to read from and write to the file.
Connecting to another dataset. Client datasets can work with data provided by another dataset. A
TDataSetProvider component serves as an intermediary between the client dataset and its source dataset. This
dataset provider can reside in the same data module as the client dataset, or it can be part of an application
server running on another machine. If the provider is part of an application server, you also need a special
descendant of TCustomConnection to represent the connection to the application server.
Obtaining data from an RDS DataSpace object. ADO datasets can use a TRDSConnection component to
marshal data in multi-tier database applications that are built using ADO-based application servers.

Sometimes, these mechanisms can be combined in a single application.

Connecting Directly to a Database Server
The most common database architecture is the one where the dataset uses a connection component to establish a
connection to a database server. The dataset then fetches data directly from the server and posts edits directly to
the server. This is illustrated in the following figure.

Connecting directly to the database server

Each type of dataset uses its own type of connection component, which represents a single data access mechanism:

1759

If the dataset is a BDE dataset such as TTable, TQuery, or TStoredProc, the connection component is a
TDataBaseobject. You connect the dataset to the database component by setting its Databaseproperty. You
do not need to explicitly add a database component when using BDE dataset. If you set the dataset's
DatabaseName property, a database component is created for you automatically at runtime.
If the dataset is an ADO dataset such as TADODataSet, TADOTable, TADOQuery, or TADOStoredProc, the
connection component is a TADOConnectionobject. You connect the dataset to the ADO connection component
by setting its Connectionproperty. As with BDE datasets, you do not need to explicitly add the connection
component: instead you can set the dataset's ConnectionStringproperty.
If the dataset is a dbExpress dataset such as TSQLDataSet, TSQLTable, TSQLQuery, or TSQLStoredProc,
the connection component is a TSQLConnection object. You connect the dataset to the SQL connection
component by setting its SQLConnection property. When using dbExpress datasets, you must explicitly add
the connection component. Another difference between dbExpress datasets and the other datasets is that
dbExpress datasets are always read-only and unidirectional: This means you can only navigate by iterating
through the records in order, and you can't use the dataset methods that support editing.
If the dataset is an InterBase Express dataset such as TIBDataSet, TIBTable, TIBQuery, or TIBStoredProc, the
connection component is a TIBDatabaseobject. You connect the dataset to the IB database component by
setting its Database_Database">Databaseproperty. As with dbExpress datasets, you must explicitly add the
connection component.

In addition to the components listed above, you can use a specialized client dataset such as TBDEClientDataSet,
TSimpleDataSet, or TIBClientDataSet with a database connection component. When using one of these client
datasets, specify the appropriate type of connection component as the value of the DBConnection property.

Although each type of dataset uses a different connection component, they all perform many of the same tasks and
surface many of the same properties, methods, and events. For more information on the commonalities among the
various database connection components, see Connecting to databases

This architecture represents either a single-tiered or two-tiered application, depending on whether the database
server is a local database such or a remote database server. The logic that manipulates database information is in
the same application that implements the user interface, although isolated into a data module.

Note: The connection components or drivers needed to create two-tiered applications are not available in all version
of Delphi.

Using a Dedicated File on Disk
The simplest form of database application you can write does not use a database server at all. Instead, it uses
MyBase, the ability of client datasets to save themselves to a file and to load the data from a file. This architecture
is illustrated in the following figure:

When using this file-based approach, your application writes changes to disk using the client dataset's SaveToFile
method. SaveToFile takes one parameter, the name of the file which is created (or overwritten) containing the table.

1760

When you want to read a table previously written using the SaveToFile method, use the LoadFromFile method.
LoadFromFile also takes one parameter, the name of the file containing the table.

If you always load to and save from the same file, you can use the FileName property instead of the SaveToFile and
LoadFromFile methods. When FileName is set to a valid file name, the data is automatically loaded from the file
when the client dataset is opened and saved to the file when the client dataset is closed.

This simple file-based architecture is a single-tiered application. The logic that manipulates database information is
in the same application that implements the user interface, although isolated into a data module.

The file-based approach has the benefit of simplicity. There is no database server to install, configure, or deploy (If
you do not statically link in midaslib.dcu, the client dataset does require midas.dll). There is no need for site licenses
or database administration.

In addition, some versions of Delphi let you convert between arbitrary XML documents and the data packets that
are used by a client dataset. Thus, the file-based approach can be used to work with XML documents as well as
dedicated datasets. For information about converting between XML documents and client dataset data packets, see
Using XML in database applications

The file-based approach offers no support for multiple users. The dataset should be dedicated entirely to the
application. Data is saved to files on disk, and loaded at a later time, but there is no built-in protection to prevent
multiple users from overwriting each other's data files.

For more information about using a client dataset with data stored on disk, see Using a client dataset with file-based
data.

Connecting to Another Dataset
There are specialized client datasets that use the BDE or dbExpress to connect to a database server. These
specialized client datasets are, in fact, composite components that include another dataset internally to access the
data and an internal provider component to package the data from the source dataset and to apply updates back to
the database server. These composite components require some additional overhead, but provide certain benefits:

Client datasets provide the most robust way to work with cached updates. By default, other types of datasets
post edits directly to the database server. You can reduce network traffic by using a dataset that caches updates
locally and applies them all later in a single transaction. For information on the advantages of using client
datasets to cache updates, see Using a client dataset to cache updates.
Client datasets can apply edits directly to a database server when the dataset is read-only. When using
dbExpress, this is the only way to edit the data in the dataset (it is also the only way to navigate freely in the
data when using dbExpress). Even when not using dbExpress, the results of some queries and all stored
procedures are read-only. Using a client dataset provides a standard way to make such data editable.
Because client datasets can work directly with dedicated files on disk, using a client dataset can be combined
with a file-based model to allow for a flexible "briefcase" application.

In addition to these specialized client datasets, there is a generic client dataset (TClientDataSet), which does not
include an internal dataset and dataset provider. Although TClientDataSet has no built-in database access
mechanism, you can connect it to another, external, dataset from which it fetches data and to which it sends updates.
Although this approach is a bit more complicated, there are times when it is preferable:

Because the source dataset and dataset provider are external, you have more control over how they fetch data
and apply updates. For example, the provider component surfaces a number of events that are not available
when using a specialized client dataset to access data.
When the source dataset is external, you can link it in a master/detail relationship with another dataset. An
external provider automatically converts this arrangement into a single dataset with nested details. When the
source dataset is internal, you can't create nested detail sets this way.
Connecting a client dataset to an external dataset is an architecture that easily scales up to multiple tiers.
Because the development process can get more involved and expensive as the number of tiers increases, you

1761

may want to start developing your application as a single-tiered or two-tiered application. As the amount of data,
the number of users, and the number of different applications accessing the data grows, you may later need to
scale up to a multi-tiered architecture. If you think you may eventually use a multi-tiered architecture, it can be
worthwhile to start by using a client dataset with an external source dataset. This way, when you move the data
access and manipulation logic to a middle tier, you protect your development investment because the code can
be reused as your application grows.
TClientDataSet can link to any source dataset. This means you can use custom datasets (third-party
components) for which there is no corresponding specialized client dataset. Some versions of Delphi even
include special provider components that connect a client dataset to an XML document rather than another
dataset. (This works the same way as connecting a client dataset to another (source) dataset, except that the
XML provider uses an XML document rather than a dataset. For information about these XML providers, see
Using an XML document as the source for a provider.)

There are two versions of the architecture that connects a client dataset to an external dataset:

Connecting a client dataset to another dataset in the same application.
Using a multi-tiered architecture.

Connecting a Client Dataset to Another Dataset in the Same Application
By using a provider component, you can connect TClientDataSet to another (source) dataset. The provider packages
database information into transportable data packets (which can be used by client datasets) and applies updates
received in delta packets (which client datasets create) back to a database server. The architecture for this is
illustrated in the following figure.

1762

This architecture represents either a single-tiered or two-tiered application, depending on whether the database
server is a local database or a remote database server. The logic that manipulates database information is in the
same application that implements the user interface, although isolated into a data module.

To link the client dataset to the provider, set its ProviderName property to the name of the provider component. The
provider must be in the same data module as the client dataset. To link the provider to the source dataset, set its
DataSet property.

Once the client dataset is linked to the provider and the provider is linked to the source dataset, these components
automatically handle all the details necessary for fetching, displaying, and navigating through the database records
(assuming the source dataset is connected to a database). To apply user edits back to the database, you need only
call the client dataset's ApplyUpdates method.

For more information on using a client dataset with a provider, see Using a client dataset with a provider.

Using a Multi-Tiered Architecture
When the database information includes complicated relationships between several tables, or when the number of
clients grows, you may want to use a multi-tiered application. Multi-tiered applications have middle tiers between
the client application and database server. The architecture for this is illustrated in the following figure.

1763

The preceding figure represents three-tiered application. The logic that manipulates database information is on a
separate system, or tier. This middle tier centralizes the logic that governs your database interactions so there is
centralized control over data relationships. This allows different client applications to use the same data, while
ensuring consistent data logic. It also allows for smaller client applications because much of the processing is off-
loaded onto the middle tier. These smaller client applications are easier to install, configure, and maintain. Multi-
tiered applications can also improve performance by spreading data-processing over several systems.

The multi-tiered architecture is very similar to the model described in Connecting a client dataset to another dataset
in the same application. It differs mainly in that source dataset that connects to the database server and the provider
that acts as an intermediary between that source dataset and the client dataset have both moved to a separate
application. That separate application is called the application server (or sometimes the "remote data broker").

Because the provider has moved to a separate application, the client dataset can no longer connect to the source
dataset by simply setting its ProviderName property. In addition, it must use some type of connection component to
locate and connect to the application server.

There are several types of connection components that can connect a client dataset to an application server. They
are all descendants of TCustomRemoteServer, and differ primarily in the communication protocol they use (TCP/
IP, HTTP, DCOM, or SOAP). Link the client dataset to its connection component by setting the RemoteServer
property.

The connection component establishes a connection to the application server and returns an interface that the client
dataset uses to call the provider specified by its ProviderName property. Each time the client dataset calls the
application server, it passes the value of ProviderName, and the application server forwards the call to the provider.

For more information about connecting a client dataset to an application server, see Creating multi-tiered applications

1764

Combining Approaches
There is no reason why you can't combine two or more of the available architectures in a single application. In fact,
some combinations can be extremely powerful.

For example, you can combine the disk-based architecture described in Using a dedicated file on disk with another
approach such as those described in Connecting to another dataset or Using a multi-tiered architecture. These
combinations are easy because all models use a client dataset to represent the data that appears in the user
interface. The result is called the briefcase model (or sometimes the disconnected model, or mobile computing).

The briefcase model is useful in a situation such as the following: An onsite company database contains customer
contact data that sales representatives can use and update in the field. While onsite, sales representatives download
information from the database. Later, they work with it on their laptops as they fly across the country, and even
update records at existing or new customer sites. When the sales representatives return onsite, they upload their
data changes to the company database for everyone to use.

When operating on site, the client dataset in a briefcase model application fetches its data from a provider. The client
dataset is therefore connected to the database server and can, through the provider, fetch server data and send
updates back to the server. Before disconnecting from the provider, the client dataset saves its snapshot of the
information to a file on disk. While offsite, the client dataset loads its data from the file, and saves any changes back
to that file. Finally, back onsite, the client dataset reconnects to the provider so that it can apply its updates to the
database server or refresh its snapshot of the data.

Designing the User Interface
The Data Controls category of the Tool Palette provides a set of data-aware controls that represent data from fields
in a database record, and can permit users to edit that data and post changes back to the database. Using data-
aware controls, you can build your database application's user interface (UI) so that information is visible and
accessible to users. For more information on data-aware controls see Using data controls.

In addition to the basic data controls, you may also want to introduce other elements into your user interface:

You may want your application to analyze the data contained in a database. Applications that analyze data do
more than just display the data in a database, they also summarize the information in useful formats to help
users grasp the impact of that data.
You may want to print reports that provide a hard copy of the information displayed in your user interface.
You may want to create a user interface that can be viewed from Web browsers. The simplest Web-based
database applications are described in Using database information in responses. In addition, you can combine
the Web-based approach with the multi-tiered architecture, as described in Writing Web-based client
applications.

Analyzing Data
Some database applications do not present database information directly to the user. Instead, they analyze and
summarize information from databases so that users can draw conclusions from the data.

The TDBChart component on the Data Controls category of the Tool Palette lets you present database information
in a graphical format that enables users to quickly grasp the import of database information.

In addition, some versions of Delphi include a Decision Cube category on the Tool Palette. It contains six
components that let you perform data analysis and cross-tabulations on data when building decision support
applications. For more information about using the Decision Cube components, see Using decision support
components

If you want to build your own components that display data summaries based on various grouping criteria, you can
use maintained aggregates with a client dataset.

1765

Writing Reports
If you want to let your users print database information from the datasets in your application, you can use Rave
Reports, as described in Creating reports with Rave Reports.

1766

Using data controls

Using Data Controls
The Data Controls category of the Tool palette provides a set of data-aware controls that represent data from fields
in a database record, and, if the dataset allows it, enable users to edit that data and post changes back to the
database. By placing data controls onto the forms in your database application, you can build your database
application's user interface (UI) so that information is visible and accessible to users.

The data-aware controls you add to your user interface depend on several factors, including the following:

The type of data you are displaying. You can choose between controls that are designed to display and edit
plain text, controls that work with formatted text, controls for graphics, multimedia elements, and so on. Controls
that display different types of information are described in Displaying a Single Record.
How you want to organize the information. You may choose to display information from a single record on the
screen, or list the information from multiple records using a grid. Choosing how to organize the data describes
some of the possibilities.
The type of dataset that supplies data to the controls. You want to use controls that reflect the limitations of the
underlying dataset. For example, you would not use a grid with a unidirectional dataset because unidirectional
datasets can only supply a single record at a time.
How (or if) you want to let users navigate through the records of datasets and add or edit data. You may want
to add your own controls or mechanisms to navigate and edit, or you may want to use a built-in control such as
a data navigator.

Note: More complex data-aware controls for decision support are discussed in Using Decision Support
Components.

Regardless of the data-aware controls you choose to add to your interface, certain common features apply. These
are described in Using Common Data Control Features.

Using Common Data Control Features
The following tasks are common to most data controls:

Associating a data control with a dataset
Editing and updating data
Disabling and enabling data display
Refreshing data display

1767

Enabling mouse, keyboard, and timer events

Data controls let you display and edit fields of data associated with the current record in a dataset. The following
table summarizes the data controls that appear on the Data Controls category of the Tool palette.

Data controls
Data control Description

TDBGrid Displays information from a data source in a tabular format. Columns in the grid correspond to
columns in the underlying table or query's dataset. Rows in the grid correspond to records.

TDBNavigator Navigates through data records in a dataset. updating records, posting records, deleting records,
canceling edits to records, and refreshing data display.

TDBText Displays data from a field as a label.

TDBEdit Displays data from a field in an edit box.

TDBMemo Displays data from a memo or BLOB field in a scrollable, multi-line edit box.

TDBImage Displays graphics from a data field in a graphics box.

TDBListBox Displays a list of items from which to update a field in the current data record.

TDBComboBox Displays a list of items from which to update a field, and also permits direct text entry like a standard
data-aware edit box.

TDBCheckBox Displays a check box that indicates the value of a Boolean field.

TDBRadioGroup Displays a set of mutually exclusive options for a field.

TDBLookupListBox Displays a list of items looked up from another dataset based on the value of a field.

TDBLookupComboBox Displays a list of items looked up from another dataset based on the value of a field, and also permits
direct text entry like a standard data-aware edit box.

TDBCtrlGrid Displays a configurable, repeating set of data-aware controls within a grid.

TDBRichEdit Displays formatted data from a field in an edit box.

Data controls are data-aware at design time. When you associate the data control with an active dataset while
building an application, you can immediately see live data in the control. You can use the Fields editor to scroll
through a dataset at design time to verify that your application displays data correctly without having to compile and
run the application. For more information about the Fields editor, see Creating Persistent Fields.

At runtime, data controls display data and, if your application, the control, and the dataset all permit it, a user can
edit data through the control.

Associating a Data Control with a Dataset
Data controls connect to datasets by using a data source. A data source component (TDataSource) acts as a conduit
between the control and a dataset containing data. Each data-aware control must be associated with a data source
component to have data to display and manipulate. Similarly, all datasets must be associated with a data source
component in order for their data to be displayed and manipulated in data-aware controls on a form.

Note: Data source components are also required for linking unnested datasets in master-detail relationships.

To associate a data control with a dataset
1 Place a dataset in a data module (or on a form), and set its properties as appropriate.
2 Place a data source in the same data module (or form). Using the Object Inspector, set its DataSet property to

the dataset you placed in step 1.

1768

3 Place a data control from the Data Access category of the Tool palette onto a form.
4 Using the Object Inspector, set the DataSource property of the control to the data source component you placed

in step 2.
5 Set the DataField property of the control to the name of a field to display, or select a field name from the drop-

down list for the property. This step does not apply to TDBGrid, TDBCtrlGrid, and TDBNavigator because they
access all available fields in the dataset.

6 Set the Active property of the dataset to True to display data in the control.

For more information about managing the link between the data control and its dataset, see

Changing the Associated Dataset at Runtime
Enabling and Disabling the Data Source
Responding to Changes Mediated by the Data Source

Changing the Associated Dataset at Runtime
In Associating a Data Control with a Dataset, the datasource was associated with its dataset by setting the
DataSet property at design time. At runtime, you can switch the dataset for a data source component as needed.
For example, the following code swaps the dataset for the CustSource data source component between the dataset
components named Customers and Orders:

[Delphi]
with CustSource do begin
 if (DataSet = Customers) then
 DataSet := Orders
 else
 DataSet := Customers;
end;

[C++]
if (CustSource->DataSet == Customers)
 CustSource->DataSet = Orders;
else
 CustSource->DataSet = Customers;

You can also set the DataSet property to a dataset on another form to synchronize the data controls on two forms.
For example:

[Delphi]
procedure TForm2.FormCreate (Sender : TObject);
begin
 DataSource1.Dataset := Form1.Table1;
end;

[C++]
void __fastcall TForm2::FormCreate(TObject *Sender)
{
 DataSource1->DataSet = Form1->Table1;
}

1769

Enabling and Disabling the Data Source
The data source has an Enabled property that determines if it is connected to its dataset. When Enabled is True,
the data source is connected to a dataset.

You can temporarily disconnect a single data source from its dataset by setting Enabled to False. When Enabled is
False, all data controls attached to the data source component go blank and become inactive until Enabled is set to
True. It is recommended, however, to control access to a dataset through a dataset component's DisableControls
and EnableControls methods because they affect all attached data sources.

Responding to Changes Mediated by the Data Source
Because the data source provides the link between the data control and its dataset, it mediates all of the
communication that occurs between the two. Typically, the data-aware control automatically responds to changes
in the dataset. However, if your user interface is using controls that are not data-aware, you can use the events of
a data source component to manually provide the same sort of response.

The OnDataChange event occurs whenever the data in a record may have changed, including field edits or when
the cursor moves to a new record. This event is useful for making sure the control reflects the current field values
in the dataset, because it is triggered by all changes. Typically, an OnDataChange event handler refreshes the value
of a non-data-aware control that displays field data.

The UpdateData event occurs when the data in the current record is about to be posted. For instance, an
OnUpdateData event occurs after Post is called, but before the data is actually posted to the underlying database
server or local cache.

The StateChange event occurs when the state of the dataset changes. When this event occurs, you can examine
the dataset's State property to determine its current state.

For example, the following OnStateChange event handler enables or disables buttons or menu items based on the
current state:

[Delphi]
procedure Form1.DataSource1.StateChange(Sender: TObject);
begin
 CustTableEditBtn.Enabled := (CustTable.State = dsBrowse);
 CustTableCancelBtn.Enabled := CustTable.State in [dsInsert, dsEdit, dsSetKey];
 CustTableActivateBtn.Enabled := CustTable.State in [dsInactive];
 .
 .
 .
end;

[C++]
void __fastcall TForm1::DataSource1StateChange(TObject *Sender)
{
 CustTableActivateBtn->Enabled = (CustTable->State == dsInactive);
 CustTableEditBtn->Enabled = (CustTable->State == dsBrowse);
 CustTableCancelBtn->Enabled = (CustTable->State == dsInsert ||
 CustTable->State == dsEdit ||
 CustTable->State == dsSetKey);
 .
 .
 .
}

Note: For more information about dataset states, see Determining Dataset States.

1770

Editing and Updating Data
All data controls except the navigator display data from a database field. In addition, you can use them to edit and
update data as long as the underlying dataset allows it.

Note: Unidirectional datasets never permit users to edit and update data.

The following topics describe how to allow users to edit data using data controls:

Enabling Editing in Controls On User Entry
Editing Data in a Control

Enabling Editing in Controls On User Entry
A dataset must be in dsEdit state to permit editing to its data. If the data source's AutoEdit property is True (the
default), the data control handles the task of putting the dataset into dsEdit mode as soon as the user tries to edit
its data.

If AutoEdit is False, you must provide an alternate mechanism for putting the dataset into edit mode. One such
mechanism is to use a TDBNavigator control with an Edit button, which lets users explicitly put the dataset into edit
mode. For more information about TDBNavigator, see Navigating and manipulating records. Alternately, you can
write code that calls the dataset's Edit method when you want to put the dataset into edit mode.

Editing Data in a Control
A data control can only post edits to its associated dataset if the dataset's CanModify property is True. CanModify
is always False for unidirectional datasets. Some datasets have a ReadOnly property that lets you specify whether
CanModify is True.

Note: Whether a dataset can update data depends on whether the underlying database table permits updates.

Even if the dataset's CanModify property is True, the Enabled property of the data source that connects the dataset
to the control must be True as well before the control can post updates back to the database table. The Enabled
property of the data source determines whether the control can display field values from the dataset, and therefore
also whether a user can edit and post values. If Enabled is True (the default), controls can display field values.

Finally, you can control whether the user can even enter edits to the data that is displayed in the control. The
ReadOnly property of the data control determines if a user can edit the data displayed by the control. If False (the
default), users can edit data. Clearly, you will want to ensure that the control's ReadOnly property is True when the
dataset's CanModify property is False. Otherwise, you give users the false impression that they can affect the data
in the underlying database table.

In all data controls except TDBGrid, when you modify a field, the modification is copied to the underlying dataset
when you Tab from the control. If you press Esc before you Tab from a field, the data control abandons the
modifications, and the value of the field reverts to the value it held before any modifications were made.

In TDBGrid, modifications are posted when you move to a different record; you can press Esc in any record of a field
before moving to another record to cancel all changes to the record.

When a record is posted, Delphi checks all data-aware controls associated with the dataset for a change in status.
If there is a problem updating any fields that contain modified data, Delphi raises an exception, and no modifications
are made to the record.

Note: If your application caches updates (for example, using a client dataset), all modifications are posted to an
internal cache. These modifications are not applied to the underlying database table until you call the datas
et's ApplyUpdates method.

1771

Disabling and Enabling Data Display
When your application iterates through a dataset or performs a search, you should temporarily prevent refreshing
of the values displayed in data-aware controls each time the current record changes. Preventing refreshing of values
speeds the iteration or search and prevents annoying screen-flicker.

DisableControls is a dataset method that disables display for all data-aware controls linked to a dataset. As soon as
the iteration or search is over, your application should immediately call the dataset's EnableControls method to re-
enable display for the controls.

Usually you disable controls before entering an iterative process. The iterative process itself should take place inside
a try...finally statement so that you can re-enable controls even if an exception occurs during processing. The
finally clause should call EnableControls. The following code illustrates how you might use DisableControls and
EnableControls in this manner:

[Delphi]
CustTable.DisableControls;
try
CustTable.First; { Go to first record, which sets EOF False }
while not CustTable.EOF do { Cycle until EOF is True }
begin
{ Process each record here }
 .
 .
 .
CustTable.Next; { EOF False on success; EOF True when Next fails on last record }
end;
finally
CustTable.EnableControls;
end;

[C++]
CustTable->DisableControls();
try
{
 // cycle through all records of the dataset
 for (CustTable->First(); !CustTable->EOF; CustTable->Next())
 {
 // Process each record here
 .
 .
 .
 }
}
__finally
{
 CustTable->EnableControls();
}

Refreshing Data Display
The Refresh method for a dataset flushes local buffers and re-fetches data for an open dataset. You can use this
method to update the display in data-aware controls if you think that the underlying data has changed because other
applications have simultaneous access to the data used in your application. If you are using cached updates, before
you refresh the dataset you must apply any updates the dataset has currently cached.

1772

Refreshing can sometimes lead to unexpected results. For example, if a user is viewing a record deleted by another
application, then the record disappears the moment your application calls Refresh. Data can also appear to change
if another user changes a record after you originally fetched the data and before you call Refresh.

Enabling Mouse, Keyboard, and Timer Events
The Enabled property of a data control determines whether it responds to mouse, keyboard, or timer events, and
passes information to its data source. The default setting for this property is True.

To prevent mouse, keyboard, or timer events from reaching a data control, set its Enabled property to False. When
Enabled is False, the data source that connects the control to its dataset does not receive information from the data
control. The data control continues to display data, but the text displayed in the control is dimmed.

Choosing How to Organize the Data
When you build the user interface for your database application, you have choices to make about how you want to
organize the display of information and the controls that manipulate that information.

One of the first decisions to make is whether you want to display a single record at a time, or multiple records.

In addition, you will want to add controls to navigate and manipulate records. The TDBNavigator control provides
built-in support for many of the functions you may want to perform.

Displaying a Single Record
In many applications, you may only want to provide information about a single record of data at a time. For example,
an order-entry application may display the information about a single order without indicating what other orders are
currently logged. This information probably comes from a single record in an orders dataset.

Applications that display a single record are usually easy to read and understand, because all database information
is about the same thing (in the previous case, the same order). The data-aware controls in these user interfaces
represent a single field from a database record. The Data Controls category of the Tool palette provides a wide
selection of controls to represent different kinds of fields. These controls are typically data-aware versions of other
controls that are available on the Tool palette. For example, the TDBEdit control is a data-aware version of the
standard TEdit control which enables users to see and edit a text string.

Which control you use depends on the type of data (text, formatted text, graphics, boolean information, and so on)
contained in the field. The following topics describe these components in more detail:

Displaying Data as Labels
Displaying and Editing Fields in an Edit Box
Displaying and Editing Text in a Memo Control
Displaying and Editing Text in a Rich Edit Memo Control
Displaying and Editing Graphics Fields in an Image Control
Displaying and Editing Data in List and Combo Boxes
Handling Boolean Field Values with Check Boxes
Restricting Field Values with Radio Controls

Displaying Data as Labels
TDBText is a read-only control similar to the TLabel component on the Standard category of the Tool palette. A
TDBText control is useful when you want to provide display-only data on a form that allows user input in other
controls. For example, suppose a form is created around the fields in a customer list table, and that once the user

1773

enters a street address, city, and state or province information in the form, you use a dynamic lookup to automatically
determine the zip code field from a separate table. A TDBText component tied to the zip code table could be used
to display the zip code field that matches the address entered by the user.

TDBText gets the text it displays from a specified field in the current record of a dataset. Because TDBText gets its
text from a dataset, the text it displays is dynamic—the text changes as the user navigates the database table.
Therefore you cannot specify the display text of TDBText at design time as you can with TLabel.

Note: When you place a TDBText component on a form, make sure its AutoSize property is True (the default) to
ensure that the control resizes itself as necessary to display data of varying widths. If AutoSize is False, and
the control is too small, data display is clipped.

Displaying and Editing Fields in an Edit Box
TDBEdit is a data-aware version of an edit box component. TDBEdit displays the current value of a data field to
which it is linked and permits it to be edited using standard edit box techniques.

For example, suppose CustomersSource is a TDataSource component that is active and linked to an open
TClientDataSet called CustomersTable. You can then place a TDBEdit component on a form and set its properties
as follows:

DataSource: CustomersSource
DataField: CustNo

The data-aware edit box component immediately displays the value of the current row of the CustNo column of the
CustomersTable dataset, both at design time and at runtime.

Displaying and Editing Text in a Memo Control
TDBMemo is a data-aware component—similar to the standard TMemo component—that can display lengthy text
data. TDBMemo displays multi-line text, and permits a user to enter multi-line text as well. You can use
TDBMemo controls to display large text fields or text data contained in binary large object (BLOB) fields.

By default, TDBMemo permits a user to edit memo text. To prevent editing, set the ReadOnly property of the memo
control to True. To display tabs and permit users to enter them in a memo, set the WantTabs property to True. To
limit the number of characters users can enter into the database memo, use the MaxLength property. The default
value for MaxLength is 0, meaning that there is no character limit other than that imposed by the operating system.

Several properties affect how the database memo appears and how text is entered. You can supply scroll bars in
the memo with the ScrollBars property. To prevent word wrap, set the WordWrap property to False. The Alignment
property determines how the text is aligned within the control. Possible choices are taLeftJustify (the default),
taCenter, and taRightJustify. To change the font of the text, use the Font property.

At runtime, users can cut, copy, and paste text to and from a database memo control. You can accomplish the same
task programmatically by using the CutToClipboard, CopyToClipboard, and PasteFromClipboard methods.

Because the TDBMemo can display large amounts of data, it can take time to populate the display at runtime. To
reduce the time it takes to scroll through data records, TDBMemo has an AutoDisplay property that controls whether
the accessed data should be displayed automatically. If you set AutoDisplay to False, TDBMemo displays the field
name rather than actual data. Double-click inside the control to view the actual data.

1774

Displaying and Editing Text in a Rich Edit Memo Control
TDBRichEdit is a data-aware component—similar to the standard TRichEdit component—that can display formatted
text stored in a binary large object (BLOB) field. TDBRichEdit displays formatted, multi-line text, and permits a user
to enter formatted multi-line text as well.

Note: While TDBRichEdit provides properties and methods to enter and work with rich text, it does not provide any
user interface components to make these formatting options available to the user. Your application must
implement the user interface to surface rich text capabilities.

By default, TDBRichEdit permits a user to edit memo text. To prevent editing, set the ReadOnly property of the rich
edit control to True. To display tabs and permit users to enter them in a memo, set the WantTabs property to True.
To limit the number of characters users can enter into the database memo, use the MaxLength property. The default
value for MaxLength is 0, meaning that there is no character limit other than that imposed by the operating system.

Because the TDBRichEdit can display large amounts of data, it can take time to populate the display at runtime. To
reduce the time it takes to scroll through data records, TDBRichEdit has an AutoDisplay property that controls
whether the accessed data should be displayed automatically. If you set AutoDisplay to False, TDBRichEdit displays
the field name rather than actual data. Double-click inside the control to view the actual data.

Displaying and Editing Graphics Fields in an Image Control
TDBImage is a data-aware control that displays graphics contained in BLOB fields.

By default, TDBImage permits a user to edit a graphics image by cutting and pasting to and from the Clipboard using
the CutToClipboard, CopyToClipboard, and PasteFromClipboard methods. You can, instead, supply your own
editing methods attached to the event handlers for the control.

By default, an image control displays as much of a graphic as fits in the control, cropping the image if it is too big.
You can set the Stretch property to True to resize the graphic to fit within an image control as it is resized.

Because the TDBImage can display large amounts of data, it can take time to populate the display at runtime. To
reduce the time it takes scroll through data records, TDBImage has an AutoDisplay property that controls whether
the accessed data should automatically displayed. If you set AutoDisplay to False, TDBImage displays the field
name rather than actual data. Double-click inside the control to view the actual data.

Displaying and Editing Data in List and Combo Boxes
There are four data controls that provide the user with a set of default data values to choose from at runtime. These
are data-aware versions of standard list and combo box controls:

TDBListBox, which displays a scrollable list of items from which a user can choose to enter in a data field. A
data-aware list box displays a default value for a field in the current record and highlights its corresponding entry
in the list. If the current row's field value is not in the list, no value is highlighted in the list box. When a user
selects a list item, the corresponding field value is changed in the underlying dataset.
TDBComboBox, which combines the functionality of a data-aware edit control and a drop-down list. At runtime
it can display a drop-down list from which a user can pick from a predefined set of values, and it can permit a
user to enter an entirely different value.
TDBLookupListBox, which behaves like TDBListBox except the list of display items is looked up in another
dataset.
TDBLookupComboBox, which behaves like TDBComboBox except the list of display items is looked up in
another dataset.

The following topics describe these components in more detail:

Using TDBListBox and TDBComboBox

1775

Displaying and Editing Data in Lookup List and Combo Boxes

Note: At runtime, users can use an incremental search to find list box items. When the control has focus, for
example, typing 'ROB' selects the first item in the list box beginning with the letters 'ROB'. Typing an additional
'E' selects the first item starting with 'ROBE', such as 'Robert Johnson'. The search is case-insensitive.
Backspace and Esc cancel the current search string (but leave the selection intact), as does a two second
pause between keystrokes.

Using TDBListBox and TDBComboBox
When using TDBListBox or TDBComboBox, you must use the String List editor at design time to create the list of
items to display. To bring up the String List editor, click the ellipsis button for the Items property in the Object
Inspector. Then type in the items that you want to have appear in the list. At runtime, use the methods of the
Items property to manipulate its string list.

When a TDBListBox or TDBComboBox control is linked to a field through its DataField property, the field value
appears selected in the list. If the current value is not in the list, no item appears selected. However,
TDBComboBox displays the current value for the field in its edit box, regardless of whether it appears in the Items list.

For TDBListBox, the Height property determines how many items are visible in the list box at one time. The
IntegralHeight property controls how the last item can appear. If IntegralHeight is False (the default), the bottom of
the list box is determined by the ItemHeight property, and the bottom item may not be completely displayed. If
IntegralHeight is True, the visible bottom item in the list box is fully displayed.

For TDBComboBox, the Style property determines user interaction with the control. By default, Style is
csDropDown, meaning a user can enter values from the keyboard, or choose an item from the drop-down list. The
following properties determine how the Items list is displayed at runtime:

Style determines the display style of the component:
csDropDown (default): Displays a drop-down list with an edit box in which the user can enter text. All items are
strings and have the same height.
csSimple: Combines an edit control with a fixed size list of items that is always displayed. When setting Style
to csSimple, be sure to increase the Height property so that the list is displayed.
csDropDownList: Displays a drop-down list and edit box, but the user cannot enter or change values that are
not in the drop-down list at runtime.
csOwnerDrawFixed and csOwnerDrawVariable: Allows the items list to display values other than strings (for
example, bitmaps) or to use different fonts for individual items in the list.
DropDownCount: the maximum number of items displayed in the list. If the number of Items is greater than
DropDownCount, the user can scroll the list. If the number of Items is less than DropDownCount, the list will be
just large enough to display all the Items.
ItemHeight: The height of each item when style is csOwnerDrawFixed.
Sorted: If True, then the Items list is displayed in alphabetical order.

Displaying and Editing Data in Lookup List and Combo Boxes
Lookup list boxes and lookup combo boxes (TDBLookupListBox and TDBLookupComboBox) present the user with
a restricted list of choices from which to set a valid field value. When a user selects a list item, the corresponding
field value is changed in the underlying dataset.

For example, consider an order form whose fields are tied to the OrdersTable. OrdersTable contains a CustNo field
corresponding to a customer ID, but OrdersTable does not have any other customer information. The
CustomersTable, on the other hand, contains a CustNo field corresponding to a customer ID, and also contains

1776

additional information, such as the customer's company and mailing address. It would be convenient if the order
form enabled a clerk to select a customer by company name instead of customer ID when creating an invoice. A
TDBLookupListBox that displays all company names in CustomersTable enables a user to select the company name
from the list, and set the CustNo on the order form appropriately.

These lookup controls derive the list of display items from one of two sources:

A lookup field defined for a dataset. To specify list box items using a lookup field, the dataset to which you link
the control must already define a lookup field.

To specify the lookup field for the list box items
1 Set the DataSource property of the list box to the data source for the dataset containing the lookup field to use.
2 Choose the lookup field to use from the drop-down list for the DataField property.
3 When you activate a table associated with a lookup control, the control recognizes that its data field is a lookup

field, and displays the appropriate values from the lookup.

A secondary data source, data field, and key. If you have not defined a lookup field for a dataset, you can establish
a similar relationship using a secondary data source, a field value to search on in the secondary data source, and
a field value to return as a list item.

To specify a secondary data source for list box items
1 Set the DataSource property of the list box to the data source for the control.
2 Choose a field into which to insert looked-up values from the drop-down list for the DataFieldproperty. The field

you choose cannot be a lookup field.
3 Set the ListSource property of the list box to the data source for the dataset that contain the field whose values

you want to look up.
4 Choose a field to use as a lookup key from the drop-down list for the KeyField property. The drop-down list

displays fields for the dataset associated with data source you specified in Step 3. The field you choose need
not be part of an index, but if it is, lookup performance is even faster.

5 Choose a field whose values to return from the drop-down list for the ListField property. The drop-down list
displays fields for the dataset associated with the data source you specified in Step 3.

When you activate a table associated with a lookup control, the control recognizes that its list items are derived from
a secondary source, and displays the appropriate values from that source.

To specify the number of items that appear at one time in a TDBLookupListBox control, use the RowCount property.
The height of the list box is adjusted to fit this row count exactly.

To specify the number of items that appear in the drop-down list of TDBLookupComboBox, use the DropDownRows
property instead.

Note: You can also set up a column in a data grid to act as a lookup combo box. For information on how to do this,
see Defining a lookup list column.

Handling Boolean Field Values with Check Boxes
TDBCheckBox is a data-aware check box control. It can be used to set the values of Boolean fields in a dataset.
For example, a customer invoice form might have a check box control that when checked indicates the customer is
tax-exempt, and when unchecked indicates that the customer is not tax-exempt.

The data-aware check box control manages its checked or unchecked state by comparing the value of the current
field to the contents of ValueChecked and ValueUnchecked properties. If the field value matches the

1777

ValueChecked property, the control is checked. Otherwise, if the field matches the ValueUnchecked property, the
control is unchecked.

Note: The values in ValueChecked and ValueUnchecked cannot be identical.

Set the ValueChecked property to a value the control should post to the database if the control is checked when the
user moves to another record. By default, this value is set to "true," but you can make it any alphanumeric value
appropriate to your needs. You can also enter a semicolon-delimited list of items as the value of ValueChecked. If
any of the items matches the contents of that field in the current record, the check box is checked. For example, you
can specify a ValueChecked string like:

[Delphi]
DBCheckBox1.ValueChecked := 'True;Yes;On';

[C++]
DBCheckBox1->ValueChecked = "true;Yes;On";

If the field for the current record contains values of "True," "Yes," or "On," then the check box is checked. Comparison
of the field to ValueChecked strings is case-insensitive. If a user checks a box for which there are multiple
ValueChecked strings, the first string is the value that is posted to the database.

Set the ValueUnchecked property to a value the control should post to the database if the control is not checked
when the user moves to another record. By default, this value is set to "false," but you can make it any alphanumeric
value appropriate to your needs. You can also enter a semicolon-delimited list of items as the value of
ValueUnchecked. If any of the items matches the contents of that field in the current record, the check box is
unchecked.

A data-aware check box is disabled whenever the field for the current record does not contain one of the values
listed in the ValueChecked or ValueUnchecked properties.

If the field with which a check box is associated is a logical field, the check box is always checked if the contents of
the field is True, and it is unchecked if the contents of the field is False. In this case, strings entered in the
ValueChecked and ValueUnchecked properties have no effect on logical fields.

Restricting Field Values with Radio Controls
TDBRadioGroup is a data-aware version of a radio group control. It enables you to set the value of a data field with
a radio button control where there is a limited number of possible values for the field. The radio group includes one
button for each value a field can accept. Users can set the value for a data field by selecting the desired radio button.

The Items property determines the radio buttons that appear in the group. Items is a string list. One radio button is
displayed for each string in Items, and each string appears to the right of a radio button as the button's label.

If the current value of a field associated with a radio group matches one of the strings in the Items property, that
radio button is selected. For example, if three strings, "Red," "Yellow," and "Blue," are listed for Items, and the field
for the current record contains the value "Blue," then the third button in the group appears selected.

Note: If the field does not match any strings in Items, a radio button may still be selected if the field matches a string
in the Values property. If the field for the current record does not match any strings in Items or Values, no
radio button is selected.

The Values property can contain an optional list of strings that can be returned to the dataset when a user selects
a radio button and posts a record. Strings are associated with buttons in numeric sequence. The first string is
associated with the first button, the second string with the second button, and so on. For example, suppose Items
contains "Red," "Yellow," and "Blue," and Values contains "Magenta," "Yellow," and "Cyan." If a user selects the
button labeled "Red," "Magenta" is posted to the database.

1778

If strings for Values are not provided, the Item string for a selected radio button is returned to the database when a
record is posted.

Displaying Multiple Records
Sometimes you want to display many records in the same form. For example, an invoicing application might show
all the orders made by a single customer on the same form.

To display multiple records, use a grid control. Grid controls provide a multi-field, multi-record view of data that can
make your application's user interface more compelling and effective. They are discussed in Viewing and editing
data with TDBGrid and Creating a grid that contains other data-aware controls.

Note: You can't display multiple records when using a unidirectional dataset.

You may want to design a user interface that displays both fields from a single record and grids that represent multiple
records. There are two models that combine these two approaches:

Master-detail forms: You can represent information from both a master table and a detail table by including
both controls that display a single field and grid controls. For example, you could display information about a
single customer with a detail grid that displays the orders for that customer. For information about linking the
underlying tables in a master-detail form, see Creating Master/detail Relationships and Establishing master/
detail relationships using parameters.
Drill-down forms: In a form that displays multiple records, you can include single field controls that display
detailed information from the current record only. This approach is particularly useful when the records include
long memos or graphic information. As the user scrolls through the records of the grid, the memo or graphic
updates to represent the value of the current record. Setting this up is very easy. The synchronization between
the two displays is automatic if the grid and the memo or image control share a common data source.

Tip: It is generally not a good idea to combine these two approaches on a single form. It is usually confusing for
users to understand the data relationships in such forms.

Viewing and Editing Data with TDBGrid
A TDBGrid control lets you view and edit records in a dataset in a tabular grid format.

Three factors affect the appearance of records displayed in a grid control:

Existence of persistent column objects defined for the grid using the Columns editor. Persistent column objects
provide great flexibility setting grid and data appearance. For information on using persistent columns, see
Creating a customized grid.
Creation of persistent field components for the dataset displayed in the grid. For more information about creating
persistent field components using the Fields editor, see Working with field components.
The dataset's ObjectView property setting for grids displaying ADT and array fields. See Displaying ADT and
array fields.

A grid control has a Columns property that is itself a wrapper on a TDBGridColumns object. TDBGridColumns is a
collection of TColumn objects representing all of the columns in a grid control. You can use the Columns editor to
set up column attributes at design time, or use the Columns property of the grid to access the properties, events,
and methods of TDBGridColumns at runtime.

The following topics describe how to use the TDBGrid component:

Using a Grid Control in Its Default State
Creating a Customized Grid

1779

Displaying ADT and Array Fields
Setting Grid Options
Editing in the Grid
Controlling Grid Drawing
Responding to User Actions at Runtime

Using a Grid Control in Its Default State
The Stateproperty of the grid's Columns property indicates whether persistent column objects exist for the grid.
Columns.State is a runtime-only property that is automatically set for a grid. The default state is csDefault, meaning
that persistent column objects do not exist for the grid. In that case, the display of data in the grid is determined
primarily by the properties of the fields in the grid's dataset, or, if there are no persistent field components, by a
default set of display characteristics.

When the grid's Columns.State property is csDefault, grid columns are dynamically generated from the visible fields
of the dataset and the order of columns in the grid matches the order of fields in the dataset. Every column in the
grid is associated with a field component. Property changes to field components immediately show up in the grid.

Using a grid control with dynamically-generated columns is useful for viewing and editing the contents of arbitrary
tables selected at runtime. Because the grid's structure is not set, it can change dynamically to accommodate
different datasets. A single grid with dynamically-generated columns can display a Paradox table at one moment,
then switch to display the results of an SQL query when the grid's DataSource property changes or when the
DataSet property of the data source itself is changed.

You can change the appearance of a dynamic column at design time or runtime, but what you are actually modifying
are the corresponding properties of the field component displayed in the column. Properties of dynamic columns
exist only so long as a column is associated with a particular field in a single dataset. For example, changing the
Width property of a column changes the DisplayWidth property of the field associated with that column. Changes
made to column properties that are not based on field properties, such as Font, exist only for the lifetime of the
column.

If a grid's dataset consists of dynamic field components, the fields are destroyed each time the dataset is closed.
When the field components are destroyed, all dynamic columns associated with them are destroyed as well. If a
grid's dataset consists of persistent field components, the field components exist even when the dataset is closed,
so the columns associated with those fields also retain their properties when the dataset is closed.

Note: Changing a grid's Columns.State property to csDefault at runtime deletes all column objects in the grid (even
persistent columns), and rebuilds dynamic columns based on the visible fields of the grid's dataset.

Creating a Customized Grid
A customized grid is one for which you define persistent column objects that describe how a column appears and
how the data in the column is displayed. A customized grid lets you configure multiple grids to present different views
of the same dataset (different column orders, different field choices, and different column colors and fonts, for
example). A customized grid also enables you to let users modify the appearance of the grid at runtime without
affecting the fields used by the grid or the field order of the dataset.

Customized grids are best used with datasets whose structure is known at design time. Because they expect field
names established at design time to exist in the dataset, customized grids are not well suited to browsing arbitrary
tables selected at runtime.

1780

Understanding persistent columns
When you create persistent column objects for a grid, they are only loosely associated with underlying fields in a
grid's dataset. Default property values for persistent columns are dynamically fetched from a default source (the
associated field or the grid itself) until a value is assigned to the column property. Until you assign a column property
a value, its value changes as its default source changes. Once you assign a value to a column property, it no longer
changes when its default source changes.

For example, the default source for a column title caption is an associated field's DisplayLabel property. If you modify
the DisplayLabel property, the column title reflects that change immediately. If you then assign a string to the column
title's caption, the tile caption becomes independent of the associated field's DisplayLabel property. Subsequent
changes to the field's DisplayLabel property no longer affect the column's title.

Persistent columns exist independently from field components with which they are associated. In fact, persistent
columns do not have to be associated with field objects at all. If a persistent column's FieldName property is blank,
or if the field name does not match the name of any field in the grid's current dataset, the column's Field property is
NULL and the column is drawn with blank cells. If you override the cell's default drawing method, you can display
your own custom information in the blank cells. For example, you can use a blank column to display aggregated
values on the last record of a group of records that the aggregate summarizes. Another possibility is to display a
bitmap or bar chart that graphically depicts some aspect of the record's data.

Two or more persistent columns can be associated with the same field in a dataset. For example, you might display
a part number field at the left and right extremes of a wide grid to make it easier to find the part number without
having to scroll the grid.

Note: Because persistent columns do not have to be associated with a field in a dataset, and because multiple
columns can reference the same field, a customized grid's FieldCount property can be less than or equal to
the grid's column count. Also note that if the currently selected column in a customized grid is not associated
with a field, the grid's SelectedField property is NULL and the SelectedIndexproperty is –1.

Persistent columns can be configured to display grid cells as a combo box drop-down list of lookup values from
another dataset or from a static pick list, or as an ellipsis button (...) in a cell that can be clicked upon to launch
special data viewers or dialogs related to the current cell.

The following topics provide additional information about persistent columns:

Creating Persistent Columns
Deleting Persistent Columns
Arranging the Order of Persistent Columns
Setting Column Properties at Design Time
Defining a Lookup List Column
Putting a Button in a Column
Restoring Default Values to a Column

Creating Persistent Columns
To customize the appearance of grid at design time, you invoke the Columns editor to create a set of persistent
column objects for the grid. At runtime, the State property for a grid with persistent column objects is automatically
set to csCustomized.

To create persistent columns for a grid control
1 Select the grid component in the form.

1781

2 Invoke the Columns editor by double clicking on the grid's Columns property in the Object Inspector.

The Columns list box displays the persistent columns that have been defined for the selected grid. When you first
bring up the Columns editor, this list is empty because the grid is in its default state, containing only dynamic columns.

You can create persistent columns for all fields in a dataset at once, or you can create persistent columns on an
individual basis.

To create persistent columns for all fields
1 Right-click the grid to invoke the context menu and choose Add All Fields. Note that if the grid is not already

associated with a data source, Add All Fields is disabled. Associate the grid with a data source that has an active
dataset before choosing Add All Fields.

2 If the grid already contains persistent columns, a dialog box asks if you want to delete the existing columns, or
append to the column set. If you choose Yes, any existing persistent column information is removed, and all fields
in the current dataset are inserted by field name according to their order in the dataset. If you choose No, any
existing persistent column information is retained, and new column information, based on any additional fields
in the dataset, are appended to the dataset.

3 Click Close to apply the persistent columns to the grid and close the dialog box.

To create persistent columns individually
1 Choose the Add button in the Columns editor. The new column will be selected in the list box. The new column

is given a sequential number and default name (for example, 0 - TColumn).
2 To associate a field with this new column, set the FieldName property in the Object Inspector.
3 To set the title for the new column, expand the Title property in the Object Inspector and set its Caption property.
4 Close the Columns editor to apply the persistent columns to the grid and close the dialog box.

At runtime, you can switch to persistent columns by assigning csCustomized to the Columns.State property. Any
existing columns in the grid are destroyed and new persistent columns are built for each field in the grid's dataset.
You can then add a persistent column at runtime by calling the Add method for the column list:

[Delphi]
DBGrid1.Columns.Add;

[C++]
DBGrid1->Columns->Add();

Deleting Persistent Columns
Deleting a persistent column from a grid is useful for eliminating fields that you do not want to display.

To remove a persistent column from a grid
1 Double-click the grid to display the Columns editor.
2 Select the field to remove in the Columns list box.

1782

3 Click Delete (you can also use the context menu or Del key, to remove a column).

Note: If you delete all the columns from a grid, the Columns.State property reverts to its csDefault state and
automatically build dynamic columns for each field in the dataset.

You can delete a persistent column at runtime by simply freeing the column object:

[Delphi]
DBGrid1.Columns[5].Free;

[C++]
delete DBGrid1->Columns->Items[5];

Arranging the Order of Persistent Columns
The order in which columns appear in the Columns editor is the same as the order the columns appear in the grid.
You can change the column order by dragging and dropping columns within the Columns list box.

To change the order of a column
1 Select the column in the Columns list box.
2 Drag it to a new location in the list box.

You can also change the column order at runtime by clicking on the column title and dragging the column to a new
position.

Note: Reordering persistent fields in the Fields editor also reorders columns in a default grid, but not a custom grid.

Warning: You cannot reorder columns in grids containing both dynamic columns and dynamic fields at design time,
since there is nothing persistent to record the altered field or column order.

At runtime, a user can use the mouse to drag a column to a new location in the grid if its DragMode property is set
to dmManual. Reordering the columns of a grid with a State property of csDefault state also reorders field
components in the dataset underlying the grid. The order of fields in the physical table is not affected. To prevent a
user from rearranging columns at runtime, set the grid's DragMode property to dmAutomatic.

At runtime, the grid's OnColumnMoved event fires after a column has been moved.

Setting Column Properties at Design Time
Column properties determine how data is displayed in the cells of that column. Most column properties obtain their
default values from properties associated with another component (called the default source) such as a grid or an
associated field component.

To set a column's properties, select the column in The Columns editor and set its properties in the Object
Inspector. The following table summarizes key column properties you can set.

Column properties
Property Purpose

Alignment Left justifies, right justifies, or centers the field data in the column. Default source: TField.Alignment.

1783

ButtonStyle cbsAuto: (default) Displays a drop-down list if the associated field is a lookup field, or if the column's
PickList property contains data.

cbsEllipsis: Displays an ellipsis (...) button to the right of the cell. Clicking on the button fires the grid's
OnEditButtonClick event.

cbsNone: The column uses only the normal edit control to edit data in the column.

Color Specifies the background color of the cells of the column. Default source: TDBGrid.Color. (For text
foreground color, see the Font property.)

DropDownRows The number of lines of text displayed by the drop-down list. Default: 7.

Expanded Specifies whether the column is expanded. Only applies to columns representing ADT or array fields.

FieldName Specifies the field name associated with this column. This can be blank.

ReadOnly True: The data in the column cannot be edited by the user.

False: (default) The data in the column can be edited.

Width Specifies the width of the column in screen pixels. Default source: TField.DisplayWidth.

Font Specifies the font type, size, and color used to draw text in the column. Default source: TDBGrid.Font.

PickList Contains a list of values to display in a drop-down list in the column.

Title Sets properties for the title of the selected column.

The following table summarizes the options you can specify for the Title property.

Expanded TColumn Title properties
Property Purpose

Alignment Left justifies (default), right justifies, or centers the caption text in the column title.

Caption Specifies the text to display in the column title. Default source: TField.DisplayLabel.

Color Specifies the background color used to draw the column title cell. Default source: TDBGrid.FixedColor.

Font Specifies the font type, size, and color used to draw text in the column title. Default source: TDBGrid.TitleFont.

Defining a Lookup List Column
You can create a column that displays a drop-down list of values, similar to a lookup combo box control. To specify
that the column acts like a combo box, set the column's ButtonStyle property to cbsAuto. Once you populate the list
with values, the grid automatically displays a combo box-like drop-down button when a cell of that column is in edit
mode.

There are two ways to populate that list with the values for users to select:

You can fetch the values from a lookup table. To make a column display a drop-down list of values drawn from
a separate lookup table, you must define a lookup field in the dataset. Once the lookup field is defined, set the
column's FieldName to the lookup field name. The drop-down list is automatically populated with lookup values
defined by the lookup field.
You can specify a list of values explicitly at design time. To enter the list values at design time, double-click the
PickList property for the column in the Object Inspector. This brings up the String List editor, where you can
enter the values that populate the pick list for the column.

By default, the drop-down list displays 7 values. You can change the length of this list by setting the DropDownRows
property.

1784

Note: To restore a column with an explicit pick list to its normal behavior, delete all the text from the pick list using
the String List editor.

Putting a Button in a Column
A column can display an ellipsis button (...) to the right of the normal cell editor. Ctrl+Enter or a mouse click fires the
grid's OnEditButtonClick event. You can use the ellipsis button to bring up forms containing more detailed views of
the data in the column. For example, in a table that displays summaries of invoices, you could set up an ellipsis
button in the invoice total column to bring up a form that displays the items in that invoice, or the tax calculation
method, and so on. For graphic fields, you could use the ellipsis button to bring up a form that displays an image.

To create an ellipsis button in a column
1 Select the column in the Columns list box.
2 Set ButtonStyle to cbsEllipsis.
3 Write an OnEditButtonClick event handler.

Restoring Default Values to a Column
At runtime you can test a column's AssignedValues property to determine whether a column property has been
explicitly assigned. Values that are not explicitly defined are dynamically based on the associated field or the grid's
defaults.

You can undo property changes made to one or more columns. In the Columns editor, select the column or columns
to restore, and then select Restore Defaults from the context menu. Restore defaults discards assigned property
settings and restores a column's properties to those derived from its underlying field component

At runtime, you can reset all default properties for a single column by calling the column's RestoreDefaults method.
You can also reset default properties for all columns in a grid by calling the column list's RestoreDefaults method:

[Delphi]
DBGrid1.Columns.RestoreDefaults;

[C++]
DBGrid1->Columns->RestoreDefaults();

Displaying ADT and Array Fields
Sometimes the fields of the grid's dataset do not represent simple values such as text, graphics, numerical values,
and so on. Some database servers allow fields that are a composite of simpler data types, such as ADT fields or
array fields.

There are two ways a grid can display composite fields:

It can "flatten out" the field so that each of the simpler types that make up the field appears as a separate field
in the dataset.
It can display composite fields in a single column, reflecting the fact that they are a single field.

1785

When a composite field is flattened out, its constituents appear as separate fields that reflect their common source
only in that each field name is preceded by the name of the common parent field in the underlying database table.

To display composite fields as if they were flattened out, set the dataset's ObjectView property to False. The dataset
stores composite fields as a set of separate fields, and the grid reflects this by assigning each constituent part a
separate column.

When displaying composite fields in a single column, the column can be expanded and collapsed by clicking on the
arrow in the title bar of the field, or by setting the Expanded property of the column:

When a column is expanded, each child field appears in its own sub-column with a title bar that appears below
the title bar of the parent field. That is, the title bar for the grid increases in height, with the first row giving the
name of the composite field, and the second row subdividing that for the individual parts. Fields that are not
composites appear with title bars that are extra high. This expansion continues for constituents that are in turn
composite fields (for example, a detail table nested in a detail table), with the title bar growing in height
accordingly.
When the field is collapsed, only one column appears with an uneditable comma delimited string containing the
child fields.

To display a composite field in an expanding and collapsing column, set the dataset's ObjectView property to
True. The dataset stores the composite field as a single field component that contains a set of nested sub-fields.
The grid reflects this in a column that can expand or collapse

The following figure shows a grid with an ADT field and an array field. The dataset's ObjectView property is set to
False so that each child field has a column.

TDBGrid control with ObjectView set to False

The following figures show the grid with an ADT field and an array field. The first figure shows the fields collapsed.
In this state they cannot be edited. The second figure shows the fields expanded. The fields are expanded and
collapsed by clicking on the arrow in the fields title bar.

TDBGrid control with Expanded set to False

TDBGrid control with Expanded set to True

1786

The following table lists the properties that affect the way ADT and array fields appear in a TDBGrid:

Properties that affect the way composite fields appear
Property Object Purpose

Expandable TColumn Indicates whether the column can be expanded to show child fields in separate, editable columns.
(read-only)

Expanded TColumn Specifies whether the column is expanded.

MaxTitleRows TDBGrid Specifies the maximum number of title rows that can appear in the grid

ObjectView TDataSet Specifies whether fields are displayed flattened out, or in object mode, where each object field can
be expanded and collapsed.

ParentColumn TColumn Refers to the TColumn object that owns the child field's column.

Note: In addition to ADT and array fields, some datasets include fields that refer to another dataset (dataset fields)
or a record in another dataset (reference) fields. Data-aware grids display such fields as "(DataSet)" or
"(Reference)", respectively. At runtime an ellipsis button appears to the right. Clicking on the ellipsis brings
up a new form with a grid displaying the contents of the field. For dataset fields, this grid displays the dataset
that is the field's value. For reference fields, this grid contains a single row that displays the record from
another dataset.

Setting Grid Options
You can use the grid Options property at design time to control basic grid behavior and appearance at runtime. When
a grid component is first placed on a form at design time, the Options property in the Object Inspector is displayed
with a + (plus) sign to indicate that the Options property can be expanded to display a series of Boolean properties
that you can set individually. To view and set these properties, click on the + sign. The list of options in the Object
Inspector below the Options property. The + sign changes to a –(minus) sign, that collapses the list back when you
click it.

The following table lists the Options properties that can be set, and describes how they affect the grid at runtime.

Expanded TDBGrid Options properties
Option Purpose

dgEditing True: (Default). Enables editing, inserting, and deleting records in the grid.

False: Disables editing, inserting, and deleting records in the grid.

dgAlwaysShowEditor True: When a field is selected, it is in Edit state.

False: (Default). A field is not automatically in Edit state when selected.

dgTitles True: (Default). Displays field names across the top of the grid.

False: Field name display is turned off.

dgIndicator True: (Default). The indicator column is displayed at the left of the grid, and the current record
indicator (an arrow at the left of the grid) is activated to show the current record. On insert, the arrow
becomes an asterisk. On edit, the arrow becomes an I-beam.

False: The indicator column is turned off.

dgColumnResize True: (Default). Columns can be resized by dragging the column rulers in the title area. Resizing
changes the corresponding width of the underlying TField component.

False: Columns cannot be resized in the grid.

dgColLines True: (Default). Displays vertical dividing lines between columns.

False: Does not display dividing lines between columns.

1787

dgRowLines True: (Default). Displays horizontal dividing lines between records.

False: Does not display dividing lines between records.

dgTabs True: (Default). Enables tabbing between fields in records.

False: Tabbing exits the grid control.

dgRowSelect True: The selection bar spans the entire width of the grid.

False: (Default). Selecting a field in a record selects only that field.

dgAlwaysShowSelection True: (Default). The selection bar in the grid is always visible, even if another control has focus.

False: The selection bar in the grid is only visible when the grid has focus.

dgConfirmDelete True: (Default). Prompt for confirmation to delete records (Ctrl+Del).

False: Delete records without confirmation.

dgCancelOnExit True: (Default). Cancels a pending insert when focus leaves the grid. This option prevents
inadvertent posting of partial or blank records.

False: Permits pending inserts.

dgMultiSelect True: Allows user to select noncontiguous rows in the grid using Ctrl+Shift or Shift+ arrow keys.

False: (Default). Does not allow user to multi-select rows.

Editing in the Grid
At runtime, you can use a grid to modify existing data and enter new records, if the following default conditions are
met:

The CanModify property of the Dataset is True.
The ReadOnly property of grid is False.

When a user edits a record in the grid, changes to each field are posted to an internal record buffer, but are not
posted until the user moves to a different record in the grid. Even if focus is changed to another control on a form,
the grid does not post changes until another the cursor for the dataset is moved to another record. When a record
is posted, the dataset checks all associated data-aware components for a change in status. If there is a problem
updating any fields that contain modified data, the grid raises an exception, and does not modify the record.

Note: If your application caches updates, posting record changes only adds them to an internal cache. They are
not posted back to the underlying database table until your application applies the updates.

You can cancel all edits for a record by pressing Esc in any field before moving to another record.

Controlling Grid Drawing
Your first level of control over how a grid control draws itself is setting column properties. The grid automatically uses
the font, color, and alignment properties of a column to draw the cells of that column. The text of data fields is drawn
using the DisplayFormat or EditFormat properties of the field component associated with the column.

You can augment the default grid display logic with code in a grid's OnDrawColumnCell event. If the grid's
DefaultDrawing property is True, all the normal drawing is performed before your OnDrawColumnCell event handler
is called. Your code can then draw on top of the default display. This is primarily useful when you have defined a
blank persistent column and want to draw special graphics in that column's cells.

If you want to replace the drawing logic of the grid entirely, set DefaultDrawing to False and place your drawing code
in the grid's OnDrawColumnCell event. If you want to replace the drawing logic only in certain columns or for certain
field data types, you can call the DefaultDrawColumnCell inside your OnDrawColumnCell event handler to have the

1788

grid use its normal drawing code for selected columns. This reduces the amount of work you have to do if you only
want to change the way Boolean field types are drawn, for example.

Responding to User Actions at Runtime
You can modify grid behavior by writing event handlers to respond to specific actions within the grid at runtime.
Because a grid typically displays many fields and records at once, you may have very specific needs to respond to
changes to individual columns. For example, you might want to activate and deactivate a button elsewhere on the
form every time a user enters and exits a specific column.

The following table lists the grid events available in the Object Inspector.
Grid control events

Event Purpose

OnCellClick Occurs when a user clicks on a cell in the grid.

OnColEnter Occurs when a user moves into a column on the grid.

OnColExit Occurs when a user leaves a column on the grid.

OnColumnMoved Occurs when the user moves a column to a new location.

OnDblClick Occurs when a user double clicks in the grid.

OnDragDrop Occurs when a user drags and drops in the grid.

OnDragOver Occurs when a user drags over the grid.

OnDrawColumnCell Occurs when application needs to draw individual cells.

OnDrawDataCell (obsolete) Occurs when application needs to draw individual cells if State is csDefault.

OnEditButtonClick Occurs when the user clicks on an ellipsis button in a column.

OnEndDrag Occurs when a user stops dragging on the grid.

OnEnter Occurs when the grid gets focus.

OnExit Occurs when the grid loses focus.

OnKeyDown Occurs when a user presses any key or key combination on the keyboard when in the grid.

OnKeyPress Occurs when a user presses a single alphanumeric key on the keyboard when in the grid.

OnKeyUp Occurs when a user releases a key when in the grid.

OnStartDrag Occurs when a user starts dragging on the grid.

OnTitleClick Occurs when a user clicks the title for a column.

There are many uses for these events. For example, you might write a handler for the OnDblClick event that pops
up a list from which a user can choose a value to enter in a column. Such a handler would use the SelectedField
property to determine to current row and column.

Creating a Grid That Contains Other Data-aware Controls
A TDBCtrlGrid control displays multiple fields in multiple records in a tabular grid format. Each cell in a grid displays
multiple fields from a single row.

To use a database control grid
1 Place a database control grid on a form.
2 Set the grid's DataSource property to the name of a data source.

1789

3 Place individual data controls within the design cell for the grid. The design cell for the grid is the top or leftmost
cell in the grid, and is the only cell into which you can place other controls.

4 Set the DataField property for each data control to the name of a field. The data source for these data controls
is already set to the data source of the database control grid.

5 Arrange the controls within the cell as desired.

When you compile and run an application containing a database control grid, the arrangement of data controls you
set in the design cell at runtime is replicated in each cell of the grid. Each cell displays a different record in a dataset.

The following table summarizes some of the unique properties for database control grids that you can set at design
time:

Selected database control grid properties
Property Purpose

AllowDelete True (default): Permits record deletion.

False: Prevents record deletion.

AllowInsert True (default): Permits record insertion.

False: Prevents record insertion.

ColCount Sets the number of columns in the grid. Default = 1.

Orientation goVertical (default): Display records from top to bottom.

goHorizontal: Displays records from left to right.

PanelHeight Sets the height for an individual panel. Default = 72.

1790

PanelWidth Sets the width for an individual panel. Default = 200.

RowCount Sets the number of panels to display. Default = 3.

ShowFocus True (default): Displays a focus rectangle around the current record's panel at runtime.

False: Does not display a focus rectangle.

Navigating and Manipulating Records
TDBNavigator provides users a simple control for navigating through records in a dataset, and for manipulating
records. The navigator consists of a series of buttons that enable a user to scroll forward or backward through records
one at a time, go to the first record, go to the last record, insert a new record, update an existing record, post data
changes, cancel data changes, delete a record, and refresh record display.

The following figure shows the navigator that appears by default when you place it on a form at design time. The
navigator consists of a series of buttons that let a user navigate from one record to another in a dataset, and edit,
delete, insert, and post records. The VisibleButtons property of the navigator enables you to hide or show a subset
of these buttons dynamically. See Choosing Navigator Buttons to Display for more information.

The following table describes the buttons on the navigator.

TDBNavigator buttons
Button Purpose

First Calls the dataset's First method to set the current record to the first record.

Prior Calls the dataset's Prior method to set the current record to the previous record.

Next Calls the dataset's Next method to set the current record to the next record.

Last Calls the dataset's Last method to set the current record to the last record.

Insert Calls the dataset's Insert method to insert a new record before the current record, and set the dataset in Insert state.

Delete Deletes the current record. If the ConfirmDelete property is True it prompts for confirmation before deleting.

Edit Puts the dataset in Edit state so that the current record can be modified.

Post Writes changes in the current record to the database.

Cancel Cancels edits to the current record, and returns the dataset to Browse state.

Refresh Clears data control display buffers, then refreshes its buffers from the physical table or query. Useful if the underlying
data may have been changed by another application.

See Displaying fly-over Help for information on associating help hints with each button. See Using a Single Navigator
for Multiple Datasets for information about associating a navigator with multiple datasets.

Choosing Navigator Buttons to Display
When you first place a TDBNavigator on a form at design time, all its buttons are visible. You can use the
VisibleButtons property to turn off buttons you do not want to use on a form. For example, when working with a
unidirectional dataset, only the First, Next, and Refresh buttons are meaningful. On a form that is intended for
browsing rather than editing, you might want to disable the Edit, Insert, Delete, Post, and Cancel buttons.

Hiding and showing navigator buttons at design time
The VisibleButtons property in the Object Inspector is displayed with a + sign to indicate that it can be expanded
to display a Boolean value for each button on the navigator. To view and set these values, click on the + sign. The

1791

list of buttons that can be turned on or off appears in the Object Inspector below the VisibleButtons property. The
+ sign changes to a –(minus) sign, which you can click to collapse the list of properties.

Button visibility is indicated by the Boolean state of the button value. If a value is set to True, the button appears in
the TDBNavigator. If False, the button is removed from the navigator at design time and runtime.

Note: As button values are set to False, they are removed from the TDBNavigator on the form, and the remaining
buttons are expanded in width to fill the control. You can drag the control's handles to resize the buttons.

Hiding and showing navigator buttons at runtime
At runtime you can hide or show navigator buttons in response to user actions or application states. For example,
suppose you provide a single navigator for navigating through two different datasets, one of which permits users to
edit records, and the other of which is read-only. When you switch between datasets, you want to hide the navigator's
Insert, Delete, Edit, Post, Cancel, and Refresh buttons for the read-only dataset, and show them for the other dataset.

For example, suppose you want to prevent edits to the OrdersTable by hiding the Insert, Delete, Edit, Post,
Cancel, and Refresh buttons on the navigator, but that you also want to allow editing for the CustomersTable.
The VisibleButtons property controls which buttons are displayed in the navigator. Here's one way you might code
the event handler:

[Delphi]
procedure TForm1.CustomerCompanyEnter(Sender :TObject);
begin
 if Sender = CustomerCompany then
 begin
 DBNavigatorAll.DataSource := CustomerCompany.DataSource;
 DBNavigatorAll.VisibleButtons := [nbFirst,nbPrior,nbNext,nbLast];
 end
 else
 begin
 DBNavigatorAll.DataSource := OrderNum.DataSource;
 DBNavigatorAll.VisibleButtons := DBNavigatorAll.VisibleButtons + [nbInsert,
 nbDelete,nbEdit,nbPost,nbCancel,nbRefresh];
 end;
end;

[C++]
void __fastcall TForm1::CustomerCompanyEnter(TObject *Sender)
{
 if (Sender == (TObject *)CustomerCompany)
 {
 DBNavigatorAll->DataSource = CustomerCompany->DataSource;
 DBNavigatorAll->VisibleButtons = TButtonSet() << nbFirst << nbPrior << nbNext << nbLast;
 }
 else
 {
 DBNavigatorAll->DataSource = OrderNum->DataSource;
 DBNavigatorAll->VisibleButtons = TButtonSet() << nbInsert << nbDelete << nbEdit
 << nbPost << nbCancel << nbRefresh;
 }
}

1792

Displaying Fly-over Help
To display fly-over help for each navigator button at runtime, set the navigator ShowHint property to True. When
ShowHint is True, the navigator displays fly-by Help hints whenever you pass the mouse cursor over the navigator
buttons. ShowHint is False by default.

The Hints property controls the fly-over help text for each button. By default Hints is an empty string list. When
Hints is empty, each navigator button displays default help text. To provide customized fly-over help for the navigator
buttons, use the String list editor to enter a separate line of hint text for each button in the Hints property. When
present, the strings you provide override the default hints provided by the navigator control.

Using a Single Navigator for Multiple Datasets
As with other data-aware controls, a navigator's DataSource property specifies the data source that links the control
to a dataset. By changing a navigator's DataSource property at runtime, a single navigator can provide record
navigation and manipulation for multiple datasets.

Suppose a form contains two edit controls linked to the CustomersTable and OrdersTable datasets through the
CustomersSource and OrdersSource data sources respectively. When a user enters the edit control connected
to CustomersSource, the navigator should also use CustomersSource, and when the user enters the edit control
connected to OrdersSource, the navigator should switch to OrdersSource as well. You can code an OnEnter event
handler for one of the edit controls, and then share that event with the other edit control. For example:

[Delphi]
procedure TForm1.CustomerCompanyEnter(Sender :TObject);
begin
 if Sender = CustomerCompany then
 DBNavigatorAll.DataSource := CustomerCompany.DataSource
 else
 DBNavigatorAll.DataSource := OrderNum.DataSource;
end;

[C++]
void __fastcall TForm1::CustomerCompanyEnter(TObject *Sender)
{
 if (Sender == (TObject *)CustomerCompany)
 DBNavigatorAll->DataSource = CustomerCompany->DataSource;
 else
 DBNavigatorAll->DataSource = OrderNum->DataSource;
}

1793

Creating reports with Rave Reports

Rave Reports: Overview
Rave Reports is a component-based visual report design tool that simplifies the process of adding reports to an
application. You can use Rave Reports to create a variety of reports, from simple banded reports to more complex,
highly customized reports. Report features include:

Word wrapped memos
Full graphics
Justification
Precise page positioning
Printer configuration
Font control
Print preview
Reuse of report content
PDF, HTML, RTF, and text report renditions

Getting Started with Rave Reports
You can use Rave Reports in VCL applications to generate reports from database and non-database data.

To add a simple report to an existing database application
1 Open a database application in Delphi.
2 From the Rave category of the Tool palette, add the TRvDataSetConnection component to a form in the

application.
3 In the Object Inspector, set the DataSet property to a dataset component that is already defined in your

application.
4 Use the Rave Visual Designer:
5 From the Rave category of the Tool palette, add the Rave project component, TRvProject, to the form.
6 In the Object Inspector, set the ProjectFile property to the report project file (MyRave.rav) that you created in

step 8 in using the Rave Visual Designer.
7 From the Standard category of the Tool palette, add the TButton component.

1794

8 In the Object Inspector, click the Events tab and double-click the OnClick event.
9 Write an event handler that uses the ExecuteReport method to execute the Rave project component.

To design your report and create a report project file (.rav file) using the Rave Visual
Designer
1 Choose Tools Rave Designer to launch the Rave Visual Designer.
2 Choose File New Data Object to display the Data Connections dialog box, and in the Data Object Type list,

select Direct Data View and click Next.
3 In the Active Data Connections list, select RVDataSetConnection1 and click Finish.

In the Project Tree on the left side of the Rave Visual Designer window, expand the Data View Dictionary node,
then expand the newly created DataView1 node. Your application data fields are displayed under the DataView1
node.

4 Choose Tools Report Wizards Simple Table to display the Simple Table wizard, and select DataView1
and click Next.

5 Select two or three fields that you want to display in the report and click Next.
6 Follow the prompts on the subsequent wizard pages to set the order of the fields, margins, heading text, and

fonts to be used in the report.
7 On the final wizard page, click Generate to complete the wizard and display the report in the Page Designer.
8 Choose File Save as to display the Save As dialog box. Navigate to the directory in which your Delphi

application is located and save the Rave project file as MyRave.rav.
9 Minimize the Rave Visual Designer window and return to Delphi.

For a more information on using the Rave Visual Designer, use the Help menu or see the Rave Reports
documentation listed in Getting more information.

Rave Visual Designer
To launch the Rave Visual Designer, do one of the following:

Choose Tools Rave Designer.
Double-click a TRvProject component on a form.
Right-click a TRvProject component on a form, and choose Rave Visual Designer.

For a detailed information on using the Rave Visual Designer, use the Help menu or see the Rave Reports
documentation listed in Getting more information.

Rave Component Overview
This section provides an overview of the Rave Reports components. For detailed component information, see the
documentation listed in Getting more information.

VCL components
The VCL components for Rave Reports are non-visual components that you add to a form in your VCL application.
They are available on the Rave category of the Tool palette. There are four categories of components: engine,
render, data connection and Rave project.

1795

Engine components
The Engine components are used to generate reports. Reports can be generated from a pre-defined visual definition
(using the Engine property of TRvProject) or by making calls to the Rave code-based API library from within the
OnPrint event. The engine components are:

TRvNDRWriter
TRvSystem

Render components
The Render components are used to convert an NDR file (Rave snapshot report file) or a stream generated from
TRvNDRWriter to a variety of formats. Rendering can be done programmatically or added to the standard setup and
preview dialogs of TRvSystem by dropping a render component on an active form or data module within your
application. The render components are:

TRvRenderPreview
TRvRenderPrinter
TRvRenderPDF
TRvRenderHTML
TRvRenderRTF
TRvRenderText

Data connection components
The Data Connection components provide the link between application data and the Direct Data Views in visually
designed Rave reports. The data connection components are:

TRvCustomConnection
TRvDataSetConnection
TRvTableConnection
TRvQueryConnection

Rave project component
The TRvProject component interfaces with and executes visually designed Rave reports within an application.
Normally a TRvSystem component would be assigned to the Engine property. The reporting project (.rav) should
be specified in the ProjectFile property or loaded into the DFM using the StoreRAV property. Project parameters
can be set using the SetParam method and reports can be executed using the ExecuteReport method.

Reporting components
The following components are available in the Rave Visual Designer.

Project components
The Project toolbar provides the essential building blocks for all reports. The project components are:

TRaveProjectManager
TRaveReport

1796

TRavePage

Data objects
Data objects connect to data or control access to reports from the Rave Reporting Server. The File New Data
Object menu command displays the Data Connections dialog box, which you can use to create each of the data
objects. The data object components are:

TRaveDatabase
TRaveDriverDataView
TRaveDirectDataView
TRaveSimpleSecurity
TRaveLookupSecurity

Standard components
The Standard toolbar provides components that are frequently used when designing reports. The standard
components are:

TRaveText
TRaveMemo
TRaveSection
TRaveBitmap
TRaveMetaFile
TRaveFontMaster
TRavePageNumInit

Drawing components
The Drawing toolbar provides components to create lines and shapes in a report. To color and style the components,
use the Fills, Lines, and Colors toolbars. The drawing components are:

TRaveLine
TRaveHLine
TRaveVLine
TRaveSquare
TRaveRectangle
TRaveCircle
TRaveEllipse

Report components
The Report toolbar provides components that are used most often in data-aware reports. The report components are:

TRaveRegion
TRaveDataBand
TRaveBand

1797

Band Style Edito
TRaveDataText
DataText Editor
TRaveDataMemo
TRaveCalcText
TRaveDataCycle
TRaveDataMirrorSection
TRaveCalcOp Component
TRaveCalcController
TRaveCalcTotal

Bar code components
The Bar Code toolbar provides different types of bar codes in a report. The bar code components are:

TRavePostNetBarCode
TRaveI2of5Bar Code
TRaveCode39BarCode
TRaveCode128BarCode
TRaveUPCBarCode
TRaveEANBarCode

Getting More Information
Delphi includes the following Nevrona Designs documentation for Rave Reports.

Rave Reports documentation
Title Description

Rave Visual Designer Manual for Reference and Learning Provides detailed information about using the Rave Visual
Designer to create reports.

Rave Tutorial and Reference Provides step-by-step instructions on using the Rave Reports
components and includes a reference of classes, components,
and units.

Rave Application Interface Technology Specification Explains how to create custom Rave Reports components,
property editors, component editors, project editors, and control
the Rave environment.

These books are distributed as PDF files on the Delphi Companion Tools CD.

Most of the information in the PDF files is also available in the online Help. To display online Help for a Rave Reports
component on a form, select the component and press F1. To display online Help for the Rave Visual Designer, use
the Help menu.

1798

Using decision support components

Using Decision Support Components
The decision support components help you create cross-tabulated—or, crosstab—tables and graphs. You can then
use these tables and graphs to view and summarize data from different perspectives. For more information on cross-
tabulated data, see About crosstabs.

The following topics are discussed in this section:

Overview of Decision Support Components
Guidelines for Using Decision Support Components
Decision Support Components at Runtime
Decision Support Components and Memory Control

Overview of Decision Support Components
The decision support components appear on the Decision Cube category of the Tool Palette:

The decision cube, TDecisionCube, is a multidimensional data store. For more information see Using decision
cubes.
The decision source, TDecisionSource, defines the current pivot state of a decision grid or a decision graph.
For more information, see Using decision sources.
The decision query, TDecisionQuery, is a specialized form of TQuery used to define the data in a decision cube.
For more information, see Using datasets with decision support components.
The decision pivot, TDecisionPivot, lets you open or close decision cube dimensions, or fields, by pressing
buttons. For more information, see Using decision pivots.
The decision grid, TDecisionGrid, displays single- and multidimensional data in table form. For more information,
see Creating and using decision grids.
The decision graph, TDecisionGraph, displays fields from a decision grid as a dynamic graph that changes
when data dimensions are modified. For more information, see Creating and using decision graphs.

The following figure shows all the decision support components placed on a form at design time.

1799

About Crosstabs
Cross-tabulations, or crosstabs, are a way of presenting subsets of data so that relationships and trends are more
visible. Table fields become the dimensions of the crosstab while field values define categories and summaries within
a dimension.

You can use the decision support components to set up crosstabs in forms. TDecisionGrid shows data in a table,
while TDecisionGraph charts it graphically. TDecisionPivot has buttons that make it easier to display and hide
dimensions and move them between columns and rows.

Crosstabs can be one-dimensional or multidimensional.

The following topics are discussed in this section:

One-Dimensional Crosstabs
Multidimensional Crosstabs

1800

One-Dimensional Crosstabs
One-dimensional crosstabs show a summary row (or column) for the categories of a single dimension. For example,
if Payment is the chosen column dimension and Amount Paid is the summary category, the crosstab in the following
figure shows the amount paid using each method.

Multidimensional Crosstabs
Multidimensional crosstabs use additional dimensions for the rows and/or columns. For example, a two-dimensional
crosstab could show amounts paid by payment method for each country.

A three-dimensional crosstab could show amounts paid by payment method and terms by country, as shown in the
following figure.

Guidelines for Using Decision Support Components
The decision support components listed in Overview of decision support components can be used together to present
multidimensional data as tables and graphs. More than one grid or graph can be attached to each dataset. More
than one instance of TDecisionPivot can be used to display the data from different perspectives at runtime.

1801

To create a form with tables and graphs of multidimensional data
1 Create a form.
2 Add these components to the form and use the Object Inspector to bind them as indicated:

A dataset, usually TDecisionQuery (for details, see Creating Decision Datasets with The Decision Query Editor)
or TQuery
A decision cube, TDecisionCube, bound to the dataset by setting its DataSet property to the dataset's name
A decision source, TDecisionSource, bound to the decision cube by setting its DecisionCube property to the
decision cube's name

3 Add a decision pivot, TDecisionPivot, and bind it to the decision source with the Object Inspector by setting its
DecisionSource property to the appropriate decision source name. The decision pivot is optional but useful; it
lets the form developer and end users change the dimensions displayed in decision grids or decision graphs by
pushing buttons.
In its default orientation, horizontal, buttons on the left side of the decision pivot apply to fields on the left side of
the decision grid (rows); buttons on the right side apply to fields at the top of the decision grid (columns).

You can determine where the decision pivot's buttons appear by setting its GroupLayout property to xtVertical,
xtLeftTop, or xtHorizontal (the default). For more information on decision pivot properties, see Using decision
pivots.

4 Add one or more decision grids and graphs, bound to the decision source. For details, see Creating and using
decision grids and Creating and using decision graphs.

5 Use the Decision Query editor or SQL property of TDecisionQuery (or TQuery) to specify the tables, fields, and
summaries to display in the grid or graph. The last field of the SQL SELECT should be the summary field. The
other fields in the SELECT must be GROUP BY fields. For instructions, see Creating decision datasets with the
Decision Query editor.

6 Set the Active property of the decision query (or alternate dataset component) to True.
7 Use the decision grid and graph to show and chart different data dimensions. See Using decision grids and Using

decision graphs. for instructions and suggestions

For an illustration of all decision support components on a form, see the figure Decision support components at
design time.

Using Datasets with Decision Support Components
The only decision support component that binds directly to a dataset is the decision cube, TDecisionCube.
TDecisionCube expects to receive data with groups and summaries defined by an SQL statement of an acceptable
format. The GROUP BY phrase must contain the same non-summarized fields (and in the same order) as the
SELECT phrase, and summary fields must be identified.

The decision query component, TDecisionQuery, is a specialized form of TQuery. You can use TDecisionQuery to
more simply define the setup of dimensions (rows and columns) and summary values used to supply data to decision
cubes (TDecisionCube). The decision query has no properties than are not inherited from other components.
Important inherited properties are Active and SQL.

You can also use a TQuery or TTable component as a dataset for TDecisionCube, but the correct setup of the
dataset and TDecisionCube are then the responsibility of the designer.

To work correctly with the decision cube, all projected fields in the dataset must either be dimensions or summaries.
The summaries should be additive values (like sum or count), and should represent totals for each combination of
dimension values. For maximum ease of setup, sums should be named "Sum..." in the dataset while counts should
be named "Count...".

1802

The Decision Cube can pivot, subtotal, and drill-in correctly only for summaries whose cells are additive. (SUM and
COUNT are additive, while AVERAGE, MAX, and MIN are not.) Build pivoting crosstab displays only for grids that
contain only additive aggregators. If you are using non-additive aggregators, use a static decision grid that does not
pivot, drill, or subtotal.

Since averages can be calculated using SUM divided by COUNT, a pivoting average is added automatically when
SUM and COUNT dimensions for a field are included in the dataset. Use this type of average in preference to an
average calculated using an AVERAGE statement.

Averages can also be calculated using COUNT(*). To use COUNT(*) to calculate averages, include a "COUNT(*)
COUNTALL" selector in the query. If you use COUNT(*) to calculate averages, the single aggregator can be used
for all fields. Use COUNT(*) only in cases where none of the fields being summarized include blank values, or where
a COUNT aggregator is not available for every field.

Creating Decision Datasets with TQuery or TTable
If you use an ordinary TQuery component as a decision dataset, you must manually set up the SQL statement, taking
care to supply a GROUP BY phrase which contains the same fields (and in the same order) as the SELECT phrase.

The SQL should look similar to this:

SELECT ORDERS."Terms", ORDERS."ShipVIA",
 ORDERS."PaymentMethod", SUM(ORDERS."AmountPaid")
FROM "ORDERS.DB" ORDERS
GROUP BY ORDERS."Terms", ORDERS."ShipVIA", ORDERS."PaymentMethod"

The ordering of the SELECT fields should match the ordering of the GROUP BY fields. Queries are described in
more detail in Using TQuery.

With TTable, you must supply information to the decision cube about which of the fields in the query are grouping
fields, and which are summaries. To do this, Fill in the Dimension Type for each field in the DimensionMap of the
Decision Cube. You must indicate whether each field is a dimension or a summary, and if a summary, you must
provide the summary type. Since pivoting averages depend on SUM/COUNT calculations, you must also provide
the base field name to allow the decision cube to match pairs of SUM and COUNT aggregators.

Creating Decision Datasets with the Decision Query Editor
All data used by the decision support components passes through the decision cube, which accepts a specially
formatted dataset most easily produced by an SQL query. See Using datasets with decision support components
for more information.

While both TTable and TQuery can be used as decision datasets, it is easier to use TDecisionQuery; the Decision
Query editor supplied with it can be used to specify tables, fields, and summaries to appear in the decision cube and
will help you set up the SELECT and GROUP BY portions of the SQL correctly.

To use the Decision Query editor
1 Select the decision query component on the form, then right-click and choose Decision Query editor. The Decision

Query editor dialog box appears.
2 Choose the database to use.
3 For single-table queries, click the Select Table button.

For more complex queries involving multi-table joins, click the Query Builder button to display the SQL Builder
or type the SQL statement into the edit box on the SQL tab page.

4 Return to the Decision Query editor dialog box.

1803

5 In the Decision Query editor dialog box, select fields in the Available Fields list box and assign them to be either
Dimensions or Summaries by clicking the appropriate right arrow button. As you add fields to the Summaries list,
select from the menu displayed the type of summary to use: sum, count, or average.

6 By default, all fields and summaries defined in the SQL property of the decision query appear in the Active
Dimensions and Active Summaries list boxes. To remove a dimension or summary, select it in the list and click
the left arrow beside the list, or double-click the item to remove. To add it back, select it in the Available Fields
list box and click the appropriate right arrow.

Once you define the contents of the decision cube, you can further manipulate dimension display with its
DimensionMap property and the buttons of TDecisionPivot. For more information, see Using decision cubes,Using
decision sources, and Using decision pivots.

Note: When you use the Decision Query editor, the query is initially handled in ANSI-92 SQL syntax, then translated
(if necessary) into the dialect used by the server. The Decision Query editor reads and displays only ANSI
standard SQL. The dialect translation is automatically assigned to the TDecisionQuery's SQL property. To
modify a query, edit the ANSI-92 version in the Decision Query rather then the SQL property.

Using Decision Cubes
The decision cube component, TDecisionCube, is a multidimensional data store that fetches its data from a dataset
(typically a specially structured SQL statement entered through TDecisionQuery or TQuery). The data is stored in
a form that makes its easy to pivot (that is, change the way in which the data is organized and summarized) without
needing to run the query a second time.

The following topics are discussed in this section:

Decision Cube Properties and Events
Using the Decision Cube Editor

Decision Cube Properties and Events
The DimensionMap properties of TDecisionCube not only control which dimensions and summaries appear but also
let you set date ranges and specify the maximum number of dimensions the decision cube may support. You can
also indicate whether or not to display data during design. You can display names, (categories) values, subtotals,
or data. Display of data at design time can be time consuming, depending on the data source.

When you click the ellipsis next to DimensionMap in the Object Inspector, the Decision Cube editor dialog box
appears. You can use its pages and controls to set the DimensionMap properties.

The OnRefresh event fires whenever the decision cube cache is rebuilt. Developers can access the new dimension
map and change it at that time to free up memory, change the maximum summaries or dimensions, and so on.
OnRefresh is also useful if users access the Decision Cube editor; application code can respond to user changes
at that time.

Using the Decision Cube Editor
You can use the Decision Cube editor to set the DimensionMap properties of decision cubes. You can display the
Decision Cube editor through the Object Inspector, as described in the previous section, or by right-clicking a
decision cube on a form at design time and choosing Decision Cube editor.

The Decision Cube Editor dialog box has two tabs:

Dimension Settings, used to activate or disable available dimensions, rename and reformat dimensions, put
dimensions in a permanently drilled state, and set date ranges to display.

1804

Memory Control, used to set the maximum number of dimensions and summaries that can be active at one
time, to display information about memory usage, and to determine the names and data that appear at design
time.

Viewing and Changing Dimension Settings
To view the dimension settings, display the Decision Cube editor and click the Dimension Settings tab. Then, select
a dimension or summary in the Available Fields list. Its information appears in the boxes on the right side of the editor:

To change the dimension or summary name that appears in the decision pivot, decision grid, or decision graph,
enter a new name in the Display Name edit box.
To determine whether the selected field is a dimension or summary, read the text in the Type edit box. If the
dataset is a TTable component, you can use Type to specify whether the selected field is a dimension or
summary.
To disable or activate the selected dimension or summary, change the setting in the Active Type drop-down list
box: Active, As Needed, or Inactive. Disabling a dimension or setting it to As Needed saves memory.
To change the format of that dimension or summary, enter a format string in the Format edit box.
To display that dimension or summary by Year, Quarter, or Month, change the setting in the Binning drop-down
list box. Note that you can choose Set in the Binning list box to put the selected dimension or summary in a
permanently "drilled down" state. This can be useful for saving memory when a dimension has many values.
For more information, see Decision support components and memory control.
To determine the starting value for ranges, or the drill-down value for a "Set" dimension, first choose the
appropriate Grouping value in the Grouping drop-down, and then enter the starting range value or permanent
drill-down value in the Initial Value drop-down list.

Setting the Maximum Available Dimensions and Summaries
To determine the maximum number of dimensions and summaries available for decision pivots, decision grids, and
decision graphs bound to the selected decision cube, display the Decision Cube editor and click the Memory Control
tab. Use the edit controls to adjust the current settings, if necessary. These settings help to control the amount of
memory required by the decision cube. For more information, see Decision Support Components and Memory
Control.

Viewing and Changing Design Options
To determine how much information appears at design time, display the Decision Cube editor and click the Memory
Control tab. Then, check the setting that indicates which names and data to display. Display of data or field names
at design time can cause performance delays in some cases because of the time needed to fetch the data.

Using Decision Sources
The decision source component, TDecisionSource, defines the current pivot state of decision grids or decision
graphs. Any two objects which use the same decision source also share pivot states.

The following are some special properties and events that control the appearance and behavior of decision sources:

The ControlType property of TDecisionSource indicates whether the decision pivot buttons should act like check
boxes (multiple selections) or radio buttons (mutually exclusive selections).

1805

The SparseCols and SparseRows properties of TDecisionSource indicate whether to display columns or rows
with no values; if True, sparse columns or rows are displayed.

TDecisionSource has the following events:

OnLayoutChange occurs when the user performs pivots or drill-downs that reorganize the data.
OnNewDimensions occurs when the data is completely altered, such as when the summary or dimension fields
are altered.
OnSummaryChange occurs when the current summary is changed.
OnStateChange occurs when the Decision Cube activates or deactivates.
OnBeforePivot occurs when changes are committed but not yet reflected in the user interface. Developers have
an opportunity to make changes, for example, in capacity or pivot state, before application users see the result
of their previous action.
OnAfterPivot fires after a change in pivot state. Developers can capture information at that time.

Using Decision Pivots
The decision pivot component, TDecisionPivot, lets you open or close decision cube dimensions, or fields, by
pressing buttons. When a row or column is opened by pressing a TDecisionPivot button, the corresponding
dimension appears on the TDecisionGrid or TDecisionGraph component. When a dimension is closed, its detailed
data doesn't appear; it collapses into the totals of other dimensions. A dimension may also be in a "drilled" state,
where only the summaries for a particular value of the dimension field appear.

You can also use the decision pivot to reorganize dimensions displayed in the decision grid and decision graph. Just
drag a button to the row or column area or reorder buttons within the same area.

For illustrations of decision pivots at design time, see the figures in Decision Support Components at Design Time,
One-dimensional Crosstab, and Three-dimensional Crosstab.

For information on special properties of TDecisionPivot, see Decision Pivot Properties.

Decision Pivot Properties
The following are some special properties that control the appearance and behavior of decision pivots:

The first properties listed for TDecisionPivot define its overall behavior and appearance. You might want to set
ButtonAutoSize to False for TDecisionPivot to keep buttons from expanding and contracting as you adjust the
size of the component.
The Groups property of TDecisionPivot defines which dimension buttons appear. You can display the row,
column, and summary selection button groups in any combination. Note that if you want more flexibility over
the placement of these groups, you can place one TDecisionPivot on your form which contains only rows in one
location, and a second which contains only columns in another location.
Typically, TDecisionPivot is added above TDecisionGrid. In its default orientation, horizontal, buttons on the left
side of TDecisionPivot apply to fields on the left side of TDecisionGrid (rows); buttons on the right side apply to
fields at the top of TDecisionGrid (columns).
You can determine where TDecisionPivot's buttons appear by setting its GroupLayout property to xtVertical,
xtLeftTop, or xtHorizontal (the default, described in the previous paragraph).

1806

Creating and Using Decision Grids
Decision grid components, TDecisionGrid, present cross-tabulated data in table form. These tables are also called
crosstabs, described in About crosstabs. The figure Decision support components at design time shows a decision
grid on a form at design time.

The following topics are discussed in this section:

Creating Decision Grids
Using Decision Grids
Decision Grid Properties

Creating Decision Grids

To create a form with one or more tables of cross-tabulated data
1 Follow steps 1–3 listed under Guidelines for using decision support components.
2 Add one or more decision grid components (TDecisionGrid) and bind them to the decision source,

TDecisionSource, with the Object Inspector by setting their DecisionSource property to the appropriate decision
source component.

3 Continue with steps 5–7 listed under Guidelines for using decision support components.

For a description of what appears in the decision grid and how to use it, see Using decision grids..

To add a graph to the form, follow the instructions in Creating decision graphs.

Using Decision Grids
The decision grid component, TDecisionGrid, displays data from decision cubes TDecisionCube bound to decision
sources TDecisionSource.

By default, the grid appears with dimension fields at its left side and/or top, depending on the grouping instructions
defined in the dataset. Categories, one for each data value, appear under each field. You can

Open and Close Dimensions
Reorganize, or Pivot, Rows and Columns
Drill Down for Detail
Limit Dimension Selection to a Single Dimension for Each Axis

For more information about special properties and events of the decision grid, see Decision grid properties.

Opening and Closing Decision Grid Fields
If a plus sign (+) appears in a dimension or summary field, one or more fields to its right are closed (hidden). You
can open additional fields and categories by clicking the sign. A minus sign (–) indicates a fully opened (expanded)
field. When you click the sign, the field closes. This outlining feature can be disabled; see Decision Grid Properties
for details.

1807

Reorganizing Rows and Columns in Decision Grids
You can drag row and column headings to new locations within the same axis or to the other axis. In this way, you
can reorganize the grid and see the data from new perspectives as the data groupings change. This pivoting feature
can be disabled; see Decision Grid Properties for details.

If you included a decision pivot, you can push and drag its buttons to reorganize the display. See Using decision
Pivots for instructions.

Drilling Down for Detail in Decision Grids
You can drill down to see more detail in a dimension.

For example, if you right-click a category label (row heading) for a dimension with others collapsed beneath it, you
can choose to drill down and only see data for that category. When a dimension is drilled, you do not see the category
labels for that dimension displayed on the grid, since only the records for a single category value are being displayed.
If you have a decision pivot on the form, it displays category values and lets you change to other values if you want.

To drill down into a dimension,

Right-click a category label and choose Drill In To This Value, or
Right-click a pivot button and choose Drilled In.

To make the complete dimension active again,

Right-click the corresponding pivot button or,
Right-click the decision grid in the upper-left corner and select the dimension.

Limiting Dimension Selection in Decision Grids
You can change the ControlType property of the decision source to determine whether more than one dimension
can be selected for each axis of the grid. For more information, see Using Decision Sources.

Decision Grid Properties
The decision grid component, TDecisionGrid, displays data from the TDecisionSource component bound to
TDecisionSource. By default, data appears in a grid with category fields on the left side and top of the grid.

The following are some special properties that control the appearance and behavior of decision grids:

TDecisionGrid has unique properties for each dimension. To set these, choose Dimensions in the Object
Inspector, then select a dimension. Its properties then appear in the Object Inspector: Alignment defines the
alignment of category labels for that dimension, Caption can be used to override the default dimension
name, Color defines the color of category labels, FieldName displays the name of the active dimension,
Format can hold any standard format for that data type, and Subtotals indicates whether to display subtotals
for that dimension. With summary fields, these same properties are used to changed the appearance of the
data that appears in the summary area of the grid. When you're through setting dimension properties, either
click a component in the form or choose a component in the drop-down list box at the top of the Object
Inspector.
The Options property of TDecisionGrid lets you control display of grid lines (cgGridLines = True), enabling of
outline features (collapse and expansion of dimensions with + and - indicators; cgOutliner = True), and enabling
of drag-and-drop pivoting (cgPivotable = True).
The OnDecisionDrawCell event of TDecisionGrid gives you a chance to change the appearance of each cell
as it is drawn. The event passes the String, Font, and Color of the current cell as reference parameters. You
are free to alter those parameters to achieve effects such as special colors for negative values. In addition to

1808

the DrawState which is passed by TCustomGrid, the event passes TDecisionDrawState, which can be used to
determine what type of cell is being drawn. Further information about the cell can be fetched using the Cells,
CellValueArray, or CellDrawState functions.
The OnDecisionExamineCell event of TDecisionGrid lets you hook the right-click-on-event to data cells, and is
intended to allow a program to display information (such as detail records) about that particular data cell. When
the user right-clicks a data cell, the event is supplied with all the information which is was used to compose the
data value, including the currently active summary value and a ValueArray of all the dimension values which
were used to create the summary value.

Creating and Using Decision Graphs
Decision graph components, TDecisionGraph, present cross-tabulated data in graphic form. Each decision graph
shows the value of a single summary, such as Sum, Count, or Avg, charted for one or more dimensions. For more
information on crosstabs, see One-dimensional crosstabs. For illustrations of decision graphs at design time, see
the figures Decision support components at design time and Decision graphs bound to different decision sources.

The following topics are discussed in this section:

Creating Decision Graphs
Using Decision Graphs
The Decision Graph Display
Customizing Decision Graphs

Creating Decision Graphs

To create a form with one or more decision graphs
1 Follow steps 1–3 listed under Guidelines for using decision support components.
2 Add one or more decision graph components TDecisionGraph and bind them to the decision source,

TDecisionSource, with the Object Inspector by setting their DecisionSource property to the appropriate decision
source component.

3 Continue with steps 5–7 listed under Guidelines for using decision support components.
4 Finally, right-click the graph and choose Edit Chart to modify the appearance of the graph series. You can set

template properties for each graph dimension, then set individual series properties to override these defaults.
For details, see Customizing decision graphs.

For a description of what appears in the decision graph and how to use it, see Using decision graphs.

To add a decision grid—or crosstab table—to the form, follow the instructions in Creating and using decision grids.

Using Decision Graphs
The decision graph component, TDecisionGraph, displays fields from the decision source TDecisionSource as a
dynamic graph that changes when data dimensions are opened, closed, dragged and dropped, or rearranged with
the decision pivot TDecisionPivot.

Graphed data comes from a specially formatted dataset such as TDecisionQuery. For an overview of how the
decision support components handle and arrange this data, see Using Decision Support Components.

By default, the first row dimension appears as the x-axis and the first column dimension appears as the y-axis.

1809

You can use decision graphs instead of or in addition to decision grids, which present cross-tabulated data in tabular
form. Decision grids and decision graphs that are bound to the same decision source present the same data
dimensions. To show different summary data for the same dimensions, you can bind more than one decision graph
to the same decision source. To show different dimensions, bind decision graphs to different decision sources.

For example, in the following figure the first decision pivot and graph are bound to the first decision source and the
second decision pivot and graph are bound to the second. So, each graph can show different dimensions.

For more information about what appears in a decision graph, see the next section, The Decision Graph Display.

To create a decision graph, see the previous section, Creating Decision Graphs.

For a discussion of decision graph properties and how to change the appearance and behavior of decision graphs,
see Customizing Decision Graphs.

The Decision Graph Display
By default, the decision graph plots summary values for categories in the first active row field (along the y-axis)
against values in the first active column field (along the x-axis). Each graphed category appears as a separate series.

If only one dimension is selected—for example, by clicking only one TDecisionPivot button—only one series is
graphed.

1810

If you used a decision pivot, you can push its buttons to determine which decision cube fields (dimensions) are
graphed. To exchange graph axes, drag the decision pivot dimension buttons from one side of the separator space
to the other. If you have a one-dimensional graph with all buttons on one side of the separator space, you can use
the Row or Column icon as a drop target for adding buttons to the other side of the separator and making the graph
multidimensional.

If you only want one column and one row to be active at a time, you can set the ControlType property for
TDecisionSource to xtRadio. Then, there can be only one active field at a time for each decision cube axis, and the
decision pivot's functionality will correspond to the graph's behavior. xtRadioEx works the same as xtRadio, but does
not allow the state where all row or all columns dimensions are closed.

When you have both a decision grid and graph connected to the same TDecisionSource, you'll probably want to set
ControlType back to xtCheck to correspond to the more flexible behavior of TDecisionGrid.

Customizing Decision Graphs
The decision graph component, TDecisionGraph, displays fields from the decision source (TDecisionSource) as a
dynamic graph that changes when data dimensions are opened, closed, dragged and dropped, or rearranged with
the decision pivot TDecisionPivot. You can change the type, colors, marker types for line graphs, and many other
properties of decision graphs.

To customize a graph
1 Right-click it and choose Edit Chart. The Chart Editing dialog box appears.
2 Use the Chart page of the Chart Editing dialog box to view a list of visible series, select the series definition to

use when two or more are available for the same series, change graph types for a template or series, and set
overall graph properties.
The Series list on the Chart page shows all decision cube dimensions (preceded by Template:) and currently
visible categories. Each category, or series, is a separate object. You can:

Add or delete series derived from existing decision-graph series. Derived series can provide annotations for
existing series or represent values calculated from other series.
Change the default graph type, and change the title of templates and series.

3 Use the Series page to establish dimension templates, then customize properties for each individual graph series.

By default, all series are graphed as bar graphs and up to 16 default colors are assigned. You can edit the template
type and properties to create a new default. Then, as you pivot the decision source to different states, the template
is used to dynamically create the series for each new state. For template details, see Setting decision graph template
defaults..

To customize individual series, follow the instructions in Customizing decision graph series.

Setting Decision Graph Template Defaults
Decision graphs display the values from two dimensions of the decision cube: one dimension is displayed as an axis
of the graph, and the other is used to create a set of series. The template for that dimension provides default
properties for those series (such as whether the series are bar, line, area, and so on). As users pivot from one state
to another, any required series for the dimension are created using the series type and other defaults specified in
the template.

A separate template is provided for cases where users pivot to a state where only one dimension is active. A one-
dimensional state is often represented with a pie chart, so a separate template is provided for this case.

1811

You can

Change the default graph type.
Change other graph template properties.
View and set overall graph properties.

Changing the Default Decision Graph Type

To change the default graph type
1 Select a template in the Series list on the Chart page of the Chart Editing dialog box.
2 Click the Change button.
3 Select a new type and close the Gallery dialog box.

Changing Other Decision Graph Template Properties

To change color or other properties of a template
1 Select the Series page at the top of the Chart Editing dialog box.
2 Choose a template in the drop-down list at the top of the page.
3 Choose the appropriate property tab and select settings.

Viewing Overall Decision Graph Properties

To view and set decision graph properties other than type and series
1 Select the Chart page at the top of the Chart Editing dialog box.
2 Choose the appropriate property tab and select settings.

Customizing Decision Graph Series
The templates supply many defaults for each decision cube dimension, such as graph type and how series are
displayed. Other defaults, such as series color, are defined by TDecisionGraph. If you want you can override the
defaults for each series.

The templates are intended for use when you want the program to create the series for categories as they are
needed, and discard them when they are no longer needed. If you want, you can set up custom series for specific
category values. To do this, pivot the graph so its current display has a series for the category you want to customize.
When the series is displayed on the graph, you can use the Chart editor to

Change the Graph Type.
Change Other Series Properties.

1812

Save Specific Graph Series that You Have Customized.

To define series templates and set overall graph defaults, see Setting Decision Graph Template Defaults.

Changing the Series Graph Type
By default, each series has the same graph type, defined by the template for its dimension. To change all series to
the same graph type, you can change the template type. See Changing other decision graph series properties. for
instructions.

To change the graph type for a single series
1 Select a series in the Series list on the Chart page of the Chart editor.
2 Click the Change button.
3 Select a new type and close the Gallery dialog box.
4 Check the Save Series check box.

Changing Other Decision Graph Series Properties

To change color or other properties of a decision graph series
1 Select the Series page at the top of the Chart Editing dialog box.
2 Choose a series in the drop-down list at the top of the page.
3 Choose the appropriate property tab and select settings.
4 Check the Save Series check box.

Saving Decision Graph Series Settings
By default, only settings for templates are saved at design time. Changes made to specific series are only saved if
the Save box is checked for that series in the Chart Editing dialog box.

Saving series can be memory intensive, so if you don't need to save them you can uncheck the Save box.

Decision Support Components at Runtime
At runtime, users can perform many operations by left-clicking, right-clicking, and dragging visible decision support
components. These operations are summarized below.

Decision Pivots at Runtime
Decision Grids at Runtime
Decision Graphs at Runtime

1813

Decision Pivots: Runtime Behavior
Users can:

Left-click the summary button at the left end of the decision pivot to display a list of available summaries. They can
use this list to change the summary data displayed in decision grids and decision graphs.

Right-click a dimension button and choose to:

Move it from the row area to the column area or the reverse.
Drill In to display detail data.

Left-click a dimension button following the Drill In command and choose:

Open Dimension to move back to the top level of that dimension.
All Values to toggle between displaying just summaries and summaries plus all other values in decision grids.
From a list of available categories for that dimension, a category to drill into for detail values.

Left-click a dimension button to open or close that dimension.

Drag and drop dimension buttons from the row area to the column area and the reverse; they can drop them next
to existing buttons in that area or onto the row or column icon.

Decision Grids at Runtime
Users can:

Right-click within the decision grid and choose to:

Toggle subtotals on and off for individual data groups, for all values of a dimension, or for the whole grid.
Display the Decision Cube editor, described in Using the Decision Cube editor.
Toggle dimensions and summaries open and closed.

Click + and – within the row and column headings to open and close dimensions.

Drag and drop dimensions from rows to columns and the reverse.

Decision Graphs at Runtime
Users can drag from side to side or up and down in the graph grid area to scroll through off-screen categories and
values.

Decision Support Components and Memory Control
When a dimension or summary is loaded into the decision cube, it takes up memory. Adding a new summary
increases memory consumption linearly: that is, a decision cube with two summaries uses twice as much memory
as the same cube with only one summary, a decision cube with three summaries uses three times as much memory
as the same cube with one summary, and so on. Memory consumption for dimensions increases more quickly.
Adding a dimension with 10 values increases memory consumption by a factor of 10. Adding a dimension with 100
values increases memory consumption 100 times. Thus adding dimensions to a decision cube can have a dramatic
effect on memory use, and can quickly lead to performance problems. This effect is especially pronounced when
adding dimensions that have many values.

Memory consumption can be limited by the following techniques:

Setting maximum Dimensions, Summaries, and Cells
Setting Dimension State

1814

Using Paged Dimensions

The decision support components have a number of settings to help you control how and when memory is used.
For more information on the properties and techniques mentioned here, see TDecisionCube.

Setting Maximum Dimensions, Summaries, and Cells
The decision cube's MaxDimensions and MaxSummaries properties can be used with the CubeDim.ActiveFlag
property to control how many dimensions and summaries can be loaded at a time. You can set the maximum values
on the Cube Capacity page of the Decision Cube editor to place some overall control on how many dimensions or
summaries can be brought into memory at the same time.

Limiting the number of dimensions or summaries provides a rough limit on the amount of memory used by the
decision cube. However, it does not distinguish between dimensions with many values and those with only a few.
For greater control of the absolute memory demands of the decision cube, you can also limit the number of cells in
the cube. Set the maximum number of cells on the Cube Capacity page of the Decision Cube editor.

Setting Dimension State
The ActiveFlag property controls which dimensions get loaded. You can set this property on the Dimension Settings
tab of the Decision Cube editor using the Activity Type control. When this control is set to Active, the dimension is
loaded unconditionally, and will always take up space. Note that the number of dimensions in this state must always
be less than MaxDimensions, and the number of summaries set to Active must be less than MaxSummaries. You
should set a dimension or summary to Active only when it is critical that it be available at all times. An Active setting
decreases the ability of the cube to manage the available memory.

When ActiveFlag is set to AsNeeded, a dimension or summary is loaded only if it can be loaded without exceeding
the MaxDimensions, MaxSummaries, or MaxCells limit. The decision cube will swap dimensions and summaries
that are marked AsNeeded in and out of memory to keep within the limits imposed by MaxCells, MaxDimensions,
and MaxSummaries. Thus, a dimension or summary may not be loaded in memory if it is not currently being used.
Setting dimensions that are not used frequently to AsNeeded results in better loading and pivoting performance,
although there will be a time delay to access dimensions which are not currently loaded.

Using Paged Dimensions
When Binning is set to Set on the Dimension Settings tab of the Decision cube editor and Start Value is not NULL,
the dimension is said to be "paged," or "permanently drilled down." You can access data for just a single value of
that dimension at a time, although you can programmatically access a series of values sequentially. Such a
dimension may not be pivoted or opened.

It is extremely memory intensive to include dimensional data for dimensions that have very large numbers of values.
By making such dimensions paged, you can display summary information for one value at a time. Information is
usually easier to read when displayed this way, and memory consumption is much easier to manage.

1815

Connecting to databases

Connecting to Databases: Overview
Most dataset components can connect directly to a database server. Once connected, the dataset communicates
with the server automatically. When you open the dataset, it populates itself with data from the server, and when
you post records, they are sent back the server and applied. A single connection component can be shared by
multiple datasets, or each dataset can use its own connection.

Each type of dataset connects to the database server using its own type of connection component, which is designed
to work with a single data access mechanism. The following table lists these data access mechanisms and the
associated connection components:

Database connection components
Data Access Mechanism Connection Component

Borland Database Engine (BDE) TDatabase

ActiveX Data Objects (ADO) TADOConnection

dbExpress TSQLConnection

InterBase Express TIBDatabase

Note: For a discussion of some pros and cons of each of these mechanisms, see Using Databases.

The connection component provides all the information necessary to establish a database connection. This
information is different for each type of connection component:

For information about describing a BDE-based connection, see Identifying the Database.
For information about describing an ADO-based connection, see Connecting to a Data Store Using
TADOConnection.
For information about describing a dbExpress connection, see Setting up TSQLConnection.
For information about describing an InterBase Express connection, see TIBDatabase.

Although each type of dataset uses a different connection component, they are all descendants of
TCustomConnection. They all perform many of the same tasks and surface many of the same properties, methods,
and events.

The following topics discuss many of these common tasks:

Using Implicit Connections
Controlling Connections

1816

Controlling Server Login
Managing Transactions
Working with Associated Datasets
Sending Commands to the Server
Obtaining Metadata

Using Implicit Connections
No matter what data access mechanism you are using, you can always create the connection component explicitly
and use it to manage the connection to and communication with a database server. For BDE-enabled and ADO-
based datasets, you also have the option of describing the database connection through properties of the dataset
and letting the dataset generate an implicit connection. For BDE-enabled datasets, you specify an implicit connection
using the DatabaseName property. For ADO-based datasets, you use the ConnectionString property.

When using an implicit connection, you do not need to explicitly create a connection component. This can simplify
your application development, and the default connection you specify can cover a wide variety of situations. For
complex, mission-critical client/server applications with many users and different requirements for database
connections, however, you should create your own connection components to tune each database connection to
your application's needs. Explicit connection components give you greater control. For example, you need to access
the connection component to perform the following tasks:

Customize database server login support. (Implicit connections display a default login dialog to prompt the user
for a user name and password.)
Control transactions and specify transaction isolation levels.
Execute SQL commands on the server without using a dataset.
Perform actions on all open datasets that are connected to the same database.

In addition, if you have multiple datasets that all use the same server, it can be easier to use an connection
component, so that you only have to specify the server to use in one place. That way, if you later change the server,
you do not need to update several dataset components: only the connection component.

Controlling Connections
Before you can establish a connection to a database server, your application must provide certain key pieces of
information that describe the desired server. Each type of connection component surfaces a different set of properties
to let you identify the server. In general, however, they all provide a way for you to name the server you want and
supply a set of connection parameters that control how the connection is formed. Connection parameters vary from
server to server. They can include information such as user name and password, the maximum size of BLOB fields,
SQL roles, and so on.

Once you have identified the desired server and any connection parameters, you can use the connection component
to explicitly open or close a connection. The connection component generates events when it opens or closes a
connection that you can use to customize the response of your application to changes in the database connection.

The following topics provide details about opening and closing database connections:

Connecting to a Database Server
Disconnecting From a Database Server

1817

Connecting to a Database Server
There are two ways to connect to a database server using a connection component:

Call the Open method.
Set the Connected property to True.

Calling the Open method sets Connected to True.

Note: When a connection component is not connected to a server and an application attempts to open one of its
associated datasets, the dataset automatically calls the connection component's Open method.

When you set Connected to True, the connection component first generates a BeforeConnect event, where you can
perform any initialization. For example, you can use this event to alter connection parameters.

After the BeforeConnect event, the connection component may display a default login dialog, depending on how
you choose to control server login. It then passes the user name and password to the driver, opening a connection.

Once the connection is open, the connection component generates an AfterConnect event, where you can perform
any tasks that require an open connection.

Note: Some connection components generate additional events as well when establishing a connection.

Once a connection is established, it is maintained as long as there is at least one active dataset using it. When there
are no more active datasets, the connection component drops the connection. Some connection components surface
a KeepConnection property that allows the connection to remain open even if all the datasets that use it are closed.
If KeepConnection is True, the connection is maintained. For connections to remote database servers, or for
applications that frequently open and close datasets, setting KeepConnection to True reduces network traffic and
speeds up the application. If KeepConnection is False, the connection is dropped when there are no active datasets
using the database. If a dataset that uses the database is later opened, the connection must be reestablished and
initialized.

Disconnecting from a Database Server
There are two ways to disconnect a server using a connection component:

Set the Connected property to False.
Call the Close method.

Calling Close sets Connected to False.

When Connected is set to False, the connection component generates a BeforeDisconnect event, where you can
perform any cleanup before the connection closes. For example, you can use this event to cache information about
all open datasets before they are closed.

After the BeforeConnect event, the connection component closes all open datasets and disconnects from the server.

Finally, the connection component generates an AfterDisconnect event, where you can respond to the change in
connection status, such as enabling a Connect button in your user interface.

Note: Calling Close or setting Connected to False disconnects from a database server even if the connection
component has a KeepConnection property that is True.

Controlling Server Login
Most remote database servers include security features to prohibit unauthorized access. Usually, the server requires
a user name and password login before permitting database access.

1818

At design time, if a server requires a login, a standard login dialog box prompts for a user name and password when
you first attempt to connect to the database.

At runtime, there are three ways you can handle a server's request for a login:

The first way is to let the default login dialog and processes handle the login. This is the default approach. Set the
LoginPrompt property of the connection component to True (the default) and add DBLogDlg to the uses clause of
the unit that declares the connection component. Your application displays the standard login dialog box when the
server requests a user name and password.

The second way is to supply the login information before the login attempt. Each type of connection component uses
a different mechanism for specifying the user name and password:

For BDE, dbExpress, and InterBase express datasets, the user name and password connection parameters
can be accessed through the Params property. (For BDE datasets, the parameter values can also be associated
with a BDE alias, while for dbExpress datasets, they can also be associated with a connection name).
For ADO datasets, the user name and password can be included in the ConnectionString property (or provided
as parameters to the Open method).

If you specify the user name and password before the server requests them, be sure to set the LoginPrompt to
False, so that the default login dialog does not appear. For example, the following code sets the user name and
password on a SQL connection component in the BeforeConnect event handler, decrypting an encrypted password
that is associated with the current connection name:

[Delphi]
procedure TForm1.SQLConnectionBeforeConnect(Sender: TObject);
begin
 with Sender as TSQLConnection do
 begin
 if LoginPrompt = False then
 begin
 Params.Values['User_Name'] := 'SYSDBA';
 Params.Values['Password'] := Decrypt(Params.Values['Password']);
 end;
 end;
end;

[C++]
void __fastcall TForm1::SQLConnectionBeforeConnect(TObject *Sender)
{
 if (SQLConnection1->LoginPrompt == false)
 {
 SQLConnection1->Params->Values["User_Name"] = "SYSDBA";
 SQLConnection1->Params->Values["Password"] =
 Decrypt(SQLConnection1->Params->Values["Password"]);
 }
}

Note that setting the user name and password at design-time or using hard-coded strings in code causes the values
to be embedded in the application's executable file. This still leaves them easy to find, compromising server security:

The third way is to provide your own custom handling for the login event. The connection component generates an
event when it needs the user name and password.

For TDatabase, TSQLConnection, and TIBDatabase, this is an OnLogin event. The event handler has two
parameters, the connection component, and a local copy of the user name and password parameters in a string
list. (TSQLConnection includes the database parameter as well). You must set the LoginPrompt property to
True for this event to occur. Having a LoginPrompt value of False and assigning a handler for the OnLogin event

1819

creates a situation where it is impossible to log in to the database because the default dialog does not appear
and the OnLogin event handler never executes.
For TADOConnection, the event is an OnWillConnect event. The event handler has five parameters, the
connection component and four parameters that return values to influence the connection (including two for
user name and password). This event always occurs, regardless of the value of LoginPrompt.

Write an event handler for the event in which you set the login parameters. Here is an example where the values
for the USER NAME and PASSWORD parameters are provided from a global variable (UserName) and a method
that returns a password given a user name (PasswordSearch)

[Delphi]
procedure TForm1.Database1Login(Database: TDatabase; LoginParams: TStrings);
begin
 LoginParams.Values['USER NAME'] := UserName;
 LoginParams.Values['PASSWORD'] := PasswordSearch(UserName);
end;

[C++]
void __fastcall TForm1::Database1Login(TDatabase *Database, TStrings *LoginParams)
{
 LoginParams->Values["USER NAME"] = UserName;
 LoginParams->Values["PASSWORD"] = PasswordSearch(UserName);
}

As with the other methods of providing login parameters, when writing an OnLogin or OnWillConnect event handler,
avoid hard coding the password in your application code. It should appear only as an encrypted value, an entry in
a secure database your application uses to look up the value, or be dynamically obtained from the user.

Managing Transactions
A transaction is a group of actions that must all be carried out successfully on one or more tables in a database
before they are committed (made permanent). If one of the actions in the group fails, then all actions are rolled
back (undone). By using transactions, you ensure that the database is not left in an inconsistent state when a problem
occurs completing one of the actions that make up the transaction.

For example, in a banking application, transferring funds from one account to another is an operation you would
want to protect with a transaction. If, after decrementing the balance in one account, an error occurred incrementing
the balance in the other, you want to roll back the transaction so that the database still reflects the correct total
balance.

It is always possible to manage transactions by sending SQL commands directly to the database. Most databases
provide their own transaction management model, although some have no transaction support at all. For servers
that support it, you may want to code your own transaction management directly, taking advantage of advanced
transaction management capabilities on a particular database server, such as schema caching.

If you do not need to use any advanced transaction management capabilities, connection components provide a set
of methods and properties you can use to manage transactions without explicitly sending any SQL commands. Using
these properties and methods has the advantage that you do not need to customize your application for each type
of database server you use, as long as the server supports transactions. (The BDE also provides limited transaction
support for local tables with no server transaction support. When not using the BDE, trying to start transactions on
a database that does not support them causes connection components to raise an exception.)

Warning: When a dataset provider component applies updates, it implicitly generates transactions for any updates.
Be careful that any transactions you explicitly start do not conflict with those generated by the provider.

1820

Starting a transaction
When you start a transaction, all subsequent statements that read from or write to the database occur in the context
of that transaction, until the transaction is explicitly terminated or (in the case of overlapping transactions) until
another transaction is started. Each statement is considered part of a group. Changes must be successfully
committed to the database, or every change made in the group must be undone.

While the transaction is in process, your view of the data in database tables is determined by your transaction
isolation level.

For TADOConnection, start a transaction by calling the BeginTrans method:

[Delphi]
Level := ADOConnection1.BeginTrans;

[C++]
Level = ADOConnection1->BeginTrans();

BeginTrans returns the level of nesting for the transaction that started. A nested transaction is one that is nested
within another, parent, transaction. After the server starts the transaction, the ADO connection receives an
OnBeginTransComplete event.

For TDatabase, use the StartTransaction method instead. TDataBase does not support nested or overlapped
transactions: If you call a TDatabase component's StartTransaction method while another transaction is underway,
it raises an exception. To avoid calling StartTransaction, you can check the InTransaction property:

[Delphi]
if not Database1.InTransaction then
 Database1.StartTransaction;

[C++]
if (!Database1->InTransaction)
 Database1->StartTransaction();

TSQLConnection also uses the StartTransaction method, but it uses a version that gives you a lot more control.
Specifically, StartTransaction takes a transaction descriptor, which lets you manage multiple simultaneous
transactions and specify the transaction isolation level on a per-transaction basis. In order to manage multiple
simultaneous transactions, set the TransactionID field of the transaction descriptor to a unique value.
TransactionID can be any value you choose, as long as it is unique (does not conflict with any other transaction
currently underway). Depending on the server, transactions started by TSQLConnection can be nested (as they can
be when using ADO) or they can be overlapped.

[Delphi]
var
 TD: TTransactionDesc;
begin
 TD.TransactionID := 1;
 TD.IsolationLevel := xilREADCOMMITTED;
 SQLConnection1.StartTransaction(TD);

[C++]
TTransactionDesc TD;
TD.TransactionID = 1;
TD.IsolationLevel = xilREADCOMMITTED;
SQLConnection1->StartTransaction(TD);

1821

By default, with overlapped transactions, the first transaction becomes inactive when the second transaction starts,
although you can postpone committing or rolling back the first transaction until later. If you are using
TSQLConnection with an InterBase database, you can identify each dataset in your application with a particular
active transaction, by setting its TransactionLevel property. That is, after starting a second transaction, you can
continue to work with both transactions simultaneously, simply by associating a dataset with the transaction you want.

Note: Unlike TADOConnection, TSQLConnection and TDatabase do not receive any events when the transactions
starts.

InterBase express offers you even more control than TSQLConnection by using a separate transaction component
rather than starting transactions using the connection component. You can, however, use TIBDatabase to start a
default transaction:

[Delphi]
if not IBDatabase1.DefaultTransaction.InTransaction then
 IBDatabase1.DefaultTransaction.StartTransaction;

[C++]
if (!IBDatabase1->DefaultTransaction->InTransaction)
 IBDatabase1->DefaultTransaction->StartTransaction();

You can have overlapped transactions by using two separate transaction components. Each transaction component
has a set of parameters that let you configure the transaction. These let you specify the transaction isolation level,
as well as other properties of the transaction.

Ending a transaction
Ideally, a transaction should only last as long as necessary. The longer a transaction is active, the more simultaneous
users that access the database, and the more concurrent, simultaneous transactions that start and end during the
lifetime of your transaction, the greater the likelihood that your transaction will conflict with another when you attempt
to commit any changes.

When the actions that make up the transaction have all succeeded, you can make the database changes permanent
by committing the transaction. For TDatabase, you commit a transaction using the Commit method:

[Delphi]
MyOracleConnection.Commit;

[C++]
MyOracleConnection->Commit();

For TSQLConnection, you also use the Commit method, but you must specify which transaction you are committing
by supplying the transaction descriptor you gave to the StartTransaction method:

[Delphi]
MyOracleConnection.Commit(TD);

[C++]
MyOracleConnection->Commit(TD);

For TIBDatabase, you commit a transaction object using its Commit method:

1822

[Delphi]
IBDatabase1.DefaultTransaction.Commit;

[C++]
IBDatabase1->DefaultTransaction->Commit();

For TADOConnection, you commit a transaction using the CommitTrans method:

[Delphi]
ADOConnection1.CommitTrans;

[C++]
ADOConnection1->CommitTrans();

Note: It is possible for a nested transaction to be committed, only to have the changes rolled back later if the parent
transaction is rolled back.

After the transaction is successfully committed, an ADO connection component receives an
OnCommitTransComplete event. Other connection components do not receive any similar events.

A call to commit the current transaction is usually attempted in a try...except statement. That way, if the transaction
cannot commit successfully, you can use the except block to handle the error and retry the operation or to roll back
the transaction.

If an error occurs when making the changes that are part of the transaction or when trying to commit the transaction,
you will want to discard all changes that make up the transaction. Discarding these changes is called rolling back
the transaction.

For TDatabase, you roll back a transaction by calling the Rollback method:

[Delphi]
MyOracleConnection.Rollback;

[C++]
MyOracleConnection->Rollback();

For TSQLConnection, you also use the Rollback method, but you must specify which transaction you are rolling
back by supplying the transaction descriptor you gave to the StartTransaction method:

[Delphi]
MyOracleConnection.Rollback(TD);

[C++]
MyOracleConnection->Rollback(TD);

For TIBDatabase, you roll back a transaction object by calling its Rollback method:

[Delphi]
IBDatabase1.DefaultTransaction.Rollback;

1823

[C++]
IBDatabase1->DefaultTransaction->Rollback();

For TADOConnection, you roll back a transaction by calling the RollbackTrans method:

[Delphi]
ADOConnection1.RollbackTrans;

[C++]
ADOConnection1->RollbackTrans();

After the transaction is successfully rolled back, an ADO connection component receives an
OnRollbackTransComplete event. Other connection components do not receive any similar events.

A call to roll back the current transaction usually occurs in

Exception handling code when you can't recover from a database error.
Button or menu event code, such as when a user clicks a Cancel button.

Specifying the Transaction Isolation Level
Transaction isolation level determines how a transaction interacts with other simultaneous transactions when they
work with the same tables. In particular, it affects how much a transaction "sees" of other transactions' changes to
a table.

Each server type supports a different set of possible transaction isolation levels. There are three possible transaction
isolation levels:

DirtyRead: When the isolation level is DirtyRead, your transaction sees all changes made by other transactions,
even if they have not been committed. Uncommitted changes are not permanent, and might be rolled back at
any time. This value provides the least isolation, and is not available for many database servers (such as Oracle,
Sybase, MS-SQL, and InterBase).
ReadCommitted: When the isolation level is ReadCommitted, only committed changes made by other
transactions are visible. Although this setting protects your transaction from seeing uncommitted changes that
may be rolled back, you may still receive an inconsistent view of the database state if another transaction is
committed while you are in the process of reading. This level is available for all transactions except local
transactions managed by the BDE.
RepeatableRead: When the isolation level is RepeatableRead, your transaction is guaranteed to see a
consistent state of the database data. Your transaction sees a single snapshot of the data. It cannot see any
subsequent changes to data by other simultaneous transactions, even if they are committed. This isolation level
guarantees that once your transaction reads a record, its view of that record will not change. At this level your
transaction is most isolated from changes made by other transactions. This level is not available on some
servers, such as Sybase and MS-SQL and is unavailable on local transactions managed by the BDE.

In addition, TSQLConnection lets you specify database-specific custom isolation levels. Custom isolation levels are
defined by the dbExpress driver. See your driver documentation for details.

Note: For a detailed description of how each isolation level is implemented, see your server documentation.

TDatabase and TADOConnection let you specify the transaction isolation level by setting the TransIsolation property.
When you set TransIsolation to a value that is not supported by the database server, you get the next highest level
of isolation (if available). If there is no higher level available, the connection component raises an exception when
you try to start a transaction.

1824

When using TSQLConnection, transaction isolation level is controlled by the IsolationLevel field of the transaction
descriptor.

When using InterBase express, transaction isolation level is controlled by a transaction parameter.

Sending Commands to the Server
All database connection components except TIBDatabase let you execute SQL statements on the associated server
by calling the Execute method. Although Execute can return a cursor when the statement is a SELECT statement,
this use is not recommended. The preferred method for executing statements that return data is to use a dataset.

The Execute method is very convenient for executing simple SQL statements that do not return any records. Such
statements include Data Definition Language (DDL) statements, which operate on or create a database's metadata,
such as CREATE INDEX, ALTER TABLE, and DROP DOMAIN. Some Data Manipulation Language (DML) SQL
statements also do not return a result set. The DML statements that perform an action on data but do not return a
result set are: INSERT, DELETE, and UPDATE.

The syntax for the Execute method varies with the connection type:

For TDatabase, Execute takes four parameters: a string that specifies a single SQL statement that you want to
execute, a TParams object that supplies any parameter values for that statement, a boolean that indicates
whether the statement should be cached because you will call it again, and a pointer to a BDE cursor that can
be returned (It is recommended that you pass nil).
For TADOConnection, there are two versions of Execute. The first takes a WideString that specifies the SQL
statement and a second parameter that specifies a set of options that control whether the statement is executed
asynchronously and whether it returns any records. This first syntax returns an interface for the returned records.
The second syntax takes a WideString that specifies the SQL statement, a second parameter that returns the
number of records affected when the statement executes, and a third that specifies options such as whether
the statement executes asynchronously. Note that neither syntax provides for passing parameters.
For TSQLConnection, Execute takes three parameters: a string that specifies a single SQL statement that you
want to execute, a TParams object that supplies any parameter values for that statement, and a pointer that
can receive a TCustomSQLDataSet that is created to return records.

Note: Execute can only execute one SQL statement at a time. It is not possible to execute multiple SQL statements
with a single call to Execute, as you can with SQL scripting utilities. To execute more than one statement,
call Execute repeatedly.

It is relatively easy to execute a statement that does not include any parameters. For example, the following code
executes a CREATE TABLE statement (DDL) without any parameters on a TSQLConnection component:

[Delphi]
procedure TForm1.CreateTableButtonClick(Sender: TObject);
var
 SQLstmt: String;
begin
 SQLConnection1.Connected := True;
 SQLstmt := 'CREATE TABLE NewCusts ' +
 '(" +
 ' CustNo INTEGER, ' +
 ' Company CHAR(40), ' +
 ' State CHAR(2), ' +
 ' PRIMARY KEY (CustNo) ' +
 ')';
 SQLConnection1.Execute(SQLstmt, nil, nil);
end;

1825

[C++]
void __fastcall TDataForm::CreateTableButtonClick(TObject *Sender)
{
 SQLConnection1->Connected = true;
 AnsiString SQLstmt = "CREATE TABLE NewCusts " +
 "(" +
 " CustNo INTEGER, " +
 " Company CHAR(40), " +
 " State CHAR(2), " +
 " PRIMARY KEY (CustNo) " +
 ")";
 SQLConnection1->Execute(SQLstmt, NULL, NULL);
}

To use parameters, you must create a TParams object. For each parameter value, use the TParams.
CreateParam method to add a TParam object. Then use properties of TParam to describe the parameter and set
its value.

This process is illustrated in the following example, which uses TDatabase to execute an INSERT statement. The
INSERT statement has a single parameter named: StateParam. A TParams object (called stmtParams) is created
to supply a value of "CA" for that parameter.

[Delphi]
procedure TForm1.INSERT_WithParamsButtonClick(Sender: TObject);
var
 SQLstmt: String;
 stmtParams: TParams;
begin
 stmtParams := TParams.Create;
 try
 Database1.Connected := True;
 stmtParams.CreateParam(ftString, 'StateParam', ptInput);
 stmtParams.ParamByName('StateParam').AsString := 'CA';
 SQLstmt := 'INSERT INTO "Custom.db" '+
 '(CustNo, Company, State) ' +
 'VALUES (7777, "Robin Dabank Consulting", :StateParam)';
 Database1.Execute(SQLstmt, stmtParams, False, nil);
 finally
 stmtParams.Free;
 end;
end;

[C++]
void __fastcall TForm1::INSERT_WithParamsButtonClick(TObject *Sender)
{
 AnsiString SQLstmt;
 TParams *stmtParams = new TParams;
 try
 {
 Database1->Connected = true;
 stmtParams->CreateParam(ftString, "StateParam", ptInput);
 stmtParams->ParamByName("StateParam")->AsString = "CA";
 SQLstmt = "INSERT INTO "Custom.db" ";
 SQLstmt += "(CustNo, Company, State) ";
 SQLstmt += "VALUES (7777, "Robin Dabank Consulting", :StateParam)";
 Database1->Execute(SQLstmt, stmtParams, false, NULL);
 }
 __finally

1826

 {
 delete stmtParams;
 }
}

If the SQL statement includes a parameter but you do not supply a TParam object to provide its value, the SQL
statement may cause an error when executed (this depends on the particular database back-end used). If a
TParam object is provided but there is no corresponding parameter in the SQL statement, an exception is raised
when the application attempts to use the TParam.

Working with Associated Datasets
All database connection components maintain a list of all datasets that use them to connect to a database. A
connection component uses this list, for example, to close all of the datasets when it closes the database connection.

You can use this list as well, to perform actions on all the datasets that use a specific connection component to
connect to a particular database.

Closing all datasets without disconnecting from the server
The connection component automatically closes all datasets when you close its connection. There may be times,
however, when you want to close all datasets without disconnecting from the database server.

To close all open datasets without disconnecting from a server, you can use the CloseDataSets method.

For TADOConnection and TIBDatabase, calling CloseDataSets always leaves the connection open. For
TDatabase and TSQLConnection, you must also set the KeepConnection property to True.

Iterating through the associated datasets
To perform any actions (other than closing them all) on all the datasets that use a connection component, use the
DataSets and DataSetCount properties. DataSets is an indexed array of all datasets that are linked to the connection
component. For all connection components except TADOConnection, this list includes only the active datasets.
TADOConnection lists the inactive datasets as well. DataSetCount is the number of datasets in this array.

Note: When you use a specialized client dataset to cache updates (as opposed to the generic client dataset,
TClientDataSet), the DataSets property lists the internal dataset owned by the client dataset, not the client
dataset itself.

You can use DataSets with DataSetCount to cycle through all currently active datasets in code. For example, the
following code cycles through all active datasets and disables any controls that use the data they provide:

[Delphi]
var
 I: Integer;
begin
 with MyDBConnection do
 begin
 for I := 0 to DataSetCount - 1 do
 DataSets[I].DisableControls;
 end;
end;

1827

[C++]
for (int i = 0; i < MyDBConnection->DataSetCount; i++)
 MyDBConnection->DataSets[i]->DisableControls();

Note: TADOConnection supports command objects as well as datasets. You can iterate through these much like
you iterate through the datasets, by using the Commands and CommandCount properties.

Obtaining Metadata
All database connection components can retrieve lists of metadata on the database server, although they vary in
the types of metadata they retrieve. The methods that retrieve metadata fill a string list with the names of various
entities available on the server. You can then use this information, for example, to let your users dynamically select
a table at runtime.

You can use a TADOConnection component to retrieve metadata about the tables and stored procedures available
on the ADO data store. You can then use this information, for example, to let your users dynamically select a table
or stored procedure at runtime.

Listing available tables
The GetTableNames method copies a list of table names to an already-existing string list object. This can be used,
for example, to fill a list box with table names that the user can then use to choose a table to open. The following
line fills a listbox with the names of all tables on the database:

[Delphi]
MyDBConnection.GetTableNames(ListBox1.Items, False);

[C++]
MyDBConnection->GetTableNames(ListBox1->Items, false);

GetTableNames has two parameters: the string list to fill with table names, and a boolean that indicates whether the
list should include system tables, or ordinary tables. Note that not all servers use system tables to store metadata,
so asking for system tables may result in an empty list.

Note: For most database connection components, GetTableNames returns a list of all available non-system tables
when the second parameter is False. For TSQLConnection, however, you have more control over what type
is added to the list when you are not fetching only the names of system tables. When using
TSQLConnection, the types of names added to the list are controlled by the TableScope property.
TableScope indicates whether the list should contain any or all of the following: ordinary tables, system tables,
synonyms, and views.

Listing the fields in a table
The GetFieldNames method fills an existing string list with the names of all fields (columns) in a specified table.
GetFieldNames takes two parameters, the name of the table for which you want to list the fields, and an existing
string list to be filled with field names:

[Delphi]
MyDBConnection.GetFieldNames('Employee', ListBox1.Items);

1828

[C++]
MyDBConnection->GetTableNames("Employee", ListBox1->Items);

Listing available stored procedures
To get a listing of all of the stored procedures contained in the database, use the GetProcedureNames method. This
method takes a single parameter: an already-existing string list to fill:

[Delphi]
MyDBConnection.GetProcedureNames(ListBox1.Items);

[C++]
MyDBConnection->GetProcedureNames(ListBox1->Items);

Note: GetProcedureNames is only available for TADOConnection and TSQLConnection.

Listing available indexes
To get a listing of all indexes defined for a specific table, use the GetIndexNames method. This method takes two
parameters: the table whose indexes you want, and an already-existing string list to fill:

[Delphi]
SQLConnection1.GetIndexNames('Employee', ListBox1.Items);

[C++]
MyDBConnection1->GetIndexNames("Employee", ListBox1->Items);

Note: GetIndexNames is only available for TSQLConnection, although most table-type datasets have an equivalent
method.

Listing stored procedure parameters
To get a list of all parameters defined for a specific stored procedure, use the GetProcedureParams method.
GetProcedureParams fills a TList object with pointers to parameter description records, where each record describes
a parameter of a specified stored procedure, including its name, index, parameter type, field type, and so on.

GetProcedureParams takes two parameters: the name of the stored procedure, and an already-existing TList object
to fill:

[Delphi]
SQLConnection1.GetProcedureParams('GetInterestRate', List1);

[C++]
MyDBConnection1->GetIndexNames("GetInterestRate", List1);

To convert the parameter descriptions that are added to the list into the more familiar TParams object, call the global
LoadParamListItems procedure. Because GetProcedureParams dynamically allocates the individual records, your

1829

application must free them when it is finished with the information. The global FreeProcParams routine can do this
for you.

Note: GetProcedureParams is only available for TSQLConnection.

1830

Understanding datasets

Understanding Datasets: Overview
The fundamental unit for accessing data is the dataset family of objects. Your application uses datasets for all
database access. A dataset object represents a set of records from a database organized into a logical table. These
records may be the records from a single database table, or they may represent the results of executing a query or
stored procedure.

All dataset objects that you use in your database applications descend from TDataSet, and they inherit data fields,
properties, events, and methods from this class.

TDataSet is a virtualized dataset, meaning that many of its properties and methods are virtual or abstract. A virtual
method is a function or procedure declaration where the implementation of that method can be (and usually is)
overridden in descendant objects. An abstract method is a function or procedure declaration without an actual
implementation. The declaration is a prototype that describes the method (and its parameters and return type, if any)
that must be implemented in all descendant dataset objects, but that might be implemented differently by each of
them.

Because TDataSet contains abstract methods, you cannot use it directly in an application without generating a
runtime error. Instead, you either create instances of the built-in TDataSet descendants and use them in your
application, or you derive your own dataset object from TDataSet or its descendants and write implementations for
all its abstract methods.

TDataSet defines much that is common to all dataset objects. For example, TDataSet defines the basic structure of
all datasets: an array of TField components that correspond to actual columns in one or more database tables,
lookup fields provided by your application, or calculated fields provided by your application. For information about
TField components, see "Working with field components."

The following topics describe how to use the common database functionality introduced by TDataSet. Bear in mind,
however, that although TDataSet introduces the methods for this functionality, not all TDataSet dependants
implement them. In particular, unidirectional datasets implement only a limited subset.

Using TDataSet Descendants
Determining Dataset States
Opening and Closing Datasets
Navigating Datasets
Searching Datasets
Displaying and Editing a Subset of Data Using Filters
Modifying Data
Calculating Fields

1831

Types of Datasets

Using TDataSet Descendants
TDataSet has several immediate descendants, each of which corresponds to a different data access mechanism.
You do not work directly with any of these descendants. Rather, each descendant introduces the properties and
methods for using a particular data access mechanism. These properties and methods are then exposed by
descendant classes that are adapted to different types of server data. The immediate descendants of TDataSet
include

TBDEDataSet, which uses the Borland Database Engine (BDE) to communicate with the database server. The
TBDEDataSet descendants you use are TTable, TQuery, TStoredProc, and TNestedTable. The unique features
of BDE-enabled datasets are described in Using the Borland Database Engine
TCustomADODataSet, which uses ActiveX Data Objects (ADO) to communicate with an OLEDB data store.
The TCustomADODataSet descendants you use are TADODataSet, TADOTable, TADOQuery, and
TADOStoredProc. The unique features of ADO-based datasets are described in Working with ADO
components.
TCustomSQLDataSet, which uses dbExpress to communicate with a database server. The
TCustomSQLDataSet descendants you use are TSQLDataSet, TSQLTable, TSQLQuery, and
TSQLStoredProc. The unique features of dbExpress datasets are described in Using Unidirectional Datasets.
TIBCustomDataSet, which communicates directly with an InterBase database server. The
TIBCustomDataSet descendants you use are TIBDataSet, TIBTable, TIBQuery, and TIBStoredProc.
TCustomClientDataSet, which represents the data from another dataset component or the data from a dedicated
file on disk. The TCustomClientDataSet descendants you use are TClientDataSet, which can connect to an
external (source) dataset, and the client datasets that are specialized to a particular data access mechanism
(TBDEClientDataSet, TSimpleDataSet, and TIBClientDataSet), which use an internal source dataset. The
unique features of client datasets are described in Using client datasets

Some pros and cons of the various data access mechanisms employed by these TDataSet descendants are
described in Using databases.

In addition to the built-in datasets, you can create your own custom TDataSet descendants—for example to supply
data from a process other than a database server, such as a spreadsheet. Writing custom datasets allows you the
flexibility of managing the data using any method you choose, while still letting you use the VCL data controls to
build your user interface. For more information about creating custom components, see Overview of component
creation.

Although each TDataSet descendant has its own unique properties and methods, some of the properties and
methods introduced by descendant classes are the same as those introduced by other descendant classes that use
another data access mechanism. For example, there are similarities between the "table" components (TTable,
TADOTable, TSQLTable, and TIBTable). For information about the commonalities introduced by TDataSet
descendants, see Types of datasets.

Determining Dataset States
The state—or mode—of a dataset determines what can be done to its data. For example, when a dataset is closed,
its state is dsInactive, meaning that nothing can be done to its data. At runtime, you can examine a dataset's read-
only State property to determine its current state. The following table summarizes possible values for the State
property and what they mean:

Values for the dataset State property

1832

Value State Meaning

dsInactive Inactive DataSet closed. Its data is unavailable.

dsBrowse Browse DataSet open. Its data can be viewed, but not changed. This is the default state of an open
dataset.

dsEdit Edit DataSet open. The current row can be modified. (not supported on unidirectional datasets)

dsInsert Insert DataSet open. A new row is inserted or appended. (not supported on unidirectional datasets)

dsSetKey SetKey DataSet open. Enables setting of ranges and key values used for ranges and GotoKey
operations. (not supported by all datasets)

dsCalcFields CalcFields DataSet open. Indicates that an OnCalcFields event is under way. Prevents changes to fields
that are not calculated.

dsCurValue CurValue DataSet open. Indicates that the CurValue property of fields is being fetched for an event
handler that responds to errors in applying cached updates.

dsNewValue NewValue DataSet open. Indicates that the NewValue property of fields is being fetched for an event
handler that responds to errors in applying cached updates.

dsOldValue OldValue DataSet open. Indicates that the OldValue property of fields is being fetched for an event handler
that responds to errors in applying cached updates.

dsFilter Filter DataSet open. Indicates that a filter operation is under way. A restricted set of data can be
viewed, and no data can be changed. (not supported on unidirectional datasets)

dsBlockRead Block Read DataSet open. Data-aware controls are not updated and events are not triggered when the
current record changes.

dsInternalCalc Internal Calc DataSet open. An OnCalcFields event is underway for calculated values that are stored with
the record. (client datasets only)

dsOpening Opening DataSet is in the process of opening but has not finished. This state occurs when the dataset
is opened for asynchronous fetching.

Typically, an application checks the dataset state to determine when to perform certain tasks. For example, you
might check for the dsEdit or dsInsert state to ascertain whether you need to post updates.

Note: Whenever a dataset's state changes, the OnStateChange event is called for any data source components
associated with the dataset. For more information about data source components and OnStateChange, see
Responding to Changes Mediated by the Data Source.

Opening and Closing Datasets
To read or write data in a dataset, an application must first open it. You can open a dataset in two ways:

Open Method Sample Code

Set theActiveproperty of the dataset to True, either at design
time in the Object Inspector, or in code at runtime.

[Delphi]
CustTable.Active := True;

[C++]
CustTable->Active = true;

Call the Open method for the dataset at runtime. [Delphi]
CustQuery.Open;

1833

[C++]
CustQuery->Open();

When you open the dataset, the dataset first receives a BeforeOpen event, then it opens a cursor, populating itself
with data, and finally, it receives an AfterOpen event.

The newly-opened dataset is in browse mode, which means your application can read the data and navigate through
it.

You can close a dataset in two ways:

Close Method Sample Code

Set the Active property of the dataset to False, either at design
time in the Object Inspector, or in code at runtime.

[Delphi]
CustQuery.Active := False;

[C++]
CustQuery->Active = false;

Call the Close method for the dataset at runtime. [Delphi]
CustTable.Close;

[C++]
CustTable->Close();

Just as the dataset receives BeforeOpen and AfterOpen events when you open it, it receives a BeforeClose and
AfterClose event when you close it. You can use these events, for example, to prompt the user to post pending
changes or cancel them before closing the dataset. The following code illustrates such a handler:

[Delphi]

procedure TForm1.CustTableVerifyBeforeClose(DataSet: TDataSet);
begin
 if (CustTable.State in [dsEdit, dsInsert]) then begin
 case MessageDlg('Post changes before closing?', mtConfirmation, mbYesNoCancel, 0) of
 mrYes: CustTable.Post; { save the changes }
 mrNo: CustTable.Cancel; { abandon the changes}
 mrCancel: Abort; { abort closing the dataset }
 end;
 end;
end;

[C++]
void __fastcall TForm1::VerifyBeforeClose(TDataSet *DataSet)
{
if (DataSet->State == dsEdit || DataSet->State == dsInsert)
{
TMsgDlgButtons btns;
btns << mbYes << mbNo;
 if (MessageDlg("Post changes before closing?", mtConfirmation, btns, 0) == mrYes)
DataSet->Post();
else
DataSet->Cancel();

1834

}
}

Note: You may need to close a dataset when you want to change certain of its properties, such as TableName on
a TTable component. When you reopen the dataset, the new property value takes effect.

Navigating Datasets
Each active dataset has a cursor, or pointer, to the current row in the dataset. The current row in a dataset is the
one whose field values currently show in single-field, data-aware controls on a form, such as TDBEdit, TDBLabel,
and TDBMemo. If the dataset supports editing, the current record contains the values that can be manipulated by
edit, insert, and delete methods.

You can change the current row by moving the cursor to point at a different row. The following table lists methods
you can use in application code to move to different records:

Navigational methods of datasets
Method Moves the Cursor to

First The first row in a dataset.

Last The last row in a dataset. (not available for unidirectional datasets)

Next The next row in a dataset.

Prior The previous row in a dataset. (not available for unidirectional datasets)

MoveBy A specified number of rows forward or back in a dataset.

The data-aware, visual component TDBNavigator encapsulates these methods as buttons that users can click to
move among records at runtime. For information about the navigator component, see Navigating and manipulating
records.

Whenever you change the current record using one of these methods (or by other methods that navigate based on
a search criterion), the dataset receives two events: BeforeScroll (before leaving the current record) and AfterScroll
(after arriving at the new record). You can use these events to update your user interface (for example, to update a
status bar that indicates information about the current record).

TDataSet also defines two boolean properties that provide useful information when iterating through the records in
a dataset.

Navigational properties of datasets
Property Description

BOF (Beginning-of-file) True: the cursor is at the first row in the dataset.

False: the cursor is not known to be at the first row in the dataset

EOF (End-of-file) True: the cursor is at the last row in the dataset.

False: the cursor is not known to be at the first row in the dataset

The following topics discuss these properties and methods in more detail:

Using the First and Last methods
Using the Next and Prior methods
Using the MoveBy method
Using the Eof and Bof Properties

1835

Marking and Returning to Records

Using the First and Last Methods
The First method moves the cursor to the first row in a dataset and sets the BOF property to True. If the cursor is
already at the first row in the dataset, First does nothing.

For example, the following code moves to the first record in CustTable:

[Delphi]
CustTable.First;

[C++]
CustTable->First();

The Last method moves the cursor to the last row in a dataset and sets the EOF property to True. If the cursor is
already at the last row in the dataset, Last does nothing.

The following code moves to the last record in CustTable:

[Delphi]
CustTable.Last;

[C++]
CustTable->Last();

Note: The Last method raises an exception in unidirectional datasets.

Tip: While there may be programmatic reasons to move to the first or last rows in a dataset without user intervention,
you can also enable your users to navigate from record to record using the TDBNavigator component. The
navigator component contains buttons that, when active and visible, enable a user to move to the first and last
rows of an active dataset. The OnClick events for these buttons call the First and Last methods of the dataset.
For more information about making effective use of the navigator component, see Navigating and manipulating
records.

Using the Next and Prior Methods
The Next method moves the cursor forward one row in the dataset and sets the BOF property to False if the dataset
is not empty. If the cursor is already at the last row in the dataset when you call Next, nothing happens.

For example, the following code moves to the next record in CustTable:

[Delphi]
CustTable.Next;

[C++]
CustTable->Next();

The Prior method moves the cursor back one row in the dataset, and setsEOF to False if the dataset is not empty.
If the cursor is already at the first row in the dataset when you call Prior, Prior does nothing.

1836

For example, the following code moves to the previous record in CustTable:

[Delphi]
CustTable.Prior;

[C++]
CustTable->Prior();

Note: The Prior method raises an exception in unidirectional datasets.

Using the MoveBy Method
MoveBy lets you specify how many rows forward or back to move the cursor in a dataset. Movement is relative to
the current record at the time that MoveBy is called. MoveBy also sets the BOF and EOF properties for the dataset
as appropriate.

This function takes an integer parameter, the number of records to move. Positive integers indicate a forward move
and negative integers indicate a backward move.

Note: MoveBy raises an exception in unidirectional datasets if you use a negative argument.

MoveBy returns the number of rows it moves. If you attempt to move past the beginning or end of the dataset, the
number of rows returned by MoveBy differs from the number of rows you requested to move. This is because
MoveBy stops when it reaches the first or last record in the dataset.

The following code moves two records backward in CustTable:

[Delphi]
CustTable.MoveBy(-2);

[C++]
CustTable->MoveBy(-2);

Note: If your application uses MoveBy in a multi-user database environment, keep in mind that datasets are fluid.
A record that was five records back a moment ago may now be four, six, or even an unknown number of
records back if several users are simultaneously accessing the database and changing its data.

Using the Eof and Bof Properties
Two read-only, runtime properties, Eof (End-of-file) and Bof (Beginning-of-file), are useful when you want to iterate
through all records in a dataset.

Eof
When EOF is True, it indicates that the cursor is unequivocally at the last row in a dataset. Eof is set to True when
an application

Opens an empty dataset.
Calls a dataset's Last method.
Calls a dataset's Next method, and the method fails (because the cursor is currently at the last row in the dataset.

1837

Calls SetRange on an empty range or dataset.

Eof is set to False in all other cases; you should assume Eof is False unless one of the conditions above is met
and you test the property directly.

Eof is commonly tested in a loop condition to control iterative processing of all records in a dataset. If you open a
dataset containing records (or you call First) Eof is False. To iterate through the dataset a record at a time, create
a loop that steps through each record by calling Next, and terminates when Eof is True. Eof remains False until you
call Next when the cursor is already on the last record.

The following code illustrates one way you might code a record-processing loop for a dataset called CustTable:

[Delphi]
CustTable.DisableControls;
try
 CustTable.First; { Go to first record, which sets Eof False }
 while not CustTable.Eof do { Cycle until Eof is True }
 begin
 { Process each record here }
 .
 .
 .
 CustTable.Next; { Eof False on success; Eof True when Next fails on last record }
 end;
finally
 CustTable.EnableControls;
end;

[C++]
CustTable->DisableControls(); // Speed up processing; prevent screen flicker
try
{
 while (!CustTable->Bof) // Cycle until Bof is true
 (
 // Process each record here
 .
 .
 .
 CustTable->Prior();
 // Bof false on success; Bof true when Prior fails on first record
 }
}
__finally
{
 CustTable->EnableControls();
}

[C++]
CustTable->DisableControls();
try
{
 for (CustTable->First(); !CustTable->Eof; CustTable->Next())
 (
 // Process each record here
 .
 .
 .
 }

1838

}
__finally
{
 CustTable->EnableControls();
}

Tip: This example also shows how to disable and enable data-aware visual controls tied to a dataset. If you disable
visual controls during dataset iteration, it speeds processing because your application does not need to update
the contents of the controls as the current record changes. After iteration is complete, controls should be
enabled again to update them with values for the new current row. Note that enabling of the visual controls
takes place in the finally clause of a try...finally statement. This guarantees that even if an exception
terminates loop processing prematurely, controls are not left disabled.

Bof
When BOF is True, it indicates that the cursor is unequivocally at the first row in a dataset. Bof is set to True when
an application

Opens a dataset.
Calls a dataset's First method.
Calls a dataset's Prior method, and the method fails (because the cursor is currently at the first row in the dataset.
Calls SetRange on an empty range or dataset.

Bof is set to False in all other cases; you should assume Bof is False unless one of the conditions above is met
and you test the property directly.

Like EOF, Bof can be in a loop condition to control iterative processing of records in a dataset. The following code
illustrates one way you might code a record-processing loop for a dataset called CustTable:

[Delphi]
CustTable.DisableControls; { Speed up processing; prevent screen flicker }
try
 while not CustTable.Bof do { Cycle until Bof is True }
 begin
 { Process each record here }
 .
 .
 .
 CustTable.Prior; { Bof False on success; Bof True when Prior fails on first record }
 end;
finally
 CustTable.EnableControls; { Display new current row in controls }
end;

Marking and Returning to Records
In addition to moving from record to record in a dataset (or moving from one record to another by a specific number
of records), it is often also useful to mark a particular location in a dataset so that you can return to it quickly when
desired. TDataSet introduces a bookmarking feature that consists of a Bookmark property and five bookmark
methods.

TDataSet implements virtual bookmark methods. While these methods ensure that any dataset object derived from
TDataSet returns a value if a bookmark method is called, the return values are merely defaults that do not keep track
of the current location. TDataSet descendants vary in the level of support they provide for bookmarks. None of the

1839

dbExpress datasets add any support for bookmarks. ADO datasets can support bookmarks, depending on the
underlying database tables. BDE datasets, InterBase express datasets, and client datasets always support
bookmarks.

The Bookmark property
The Bookmark property indicates which bookmark among any number of bookmarks in your application is
current. Bookmark is a string that identifies the current bookmark. Each time you add another bookmark, it becomes
the current bookmark.

The GetBookmark method
To create a bookmark, you must declare a variable of type TBookmark in your application, then call GetBookmark
to allocate storage for the variable and set its value to a particular location in a dataset. The TBookmark type is a
Pointer.

The GotoBookmark and BookmarkValid methods
When passed a bookmark, GotoBookmark moves the cursor for the dataset to the location specified in the bookmark.
Before calling GotoBookmark, you can call BookmarkValid to determine if the bookmark points to a record.
BookmarkValid returns True if a specified bookmark points to a record.

The CompareBookmarks method
You can also call CompareBookmarks to see if a bookmark you want to move to is different from another (or the
current) bookmark. If the two bookmarks refer to the same record (or if both are nil), CompareBookmarks returns 0.

The FreeBookmark method
FreeBookmark frees the memory allocated for a specified bookmark when you no longer need it. You should also
call FreeBookmark before reusing an existing bookmark.

A bookmarking example
The following code illustrates one use of bookmarking:

[Delphi]
procedure DoSomething (const Tbl: TTable)
var
 Bookmark: TBookmark;
begin
 Bookmark := Tbl.GetBookmark; { Allocate memory and assign a value }
 Tbl.DisableControls; { Turn off display of records in data controls }
 try
 Tbl.First; { Go to first record in table }
 while not Tbl.Eof do {Iterate through each record in table }
 begin
 { Do your processing here }
 .
 .
 .
 Tbl.Next;

1840

 end;
 finally
 Tbl.GotoBookmark(Bookmark);
 Tbl.EnableControls; { Turn on display of records in data controls, if necessary }
 Tbl.FreeBookmark(Bookmark); {Deallocate memory for the bookmark }
 end;
end;

[C++]
void DoSomething (const TTable *Tbl)
{
 TBookmark Bookmark = Tbl->GetBookmark(); // Allocate memory and assign a value
 Tbl->DisableControls(); // Turn off display of records in data controls
 try
 {
 for (Tbl->First(); !Tbl->Eof; Tbl->Next()) // Iterate through each record in table
 {
 // Do your processing here
 .
 .
 .
 }
 }
 __finally
 {
 Tbl->GotoBookmark(Bookmark);
 Tbl->EnableControls(); // Turn on display of records in data controls
 Tbl->FreeBookmark(Bookmark); // Deallocate memory for the bookmark
 }
}

Before iterating through records, controls are disabled. Should an error occur during iteration through records,
the finally clause ensures that controls are always enabled and that the bookmark is always freed even if the loop
terminates prematurely.

Searching Datasets
If a dataset is not unidirectional, you can search against it using the Locate and Lookup methods. These methods
enable you to search on any type of columns in any dataset.

The following topics discuss Locate and Lookup in greater detail:

Using Locate
Using Lookup

Note: Some TDataSet descendants introduce an additional family of methods for searching based on an index. For
information about these additional methods, see Using Indexes to Search for Records.

Using Locate
Locate moves the cursor to the first row matching a specified set of search criteria. In its simplest form, you pass
Locate the name of a column to search, a field value to match, and an options flag specifying whether the search is
case-insensitive or if it can use partial-key matching. (Partial-key matching is when the criterion string need only be
a prefix of the field value.) For example, the following code moves the cursor to the first row in the CustTable where
the value in the Company column is "Professional Divers, Ltd.":

1841

[Delphi]
var
 LocateSuccess: Boolean;
 SearchOptions: TLocateOptions;
begin
 SearchOptions := [loPartialKey];
 LocateSuccess := CustTable.Locate('Company', 'Professional Divers, Ltd.', SearchOptions);
end;

[C++]
TLocateOptions SearchOptions;
SearchOptions.Clear();
SearchOptions << loPartialKey;
bool LocateSuccess = CustTable->Locate("Company", "Professional Divers, Ltd.",

If Locate finds a match, the first record containing the match becomes the current record. Locate returns True if it
finds a matching record, False if it does not. If a search fails, the current record does not change.

The real power of Locate comes into play when you want to search on multiple columns and specify multiple values
to search for. Search values are Variants, which means you can specify different data types in your search criteria.
To specify multiple columns in a search string, separate individual items in the string with semicolons.

Because search values are Variants, if you pass multiple values, you must either pass a Variant array as an argument
(for example, the return values from the Lookup method), or you must construct the Variant array in code using the
VarArrayOf function. The following code illustrates a search on multiple columns using multiple search values and
partial-key matching:

[Delphi]
with CustTable do
 Locate('Company;Contact;Phone', VarArrayOf(['Sight Diver','P']), loPartialKey);

[C++]
TLocateOptions Opts;
Opts.Clear();
Opts << loPartialKey;
Variant locvalues[2];
locvalues[0] = Variant("Sight Diver");
locvalues[1] = Variant("P");
CustTable->Locate("Company;Contact", VarArrayOf(locvalues, 1), Opts);

Locate uses the fastest possible method to locate matching records. If the columns to search are indexed and the
index is compatible with the search options you specify, Locate uses the index.

Using Lookup
Lookup searches for the first row that matches specified search criteria. If it finds a matching row, it forces the
recalculation of any calculated fields and lookup fields associated with the dataset, then returns one or more fields
from the matching row. Lookup does not move the cursor to the matching row; it only returns values from it.

In its simplest form, you pass Lookup the name of field to search, the field value to match, and the field or fields to
return. For example, the following code looks for the first record in the CustTable where the value of the Company
field is "Professional Divers, Ltd.", and returns the company name, a contact person, and a phone number for the
company:

1842

[Delphi]
var
 LookupResults: Variant;
begin
 LookupResults := CustTable.Lookup('Company', 'Professional Divers, Ltd.', 'Company;
Contact; Phone');
end;

[C++]
Variant LookupResults = CustTable->Lookup("Company", "Professional Divers, Ltd",
 "Company;Contact;Phone");

Lookup returns values for the specified fields from the first matching record it finds. Values are returned as Variants.
If more than one return value is requested, Lookup returns a Variant array. If there are no matching records,
Lookup returns a Null Variant.

The real power of Lookup comes into play when you want to search on multiple columns and specify multiple values
to search for. To specify strings containing multiple columns or result fields, separate individual fields in the string
items with semicolons.

Because search values are Variants, if you pass multiple values, you must either pass a Variant array as an argument
(for example, the return values from the Lookup method), or you must construct the Variant array in code using the
VarArrayOf function. The following code illustrates a lookup search on multiple columns:

[Delphi]
var
 LookupResults: Variant;
begin
with CustTable do
 LookupResults := Lookup('Company; City', VarArrayOf(['Sight Diver', 'Christiansted']),
'Company; Addr1; Addr2; State; Zip');
end;

[C++]
Variant LookupResults;
Variant locvalues[2];
Variant v;
locvalues[0] = Variant("Sight Diver");
locvalues[1] = Variant("Kato Paphos");
LookupResults = CustTable->Lookup("Company;City", VarArrayOf(locvalues, 1),
 "Company;Addr1;Addr2;State;Zip");
// now put the results in a global stringlist (created elsewhere)
pFieldValues->Clear();
for (int i = 0; i < 5; i++) // Lookup call requested 5 fields
{
v = LookupResults.GetElement(i);
if (v.IsNull())
pFieldValues->Add("");
else
pFieldValues->Add(v);
}

Like Locate, Lookup uses the fastest possible method to locate matching records. If the columns to search are
indexed, Lookup uses the index.

1843

Displaying and Editing a Subset of Data Using Filters
An application is frequently interested in only a subset of records from a dataset. For example, you may be interested
in retrieving or viewing only those records for companies based in California in your customer database, or you may
want to find a record that contains a particular set of field values. In each case, you can use filters to restrict an
application's access to a subset of all records in the dataset.

With unidirectional datasets, you can only limit the records in the dataset by using a query that restricts the records
in the dataset. With other TDataSet descendants, however, you can define a subset of the data that has already
been fetched. To restrict an application's access to a subset of all records in the dataset, you can use filters.

A filter specifies conditions a record must meet to be displayed. Filter conditions can be stipulated in a dataset's
Filter property or coded into its OnFilterRecord event handler. Filter conditions are based on the values in any
specified number of fields in a dataset, regardless of whether those fields are indexed. For example, to view only
those records for companies based in California, a simple filter might require that records contain a value in the State
field of "CA".

Note: Filters are applied to every record retrieved in a dataset. When you want to filter large volumes of data, it may
be more efficient to use a query to restrict record retrieval, or to set a range on an indexed table rather than
using filters.

The following topics describe how to work with filters:

Enabling and Disabling Filtering
Navigating Records in a Filtered Dataset

Enabling and Disabling Filtering

To enable filters on a dataset
1 Create a filter.
2 Set filter options for string-based filter tests, if necessary.
3 Set the Filtered property to True.

When filtering is enabled, only those records that meet the filter criteria are available to an application. Filtering is
always a temporary condition. You can turn off filtering by setting the Filtered property to False.

Creating Filters
There are two ways to create a filter for a dataset:

Set the Filter property. Filter is especially useful for creating and applying filters at runtime.
Write an OnFilterRecord event handler for simple or complex filter conditions. With OnFilterRecord, you specify
filter conditions at design time. Unlike the Filter property, which is restricted to a single string containing filter
logic, an OnFilterRecord event can take advantage of branching and looping logic to create complex, multi-level
filter conditions.

The main advantage to creating filters using the Filter property is that your application can create, change, and apply
filters dynamically, (for example, in response to user input). Its main disadvantages are that filter conditions must be
expressible in a single text string, cannot make use of branching and looping constructs, and cannot test or compare
its values against values not already in the dataset.

The strengths of the OnFilterRecord event are that a filter can be complex and variable, can be based on multiple
lines of code that use branching and looping constructs, and can test dataset values against values outside the

1844

dataset, such as the text in an edit box. The main weakness of using OnFilterRecord is that you set the filter at design
time and it cannot be modified in response to user input. (You can, however, create several filter handlers and switch
among them in response to general application conditions.)

The following sections describe how to create filters using the Filter property and the OnFilterRecord event handler.

Setting the Filter Property
To create a filter using the Filter property, set the value of the property to a string that contains the filter's test condition.
For example, the following statement creates a filter that tests a dataset's State field to see if it contains a value for
the state of California:

[Delphi]
Dataset1.Filter := 'State = ' + QuotedStr('CA');

[C++]
Dataset1->Filter = "State = 'CA'";

You can also supply a value for Filter based on text supplied by the user. For example, the following statement
assigns the text in from edit box to Filter:

[Delphi]
Dataset1.Filter := Edit1.Text;

[C++]
Dataset1->Filter = Edit1->Text;

You can, of course, create a string based on both hard-coded text and user-supplied data:

[Delphi]
Dataset1.Filter := 'State = ' + QuotedStr(Edit1.Text);

[C++]
Dataset1->Filter = AnsiString("State = '") + Edit1->Text + "'";

Blank field values do not appear unless they are explicitly included in the filter:

[Delphi]
Dataset1.Filter := 'State <> ''CA'' or State = BLANK';

[C++]
Dataset1->Filter = "State <> 'CA' or State = BLANK";

Note: After you specify a value for Filter, to apply the filter to the dataset, set the Filtered property to True.

Filters can compare field values to literals and to constants using the following comparison and logical operators:

Comparison and logical operators that can appear in a filter
Operator Meaning

< Less than

> Greater than

1845

>= Greater than or equal to

<= Less than or equal to

= Equal to

<> Not equal to

AND Tests two statements are both True

NOT Tests that the following statement is not True

OR Tests that at least one of two statements is True

+ Adds numbers, concatenates strings, adds numbers to date/time values (only available for some drivers)

- Subtracts numbers, subtracts dates, or subtracts a number from a date (only available for some drivers)

* Multiplies two numbers (only available for some drivers)

/ Divides two numbers (only available for some drivers)

* wildcard for partial comparisons (FilterOptions must include foPartialCompare)

By using combinations of these operators, you can create fairly sophisticated filters. For example, the following
statement checks to make sure that two test conditions are met before accepting a record for display:

(Custno > 1400) AND (Custno < 1500);

Note: When filtering is on, user edits to a record may mean that the record no longer meets a filter's test conditions.
The next time the record is retrieved from the dataset, it may therefore "disappear." If that happens, the next
record that passes the filter condition becomes the current record.

Writing an OnFilterRecord Event Handler
You can write code to filter records using the OnFilterRecord events generated by the dataset for each record it
retrieves. This event handler implements a test that determines if a record should be included in those that are visible
to the application.

To indicate whether a record passes the filter condition, your OnFilterRecord handler sets its Accept parameter to
True to include a record, or False to exclude it. For example, the following filter displays only those records with the
State field set to "CA":

[Delphi]
procedure TForm1.Table1FilterRecord(DataSet: TDataSet; var Accept: Boolean);
begin
 Accept := DataSet['State'].AsString = 'CA';
end;

[C++]
void __fastcall TForm1::Table1FilterRecord(TDataSet *DataSet; bool &Accept)
{
 Accept = DataSet->FieldByName["State"]->AsString == "CA";
}

When filtering is enabled, an OnFilterRecord event is generated for each record retrieved. The event handler tests
each record, and only those that meet the filter's conditions are displayed. Because the OnFilterRecord event is
generated for every record in a dataset, you should keep the event handler as tightly coded as possible to avoid
adversely affecting the performance.

1846

You can code any number of OnFilterRecord event handlers and switch among them at runtime. For example, the
following statements switch to an OnFilterRecord event handler called NewYorkFilter:

[Delphi]
DataSet1.OnFilterRecord := NewYorkFilter;
Refresh;

[C++]
DataSet1->OnFilterRecord = NewYorkFilter;
()

Setting Filter Options
The FilterOptions property lets you specify whether a filter that compares string-based fields accepts records based
on partial comparisons and whether string comparisons are case-sensitive. FilterOptions is a set property that can
be an empty set (the default), or that can contain either or both of the following values:

FilterOptions values
Value Meaning

foCaseInsensitive Ignore case when comparing strings.

foNoPartialCompare Disable partial string matching; that is, don't match strings that end with an asterisk (*).

For example, the following statements set up a filter that ignores case when comparing values in the State field:

[Delphi]
FilterOptions := [foCaseInsensitive];
Filter := 'State = ' + QuotedStr('CA');

[C++]
TFilterOptions FilterOptions;
FilterOptions->Clear();
FilterOptions << foCaseInsensitive;
Table1->FilterOptions = FilterOptions;
Table1->Filter = "State = "CA"";

Navigating Records in a Filtered Dataset
There are four dataset methods that navigate among records in a filtered dataset. The following table lists these
methods and describes what they do:

Filtered dataset navigational methods
Method Purpose

FindFirst Move to the first record that matches the current filter criteria. The search for the first matching record always begins
at the first record in the unfiltered dataset.

FindLast Move to the last record that matches the current filter criteria.

FindNext Moves from the current record in the filtered dataset to the next one.

FindPrior Move from the current record in the filtered dataset to the previous one.

For example, the following statement finds the first filtered record in a dataset:

1847

[Delphi]
DataSet1.FindFirst;

[C++]
DataSet1->FindFirst();

Provided that you set the Filter property or create an OnFilterRecord event handler for your application, these
methods position the cursor on the specified record regardless of whether filtering is currently enabled. If you call
these methods when filtering is not enabled, then they

Temporarily enable filtering.
Position the cursor on a matching record if one is found.
Disable filtering.

Note: If filtering is disabled and you do not set the Filter property or create an OnFilterRecord event handler, these
methods do the same thing as First, Last, Next, and Prior.

All navigational filter methods position the cursor on a matching record (if one is found), make that record the current
one, and return True. If a matching record is not found, the cursor position is unchanged, and these methods return
False. You can check the status of the Found property to wrap these calls, and only take action when Found is
True. For example, if the cursor is already on the last matching record in the dataset and you call FindNext, the
method returns False, and the current record is unchanged.

Modifying Data
You can use the following dataset methods to insert, update, and delete data if the read-only CanModify property is
True. CanModify is True unless the dataset is unidirectional, the database underlying the dataset does not permit
read and write privileges, or some other factor intervenes. (Intervening factors include the ReadOnly property on
some datasets or the RequestLive property on TQuery components.)

Dataset methods for inserting, updating, and deleting data
Method Description

Edit Puts the dataset into dsEdit state if it is not already in dsEdit or dsInsert states.

Append Posts any pending data, moves current record to the end of the dataset, and puts the dataset in dsInsert state.

Insert Posts any pending data, and puts the dataset in dsInsert state.

Post Attempts to post the new or altered record to the database. If successful, the dataset is put in dsBrowse state; if
unsuccessful, the dataset remains in its current state.

Cancel Cancels the current operation and puts the dataset in dsBrowse state.

Delete Deletes the current record and puts the dataset in dsBrowse state.

The following topics discuss these methods in greater detail:

Editing Records
Adding New Records
Deleting Records
Posting Data
Canceling Changes
Modifying Entire Records

1848

Editing Records
A dataset must be in dsEdit mode before an application can modify records. In your code you can use the Edit
method to put a dataset into dsEdit mode if the read-only CanModify property for the dataset is True.

When a dataset transitions to dsEdit mode, it first receives a BeforeEdit event. After the transition to edit mode is
successfully completed, the dataset receives an AfterEdit event. Typically, these events are used for updating the
user interface to indicate the current state of the dataset. If the dataset can't be put into edit mode for some reason,
an OnEditError event occurs, where you can inform the user of the problem or try to correct the situation that
prevented the dataset from entering edit mode.

On forms in your application, some data-aware controls can automatically put a dataset into dsEdit state if

The control's ReadOnly property is False (the default),
The AutoEdit property of the data source for the control is True, and
CanModify is True for the dataset.

Note: Even if a dataset is in dsEdit state, editing records may not succeed for SQL-based databases if your
application's user does not have proper SQL access privileges.

Once a dataset is in dsEdit mode, a user can modify the field values for the current record that appears in any data-
aware controls on a form. Data-aware controls for which editing is enabled automatically call Post when a user
executes any action that changes the current record (such as moving to a different record in a grid).

If you have a navigator component on your form, users can cancel edits by clicking the navigator's Cancel button.
Canceling edits returns a dataset to dsBrowse state.

In code, you must write or cancel edits by calling the appropriate methods. You write changes by calling Post. You
cancel them by calling Cancel. In code, Edit and Post are often used together. For example,

[Delphi]
with CustTable do
begin
 Edit;
 FieldValues['CustNo'] := 1234;
 Post;
end;

[C++]
Table1->Edit();
Table1->FieldValues["CustNo"] = 1234;
Table1->Post();

In the previous example, the first line of code places the dataset in dsEdit mode. The next line of code assigns the
number 1234 to the CustNo field of the current record. Finally, the last line writes, or posts, the modified record. If
you are not caching updates, posting writes the change back to the database. If you are caching updates, the change
is written to a temporary buffer, where it stays until the dataset's ApplyUpdates method is called.

Adding New Records
A dataset must be in dsInsert mode before an application can add new records. In code, you can use the Insert or
Append methods to put a dataset into dsInsert mode if the read-only CanModify property for the dataset is True.

When a dataset transitions to dsInsert mode, it first receives a BeforeInsert event. After the transition to insert mode
is successfully completed, the dataset receives first an OnNewRecord event hand then an AfterInsert event. You
can use these events, for example, to provide initial values to newly inserted records:

1849

[Delphi]
procedure TForm1.OrdersTableNewRecord(DataSet: TDataSet);
begin
 DataSet.FieldByName('OrderDate').AsDateTime := Date;
end;

[C++]
void __fastcall TForm1::OrdersTableNewRecord(TDataSet *DataSet)
{
 DataSet->FieldByName("OrderDate")->AsDateTime = Date();
}

On forms in your application, the data-aware grid and navigator controls can put a dataset into dsInsert state if

The control's ReadOnly property is False (the default), and
CanModify is True for the dataset.

Note: Even if a dataset is in dsInsert state, adding records may not succeed for SQL-based databases if your
application's user does not have proper SQL access privileges.

Once a dataset is in dsInsert mode, a user or application can enter values into the fields associated with the new
record. Except for the grid and navigational controls, there is no visible difference to a user between Insert and
Append. On a call to Insert, an empty row appears in a grid above what was the current record. On a call to
Append, the grid is scrolled to the last record in the dataset, an empty row appears at the bottom of the grid, and
the Next and Last buttons are dimmed on any navigator component associated with the dataset.

Data-aware controls for which inserting is enabled automatically call Post when a user executes any action that
changes which record is current (such as moving to a different record in a grid). Otherwise you must call Post in
your code.

Post writes the new record to the database, or, if you are caching updates, Post writes the record to an in-memory
cache. To write cached inserts and appends to the database, call the dataset's ApplyUpdates method.

Inserting records
Insert opens a new, empty record before the current record, and makes the empty record the current record so that
field values for the record can be entered either by a user or by your application code.

When an application calls Post (or ApplyUpdates when using cached updates), a newly inserted record is written to
a database in one of three ways:

For indexed Paradox and dBASE tables, the record is inserted into the dataset in a position based on its index.
For unindexed Paradox and dBASE tables, the record is inserted into the dataset at its current position.
For SQL databases, the physical location of the insertion is implementation-specific. If the table is indexed, the
index is updated with the new record information.

Appending records
Append opens a new, empty record at the end of the dataset, and makes the empty record the current one so that
field values for the record can be entered either by a user or by your application code.

When an application calls Post (or ApplyUpdates when using cached updates), a newly appended record is written
to a database in one of three ways:

For indexed Paradox and dBASE tables, the record is inserted into the dataset in a position based on its index.

1850

For unindexed Paradox and dBASE tables, the record is added to the end of the dataset.
For SQL databases, the physical location of the append is implementation-specific. If the table is indexed, the
index is updated with the new record information.

Deleting Records
Use the Delete method to delete the current record in an active dataset. When the Delete method is called,

The dataset receives a BeforeDelete event.
The dataset attempts to delete the current record.
The dataset returns to the dsBrowse state.
The dataset receives an AfterDelete event.

If want to prevent the deletion in the BeforeDelete event handler, you can call the global Abort procedure:

[Delphi]
procedure TForm1.TableBeforeDelete (Dataset: TDataset)
begin
 if MessageDlg('Delete This Record?', mtConfirmation, mbYesNoCancel, 0) <> mrYes then
 Abort;
end;

[C++]
void __fastcall TForm1::TableBeforeDelete (TDataSet *Dataset)
{
 if (MessageBox(0, "Delete This Record?", "CONFIRM", MB_YESNO) != IDYES)
Abort();
}

If Delete fails, it generates an OnDeleteError event. If the OnDeleteError event handler can't correct the problem,
the dataset remains in dsEdit state. If Delete succeeds, the dataset reverts to the dsBrowse state and the record
that followed the deleted record becomes the current record.

If you are caching updates, the deleted record is not removed from the underlying database table until you call
ApplyUpdates.

If you provide a navigator component on your forms, users can delete the current record by clicking the navigator's
Delete button. In code, you must call Delete explicitly to remove the current record.

Posting Data
After you finish editing a record, you must call the Post method to write out your changes. The Post method behaves
differently, depending on the dataset's state and on whether you are caching updates.

If you are not caching updates, and the dataset is in the dsEdit or dsInsert state, Post writes the current record
to the database and returns the dataset to the dsBrowse state.
If you are caching updates, and the dataset is in the dsEdit or dsInsert state, Post writes the current record to
an internal cache and returns the dataset to the dsBrowse state. The edits are net written to the database until
you call ApplyUpdates.
If the dataset is in the dsSetKey state, Post returns the dataset to the dsBrowse state.

Regardless of the initial state of the dataset, Post generates BeforePost and AfterPost events, before and after
writing the current changes. You can use these events to update the user interface, or prevent the dataset from

1851

posting changes by calling the Abort procedure. If the call to Post fails, the dataset receives an OnPostError event,
where you can inform the user of the problem or attempt to correct it.

Posting can be done explicitly, or implicitly as part of another procedure. When an application moves off the current
record, Post is called implicitly. Calls to the First, Next, Prior, and Last methods perform a Post if the table is in
dsEdit or dsInsert modes. The Append and Insert methods also implicitly post any pending data.

Warning: The Close method does not call Post implicitly. Use the BeforeClose event to post any pending edits
explicitly.

Canceling Changes
An application can undo changes made to the current record at any time, if it has not yet directly or indirectly called
Post. For example, if a dataset is in dsEdit mode, and a user has changed the data in one or more fields, the
application can return the record back to its original values by calling the Cancel method for the dataset. A call to
Cancel always returns a dataset to dsBrowse state.

If the dataset was in dsEdit or dsInsert mode when your application called Cancel, it receives BeforeCancel and
AfterCancel events before and after the current record is restored to its original values.

On forms, you can allow users to cancel edit, insert, or append operations by including the Cancel button on a
navigator component associated with the dataset, or you can provide code for your own Cancel button on the form.

Modifying Entire Records
On forms, all data-aware controls except for grids and the navigator provide access to a single field in a record.

In code, however, you can use the following methods that work with entire record structures provided that the
structure of the database tables underlying the dataset is stable and does not change. The following table
summarizes the methods available for working with entire records rather than individual fields in those records:

Methods that work with entire records
Method Description

AppendRecord([array of values]) Appends a record with the specified column values at the end of a table; analogous to
Append. Performs an implicit Post.

InsertRecord([array of values]) Inserts the specified values as a record before the current cursor position of a table;
analogous to Insert. Performs an implicit Post.

SetFields([array of values]) Sets the values of the corresponding fields; analogous to assigning values to TFields. The
application must perform an explicit Post.

These method take an array of values as an argument, where each value corresponds to a column in the underlying
dataset. The values can be literals, variables, or NULL. If the number of values in an argument is less than the
number of columns in a dataset, then the remaining values are assumed to be NULL.

For unindexed datasets, AppendRecord adds a record to the end of the dataset and InsertRecord inserts a record
after the current cursor position. For indexed datasets, both methods place the record in the correct position in the
table, based on the index. In both cases, the methods move the cursor to the record's position.

SetFields assigns the values specified in the array of parameters to fields in the dataset. To use SetFields, an
application must first call Edit to put the dataset in dsEdit mode. To apply the changes to the current record, it must
perform a Post.

If you use SetFields to modify some, but not all fields in an existing record, you can pass NULL values for fields you
do not want to change. If you do not supply enough values for all fields in a record, SetFields assigns NULL values
to them. NULL values overwrite any existing values already in those fields.

1852

For example, suppose a database has a COUNTRY table with columns for Name, Capital, Continent, Area, and
Population. If a TTable component called CountryTable were linked to the COUNTRY table, the following statement
would insert a record into the COUNTRY table:

[Delphi]
CountryTable.InsertRecord(['Japan', 'Tokyo', 'Asia']);

[C++]
CountryTable->InsertRecord(ARRAYOFCONST(("Japan", "Tokyo", "Asia")));

This statement does not specify values for Area and Population, so NULL values are inserted for them. The table is
indexed on Name, so the statement would insert the record based on the alphabetic collation of "Japan".

To update the record, an application could use the following code:

[Delphi]
with CountryTable do
begin
 if Locate('Name', 'Japan', loCaseInsensitive) then;
 begin
 Edit;
 SetFields(nil, nil, nil, 344567, 164700000);
 Post;
 end;
end;

[C++]
TLocateOptions SearchOptions;
SearchOptions->Clear();
SearchOptions << loCaseInsensitive;
if (CountryTable->Locate("Name", "Japan", SearchOptions))
{
 CountryTable->Edit();
 CountryTable->SetFields(ARRAYOFCONST(((void *)NULL, (void *)NULL, (void *)NULL,
 344567, 164700000)));
 CountryTable->Post();
}

This code assigns values to the Area and Population fields and then posts them to the database. The three NULL
pointers act as place holders for the first three columns to preserve their current contents.

Calculating Fields
Using the Fields editor, you can define calculated fields for your datasets. When a dataset contains calculated fields,
you provide the code to calculate those field's values in an OnCalcFields event handler.

The AutoCalcFields property determines when OnCalcFields is called. If AutoCalcFields is True, OnCalcFields is
called when

A dataset is opened.
The dataset enters edit mode.
A record is retrieved from the database.
Focus moves from one visual component to another, or from one column to another in a data-aware grid control
and the current record has been modified.

1853

If AutoCalcFields is False, then OnCalcFields is not called when individual fields within a record are edited (the fourth
condition above).

Warning: OnCalcFields is called frequently, so the code you write for it should be kept short. Also, if
AutoCalcFields is True, OnCalcFields should not perform any actions that modify the dataset (or a linked
dataset if it is part of a master-detail relationship), because this leads to recursion. For example, if
OnCalcFields performs a Post, and AutoCalcFields is True, then OnCalcFields is called again, causing
another Post, and so on.

When OnCalcFields executes, a dataset enters dsCalcFields mode. This state prevents modifications or additions
to the records except for the calculated fields the handler is designed to modify. The reason for preventing other
modifications is because OnCalcFields uses the values in other fields to derive calculated field values. Changes to
those other fields might otherwise invalidate the values assigned to calculated fields. After OnCalcFields is
completed, the dataset returns to dsBrowse state.

Types of Datasets
Using TDataSet descendants classifies TDataSet descendants by the method they use to access their data. Another
useful way to classify TDataSet descendants is to consider the type of server data they represent. Viewed this way,
there are three basic classes of datasets:

Table type datasets: Table type datasets represent a single table from the database server, including all of its rows
and columns. Table type datasets include TTable, TADOTable, TSQLTable, and TIBTable.

Table type datasets let you take advantage of indexes defined on the server. Because there is a one-to-one
correspondence between database table and dataset, you can use server indexes that are defined for the database
table. Indexes allow your application to sort the records in the table, speed searches and lookups, and can form the
basis of a master/detail relationship. Some table type datasets also take advantage of the one-to-one relationship
between dataset and database table to let you perform table-level operations such as creating and deleting database
tables.

Query-type datasets: Query-type datasets represent a single SQL command, or query. Queries can represent the
result set from executing a command (typically a SELECT statement), or they can execute a command that does
not return any records (for example, an UPDATE statement). Query-type datasets include TQuery, TADOQuery,
TSQLQuery, and TIBQuery.

To use a query-type dataset effectively, you must be familiar with SQL and your server's SQL implementation,
including limitations and extensions to the SQL-92 standard. If you are new to SQL, you may want to purchase a
third party book that covers SQL in-depth. One of the best is Understanding the New SQL: A Complete Guide, by
Jim Melton and Alan R. Simpson, Morgan Kaufmann Publishers.

Stored procedure-type datasets: Stored procedure-type datasets represent a stored procedure on the database
server. Stored procedure-type datasets include TStoredProc, TADOStoredProc, TSQLStoredProc, and
TIBStoredProc.

A stored procedure is a self-contained program written in the procedure and trigger language specific to the database
system used. They typically handle frequently repeated database-related tasks, and are especially useful for
operations that act on large numbers of records or that use aggregate or mathematical functions. Using stored
procedures typically improves the performance of a database application by:

Taking advantage of the server's usually greater processing power and speed.
Reducing network traffic by moving processing to the server.

Stored procedures may or may not return data. Those that return data may return it as a cursor (similar to the results
of a SELECT query), as multiple cursors (effectively returning multiple datasets), or they may return data in output
parameters. These differences depend in part on the server: Some servers do not allow stored procedures to return

1854

data, or only allow output parameters. Some servers do not support stored procedures at all. See your server
documentation to determine what is available.

Note: You can usually use a query-type dataset to execute stored procedures because most servers provide
extensions to SQL for working with stored procedures. Each server, however, uses its own syntax for this. If
you choose to use a query-type dataset instead of a stored procedure-type dataset, see your server
documentation for the necessary syntax.

In addition to the datasets that fall neatly into these three categories, TDataSet has some descendants that fit into
more than one category:

TADODataSet and TSQLDataSethave a CommandType property that lets you specify whether they represent
a table, query, or stored procedure. Property and method names are most similar to query-type datasets,
although TADODataSet lets you specify an index like a table type dataset.
TClientDataSet represents the data from another dataset. As such, it can represent a table, query, or stored
procedure. TClientDataSet behaves most like a table type dataset, because of its index support. However, it
also has some of the features of queries and stored procedures: the management of parameters and the ability
to execute without retrieving a result set.
Some other client datasets (like TBDEClientDataSet) have a CommandType property that lets you specify
whether they represent a table, query, or stored procedure. Property and method names are like
TClientDataSet, including parameter support, indexes, and the ability to execute without retrieving a result set.
TIBDataSet can represent both queries and stored procedures. In fact, it can represent multiple queries and
stored procedures simultaneously, with separate properties for each.

Using Table Type Datasets

To use a table type dataset
1 Place the appropriate dataset component in a data module or on a form, and set its Name property to a unique

value appropriate to your application.
2 Identify the database server that contains the table you want to use. Each table type dataset does this differently,

but typically you specify a database connection component:

For TTable, specify a TDatabase component or a BDE alias using the DatabaseName property.
For TADOTable, specify a TADOConnection component using the Connection property.
For TSQLTable, specify a TSQLConnection component using the SQLConnection property.
For TIBTable, specify a TIBConnection component using the Database property.

For information about using database connection components, see Connecting to databases

3 Set the TableName property to the name of the table in the database. You can select tables from a drop-down
list if you have already identified a database connection component.

4 Place a data source component in the data module or on the form, and set its DataSet property to the name of
the dataset. The data source component is used to pass a result set from the dataset to data-aware components
for display.

Advantages of using table type datasets
The main advantage of using table type datasets is the availability of indexes. Indexes enable your application to

Sort the Records in the Dataset.

1855

Locate Records Quickly.
Limit the Records That are Visible.
Establish Master/Detail Relationships.

In addition, the one-to-one relationship between table type datasets and database tables enables many of them to
be used for

Controlling Read/Write Access To Tables
Creating and Deleting Tables
Emptying Tables
Synchronizing Tables

Sorting Records with Indexes
An index determines the display order of records in a table. Typically, records appear in ascending order based on
a primary, or default, index. This default behavior does not require application intervention. If you want a different
sort order, however, you must specify either

An alternate index.
A list of columns on which to sort (not available on servers that aren't SQL-based).

Indexes let you present the data from a table in different orders. On SQL-based tables, this sort order is implemented
by using the index to generate an ORDER BY clause in a query that fetches the table's records. On other tables
(such as Paradox and dBASE tables), the index is used by the data access mechanism to present records in the
desired order.

The following topics provide details on how to obtain information about available indexes and how to specify which
index the dataset uses to sort records:

Obtaining Information about Indexes
Specifying an Index with IndexName
Creating an Index with IndexFieldNames

Obtaining Information About Indexes
Your application can obtain information about server-defined indexes from all table type datasets. To obtain a list of
available indexes for the dataset, call the GetIndexNames method. GetIndexNames fills a string list with valid index
names. For example, the following code fills a listbox with the names of all indexes defined for the
CustomersTable dataset:

[Delphi]
CustomersTable.GetIndexNames(ListBox1.Items);

[C++]
CustomersTable->GetIndexNames(ListBox1->Items);

Note: For Paradox tables, the primary index is unnamed, and is therefore not returned by GetIndexNames. You
can still change the index back to a primary index on a Paradox table after using an alternative index, however,
by setting the IndexName property to a blank string.

1856

To obtain information about the fields of the current index, use the

IndexFieldCount property, to determine the number of columns in the index.
IndexFields property, to examine a list the field components for the columns that comprise the index.

The following code illustrates how you might use IndexFieldCount and IndexFields to iterate through a list of column
names in an application:

[Delphi]
var
 I: Integer;
 ListOfIndexFields: array[0 to 20} of string;
begin
with CustomersTable do
 begin
 for I := 0 to IndexFieldCount - 1 do
 ListOfIndexFields[I] := IndexFields[I].FieldName;
 end;
end;

[C++]
AnsiString ListOfIndexFields[20];
for (int i = 0; i < CustomersTable->IndexFieldCount; i++)
 ListOfIndexFields[i] = CustomersTable->IndexFields[i]->FieldName;

Note: IndexFieldCount is not valid for a dBASE table opened on an expression index.

Specifying an Index with IndexName
Use the IndexName property to cause an index to be active. Once active, an index determines the order of records
in the dataset. (It can also be used as the basis for a master-detail link, an index-based search, or index-based
filtering.)

To activate an index, set the IndexName property to the name of the index. In some database systems, primary
indexes do not have names. To activate one of these indexes, set IndexName to a blank string.

At design-time, you can select an index from a list of available indexes by clicking the property's ellipsis button in
the Object Inspector. At runtime set IndexName using a String literal or variable. You can obtain a list of available
indexes by calling the GetIndexNames method.

The following code sets the index for CustomersTable to CustDescending:

[Delphi]
CustomersTable.IndexName := 'CustDescending';

[C++]
CustomersTable->IndexName = "CustDescending";

For information on specifying dBASE non-production index files and dBASE III PLUS-style .NDX files, see Specifying
a dBASE index file

1857

Creating an Index with IndexFieldNames
If there is no defined index that implements the sort order you want, you can create a pseudo-index using the
IndexFieldNames property.

Note: IndexName and IndexFieldNames are mutually exclusive. Setting one property clears values set for the other.
For information about IndexName, see Specifying an index with IndexName.

The value of IndexFieldNames is a string. To specify a sort order, list each column name to use in the order it should
be used, and delimit the names with semicolons. Sorting is by ascending order only. Case-sensitivity of the sort
depends on the capabilities of your server. See your server documentation for more information.

The following code sets the sort order for PhoneTable based on LastName, then FirstName:

[Delphi]
PhoneTable.IndexFieldNames := 'LastName;FirstName';

[C++]
PhoneTable->IndexFieldNames = "LastName;FirstName";

Note: If you use IndexFieldNames on Paradox and dBASE tables, the dataset attempts to find an index that uses
the columns you specify. If it cannot find such an index, it raises an exception.

Using Indexes to Search for Records
You can search against any dataset using the Locate and Lookup methods of TDataSet. However, by explicitly using
indexes, some table type datasets can improve over the searching performance provided by the Locate and
Lookup methods.

ADO datasets all support the Seek method, which moves to a record based on a set of field values for fields in the
current index. Seek lets you specify where to move the cursor relative to the first or last matching record.

TTable and all types of client dataset support similar indexed-based searches, but use a combination of related
methods. The following table summarizes the six related methods provided by TTable and client datasets to support
index-based searches:

Index-based search methods
Method Purpose

EditKey Preserves the current contents of the search key buffer and puts the dataset into dsSetKey state so your
application can modify existing search criteria prior to executing a search.

FindKey Combines the SetKey and GotoKey methods in a single method.

FindNearest Combines the SetKey and GotoNearest methods in a single method.

GotoKey Searches for the first record in a dataset that exactly matches the search criteria, and moves the cursor to that
record if one is found.

GotoNearest Searches on string-based fields for the closest match to a record based on partial key values, and moves the
cursor to that record.

SetKey Clears the search key buffer and puts the table into dsSetKey state so your application can specify new search
criteria prior to executing a search.

GotoKey and FindKey are boolean functions that, if successful, move the cursor to a matching record and return
True. If the search is unsuccessful, the cursor is not moved, and these functions return False.

1858

GotoNearest and FindNearest always reposition the cursor either on the first exact match found or, if no match is
found, on the first record that is greater than the specified search criteria.

The following topics discuss the Goto and Find methods in greater detail:

Executing a Search with Goto Methods
Executing a Search with Find Methods
Specifying the Current Record After a Successful Search
Searching on Partial Keys
Repeating or Extending a Search

Executing a Search with Goto Methods

To execute a search using Goto methods
1 Specify the index to use for the search. This is the same index that sorts the records in the dataset. To specify

the index, use the IndexName or IndexFieldNames property.
2 Open the dataset.
3 Put the dataset in dsSetKey state by calling the SetKey method.
4 Specify the value(s) to search on in the Fields property. Fields is a TFields object, which maintains an indexed

list of field components you can access by specifying ordinal numbers corresponding to columns. The first column
number in a dataset is 0.

5 Search for and move to the first matching record found with GotoKey or GotoNearest.

For example, the following code, attached to a button's OnClick event, uses the GotoKey method to move to the first
record where the first field in the index has a value that exactly matches the text in an edit box:

[Delphi]
procedure TSearchDemo.SearchExactClick(Sender: TObject);
begin
 ClientDataSet1.SetKey;
 ClientDataSet1.Fields[0].AsString := Edit1.Text;
 if not ClientDataSet1.GotoKey then
 ShowMessage('Record not found');
end;

[C++]
void __fastcall TSearchDemo::SearchExactClick(TObject *Sender)
{
 ClientDataSet1->SetKey();
 ClientDataSet1->Fields->Fields[0]->AsString = Edit1->Text;
 if (!ClientDataSet1->GotoKey())
 ShowMessage("Record not found");
}

GotoNearest is similar. It searches for the nearest match to a partial field value. It can be used only for string fields.
For example,

[Delphi]
Table1.SetKey;

1859

Table1.Fields[0].AsString := 'Sm';
Table1.GotoNearest;

[C++]
Table1->SetKey();
Table1->Fields->Fields[0]->AsString = "Sm";
Table1->GotoNearest();

If a record exists with "Sm" as the first two characters of the first indexed field's value, the cursor is positioned on
that record. Otherwise, the position of the cursor does not change and GotoNearest returns False.

Executing a Search with Find Methods
The Find methods do the same thing as the Goto methods, except that you do not need to explicitly put the dataset
in dsSetKey state to specify the key field values on which to search.

To execute a search using Find methods
1 Specify the index to use for the search. This is the same index that sorts the records in the dataset. To specify

the index, use the IndexName or IndexFieldNames property.
2 Open the dataset.
3 Search for and move to the first or nearest record with FindKey or FindNearest. Both methods take a single

parameter, a comma-delimited list of field values, where each value corresponds to an indexed column in the
underlying table.

Note: FindNearest can only be used for string fields.

Specifying the Current Record After a Successful Search
By default, a successful search positions the cursor on the first record that matches the search criteria. If you prefer,
you can set the KeyExclusive property to True to position the cursor on the next record after the first matching record.

By default, KeyExclusive is False, meaning that successful searches position the cursor on the first matching record.

Searching On Partial Keys
If the dataset has more than one key column, and you want to search for values in a subset of that key, set
KeyFieldCount to the number of columns on which you are searching. For example, if the dataset's current index
has three columns, and you want to search for values using just the first column, set KeyFieldCount to 1.

For table type datasets with multiple-column keys, you can search only for values in contiguous columns, beginning
with the first. For example, for a three-column key you can search for values in the first column, the first and second,
or the first, second, and third, but not just the first and third.

Searching On Partial Keys
Each time you call SetKey or FindKey, the method clears any previous values in the Fields property. If you want to
repeat a search using previously set fields, or you want to add to the fields used in a search, call EditKey in place
of SetKey and FindKey.

1860

For example, suppose you have already executed a search of the Employee table based on the City field of the
"CityIndex" index. Suppose further that "CityIndex" includes both the City and Company fields. To find a record with
a specified company name in a specified city, use the following code:

[Delphi]
Employee.KeyFieldCount := 2;
Employee.EditKey;
Employee['Company'] := Edit2.Text;
Employee.GotoNearest;

[C++]
Employee->KeyFieldCount = 2;
Employee->EditKey();
Employee->FieldValues["Company"] = Variant(Edit2->Text);
Employee->GotoNearest();

Limiting Records with Ranges
You can temporarily view and edit a subset of data for any dataset by using filters. Some table type datasets support
an additional way to access a subset of available records, called ranges.

Ranges only apply to TTable and to client datasets. Despite their similarities, ranges and filters have different uses.
The following topics discuss the differences between ranges and filters and how to use ranges:

Understanding the differences between ranges and filters
Specifying ranges
Modifying a range
Applying or canceling a range

Understanding the Differences Between Ranges and Filters
Both ranges and filters restrict visible records to a subset of all available records, but the way they do so differs. A
range is a set of contiguously indexed records that fall between specified boundary values. For example, in an
employee database indexed on last name, you might apply a range to display all employees whose last names are
greater than "Jones" and less than "Smith". Because ranges depend on indexes, you must set the current index to
one that can be used to define the range. As with specifying an index to sort records, you can assign the index on
which to define a range using either the IndexName or the IndexFieldNames property.

A filter, on the other hand, is any set of records that share specified data points, regardless of indexing. For example,
you might filter an employee database to display all employees who live in California and who have worked for the
company for five or more years. While filters can make use of indexes if they apply, filters are not dependent on
them. Filters are applied record-by-record as an application scrolls through a dataset.

In general, filters are more flexible than ranges. Ranges, however, can be more efficient when datasets are large
and the records of interest to an application are already blocked in contiguously indexed groups. For very large
datasets, it may be still more efficient to use the WHERE clause of a query-type dataset to select data. For details
on specifying a query, see Using query-type datasets.

Specifying Ranges
There are two mutually exclusive ways to specify a range:

Specify the beginning and ending separately using SetRangeStart and SetRangeEnd.

1861

Specify both endpoints at once using SetRange.

Setting the beginning of a range
Call the SetRangeStart procedure to put the dataset into dsSetKey state and begin creating a list of starting values
for the range. Once you call SetRangeStart, subsequent assignments to the Fields property are treated as starting
index values to use when applying the range. Fields specified must apply to the current index.

For example, suppose your application uses a TSimpleDataSet component named Customers, linked to the
CUSTOMER table, and that you have created persistent field components for each field in the Customers dataset.
CUSTOMER is indexed on its first column (CustNo). A form in the application has two edit components named
StartVal and EndVal, used to specify start and ending values for a range. The following code can be used to create
and apply a range:

[Delphi]
with Customers do
begin
 SetRangeStart;
 FieldByName('CustNo').AsString := StartVal.Text;
 SetRangeEnd;
 if (Length(EndVal.Text) > 0) then
 FieldByName('CustNo').AsString := EndVal.Text;
 ApplyRange;
end;

[C++]
Customers->SetRangeStart();
Customers->FieldValues["CustNo"] = StrToInt(StartVal->Text);
Customers->SetRangeEnd();
if (!EndVal->Text.IsEmpty())
 Customers->FieldValues["CustNo"] = StrToInt(EndVal->Text);
Customers->ApplyRange();

This code checks that the text entered in EndVal is not null before assigning any values to Fields. If the text entered
for StartVal is null, then all records from the beginning of the dataset are included, since all values are greater than
null. However, if the text entered for EndVal is null, then no records are included, since none are less than null.

For a multi-column index, you can specify a starting value for all or some fields in the index. If you do not supply a
value for a field used in the index, a null value is assumed when you apply the range. If you try to set a value for a
field that is not in the index, the dataset raises an exception.

Tip: To start at the beginning of the dataset, omit the call to SetRangeStart.

To finish specifying the start of a range, call SetRangeEnd or apply or cancel the range.

Setting the end of a range
Call the SetRangeEnd procedure to put the dataset into dsSetKey state and start creating a list of ending values for
the range. Once you call SetRangeEnd, subsequent assignments to the Fields property are treated as ending index
values to use when applying the range. Fields specified must apply to the current index.

1862

Warning: Always specify the ending values for a range, even if you want a range to end on the last record in the
dataset. If you do not provide ending values, Delphi assumes the ending value of the range is a null value.
A range with null ending values is always empty.

The easiest way to assign ending values is to call the FieldByName method. For example,

[Delphi]
with Contacts do
begin
 SetRangeStart;
 FieldByName('LastName').AsString := Edit1.Text;
 SetRangeEnd;
 FieldByName('LastName').AsString := Edit2.Text;
 ApplyRange;
end;

[C++]
Contacts->SetRangeStart();
Contacts->FieldByName("LastName")->Value = Edit1->Text;
Contacts->SetRangeEnd();
Contacts->FieldByName("LastName")->Value = Edit2->Text;
Contacts->ApplyRange();

As with specifying start of range values, if you try to set a value for a field that is not in the index, the dataset raises
an exception.

To finish specifying the end of a range, apply or cancel the range.

Setting start- and end-range values
Instead of using separate calls to SetRangeStart and SetRangeEnd to specify range boundaries, you can call the
SetRange procedure to put the dataset into dsSetKey state and set the starting and ending values for a range with
a single call.

SetRange takes two constant array parameters: a set of starting values, and a set of ending values. For example,
the following statement establishes a range based on a two-column index:

[Delphi]
SetRange([Edit1.Text, Edit2.Text], [Edit3.Text, Edit4.Text]);

[C++]
TVarRec StartVals[2];
TVarRec EndVals[2];
StartVals[0] = Edit1->Text;
StartVals[1] = Edit2->Text;
EndVals[0] = Edit3->Text;
EndVals[1] = Edit4->Text;
Table1->SetRange(StartVals, 1, EndVals, 1);

For a multi-column index, you can specify starting and ending values for all or some fields in the index. If you do not
supply a value for a field used in the index, a null value is assumed when you apply the range. To omit a value for
the first field in an index, and specify values for successive fields, pass a null value for the omitted field.

1863

Always specify the ending values for a range, even if you want a range to end on the last record in the dataset. If
you do not provide ending values, the dataset assumes the ending value of the range is a null value. A range with
null ending values is always empty because the starting range is greater than or equal to the ending range.

Specifying a range based on partial keys
If a key is composed of one or more string fields, the SetRange methods support partial keys. For example, if an
index is based on the LastName and FirstName columns, the following range specifications are valid:

[Delphi]
Contacts.SetRangeStart;
Contacts['LastName'] := 'Smith';
Contacts.SetRangeEnd;
Contacts['LastName'] := 'Zzzzzz';
Contacts.ApplyRange;

[C++]
Contacts->SetRangeStart();
Contacts->FieldValues["LastName"] = "Smith";
Contacts->SetRangeEnd();
Contacts->FieldValues["LastName"] = "Zzzzzz";
Contacts->ApplyRange();

This code includes all records in a range where LastName is greater than or equal to "Smith." The value specification
could also be:

[Delphi]
Contacts['LastName'] := 'Sm';

[C++]
Contacts->FieldValues["LastName"] = "Sm";

This statement includes records that have LastName greater than or equal to "Sm."

Including or excluding records that match boundary values
By default, a range includes all records that are greater than or equal to the specified starting range, and less than
or equal to the specified ending range. This behavior is controlled by the KeyExclusive property. KeyExclusive is
False by default.

If you prefer, you can set the KeyExclusive property for a dataset to True to exclude records equal to ending range.
For example,

[Delphi]
Contacts.KeyExclusive := True;
Contacts.SetRangeStart;
Contacts['LastName'] := 'Smith';
Contacts.SetRangeEnd;
Contacts['LastName'] := 'Tyler';
Contacts.ApplyRange;

[C++]
Contacts->SetRangeStart();

1864

Contacts->KeyExclusive = true;
Contacts->FieldValues["LastName"] = "Smith";
Contacts->SetRangeEnd();
Contacts->FieldValues["LastName"] = "Tyler";
Contacts->ApplyRange();

This code includes all records in a range where LastName is greater than or equal to "Smith" and less than "Tyler".

Modifying a Range
Two functions enable you to modify the existing boundary conditions for a range: EditRangeStart, for changing the
starting values for a range; and EditRangeEnd, for changing the ending values for the range.

To edit and apply a range
1 Putting the dataset into dsSetKey state and modifying the starting index value for the range.
2 Modifying the ending index value for the range.
3 Applying the range to the dataset.

You can modify either the starting or ending values of the range, or you can modify both boundary conditions. If you
modify the boundary conditions for a range that is currently applied to the dataset, the changes you make are not
applied until you call ApplyRange again.

Editing the start of a range
Call the EditRangeStart procedure to put the dataset into dsSetKey state and begin modifying the current list of
starting values for the range. Once you call EditRangeStart, subsequent assignments to the Fields property overwrite
the current index values to use when applying the range.

Tip: If you initially created a start range based on a partial key, you can use EditRangeStart to extend the starting
value for a range.

Editing the end of a range
Call the EditRangeEnd procedure to put the dataset into dsSetKey state and start creating a list of ending values
for the range. Once you call EditRangeEnd, subsequent assignments to the Fields property are treated as ending
index values to use when applying the range.

Applying or Canceling a Range
When you call SetRangeStart or EditRangeStart to specify the start of a range, or SetRangeEnd or EditRangeEnd
to specify the end of a range, the dataset enters the dsSetKey state. It stays in that state until you apply or cancel
the range.

Applying a range
When you specify a range, the boundary conditions you define are not put into effect until you apply the range. To
make a range take effect, call the ApplyRange method. ApplyRange immediately restricts a user's view of and access
to data in the specified subset of the dataset.

1865

Canceling a range
The CancelRange method ends application of a range and restores access to the full dataset. Even though canceling
a range restores access to all records in the dataset, the boundary conditions for that range are still available so that
you can reapply the range at a later time. Range boundaries are preserved until you provide new range boundaries
or modify the existing boundaries. For example, the following code is valid:

[Delphi]
.
.
.
MyTable.CancelRange;
.
.
.
{later on, use the same range again. No need to call SetRangeStart, etc.}
MyTable.ApplyRange;
.
.
.

[C++]
.
.
.
MyTable->CancelRange();
.
.
.
// later on, use the same range again. No need to call SetRangeStart, etc.
MyTable->ApplyRange();
.
.
.

Creating Master/detail Relationships
Table type datasets can be linked into master/detail relationships. When you set up a master/detail relationship, you
link two datasets so that all the records of one (the detail) always correspond to the single current record in the other
(the master).

Table type datasets support master/detail relationships in two very distinct ways:

All table type datasets can act as the detail of another dataset by linking cursors. This process is described in
Making the table a detail of another dataset.
TTable, TSQLTable, and all client datasets can act as the master in a master/detail relationship that uses nested
detail tables. This process is described in Using nested detail tables.

Each of these approaches has its unique advantages. Linking cursors lets you create master/detail relationships
where the master table is any type of dataset. With nested details, the type of dataset that can act as the detail table
is limited, but they provide for more options in how to display the data. If the master is a client dataset, nested details
provide a more robust mechanism for applying cached updates.

1866

Making the Table a Detail of Another Dataset
A table type dataset's MasterSource and MasterFields properties can be used to establish one-to-many relationships
between two datasets.

The MasterSource property is used to specify a data source from which the table gets data from the master table.
This data source can be linked to any type of dataset. For instance, by specifying a query's data source in this
property, you can link a client dataset as the detail of the query, so that the client dataset tracks events occurring in
the query.

The dataset is linked to the master table based on its current index. Before you specify the fields in the master dataset
that are tracked by the detail dataset, first specify the index in the detail dataset that starts with the corresponding
fields. You can use either the IndexName or the IndexFieldNames property.

Once you specify the index to use, use the MasterFields property to indicate the column(s) in the master dataset
that correspond to the index fields in the detail table. To link datasets on multiple column names, separate field
names with semicolons:

[Delphi]
Parts.MasterFields := 'OrderNo;ItemNo';

[C++]
Parts->MasterFields = "OrderNo;ItemNo";

To help create meaningful links between two datasets, you can use the Field Link designer. To use the Field Link
designer, double click on the MasterFields property in the Object Inspector after you have assigned a
MasterSource and an index.

The following steps create a simple form in which a user can scroll through customer records and display all orders
for the current customer. The master table is the CustomersTable table, and the detail table is OrdersTable. The
example uses the BDE-based TTable component, but you can use the same methods to link any table type datasets.

To create a simple form
1 Place two TTable components and two TDataSource components in a data module.
2 Set the properties of the following components,

Component Property

First TTable DatabaseName: DBDEMOS

TableName: CUSTOMER

Name: CustomersTable

Second TTable DatabaseName: DBDEMOS

TableName: ORDERS

Name: OrdersTable

First TDataSource Name: CustSource

DataSet: CustomersTable

Second TDataSource Name: OrdersSource

DataSet: OrdersTable

3 Place two TDBGrid components on a form.
4 Choose File Use Unit to specify that the form should use the data module.

1867

5 Set the DataSource property of the first grid component to "CustSource", and set the DataSource property of the
second grid to "OrdersSource".

6 Set the MasterSource property of OrdersTable to "CustSource". This links the CUSTOMER table (the master
table) to the ORDERS table (the detail table).

7 Double-click the MasterFields property value box in the Object Inspector to invoke the Field Link Designer to
set the following properties:

In the Available Indexes field, choose CustNo to link the two tables by the CustNo field.
Select CustNo in both the Detail Fields and Master Fields field lists.
Click the Add button to add this join condition. In the Joined Fields list,"CustNo -> CustNo" appears.
Choose OK to commit your selections and exit the Field Link Designer.

8 Set the Active properties of CustomersTable and OrdersTable to True to display data in the grids on the form.
9 Compile and run the application.

If you run the application now, you will see that the tables are linked together, and that when you move to a new
record in the CUSTOMER table, you see only those records in the ORDERS table that belong to the current
customer.

Using Nested Detail Tables
A nested table is a detail dataset that is the value of a single dataset field in another (master) dataset. For datasets
that represent server data, a nested detail dataset can only be used for a dataset field on the server.
TClientDataSet components do not represent server data, but they can also contain dataset fields if you create a
dataset for them that contains nested details, or if they receive data from a provider that is linked to the master table
of a master/detail relationship.

Note: For TClientDataSet, using nested detail sets is necessary if you want to apply updates from master and detail
tables to a database server.

To use nested detail sets, the ObjectView property of the master dataset must be True. When your table type dataset
contains nested detail datasets, TDBGrid provides support for displaying the nested details in a popup window. For
more information on how this works, see Working with dataset fields.

Alternately, you can display and edit detail datasets in data-aware controls by using a separate dataset component
for the detail set. At design time, create persistent fields for the fields in your (master) dataset, using the Fields Editor:
right click the master dataset and choose Fields Editor. Add a new persistent field to your dataset by right-clicking
and choosing Add Fields. Define your new field with type DataSet Field. In the Fields Editor, define the structure of
the detail table. You must also add persistent fields for any other fields used in your master dataset.

The dataset component for the detail table is a dataset descendant of a type allowed by the master table. TTable
components only allow TNestedDataSet components as nested datasets. TSQLTable components allow other
TSQLTable components. TClientDataset components allow other client datasets. Choose a dataset of the
appropriate type from the Tool palette and add it to your form or data module. Set this detail dataset's DataSetField
property to the persistent DataSet field in the master dataset. Finally, place a data source component on the form
or data module and set its DataSet property to the detail dataset. Data-aware controls can use this data source to
access the data in the detail set.

Controlling Read/Write Access to Tables
By default when a table type dataset is opened, it requests read and write access for the underlying database table.
Depending on the characteristics of the underlying database table, the requested write privilege may not be granted

1868

(for example, when you request write access to an SQL table on a remote server and the server restricts the table's
access to read only).

Note: This is not true for TClientDataSet, which determines whether users can edit data from information that the
dataset provider supplies with data packets. It is also not true for TSQLTable, which is a unidirectional dataset,
and hence always read-only.

When the table opens, you can check the CanModify property to ascertain whether the underlying database (or the
dataset provider) allows users to edit the data in the table. If CanModify is False, the application cannot write to the
database. If CanModify is True, your application can write to the database provided the table's ReadOnly property
is False.

ReadOnly determines whether a user can both view and edit data. When ReadOnly is False (the default), a user
can both view and edit data. To restrict a user to viewing data, set ReadOnly to True before opening the table.

Note: ReadOnly is implemented on all table type datasets except TSQLTable, which is always read-only.

Creating and Deleting Tables
Some table type datasets let you create and delete the underlying tables at design time or at runtime. Typically,
database tables are created and deleted by a database administrator. However, it can be handy during application
development and testing to create and destroy database tables that your application can use.

Creating tables
TTable and TIBTable both let you create the underlying database table without using SQL. Similarly,
TClientDataSet lets you create a dataset when you are not working with a dataset provider. Using TTable and
TClientDataSet, you can create the table at design time or runtime. TIBTable only lets you create tables at runtime.

Before you can create the table, you must be set properties to specify the structure of the table you are creating. In
particular, you must specify

The database that will host the new table. For TTable, you specify the database using the DatabaseName
property. For TIBTable, you must use a TIBDatabase component, which is assigned to the Database property.
(Client datasets do not use a database.)
The type of database (TTable only). Set the TableType property to the desired type of table. For Paradox,
dBASE, or ASCII tables, set TableType to ttParadox, ttDBase, or ttASCII, respectively. For all other table types,
set TableType to ttDefault.
The name of the table you want to create. Both TTable and TIBTable have a TableName property for the name
of the new table. Client datasets do not use a table name, but you should specify the FileName property before
you save the new table. If you create a table that duplicates the name of an existing table, the existing table and
all its data are overwritten by the newly created table. The old table and its data cannot be recovered. To avoid
overwriting an existing table, you can check the Exists property at runtime. Exists is only available on TTable
and TIBTable.
Indexes for the new table (optional). At design time, double-click the IndexDefs property in the Object
Inspector to bring up the collection editor. Use the collection editor to add, remove, or change the properties
of index definitions. At runtime, clear any existing index definitions, and then use the AddIndexDef method to
add each new index definition. For each new index definition, set the properties of the TIndexDef object to
specify the desired attributes of the index.
The fields for the new table. There are two ways to do this:
You can add field definitions to the FieldDefs property. At design time, double-click the FieldDefs property in
the Object Inspector to bring up the collection editor. Use the collection editor to add, remove, or change the
properties of the field definitions. At runtime, clear any existing field definitions and then use the AddFieldDef

1869

method to add each new field definition. For each new field definition, set the properties of the TFieldDef object
to specify the desired attributes of the field.
You can use persistent field components instead. At design time, double-click on the dataset to bring up the
Fields editor. In the Fields editor, right-click and choose the New Field command. Describe the basic properties
of your field. Once the field is created, you can alter its properties in the Object Inspector by selecting the field
in the Fields editor.

Note: You can't define indexes for the new table if you are using persistent field components instead of field
definition objects.

To create the table at design time, right-click the dataset and choose Create Table (TTable) or Create Data Set
(TClientDataSet). This command does not appear on the context menu until you have specified all the necessary
information.

To create the table at runtime, call the CreateTable method (TTable and TIBTable) or the CreateDataSet method
(TClientDataSet).

Note: You can set up the definitions at design time and then call the CreateTable (or CreateDataSet) method at
runtime to create the table. However, to do so you must indicate that the definitions specified at runtime
should be saved with the dataset component. (by default, field and index definitions are generated
dynamically at runtime). Specify that the definitions should be saved with the dataset by setting its
StoreDefs property to True.

Tip: If you are using TTable, you can preload the field definitions and index definitions of an existing table at design
time. Set the DatabaseName and TableName properties to specify the existing table. Right click the table
component and choose Update Table Definition. This automatically sets the values of the FieldDefs and
IndexDefs properties to describe the fields and indexes of the existing table. Next, reset the DatabaseName
and TableName to specify the table you want to create, canceling any prompts to rename the existing table.

Note: When creating Oracle8 tables, you can't create object fields (ADT fields, array fields, and dataset fields).

The following code creates a new table at runtime and associates it with the DBDEMOS alias. Before it creates the
new table, it verifies that the table name provided does not match the name of an existing table:

[Delphi]
var
 TableFound: Boolean;
begin
 with TTable.Create(nil) do // create a temporary TTable component
 begin
 try
 { set properties of the temporary TTable component }
 Active := False;
 DatabaseName := 'DBDEMOS';
 TableName := Edit1.Text;
 TableType := ttDefault;
 { define fields for the new table }
 FieldDefs.Clear;
 with FieldDefs.AddFieldDef do begin
 Name := 'First';
 DataType := ftString;
 Size := 20;
 Required := False;
 end;
 with FieldDefs.AddFieldDef do begin
 Name := 'Second';
 DataType := ftString;

1870

 Size := 30;
 Required := False;
 end;
 { define indexes for the new table }
 IndexDefs.Clear;
 with IndexDefs.AddIndexDef do begin
 Name := '';
 Fields := 'First';
 Options := [ixPrimary];
 end;
 TableFound := Exists; // check whether the table already exists
 if TableFound then
 if MessageDlg('Overwrite existing table ' + Edit1.Text + '?',
 mtConfirmation, mbYesNoCancel, 0) = mrYes then
 TableFound := False;
 if not TableFound then
 CreateTable; // create the table
 finally
 Free; // destroy the temporary TTable when done
 end;
 end;
end;

[C++]
TTable *NewTable = new TTable(Form1);
NewTable->Active = false;
NewTable->DatabaseName = "BCDEMOS";
NewTable->TableName = Edit1->Text;
NewTable->TableType = ttDefault;
NewTable->FieldDefs->Clear();
TFieldDef *NewField = NewTable->FieldDefs->AddFieldDef(); // define first field
NewField->DataType = ftInteger;
NewField->Name = Edit2->Text;
NewField = NewTable->FieldDefs->AddFieldDef(); // define second field
NewField->DataType = ftString;
NewField->Size = StrToInt(Edit3->Text);
NewField->Name = Edit4->Text;
NewTable->IndexDefs->Clear();
TIndexDef *NewIndex = NewTable->IndexDefs->AddIndexDef(); // add an index
NewIndex->Name = "PrimaryIndex";
NewIndex->Fields = Edit2->Text;
NewIndex->Options << ixPrimary << ixUnique;
// Now check for prior existence of this table
bool CreateIt = (!NewTable->Exists);
if (!CreateIt)
 if (Application->MessageBox((AnsiString("Overwrite table ") + Edit1->Text +
 AnsiString("?")).c_str(),
 "Table Exists", MB_YESNO) == IDYES)
 CreateIt = true;
if (CreateIt)
 NewTable->CreateTable(); // create the table

Deleting tables
TTable and TIBTable let you delete tables from the underlying database table without using SQL. To delete a table
at runtime, call the dataset's DeleteTable method. For example, the following statement removes the table underlying
a dataset:

1871

[Delphi]
CustomersTable.DeleteTable;

[C++]
CustomersTable->DeleteTable();

Warning: When you delete a table with DeleteTable, the table and all its data are gone forever.

If you are using TTable, you can also delete tables at design time: Right-click the table component and select Delete
Table from the context menu. The Delete Table menu pick is only present if the table component represents an
existing database table (the DatabaseName and TableName properties specify an existing table).

Emptying Tables
Many table type datasets supply a single method that lets you delete all rows of data in the table.

Table Type Method

TTable and TIBTable You can delete all the records by calling the EmptyTable method at runtime:

[Delphi]
PhoneTable.EmptyTable;

[C++]
PhoneTable->EmptyTable();

TADOTable You can use the DeleteRecords method:

[Delphi]
PhoneTable.DeleteRecords;

[C++]
PhoneTable->DeleteRecords(arAll);

TSQLTable You can use the DeleteRecords method. Note, that the TSQLTable version of DeleteRecords never
takes any parameters:

[Delphi]
PhoneTable.DeleteRecords;

[C++]
PhoneTable->DeleteRecords();

1872

EmptyDataSet For client datasets, you can use the EmptyDataSet method:

[Delphi]
PhoneTable.EmptyDataSet;

[C++]
PhoneTable->EmptyDataSet();

Note: For tables on SQL servers, these methods only succeed if you have DELETE privilege for the table.

Warning: When you empty a dataset, the data you delete is gone forever.

Synchronizing Tables
If you have two or more datasets that represent the same database table but do not share a data source component,
then each dataset has its own view on the data and its own current record. As users access records through each
datasets, the components' current records will differ.

If the datasets are all instances of TTable, or all instances of TIBTable, or all client datasets, you can force the current
record for each of these datasets to be the same by calling the GotoCurrent method. GotoCurrent sets its own
dataset's current record to the current record of a matching dataset. For example, the following code sets the current
record of CustomerTableOne to be the same as the current record of CustomerTableTwo:

[Delphi]
CustomerTableOne.GotoCurrent(CustomerTableTwo);

[C++]
CustomerTableOne->GotoCurrent(CustomerTableTwo);

Tip: If your application needs to synchronize datasets in this manner, put the datasets in a data module and add
the unit for the data module to the uses clause of each unit that accesses the tables.

To synchronize datasets from separate forms, you must add one form's unit to the uses clause of the other, and you
must qualify at least one of the dataset names with its form name. For example:

[Delphi]
CustomerTableOne.GotoCurrent(Form2.CustomerTableTwo);

[C++]
CustomerTableOne->GotoCurrent(Form2->CustomerTableTwo);

Using Query-type Datasets

To use a query-type dataset
1 Place the appropriate dataset component in a data module or on a form, and set its Name property to a unique

value appropriate to your application.

1873

2 Identify the database server to query. Each query-type dataset does this differently, but typically you specify a
database connection component:

For TQuery, specify a TDatabase component or a BDE alias using the DatabaseName property.
For TADOQuery, specify a TADOConnection component using the Connection property.
For TSQLQuery, specify a TSQLConnection component using the SQLConnection property.
For TIBQuery, specify a TIBConnection component using the Database property.

For information about using database connection components, see Connecting to databases

3 Specify an SQL statement in the SQL property of the dataset, and optionally specify any parameters for the
statement.

4 If the query data is to be used with visual data controls, add a data source component to the data module, and
set its DataSet property to the query-type dataset. The data source component forwards the results of the query
(called a result set) to data-aware components for display. Connect data-aware components to the data source
using their DataSource and DataField properties.

5 Activate the query component. For queries that return a result set, use the Active property or the Open method.
To execute queries that only perform an action on a table and return no result set, use the ExecSQL method at
runtime. If you plan to execute the query more than once, you may want to call Prepare to initialize the data
access layer and bind parameter values into the query. For information about preparing a query, see Preparing
queries.

In addition to the basic steps described above, the following topics describe how to establish master/detsil
relationships when using query-type datasets and how to improve performance when you only need a unidirectional
cursor:

Establishing master/detail relationships using parameters
Using unidirectional result sets

Specifying the Query
For true query-type datasets, you use the SQL property to specify the SQL statement for the dataset to execute.
Some datasets, such as TADODataSet, TSQLDataSet, and client datasets, use a CommandText property to
accomplish the same thing.

Most queries that return records are SELECT commands. Typically, they define the fields to include, the tables from
which to select those fields, conditions that limit what records to include, and the order of the resulting dataset. For
example:

SELECT CustNo, OrderNo, SaleDate
FROM Orders
WHERE CustNo = 1225
ORDER BY SaleDate

Queries that do not return records include statements that use Data Definition Language (DDL) or Data Manipulation
Language (DML) statements other than SELECT statements (For example, INSERT, DELETE, UPDATE, CREATE
INDEX, and ALTER TABLE commands do not return any records). The language used in commands is server-
specific, but usually compliant with the SQL-92 standard for the SQL language.

The SQL command you execute must be acceptable to the server you are using. Datasets neither evaluate the SQL
nor execute it. They merely pass the command to the server for execution. In most cases, the SQL command must
be only one complete SQL statement, although that statement can be as complex as necessary (for example, a
SELECT statement with a WHERE clause that uses several nested logical operators such as AND and OR). Some

1874

servers also support "batch" syntax that permits multiple statements; if your server supports such syntax, you can
enter multiple statements when you specify the query.

The SQL statements used by queries can be verbatim, or they can contain replaceable parameters. Queries that
use parameters are called parameterized queries. When you use parameterized queries, the actual values assigned
to the parameters are inserted into the query before you execute, or run, the query. Using parameterized queries is
very flexible, because you can change a user's view of and access to data on the fly at runtime without having to
alter the SQL statement. For more information about parameterized queries, see Using parameters in queries.

Specifying a query using the SQL property
When using a true query-type dataset (TQuery, TADOQuery, TSQLQuery, or TIBQuery), assign the query to the
SQL property. The SQL property is a TStrings object. Each separate string in this TStrings object is a separate line
of the query. Using multiple lines does not affect the way the query executes on the server, but can make it easier
to modify and debug the query if you divide the statement into logical units:

[Delphi]
MyQuery.Close;
MyQuery.SQL.Clear;
MyQuery.SQL.Add('SELECT CustNo, OrderNO, SaleDate');
MyQuery.SQL.Add(' FROM Orders');
MyQuery.SQL.Add('ORDER BY SaleDate');
MyQuery.Open;

[C++]
MyQuery->Close();
MyQuery->SQL->Clear();
MyQuery->SQL->Add("SELECT CustNo, OrderNO, SaleDate");
MyQuery->SQL->Add("FROM Orders");
MyQuery->SQL->Add("ORDER BY SaleDate");
MyQuery->Open();

The code below demonstrates modifying only a single line in an existing SQL statement. In this case, the ORDER
BY clause already exists on the third line of the statement. It is referenced via the SQL property using an index of 2.

[Delphi]
MyQuery.SQL[2] := 'ORDER BY OrderNo';

[C++]
MyQuery->SQL->Strings[2] = "ORDER BY OrderNO";

Note: The dataset must be closed when you specify or modify the SQL property.

At design time, use the String List editor to specify the query. Click the ellipsis button by the SQL property in the
Object Inspector to display the String List editor.

Note: With some versions of Delphi, if you are using TQuery, you can also use the SQL Builder to construct a query
based on a visible representation of tables and fields in a database. To use the SQL Builder, select the query
component, right-click it to invoke the context menu, and choose Graphical Query Editor. To learn how to
use SQL Builder, open it and use its online help.

Because the SQL property is a TStrings object, you can load the text of the query from a file by calling the TStrings.
LoadFromFile method:

1875

[Delphi]
MyQuery.SQL.LoadFromFile('custquery.sql');

[C++]
MyQuery->SQL->LoadFromFile("custquery.sql");

You can also use the Assign method of the SQL property to copy the contents of a string list object into the SQL
property. The Assign method automatically clears the current contents of the SQL property before copying the new
statement:

[Delphi]
MyQuery.SQL.Assign(Memo1.Lines);

[C++]
MyQuery->SQL->Assign(Memo1->Lines);

Specifying a query using the CommandText property
When using TADODataSet, TSQLDataSet, or a client dataset, assign the text of the query statement to the
CommandText property:

[Delphi]
MyQuery.CommandText := 'SELECT CustName, Address FROM Customer';

[C++]
MyQuery->CommandText = "SELECT CustName, Address FROM Customer";

At design time, you can type the query directly into the Object Inspector, or, if the dataset already has an active
connection to the database, you can click the ellipsis button by the CommandText property to display the Command
Text editor. The Command Text editor lists the available tables, and the fields in those tables, to make it easier to
compose your queries.

Using Parameters in Queries
A parameterized SQL statement contains parameters, or variables, the values of which can be varied at design time
or runtime. Parameters can replace data values, such as those used in a WHERE clause for comparisons, that
appear in an SQL statement. Ordinarily, parameters stand in for data values passed to the statement. For example,
in the following INSERT statement, values to insert are passed as parameters:

INSERT INTO Country (Name, Capital, Population)
VALUES (:Name, :Capital, :Population)

In this SQL statement, :Name, :Capital, and :Population are placeholders for actual values supplied to the statement
at runtime by your application. Note that the names of parameters begin with a colon. The colon is required so that
the parameter names can be distinguished from literal values. You can also include unnamed parameters by adding
a question mark (?) to your query. Unnamed parameters are identified by position, because they do not have unique
names.

Before the dataset can execute the query, you must supply values for any parameters in the query text. TQuery,
TIBQuery, TSQLQuery, and client datasets use the Params property to store these values. TADOQuery uses the
Parameters property instead. Params (or Parameters) is a collection of parameter objects (TParam or TParameter),

1876

where each object represents a single parameter. When you specify the text for the query, the dataset generates
this set of parameter objects, and (depending on the dataset type) initializes any of their properties that it can deduce
from the query.

Note: You can suppress the automatic generation of parameter objects in response to changing the query text by
setting the ParamCheck property to False. This is useful for data definition language (DDL) statements that
contain parameters as part of the DDL statement that are not parameters for the query itself. For example,
the DDL statement to create a stored procedure may define parameters that are part of the stored procedure.
By setting ParamCheck to False, you prevent these parameters from being mistaken for parameters of the
query.

Parameter values must be bound into the SQL statement before it is executed for the first time. Query components
do this automatically for you even if you do not explicitly call the Prepare method before executing a query.

Tip: It is a good programming practice to provide variable names for parameters that correspond to the actual name
of the column with which it is associated. For example, if a column name is "Number," then its corresponding
parameter would be ":Number". Using matching names is especially important if the dataset uses a data source
to obtain parameter values from another dataset. This process is described in Establishing master/detail
relationships using parameters.

The following topics describe how to specify the datatypes and values of parameters for your query:

Supplying Parameters at Design Time
Supplying Parameters at Runtime

Supplying Parameters at Design Time
At design time, you can specify parameter values using the parameter collection editor. To display the parameter
collection editor, click on the ellipsis button for the Params or Parameters property in the Object Inspector. If the
SQL statement does not contain any parameters, no objects are listed in the collection editor.

Note: The parameter collection editor is the same collection editor that appears for other collection properties.
Because the editor is shared with other properties, its right-click context menu contains the Add and Delete
commands. However, they are never enabled for query parameters. The only way to add or delete parameters
is in the SQL statement itself.

For each parameter, select it in the parameter collection editor. Then use the Object Inspector to modify its
properties.

When using the Params property (TParam objects), you will want to inspect or modify the following,

The DataType property lists the data type for the parameter's value. For some datasets, this value may be correctly
initialized. If the dataset did not deduce the type, DataType is ftUnknown, and you must change it to indicate the
type of the parameter value.

The DataType property lists the logical data type for the parameter. In general, these data types conform to server
data types. For specific logical type-to-server data type mappings, see the documentation for the data access
mechanism (BDE, dbExpress, InterBase).

The ParamType property lists the type of the selected parameter. For queries, this is always ptInput, because queries
can only contain input parameters. If the value of ParamType is ptUnknown, change it to ptInput.

The Value property specifies a value for the selected parameter. You can leave Value blank if your application
supplies parameter values at runtime.

When using the Parameters property (TParameter objects), you will want to inspect or modify the following:

1877

The DataType property lists the data type for the parameter's value. For some data types, you must provide additional
information:

The NumericScale property indicates the number of decimal places for numeric parameters.
The Precision property indicates the total number of digits for numeric parameters.
The Size property indicates the number of characters in string parameters.

The Direction property lists the type of the selected parameter. For queries, this is always pdInput, because queries
can only contain input parameters.

The Attributes property controls the type of values the parameter will accept. Attributes may be set to a combination
of psSigned, psNullable, and psLong.

The Value property specifies a value for the selected parameter. You can leave Value blank if your application
supplies parameter values at runtime.

Supplying Parameters at Runtime
To create parameters at runtime, you can use the

ParamByName method to assign values to a parameter based on its name (not available for TADOQuery)
Params or Parameters property to assign values to a parameter based on the parameter's ordinal position within
the SQL statement.
Params.ParamValues or Parameters.ParamValues property to assign values to one or more parameters in a
single command line, based on the name of each parameter set.

The following code uses ParamByName to assign the text of an edit box to the :Capital parameter:

[Delphi]
SQLQuery1.ParamByName('Capital').AsString := Edit1.Text;

[C++]
SQLQuery1->ParamByName("Capital")->AsString = Edit1->Text;

The same code can be rewritten using the Params property, using an index of 0 (assuming the :Capital parameter
is the first parameter in the SQL statement):

[Delphi]
SQLQuery1.Params[0].AsString := Edit1.Text;

[C++]
SQLQuery1->Params->Items[0]->AsString = Edit1->Text;

The command line below sets three parameters at once, using the Params.ParamValues property:

[Delphi]
Query1.Params.ParamValues['Name;Capital;Continent'] :=
 VarArrayOf([Edit1.Text, Edit2.Text, Edit3.Text]);

[C++]
Query1->Params->ParamValues["Name;Capital;Continent"] =
 VarArrayOf(OPENARRAY(Variant, (Edit1->Text, Edit2->Text, Edit3->Text)));

1878

Note that ParamValues uses Variants, avoiding the need to cast values.

Establishing Master/detail Relationships Using Parameters
To set up a master/detail relationship where the detail set is a query-type dataset, you must specify a query that
uses parameters. These parameters refer to current field values on the master dataset. Because the current field
values on the master dataset change dynamically at runtime, you must rebind the detail set's parameters every time
the master record changes. Although you could write code to do this using an event handler, all query-type datasets
except TIBQuery provide an easier mechanism using the DataSource property.

If parameter values for a parameterized query are not bound at design time or specified at runtime, query-type
datasets attempt to supply values for them based on the DataSource property. DataSource identifies a different
dataset that is searched for field names that match the names of unbound parameters. This search dataset can be
any type of dataset. The search dataset must be created and populated before you create the detail dataset that
uses it. If matches are found in the search dataset, the detail dataset binds the parameter values to the values of
the fields in the current record pointed to by the data source.

To illustrate how this works, consider two tables: a customer table and an orders table. For every customer, the
orders table contains a set of orders that the customer made. The Customer table includes an ID field that specifies
a unique customer ID. The orders table includes a CustID field that specifies the ID of the customer who made an
order.

To set up the Customer dataset
1 Add a table type dataset to your application and bind it to the Customer table.
2 Add a TDataSource component named CustomerSource. Set its DataSet property to the dataset added in step

1. This data source now represents the Customer dataset.
3 Add a query-type dataset and set its SQL property to

SELECT CustID, OrderNo, SaleDate
FROM Orders
WHERE CustID = :ID

Note that the name of the parameter is the same as the name of the field in the master (Customer) table.

4 Set the detail dataset's DataSource property to CustomerSource. Setting this property makes the detail dataset
a linked query.

At runtime the :ID parameter in the SQL statement for the detail datasetis not assigned a value, so the dataset tries
to match the parameter by name against a column in the dataset identified by CustomersSource.
CustomersSource gets its data from the master dataset, which, in turn, derives its data from the Customer table.
Because the Customer table contains a column called "ID," the value from the ID field in the current record of the
master dataset is assigned to the :ID parameter for the detail dataset's SQL statement. The datasets are linked in
a master-detail relationship. Each time the current record changes in the Customers dataset, the detail dataset's
SELECT statement executes to retrieve all orders based on the current customer id.

Preparing Queries
Preparing a query is an optional step that precedes query execution. Preparing a query submits the SQL statement
and its parameters, if any, to the data access layer and the database server for parsing, resource allocation, and
optimization. In some datasets, the dataset may perform additional setup operations when preparing the query.
These operations improve query performance, making your application faster, especially when working with
updatable queries.

An application can prepare a query by setting the Prepared property to True. If you do not prepare a query before
executing it, the dataset automatically prepares it for you each time you call Open or ExecSQL. Even though the

1879

dataset prepares queries for you, you can improve performance by explicitly preparing the dataset before you open
it the first time.

[Delphi]
CustQuery.Prepared := True;

[C++]
CustQuery->Prepared = true;

When you explicitly prepare the dataset, the resources allocated for executing the statement are not freed until you
set Prepared to False.

Set the Prepared property to False if you want to ensure that the dataset is re-prepared before it executes (for
example, if you add a parameter).

Note: When you change the text of the SQL property for a query, the dataset automatically closes and unprepares
the query.

Executing Queries That Don't Return a Result Set
When a query returns a set of records (such as a SELECT query), you execute the query the same way you populate
any dataset with records: by setting Active to True or calling the Open method.

However, often SQL commands do not return any records. Such commands include statements that use Data
Definition Language (DDL) or Data Manipulation Language (DML) statements other than SELECT statements (For
example, INSERT, DELETE, UPDATE, CREATE INDEX, and ALTER TABLE commands do not return any records).

For all query-type datasets, you can execute a query that does not return a result set by calling ExecSQL:

[Delphi]
CustomerQuery.ExecSQL; { query does not return a result set }

[C++]
CustomerQuery->ExecSQL(); // Does not return a result set

Tip: If you are executing the query multiple times, it is a good idea to set the Prepared property to True.

Although the query does not return any records, you may want to know the number of records it affected (for example,
the number of records deleted by a DELETE query). The RowsAffected property gives the number of affected records
after a call to ExecSQL.

Tip: When you do not know at design time whether the query returns a result set (for example, if the user supplies
the query dynamically at runtime), you can code both types of query execution statements in a try...except
block. Put a call to the Open method in the try clause. An action query is executed when the query is activated
with the Open method, but an exception occurs in addition to that. Check the exception, and suppress it if it
merely indicates the lack of a result set. (For example, TQuery indicates this by an ENoResultSet exception.)

Using Unidirectional Result Sets
When a query-type dataset returns a result set, it also receives a cursor, or pointer to the first record in that result
set. The record pointed to by the cursor is the currently active record. The current record is the one whose field
values are displayed in data-aware components associated with the result set's data source. Unless you are using
dbExpress, this cursor is bi-directional by default. A bi-directional cursor can navigate both forward and backward

1880

through its records. Bi-directional cursor support requires some additional processing overhead, and can slow some
queries.

If you do not need to be able to navigate backward through a result set, TQuery and TIBQuery let you improve query
performance by requesting a unidirectional cursor instead. To request a unidirectional cursor, set the
UniDirectional property to True.

Set UniDirectional before preparing and executing a query. The following code illustrates setting UniDirectional prior
to preparing and executing a query:

[Delphi]
if not (CustomerQuery.Prepared) then
begin
 CustomerQuery.UniDirectional := True;
 CustomerQuery.Prepared := True;
end;
CustomerQuery.Open; { returns a result set with a one-way cursor }

[C++]
if (!CustomerQuery->Prepared)
{
 CustomerQuery->UniDirectional = true;
CustomerQuery->Prepared = true;
}
CustomerQuery->Open(); // Returns a result set with a one-way cursor

Note: Do not confuse the UniDirectional property with a unidirectional dataset. Unidirectional datasets
(TSQLDataSet, TSQLTable, TSQLQuery, and TSQLStoredProc) use dbExpress, which only returns
unidirectional cursors. In addition to restricting the ability to navigate backwards, unidirectional datasets do
not buffer records, and so have additional limitations (such as the inability to use filters).

Using Stored Procedure-type Datasets
How your application uses a stored procedure depends on how the stored procedure was coded, whether and how
it returns data, the specific database server used, or a combination of these factors.

To access a stored procedure on a server
1 Place the appropriate dataset component in a data module or on a form, and set its Name property to a unique

value appropriate to your application.
2 Identify the database server that defines the stored procedure. Each stored procedure-type dataset does this

differently, but typically you specify a database connection component:

For TStoredProc, specify a TDatabase component or a BDE alias using the DatabaseName property.
For TADOStoredProc, specify a TADOConnection component using the Connection property.
For TSQLStoredProc, specify a TSQLConnection component using the SQLConnection property.
For TIBStoredProc, specify a TIBConnection component using the Database property.

For information about using database connection components, see Connecting to databases

3 Specify the stored procedure to execute. For most stored procedure-type datasets, you do this by setting the
StoredProcName property. The one exception is TADOStoredProc, which has a ProcedureName property
instead.

1881

4 If the stored procedure returns a cursor to be used with visual data controls, add a data source component to
the data module, and set its DataSet property to the stored procedure-type dataset. Connect data-aware
components to the data source using their DataSource and DataField properties.

5 Provide input parameter values for the stored procedure, if necessary. If the server does not provide information
about all stored procedure parameters, you may need to provide additional input parameter information, such as
parameter names and data types. For information about working with stored procedure parameters, see Working
with stored procedure parameters.

6 Execute the stored procedure. For stored procedures that return a cursor, use the Active property or the Open
method. To execute stored procedures that do not return any results or that only return output parameters, use
the ExecProc method at runtime. If you plan to execute the stored procedure more than once, you may want to
call Prepare to initialize the data access layer and bind parameter values into the stored procedure. For
information about preparing a query, see Preparing stored procedures.

7 Process any results. These results can be returned as result and output parameters, or they can be returned as
a result set that populates the stored procedure-type dataset. Some stored procedures return multiple cursors.
For details on how to access the additional cursors, see Fetching multiple result sets.

Working with Stored Procedure Parameters
There are four types of parameters that can be associated with stored procedures:

Input parameters, used to pass values to a stored procedure for processing.
Output parameters, used by a stored procedure to pass return values to an application.
Input/output parameters, used to pass values to a stored procedure for processing, and used by the stored
procedure to pass return values to the application.
A result parameter, used by some stored procedures to return an error or status value to an application. A stored
procedure can only return one result parameter.

Whether a stored procedure uses a particular type of parameter depends both on the general language
implementation of stored procedures on your database server and on a specific instance of a stored procedure. For
any server, individual stored procedures may or may not use input parameters. On the other hand, some uses of
parameters are server-specific. For example, on MS-SQL Server and Sybase stored procedures always return a
result parameter, but the InterBase implementation of a stored procedure never returns a result parameter.

Access to stored procedure parameters is provided by the Params property (in TStoredProc, TSQLStoredProc,
TIBStoredProc) or the Parameters property (in TADOStoredProc). When you assign a value to the
StoredProcName (or ProcedureName) property, the dataset automatically generates objects for each parameter of
the stored procedure. For some datasets, if the stored procedure name is not specified until runtime, objects for
each parameter must be programmatically created at that time. Not specifying the stored procedure and manually
creating the TParam or TParameter objects allows a single dataset to be used with any number of available stored
procedures.

Note: Some stored procedures return a dataset in addition to output and result parameters. Applications can display
dataset records in data-aware controls, but must separately process output and result parameters.

Setting up parameters at design time
You can specify stored procedure parameter values at design time using the parameter collection editor. To display
the parameter collection editor, click on the ellipsis button for the Params or Parameters property in the Object
Inspector.

1882

Warning: You can assign values to input parameters by selecting them in the parameter collection editor and using
the Object Inspector to set the Value property. However, do not change the names or data types for
input parameters reported by the server. Otherwise, when you execute the stored procedure an exception
is raised.

Some servers do not report parameter names or data types. In these cases, you must set up the parameters manually
using the parameter collection editor. Right click and choose Add to add parameters. For each parameter you add,
you must fully describe the parameter. Even if you do not need to add any parameters, you should check the
properties of individual parameter objects to ensure that they are correct.

If the dataset has a Params property (TParam objects), the following properties must be correctly specified:

The Name property indicates the name of the parameter as it is defined by the stored procedure.
The DataType property gives the data type for the parameter's value. When using TSQLStoredProc, some data
types require additional information:
The NumericScale property indicates the number of decimal places for numeric parameters.
The Precision property indicates the total number of digits for numeric parameters.
The Size property indicates the number of characters in string parameters.
The ParamType property indicates the type of the selected parameter. This can be ptInput (for input
parameters), ptOutput (for output parameters), ptInputOutput (for input/output parameters) or ptResult (for result
parameters).
The Value property specifies a value for the selected parameter. You can never set values for output and result
parameters. These types of parameters have values set by the execution of the stored procedure. For input and
input/output parameters, you can leave Value blank if your application supplies parameter values at runtime.

If the dataset uses a Parameters property (TParameter objects), the following properties must be correctly specified:

The Name property indicates the name of the parameter as it is defined by the stored procedure.
The DataType property gives the data type for the parameter's value. For some data types, you must provide
additional information:
The NumericScale property indicates the number of decimal places for numeric parameters.
The Precision property indicates the total number of digits for numeric parameters.
The Size property indicates the number of characters in string parameters.
The Direction property gives the type of the selected parameter. This can be pdInput (for input parameters),
pdOutput (for output parameters), pdInputOutput (for input/output parameters) or pdReturnValue (for result
parameters).
The Attributes property controls the type of values the parameter will accept. Attributes may be set to a
combination of psSigned, psNullable, and psLong.
The Value property specifies a value for the selected parameter. Do not set values for output and result
parameters. For input and input/output parameters, you can leave Value blank if your application supplies
parameter values at runtime.

Using parameters at runtime
With some datasets, if the name of the stored procedure is not specified until runtime, no TParam objects are
automatically created for parameters and they must be created programmatically. This can be done using the
TParam.Create method or the TParams.AddParam method:

[Delphi]
var

1883

 P1, P2: TParam;
begin
 ...
 with StoredProc1 do begin
 StoredProcName := 'GET_EMP_PROJ';
 Params.Clear;
 P1 := TParam.Create(Params, ptInput);
 P2 := TParam.Create(Params, ptOutput);
 try
 Params[0].Name := 'EMP_NO';
 Params[1].Name := 'PROJ_ID';
 ParamByname('EMP_NO').AsSmallInt := 52;
 ExecProc;
 Edit1.Text := ParamByname('PROJ_ID').AsString;
 finally
 P1.Free;
 P2.Free;
 end;
 end;
 ...
end;

[C++]
TParam *P1, *P2;
StoredProc1->StoredProcName = "GET_EMP_PROJ";
StoredProc1->Params->Clear();
P1 = new TParam(StoredProc1->Params, ptInput);
P2 = new TParam(StoredProc1->Params, ptOutput);
try
{
 StoredProc1->Params->Items[0]->Name = "EMP_NO";
 StoredProc1->Params->Items[1]->Name = "PROJ_ID";
 StoredProc1->ParamByName("EMP_NO")->AsSmallInt = 52;
 StoredProc1->ExecProc();
 Edit1->Text = StoredProc1->ParamByName("PROJ_ID")->AsString;
}
__finally
{
 delete P1;
 delete P2;
}

Even if you do not need to add the individual parameter objects at runtime, you may want to access individual
parameter objects to assign values to input parameters and to retrieve values from output parameters. You can use
the dataset's ParamByName method to access individual parameters based on their names. For example, the
following code sets the value of an input/output parameter, executes the stored procedure, and retrieves the returned
value:

[Delphi]
with SQLStoredProc1 do
begin
 ParamByName('IN_OUTVAR').AsInteger := 103;
 ExecProc;
 IntegerVar := ParamByName('IN_OUTVAR').AsInteger;
end;

[C++]
SQLDataSet1->ParamByName("IN_OUTVAR")->AsInteger = 103;

1884

SQLDataSet1->ExecSQL();
int Result = SQLDataSet1->ParamByName("IN_OUTVAR")->AsInteger;

Preparing Stored Procedures
As with query-type datasets, stored procedure-type datasets must be prepared before they execute the stored
procedure. Preparing a stored procedure tells the data access layer and the database server to allocate resources
for the stored procedure and to bind parameters. These operations can improve performance.

If you attempt to execute a stored procedure before preparing it, the dataset automatically prepares it for you, and
then unprepares it after it executes. If you plan to execute a stored procedure a number of times, it is more efficient
to explicitly prepare it by setting the Prepared property to True.

[Delphi]
MyProc.Prepared := True;

[C++]
MyProc->Prepared = true;

When you explicitly prepare the dataset, the resources allocated for executing the stored procedure are not freed
until you set Prepared to False.

Set the Prepared property to False if you want to ensure that the dataset is re-prepared before it executes (for
example, if you change the parameters when using Oracle overloaded procedures).

Executing Stored Procedures That Don't Return a Result Set
When a stored procedure returns a cursor, you execute it the same way you populate any dataset with records: by
setting Active to True or calling the Open method.

However, often stored procedures do not return any data, or only return results in output parameters. You can
execute a stored procedure that does not return a result set by calling ExecProc. After executing the stored
procedure, you can use the ParamByName method to read the value of the result parameter or of any output
parameters:

[Delphi]
MyStoredProcedure.ExecProc; { does not return a result set }
Edit1.Text := MyStoredProcedure.ParamByName('OUTVAR').AsString;

[C++]
MyStoredProcedure->ExecProc(); // Does not return a result set
Edit1->Text = MyStoredProcedure->ParamByName("OUTVAR")->AsString;

Note: TADOStoredProc does not have a ParamByName method. To obtain output parameter values when using
ADO, access parameter objects using the Parameters property.

Tip: If you are executing the procedure multiple times, it is a good idea to set the Prepared property to True.

1885

Fetching Multiple Result Sets
Some stored procedures return multiple sets of records. The dataset only fetches the first set when you open it. If
you are using TSQLStoredProc or TADOStoredProc, you can access the other sets of records by calling the
NextRecordSet method:

[Delphi]
var
 DataSet2: TCustomSQLDataSet;
begin
 DataSet2 := SQLStoredProc1.NextRecordSet;
 ...

[C++]
TCustomSQLDataSet *DataSet2 = SQLStoredProc1->NextRecordSet();

In TSQLStoredProc, NextRecordSet returns a newly created TCustomSQLDataSet component that provides access
to the next set of records. In TADOStoredProc, NextRecordset returns an interface that can be assigned to the
RecordSet property of an existing ADO dataset. For either class, the method returns the number of records in the
returned dataset as an output parameter.

The first time you call NextRecordSet, it returns the second set of records. Calling NextRecordSet again returns a
third dataset, and so on, until there are no more sets of records. When there are no additional cursors,
NextRecordSet returns nil.

1886

Working with field components

Working with Field Components: Overview
Field components represent individual fields (columns) in datasets. You can use field components to control the
display and editing of data in your applications.

Field components are always associated with a dataset. You never use a TField object directly in your applications.
Instead, each field component in your application is a TField descendant specific to the datatype of a column in a
dataset. Field components provide data-aware controls such as TDBEdit and TDBGrid access to the data in a
particular column of the associated dataset.

Generally speaking, a single field component represents the characteristics of a single column, or field, in a dataset,
such as its data type and size. It also represents the field's display characteristics, such as alignment, display format,
and edit format. For example, a TFloatField component has four properties that directly affect the appearance of its
data:

TFloatField properties that affect data display
Property Purpose

Alignment Specifies whether data is displayed left-aligned, centered, or right-aligned.

DisplayWidth Specifies the number of digits to display in a control at one time.

DisplayFormat Specifies data formatting for display (such as how many decimal places to show).

EditFormat Specifies how to display a value during editing.

As you scroll from record to record in a dataset, a field component lets you view and change the value for that field
in the current record.

Field components have many properties in common with one another (such as DisplayWidth and Alignment), and
they have properties specific to their data types (such as Precision for TFloatField). Each of these properties affect
how data appears to an application's users on a form. Some properties, such as Precision, can also affect what data
values the user can enter in a control when modifying or entering data.

All field components for a dataset are either dynamic (automatically generated for you based on the underlying
structure of database tables), or persistent (generated based on specific field names and properties you set in the
Fields editor). Dynamic and persistent fields have different strengths and are appropriate for different types of
applications.

The following topics discuss field components in greater detail:

Dynamic Field Components
Persistent Field Components
Working with Field Component Methods at Runtime

1887

Displaying, Converting, and Accessing Field Values
Setting a Default Value for a Field
Working with Constraints
Using Object Fields

Dynamic Field Components
Dynamically generated field components are the default. In fact, all field components for any dataset start out as
dynamic fields the first time you place a dataset on a data module, specify how that dataset fetches its data, and
open it. A field component is dynamic if it is created automatically based on the underlying physical characteristics
of the data represented by a dataset. Datasets generate one field component for each column in the underlying data.
The exact TField descendant created for each column is determined by field type information received from the
database or (for TClientDataSet) from a provider component.

Dynamic fields are temporary. They exist only as long as a dataset is open. Each time you reopen a dataset that
uses dynamic fields, it rebuilds a completely new set of dynamic field components based on the current structure of
the data underlying the dataset. If the columns in the underlying data change, then the next time you open a dataset
that uses dynamic field components, the automatically generated field components are also changed to match.

Use dynamic fields in applications that must be flexible about data display and editing. For example, to create a
database browsing tool you must use dynamic fields because every database table has different numbers and types
of columns. You might also want to use dynamic fields in applications where user interaction with data mostly takes
place inside grid components and you know that the datasets used by the application change frequently.

To use dynamic fields in an application
1 Place datasets and data sources in a data module.
2 Associate the datasets with data. This involves using a connection component or provider to connect to the source

of the data and setting any properties that specify what data the dataset represents.
3 Associate the data sources with the datasets.
4 Place data-aware controls in the application's forms, add the data module to each uses clause for each form's

unit, and associate each data-aware control with a data source in the module. In addition, associate a field with
each data-aware control that requires one. Note that because you are using dynamic field components, there is
no guarantee that any field name you specify will exist when the dataset is opened.

5 Open the datasets.

Aside from ease of use, dynamic fields can be limiting. Without writing code, you cannot change the display and
editing defaults for dynamic fields, you cannot safely change the order in which dynamic fields are displayed, and
you cannot prevent access to any fields in the dataset. You cannot create additional fields for the dataset, such as
calculated fields or lookup fields, and you cannot override a dynamic field's default data type. To gain control and
flexibility over fields in your database applications, you need to invoke the Fields editor to create persistent field
components for your datasets.

Persistent Field Components
By default, dataset fields are dynamic. Their properties and availability are automatically set and cannot be changed
in any way. To gain control over a field's properties and events you must create persistent fields for the dataset.
Persistent fields let you

Set or change the field's display or edit characteristics at design time or runtime.

1888

Create new fields, such as lookup fields, calculated fields, and aggregated fields, that base their values on
existing fields in a dataset.
Validate data entry.
Remove field components from the list of persistent components to prevent your application from accessing
particular columns in an underlying database.
Define new fields to replace existing fields, based on columns in the table or query underlying a dataset.

At design time, you can—and should—use the Fields editor to create persistent lists of the field components used
by the datasets in your application. Persistent field component lists are stored in your application, and do not change
even if the structure of a database underlying a dataset is changed. Once you create persistent fields with the Fields
editor, you can also create event handlers for them that respond to changes in data values and that validate data
entries.

Note: When you create persistent fields for a dataset, only those fields you select are available to your application
at design time and runtime. At design time, you can always use the Fields editor to add or remove persistent
fields for a dataset.

All fields used by a single dataset are either persistent or dynamic. You cannot mix field types in a single dataset. If
you create persistent fields for a dataset, and then want to revert to dynamic fields, you must remove all persistent
fields from the dataset. For more information about dynamic fields, see Dynamic field components.

Note: One of the primary uses of persistent fields is to gain control over the appearance and display of data. You
can also control the appearance of columns in data-aware grids. To learn about controlling column
appearance in grids, see Creating a customized grid.

The following topics describe how to use the Fields editor to create or modify the persistent fields in a dataset, and
how to work with persistent fields:

Creating Persistent Fields
Arranging Persistent Fields
Defining New Persistent Fields
Deleting Persistent Field Components
Setting Persistent Field Properties and Events

Creating Persistent Fields
Persistent field components created with the Fields editor provide efficient, readable, and type-safe programmatic
access to underlying data. Using persistent field components guarantees that each time your application runs, it
always uses and displays the same columns, in the same order even if the physical structure of the underlying
database has changed. Data-aware components and program code that rely on specific fields always work as
expected. If a column on which a persistent field component is based is deleted or changed, Delphi generates an
exception rather than running the application against a nonexistent column or mismatched data.

To create persistent fields for a dataset
1 Place a dataset in a data module.
2 Bind the dataset to its underlying data. This typically involves associating the dataset with a connection

component or provider and specifying any properties to describe the data. For example, If you are using
TADODataSet, you can set the Connection property to a properly configured TADOConnection component and
set the CommandText property to a valid query.

3 Double-click the dataset component in the data module to invoke the Fields editor. The Fields editor contains a
title bar, navigator buttons, and a list box.

1889

The title bar of the Fields editor displays both the name of the data module or form containing the dataset, and
the name of the dataset itself. For example, if you open the Customers dataset in the CustomerData data module,
the title bar displays 'CustomerData.Customers,' or as much of the name as fits.

Below the title bar is a set of navigation buttons that let you scroll one-by-one through the records in an active
dataset at design time, and to jump to the first or last record. The navigation buttons are dimmed if the dataset
is not active or if the dataset is empty. If the dataset is unidirectional, the buttons for moving to the last record
and the previous record are always dimmed.

The list box displays the names of persistent field components for the dataset. The first time you invoke the Fields
editor for a new dataset, the list is empty because the field components for the dataset are dynamic, not persistent.
If you invoke the Fields editor for a dataset that already has persistent field components, you see the field
component names in the list box.

4 Right click in the Fields editor and choose Add Fields.
5 Select the fields to make persistent in the Add Fields dialog box. By default, all fields are selected when the dialog

box opens. Any fields you select become persistent fields.

The Add Fields dialog box closes, and the fields you selected appear in the Fields editor list box. Fields in the Fields
editor list box are persistent. If the dataset is active, note, too, that the Next and (if the dataset is not unidirectional)
Last navigation buttons above the list box are enabled.

From now on, each time you open the dataset, it no longer creates dynamic field components for every column in
the underlying database. Instead it only creates persistent components for the fields you specified.

Each time you open the dataset, it verifies that each non-calculated persistent field exists or can be created from
data in the database. If it cannot, the dataset raises an exception warning you that the field is not valid, and does
not open the dataset.

Arranging Persistent Fields
The order in which persistent field components are listed in the Fields editor list box is the default order in which the
fields appear in a data-aware grid component. You can change field order by dragging and dropping fields in the list
box.

To change the order of fields
1 Select the fields. You can select and order one or more fields at a time.
2 Drag the fields to a new location.

If you select a noncontiguous set of fields and drag them to a new location, they are inserted as a contiguous block.
Within the block, the order of fields does not change.

Alternatively, you can select the field, and use Ctrl+Up and Ctrl+Dn to change an individual field's order in the list.

Defining New Persistent Fields
Besides making existing dataset fields into persistent fields, you can also create special persistent fields as additions
to or replacements of the other persistent fields in a dataset.

New persistent fields that you create are only for display purposes. The data they contain at runtime are not retained
either because they already exist elsewhere in the database, or because they are temporary. The physical structure
of the data underlying the dataset is not changed in any way.

To create a new persistent field component, invoke the context menu for the Fields editor by right clicking and choose
New field. The New Field dialog box appears.

1890

The New Field dialog box contains three group boxes: Field properties, Field type, and Lookup definition.

The Field properties group box lets you enter general field component information. Enter the field name in the
Name edit box. The name you enter here corresponds to the field component's FieldName property. The New
Field dialog uses this name to build a component name in the Component edit box. The name that appears in
the Component edit box corresponds to the field component's Name property and is only provided for
informational purposes (Name is the identifier by which you refer to the field component in your source code).
The dialog discards anything you enter directly in the Component edit box.
The Type combo box in the Field properties group lets you specify the field component's data type. You must
supply a data type for any new field component you create. For example, to display floating-point currency
values in a field, select Currency from the drop-down list. Use the Size edit box to specify the maximum number
of characters that can be displayed or entered in a string-based field, or the size of Bytes and VarBytes fields.
For all other data types, Size is meaningless.
The Field type radio group lets you specify the type of new field component to create. The default type is Data.
If you choose Lookup, the Dataset and Source Fields edit boxes in the Lookup definition group box are enabled.
You can also create Calculated fields, and if you are working with a client dataset, you can create InternalCalc
fields or Aggregate fields. The following table describes these types of fields you can create:

Special persistent field kinds
Field Kind Purpose

Data Replaces an existing field (for example to change its data type)

Calculated Displays values calculated at runtime by a dataset's OnCalcFields event handler.

Lookup Retrieve values from a specified dataset at runtime based on search criteria you specify. (not supported by
unidirectional datasets)

InternalCalc Displays values calculated at runtime by a client dataset and stored with its data.

Aggregate Displays a value summarizing the data in a set of records from a client dataset.

The Lookup definition group box is only used to create lookup fields. This is described more fully in Defining a lookup
field.

The following topics describe how to create different field types:

Defining a Data Field
Defining a Calculated Field
Defining a Lookup Field
Defining an Aggregate Field

Defining a Data Field
A data field replaces an existing field in a dataset. For example, for programmatic reasons you might want to replace
a TSmallIntField with a TIntegerField. Because you cannot change a field's data type directly, you must define a
new field to replace it.

Warning: Even though you define a new field to replace an existing field, the field you define must derive its data
values from an existing column in a table underlying a dataset.

1891

To create a replacement data field for a field in a table underlying a dataset
1 Remove the field from the list of persistent fields assigned for the dataset, and then choose New Field from the

context menu.
2 In the New Field dialog box, enter the name of an existing field in the database table in the Name edit box. Do

not enter a new field name. You are actually specifying the name of the field from which your new field will derive
its data.

3 Choose a new data type for the field from the Type combo box. The data type you choose should be different
from the data type of the field you are replacing. You cannot replace a string field of one size with a string field
of another size. Note that while the data type should be different, it must be compatible with the actual data type
of the field in the underlying table.

4 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant for fields of type TStringField,
TBytesField, and TVarBytesField.

5 Select Data in the Field type radio group if it is not already selected.
6 Choose OK. The New Field dialog box closes, the newly defined data field replaces the existing field you specified

in Step 1, and the component declaration in the data module or form's type declaration is updated.

To edit the properties or events associated with the field component, select the component name in the Field editor
list box, then edit its properties or events with the Object Inspector. For more information about editing field
component properties and events, see Setting persistent field properties and events.

Defining a Calculated Field
A calculated field displays values calculated at runtime by a dataset's OnCalcFields event handler. For example,
you might create a string field that displays concatenated values from other fields.

To create a calculated field in the New Field dialog box
1 Enter a name for the calculated field in the Name edit box. Do not enter the name of an existing field.
2 Choose a data type for the field from the Type combo box.
3 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant for fields of type TStringField,

TBytesField, and TVarBytesField.
4 Select Calculated or InternalCalc in the Field type radio group. InternalCalc is only available if you are working

with a client dataset. The significant difference between these types of calculated fields is that the values
calculated for an InternalCalc field are stored and retrieved as part of the client dataset's data.

5 Choose OK. The newly defined calculated field is automatically added to the end of the list of persistent fields in
the Field editor list box, and the component declaration is automatically added to the form's or data module's
type declaration.

6 Place code that calculates values for the field in the OnCalcFields event handler for the dataset. For more
information about writing code to calculate field values, see Programming a calculated field.

Note: To edit the properties or events associated with the field component, select the component name in the Field
editor list box, then edit its properties or events with the Object Inspector. For more information about editing
field component properties and events, see Setting persistent field properties and events.

Programming a Calculated Field
After you define a calculated field, you must write code to calculate its value. Otherwise, it always has a null value.
Code for a calculated field is placed in the OnCalcFields event for its dataset.

1892

To program a value for a calculated field
1 Select the dataset component from the Object Inspector drop-down list.
2 Choose the Object Inspector Events page.
3 Double-click the OnCalcFields property to bring up or create a CalcFields procedure for the dataset component.
4 Write the code that sets the values and other properties of the calculated field as desired.

For example, suppose you have created a CityStateZip calculated field for the Customers table on the
CustomerData data module. CityStateZip should display a company's city, state, and zip code on a single line in a
data-aware control.

To add code to the CalcFields procedure for the Customers table, select the Customers table from the Object
Inspector drop-down list, switch to the Events page, and double-click the OnCalcFields property.

The TCustomerData.CustomersCalcFields procedure appears in the unit's source code window. Add the following
code to the procedure to calculate the field:

[Delphi]
CustomersCityStateZip.Value := CustomersCity.Value + ', ' + CustomersState.Value + ' ' +
CustomersZip.Value;

[C++]
CustomersCityStateZip->Value = CustomersCity->Value + AnsiString(", ") +

Note: When writing the OnCalcFields event handler for an internally calculated field, you can improve performance
by checking the client dataset's State property and only recomputing the value when State is
dsInternalCalc. See Using internally calculated fields in client datasets for details.

Defining a Lookup Field
A lookup field is a read-only field that displays values at runtime based on search criteria you specify. In its simplest
form, a lookup field is passed the name of an existing field to search on, a field value to search for, and a different
field in a lookup dataset whose value it should display.

For example, consider a mail-order application that enables an operator to use a lookup field to determine
automatically the city and state that correspond to the zip code a customer provides. The column to search on might
be called ZipTable.Zip, the value to search for is the customer's zip code as entered in Order.CustZip, and the values
to return would be those for the ZipTable.City and ZipTable.State columns of the record where the value of ZipTable.
Zip matches the current value in the Order.CustZip field.

Note: Unidirectional datasets do not support lookup fields.

To create a lookup field in the New Field dialog box
1 Enter a name for the lookup field in the Name edit box. Do not enter the name of an existing field.
2 Choose a data type for the field from the Type combo box.
3 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant for fields of type TStringField,

TBytesField, and TVarBytesField.
4 Select Lookup in the Field type radio group. Selecting Lookup enables the Dataset and Key Fields combo boxes.
5 Choose from the Dataset combo box drop-down list the dataset in which to look up field values. The lookup

dataset must be different from the dataset for the field component itself, or a circular reference exception is raised
at runtime. Specifying a lookup dataset enables the Lookup Keys and Result Field combo boxes.

1893

6 Choose from the Key Fields drop-down list a field in the current dataset for which to match values. To match
more than one field, enter field names directly instead of choosing from the drop-down list. Separate multiple
field names with semicolons. If you are using more than one field, you must use persistent field components.

7 Choose from the Lookup Keys drop-down list a field in the lookup dataset to match against the Source Fields
field you specified in step 6. If you specified more than one key field, you must specify the same number of lookup
keys. To specify more than one field, enter field names directly, separating multiple field names with semicolons.

8 Choose from the Result Field drop-down list a field in the lookup dataset to return as the value of the lookup field
you are creating.

When you design and run your application, lookup field values are determined before calculated field values are
calculated. You can base calculated fields on lookup fields, but you cannot base lookup fields on calculated fields.

You can use the LookupCache property to hone the way lookup fields are determined. LookupCache determines
whether the values of a lookup field are cached in memory when a dataset is first opened, or looked up dynamically
every time the current record in the dataset changes. Set LookupCache to True to cache the values of a lookup field
when the LookupDataSet is unlikely to change and the number of distinct lookup values is small. Caching lookup
values can speed performance, because the lookup values for every set of LookupKeyFields values are preloaded
when the DataSet is opened. When the current record in the DataSet changes, the field object can locate its
Value in the cache, rather than accessing the LookupDataSet. This performance improvement is especially dramatic
if the LookupDataSet is on a network where access is slow.

If every record of DataSet has different values for KeyFields, the overhead of locating values in the cache can be
greater than any performance benefit provided by the cache. The overhead of locating values in the cache increases
with the number of distinct values that can be taken by KeyFields.

If LookupDataSet is volatile, caching lookup values can lead to inaccurate results. Call RefreshLookupList to update
the values in the lookup cache. RefreshLookupList regenerates the LookupList property, which contains the value
of the LookupResultField for every set of LookupKeyFields values.

When setting LookupCache at runtime, call RefreshLookupList to initialize the cache.

Defining an Aggregate Field
An aggregate field displays values from a maintained aggregate in a client dataset. An aggregate is a calculation
that summarizes the data in a set of records. See Using maintained aggregates for details about maintained
aggregates.

To create an aggregate field in the New Field dialog box
1 Enter a name for the aggregate field in the Name edit box. Do not enter the name of an existing field.
2 Choose aggregate data type for the field from the Type combo box.
3 Select Aggregate in the Field type radio group.
4 Choose OK. The newly defined aggregate field is automatically added to the client dataset and its Aggregates

property is automatically updated to include the appropriate aggregate specification.
5 Place the calculation for the aggregate in the ExprText property of the newly created aggregate field. For more

information about defining an aggregate, see Specifying aggregates.

Once a persistent TAggregateField is created, a TDBText control can be bound to the aggregate field. The
TDBText control will then display the value of the aggregate field that is relevant to the current record of the underlying
client data set.

1894

Deleting Persistent Field Components
Deleting a persistent field component is useful for accessing a subset of available columns in a table, and for defining
your own persistent fields to replace a column in a table.

To remove one or more persistent field components for a dataset
1 Select the field(s) to remove in the Fields editor list box.
2 Press Del.

Note: You can also delete selected fields by invoking the context menu and choosing Delete.

Fields you remove are no longer available to the dataset and cannot be displayed by data-aware controls. You can
always recreate a persistent field component that you delete by accident, but any changes previously made to its
properties or events is lost. For more information, see Creating persistent fields

Note: If you remove all persistent field components for a dataset, the dataset reverts to using dynamic field
components for every column in the underlying database table.

Setting Persistent Field Properties and Events
You can set properties and customize events for persistent field components at design time. Properties control the
way a field is displayed by a data-aware component, for example, whether it can appear in a TDBGrid, or whether
its value can be modified. Events control what happens when data in a field is fetched, changed, set, or validated.

To set the properties of a field component or write customized event handlers for it, select the component in the
Fields editor, or select it from the component list in the Object Inspector.

The following topics discuss using persistent field properties and events:

Setting Display and Edit Properties at Design Time
Setting Field Component Properties at Runtime
Creating Attribute Sets for Field Components
Controlling and Masking User Input
Using Default Formatting for Numeric, Date, and Time Fields
Handling Events

Setting Display and Edit Properties at Design Time
To edit the display properties of a selected field component, switch to the Properties page on the Object
Inspector window. The following table summarizes display properties that can be edited.

Field component properties
Property Purpose

Alignment Left justifies, right justifies, or centers a field contents within a data-aware component.

ConstraintErrorMessage Specifies the text to display when edits clash with a constraint condition.

CustomConstraint Specifies a local constraint to apply to data during editing.

Currency Numeric fields only. True: displays monetary values.False (default): does not display monetary
values.

1895

DisplayFormat Specifies the format of data displayed in a data-aware component.

DisplayLabel Specifies the column name for a field in a data-aware grid component.

DisplayWidth Specifies the width, in characters, of a grid column that display this field.

EditFormat Specifies the edit format of data in a data-aware component.

EditMask Limits data-entry in an editable field to specified types and ranges of characters, and specifies any
special, non-editable characters that appear within the field (hyphens, parentheses, and so on).

FieldKind Specifies the type of field to create.

FieldName Specifies the actual name of a column in the table from which the field derives its value and data type.

HasConstraints Indicates whether there are constraint conditions imposed on a field.

ImportedConstraint Specifies an SQL constraint imported from the Data Dictionary or an SQL server.

Index Specifies the order of the field in a dataset.

LookupDataSet Specifies the table used to look up field values when Lookup is True.

LookupKeyFields Specifies the field(s) in the lookup dataset to match when doing a lookup.

LookupResultField Specifies the field in the lookup dataset from which to copy values into this field.

MaxValue Numeric fields only. Specifies the maximum value a user can enter for the field.

MinValue Numeric fields only. Specifies the minimum value a user can enter for the field.

Name Specifies the component name of the field component within Delphi.

Origin Specifies the name of the field as it appears in the underlying database.

Precision Numeric fields only. Specifies the number of significant digits.

ReadOnly True: Displays field values in data-aware controls, but prevents editing. False (the default): Permits
display and editing of field values.

Size Specifies the maximum number of characters that can be displayed or entered in a string-based
field, or the size, in bytes, of TBytesField and TVarBytesField fields.

Tag Long integer bucket available for programmer use in every component as needed.

Transliterate True (default): specifies that translation to and from the respective locales will occur as data is
transferred between a dataset and a database. False: Locale translation does not occur.

Visible True (the default): Permits display of field in a data-aware grid.False: Prevents display of field in a
data-aware grid component.User-defined components can make display decisions based on this
property.

Not all properties are available for all field components. For example, a field component of type TStringField does
not have Currency, MaxValue, or DisplayFormat properties, and a component of type TFloatField does not have
a Size property.

While the purpose of most properties is straightforward, some properties, such as Calculated, require additional
programming steps to be useful. Others, such as DisplayFormat, EditFormat, and EditMask, are interrelated; their
settings must be coordinated. For more information about using DisplayFormat, EditFormat, and EditMask, see
Controlling and masking user input.

Setting Field Component Properties at Runtime
You can use and manipulate the properties of field component at runtime. Access persistent field components by
name, where the name can be obtained by concatenating the field name to the dataset name.

For example, the following code sets the ReadOnly property for the CityStateZip field in the Customers table to True:

1896

[Delphi]
CustomersCityStateZip.ReadOnly := True;

[C++]
CustomersCityStateZip->ReadOnly = true;

And this statement changes field ordering by setting the Index property of the CityStateZip field in the Customers
table to 3:

[Delphi]
CustomersCityStateZip.Index := 3;

[C++]
CustomersCityStateZip->Index = 3;

Creating Attribute Sets for Field Components
When several fields in the datasets used by your application share common formatting properties (such as
Alignment, DisplayWidth, DisplayFormat, EditFormat, MaxValue, MinValue, and so on), it is more convenient to set
the properties for a single field, then store those properties as an attribute set in the Data Dictionary. Attribute sets
stored in the data dictionary can be easily applied to other fields.

Note: Attribute sets and the Data Dictionary are only available for BDE-enabled datasets.

To create an attribute set based on a field component in a dataset
1 Double-click the dataset to invoke the Fields editor.
2 Select the field for which to set properties.
3 Set the desired properties for the field in the Object Inspector.
4 Right-click the Fields editor list box to invoke the context menu.
5 Choose Save Attributes to save the current field's property settings as an attribute set in the Data Dictionary.

The name for the attribute set defaults to the name of the current field. You can specify a different name for the
attribute set by choosing Save Attributes As instead of Save Attributes from the context menu.

Once you have created a new attribute set and added it to the Data Dictionary, you can then associate it with other
persistent field components. Even if you later remove the association, the attribute set remains defined in the Data
Dictionary.

Associating Attribute Sets with Field Components
When several fields in the datasets used by your application share common formatting properties (such as
Alignment, DisplayWidth, DisplayFormat, EditFormat, MaxValue, MinValue, and so on), and you have saved those
property settings as attribute sets in the Data Dictionary, you can easily apply the attribute sets to fields without
having to recreate the settings manually for each field. In addition, if you later change the attribute settings in the
Data Dictionary, those changes are automatically applied to every field associated with the set the next time field
components are added to the dataset.

1897

To apply an attribute set to a field component
1 Double-click the dataset to invoke the Fields editor.
2 Select the field for which to apply an attribute set.
3 Invoke the context menu and choose Associate Attributes.
4 Select or enter the attribute set to apply from the Associate Attributes dialog box. If there is an attribute set in the

Data Dictionary that has the same name as the current field, that set name appears in the edit box.

Warning: If the attribute set in the Data Dictionary is changed at a later date, you must reapply the attribute set to
each field component that uses it. You can invoke the Fields editor and multi-select field components
within a dataset when reapplying attributes.

Removing Attribute Associations
If you change your mind about associating an attribute set with a field, you can remove the association.

To remove an attribute association
1 Invoke the Fields editor for the dataset containing the field.
2 Select the field or fields from which to remove the attribute association.
3 Invoke the context menu for the Fields editor and choose Unassociate Attributes.

Warning: Unassociating an attribute set does not change any field properties. A field retains the settings it had
when the attribute set was applied to it. To change these properties, select the field in the Fields editor
and set its properties in the Object Inspector.

Controlling and Masking User Input
The EditMask property provides a way to control the type and range of values a user can enter into a data-aware
component associated with TStringField, TDateField, TTimeField, and TDateTimeField, and TSQLTimeStampField
components. You can use existing masks or create your own. The easiest way to use and create edit masks is with
the Input Mask editor. You can, however, enter masks directly into the EditMask field in the Object Inspector.

Note: For TStringField components, the EditMask property is also its display format.

To invoke the Input Mask editor for a field component
1 Select the component in the Fields editor or Object Inspector.
2 Click the Properties page in the Object Inspector.
3 Double-click the values column for the EditMask field in the Object Inspector, or click the ellipsis button. The

Input Mask editor opens.

The Input Mask edit box lets you create and edit a mask format. The Sample Masks grid lets you select from
predefined masks. If you select a sample mask, the mask format appears in the Input Mask edit box where you can
modify it or use it as is. You can test the allowable user input for a mask in the Test Input edit box.

1898

The Masks button enables you to load a custom set of masks—if you have created one—into the Sample Masks
grid for easy selection.

Using Default Formatting for Numeric, Date, and Time Fields
Delphi provides built-in display and edit format routines and intelligent default formatting for TFloatField,
TCurrencyField, TBCDField, TFMTBCDField, TIntegerField, TSmallIntField, TWordField, TDateField,
TDateTimeField, TTimeField, and TSQLTimeStampField components. To use these routines, you need do nothing.

Default formatting is performed by the following routines:

Field component formatting routines
Routine Used by . . .

FormatFloat TFloatField, TCurrencyField

FormatDateTime TDateField, TTimeField, TDateTimeField,

SQLTimeStampToString TSQLTimeStampField

FormatCurr TCurrencyField, TBCDField

BcdToStrF TFMTBCDField

Only format properties appropriate to the data type of a field component are available for a given component.

Default formatting conventions for date, time, currency, and numeric values are based on the Regional Settings
properties in the Control Panel. For example, using the default settings for the United States, a TFloatField column
with the Currency property set to True sets the DisplayFormat property for the value 1234.56 to $1234.56, while the
EditFormat is 1234.56.

At design time or runtime, you can edit the DisplayFormat and EditFormat properties of a field component to override
the default display settings for that field. You can also write OnGetText and OnSetText event handlers to do custom
formatting for field components at runtime.

Handling Events
Like most components, field components have events associated with them. Methods can be assigned as handlers
for these events. By writing these handlers you can react to the occurrence of events that affect data entered in fields
through data-aware controls and perform actions of your own design. The following table lists the events associated
with field components:

Field component events
Event Purpose

OnChange Called when the value for a field changes.

OnGetText Called when the value for a field component is retrieved for display or editing.

OnSetText Called when the value for a field component is set.

OnValidate Called to validate the value for a field component whenever the value is changed because of an edit or insert
operation.

OnGetText and OnSetText events are primarily useful to programmers who want to do custom formatting that goes
beyond the built-in formatting functions. OnChange is useful for performing application-specific tasks associated
with data change, such as enabling or disabling menus or visual controls. OnValidate is useful when you want to
control data-entry validation in your application before returning values to a database server.

1899

To write an event handler for a field component
1 Select the component.
2 Select the Events page in the Object Inspector.
3 Double-click the Value field for the event handler to display its source code window.
4 Create or edit the handler code.

Working with Field Component Methods at Runtime
Field components methods available at runtime enable you to convert field values from one data type to another,
and enable you to set focus to the first data-aware control in a form that is associated with a field component.

Controlling the focus of data-aware components associated with a field is important when your application performs
record-oriented data validation in a dataset event handler (such as BeforePost). Validation may be performed on
the fields in a record whether or not its associated data-aware control has focus. Should validation fail for a particular
field in the record, you want the data-aware control containing the faulty data to have focus so that the user can
enter corrections.

You control focus for a field's data-aware components with a field's FocusControl method. FocusControl sets focus
to the first data-aware control in a form that is associated with a field. An event handler should call a field's
FocusControl method before validating the field. The following code illustrates how to call the FocusControl method
for the Company field in the Customers table:

[Delphi]
CustomersCompany.FocusControl;

[C++]
CustomersCompany->FocusControl();

The following table lists some other field component methods and their uses. For a complete list and detailed
information about using each method, see TField.

Selected field component methods
Method Purpose

AssignValue Sets a field value to a specified value using an automatic conversion function based on the field's type.

Clear Clears the field and sets its value to NULL.

GetData Retrieves unformatted data from the field.

IsValidChar Determines if a character entered by a user in a data-aware control to set a value is allowed for this field.

SetData Assigns unformatted data to this field.

Displaying, Converting, and Accessing Field Values
Data-aware controls such as TDBEdit and TDBGrid automatically display the values associated with field
components. If editing is enabled for the dataset and the controls, data-aware controls can also send new and
changed values to the database. In general, the built-in properties and methods of data-aware controls enable them
to connect to datasets, display values, and make updates without requiring extra programming on your part. Use
them whenever possible in your database applications. For more information about data-aware control, see Using
data controls.

Standard controls can also display and edit database values associated with field components. Using standard
controls, however, may require additional programming on your part. For example, when using standard controls,

1900

your application is responsible for tracking when to update controls because field values change. If the dataset has
a datasource component, you can use its events to help you do this. In particular, the OnDataChange event lets you
know when you may need to update a control's value and the OnStateChange event can help you determine when
to enable or disable controls. For more information on these events, see Responding to changes mediated by the
data source.

The following topics discuss how to work with field values so that you can display them in standard controls:

Displaying Field Component Values in Standard Controls
Converting Field Values
Accessing Field Values with the Default Dataset Property
Accessing Field Values with a Dataset's Fields Property
Accessing Field Values with a Dataset's FieldByName Method

Displaying Field Component Values in Standard Controls
An application can access the value of a dataset column through the Value property of a field component. For
example, the following OnDataChange event handler updates the text in a TEdit control because the value of the
CustomersCompany field may have changed:

[Delphi]
procedure TForm1.CustomersDataChange(Sender: TObject, Field: TField);
begin
 Edit3.Text := CustomersCompany.Value;
end;

[C++]
void __fastcall TForm1::Table1DataChange(TObject *Sender, TField *Field)
{
 Edit3->Text = CustomersCompany->Value;
}

This method works well for string values, but may require additional programming to handle conversions for other
data types. Fortunately, field components have built-in properties for handling conversions.

Note: You can also use Variants to access and set field values.

Converting Field Values
Conversion properties attempt to convert one data type to another. For example, the AsString property converts
numeric and Boolean values to string representations. The following table lists field component conversion
properties, and which properties are recommended for field components by field-component class:

Field Components AsVariant AsString AsInteger AsFloat, AsCurrency,
AsBCD

AsDateTime,
AsSQLTimeStamp

AsBoolean

TStringField yes NA yes yes yes yes

TWideStringField yes yes yes yes yes yes

TIntegerField yes yes NA yes

TSmallIntField yes yes yes yes

1901

TWordField yes yes yes yes

TLargeintField yes yes yes yes

TFloatField yes yes yes yes

TCurrencyField yes yes yes yes

TBCDField yes yes yes yes

TFMTBCDField yes yes yes yes

TDateTimeField yes yes yes yes

TDateField yes yes yes yes

TTimeField yes yes yes yes

TSQLTimeStampField yes yes yes yes

TBooleanField yes yes

TBytesField yes yes

TVarBytesField yes yes

TBlobField yes yes

TMemoField yes yes

TGraphicField yes yes

TVariantField NA yes yes yes yes yes

TAggregateField yes yes

Note that some columns in the table refer to more than one conversion property (such as AsFloat, AsCurrency, and
AsBCD). This is because all field data types that support one of those properties always support the others as well.

Note also that the AsVariant property can translate among all data types. For any datatypes not listed above,
AsVariant is also available (and is, in fact, the only option). When in doubt, use AsVariant.

In some cases, conversions are not always possible. For example, AsDateTime can be used to convert a string to
a date, time, or datetime format only if the string value is in a recognizable datetime format. A failed conversion
attempt raises an exception.

In some other cases, conversion is possible, but the results of the conversion are not always intuitive. For example,
what does it mean to convert a TDateTimeField value into a float format? AsFloat converts the date portion of the
field to the number of days since 12/31/1899, and it converts the time portion of the field to a fraction of 24 hours.
The following table lists permissible conversions that produce special results:

Special conversion results
Conversion Result

String to Boolean Converts "True," "False," "Yes," and "No" to Boolean. Other values raise exceptions.

Float to Integer Rounds float value to nearest integer value.

DateTime or SQLTimeStamp to Float Converts date to number of days since 12/31/1899, time to a fraction of 24 hours.

Boolean to String Converts any Boolean value to "True" or "False."

In other cases, conversions are not possible at all. In these cases, attempting a conversion also raises an exception.

Conversion always occurs before an assignment is made. For example, the following statement converts the value
of CustomersCustNo to a string and assigns the string to the text of an edit control:

1902

[Delphi]
Edit1.Text := CustomersCustNo.AsString;

[C++]
Edit1->Text = CustomersCustNo->AsString;

Conversely, the next statement assigns the text of an edit control to the CustomersCustNo field as an integer:

[Delphi]
MyTableMyField.AsInteger := StrToInt(Edit1.Text);

[C++]
MyTableMyField->AsInteger = StrToInt(Edit1->Text);

Accessing Field Values with the Default Dataset Property
The most general method for accessing a field's value is to use Variants with the FieldValues property. For example,
the following statement puts the value of an edit box into the CustNo field in the Customers table:

[Delphi]
Customers.FieldValues['CustNo'] := Edit2.Text;

[C++]
Customers->FieldValues["CustNo"] = Edit2->Text;

Because the FieldValues property is of type Variant, it automatically converts other datatypes into a Variant value.

Accessing Field Values with a Dataset's Fields Property
You can access the value of a field with the Fields property of the dataset component to which the field belongs.
Fields maintains an indexed list of all the fields in the dataset. Accessing field values with the Fields property is useful
when you need to iterate over a number of columns, or if your application works with tables that are not available to
you at design time.

To use the Fields property you must know the order of and data types of fields in the dataset. You use an ordinal
number to specify the field to access. The first field in a dataset is numbered 0. Field values must be converted as
appropriate using each field component's conversion properties.

For example, the following statement assigns the current value of the seventh column (Country) in the Customers
table to an edit control:

[Delphi]
Edit1.Text := CustTable.Fields[6].AsString;

[C++]
Edit1->Text = CustTable->Fields->Fields[6]->AsString;

Conversely, you can assign a value to a field by setting the Fields property of the dataset to the desired field. For
example:

1903

[Delphi]
begin
 Customers.Edit;
 Customers.Fields[6].AsString := Edit1.Text;
 Customers.Post;
end;

[C++]
Customers->Edit();
Customers->Insert();
Customers->Fields->Fields[6]->AsString = Edit1->Text;
Customers->Post();

Accessing Field Values with a Dataset's FieldByName Method
You can access the value of a field with a dataset's FieldByName method. This method is useful when you know
the name of the field you want to access, but do not have access to the underlying table at design time.

To use FieldByName, you must know the dataset and name of the field you want to access. You pass the field's
name as an argument to the method. To access or change the field's value, convert the result with the appropriate
field component conversion property, such as AsString or AsInteger. For example, the following statement assigns
the value of the CustNo field in the Customers dataset to an edit control:

[Delphi]
Edit2.Text := Customers.FieldByName('CustNo').AsString;

[C++]
Edit2->Text = Customers->FieldByName("CustNo")->AsString;

Conversely, you can assign a value to a field:

[Delphi]
begin
 Customers.Edit;
 Customers.FieldByName('CustNo').AsString := Edit2.Text;
 Customers.Post;
end;

[C++]
Customers->Edit();
Customers->FieldByName("CustNo")->AsString = Edit2->Text;
Customers->Post();

Setting a Default Value for a Field
You can specify how a default value for a field in a client dataset or a BDE-enabled dataset should be calculated at
runtime using the DefaultExpression property. DefaultExpression can be any valid SQL value expression that does
not refer to field values. If the expression contains literals other than numeric values, they must appear in quotes.
For example, a default value of noon for a time field would be

1904

'12:00:00'

including the quotes around the literal value.

Note: If the underlying database table defines a default value for the field, the default you specify in
DefaultExpression takes precedence. That is because DefaultExpression is applied when the dataset posts
the record containing the field, before the edited record is applied to the database server.

Working with Constraints
Field components in client datasets or BDE-enabled datasets can use SQL server constraints. In addition, your
applications can create and use custom constraints for these datasets that are local to your application. All constraints
are rules or conditions that impose a limit on the scope or range of values that a field can store.

Creating a Custom Constraint
A custom constraint is not imported from the server like other constraints. It is a constraint that you declare,
implement, and enforce in your local application. As such, custom constraints can be useful for offering a
prevalidation enforcement of data entry, but a custom constraint cannot be applied against data received from or
sent to a server application.

To create a custom constraint, set the CustomConstraint property to specify a constraint condition, and set
ConstraintErrorMessage to the message to display when a user violates the constraint at runtime.

CustomConstraint is an SQL string that specifies any application-specific constraints imposed on the field's value.
Set CustomConstraint to limit the values that the user can enter into a field. CustomConstraint can be any valid SQL
search expression such as

x > 0 and x < 100

The name used to refer to the value of the field can be any string that is not a reserved SQL keyword, as long as it
is used consistently throughout the constraint expression.

Note: Custom constraints are only available in BDE-enabled and client datasets.

Custom constraints are imposed in addition to any constraints to the field's value that come from the server. To see
the constraints imposed by the server, read the ImportedConstraint property.

Using Server Constraints
Most production SQL databases use constraints to impose conditions on the possible values for a field. For example,
a field may not permit NULL values, may require that its value be unique for that column, or that its values be greater
than 0 and less than 150. While you could replicate such conditions in your client applications, client datasets and
BDE-enabled datasets offer the ImportedConstraint property to propagate a server's constraints locally.

ImportedConstraint is a read-only property that specifies an SQL clause that limits field values in some manner. For
example:

Value > 0 and Value < 100

Do not change the value of ImportedConstraint, except to edit nonstandard or server-specific SQL that has been
imported as a comment because it cannot be interpreted by the database engine.

1905

To add additional constraints on the field value, use the CustomConstraint property. Custom constraints are imposed
in addition to the imported constraints. If the server constraints change, the value of ImportedConstraint also changed
but constraints introduced in the CustomConstraint property persist.

Removing constraints from the ImportedConstraint property will not change the validity of field values that violate
those constraints. Removing constraints results in the constraints being checked by the server instead of locally.
When constraints are checked locally, the error message supplied as the ConstraintErrorMessage property is
displayed when violations are found, instead of displaying an error message from the server.

Using Object Fields
Object fields are fields that represent a composite of other, simpler datatypes. These include ADT (Abstract Data
Type) fields, Array fields, DataSet fields, and Reference fields. All of these field types either contain or reference
child fields or other data sets.

ADT fields and array fields are fields that contain child fields. The child fields of an ADT field can be any scalar or
object type (that is, any other field type). These child fields may differ in type from each other. An array field contains
an array of child fields, all of the same type.

Dataset and reference fields are fields that access other data sets. A dataset field provides access to a nested (detail)
dataset and a reference field stores a pointer (reference) to another persistent object (ADT).

Types of object field components
Component Name Purpose

TADTField Represents an ADT (Abstract Data Type) field.

TArrayField Represents an array field.

TDataSetField Represents a field that contains a nested data set reference.

TReferenceField Represents a REF field, a pointer to an ADT.

When you add fields with the Fields editor to a dataset that contains object fields, persistent object fields of the
correct type are automatically created for you. Adding persistent object fields to a dataset automatically sets the
dataset's ObjectView property to True, which instructs the dataset to store these fields hierarchically, rather than
flattening them out as if the constituent child fields were separate, independent fields.

The following properties are common to all object fields and provide the functionality to handle child fields and
datasets.

Common object field descendant properties
Property Purpose

Fields Contains the child fields belonging to the object field.

ObjectType Classifies the object field.

FieldCount Number of child fields belonging to the object field.

FieldValues Provides access to the values of the child fields.

Displaying ADT and array fields
Both ADT and array fields contain child fields that can be displayed through data-aware controls.

Data-aware controls such as TDBEdit that represent a single field value display child field values in an uneditable
comma delimited string. In addition, if you set the control's DataField property to the child field instead of the object
field itself, the child field can be viewed an edited just like any other normal data field.

A TDBGrid control displays ADT and array field data differently, depending on the value of the dataset's ObjectView
property. When ObjectView is False, each child field appears in a single column. When ObjectView is True, an ADT

1906

or array field can be expanded and collapsed by clicking on the arrow in the title bar of the column. When the field
is expanded, each child field appears in its own column and title bar, all below the title bar of the ADT or array itself.
When the ADT or array is collapsed, only one column appears with an uneditable comma-delimited string containing
the child fields.

The following topics discuss each type of object field in more detail:

Working with ADT Fields
Working with Array Fields
Working with Dataset Fields
Working with Reference Fields

Working with ADT Fields
ADTs are user-defined types created on the server, and are similar to the record type. An ADT can contain most
scalar field types, array fields, reference fields, and nested ADTs.

There are a variety of ways to access the data in ADT field types. These are illustrated in the following examples,
which assign a child field value to an edit box called CityEdit, and use the following ADT structure,

Address
 Street
 City
 State
 Zip

Using persistent field components
The easiest way to access ADT field values is to use persistent field components. For the ADT structure above, the
following persistent fields can be added to the Customer table using the Fields editor:

CustomerAddress: TADTField;
CustomerAddrStreet: TStringField;
CustomerAddrCity: TStringField;
CustomerAddrState: TStringField;
CustomerAddrZip: TStringField;

Given these persistent fields, you can simply access the child fields of an ADT field by name:

[Delphi]
CityEdit.Text := CustomerAddrCity.AsString;

[C++]
CityEdit->Text = CustomerAddrCity->AsString;

Although persistent fields are the easiest way to access ADT child fields, it is not possible to use them if the structure
of the dataset is not known at design time. When accessing ADT child fields without using persistent fields, you must
set the dataset's ObjectView property to True.

1907

Using the dataset's FieldByName method
You can access the children of an ADT field using the dataset's FieldByName method by qualifying the name of the
child field with the ADT field's name:

[Delphi]
CityEdit.Text := Customer.FieldByName('Address.City').AsString;

Using the dateset's FieldValues property
You can also use qualified field names with a dataset's FieldValues property:

[Delphi]
CityEdit.Text := Customer['Address.City'];

[C++]
CityEdit->Text = Customer->FieldValues["Address.City"];

Note that you can omit the property name (FieldValues) because FieldValues is the dataset's default property.

Note: Unlike other runtime methods for accessing ADT child field values, the FieldValues property works even if
the dataset's ObjectView property is False.

Using the ADT field's FieldValues property
You can access the value of a child field with the TADTField's FieldValues property. FieldValues accepts and returns
a Variant, so it can handle and convert fields of any type. The index parameter is an integer value that specifies the
offset of the field.

[Delphi]
CityEdit.Text := TADTField(Customer.FieldByName('Address')).FieldValues[1];

[C++]
CityEdit->Text = ((TADTField*)Customer->FieldByName("Address"))->FieldValues[1];

Because FieldValues is the default property of TADTField, the property name (FieldValues) can be omitted. Thus,
the following statement is equivalent to the one above:

[Delphi]
CityEdit.Text := TADTField(Customer.FieldByName('Address'))[1];

Using the ADT field's Fields property
Each ADT field has a Fields property that is analogous to the Fields property of a dataset. Like the Fields property
of a dataset, you can use it to access child fields by position:

[Delphi]
CityEdit.Text := TADTField(Customer.FieldByName('Address')).Fields[1].AsString;

1908

[C++]
CityEdit->Text = ((TADTField*)Customer->FieldByName("Address"))->Fields->

or by name:

[Delphi]
CityEdit.Text := TADTField(Customer.FieldByName('Address')).Fields.FieldByName
('City').AsString;

[C++]
CityEdit->Text = ((TADTField*)Customer->FieldByName("Address"))->

[C++]
CityEdit->Text = Customer->FieldByName("Address.City")->AsString;

Working with Array Fields
Array fields consist of a set of fields of the same type. The field types can be scalar (for example, float, string), or
non-scalar (an ADT), but an array field of arrays is not permitted. The SparseArrays property of TDataSet determines
whether a unique TField object is created for each element of the array field.

There are a variety of ways to access the data in array field types. If you are not using persistent fields, the dataset's
ObjectView property must be set to True before you can access the elements of an array field.

Using persistent fields
You can map persistent fields to the individual array elements in an array field. For example, consider an array field
TelNos_Array, which is a six element array of strings. The following persistent fields created for the Customer table
component represent the TelNos_Array field and its six elements:

[Delphi]
CustomerTelNos_Array: TArrayField;
CustomerTelNos_Array0: TStringField;
CustomerTelNos_Array1: TStringField;
CustomerTelNos_Array2: TStringField;
CustomerTelNos_Array3: TStringField;
CustomerTelNos_Array4: TStringField;
CustomerTelNos_Array5: TStringField;

[C++]
CustomerTELNOS_ARRAY: TArrayField;
CustomerTELNOS_ARRAY0: TStringField;
CustomerTELNOS_ARRAY1: TStringField;
CustomerTELNOS_ARRAY2: TStringField;
CustomerTELNOS_ARRAY3: TStringField;
CustomerTELNOS_ARRAY4: TStringField;
CustomerTELNOS_ARRAY5: TStringField;

Given these persistent fields, the following code uses a persistent field to assign an array element value to an edit
box named TelEdit.

1909

[Delphi]
TelEdit.Text := CustomerTelNos_Array0.AsString;

[C++]
TelEdit->Text = CustomerTELNOS_ARRAY0->AsString;

Using the array field's FieldValues property
You can access the value of a child field with the array field's FieldValues property. FieldValues accepts and returns
a Variant, so it can handle and convert child fields of any type. For example,

[Delphi]
TelEdit.Text := TArrayField(Customer.FieldByName('TelNos_Array')).FieldValues[1];

[C++]
TelEdit->Text = ((TArrayField*)Customer->FieldByName("TelNos_Array"))->FieldValues[1];

Because FieldValues is the default property of TArrayField, this can also be written

[Delphi]
TelEdit.Text := TArrayField(Customer.FieldByName('TelNos_Array'))[1];

Using the array field's Fields property
TArrayField has a Fields property that you can use to access individual sub-fields. This is illustrated below, where
an array field (OrderDates) is used to populate a list box with all non-null array elements:

[Delphi]
for I := 0 to OrderDates.Size - 1 do
begin
 if not OrderDates.Fields[I].IsNull then
 OrderDateListBox.Items.Add(OrderDates[I]);
end;

[C++]
for (int i = 0; i < OrderDates->Size; ++i)
 if (!OrderDates->Fields->Fields[i]->IsNull)
 OrderDateListBox->Items->Add(OrderDates->Fields->Fields[i]->AsString);

Working with DataSet Fields
Dataset fields provide access to data stored in a nested dataset. The NestedDataSet property references the nested
dataset. The data in the nested dataset is then accessed through the field objects of the nested dataset.

Displaying dataset fields
TDBGrid controls enable the display of data stored in data set fields. In a TDBGrid control, a dataset field is indicated
in each cell of a dataset column with the string "(DataSet)", and at runtime an ellipsis button also exists to the right.

1910

Clicking on the ellipsis brings up a new form with a grid displaying the dataset associated with the current record's
dataset field. This form can also be brought up programmatically with the DB grid's ShowPopupEditor method. For
example, if the seventh column in the grid represents a dataset field, the following code will display the dataset
associated with that field for the current record.

[Delphi]
DBGrid1.ShowPopupEditor(DBGrid1.Columns[7]);

[C++]
DBGrid1->ShowPopupEditor(DBGrid1->Columns->Items[7], -1, -1);

Accessing data in a nested dataset
A dataset field is not normally bound directly to a data aware control. Rather, since a nested data set is just that, a
data set, the means to get at its data is via a TDataSet descendant. The type of dataset you use is determined by
the parent dataset (the one with the dataset field.) For example, a BDE-enabled dataset uses TNestedTable to
represent the data in its dataset fields, while client datasets use other client datasets.

To access the data in a dataset field
1 Create a persistent TDataSetField object by invoking the Fields editor for the parent dataset.
2 Create a dataset to represent the values in that dataset field. It must be of a type compatible with the parent

dataset.
3 Set that DataSetField property of the dataset created in step 2 to the persistent dataset field you created in step 1.

If the nested dataset field for the current record has a value, the detail dataset component will contain records with
the nested data; otherwise, the detail dataset will be empty.

Before inserting records into a nested dataset, you should be sure to post the corresponding record in the master
table, if it has just been inserted. If the inserted record is not posted, it will be automatically posted before the nested
dataset posts.

Working with Reference Fields
Reference fields store a pointer or reference to another ADT object. This ADT object is a single record of another
object table. Reference fields always refer to a single record in a dataset (object table). The data in the referenced
object is actually returned in a nested dataset, but can also be accessed via the Fields property on the
TReferenceField.

Displaying reference fields
In a TDBGrid control a reference field is designated in each cell of the dataset column, with (Reference) and, at
runtime, an ellipsis button to the right. At runtime, clicking on the ellipsis brings up a new form with a grid displaying
the object associated with the current record's reference field.

This form can also be brought up programmatically with the DB grid's ShowPopupEditor method. For example, if
the seventh column in the grid represents a reference field, the following code will display the object associated with
that field for the current record.

1911

[Delphi]
DBGrid1.ShowPopupEditor(DBGrid1.Columns[7]);

[C++]
DBGrid1->ShowPopupEditor(DBGrid1->Columns->Items[7], -1, -1);

Accessing data in a reference field
You can access the data in a reference field in the same way you access a nested dataset.

To access data in a reference field
1 Create a persistent TDataSetField object by invoking the Fields editor for the parent dataset.
2 Create a dataset to represent the value of that dataset field.
3 Set that DataSetField property of the dataset created in step 2 to the persistent dataset field you created in step 1.

If the reference is assigned, the reference dataset will contain a single record with the referenced data. If the
reference is null, the reference dataset will be empty.

You can also use the reference field's Fields property to access the data in a reference field. For example, the
following lines are equivalent and assign data from the reference field CustomerRefCity to an edit box called CityEdit:

[Delphi]
CityEdit.Text := CustomerRefCity.Fields[1].AsString;
CityEdit.Text := CustomerRefCity.NestedDataSet.Fields[1].AsString;

[C++]
CityEdit->Text = CustomerADDRESS_REF->NestedDataSet->Fields->Fields[1]->AsString;

When data in a reference field is edited, it is actually the referenced data that is modified.

To assign a reference field, you need to first use a SELECT statement to select the reference from the table, and
then assign. For example:

[Delphi]
var
 AddressQuery: TQuery;
 CustomerAddressRef: TReferenceField;
begin
 AddressQuery.SQL.Text := 'SELECT REF(A) FROM AddressTable A WHERE A.City = ''San
Francisco''';
 AddressQuery.Open;
 CustomerAddressRef.Assign(AddressQuery.Fields[0]);
end;

[C++]
AddressQuery->SQL->Text = "SELECT REF(A) FROM AddressTable A WHERE A.City = "San Francisco"";
AddressQuery->Open();
CustomerAddressRef->Assign(AddressQuery->Fields->Fields[0]);

1912

Using the Borland Database Engine

Using the Borland Database Engine
The Borland Database Engine (BDE) is a data-access mechanism that can be shared by several applications. The
BDE defines a powerful library of API calls that can create, restructure, fetch data from, update, and otherwise
manipulate local and remote database servers. The BDE provides a uniform interface to access a wide variety of
database servers, using drivers to connect to different databases. Depending on your edition of Delphi, you can use
the drivers for local databases (Paradox, dBASE, FoxPro, and Access) and an ODBC adapter that lets you supply
your own ODBC drivers.

When deploying BDE-based applications, you must include the BDE with your application. While this increases the
size of the application and the complexity of deployment, the BDE can be shared with other BDE-based applications
and provides a broad range of support for database manipulation. Although you can use the BDE's API directly in
your application, the components on the BDE category of the Tool palette wrap most of this functionality for you.

BDE-based Architecture
When using the BDE, your application uses a variation of the general database architecture described in Database
Architecture. In addition to the user interface elements, datasource, and datasets common to all Delphi database
applications, A BDE-based application can include

One or more database components to control transactions and to manage database connections.
One or more session components to isolate data access operations such as database connections, and to
manage groups of databases.

The relationships between the components in a BDE-based application are illustrated in the following figure:

1913

The following topics provide additional information about these components:

Using BDE-enabled Datasets
Connecting to Databases with TDatabase
Managing Database Sessions

Using BDE-enabled Datasets
BDE-enabled datasets use the Borland Database Engine (BDE) to access data. They inherit the common dataset
capabilities described in Understanding datasets, using the BDE to provide the implementation. In addition, all BDE
datasets add properties, events, and methods for

Associating a dataset with database and session connections.
Caching BLOBs.
Obtaining a BDE handle.

There are three BDE-enabled datasets:

TTable, a table type dataset that represents all of the rows and columns of a single database table. See Using
TTable for a description of features unique to TTable.
TQuery, a query-type dataset that encapsulates an SQL statement and enables applications to access the
resulting records, if any. See Using TQuery for a description of features unique to TQuery.
TStoredProc, a stored procedure-type dataset that executes a stored procedure that is defined on a database
server. See Using TStoredProc for a description of features unique to TStoredProc.

Note: In addition to the three types of BDE-enabled datasets, there is a BDE-based client dataset
(TBDEClientDataSet) that can be used for caching updates.

Associating a Dataset with Database and Session Connections
In order for a BDE-enabled dataset to fetch data from a database server it needs to use both a database and a
session.

Databases represent connections to specific database servers. The database identifies a BDE driver, a particular
database server that uses that driver, and a set of connection parameters for connecting to that database server.
Each database is represented by a TDatabase component. You can either associate your datasets with a
TDatabase component you add to a form or data module, or you can simply identify the database server by name
and let Delphi generate an implicit database component for you. Using an explicitly-created TDatabase component

1914

is recommended for most applications, because the database component gives you greater control over how the
connection is established, including the login process, and lets you create and use transactions.

To associate a BDE-enabled dataset with a database, use the DatabaseName property. DatabaseName is a string
that contains different information, depending on whether you are using an explicit database component and, if not,
the type of database you are using:

If you are using an explicit TDatabase component, DatabaseName is the value of the DatabaseName property
of the database component.
If you want to use an implicit database component and the database has a BDE alias, you can specify a BDE
alias as the value of DatabaseName. A BDE alias represents a database plus configuration information for that
database. The configuration information associated with an alias differs by database type (Oracle, Sybase,
InterBase, Paradox, dBASE, and so on).
If you want to use an implicit database component for a Paradox or dBASE database, you can also use
DatabaseName to simply specify the directory where the database tables are located.

A session provides global management for a group of database connections in an application. When you add BDE-
enabled datasets to your application, your application automatically contains a session component, named Session.
As you add database and dataset components to the application, they are automatically associated with this default
session. It also controls access to password protected Paradox files, and it specifies directory locations for sharing
Paradox files over a network. You can control database connections and access to Paradox files using the properties,
events, and methods of the session.

You can use the default session to control all database connections in your application. Alternatively, you can add
additional session components at design time or create them dynamically at runtime to control a subset of database
connections in an application. To associate your dataset with an explicitly created session component, use the
SessionName property. If you do not use explicit session components in your application, you do not have to provide
a value for this property. Whether you use the default session or explicitly specify a session using the
SessionName property, you can access the session associated with a dataset by reading the DBSession property.

Note: If you use a session component, the SessionName property of a dataset must match the SessionName
property for the database component with which the dataset is associated.

Caching BLOBs
BDE-enabled datasets all have a CacheBlobs property that controls whether BLOB fields are cached locally by the
BDE when an application reads BLOB records. By default, CacheBlobs is True, meaning that the BDE caches a
local copy of BLOB fields. Caching BLOBs improves application performance by enabling the BDE to store local
copies of BLOBs instead of fetching them repeatedly from the database server as a user scrolls through records.

In applications and environments where BLOBs are frequently updated or replaced, and a fresh view of BLOB data
is more important than application performance, you can set CacheBlobs to False to ensure that your application
always sees the latest version of a BLOB field.

Working with BDE Handle Properties
You can use BDE-enabled datasets without ever needing to make direct API calls to the Borland Database Engine.
The BDE-enabled datasets, in combination with database and session components, encapsulate much of the BDE
functionality. However, if you need to make direct API calls to the BDE, you may need BDE handles for resources
managed by the BDE. Many BDE APIs require these handles as parameters.

All BDE-enabled datasets include three read-only properties for accessing BDE handles at runtime:

Handle is a handle to the BDE cursor that accesses the records in the dataset.
DBHandle is a handle to the database that contains the underlying tables or stored procedure.

1915

DBLocale is a handle to the BDE language driver for the dataset. The locale controls the sort order and character
set used for string data.

These properties are automatically assigned to a dataset when it is connected to a database server through the BDE.

Using TTable
TTable encapsulates the full structure of and data in an underlying database table. It implements all of the basic
functionality introduced by TDataSet, as well as all of the special features typical of table type datasets.

Because TTable is a BDE-enabled dataset, it must be associated with a database and a session. Once the dataset
is associated with a database and session, you can bind it to a particular database table by setting the TableName
property and, if you are using a Paradox, dBASE, FoxPro, or comma-delimited ASCII text table, the TableType
property.

Note: The table must be closed when you change its association to a database, session, or database table, or when
you set the TableType property. However, before you close the table to change these properties, first post
or discard any pending changes. If cached updates are enabled, call the ApplyUpdates method to write the
posted changes to the database.

TTable components are unique in the support they offer for local database tables (Paradox, dBASE, FoxPro, and
comma-delimited ASCII text tables). The following topics describe the special properties and methods that implement
this support:

Specifying the Table Type for Local Tables
Controlling Read/Write Access to Local Tables
Specifying a dBASE Index File
Renaming Local Tables

In addition, TTable components can take advantage of the BDE's support for batch operations (table level operations
to append, update, delete, or copy entire groups of records). This support is described in Importing data from another
table.

Specifying the Table Type for Local Tables
If an application accesses Paradox, dBASE, FoxPro, or comma-delimited ASCII text tables, then the BDE uses the
TableType property to determine the table's type (its expected structure). TableType is not used when TTable
represents an SQL-based table on a database server.

By default TableType is set to ttDefault. When TableType is ttDefault, the BDE determines a table's type from its
filename extension. The following table summarizes the file extensions recognized by the BDE and the assumptions
it makes about a table's type:

Table types recognized by the BDE based on file extension
Extension Table Type

No file extension Paradox

.DB Paradox

.DBF dBASE

.TXT ASCII text

If your local Paradox, dBASE, and ASCII text tables use the file extensions as described in the previous table, then
you can leave TableType set to ttDefault. Otherwise, your application must set TableType to indicate the correct
table type. The following table indicates the values you can assign to TableType:

1916

TableType values
Value Table Type

ttDefault Table type determined automatically by the BDE

ttParadox Paradox

ttDBase dBASE

ttFoxPro FoxPro

ttASCII Comma-delimited ASCII text

Controlling Read/Write Access to Local Tables
Like any table type dataset, TTable lets you control read and write access by your application using the ReadOnly
property.

In addition, for Paradox, dBASE, and FoxPro tables, TTable can let you control read and write access to tables by
other applications. The Exclusive property controls whether your application gains sole read/write access to a
Paradox, dBASE, or FoxPro table. To gain sole read/write access for these table types, set the table
component's Exclusive property to True before opening the table. If you succeed in opening a table for exclusive
access, other applications cannot read data from or write data to the table. Your request for exclusive access is not
honored if the table is already in use when you attempt to open it.

The following statements open a table for exclusive access:

[Delphi]
CustomersTable.Exclusive := True; {Set request for exclusive lock}
CustomersTable.Active := True; {Now open the table}

[C++]
CustomersTable->Exclusive = true; // Set request for exclusive lock
CustomersTable->Active = true; // Now open the table

Note: You can attempt to set Exclusive on SQL tables, but some servers do not support exclusive table-level locking.
Others may grant an exclusive lock, but permit other applications to read data from the table. For more
information about exclusive locking of database tables on your server, see your server documentation.

Specifying a dBASE Index File
For most servers, you use the methods common to all table type datasets to specify an index. These methods are
described in Sorting records with indexes.

For dBASE tables that use non-production index files or dBASE III PLUS-style indexes (*.NDX), however, you must
use the IndexFiles and IndexNameproperties instead. Set the IndexFiles property to the name of the non-production
index file or list the .NDX files. Then, specify one index in the IndexName property to have it actively sorting the
dataset.

At design time, click the ellipsis button in the IndexFiles property value in the Object Inspector to invoke the Index
Files editor. To add one non-production index file or .NDX file: click the Add button in the Index Files dialog and
select the file from the Open dialog. Repeat this process once for each non-production index file or .NDX file. Click
the OK button in the Index Files dialog after adding all desired indexes.

This same operation can be performed programmatically at runtime. To do this, access the IndexFiles property using
properties and methods of string lists. When adding a new set of indexes, first call the Clear method of the table's

1917

IndexFiles property to remove any existing entries. Call the Add method to add each non-production index file
or .NDX file:

[Delphi]
with Table2.IndexFiles do begin
 Clear;
 Add('Bystate.ndx');
 Add('Byzip.ndx');
 Add('Fullname.ndx');
 Add('St_name.ndx');
end;

[C++]
Table2->IndexFiles->Clear();
Table2->IndexFiles->Add("Bystate.ndx");
Table2->IndexFiles->Add("Byzip.ndx");
Table2->IndexFiles->Add("Fullname.ndx");
Table2->IndexFiles->Add("St_name.ndx");

After adding any desired non-production or .NDX index files, the names of individual indexes in the index file are
available, and can be assigned to the IndexName property. The index tags are also listed when using the
GetIndexNames method and when inspecting index definitions through the TIndexDef objects in the IndexDefs
property. Properly listed .NDX files are automatically updated as data is added, changed, or deleted in the table
(regardless of whether a given index is used in the IndexName property).

In the example below, the IndexFiles for the AnimalsTable table component is set to the non-production index file
ANIMALS.MDX, and then its IndexName property is set to the index tag called "NAME":

[Delphi]
AnimalsTable.IndexFiles.Add('ANIMALS.MDX');
AnimalsTable.IndexName := 'NAME';

[C++]
AnimalsTable->IndexFiles->Add("ANIMALS.MDX");
AnimalsTable->IndexName = "NAME";

Once you have specified the index file, using non-production or .NDX indexes works the same as any other index.
Specifying an index name sorts the data in the table and makes it available for indexed-based searches, ranges,
and (for non-production indexes) master-detail linking. See Using table type datasets for details on these uses of
indexes.

There are two special considerations when using dBASE III PLUS-style .NDX indexes with TTable components. The
first is that .NDX files cannot be used as the basis for master-detail links. The second is that when activating a .NDX
index with the IndexName property, you must include the .NDX extension in the property value as part of the index
name:

[Delphi]
with Table1 do begin
 IndexName := 'ByState.NDX';
 FindKey(['CA']);
end;

[C++]
Table1->IndexName = "ByState.NDX";

1918

TVarRec vr = ("NE");
Table1->FindKey(&vr, 0);

Renaming a Table
To rename a Paradox or dBASE table at runtime, call the table's RenameTable method. For example, the following
statement renames the Customer table to CustInfo:

[Delphi]
Customer.RenameTable('CustInfo');

[C++]
Customer->RenameTable("CustInfo");

Importing Data from Another Table
You can use a table component's BatchMovemethod to import data from another table. BatchMove can

Copy records from another table into this table.
Update records in this table that occur in another table.
Append records from another table to the end of this table.
Delete records in this table that occur in another table.

BatchMove takes two parameters: the name of the table from which to import data, and a mode specification that
determines which import operation to perform. The following table describes the possible settings for the mode
specification:

BatchMove import modes
Value Meaning

batAppend Append all records from the source table to the end of this table.

batAppendUpdate Append all records from the source table to the end of this table and update existing records in this table
with matching records from the source table.

batCopy Copy all records from the source table into this table.

batDelete Delete all records in this table that also appear in the source table.

batUpdate Update existing records in this table with matching records from the source table.

For example, the following code updates all records in the current table with records from the Customer table that
have the same values for fields in the current index:

[Delphi]
Table1.BatchMove('CUSTOMER.DB', batUpdate);

[C++]
Table1->BatchMove("CUSTOMER.DB", batUpdate);

BatchMove returns the number of records it imports successfully.

1919

Warning: Importing records using the batCopy mode overwrites existing records. To preserve existing records use
batAppend instead.

BatchMove performs only some of the batch operations supported by the BDE. Additional functions are available
using the TBatchMove component. If you need to move a large amount of data between or among tables, use
TBatchMove instead of calling a table's BatchMove method. For information about using TBatchMove, see Using
TBatchMove

Using TQuery
TQuery represents a single Data Definition Language (DDL) or Data Manipulation Language (DML) statement (For
example, a SELECT, INSERT, DELETE, UPDATE, CREATE INDEX, or ALTER TABLE command). The language
used in commands is server-specific, but usually compliant with the SQL-92 standard for the SQL language.
TQuery implements all of the basic functionality introduced by TDataSet, as well as all of the special features typical
of query-type datasets.

Because TQuery is a BDE-enabled dataset, it must usually be associated with a database and a session. (The one
exception is when you use the TQuery for a heterogeneous query.) You specify the SQL statement for the query by
setting the SQL property.

A TQuery component can access data in:

Paradox or dBASE tables, using Local SQL, which is part of the BDE. Local SQL is a subset of the SQL-92
specification. Most DML is supported and enough DDL syntax to work with these types of tables. See the local
SQL help, LOCALSQL.HLP, for details on supported SQL syntax.
Local InterBase Server databases, using the InterBase engine. For information on InterBase's SQL-92 standard
SQL syntax support and extended syntax support, see the InterBase Language Reference.
Databases on remote database servers such as Oracle, Sybase, MS-SQL Server, Informix, DB2, and InterBase.
You must install the appropriate SQL Link driver and client software (vendor-supplied) specific to the database
server to access a remote server. Any standard SQL syntax supported by these servers is allowed. For
information on SQL syntax, limitations, and extensions, see the documentation for your particular server.

The following topics discuss features that are unique to TQuery components (as opposed to other query-type
datasets):

Creating Heterogeneous Queries.
Obtaining an Editable Result Set
Updating Read-only Result Sets

Creating Heterogenous Queries
TQuery supports heterogeneous queries against more than one server or table type (for example, data from an
Oracle table and a Paradox table. When you execute a heterogeneous query, the BDE parses and processes the
query using Local SQL. Because BDE uses Local SQL, extended, server-specific SQL syntax is not supported.

To perform a heterogeneous query
1 Define separate BDE aliases for each database accessed in the query using the BDE Administration tool or the

SQL explorer.
2 Leave the DatabaseName property of the TQuery blank; the names of the databases used will be specified in

the SQL statement.

1920

3 In the SQL property, specify the SQL statement to execute. Precede each table name in the statement with the
BDE alias for the table's database, enclosed in colons. This whole reference is then enclosed in quotation marks.

4 Set any parameters for the query in the Params property.
5 Call Prepare to prepare the query for execution prior to executing it for the first time.
6 Call Open or ExecSQL depending on the type of query you are executing.

For example, suppose you define an alias called Oracle1 for an Oracle database that has a CUSTOMER table, and
Sybase1 for a Sybase database that has an ORDERS table. A simple query against these two tables would be:

SELECT Customer.CustNo, Orders.OrderNo
FROM ":Oracle1:CUSTOMER"
 JOIN ":Sybase1:ORDERS"
 ON (Customer.CustNo = Orders.CustNo)
WHERE (Customer.CustNo = 1503)

As an alternative to using a BDE alias to specify the database in a heterogeneous query, you can use a
TDatabase component. Configure the TDatabase as normal to point to the database, set the
TDatabase.DatabaseName to an arbitrary but unique value, and then use that value in the SQL statement instead
of a BDE alias name.

Obtaining an Editable Result Set
To request a result set that users can edit in data-aware controls, set a query component's RequestLive property to
True. Setting RequestLive to True does not guarantee a live result set, but the BDE attempts to honor the request
whenever possible. There are some restrictions on live result set requests, depending on whether the query uses
the local SQL parser or a server's SQL parser.

Queries where table names are preceded by a BDE database alias (as in heterogeneous queries) and queries
executed against Paradox or dBASE are parsed by the BDE using Local SQL. When queries use the local SQL
parser, the BDE offers expanded support for updatable, live result sets in both single table and multi-table
queries. When using Local SQL, a live result set for a query against a single table or view is returned if the query
does not contain any of the following:
DISTINCT in the SELECT clause
Joins (inner, outer, or UNION)
Aggregate functions with or without GROUP BY or HAVING clauses
Base tables or views that are not updatable
Subqueries
ORDER BY clauses not based on an index
Queries against a remote database server are parsed by the server. If the RequestLive property is set to True,
the SQL statement must abide by Local SQL standards in addition to any server-imposed restrictions because
the BDE needs to use it for conveying data changes to the table. A live result set for a query against a single
table or view is returned if the query does not contain any of the following:
A DISTINCT clause in the SELECT statement
Aggregate functions, with or without GROUP BY or HAVING clauses
References to more than one base table or updatable views (joins)
Subqueries that reference the table in the FROM clause or other tables

If an application requests and receives a live result set, the CanModify property of the query component is set to
True. Even if the query returns a live result set, you may not be able to update the result set directly if it contains

1921

linked fields or you switch indexes before attempting an update. If these conditions exist, you should treat the result
set as a read-only result set, and update it accordingly.

If an application requests a live result set, but the SELECT statement syntax does not allow it, the BDE returns either

A read-only result set for queries made against Paradox or dBASE.
An error code for SQL queries made against a remote server.

Updating a Read-only Result Set
Applications can update data returned in a read-only result set if they are using cached updates.

If you are using a client dataset to cache updates, the client dataset or its associated provider can automatically
generate the SQL for applying updates unless the query represents multiple tables. If the query represents multiple
tables, you must indicate how to apply the updates:

If all updates are applied to a single database table, you can indicate the underlying table to update in an
OnGetTableName event handler.

If you need more control over applying updates, you can associate the query with an update object (TUpdateSQL).
A provider automatically uses this update object to apply updates:

Associate the update object with the query by setting the query's UpdateObject property to the TUpdateSQL
object you are using.
Set the update object's ModifySQL, InsertSQL, and DeleteSQL properties to SQL statements that perform the
appropriate updates for your query's data.

You must use an update object if you are using the BDE to cache updates.

Note: For more information on using update objects, see Using update objects to update a dataset.

Using TStoredProc
TStoredProc represents a stored procedure. It implements all of the basic functionality introduced by TDataSet, as
well as most of the special features typical of stored procedure-type datasets.

Because TStoredProc is a BDE-enabled dataset, it must be associated with a database and a session. Once the
dataset is associated with a database and session, you can bind it to a particular stored procedure by setting the
StoredProcName property.

TStoredProc differs from other stored procedure-type datasets in the following ways:

It gives you greater control over how to bind parameters.
It provides support for Oracle overloaded stored procedures.

Binding Parameters
When you prepare and execute a stored procedure, its input parameters are automatically bound to parameters on
the server.

TStoredProc lets you use the ParamBindMode property to specify how parameters should be bound to the
parameters on the server. By default ParamBindMode is set to pbByName, meaning that parameters from the stored
procedure component are matched to those on the server by name. This is the easiest method of binding parameters.

Some servers also support binding parameters by ordinal value, the order in which the parameters appear in the
stored procedure. In this case the order in which you specify parameters in the parameter collection editor is

1922

significant. The first parameter you specify is matched to the first input parameter on the server, the second parameter
is matched to the second input parameter on the server, and so on. If your server supports parameter binding by
ordinal value, you can set ParamBindMode to pbByNumber.

Tip: If you want to set ParamBindMode to pbByNumber, you need to specify the correct parameter types in the
correct order.

Working with Oracle Overloaded Stored Procedures
Oracle servers allow overloading of stored procedures; overloaded procedures are different procedures with the
same name. The stored procedure component's Overload property enables an application to specify the procedure
to execute.

If Overload is zero (the default), there is assumed to be no overloading. If Overload is one (1), then the stored
procedure component executes the first stored procedure it finds on the Oracle server that has the overloaded name;
if it is two (2), it executes the second, and so on.

Note: Overloaded stored procedures may take different input and output parameters. See your Oracle server
documentation for more information.

Connecting to Databases with TDatabase
When a Delphi application uses the Borland Database Engine (BDE) to connect to a database, that connection is
encapsulated by a TDatabase component. A database component represents the connection to a single database
in the context of a BDE session.

TDatabase performs many of the same tasks as and shares many common properties, methods, and events with
other database connection components. These commonalities are described in Connecting to databases.

In addition to the common properties, methods, and events, TDatabase introduces many BDE-specific features.
These features are described in the following topics:

Associating a Database Component with a Session
Understanding Database and Session Component Interactions
Identifying the Database
Opening a Connection Using TDatabase
Using Database Components in Data Modules
Applying Cached Updates Using a Database.

Associating a Database Component with a Session
All database components must be associated with a BDE session. Use the SessionName, establish this association.
When you first create a database component at design time, SessionName is set to "Default", meaning that it is
associated with the default session component that is referenced by the global Session variable.

Multi-threaded or reentrant BDE applications may require more than one session. If you need to use multiple
sessions, add TSession components for each session. Then, associate your dataset with a session component by
setting the SessionName property to a session component's SessionName property.

At runtime, you can access the session component with which the database is associated by reading the Session
property. If SessionName is blank or "Default", then the Session property references the same TSession instance

1923

referenced by the global Session variable. Session enables applications to access the properties, methods, and
events of a database component's parent session component without knowing the session's actual name.

For more information about BDE sessions, see Managing database sessions.

If you are using an implicit database component, the session for that database component is the one specified by
the dataset's SessionName property.

Understanding Database and Session Component Interactions
In general, session component properties provide global, default behaviors that apply to all implicit database
components created at runtime. For example, the controlling session's KeepConnections property determines
whether a database connection is maintained even if its associated datasets are closed (the default), or if the
connections are dropped when all its datasets are closed. Similarly, the default OnPasswordevent for a session
guarantees that when an application attempts to attach to a database on a server that requires a password, it displays
a standard password prompt dialog box.

Session methods apply somewhat differently. TSession methods affect all database components, regardless of
whether they are explicitly created or instantiated implicitly by a dataset. For example, the session method
DropConnectionscloses all datasets belonging to a session's database components, and then drops all database
connections, even if the KeepConnection property for individual database components is True.

Database component methods apply only to the datasets associated with a given database component. For example,
suppose the database component Database1 is associated with the default session. Database1.CloseDataSets()
closes only those datasets associated with Database1. Open datasets belonging to other database components
within the default session remain open.

Identifying the Database
AliasName and DriverName are mutually exclusive properties that identify the database server to which the
TDatabase component connects.

AliasName specifies the name of an existing BDE alias to use for the database component. The alias appears in
subsequent drop-down lists for dataset components so that you can link them to a particular database component.
If you specify AliasName for a database component, any value already assigned to DriverName is cleared because
a driver name is always part of a BDE alias.

You create and edit BDE aliases using the Database Explorer . For more information about creating and maintaining
BDE aliases, see the online documentation for these utilities.

DriverNameis the name of a BDE driver. A driver name is one parameter in a BDE alias, but you may specify a driver
name instead of an alias when you create a local BDE alias for a database component using the DatabaseName
property. If you specify DriverName, any value already assigned to AliasName is cleared to avoid potential conflicts
between the driver name you specify and the driver name that is part of the BDE alias identified in AliasName.

DatabaseName lets you provide your own name for a database connection. The name you supply is in addition
to AliasName or DriverName, and is local to your application. DatabaseName can be a BDE alias, or, for Paradox
and dBASE files, a fully-qualified path name. Like AliasName, DatabaseName appears in subsequent drop-down
lists for dataset components to let you link them to database components.

At design time, to specify a BDE alias, assign a BDE driver, or create a local BDE alias, double-click a database
component to invoke the Database Properties editor.

You can enter a DatabaseName in the Name edit box in the properties editor. You can enter an existing BDE alias
name in the Alias name combo box for the Alias property, or you can choose from existing aliases in the drop-down
list. The Driver name combo box enables you to enter the name of an existing BDE driver for the DriverName
property, or you can choose from existing driver names in the drop-down list.

1924

Note: The Database Properties editor also lets you view and set BDE connection parameters, and set the states
of the LoginPrompt and KeepConnection properties. For information on connection parameters, see Setting
BDE Alias Parameters. For information on LoginPrompt, see Controlling Server Login. For information on
KeepConnection see Opening a Connection Using TDatabase.

Setting BDE Alias Parameters
At design time you can create or edit connection parameters in three ways:

Use the Database Explorer to create or modify BDE aliases, including parameters. For more information about
these utilities, see their online Help files.
Double-click the Params property in the Object Inspector to invoke the String List editor.
Double-click a database component in a data module or form to invoke the Database Properties editor.

All of these methods edit the Params property for the database component. Params is a string list containing the
database connection parameters for the BDE alias associated with a database component. Some typical connection
parameters include path statement, server name, schema caching size, language driver, and SQL query mode.

When you first invoke the Database Properties editor, the parameters for the BDE alias are not visible. To see the
current settings, click Defaults. The current parameters are displayed in the Parameter overrides memo box. You
can edit existing entries or add new ones. To clear existing parameters, click Clear. Changes you make take effect
only when you click OK.

At runtime, an application can set alias parameters only by editing the Params property directly.

Identifying the Database
As with all database connection components, to connect to a database using TDatabase, you set the Connected
property to True or call the Open method. This process is described in Connecting to a database server. Once a
database connection is established the connection is maintained as long as there is at least one active dataset.
When there are no more active datasets, the connection is dropped unless the database component's
KeepConnection property is True.

When you connect to a remote database server from an application, the application uses the BDE and the Borland
SQL Links driver to establish the connection. (The BDE can also communicate with an ODBC driver that you supply.)
You need to configure the SQL Links or ODBC driver for your application prior to making the connection. SQL Links
and ODBC parameters are stored in the Params property of a database component. For information about SQL
Links parameters, see the online SQL Links User's Guide. To edit the Params property, see Setting BDE alias
parameters

Working with network protocols
As part of configuring the appropriate SQL Links or ODBC driver, you may need to specify the network protocol used
by the server, such as SPX/IPX or TCP/IP, depending on the driver's configuration options. In most cases, network
protocol configuration is handled using a server's client setup software. For ODBC it may also be necessary to check
the driver setup using the ODBC driver manager.

Establishing an initial connection between client and server can be problematic. The following troubleshooting
checklist should be helpful if you encounter difficulties:

Is your server's client-side connection properly configured?
Are the DLLs for your connection and database drivers in the search path?
If you are using TCP/IP:
Is your TCP/IP communications software installed? Is the proper WINSOCK.DLL installed?

1925

Is the server's IP address registered in the client's HOSTS file?
Is the Domain Name Services (DNS) properly configured?
Can you ping the server?

For more troubleshooting information, see the online SQL Links User's Guide and your server documentation.

Using ODBC
An application can use ODBC data sources (for example, Btrieve). An ODBC driver connection requires

A vendor-supplied ODBC driver.
The Microsoft ODBC Driver Manager.

Using Database Components in Data Modules
You can safely place database components in data modules. If you put a data module that contains a database
component into the Object Repository, however, and you want other users to be able to inherit from it, you must set
the HandleShared property of the database component to True to prevent global name space conflicts.

Managing Database Sessions
An BDE-based application's database connections, drivers, cursors, queries, and so on are maintained within the
context of one or more BDE sessions. Sessions isolate a set of database access operations, such as database
connections, without the need to start another instance of the application.

All BDE-based database applications automatically include a default session component, named Session, that
encapsulates the default BDE session. When database components are added to the application, they are
automatically associated with the default session (note that its SessionName is "Default"). The default session
provides global control over all database components not associated with another session, whether they are implicit
(created by the session at runtime when you open a dataset that is not associated with a database component you
create) or persistent (explicitly created by your application). The default session is not visible in your data module
or form at design time, but you can access its properties and methods in your code at runtime.

To use the default session, you need write no code unless your application must

Explicitly activate or deactivate a session, enabling or disabling the session's databases' ability to open.
Modify the properties of the session, such as specifying default properties for implicitly generated database
components.
Execute a session's methods, such as managing database connections (for example opening and closing
database connections in response to user actions).
Respond to session events, such as when the application attempts to access a password-protected Paradox
or dBASE table.
Set Paradox directory locations such as the NetFileDir property to access Paradox tables on a network and the
PrivateDir property to a local hard drive to speed performance.
Manage the BDE aliases that describe possible database connection configurations for databases and datasets
that use the session.

Whether you add database components to an application at design time or create them dynamically at runtime, they
are automatically associated with the default session unless you specifically assign them to a different session. If
you open a dataset that is not associated with a database component, Delphi automatically

Creates a database component for it at runtime.

1926

Associates the database component with the default session.
Initializes some of the database component's key properties based on the default session's properties. Among
the most important of these properties is KeepConnections, which determines when database connections are
maintained or dropped by an application.

The default session provides a widely applicable set of defaults that can be used as is by most applications. You
need only associate a database component with an explicitly named session if the component performs a
simultaneous query against a database already opened by the default session. In this case, each concurrent query
must run under its own session. Multi-threaded database applications also require multiple sessions, where each
thread has its own session.

Applications can create additional session components as needed. BDE-based database applications automatically
include a session list component, named Sessions, that you can use to manage all of your session components.
For more information about managing multiple sessions see, Managing multiple sessions.

You can safely place session components in data modules. If you put a data module that contains one or more
session components into the Object Repository, however, make sure to set the AutoSessionName property to
True to avoid namespace conflicts when users inherit from it.

Activating a Session
Active is a Boolean property that determines if database and dataset components associated with a session are
open. You can use this property to read the current state of a session's database and dataset connections, or to
change it. If Active is False (the default), all databases and datasets associated with the session are closed. If
True, databases and datasets are open.

A session is activated when it is first created, and subsequently, whenever its Active property is changed to True
from False (for example, when a database or dataset is associated with a session is opened and there are currently
no other open databases or datasets). Setting Active to True triggers a session's OnStartup event, registers the
paradox directory locations. with the BDE, and registers the ConfigMode property, which determines what BDE
aliases are available within the session. You can write an OnStartup event handler to initialize the NetFileDir,
PrivateDir, and ConfigMode properties before they are registered with the BDE, or to perform other specific session
start-up activities.

Once a session is active, you can open its database connections by calling the OpenDatabase method.

For session components you place in a data module or form, setting Active to False when there are open databases
or datasets closes them. At runtime, closing databases and datasets may trigger events associated with them.

Note: You cannot set Active to False for the default session at design time. While you can close the default session
at runtime, it is not recommended.

You can also use a session's Open and Close methods to activate or deactivate sessions other than the default
session at runtime. For example, the following single line of code closes all open databases and datasets for a
session:

[Delphi]
Session1.Close;

[C++]
Session1->Close();

This code sets Session1's Active property to False. When a session's Active property is False, any subsequent
attempt by the application to open a database or dataset resets Active to True and calls the session's OnStartup
event handler if it exists. You can also explicitly code session reactivation at runtime. The following code reactivates
Session1:

1927

[Delphi]
Session1.Open;

[C++]
Session1->Open();

Note: If a session is active you can also open and close individual database connections. For more information,
see Closing database connections.

Specifying Default Database Connection Behavior
KeepConnections provides the default value for the KeepConnection property of implicit database components
created at runtime. KeepConnection specifies what happens to a database connection established for a database
component when all its datasets are closed. If True (the default), a constant, or persistent, database connection is
maintained even if no dataset is active. If False, a database connection is dropped as soon as all its datasets are
closed.

Note: Connection persistence for a database component you explicitly place in a data module or form is controlled
by that database component's KeepConnection property. If set differently, KeepConnection for a database
component always overrides the KeepConnections property of the session. For more information about
controlling individual database connections within a session, see Managing database connections.

KeepConnections should be set to True for applications that frequently open and close all datasets associated with
a database on a remote server. This setting reduces network traffic and speeds data access because it means that
a connection need only be opened and closed once during the lifetime of the session. Otherwise, every time the
application closes or reestablishes a connection, it incurs the overhead of attaching and detaching the database.

Note: Even when KeepConnections is True for a session, you can close and free inactive database connections
for all implicit database components by calling the DropConnections method. For more information about
DropConnections, see Dropping inactive database connections.

Managing Database Connections
You can use a session component to manage the database connections within it. The session component includes
properties and methods you can use to

Open database connections.
Close database connections.
Close and free all inactive temporary database connections.
Locate specific database connections.
Iterate through all open database connections.

Opening Database Connections
To open a database connection within a session, call the OpenDatabase method. OpenDatabase takes one
parameter, the name of the database to open. This name is a BDE alias or the name of a database component. For
Paradox or dBASE, the name can also be a fully qualified path name. For example, the following statement uses
the default session and attempts to open a database connection for the database pointed to by the DBDEMOS alias:

1928

[Delphi]
var
 DBDemosDatabase: TDatabase;
begin
 DBDemosDatabase := Session.OpenDatabase('DBDEMOS');
 ...

[C++]
TDatabase *BCDemosDatabase = Session->OpenDatabase("BCDEMOS");

OpenDatabase actives the session if it is not already active, and then checks if the specified database name matches
the DatabaseName property of any database components for the session. If the name does not match an existing
database component, OpenDatabase creates a temporary database component using the specified name. Finally,
OpenDatabase calls the Open method of the database component to connect to the server. Each call to
OpenDatabase increments a reference count for the database by 1. As long as this reference count remains greater
than 0, the database is open.

Closing Database Connections
To close an individual database connection, call the CloseDatabase method. When you call CloseDatabase, the
reference count for the database, which is incremented when you call OpenDatabase, is decremented by 1. When
the reference count for a database is 0, the database is closed. CloseDatabase takes one parameter, the database
to close. If you opened the database using the OpenDatabase method, this parameter can be set to the return value
of OpenDatabase.

[Delphi]
Session.CloseDatabase(DBDemosDatabase);

[C++]
Session->CloseDatabase(BCDemosDatabase);

If the specified database name is associated with a temporary (implicit) database component, and the session's
KeepConnections property is False, the database component is freed, effectively closing the connection.

Note: If KeepConnections is False temporary database components are closed and freed automatically when the
last dataset associated with the database component is closed. An application can always call
CloseDatabase prior to that time to force closure. To free temporary database components when
KeepConnections is True, call the database component's Close method, and then call the session's
DropConnections method.

Note: Calling CloseDatabase for a persistent database component does not actually close the connection. To close
the connection, call the database component's Close method directly.

There are two ways to close all database connections within the session:

Set the Active property for the session to False.
Call the Close method for the session.

When you set Active to False, Delphi automatically calls the Close method. Close disconnects from all active
databases by freeing temporary database components and calling each persistent database component's Close
method. Finally, Close sets the session's BDE handle to nil.

1929

Dropping Inactive Database Connections
If the KeepConnections property for a session is True (the default), then database connections for temporary
database components are maintained even if all the datasets used by the component are closed. You can eliminate
these connections and free all inactive temporary database components for a session by calling the
DropConnections method. For example, the following code frees all inactive, temporary database components for
the default session:

[Delphi]
Session.DropConnections;

[C++]
Session->DropConnections();

Temporary database components for which one or more datasets are active are not dropped or freed by this call.
To free these components, call Close.

Searching for a Database Connection
Use a session's FindDatabase method to determine whether a specified database component is already associated
with a session. FindDatabase takes one parameter, the name of the database to search for. This name is a BDE
alias or database component name. For Paradox or dBASE, it can also be a fully-qualified path name.

FindDatabase returns the database component if it finds a match. Otherwise it returns nil.

The following code searches the default session for a database component using the DBDEMOS alias, and if it is
not found, creates one and opens it:

[Delphi]
var
 DB: TDatabase;
begin
 DB := Session.FindDatabase('DBDEMOS');
 if (DB = nil) then { database doesn't exist for session so,}
 DB := Session.OpenDatabase('DBDEMOS'); { create and open it}
 if Assigned(DB) and DB.Connected then begin
 DB.StartTransaction;
 ...
 end;
end;

[C++]
TDatabase *DB = Session->FindDatabase("BCDEMOS");
if (!DB) // Database does not exist for session so
 DB = Session->OpenDatabase("BCDEMOS"); // create and open it
if (DB && DB->Connected)
{
 if (!DB->InTransaction)
 {
 DB->StartTransaction();
 .
 .
 .
 }
}

1930

Iterating Through a Session's Database Components
You can use two session component properties, Databases and DatabaseCount, to cycle through all the active
database components associated with a session.

Databases is an array of all currently active database components associated with a session. DatabaseCount is the
number of databases in that array. As connections are opened or closed during a session's life-span, the values of
Databases and DatabaseCount change. For example, if a session's KeepConnections property is False and all
database components are created as needed at runtime, each time a unique database is opened, DatabaseCount
increases by one. Each time a unique database is closed, DatabaseCount decreases by one. If DatabaseCount is
zero, there are no currently active database components for the session.

The following example code sets the KeepConnection property of each active database in the default session to True:

[Delphi]
var
 MaxDbCount: Integer;
begin
 with Session do
 if (DatabaseCount > 0) then
 for MaxDbCount := 0 to (DatabaseCount - 1) do
 Databases[MaxDbCount].KeepConnection := True;
end;

[C++]
if (Session->DatabaseCount > 0)
 for (int MaxDbCount = 0; MaxDbCount < Session->DatabaseCount; MaxDbCount++)
 Session->Databases[MaxDbCount]->KeepConnection = true;

Working with Password-protected Paradox and dBASE Tables
A session component can store passwords for password-protected Paradox and dBASE tables. Once you add a
password to the session, your application can open tables protected by that password. Once you remove the
password from the session, your application can't open tables that use the password until you add it again.

Using the AddPassword method
The AddPassword method provides an optional way for an application to provide a password for a session prior to
opening an encrypted Paradox or dBASE table that requires a password for access. If you do not add the password
to the session, when your application attempts to open a password-protected table, a dialog box prompts the user
for a password.

AddPassword takes one parameter, a string containing the password to use. You can call AddPassword as many
times as necessary to add passwords (one at a time) to access tables protected with different passwords.

[Delphi]
var
 Passwrd: String;
begin
 Passwrd := InputBox('Enter password', 'Password:', '');
 Session.AddPassword(Passwrd);
 try
 Table1.Open;
 except
 ShowMessage('Could not open table!');

1931

 Application.Terminate;
 end;
end;

[C++]
AnsiString PassWrd;
PassWrd = InputBox("Enter password", "Password:", "");
Session->AddPassword(PassWrd);
try
{
 Table1->Open();
}
catch(...)
{
 ShowMessage("Could not open table!");
 Application->Terminate();
}

Note: Use of the InputBox function, above, is for demonstration purposes. In a real-world application, use password
entry facilities that mask the password as it is entered, such as the PasswordDialog function or a custom form.

The Add button of the PasswordDialog function dialog has the same effect as the AddPassword method.

[Delphi]
if PasswordDialog(Session) then
 Table1.Open
else
 ShowMessage('No password given, could not open table!');
end;

[C++]
if (PasswordDlg(Session))
 Table1->Open();
else
 ShowMessage("No password given, could not open table!");

Using the RemovePassword and RemoveAllPasswords methods
RemovePassword deletes a previously added password from memory. RemovePassword takes one parameter, a
string containing the password to delete.

[Delphi]
Session.RemovePassword('secret');

[C++]
Session->RemovePassword("secret");

RemoveAllPasswords deletes all previously added passwords from memory.

[Delphi]
Session.RemoveAllPasswords;

1932

[C++]
Session->RemoveAllPasswords();

Using the GetPassword method and OnPassword event
The OnPassword event allows you to control how your application supplies passwords for Paradox and dBASE
tables when they are required. Provide a handler for the OnPassword event if you want to override the default
password handling behavior. If you do not provide a handler, Delphi presents a default dialog for entering a password
and no special behavior is provided—the table open attempt either succeeds or an exception is raised.

If you provide a handler for the OnPassword event, do two things in the event handler: call the AddPassword method
and set the event handler's Continue parameter to True. The AddPassword method passes a string to the session
to be used as a password for the table. The Continue parameter indicates to Delphi that no further password
prompting need be done for this table open attempt. The default value for Continue is False, and so requires explicitly
setting it to True. If Continue is False after the event handler has finished executing, an OnPassword event fires
again—even if a valid password has been passed using AddPassword. If Continue is True after execution of the
event handler and the string passed with AddPassword is not the valid password, the table open attempt fails and
an exception is raised.

OnPassword can be triggered by two circumstances. The first is an attempt to open a password-protected table
(dBASE or Paradox) when a valid password has not already been supplied to the session. (If a valid password for
that table has already been supplied, the OnPassword event does not occur.)

The other circumstance is a call to the GetPassword method. GetPassword either generates an OnPassword event,
or, if the session does not have an OnPassword event handler, displays a default password dialog. It returns
True if the OnPassword event handler or default dialog added a password to the session, and False if no entry at
all was made.

In the following example, the Password method is designated as the OnPassword event handler for the default
sessionby assigning it to the global Session object's OnPassword property.

[Delphi]
procedure TForm1.FormCreate(Sender: TObject);
begin
 Session.OnPassword := Password;
end;

[C++]
void __fastcall TForm1::FormCreate(TObject *Sender)
{
 Session->OnPassword = Password;
}

In the Password method, the InputBox function prompts the user for a password. The AddPassword method then
programmatically supplies the password entered in the dialog to the session.

1933

[Delphi]
procedure TForm1.Password(Sender: TObject; var Continue: Boolean);
var
 Passwrd: String;
begin
 Passwrd := InputBox('Enter password', 'Password:', '');
 Continue := (Passwrd > '');
 Session.AddPassword(Passwrd);
end;

[C++]
void __fastcall TForm1::Password(TObject *Sender, bool &Continue)
{
 AnsiString PassWrd = InputBox("Enter password", "Password:", "");
 Session->AddPassword(PassWrd);
 Continue = (PassWrd > "");
}

The OnPassword event (and thus the Password event handler) is triggered by an attempt to open a password-
protected table, as demonstrated below. Even though the user is prompted for a password in the handler for the
OnPassword event, the table open attempt can still fail if they enter an invalid password or something else goes
wrong.

[Delphi]
procedure TForm1.OpenTableBtnClick(Sender: TObject);
const
CRLF = #13 + #10;
begin
 try
 Table1.Open; { this line triggers the OnPassword event }
 except
 on E:Exception do begin { exception if cannot open table }
 ShowMessage('Error!' + CRLF + { display error explaining what happened }
 E.Message + CRLF +
 'Terminating application...');
 Application.Terminate; { end the application }
 end;
 end;
end;

[C++]
void __fastcall TForm1::OpenTableBtnClick(TObject *Sender)
{
 try
 {
 // this line triggers the OnPassword event
 Table1->Open();
 }
 // exception if cannot open table
 catch(...)
 {
 ShowMessage("Could not open table!");
 Application->Terminate();
 }
}

1934

Specifying Paradox Directory Locations
Two session component properties, NetFileDir and PrivateDir, are specific to applications that work with Paradox
tables.

NetFileDir specifies the directory that contains the Paradox network control file, PDOXUSRS.NET. This file governs
sharing of Paradox tables on network drives. All applications that need to share Paradox tables must specify the
same directory for the network control file (typically a directory on a network file server). Delphi derives a value
for NetFileDir from the Borland Database Engine (BDE) configuration file for a given database alias. If you set
NetFileDir yourself, the value you supply overrides the BDE configuration setting, so be sure to validate the new
value.

At design time, you can specify a value for NetFileDir in the Object Inspector. You can also set or change
NetFileDir in code at runtime. The following code sets NetFileDir for the default session to the location of the directory
from which your application runs:

[Delphi]
Session.NetFileDir := ExtractFilePath(Application.EXEName);

[C++]
Session->NetFileDir = ExtractFilePath(ParamStr(0));

Note: NetFileDir can only be changed when an application does not have any open Paradox files. If you change
NetFileDir at runtime, verify that it points to a valid network directory that is shared by your network users.

PrivateDir specifies the directory for storing temporary table processing files, such as those generated by the BDE
to handle local SQL statements. If no value is specified for the PrivateDir property, the BDE automatically uses the
current directory at the time it is initialized. If your application runs directly from a network file server, you can improve
application performance at runtime by setting PrivateDir to a user's local hard drive before opening the database.

Note: Do not set PrivateDir at design time and then open the session in the IDE. Doing so generates a Directory
is busy error when running your application from the IDE.

The following code changes the setting of the default session's PrivateDir property to a user's C:\TEMP directory:

[Delphi]
Session.PrivateDir := "C:\TEMP";

[C++]
Session->PrivateDir = "C:\\TEMP";

Warning: Do not set PrivateDir to a root directory on a drive. Always specify a subdirectory.

Working with BDE Aliases
Each database component associated with a session has a BDE alias (although optionally a fully-qualified path
name may be substituted for an alias when accessing Paradox and dBASE tables). A session can create, modify,
and delete aliases during its lifetime.

The AddAlias method creates a new BDE alias for an SQL database server. AddAlias takes three parameters: a
string containing a name for the alias, a string that specifies the SQL Links driver to use, and a string list populated
with parameters for the alias. For example, the following statements use AddAlias to add a new alias for accessing
an InterBase server to the default session:

1935

[Delphi]
var
 AliasParams: TStringList;
begin
 AliasParams := TStringList.Create;
 try
 with AliasParams do begin
 Add('OPEN MODE=READ');
 Add('USER NAME=TOMSTOPPARD');
 Add('SERVER NAME=ANIMALS:/CATS/PEDIGREE.GDB');
 end;
 Session.AddAlias('CATS', 'INTRBASE', AliasParams);
 ...
 finally
 AliasParams.Free;
 end;
end;

[C++]
TStringList *AliasParams = new TStringList();
try
{
 AliasParams->Add("OPEN MODE=READ");
 AliasParams->Add("USER NAME=TOMSTOPPARD");
 AliasParams->Add("SERVER NAME=ANIMALS:/CATS/PEDIGREE.GDB");
 Session->AddAlias("CATS", "INTRBASE", AliasParams);
 .
 .
 .
}
catch (...)
{
 delete AliasParams;
 throw;
}
delete AliasParams;

AddStandardAlias creates a new BDE alias for Paradox, dBASE, or ASCII tables. AddStandardAlias takes three
string parameters: the name for the alias, the fully-qualified path to the Paradox or dBASE table to access, and the
name of the default driver to use when attempting to open a table that does not have an extension. For example,
the following statement uses AddStandardAlias to create a new alias for accessing a Paradox table:

[Delphi]
AddStandardAlias('MYDBDEMOS', 'C:\TESTING\DEMOS\', 'Paradox');

[C++]
Session->AddStandardAlias("MYBCDEMOS", "C:\\TESTING\\DEMOS\\", "Paradox");

When you add an alias to a session, the BDE stores a copy of the alias in memory, where it is only available to this
session and any other sessions with cfmPersistent included in the ConfigMode property. ConfigMode is a set that
describes which types of aliases can be used by the databases in the session. The default setting is cmAll, which
translates into the set [cfmVirtual, cfmPersistent, cfmSession]. If ConfigMode is cmAll, a session can see all aliases
created within the session (cfmSession), all aliases in the BDE configuration file on a user's system
(cfmPersistent), and all aliases that the BDE maintains in memory (cfmVirtual). You can change ConfigMode to
restrict what BDE aliases the databases in a session can use. For example, setting ConfigMode to cfmSession

1936

restricts a session's view of aliases to those created within the session. All other aliases in the BDE configuration
file and in memory are not available.

To make a newly created alias available to all sessions and to other applications, use the session's SaveConfigFile
method. SaveConfigFile writes aliases in memory to the BDE configuration file where they can be read and used by
other BDE-enabled applications.

After you create an alias, you can make changes to its parameters by calling ModifyAlias. ModifyAlias takes two
parameters: the name of the alias to modify and a string list containing the parameters to change and their values.
For example, the following statements use ModifyAlias to change the OPEN MODE parameter for the CATS alias
to READ/WRITE in the default session:

[Delphi]
var
 List: TStringList;
begin
 List := TStringList.Create;
 with List do begin
 Clear;
 Add('OPEN MODE=READ/WRITE');
 end;
 Session.ModifyAlias('CATS', List);
 List.Free;
 ...

[C++]
TStringList *List = new TStringList();
List->Clear();
List->Add("OPEN MODE=READ/WRITE");
Session->ModifyAlias("CATS", List);
delete List;

To delete an alias previously created in a session, call the DeleteAlias method. DeleteAlias takes one parameter,
the name of the alias to delete. DeleteAlias makes an alias unavailable to the session.

Note: DeleteAlias does not remove an alias from the BDE configuration file if the alias was written to the file by a
previous call to SaveConfigFile. To remove the alias from the configuration file after calling DeleteAlias, call
SaveConfigFile again.

Session components provide five methods for retrieving information about a BDE aliases, including parameter
information and driver information. They are:

GetAliasNames, to list the aliases to which a session has access.
GetAliasParams, to list the parameters for a specified alias.
GetAliasDriverName, to return the name of the BDE driver used by the alias.
GetDriverNames, to return a list of all BDE drivers available to the session.
GetDriverParams, to return driver parameters for a specified driver.

For more information about using a session's informational methods, see Using transactions with the BDE.. For more
information about BDE aliases see the BDE online help, BDE32.HLP.

Retrieving Information About a Session
You can retrieve information about a session and its database components by using a session's informational
methods. For example, one method retrieves the names of all aliases known to the session, and another method

1937

retrieves the names of tables associated with a specific database component used by the session. The following
table summarizes the informational methods to a session component:

Database-related informational methods for session components
Method Purpose

GetAliasDriverName Retrieves the BDE driver for a specified alias of a database.

GetAliasNames Retrieves the list of BDE aliases for a database.

GetAliasParams Retrieves the list of parameters for a specified BDE alias of a database.

GetConfigParams Retrieves configuration information from the BDE configuration file.

GetDatabaseNames Retrieves the list of BDE aliases and the names of any TDatabase components currently in use.

GetDriverNames Retrieves the names of all currently installed BDE drivers.

GetDriverParams Retrieves the list of parameters for a specified BDE driver.

GetStoredProcNames Retrieves the names of all stored procedures for a specified database.

GetTableNames Retrieves the names of all tables matching a specified pattern for a specified database.

GetFieldNames Retrieves the names of all fields in a specified table in a specified database.

Except for GetAliasDriverName, these methods return a set of values into a string list declared and maintained by
your application. (GetAliasDriverName returns a single string, the name of the current BDE driver for a particular
database component used by the session.)

For example, the following code retrieves the names of all database components and aliases known to the default
session:

[Delphi]
var
 List: TStringList;
begin
 List := TStringList.Create;
 try
 Session.GetDatabaseNames(List);
 ...
 finally
 List.Free;
 end;
end;

[C++]
TStringList *List = new TStringList();
try
{
 Session->GetDatabaseNames(List);
 .
 .
 .
}
catch (...)
{
delete List;
throw;
}
delete List;

1938

Creating Additional Sessions
You can create sessions to supplement the default session. At design time, you can place additional sessions on a
data module (or form), set their properties in the Object Inspector, write event handlers for them, and write code
that calls their methods. You can also create sessions, set their properties, and call their methods at runtime.

Note: Creating additional sessions is optional unless an application runs concurrent queries against a database or
the application is multi-threaded.

To enable dynamic creation of a session component at runtime
1 Declare a TSession variable.
2 Instantiate a new session by calling the Create method. The constructor sets up an empty list of database

components for the session, sets the KeepConnections property to True, and adds the session to the list of
sessions maintained by the application's session list component.

3 Set the SessionName property for the new session to a unique name. This property is used to associate database
components with the session. For more information about the SessionName property, see Naming a session.

4 Activate the session and optionally adjust its properties.

You can also create and open sessions using the OpenSession method of TSessionList. Using OpenSession is
safer than calling Create, because OpenSession only creates a session if it does not already exist. For information
about OpenSession, see Managing multiple sessions..

Naming a Session
A session's SessionName property is used to name the session so that you can associate databases and datasets
with it. For the default session, SessionName is "Default," For each additional session component you create, you
must set its SessionName property to a unique value.

Database and dataset components have SessionName properties that correspond to the SessionName property of
a session component. If you leave the SessionName property blank for a database or dataset component it is
automatically associated with the default session. You can also set SessionName for a database or dataset
component to a name that corresponds to the SessionName of a session component you create.

The following code uses the OpenSession method of the default TSessionList component, Sessions, to open a new
session component, sets its SessionName to "InterBaseSession," activate the session, and associate an existing
database component Database1 with that session:

[Delphi]
var
 IBSession: TSession;
 ...
begin
 IBSession := Sessions.OpenSession('InterBaseSession');
 Database1.SessionName := 'InterBaseSession';
end;

[C++]
TSession *IBSession = Sessions->OpenSession("InterBaseSession");
Database1->SessionName = "InterBaseSession";

For more information about using Sessions, see Managing Multiple Sessions..

1939

Managing Multiple Sessions
If you create a single application that uses multiple threads to perform database operations, you must create one
additional session for each thread. The BDE category on the Tool palette contains a session component that you
can place in a data module or on a form at design time.

Warning: When you place a session component, you must also set its SessionName property to a unique value
so that it does not conflict with the default session's SessionName property.

Placing a session component at design time presupposes that the number of threads (and therefore sessions)
required by the application at runtime is static. More likely, however, is that an application needs to create sessions
dynamically. To create sessions dynamically, call the OpenSession method of the global Sessions object at runtime.

OpenSession requires a single parameter, a name for the session that is unique across all session names for the
application. The following code dynamically creates and activates a new session with a uniquely generated name:

[Delphi]
Sessions.OpenSession('RunTimeSession' + IntToStr(Sessions.Count + 1));

[C++]
Sessions->OpenSession("RunTimeSession" + IntToStr(Sessions->Count + 1));

This statement generates a unique name for a new session by retrieving the current number of sessions, and adding
one to that value. Note that if you dynamically create and destroy sessions at runtime, this example code will not
work as expected. Nevertheless, this example illustrates how to use the properties and methods of Sessions to
manage multiple sessions.

Sessions is a variable of type TSessionList that is automatically instantiated for BDE-based database applications.
You use the properties and methods of Sessions to keep track of multiple sessions in a multi-threaded database
application. The following table summarizes the properties and methods of the TSessionList component:

TSessionList properties and methods
Property or Method Purpose

Count Returns the number of sessions, both active and inactive, in the session list.

FindSession Searches for a session with a specified name and returns a pointer to it, or nil if there is no session with
the specified name. If passed a blank session name, FindSession returns a pointer to the default session,
Session.

GetSessionNames Populates a string list with the names of all currently instantiated session components. This procedure
always adds at least one string, "Default" for the default session.

List Returns the session component for a specified session name. If there is no session with the specified
name, an exception is raised.

OpenSession Creates and activates a new session or reactivates an existing session for a specified session name.

Sessions Accesses the session list by ordinal value.

As an example of using Sessions properties and methods in a multi-threaded application, consider what happens
when you want to open a database connection. To determine if a connection already exists, use the Sessions
property to walk through each session in the sessions list, starting with the default session. For each session
component, examine its Databases property to see if the database in question is open. If you discover that another
thread is already using the desired database, examine the next session in the list.

If an existing thread is not using the database, then you can open the connection within that session.

If, on the other hand, all existing threads are using the database, you must open a new session in which to open
another database connection.

1940

If you are replicating a data module that contains a session in a multi-threaded application, where each thread
contains its own copy of the data module, you can use the AutoSessionName property to make sure that all datasets
in the data module use the correct session. Setting AutoSessionName to True causes the session to generate its
own unique name dynamically when it is created at runtime. It then assigns this name to every dataset in the data
module, overriding any explicitly set session names. This ensures that each thread has its own session, and each
dataset uses the session in its own data module.

Using Transactions with the BDE
By default, the BDE provides implicit transaction control for your applications. When an application is under implicit
transaction control, a separate transaction is used for each record in a dataset that is written to the underlying
database. Implicit transactions guarantee both a minimum of record update conflicts and a consistent view of the
database. On the other hand, because each row of data written to a database takes place in its own transaction,
implicit transaction control can lead to excessive network traffic and slower application performance. Also, implicit
transaction control will not protect logical operations that span more than one record.

If you explicitly control transactions, you can choose the most effective times to start, commit, and roll back your
transactions. When you develop applications in a multi-user environment, particularly when your applications run
against a remote SQL server, you should control transactions explicitly.

There are two mutually exclusive ways to control transactions explicitly in a BDE-based database application:

Use the database component to control transactions. The main advantage to using the methods and properties
of a database component is that it provides a clean, portable application that is not dependent on a particular
database or server. This type of transaction control is supported by all database connection components, and
described in Managing transactions.
Use passthrough SQL in a query component to pass SQL statements directly to remote SQL or ODBC servers.
The main advantage to passthrough SQL is that you can use the advanced transaction management capabilities
of a particular database server, such as schema caching. To understand the advantages of your server's
transaction management model, see your database server documentation.

When working with local databases, you can only use the database component to create explicit transactions (local
databases do not support passthrough SQL). However, there are limitations to using local transactions. For more
information on using local transactions, see Using Local Transactions.

Note: You can minimize the number of transactions you need by caching updates. For more information about
cached updates, see Using a Client Dataset to Cache Updates.

Using Passthrough SQL
With passthrough SQL, you use a TQuery, TStoredProc, or TUpdateSQL component to send an SQL transaction
control statement directly to a remote database server. The BDE does not process the SQL statement. Using
passthrough SQL enables you to take direct advantage of the transaction controls offered by your server, especially
when those controls are non-standard.

To use passthrough SQL to control a transaction, you must

Install the proper SQL Links drivers. If you chose the "Typical" installation when installing Delphi, all SQL Links
drivers are already properly installed.
Configure your network protocol. See your network administrator for more information.
Have access to a database on a remote server.
Set SQLPASSTHRU MODE to NOT SHARED using the SQL Explorer. SQLPASSTHRU MODE specifies
whether the BDE and passthrough SQL statements can share the same database connections. In most cases,

1941

SQLPASSTHRU MODE is set to SHARED AUTOCOMMIT. However, you can't share database connections
when using transaction control statements.

Note: When SQLPASSTHRU MODE is NOT SHARED, you must use separate database components for datasets
that pass SQL transaction statements to the server and datasets that do not.

Using Local Transactions
The BDE supports local transactions against Paradox, dBASE, Access, and FoxPro tables. From a coding
perspective, there is no difference to you between a local transaction and a transaction against a remote database
server.

Note: When using transactions with local Paradox, dBASE, Access, and FoxPro tables, set TransIsolation to
tiDirtyRead instead of using the default value of tiReadCommitted. A BDE error is returned if TransIsolation
is set to anything but tiDirtyRead for local tables.

When a transaction is started against a local table, updates performed against the table are logged. Each log record
contains the old record buffer for a record. When a transaction is active, records that are updated are locked until
the transaction is committed or rolled back. On rollback, old record buffers are applied against updated records to
restore them to their pre-update states.

Local transactions are more limited than transactions against SQL servers or ODBC drivers. In particular, the
following limitations apply to local transactions:

Automatic crash recovery is not provided.
Data definition statements are not supported.
Transactions cannot be run against temporary tables.
TransIsolation level must only be set to tiDirtyRead.
For Paradox, local transactions can only be performed on tables with valid indexes. Data cannot be rolled back
on Paradox tables that do not have indexes.
Only a limited number of records can be locked and modified. With Paradox tables, you are limited to 255
records. With dBASE the limit is 100.
Transactions cannot be run against the BDE ASCII driver.
Closing a cursor on a table during a transaction rolls back the transaction unless:
Several tables are open.
The cursor is closed on a table to which no changes were made.

Using the BDE to Cache Updates
The recommended approach for caching updates is to use a client dataset (TBDEClientDataSet) or to connect the
BDE-dataset to a client dataset using a dataset provider. The advantages of using a client dataset are discussed in
Using a client dataset to cache updates.

For simple cases, however, you may choose to use the BDE to cache updates instead. BDE-enabled datasets and
TDatabase components provide built-in properties, methods, and events for handling cached updates. Most of these
correspond directly to the properties, methods, and events that you use with client datasets and dataset providers
when using a client dataset to cache updates. The following table lists these properties, events, and methods and
the corresponding properties, methods and events on TBDEClientDataSet:

Properties, methods, and events for cached updates

1942

On BDE-enabled Datasets (or TDatabase) On TBDEClientDataSet Purpose

CachedUpdates Not needed for client datasets, which always
cache updates.

Determines whether cached
updates are in effect for the
dataset.

UpdateObject Use a BeforeUpdateRecord event handler,
or, if using TClientDataSet, use the
UpdateObject property on the BDE-enabled
source dataset.

Specifies the update object for
updating read-only datasets.

UpdatesPending ChangeCount Indicates whether the local cache
contains updated records that need
to be applied to the database.

UpdateRecordTypes StatusFilter Indicates the kind of updated
records to make visible when
applying cached updates.

UpdateStatus UpdateStatus Indicates if a record is unchanged,
modified, inserted, or deleted.

OnUpdateError OnReconcileError An event for handling update errors
on a record-by-record basis.

OnUpdateRecord BeforeUpdateRecord An event for processing updates on
a record-by-record basis.

ApplyUpdates (database) ApplyUpdates Applies records in the local cache
to the database.

CancelUpdates CancelUpdates Removes all pending updates from
the local cache without applying
them.

CommitUpdates Reconcile Clears the update cache following
successful application of updates.

FetchAll GetNextPacket (and PacketRecords) Copies database records to the
local cache for editing and
updating.

RevertRecord RevertRecord Undoes updates to the current
record if updates are not yet
applied.

For an overview of the cached update process, see Overview of using cached updates.

The following topics describe in more detail on how to use the BDE to cache updates:

Enabling BDE-based Cached Updates.
Applying BDE-based Cached Updates.
Using Update Objects to Update a Dataset.

Note: Even if you are using a client dataset to cache updates, you may want to read the section about update
objects. You can use update objects in the BeforeUpdateRecord event handler of TBDEClientDataSet or
TDataSetProvider to apply updates from stored procedures or multi-table queries.

Enabling BDE-based Cached Updates
To use the BDE for cached updates, the BDE-enabled dataset must indicate that it should cache updates. This is
specified by setting the CachedUpdates property to True. When you enable cached updates, a copy of all records

1943

is cached in local memory. Users view and edit this local copy of data. Changes, insertions, and deletions are also
cached in memory. They accumulate in memory until the application applies those changes to the database server.
If changed records are successfully applied to the database, the record of those changes are freed in the cache.

The dataset caches all updates until you set CachedUpdates to False. Applying cached updates does not disable
further cached updates; it only writes the current set of changes to the database and clears them from memory.
Canceling the updates by calling CancelUpdates removes all the changes currently in the cache, but does not stop
the dataset from caching any subsequent changes.

Note: If you disable cached updates by setting CachedUpdates to False, any pending changes that you have not
yet applied are discarded without notification. To prevent losing changes, test the UpdatesPending property
before disabling cached updates.

Applying BDE-based Cached Updates
Applying updates is a two-phase process that should occur in the context of a database component's transaction so
that your application can recover gracefully from errors. For information about transaction handling with database
components, see Managing Transactions.

When applying updates under database transaction control, the following events take place:

1 A database transaction starts.
2 Cached updates are written to the database (phase 1). If you provide it, an OnUpdateRecord event is triggered

once for each record written to the database. If an error occurs when a record is applied to the database, the
OnUpdateError event is triggered if you provide one.

3 The transaction is committed if writes are successful or rolled back if they are not,

Write Status Transaction

Successful Database changes are committed, ending the database transaction.

Cached updates are committed, clearing the internal cache buffer (phase 2).

Unsuccessful Database changes are rolled back, ending the database transaction.

Cached updates are not committed, remaining intact in the internal cache.

For information about creating and using an OnUpdateRecord event handler, see Creating an OnUpdateRecord
Event Handler. For information about handling update errors that occur when applying cached updates, see Handling
Cached Update errors.

Note: Applying cached updates is particularly tricky when you are working with multiple datasets linked in a master/
detail relationship because the order in which you apply updates to each dataset is significant. Usually, you
must update master tables before detail tables, except when handling deleted records, where this order must
be reversed. Because of this difficulty, it is strongly recommended that you use client datasets when caching
updates in a master/detail form. Client datasets automatically handle all ordering issues with master/detail
relationships.

There are two ways to apply BDE-based updates:

You can apply updates using a database component by calling its ApplyUpdates method. This method is the
simplest approach, because the database handles all details of managing a transaction for the update process
and of clearing the dataset's cache when updating is complete.
You can apply updates for a single dataset by calling the dataset's ApplyUpdates and CommitUpdates methods.
When applying updates at the dataset level you must explicitly code the transaction that wraps the update
process as well as explicitly call CommitUpdates to commit updates from the cache.

1944

Warning: To apply updates from a stored procedure or an SQL query that does not return a live result set, you
must use TUpdateSQL to specify how to perform updates. For updates to joins (queries involving two or
more tables), you must provide one TUpdateSQL object for each table involved, and you must use the
OnUpdateRecord event handler to invoke these objects to perform the updates. See Using update objects
to update a dataset for details.

Applying Cached Updates Using a Database
To apply cached updates to one or more datasets in the context of a database connection, call the database
component's ApplyUpdates method. The following code applies updates to the CustomersQuery dataset in response
to a button click event:

[Delphi]
procedure TForm1.ApplyButtonClick(Sender: TObject);
begin
 // for local databases such as Paradox, dBASE, and FoxPro
 // set TransIsolation to DirtyRead
 if not (Database1.IsSQLBased) and not (Database1.TransIsolation = tiDirtyRead) then
 Database1.TransIsolation := tiDirtyRead;
 Database1.ApplyUpdates([CustomersQuery]);
end;

[C++]
void __fastcall TForm1::ApplyButtonClick(TObject *Sender)
{
 // for local databases such as Paradox, dBASE, and FoxPro
 // set TransIsolation to DirtyRead
 if (!Database1->IsSQLBased && Database1->TransIsolation != tiDirtyRead)
 Database1->TransIsolation = tiDirtyRead;
 Database1->ApplyUpdates(&CustomersQuery,0);
}

The above sequence writes cached updates to the database in the context of an automatically-generated transaction.
If successful, it commits the transaction and then commits the cached updates. If unsuccessful, it rolls back the
transaction and leaves the update cache unchanged. In this latter case, you should handle cached update errors
through a dataset's OnUpdateError event. For more information about handling update errors, see Handling cached
update errors.

The main advantage to calling a database component's ApplyUpdates method is that you can update any number
of dataset components that are associated with the database. The parameter for the ApplyUpdates method for a
database is an array of TDBDataSet. For example, the following code applies updates for two queries:

[Delphi]
if not (Database1.IsSQLBased) and not (Database1.TransIsolation = tiDirtyRead) then
 Database1.TransIsolation := tiDirtyRead;
Database1.ApplyUpdates([CustomerQuery, OrdersQuery]);

[C++]
TDBDataSet* ds[] = {CustomerQuery, OrdersQuery};
if (!Database1->IsSQLBased && Database1->TransIsolation != tiDirtyRead)
 Database1->TransIsolation = tiDirtyRead;
Database1->ApplyUpdates(ds,1);

1945

Applying Cached Updates with Dataset Component Methods
You can apply updates for individual BDE-enabled datasets directly using the dataset's ApplyUpdates and
CommitUpdates methods. Each of these methods encapsulate one phase of the update process:

1 ApplyUpdates writes cached changes to a database (phase 1).
2 CommitUpdates clears the internal cache when the database write is successful (phase 2).

The following code illustrates how you apply updates within a transaction for the CustomerQuery dataset:

[Delphi]
procedure TForm1.ApplyButtonClick(Sender: TObject)
begin
 Database1.StartTransaction;
 try
 if not (Database1.IsSQLBased) and not (Database1.TransIsolation = tiDirtyRead) then
 Database1.TransIsolation := tiDirtyRead;
 CustomerQuery.ApplyUpdates; { try to write the updates to the database }
 Database1.Commit; { on success, commit the changes }
 except
 Database1.Rollback; { on failure, undo any changes }
 raise; { raise the exception again to prevent a call to CommitUpdates }
 end;
 CustomerQuery.CommitUpdates; { on success, clear the internal cache }
end;

[C++]
void __fastcall TForm1::ApplyButtonClick(TObject *Sender)
{
 Database1->StartTransaction();
 try
 {
 if (!Database1->IsSQLBased && Database1->TransIsolation != tiDirtyRead)
 Database1->TransIsolation = tiDirtyRead;
 CustomerQuery->ApplyUpdates(); // try to write the updates to the database
 Database1->Commit(); // on success, commit the changes
 }
 catch (...)
 {
 Database1->Rollback(); // on failure, undo any changes
 throw; // throw the exception again to prevent a call to CommitUpdates
 }
 CustomerQuery->CommitUpdates(); // on success, clear the internal cache
}

If an exception is raised during the ApplyUpdates call, the database transaction is rolled back. Rolling back the
transaction ensures that the underlying database table is not changed. The raise statement inside the try...except
block reraises the exception, thereby preventing the call to CommitUpdates. Because CommitUpdates is not called,
the internal cache of updates is not cleared so that you can handle error conditions and possibly retry the update.

Creating an OnUpdateRecord Event Handler
When a BDE-enabled dataset applies its cached updates, it iterates through the changes recorded in its cache,
attempting to apply them to the corresponding records in the base table. As the update for each changed, deleted,
or newly inserted record is about to be applied, the dataset component’s OnUpdateRecord event fires.

Providing a handler for the OnUpdateRecord event allows you to perform actions just before the current record’s
update is actually applied. Such actions can include special data validation, updating other tables, special parameter

1946

substitution, or executing multiple update objects. A handler for the OnUpdateRecord event affords you greater
control over the update process.

Here is the skeleton code for an OnUpdateRecord event handler:

[Delphi]
procedure TForm1.DataSetUpdateRecord(DataSet: TDataSet;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin
 { perform updates here... }
end;

[C++]
void __fastcall TForm1::DataSetUpdateRecord(TDataSet *DataSet,
 TUpdateKind UpdateKind, TUpdateAction &UpdateAction)
{
 // Perform updates here...
}

The DataSet parameter specifies the cached dataset with updates.

The UpdateKind parameter indicates the type of update that needs to be performed for the current record. Values
for UpdateKind are ukModify, ukInsert, and ukDelete. If you are using an update object, you need to pass this
parameter to the update object when applying the update. You may also need to inspect this parameter if your
handler performs any special processing based on the kind of update.

The UpdateAction parameter indicates whether you applied the update. Values for UpdateAction are uaFail (the
default), uaAbort, uaSkip, uaRetry, uaApplied. If your event handler successfully applies the update, change this
parameter to uaApplied before exiting. If you decide not to update the current record, change the value to uaSkip to
preserve unapplied changes in the cache. If you do not change the value for UpdateAction, the entire update
operation for the dataset is aborted and an exception is raised. You can suppress the error message (raising a silent
exception) by changing UpdateAction to uaAbort.

In addition to these parameters, you will typically want to make use of the OldValue and NewValue properties for
the field component associated with the current record. OldValue gives the original field value that was fetched from
the database. It can be useful in locating the database record to update. NewValue is the edited value in the update
you are trying to apply.

Warning: An OnUpdateRecord event handler, like an OnUpdateError or OnCalcFields event handler, should never
call any methods that change the current record in a dataset.

The following example illustrates how to use these parameters and properties. It uses a TTable component named
UpdateTable to apply updates. In practice, it is easier to use an update object, but using a table illustrates the
possibilities more clearly.

[Delphi]
procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin
 if UpdateKind = ukInsert then
 UpdateTable.AppendRecord([DataSet.Fields[0].NewValue, DataSet.Fields[1].NewValue])
 else
 if UpdateTable.Locate('KeyField', VarToStr(DataSet.Fields[1].OldValue), []) then
 case UpdateKind of
 ukModify:
 begin
 UpdateTable.Edit;
 UpdateTable.Fields[1].AsString := VarToStr(DataSet.Fields[1].NewValue);

1947

 UpdateTable.Post;
 end;
 ukInsert:
 begin
 UpdateTable.Insert;
 UpdateTable.Fields[1].AsString := VarToStr(DataSet.Fields[1].NewValue);
 UpdateTable.Post;
 end;
 ukDelete: UpdateTable.Delete;
 end;
 UpdateAction := uaApplied;
end;

[C++]
void __fastcall TForm1::EmpAuditUpdateRecord(TDataSet *DataSet,
 TUpdateKind UpdateKind, TUpdateAction &UpdateAction)
{
 if (UpdateKind == ukInsert)
 {
 TVarRec values[2];
 for (int i = 0; i < 2; i++)
 values[i] = DataSet->Fields->Fields[i]->NewValue;
 UpdateTable->AppendRecord(values, 1);
 }
 else
 {
 TLocateOptions lo;
 lo.Clear();
 if (UpdateTable->Locate("KeyField", DataSet->Fields->Fields[0]->OldValue, lo))
 switch (UpdateKind)
 {
 case ukModify:
 UpdateTable->Edit();
 UpdateTable->Fields->Fields[1]->Value = DataSet->Fields->Fields[1]->Value;
 UpdateTable->Post();
 break;
 case ukDelete:
 UpdateTable->Delete();
 break;
 }
 }
 UpdateAction = uaApplied;
}

Handling Cached Update Errors
The Borland Database Engine (BDE) specifically checks for user update conflicts and other conditions when
attempting to apply updates, and reports any errors. The dataset component's OnUpdateError event enables you
to catch and respond to errors. You should create a handler for this event if you use cached updates. If you do not,
and an error occurs, the entire update operation fails.

Here is the skeleton code for an OnUpdateError event handler:

[Delphi]
procedure TForm1.DataSetUpdateError(DataSet: TDataSet; E: EDatabaseError;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin

1948

 { ... perform update error handling here ... }
end;

[C++]
void __fastcall TForm1::DataSetUpdateError(TDataSet *DataSet,
 EDatabaseError *E, TUpdateKind UpdateKind, TUpdateAction &UpdateAction)
{
 // Respond to errors here...
}

DataSet references the dataset to which updates are applied. You can use this dataset to access new and old values
during error handling. The original values for fields in each record are stored in a read-only TField property called
OldValue. Changed values are stored in the analogous TField property NewValue. These values provide the only
way to inspect and change update values in the event handler.

Warning: Do not call any dataset methods that change the current record (such as Next and Prior). Doing so causes
the event handler to enter an endless loop.

The E parameter is usually of type EDBEngineError. From this exception type, you can extract an error message
that you can display to users in your error handler. For example, the following code could be used to display the
error message in the caption of a dialog box:

[Delphi]
ErrorLabel.Caption := E.Message;

[C++]
ErrorLabel->Caption = E->Message;

This parameter is also useful for determining the actual cause of the update error. You can extract specific error
codes from EDBEngineError, and take appropriate action based on it.

The UpdateKind parameter describes the type of update that generated the error. Unless your error handler takes
special actions based on the type of update being carried out, your code probably will not make use of this parameter.

The following table lists possible values for UpdateKind:

UpdateKind values
Value Meaning

ukModify Editing an existing record caused an error.

ukInsert Inserting a new record caused an error.

ukDelete Deleting an existing record caused an error.

UpdateAction tells the BDE how to proceed with the update process when your event handler exits. When your
update error handler is first called, the value for this parameter is always set to uaFail. Based on the error condition
for the record that caused the error and what you do to correct it, you typically set UpdateAction to a different value
before exiting the handler:

If your error handler can correct the error condition that caused the handler to be invoked, set UpdateAction to
the appropriate action to take on exit. For error conditions you correct, set UpdateAction to uaRetry to apply the
update for the record again.
When set to uaSkip, the update for the row that caused the error is skipped, and the update for the record
remains in the cache after all other updates are completed.

1949

Both uaFail and uaAbort cause the entire update operation to end. uaFail raises an exception and displays an
error message. uaAbort raises a silent exception (does not display an error message).

The following code shows an OnUpdateError event handler that checks to see if the update error is related to a key
violation, and if it is, it sets the UpdateAction parameter to uaSkip:

[Delphi]
{ Add 'Bde' to your uses clause for this example }
if (E is EDBEngineError) then
 with EDBEngineError(E) do begin
 if Errors[ErrorCount - 1].ErrorCode = DBIERR_KEYVIOL then
 UpdateAction := uaSkip { key violation, just skip this record }
 else
 UpdateAction := uaAbort; { don't know what's wrong, abort the update }
 end;

[C++]
// include BDE.hpp in your unit file for this example
void __fastcall TForm1::DataSetUpdateError(TDataSet *DataSet,
 EDatabaseError *E, TUpdateKind UpdateKind, TUpdateAction &UpdateAction)
{
 UpdateAction = uaFail // initialize to fail the update
 if (E->ClassNameIs("EDBEngineError"))
 {
 EDBEngineError *pDBE = (EDBEngineError *)E;
 if (pDBE->Errors[pDBE->ErrorCount - 1]->ErrorCode == DBIERR_KEYVIOL)
 UpdateAction = uaSkip; // Key violation, just skip this record
 }
}

Note: If an error occurs during the application of cached updates, an exception is raised and an error message
displayed. Unless the ApplyUpdates is called from within a try...except construct, an error message to the
user displayed from inside your OnUpdateError event handler may cause your application to display the same
error message twice. To prevent error message duplication, set UpdateAction to uaAbort to turn off the
system-generated error message display.

Using Update Objects to Update a Dataset
When the BDE-enabled dataset represents a stored procedure or a query that is not "live", it is not possible to apply
updates directly from the dataset. Such datasets may also cause a problem when you use a client dataset to cache
updates. Whether you are using the BDE or a client dataset to cache updates, you can handle these problem datasets
by using an update object.

To update a dataset
1 If you are using a client dataset, use an external provider component with TClientDataSet rather than

TBDEClientDataSet. This is so you can set the UpdateObject property of the BDE-enabled source dataset (step
3).

2 Add a TUpdateSQL component to the same data module as the BDE-enabled dataset.
3 Set the BDE-enabled dataset component's UpdateObject property to the TUpdateSQL component in the data

module.
4 Specify the SQL statements needed to perform updates using the update object's ModifySQL, InsertSQL, and

DeleteSQL properties. You can use the Update SQL editor to help you compose these statements.

1950

5 Close the dataset.
6 Set the dataset component's CachedUpdates property to True or link the dataset to the client dataset using a

dataset provider.
7 Reopen the dataset.

Note: Sometimes, you need to use multiple update objects. For example, when updating a multi-table join or a
stored procedure that represents data from multiple datasets, you must provide one TUpdateSQL object for
each table you want to update. When using multiple update objects, you can't simply associate the update
object with the dataset by setting the UpdateObject property. Instead, you must manually call the update
object from an OnUpdateRecord event handler (when using the BDE to cache updates) or a
BeforeUpdateRecord event handler (when using a client dataset).

The update object actually encapsulates three TQuery components. Each of these query components perform a
single update task. One query component provides an SQL UPDATE statement for modifying existing records; a
second query component provides an INSERT statement to add new records to a table; and a third component
provides a DELETE statement to remove records from a table.

When you place an update component in a data module, you do not see the query components it encapsulates.
They are created by the update component at runtime based on three update properties for which you supply SQL
statements:

ModifySQL specifies the UPDATE statement.
InsertSQL specifies the INSERT statement.
DeleteSQL specifies the DELETE statement.

At runtime, when the update component is used to apply updates, it:

1 Selects an SQL statement to execute based on whether the current record is modified, inserted, or deleted.
2 Provides parameter values to the SQL statement.
3 Prepares and executes the SQL statement to perform the specified update.

Creating SQL Statements for Update Components
To update a record in an associated dataset, an update object uses one of three SQL statements. Each update
object can only update a single table, so the object's update statements must each reference the same base table.

The three SQL statements delete, insert, and modify records cached for update. You must provide these statements
as update object's DeleteSQL, InsertSQL, and ModifySQL properties. You can provide these values at design time
or at runtime. For example, the following code specifies a value for the DeleteSQL property at runtime:

[Delphi]
with UpdateSQL1.DeleteSQL do begin
 Clear;
 Add('DELETE FROM Inventory I');
 Add('WHERE (I.ItemNo = :OLD_ItemNo)');
end;

[C++]
UpdateSQL->DeleteSQL->Clear();
UpdateSQL->DeleteSQL->Add("DELETE FROM Inventory I");
UpdateSQL->DeleteSQL->Add("WHERE (I.ItemNo = :OLD_ItemNo)");

At design time, you can use the Update SQL editor to help you compose the SQL statements that apply updates.

1951

Update objects provide automatic parameter binding for parameters that reference the dataset's original and updated
field values. Typically, therefore, you insert parameters with specially formatted names when you compose the SQL
statements.

Using the Update SQL Editor

To create the SQL statements for an update component
1 Using the Object Inspector, select the name of the update object from the drop-down list for the dataset's

UpdateObject property. This step ensures that the Update SQL editor you invoke in the next step can determine
suitable default values to use for SQL generation options.

2 Right-click the update object and select UpdateSQL Editor from the context menu. This displays the Update SQL
editor. The editor creates SQL statements for the update object's ModifySQL, InsertSQL, and DeleteSQL
properties based on the underlying data set and on the values you supply to it.

The Update SQL editor has two pages. The Options page is visible when you first invoke the editor. Use the Table
Name combo box to select the table to update. When you specify a table name, the Key Fields and Update Fields
list boxes are populated with available columns.

The Update Fields list box indicates which columns should be updated. When you first specify a table, all columns
in the Update Fields list box are selected for inclusion. You can multi-select fields as desired.

The Key Fields list box is used to specify the columns to use as keys during the update. For Paradox, dBASE, and
FoxPro the columns you specify here must correspond to an existing index, but this is not a requirement for remote
SQL databases. Instead of setting Key Fields you can click the Primary Keys button to choose key fields for the
update based on the table's primary index. Click Dataset Defaults to return the selection lists to the original state:
all fields selected as keys and all selected for update.

Check the Quote Field Names check box if your server requires quotation marks around field names.

After you specify a table, select key columns, and select update columns, click Generate SQL to generate the
preliminary SQL statements to associate with the update component's ModifySQL, InsertSQL, and DeleteSQL
properties. In most cases you will want or need to fine tune the automatically generated SQL statements.

To view and modify the generated SQL statements, select the SQL page. If you have generated SQL statements,
then when you select this page, the statement for the ModifySQL property is already displayed in the SQL Text
memo box. You can edit the statement in the box as desired.

Warning: Keep in mind that generated SQL statements are starting points for creating update statements. You may
need to modify these statements to make them execute correctly. For example, when working with data
that contains NULL values, you need to modify the WHERE clause to read

WHERE field IS NULL

rather then using the generated field variable. Test each of the statements directly yourself before accepting them.

Use the Statement Type radio buttons to switch among generated SQL statements and edit them as desired.

To accept the statements and associate them with the update component's SQL properties, click OK.

Understanding Parameter Substitution in Update SQL Statements
Update SQL statements use a special form of parameter substitution that enables you to substitute old or new field
values in record updates. When the Update SQL editor generates its statements, it determines which field values
to use. When you write the update SQL, you specify the field values to use.

1952

When the parameter name matches a column name in the table, the new value in the field in the cached update for
the record is automatically used as the value for the parameter. When the parameter name matches a column name
prefixed by the string "OLD_", then the old value for the field will be used. For example, in the update SQL statement
below, the parameter :LastName is automatically filled with the new field value in the cached update for the inserted
record.

INSERT INTO Names
(LastName, FirstName, Address, City, State, Zip)
VALUES (:LastName, :FirstName, :Address, :City, :State, :Zip)

New field values are typically used in the InsertSQL and ModifySQL statements. In an update for a modified record,
the new field value from the update cache is used by the UPDATE statement to replace the old field value in the
base table updated.

In the case of a deleted record, there are no new values, so the DeleteSQL property uses the ":OLD_FieldName"
syntax. Old field values are also normally used in the WHERE clause of the SQL statement for a modified or deletion
update to determine which record to update or delete.

In the WHERE clause of an UPDATE or DELETE update SQL statement, supply at least the minimal number of
parameters to uniquely identify the record in the base table that is updated with the cached data. For instance, in a
list of customers, using just a customer's last name may not be sufficient to uniquely identify the correct record in
the base table; there may be a number of records with "Smith" as the last name. But by using parameters for last
name, first name, and phone number could be a distinctive enough combination. Even better would be a unique field
value like a customer number.

Note: If you create SQL statements that contain parameters that do not refer the edited or original field values, the
update object does not know how to bind their values. You can, however, do this manually, using the update
object's Query property.

Composing Update SQL Statements
At design time, you can use the Update SQL editor to write the SQL statements for the DeleteSQL, InsertSQL, and
ModifySQL properties. If you do not use the Update SQL editor, or if you want to modify the generated statements,
you should keep in mind the following guidelines when writing statements to delete, insert, and modify records in
the base table.

The DeleteSQL property should contain only an SQL statement with the DELETE command. The base table to be
updated must be named in the FROM clause. So that the SQL statement only deletes the record in the base table
that corresponds to the record deleted in the update cache, use a WHERE clause. In the WHERE clause, use a
parameter for one or more fields to uniquely identify the record in the base table that corresponds to the cached
update record. If the parameters are named the same as the field and prefixed with "OLD_", the parameters are
automatically given the values from the corresponding field from the cached update record. If the parameter are
named in any other manner, you must supply the parameter values.

DELETE FROM Inventory I
WHERE (I.ItemNo = :OLD_ItemNo)

Some table types might not be able to find the record in the base table when fields used to identify the record contain
NULL values. In these cases, the delete update fails for those records. To accommodate this, add a condition for
those fields that might contain NULLs using the IS NULL predicate (in addition to a condition for a non-NULL value).
For example, when a FirstName field may contain a NULL value:

1953

DELETE FROM Names
WHERE (LastName = :OLD_LastName) AND
 ((FirstName = :OLD_FirstName) OR (FirstName IS NULL))

The InsertSQL statement should contain only an SQL statement with the INSERT command. The base table to be
updated must be named in the INTO clause. In the VALUES clause, supply a comma-separated list of parameters.
If the parameters are named the same as the field, the parameters are automatically given the value from the cached
update record. If the parameter are named in any other manner, you must supply the parameter values. The list of
parameters supplies the values for fields in the newly inserted record. There must be as many value parameters as
there are fields listed in the statement.

INSERT INTO Inventory
(ItemNo, Amount)
VALUES (:ItemNo, 0)

The ModifySQL statement should contain only an SQL statement with the UPDATE command. The base table to
be updated must be named in the FROM clause. Include one or more value assignments in the SET clause. If values
in the SET clause assignments are parameters named the same as fields, the parameters are automatically given
values from the fields of the same name in the updated record in the cache. You can assign additional field values
using other parameters, as long as the parameters are not named the same as any fields and you manually supply
the values. As with the DeleteSQL statement, supply a WHERE clause to uniquely identify the record in the base
table to be updated using parameters named the same as the fields and prefixed with "OLD_". In the update
statement below, the parameter :ItemNo is automatically given a value and :Price is not.

UPDATE Inventory I
SET I.ItemNo = :ItemNo, Amount = :Price
WHERE (I.ItemNo = :OLD_ItemNo)

Considering the above update SQL, take an example case where the application end-user modifies an existing
record. The original value for the ItemNo field is 999. In a grid connected to the cached dataset, the end-user changes
the ItemNo field value to 123 and Amount to 20. When the ApplyUpdates method is invoked, this SQL statement
affects all records in the base table where the ItemNo field is 999, using the old field value in the
parameter :OLD_ItemNo. In those records, it changes the ItemNo field value to 123 (using the parameter :ItemNo,
the value coming from the grid) and Amount to 20.

Using Multiple Update Objects
When more than one base table referenced in the update dataset needs to be updated, you need to use multiple
update objects: one for each base table updated. Because the dataset component's UpdateObject only allows one
update object to be associated with the dataset, you must associate each update object with a dataset by setting its
DataSet property to the name of the dataset.

Tip: When using multiple update objects, you can use TBDEClientDataSet instead of TClientDataSet with an
external provider. This is because you do not need to set the source dataset's UpdateObject property.

The DataSet property for update objects is not available at design time in the Object Inspector. You can only set
this property at runtime.

[Delphi]
UpdateSQL1.DataSet := Query1;

1954

[C++]
UpdateSQL1->DataSet = Query1;

The update object uses this dataset to obtain original and updated field values for parameter substitution and, if it
is a BDE-enabled dataset, to identify the session and database to use when applying the updates. So that parameter
substitution will work correctly, the update object's DataSet property must be the dataset that contains the updated
field values. When using the BDE-enabled dataset to cache updates, this is the BDE-enabled dataset itself. When
using a client dataset, this is a client dataset that is provided as a parameter to the BeforeUpdateRecord event
handler.

When the update object has not been assigned to the dataset's UpdateObject property, its SQL statements are not
automatically executed when you call ApplyUpdates. To update records, you must manually call the update object
from an OnUpdateRecord event handler (when using the BDE to cache updates) or a BeforeUpdateRecord event
handler (when using a client dataset). In the event handler, the minimum actions you need to take are

If you are using a client dataset to cache updates, you must be sure that the updates object's DatabaseName
and SessionName properties are set to the DatabaseName and SessionName properties of the source dataset.
The event handler must call the update object's ExecSQL or Apply method. This invokes the update object for
each record that requires updating. For more information about executing update statements, see Executing
the SQL statements.
Set the event handler's UpdateAction parameter to uaApplied (OnUpdateRecord) or the Applied parameter
to True (BeforeUpdateRecord).

You may optionally perform data validation, data modification, or other operations that depend on each record's
update.

Warning: If you call an update object's ExecSQL or Apply method in an OnUpdateRecord event handler, be sure
that you do not set the dataset's UpdateObject property to that update object. Otherwise, this will result
in a second attempt to apply each record's update.

Executing the SQL Statements
When you use multiple update objects, you do not associate the update objects with a dataset by setting its
UpdateObject property. As a result, the appropriate statements are not automatically executed when you apply
updates. Instead, you must explicitly invoke the update object in code.

There are two ways to invoke the update object. Which way you choose depends on whether the SQL statement
uses parameters to represent field values:

If the SQL statement to execute uses parameters, call the Apply method.
If the SQL statement to execute does not use parameters, it is more efficient to call the ExecSQL method.

Note: If the SQL statement uses parameters other than the built-in types (for the original and updated field values),
you must manually supply parameter values instead of relying on the parameter substitution provided by the
Apply method. See Using an update component's Query property for information on manually providing
parameter values.

Calling the Apply Method
The Apply method for an update component manually applies updates for the current record. There are two steps
involved in this process:

1 Initial and edited field values for the record are bound to parameters in the appropriate SQL statement.

1955

2 The SQL statement is executed.

Call the Apply method to apply the update for the current record in the update cache. The Apply method is most
often called from within a handler for the dataset's OnUpdateRecord event or from a provider's
BeforeUpdateRecord event handler.

Warning: If you use the dataset's UpdateObject property to associate dataset and update object, Apply is called
automatically. In that case, do not call Apply in an OnUpdateRecord event handler as this will result in a
second attempt to apply the current record's update.

OnUpdateRecord event handlers indicate the type of update that needs to be applied with an UpdateKind parameter
of type TUpdateKind. You must pass this parameter to the Apply method to indicate which update SQL statement
to use. The following code illustrates this using a BeforeUpdateRecord event handler:

[Delphi]
procedure TForm1.BDEClientDataSet1BeforeUpdateRecord(Sender: TObject; SourceDS: TDataSet;
 DeltaDS: TCustomClientDataSet; UpdateKind: TUpdateKind; var Applied: Boolean);
begin
 with UpdateSQL1 do
 begin
 DataSet := DeltaDS;
 DatabaseName := (SourceDS as TDBDataSet).DatabaseName;
 SessionName := (SourceDS as TDBDataSet).SessionName;
 Apply(UpdateKind);
 Applied := True;
 end;
end;

[C++]
void __fastcall TForm1::BDEClientDataSet1BeforeUpdateRecord(TObject *Sender,
 TDataSet *SourceDS, TCustomClientDataSet *DeltaDS, TUpdateKind UpdateKind, bool &Applied)
{
 UpdateSQL1->DataSet = DeltaDS;
 TDBDataSet *pSrcDS = dynamic_cast<TDBDataSet *>(SourceDS);
 UpdateSQL1->DatabaseName = pSrcDS->DatabaseName;
 UpdateSQL1->SessionName = pSrcDS->SessionName;
 UpdateSQL1->Apply(UpdateKind);
 Applied = true;
}

Executing an Update Statement
The ExecSQL method for an update component manually applies updates for the current record. Unlike the Apply
method, ExecSQL does not bind parameters in the SQL statement before executing it. The ExecSQL method is
most often called from within a handler for the OnUpdateRecord event (when using the BDE) or the
BeforeUpdateRecord event (when using a client dataset).

Because ExecSQL does not bind parameter values, it is used primarily when the update object's SQL statements
do not include parameters. You can use Apply instead, even when there are no parameters, but ExecSQL is more
efficient because it does not check for parameters.

If the SQL statements include parameters, you can still call ExecSQL, but only after explicitly binding parameters.
If you are using the BDE to cache updates, you can explicitly bind parameters by setting the update object's
DataSet property and then calling its SetParams method. When using a client dataset to cache updates, you must

1956

supply parameters to the underlying query object maintained by TUpdateSQL. For information on how to do this,
see Using an update component's Query property.

Warning: If you use the dataset's UpdateObject property to associate dataset and update object, ExecSQL is called
automatically. In that case, do not call ExecSQL in an OnUpdateRecord or BeforeUpdateRecord event
handler as this will result in a second attempt to apply the current record's update.

OnUpdateRecord and BeforeUpdateRecord event handlers indicate the type of update that needs to be applied with
an UpdateKind parameter of type TUpdateKind. You must pass this parameter to the ExecSQL method to indicate
which update SQL statement to use. The following code illustrates this using a BeforeUpdateRecord event handler:

[Delphi]
procedure TForm1.BDEClientDataSet1BeforeUpdateRecord(Sender: TObject; SourceDS: TDataSet;
 DeltaDS: TCustomClientDataSet; UpdateKind: TUpdateKind; var Applied: Boolean);
begin
 with UpdateSQL1 do
 begin
 DatabaseName := (SourceDS as TDBDataSet).DatabaseName;
 SessionName := (SourceDS as TDBDataSet).SessionName;
 ExecSQL(UpdateKind);
 Applied := True;
 end;
end;

[C++]
void __fastcall TForm1::BDEClientDataSet1BeforeUpdateRecord(TObject *Sender,
 TDataSet *SourceDS, TCustomClientDataSet *DeltaDS, TUpdateKind UpdateKind, bool &Applied)
{
 TDBDataSet *pSrcDS = dynamic_cast<TDBDataSet *>(SourceDS);
 UpdateSQL1->DatabaseName = pSrcDS->DatabaseName;
 UpdateSQL1->SessionName = pSrcDS->SessionName;
 UpdateSQL1->ExecSQL(UpdateKind);
 Applied = true;
}

If an exception is raised during the execution of the update program, execution continues in the OnUpdateError
event, if it is defined.

Using an Update Component's Query Property
The Query property of an update component provides access to the query components that implement its
DeleteSQL, InsertSQL, and ModifySQL statements. In most applications, there is no need to access these query
components directly: you can use the DeleteSQL, InsertSQL, and ModifySQL properties to specify the statements
these queries execute, and execute them by calling the update object's Apply or ExecSQL method. There are times,
however, when you may need to directly manipulate the query component. In particular, the Query property is useful
when you want to supply your own values for parameters in the SQL statements rather than relying on the update
object's automatic parameter binding to old and new field values.

Note: The Query property is only accessible at runtime.

The Query property is indexed on a TUpdateKind value:

Using an index of ukModify accesses the query that updates existing records.
Using an index of ukInsert accesses the query that inserts new records.
Using an index of ukDelete accesses the query that deletes records.

1957

The following shows how to use the Query property to supply parameter values that can't be bound automatically:

[Delphi]
procedure TForm1.BDEClientDataSet1BeforeUpdateRecord(Sender: TObject; SourceDS: TDataSet;
 DeltaDS: TCustomClientDataSet; UpdateKind: TUpdateKind; var Applied: Boolean);
begin
 UpdateSQL1.DataSet := DeltaDS; { required for the automatic parameter substitution }
 with UpdateSQL1.Query[UpdateKind] do
 begin
 { Make sure the query has the correct DatabaseName and SessionName }
 DatabaseName := (SourceDS as TDBDataSet).DatabaseName;
 SessionName := (SourceDS as TDBDataSet).SessionName;
 ParamByName('TimeOfUpdate').Value = Now;
 end;
 UpdateSQL1.Apply(UpdateKind); { now perform automatic substitutions and execute }
 Applied := True;
end;

[C++]
void __fastcall TForm1::BDEClientDataSet1BeforeUpdateRecord(TObject *Sender,
 TDataSet *SourceDS, TCustomClientDataSet *DeltaDS, TUpdateKind UpdateKind, bool &Applied)
{
 UpdateSQL1->DataSet = DeltaDS; // required for the automatic parameter substitution
 TQuery *pQuery = UpdateSQL1->Query[UpdateKind]; // access the query
 // make sure the query has the correct DatabaseName and SessionName
 TDBDataSet *pSrcDS = dynamic_cast<TDBDataSet *>(SourceDS);
 pQuery->DatabaseName = pSrcDS->DatabaseName;
 pQuery->SessionName = pSrcDS->SessionName;
 // now substitute values for custom parameters
 pQuery->ParamByName("TimeOfLastUpdate")->Value = Now();
 UpdateSQL1->Apply(UpdateKind); // now do automatic substitution and execute
 Applied = true;
}

Using TBatchMove
TBatchMove encapsulates Borland Database Engine (BDE) features that let you to duplicate a dataset, append
records from one dataset to another, update records in one dataset with records from another dataset, and delete
records from one dataset that match records in another dataset. TBatchMove is most often used to:

Download data from a server to a local data source for analysis or other operations.
Move a desktop database into tables on a remote server as part of an upsizing operation.

A batch move component can create tables on the destination that correspond to the source tables, automatically
mapping the column names and data types as appropriate.

The following topics describe how to work with a TBatchMove component:

Creating a Batch Move Component
Specifying a Batch Move Mode
Mapping Data Types
Executing a Batch Move
Handling Batch Move Errors

1958

Creating a Batch Move Component

To create a batch move component
1 Place a table or query component for the dataset from which you want to import records (called the Source

dataset) on a form or in a data module.
2 Place the dataset to which to move records (called the Destination dataset) on the form or data module.
3 Place aTBatchMove component from the BDE category of the Tool palette in the data module or form, and set

its Name property to a unique value appropriate to your application.
4 Set the Source property of the batch move component to the name of the table from which to copy, append, or

update records. You can select tables from the drop-down list of available dataset components.
5 Set the Destination property to the dataset to create, append to, or update. You can select a destination table

from the drop-down list of available dataset components.

If you are appending, updating, or deleting, Destination must represent an existing database table.
If you are copying a table and Destination represents an existing table, executing the batch move overwrites all
of the current data in the destination table.
If you are creating an entirely new table by copying an existing table, the resulting table has the name specified
in the Name property of the table component to which you are copying. The resulting table type will be of a
structure appropriate to the server specified by the DatabaseName property.

6 Set the Mode property to indicate the type of operation to perform. Valid operations are batAppend (the default),
batUpdate, batAppendUpdate, batCopy, and batDelete. For information about these modes, see Specifying a
batch move mode.

7 Optionally set the Transliterate property. If Transliterate is True (the default), character data is translated from
the Source dataset's character set to the Destination dataset's character set as necessary.

8 Optionally set column mappings using the Mappings property. You need not set this property if you want batch
move to match columns based on their position in the source and destination tables. For more information about
mapping columns, see Mapping data types.

9 Optionally specify the ChangedTableName, KeyViolTableName, and ProblemTableName properties. Batch
move stores problem records it encounters during the batch operation in the table specified by
ProblemTableName. If you are updating a Paradox table through a batch move, key violations can be reported
in the table you specify in KeyViolTableName. ChangedTableName lists all records that changed in the
destination table as a result of the batch move operation. If you do not specify these properties, these error tables
are not created or used. For more information about handling batch move errors, see Handling batch move errors.

Specifying a Batch Move Mode
The Mode property specifies the operation a batch move component performs:

Batch move modes
Property Purpose

batAppend Append records to the destination table.

batUpdate Update records in the destination table with matching records from the source table. Updating is based
on the current index of the destination table.

batAppendUpdate If a matching record exists in the destination table, update it. Otherwise, append records to the destination
table.

1959

batCopy Create the destination table based on the structure of the source table. If the destination table already
exists, it is dropped and recreated.

batDelete Delete records in the destination table that match records in the source table.

Appending records
To append data, the destination dataset must represent an existing table. During the append operation, the BDE
converts data to appropriate data types and sizes for the destination dataset if necessary. If a conversion is not
possible, an exception is thrown and the data is not appended.

Updating records
To update data, the destination dataset must represent an existing table and must have an index defined that enables
records to be matched. If the primary index fields are used for matching, records with index fields in the destination
dataset that match index fields records in the source dataset are overwritten with the source data. During the update
operation, the BDE converts data to appropriate data types and sizes for the destination dataset if necessary.

Appending and updating records
To append and update data the destination dataset must represent an existing table and must have an index defined
that enables records to be matched. If the primary index fields are used for matching, records with index fields in
the destination dataset that match index fields records in the source dataset are overwritten with the source data.
Otherwise, data from the source dataset is appended to the destination dataset. During append and update
operations, the BDE converts data to appropriate data types and sizes for the destination dataset, if necessary.

Copying datasets
To copy a source dataset, the destination dataset should not represent an exist table. If it does, the batch move
operation overwrites the existing table with a copy of the source dataset.

If the source and destination datasets are maintained by different types of database engines, for example, Paradox
and InterBase, the BDE creates a destination dataset with a structure as close as possible to that of the source
dataset and automatically performs data type and size conversions as necessary.

Note: TBatchMove does not copy metadata structures such as indexes, constraints, and stored procedures. You
must recreate these metadata objects on your database server as appropriate.

Deleting records
To delete data in the destination dataset, it must represent an existing table and must have an index defined that
enables records to be matched. If the primary index fields are used for matching, records with index fields in the
destination dataset that match index fields records in the source dataset are deleted in the destination table.

Mapping Data Types
In batAppend mode, a batch move component creates the destination table based on the column data types of the
source table. Columns and types are matched based on their position in the source and destination tables. That is,
the first column in the source is matched with the first column in the destination, and so on.

To override the default column mappings, use the Mappings property. Mappings is a list of column mappings (one
per line). This listing can take one of two forms. To map a column in the source table to a column of the same name

1960

in the destination table, you can use a simple listing that specifies the column name to match. For example, the
following mapping specifies that a column named ColName in the source table should be mapped to a column of
the same name in the destination table:

ColName

To map a column named SourceColName in the source table to a column named DestColName in the destination
table, the syntax is as follows:

DestColName = SourceColName

If source and destination column data types are not the same, a batch move operation attempts a "best fit". It trims
character data types, if necessary, and attempts to perform a limited amount of conversion, if possible. For example,
mapping a CHAR(10) column to a CHAR(5) column will result in trimming the last five characters from the source
column.

As an example of conversion, if a source column of character data type is mapped to a destination of integer type,
the batch move operation converts a character value of '5' to the corresponding integer value. Values that cannot
be converted generate errors. For more information about errors, see Handling batch move errors.

When moving data between different table types, a batch move component translates data types as appropriate
based on the dataset's server types. See the BDE online help file for the latest tables of mappings among server
types.

Note: To batch move data to an SQL server database, you must have that database server and a version of Delphi
with the appropriate SQL Link installed, or you can use ODBC if you have the proper third party ODBC drivers
installed.

Executing a Batch Move
Use the Execute method to execute a previously prepared batch operation at runtime. For example, if
BatchMoveAdd is the name of a batch move component, the following statement executes it:

[Delphi]
BatchMoveAdd.Execute;

[C++]
BatchMoveAdd->Execute();

You can also execute a batch move at design time by right clicking the mouse on a batch move component and
choosing Execute from the context menu.

The MovedCount property keeps track of the number of records that are moved when a batch move executes.

The RecordCount property specifies the maximum number of records to move. If RecordCount is zero, all records
are moved, beginning with the first record in the source dataset. If RecordCount is a positive number, a maximum
of RecordCount records are moved, beginning with the current record in the source dataset. If RecordCount is greater
than the number of records between the current record in the source dataset and its last record, the batch move
terminates when the end of the source dataset is reached. You can examine MoveCount to determine how many
records were actually transferred.

1961

Handling Batch Move Errors
There are two types of errors that can occur in a batch move operation: data type conversion errors and integrity
violations. TBatchMove has a number of properties that report on and control error handling.

The AbortOnProblem property specifies whether to abort the operation when a data type conversion error occurs.
If AbortOnProblem is True, the batch move operation is canceled when an error occurs. If False, the operation
continues. You can examine the table you specify in the ProblemTableName to determine which records caused
problems.

The AbortOnKeyViol property indicates whether to abort the operation when a Paradox key violation occurs.

The ProblemCount property indicates the number of records that could not be handled in the destination table without
a loss of data. If AbortOnProblem is True, this number is one, since the operation is aborted when an error occurs.

The following properties enable a batch move component to create additional tables that document the batch move
operation:

ChangedTableName, if specified, creates a local Paradox table containing all records in the destination table
that changed as a result of an update or delete operation.
KeyViolTableName, if specified, creates a local Paradox table containing all records from the source table that
caused a key violation when working with a Paradox table. If AbortOnKeyViol is True, this table will contain at
most one entry since the operation is aborted on the first problem encountered.
ProblemTableName, if specified, creates a local Paradox table containing all records that could not be posted
in the destination table due to data type conversion errors. For example, the table could contain records from
the source table whose data had to be trimmed to fit in the destination table. If AbortOnProblem is True, there
is at most one record in this table since the operation is aborted on the first problem encountered.

Note: If ProblemTableName is not specified, the data in the record is trimmed and placed in the destination table.

The Data Dictionary
When you use the BDE to access your data, your application has access to the Data Dictionary. The Data Dictionary
provides a customizable storage area, independent of your applications, where you can create extended field
attribute sets that describe the content and appearance of data.

For example, if you frequently develop financial applications, you may create a number of specialized field attribute
sets describing different display formats for currency. When you create datasets for your application at design time,
rather than using the Object Inspector to set the currency fields in each dataset by hand, you can associate those
fields with an extended field attribute set in the data dictionary. Using the data dictionary ensures a consistent data
appearance within and across the applications you create.

In a client/server environment, the Data Dictionary can reside on a remote server for additional sharing of information.

To learn how to create extended field attribute sets from the Fields editor at design time, and how to associate them
with fields throughout the datasets in your application, see Creating attribute sets for field components. To learn
more about creating a data dictionary and extended field attributes with the SQL and Database Explorers, see their
respective online help files.

Note: A programming interface to the Data Dictionary is available in the drintf unit (located in the lib directory). This
interface supplies the following methods:

Data Dictionary interface
Routine Use

DictionaryActive Indicates if the data dictionary is active.

DictionaryDeactivate Deactivates the data dictionary.

1962

IsNullID Indicates whether a given ID is a null ID

FindDatabaseID Returns the ID for a database given its alias.

FindTableID Returns the ID for a table in a specified database.

FindFieldID Returns the ID for a field in a specified table.

FindAttrID Returns the ID for a named attribute set.

GetAttrName Returns the name an attribute set given its ID.

GetAttrNames Executes a callback for each attribute set in the dictionary.

GetAttrID Returns the ID of the attribute set for a specified field.

NewAttr Creates a new attribute set from a field component.

UpdateAttr Updates an attribute set to match the properties of a field.

CreateField Creates a field component based on stored attributes.

UpdateField Changes the properties of a field to match a specified attribute set.

AssociateAttr Associates an attribute set with a given field ID.

UnassociateAttr Removes an attribute set association for a field ID.

GetControlClass Returns the control class for a specified attribute ID.

QualifyTableName Returns a fully qualified table name (qualified by user name).

QualifyTableNameByName Returns a fully qualified table name (qualified by user name).

HasConstraints Indicates whether the dataset has constraints in the dictionary.

UpdateConstraints Updates the imported constraints of a dataset.

UpdateDataset Updates a dataset to the current settings and constraints in the dictionary.

Tools for Working with the BDE
One advantage of using the BDE as a data access mechanism is the wealth of supporting utilities that ship with
Delphi. These utilities include:

SQL Explorer and Database Explorer: Delphi ships with one of these two applications, depending on which
version you have purchased. Both Explorers enable you to
Examine existing database tables and structures. The SQL Explorer lets you examine and query remote SQL
databases.
Populate tables with data
Create extended field attribute sets in the Data Dictionary or associate them with fields in your application.
Create and manage BDE aliases.

SQL Explorer lets you do the following as well:

Create SQL objects such as stored procedures on remote database servers.
View the reconstructed text of SQL objects on remote database servers.
Run SQL scripts.
SQL Monitor: SQL Monitor lets you watch all of the communication that passes between the remote database
server and the BDE. You can filter the messages you want to watch, limiting them to only the categories of
interest. SQL Monitor is most useful when debugging your application.

1963

Database Desktop: If you are using Paradox or dBASE tables, Database Desktop lets you view and edit their
data, create new tables, and restructure existing tables. Using Database Desktop affords you more control than
using the methods of a TTable component (for example, it allows you to specify validity checks and language
drivers). It provides the only mechanism for restructuring Paradox and dBASE tables other than making direct
calls the BDE's API.

1964

Working with ADO components

Working with ADO Components
The dbGo components provide data access through the ADO framework. ADO, (Microsoft ActiveX Data Objects) is
a set of COM objects that access data through an OLE DB provider. The dbGo components encapsulate these ADO
objects in the Delphi database architecture.

The ADO layer of an ADO-based application consists of Microsoft ADO 2.1, an OLE DB provider or ODBC driver
for the data store access, client software for the specific database system used (in the case of SQL databases), a
database back-end system accessible to the application (for SQL database systems), and a database. All of these
must be accessible to the ADO-based application for it to be fully functional.

The ADO objects that figure most prominently are the Connection, Command, and Recordset objects. These ADO
objects are wrapped by the TADOConnection, TADOCommand, and ADO dataset components. The ADO framework
includes other "helper" objects, like the Field and Properties objects, but these are typically not used directly in dbGo
applications and are not wrapped by dedicated components.

Before reading about the features peculiar to the dbGo components, you should familiarize yourself with the common
features of database connection components and datasets.

The following topics describe the unique features of dbGo components and how to work with them:

Overview of ADO components
Connecting to ADO data stores
Using TADODataSet
Using Command Objects

Overview of ADO Components
The ADO page of the Tool palette hosts the dbGo components. These components let you connect to an ADO data
store, execute commands, and retrieve data from tables in databases using the ADO framework. They require ADO
2.1 (or higher) to be installed on the host computer. Additionally, client software for the target database system (such
as Microsoft SQL Server) must be installed, as well as an OLE DB driver or ODBC driver specific to the particular
database system.

Most dbGo components have direct counterparts in the components available for other data access mechanisms:
a database connection component (TADOConnection) and various types of datasets. In addition, dbGo includes
TADOCommand, a simple component that is not a dataset but which represents an SQL command to be executed
on the ADO data store.

1965

The following table lists the ADO components.

ADO components
Component Use

TADOConnection A database connection component that establishes a connection with an ADO data store; multiple ADO
dataset and command components can share this connection to execute commands, retrieve data, and
operate on metadata.

TADODataSet The primary dataset for retrieving and operating on data; TADODataSet can retrieve data from a single or
multiple tables; can connect directly to a data store or use a TADOConnection component.

TADOTable A table-type dataset for retrieving and operating on a recordset produced by a single database table;
TADOTable can connect directly to a data store or use a TADOConnection component.

TADOQuery A query-type dataset for retrieving and operating on a recordset produced by a valid SQL statement;
TADOQuery can also execute data definition language (DDL) SQL statements. It can connect directly to
a data store or use a TADOConnection component

TADOStoredProc A stored procedure-type dataset for executing stored procedures; TADOStoredProc executes stored
procedures that may or may not retrieve data. It can connect directly to a data store or use a
TADOConnection component.

TADOCommand A simple component for executing commands (SQL statements that do not return result sets);
TADOCommand can be used with a supporting dataset component, or retrieve a dataset from a table; It
can connect directly to a data store or use a TADOConnection component.

Connecting to ADO Data Stores
dbGo applications use Microsoft ActiveX Data Objects (ADO) 2.1 to interact with an OLE DB provider that connects
to a data store and accesses its data. One of the items a data store can represent is a database. An ADO-based
application requires that ADO 2.1 be installed on the client computer. ADO and OLE DB is supplied by Microsoft
and installed with Windows.

An ADO provider represents one of a number of types of access, from native OLE DB drivers to ODBC drivers.
These drivers must be installed on the client computer. OLE DB drivers for various database systems are supplied
by the database vendor or by a third-party. If the application uses an SQL database, such as Microsoft SQL Server
or Oracle, the client software for that database system must also be installed on the client computer. Client software
is supplied by the database vendor and installed from the database systems CD (or disk).

To connect your application with the data store, use an ADO connection component (TADOConnection). Configure
the ADO connection component to use one of the available ADO providers. Although TADOConnection is not strictly
required, because ADO command and dataset components can establish connections directly using their
ConnectionString property, you can use TADOConnection to share a single connection among several ADO
components. This can reduce resource consumption, and allows you to create transactions that span multiple
datasets.

Like other database connection components, TADOConnection provides support for

Controlling connections
Controlling server login
Managing transactions
Working with associated datasets
Sending commands to the server
Obtaining metadata

In addition to these features that are common to all database connection components, TADOConnection provides
its own support for

1966

A wide range of options you can use to fine-tune the connection.
The ability to list the command objects that use the connection.
Additional events when performing common tasks.

Connecting to a Data Store Using TADOConnection
One or more ADO dataset and command components can share a single connection to a data store by using
TADOConnection. To do so, associated dataset and command components with the connection component through
their Connection properties. At design-time, select the desired connection component from the drop-down list for
the Connection property in the Object Inspector. At runtime, assign the reference to the Connection property. For
example, the following line associates a TADODataSet component with a TADOConnection component.

[Delphi]
ADODataSet1.Connection := ADOConnection1;

[C++]
ADODataSet1->Connection = ADOConnection1;

The connection component represents an ADO connection object. Before you can use the connection object to
establish a connection, you must identify the data store to which you want to connect. Typically, you provide
information using the ConnectionString property. ConnectionString is a semicolon delimited string that lists one or
more named connection parameters. These parameters identify the data store by specifying either the name of a
file that contains the connection information or the name of an ADO provider and a reference identifying the data
store. Use the following, predefined parameter names to supply this information:

Connection parameters
Parameter Description

Provider The name of a local ADO provider to use for the connection.

Data Source The name of the data store.

File name The name of a file containing connection information.

Remote Provider The name of an ADO provider that resides on a remote machine.

Remote Server The name of the remote server when using a remote provider.

Thus, a typical value of ConnectionString has the form

Provider=MSDASQL.1;Data Source=MQIS

Note: The connection parameters in ConnectionString do not need to include the Provider or Remote Provider
parameter if you specify an ADO provider using the Provider property. Similarly, you do not need to specify
the Data Source parameter if you use the DefaultDatabase property.

In addition, to the parameters listed above, ConnectionString can include any connection parameters peculiar to the
specific ADO provider you are using. These additional connection parameters can include user ID and password if
you want to hardcode the login information.

At design-time, you can use the Connection String Editor to build a connection string by selecting connection
elements (like the provider and server) from lists. Click the ellipsis button for the ConnectionString property in the
Object Inspector to launch the Connection String Editor, which is an ActiveX property editor supplied by ADO.

Once you have specified the ConnectionString property (and, optionally, the Provider property), you can use the
ADO connection component to connect to or disconnect from the ADO data store, although you may first want to

1967

use other properties to fine-tune the connection. When connecting to or disconnecting from the data store,
TADOConnection lets you respond to a few additional events beyond those common to all database connection
components..

Note: If you do not explicitly activate the connection by setting the connection component's Connected property to
True, it automatically establishes the connection when the first dataset component is opened or the first time
you use an ADO command component to execute a command.

Accessing the Connection Object
Use the ConnectionObject property of TADOConnection to access the underlying ADO connection object. Using
this reference it is possible to access properties and call methods of the underlying ADO Connection object.

Using the underlying ADO Connection object requires a good working knowledge of ADO objects in general and the
ADO Connection object in particular. It is not recommended that you use the Connection object unless you are
familiar with Connection object operations. Consult the Microsoft Data Access SDK help for specific information on
using ADO Connection objects.

Fine-tuning a Connection
One advantage of using TADOConnection for establishing the connection to a data store instead of simply supplying
a connection string for your ADO command and dataset components, is that it provides a greater degree of control
over the conditions and attributes of the connection.

The following topics describe the properties you can use to fine-tune the connection:

Forcing asynchronous connections
Controlling time-outs
Indicating the types of operations the connection supports
Specifying whether the connection automatically initiates transactions

Forcing Asynchronous Connections
Use the ConnectOptions property to force the connection to be asynchronous. Asynchronous connections allow
your application to continue processing without waiting for the connection to be completely opened.

By default, ConnectionOptions is set to coConnectUnspecified which allows the server to decide the best type of
connection. To explicitly make the connection asynchronous, set ConnectOptions to coAsyncConnect.

The example routines below enable and disable asynchronous connections in the specified connection component:

[Delphi]
procedure TForm1.AsyncConnectButtonClick(Sender: TObject);
begin
 with ADOConnection1 do begin
 Close;
 ConnectOptions := coAsyncConnect;
 Open;
 end;
end;
procedure TForm1.ServerChoiceConnectButtonClick(Sender: TObject);
begin
 with ADOConnection1 do begin
 Close;

1968

 ConnectOptions := coConnectUnspecified;
 Open;
 end;
end;

[C++]
void __fastcall TForm1::AsyncConnectButtonClick(TObject *Sender)
{
 ADOConnection1->Close();
 ADOConnection1->ConnectOptions = coAsyncConnect;
 ADOConnection1->Open();
}
void __fastcall TForm1::ServerChoiceConnectButtonClick(TObject *Sender)
{
 ADOConnection1->Close();
 ADOConnection1->ConnectOptions = coConnectUnspecified;
 ADOConnection1->Open();
}

Controlling Timeouts
You can control the amount of time that can elapse before attempted commands and connections are considered
failed and are aborted using the ConnectionTimeout and CommandTimeout properties.

ConnectionTimeout specifies the amount of time, in seconds, before an attempt to connect to the data store times
out. If the connection does not successfully compile prior to expiration of the time specified in ConnectionTimeout,
the connection attempt is canceled:

[Delphi]
with ADOConnection1 do begin
 ConnectionTimeout := 10 {seconds};
 Open;
end;

[C++]
 ADOConnection1->ConnectionTimeout = 10; // seconds
 ADOConnection1->Open();

CommandTimeout specifies the amount of time, in seconds, before an attempted command times out. If a command
initiated by a call to the Execute method does not successfully complete prior to expiration of the time specified in
CommandTimeout, the command is canceled and ADO generates an exception:

[Delphi]
with ADOConnection1 do begin
 CommandTimeout := 10 {seconds};
 Execute("DROP TABLE Employee1997", cmdText, []);
end;

[C++]
 ADOConnection1->ConnectionTimeout = 10;
 ADOConnection1->Execute("DROP TABLE Employee1997", cmdText, TExecuteOptions());

1969

Indicating the Types of Operations the Connection Supports
ADO connections are established using a specific mode, similar to the mode you use when opening a file. The
connection mode determines the permissions available to the connection, and hence the types of operations (such
as reading and writing) that can be performed using that connection.

Use the Mode property to indicate the connection mode. The possible values are listed in the following table:

ADO connection modes
Connect Mode Meaning

cmUnknown Permissions are not yet set for the connection or cannot be determined.

cmRead Read-only permissions are available to the connection.

cmWrite Write-only permissions are available to the connection.

cmReadWrite Read/write permissions are available to the connection.

cmShareDenyRead Prevents others from opening connections with read permissions.

cmShareDenyWrite Prevents others from opening connection with write permissions.

cmShareExclusive Prevents others from opening connection.

cmShareDenyNone Prevents others from opening connection with any permissions.

The possible values for Mode correspond to the ConnectModeEnum values of the Mode property on the underlying
ADO connection object. See the Microsoft Data Access SDK help for more information on these values.

Specifying Whether the Connection Automatically Initiates Transactions
Use the Attributes property to control the connection component's use of retaining commits and retaining aborts.
When the connection component uses retaining commits, then every time your application commits a transaction,
a new transaction is automatically started. When the connection component uses retaining aborts, then every time
your application rolls back a transaction, a new transaction is automatically started.

Attributes is a set that can contain one, both, or neither of the constants xaCommitRetaining and
xaAbortRetaining. When Attributes contains xaCommitRetaining, the connection uses retaining commits. When
Attributes contains xaAbortRetaining, it uses retaining aborts.

Check whether either retaining commits or retaining aborts is enabled using the in operator. Enable retaining commits
or aborts by adding the appropriate value to the attributes property; disable them by subtracting the value. The
example routines below respectively enable and disable retaining commits in an ADO connection component.

[Delphi]
procedure TForm1.RetainingCommitsOnButtonClick(Sender: TObject);
begin
 with ADOConnection1 do begin
 Close;
 if not (xaCommitRetaining in Attributes) then
 Attributes := (Attributes + [xaCommitRetaining])
 Open;
 end;
end;
procedure TForm1.RetainingCommitsOffButtonClick(Sender: TObject);
begin
 with ADOConnection1 do begin
 Close;
 if (xaCommitRetaining in Attributes) then
 Attributes := (Attributes - [xaCommitRetaining]);
 Open;

1970

 end;
end;

[C++]
void __fastcall TForm1::RetainingCommitsOnButtonClick(TObject *Sender)
{
 ADOConnection1->Close()
 if (!ADOConnection1->Attributes.Contains(xaCommitRetaining))
 ADOConnection1->Attributes = TXactAttributes() << xaCommitRetaining;
 ADOConnection1->Open()
}
void __fastcall TForm1::RetainingCommitsOffButtonClick(TObject *Sender)
{
 ADOConnection1->Close()
 if (ADOConnection1->Attributes.Contains(xaCommitRetaining))
 ADOConnection1->Attributes = TXactAttributes() >> xaCommitRetaining;
 ADOConnection1->Open()
}

Accessing the Connection's Datasets
Like other database connection components, you can access the datasets associated with the connection using the
DataSets and DataSetCount properties. However, dbGo also includes TADOCommand objects, which are not
datasets, but which maintain a similar relationship to the connection component.

You can use the Commands and CommandCount properties of TADOConnection to access the associated ADO
command objects in the same way you use the DataSets and DataSetCount properties to access the associated
datasets. Unlike DataSets and DataSetCount, which only list active datasets, Commands and CommandCount
provide references to all TADOCommand components associated with the connection component.

Commands is a zero-based array of references to ADO command components. CommandCount provides a total
count of all of the commands listed in Commands. You can use these properties together to iterate through all the
commands that use a connection component, as illustrated in the following code:

[Delphi]
var
 i: Integer
begin
 for i := 0 to (ADOConnection1.CommandCount - 1) do
 ADOConnection1.Commands[i].Execute;
end;

[C++]
for (int i = 0; i < ADOConnection2->CommandCount; i++)
 ADOConnection2->Commands[i]->Execute();

ADO Connection Events
In addition to the usual events that occur for all database connection components, TADOConnection generates a
number of additional events that occur during normal usage.

1971

Events when establishing a connection
In addition to the BeforeConnect and AfterConnect events that are common to all database connection components,
TADOConnection also generates an OnWillConnect and OnConnectComplete event when establishing a
connection. These events occur after the BeforeConnect event.

OnWillConnect occurs before the ADO provider establishes a connection. It lets you make last minute changes
to the connection string, provide a user name and password if you are handling your own login support, force
an asynchronous connection, or even cancel the connection before it is opened.
OnConnectComplete occurs after the connection is opened. Because TADOConnection can represent
asynchronous connections, you should use OnConnectComplete, which occurs after the connection is opened
or has failed due to an error condition, instead of the AfterConnect event, which occurs after the connection
component instructs the ADO provider to open a connection, but not necessarily after the connection is opened.

Events when disconnecting
In addition to the BeforeDisconnect and AfterDisconnect events common to all database connection components,
TADOConnection also generates an OnDisconnect event after closing a connection. OnDisconnect occurs after the
connection is closed but before any associated datasets are closed and before the AfterDisconnect event.

Events when managing transactions
The ADO connection component provides a number of events for detecting when transaction-related processes
have been completed. These events indicate when a transaction process initiated by a BeginTrans, CommitTrans,
and RollbackTrans method has been successfully completed at the data store.

The OnBeginTransComplete event occurs when the data store has successfully started a transaction after a
call to the BeginTrans method.
The OnCommitTransComplete event occurs after a transaction is successfully committed due to a call to
CommitTrans.
The OnRollbackTransComplete event occurs after a transaction is successfully aborted due to a call to
RollbackTrans.

Other events
ADO connection components introduce two additional events you can use to respond to notifications from the
underlying ADO connection object:

The OnExecuteComplete event occurs after the connection component executes a command on the data store
(for example, after calling the Execute method). OnExecuteComplete indicates whether the execution was
successful.
The OnInfoMessage event occurs when the underlying connection object provides detailed information after an
operation is completed. The OnInfoMessage event handler receives the interface to an ADO Error object that
contains the detailed information and a status code indicating whether the operation was successful.

1972

Using ADO datasets
ADO dataset components encapsulate the ADO Recordset object. They inherit the common dataset capabilities
described in Understanding Datasets, using ADO to provide the implementation. In order to use an ADO dataset,
you must familiarize yourself with these common features.

In addition to the common dataset features, all ADO datasets add properties, events, and methods for the following:

Connecting to an ADO datastore
Accessing the underlying Recordset object
Filtering records based on bookmarks
Fetching records asynchronously
Performing batch updates (caching updates)
Using files on disk to store data

There are four ADO datasets:

TADOTable, a table-type dataset that represents all of the rows and columns of a single database table.
TADOQuery, a query-type dataset that encapsulates an SQL statement and enables applications to access the
resulting records, if any.
TADOStoredProc, a stored procedure-type dataset that executes a stored procedure defined on a database
server.
TADODataSet, a general-purpose dataset that includes the capabilities of the other three types. See Using
TADODataSet for a description of features unique to TADODataSet.

Note: When using ADO to access database information, you do not need to use a dataset such as TADOQuery to
represent SQL commands that do not return a cursor. Instead, you can use TADOCommand, a simple
component that is not a dataset. For details on TADOCommand, see Using Command Objects.

Connecting an ADO Dataset to a Data Store
ADO datasets can connect to an ADO data store either collectively or individually.

When connecting datasets collectively, set the Connection property of each dataset to a TADOConnection
component. Each dataset then uses the ADO connection component's connection.

[Delphi]
ADODataSet1.Connection := ADOConnection1;
ADODataSet2.Connection := ADOConnection1;
...

[C++]
ADODataSet1->Connection = ADOConnection1;
ADODataSet2->Connection = ADOConnection1;
...

Among the advantages of connecting datasets collectively are:

The datasets share the connection object's attributes.
Only one connection need be set up: that of the TADOConnection.
The datasets can participate in transactions.

1973

For more information on using TADOConnection see Connecting to ADO data stores.

When connecting datasets individually, set the ConnectionString property of each dataset. Each dataset that
uses ConnectionString establishes its own connection to the data store, independent of any other dataset connection
in the application.

The ConnectionString property of ADO datasets works the same way as the ConnectionString property of
TADOConnection: it is a set of semicolon-delimited connection parameters such as the following:

[Delphi]
ADODataSet1.ConnectionString := "Provider=YourProvider;Password=SecretWord;" +
 "User ID=JaneDoe;SERVER=PURGATORY;UID=JaneDoe;PWD=SecretWord;" +
 "Initial Catalog=Employee";

[C++]
ADODataSet1->ConnectionString = "Provider=YourProvider;Password=SecretWord;";
ADODataSet1->ConnectionString += "User ID=JaneDoe;SERVER=PURGATORY";
ADODataSet1->ConnectionString += "UID=JaneDoe;PWD=SecretWord;"
ADODataSet1->ConnectionString += "Initial Catalog=Employee";

At design time you can use the Connection String Editor to help you build the connection string. For more information
about connection strings, see Connecting to a data store using TADOConnection.

Working with Record Sets
The Recordset property provides direct access to the ADO recordset object underlying the dataset component. Using
this object, it is possible to access properties and call methods of the recordset object from an application. Use of
Recordset to directly access the underlying ADO recordset object requires a good working knowledge of ADO objects
in general and the ADO recordset object in specific. Using the recordset object directly is not recommended unless
you are familiar with recordset object operations. Consult the Microsoft Data Access SDK help for specific information
on using ADO recordset objects.

The RecordSetState property indicates the current state of the underlying recordset object. RecordsetState
corresponds to the State property of the ADO recordset object. The value of RecordsetState is either stOpen,
stExecuting, or stFetching. (TObjectState, the type of the RecordsetState property, defines other values, but only
stOpen, stExecuting, and stFetching pertain to recordsets.) A value of stOpen indicates that the recordset is currently
idle. A value of stExecuting indicates that it is executing a command. A value of stFetching indicates that it is fetching
rows from the associated table (or tables).

Use RecordsetState values to perform actions dependent on the current state of the dataset. For example, a routine
that updates data might check the RecordsetState property to see whether the dataset is active and not in the process
of other activities such as connecting or fetching data.

Filtering Records Based On Bookmarks
ADO datasets support the common dataset feature of using bookmarks to mark and return to specific records. Also
like other datasets, ADO datasets let you use filters to limit the available records in the dataset. ADO datasets provide
an additional feature that combines these two common dataset features: the ability to filter on a set of records
identified by bookmarks.

To filter on a set of bookmarks
1 Use the Bookmark method to mark the records you want to include in the filtered dataset.

1974

2 Call the FilterOnBookmarks method to filter the dataset so that only the bookmarked records appear.

This process is illustrated below:

[Delphi]
procedure TForm1.Button1Click(Sender: TObject);
var
BM1, BM2: TBookmarkStr;
begin
with ADODataSet1 do begin
BM1 := Bookmark;
 BMList.Add(Pointer(BM1));
MoveBy(3);
BM2 := Bookmark;
 BMList.Add(Pointer(BM2));
 FilterOnBookmarks([BM1, BM2]);
end;
end;

[C++]
void __fastcall TForm1::Button1Click(TObject *Sender)
{
TBookmarkStr BM1;
TBookmarkStr BM2;
BM1 = ADODataSet1->Bookmark;
 BMList->Add(BM1);
ADODataSet1->MoveBy(3);
BM2 = ADODataSet1->Bookmark;
 BMList->Add(BM2);
 ADODataSet1->FilterOnBookmarks(ARRAYOFCONST((BM1,BM2)));
}

Note that the example above also adds the bookmarks to a list object named BMList. This is necessary so that the
application can later free the bookmarks when they are no longer needed.

Fetching Records Asynchronously
Unlike other datasets, ADO datasets can fetch their data asynchronously. This allows your application to continue
performing other tasks while the dataset populates itself with data from the data store.

To control whether the dataset fetches data asynchronously, if it fetches data at all, use the ExecuteOptions property.
ExecuteOptions governs how the dataset fetches its records when you call Open or set Active to True. If the dataset
represents a query or stored procedure that does not return any records, ExecuteOptions governs how the query or
stored procedure is executed when you call ExecSQL or ExecProc.

ExecuteOptions is a set that includes zero or more of the following values:

Execution options for ADO datasets
Execute Option Meaning

eoAsyncExecute The command or data fetch operation is executed asynchronously.

eoAsyncFetch The dataset first fetches the number of records specified by the CacheSize property
synchronously, then fetches any remaining rows asynchronously.

eoAsyncFetchNonBlocking Asynchronous data fetches or command execution do not block the current thread of execution.

1975

eoExecuteNoRecords A command or stored procedure that does not return data. If any rows are retrieved, they are
discarded and not returned.

Using Batch Updates
One approach for caching updates is to connect the ADO dataset to a client dataset using a dataset provider. This
approach is discussed in Using a client dataset to cache updates.

However, ADO dataset components provide their own support for cached updates, which they call batch updates.
The following table lists the correspondences between caching updates using a client dataset and using the batch
updates features:

Comparison of ADO and client dataset cached updates
ADO dataset TClientDataSet Description

LockType Not used: client datasets always cache updates Specifies whether the dataset is opened in batch
update mode.

CursorType Not used: client datasets always work with an in-
memory snapshot of data

Specifies how isolated the ADO dataset is from
changes on the server.

RecordStatus UpdateStatus Indicates what update, if any, has occurred on the
current row. RecordStatus provides more information
than UpdateStatus.

FilterGroup StatusFilter Specifies which type of records are available.
FilterGroup provides a wider variety of information.

UpdateBatch ApplyUpdates Applies the cached updates back to the database
server. Unlike ApplyUpdates, UpdateBatch lets you
limit the types of updates to be applied.

CancelBatch CancelUpdates Discards pending updates, reverting to the original
values. Unlike CancelUpdates, CancelBatch lets you
limit the types of updates to be canceled.

Using the batch updates features of ADO dataset components is a matter of:

Opening the dataset in batch update mode
Inspecting the update status of individual rows
Filtering multiple rows based on update status
Applying the batch updates to base tables
Canceling batch updates

Opening the Dataset in Batch Update Mode
To open an ADO dataset in batch update mode, it must meet these criteria:

1 The component's CursorType property must be ctKeySet (the default property value) or ctStatic.
2 The LockType property must be ltBatchOptimistic.
3 The command must be a SELECT query.

Before activating the dataset component, set the CursorType and LockType properties as indicated above. Assign
a SELECT statement to the component's CommandText property (for TADODataSet) or the SQL property (for
TADOQuery). For TADOStoredProc components, set the ProcedureName to the name of a stored procedure that

1976

returns a result set. These properties can be set at design-time through the Object Inspector or programmatically
at runtime. The example below shows the preparation of a TADODataSet component for batch update mode.

[Delphi]
with ADODataSet1 do begin
 CursorLocation := clUseClient;
 CursorType := ctStatic;
 LockType := ltBatchOptimistic;
 CommandType := cmdText;
 CommandText := 'SELECT * FROM Employee';
 Open;
end;

[C++]
ADODataSet1->CursorLocation = clUseClient;
ADODataSet1->CursorType = ctStatic;
ADODataSet1->LockType = ltBatchOptimistic;
ADODataSet1->CommandType = cmdText;
ADODataSet1->CommandText = "SELECT * FROM Employee";

After a dataset has been opened in batch update mode, all changes to the data are cached rather than applied
directly to the base tables.

Inspecting the Update Status of Individual Rows
Determine the update status of a given row by making it current and then inspecting the RecordStatus property of
the ADO data component. RecordStatus reflects the update status of the current row and only that row.

[Delphi]
if (rsNew in ADOQuery1.RecordStatus) then
begin
...
end;
else
if (rsDeleted in ADOQuery1.RecordStatus) then
begin
...
else

[C++]
switch (ADOQuery->RecordStatus)
{
 case rsUnmodified:
 StatusBar1->Panels->Items[0]->Text = "Unchanged record";
 break;
 case rsModified:
 StatusBar1->Panels->Items[0]->Text = "Changed record";
 break;
 case rsDeleted:
 StatusBar1->Panels->Items[0]->Text = "Deleted record";
 break;
 case rsNew:
 StatusBar1->Panels->Items[0]->Text = "New record";
 break;
}

1977

Filtering Multiple Rows Based On Update Status
Filter a recordset to show only those rows that belong to a group of rows with the same update status using the
FilterGroup property. Set FilterGroup to the TFilterGroup constant that represents the update status of rows to
display. A value of fgNone (the default value for this property) specifies that no filtering is applied and all rows are
visible regardless of update status (except rows marked for deletion). The example below causes only pending batch
update rows to be visible.

[Delphi]
FilterGroup := fgPendingRecords;
Filtered := True;

[C++]
FilterGroup = fgPendingRecords;
Filtered = true;

Note: For the FilterGroup property to have an effect, the ADO dataset component's Filtered property must be set
to True.

Applying the Batch Updates to Base Tables
Apply pending data changes that have not yet been applied or canceled by calling the UpdateBatch method. Rows
that have been changed and are applied have their changes put into the base tables on which the recordset is based.
A cached row marked for deletion causes the corresponding base table row to be deleted. A record insertion (exists
in the cache but not the base table) is added to the base table. Modified rows cause the columns in the corresponding
rows in the base tables to be changed to the new column values in the cache.

Used alone with no parameter, UpdateBatch applies all pending updates. A TAffectRecords value can optionally be
passed as the parameter for UpdateBatch. If any value except arAll is passed, only a subset of the pending changes
are applied. Passing arAll is the same as passing no parameter at all and causes all pending updates to be applied.
The example below applies only the currently active row to be applied:

[Delphi]
ADODataSet1.UpdateBatch(arCurrent);

[C++]
ADODataSet1->UpdateBatch(arCurrent);

Canceling Batch Updates
Cancel pending data changes that have not yet been canceled or applied by calling the CancelBatch method. When
you cancel pending batch updates, field values on rows that have been changed revert to the values that existed
prior to the last call to CancelBatch or UpdateBatch, if either has been called, or prior to the current pending batch
of changes.

Used alone with no parameter, CancelBatch cancels all pending updates. A TAffectRecords value can optionally be
passed as the parameter for CancelBatch. If any value except arAll is passed, only a subset of the pending changes
are canceled. Passing arAll is the same as passing no parameter at all and causes all pending updates to be
canceled. The example below cancels all pending changes:

1978

[Delphi]
ADODataSet1.CancelBatch;

[C++]
ADODataSet1->CancelBatch(arAll);

Loading Data from and Saving Data to Files
The data retrieved via an ADO dataset component can be saved to a file for later retrieval on the same or a different
computer. The data is saved in one of two proprietary formats: ADTG or XML. These two file formats are the only
formats supported by ADO. However, both formats are not necessarily supported in all versions of ADO. Consult
the ADO documentation for the version you are using to determine what save file formats are supported.

Save the data to a file using the SaveToFile method. SaveToFile takes two parameters, the name of the file to which
data is saved, and, optionally, the format (ADTG or XML) in which to save the data. Indicate the format for the saved
file by setting the Format parameter to pfADTG or pfXML. If the file specified by the FileName parameter already
exists, SaveToFile raises an EOleException.

Retrieve the data from file using the LoadFromFile method. LoadFromFile takes a single parameter, the name of
the file to load. If the specified file does not exist, LoadFromFile raises an EOleException exception. On calling the
LoadFromFile method, the dataset component is automatically activated.

In the example below, the first procedure saves the dataset retrieved by the TADODataSet component
ADODataSet1 to a file. The target file is an ADTG file named SaveFile, saved to a local drive. The second procedure
loads this saved file into the TADODataSet component ADODataSet2.

[Delphi]
procedure TForm1.SaveBtnClick(Sender: TObject);
begin
 if (FileExists("c:\SaveFile")) then
 begin
 DeleteFile("c:\SaveFile");
 StatusBar1.Panels[0].Text := "Save file deleted!";
 end;
 ADODataSet1.SaveToFile("c:\SaveFile", pfADTG);
end;
procedure TForm1.LoadBtnClick(Sender: TObject);
begin
 if (FileExists("c:\SaveFile")) then
 ADODataSet2.LoadFromFile("c:\SaveFile")
 else
 StatusBar1.Panels[0].Text := "Save file does not exist!";
end;

[C++]
void __fastcall TForm1::SaveBtnClick(TObject *Sender)
{
 if (FileExists("c:\\SaveFile"))
 {
 DeleteFile("c:\\SaveFile");
 Statusbar1->Panels->Items[0]->Text = "Save file deleted!";
 }
 ADODataSet1->SaveToFile("c:\\SaveFile");
}
void __fastcall TForm1::LoadBtnClick(TObject *Sender)

1979

{
 if (FileExists("c:\\SaveFile"))
 ADODataSet1->LoadFromFile("c:\\SaveFile");
 else
 Statusbar1->Panels->Items[0]->Text = "Save file does not exist!";
}

The datasets that save and load the data need not be on the same form as above, in the same application, or even
on the same computer. This allows for the briefcase-style transfer of data from one computer to another.

Using TADODataSet
TADODataSet is a general-purpose dataset for working with data from an ADO data store. Unlike the other ADO
dataset components, TADODataSet is not a table-type, query-type, or stored procedure-type dataset. Instead, it can
function as any of these types:

Like a table-type dataset, TADODataSet lets you represent all of the rows and columns of a single database
table. To use it in this way, set the CommandType property to cmdTable and the CommandText property to the
name of the table. TADODataSet supports table-type tasks such as
Assigning indexes to sort records or form the basis of record-based searches. In addition to the standard index
properties and methods, TADODataSet lets you sort using temporary indexes by setting the Sort property.
Indexed-based searches performed using the Seek method use the current index.
Emptying the dataset. The DeleteRecordsDeleteRecords method provides greater control than related methods
in other table-type datasets, because it lets you specify what records to delete.

The table-type tasks supported by TADODataSet are available even when you are not using a CommandType of
cmdTable.

Like a query-type dataset, TADODataSet lets you specify a single SQL command that is executed when you
open the dataset. To use it in this way, set the CommandType property to cmdText and the CommandText
property to the SQL command you want to execute. At design time, you can double-click on the
CommandText property in the Object Inspector to use the Command Text editor for help in constructing the
SQL command. TADODataSet supports query-type tasks such as
Using parameters in the query text.
Setting up master/detail relationships using parameters.
Preparing the query in advance to improve performance by setting the Prepared property to True.
Like a stored procedure-type dataset, TADODataSet lets you specify a stored procedure that is executed when
you open the dataset. To use it in this way, set the CommandType property to cmdStoredProc and the
CommandText property to the name of the stored procedure. TADODataSet supports stored procedure-type
tasks such as
Working with stored procedure parameters.
Fetching multiple result sets.
Preparing the stored procedure in advance to improve performance by setting the Prepared property to True.

In addition, TADODataSet lets you work with data stored in files by setting the CommandType property to cmdFile
and the CommandText property to the file name.

Before you set the CommandText and CommandType properties, you should link the TADODataSet to a data store
by setting the Connection or ConnectionString property. This process is described in Connecting an ADO dataset
to a data store. As an alternative, you can use an RDS DataSpace object to connect the TADODataSet to an ADO-
based application server. To use an RDS DataSpace object, set the RDSConnection property to a TRDSConnection
object.

1980

Using Command Objects
In the ADO environment, commands are textual representations of provider-specific action requests. Typically, they
are Data Definition Language (DDL) and Data Manipulation Language (DML) SQL statements. The language used
in commands is provider-specific, but usually compliant with the SQL-92 standard for the SQL language.

Although you can always execute commands using TADOQuery, you may not want the overhead of using a dataset
component, especially if the command does not return a result set. As an alternative, you can use the
TADOCommand component, which is a lighter-weight object designed to execute commands, one command at a
time. TADOCommand is intended primarily for executing those commands that do not return result sets, such as
Data Definition Language (DDL) SQL statements. Through an overloaded version of its Execute method, however,
it is capable of returning a result set that can be assigned to the RecordSet property of an ADO dataset component.

In general, working with TADOCommand is very similar to working with TADODataSet, except that you can't use
the standard dataset methods to fetch data, navigate records, edit data, and so on. TADOCommand objects connect
to a data store in the same way as ADO datasets. See Connecting an ADO dataset to a data store for details.

The following topics provide details on how to specify and execute commands using TADOCommand:

Specifying the command
Using Command objects
Canceling commands
Retrieving result sets with commands
Handling command parameters

Specifying the Command
Specify commands for a TADOCommand component using the CommandText property. Like TADODataSet,
TADOCommand lets you specify the command in different ways, depending on the CommandType property.
Possible values for CommandType include: cmdText (used if the command is an SQL statement), cmdTable (if it is
a table name), and cmdStoredProc (if the command is the name of a stored procedure). At design-time, select the
appropriate command type from the list in the Object Inspector. At runtime, assign a value of type
TCommandType to the CommandType property.

[Delphi]
with ADOCommand1 do begin
 CommandText := "AddEmployee";
 CommandType := cmdStoredProc;
...
end;

[C++]
ADOCommand1->CommandText = "AddEmployee";
ADOCommand1->CommandType = cmdStoredProc;
...

If no specific type is specified, the server is left to decide as best it can based on the command in CommandText.

CommandText can contain the text of an SQL query that includes parameters or the name of a stored procedure
that uses parameters. You must then supply parameter values, which are bound to the parameters before executing
the command. See Handling command parameters for details.

1981

Using the Execute Method
Before TADOCommand can execute its command, it must have a valid connection to a data store. This is established
just as with an ADO dataset. See Connecting an ADO dataset to a data store for details.

To execute the command, call the Execute method. Execute is an overloaded method that lets you choose the most
appropriate way to execute the command.

For commands that do not require any parameters and for which you do not need to know how many records were
affected, call Execute without any parameters:

[Delphi]
with ADOCommand1 do begin
 CommandText := "UpdateInventory";
 CommandType := cmdStoredProc;
 Execute;
end;

[C++]
ADOCommand1->CommandText = "UpdateInventory";
ADOCommand1->CommandType = cmdStoredProc;
ADOCommand1->Execute();

Other versions of Execute let you provide parameter values using a Variant array, and to obtain the number of records
affected by the command.

For information on executing commands that return a result set, see Retrieving result sets with commands.

Canceling Commands
If you are executing the command asynchronously, then after calling Execute you can abort the execution by calling
the Cancel method:

[Delphi]
procedure TDataForm.ExecuteButtonClick(Sender: TObject);
begin
 ADOCommand1.Execute;
end;
procedure TDataForm.CancelButtonClick(Sender: TObject);
begin
 ADOCommand1.Cancel;
end;

[C++]
void __fastcall TDataForm::ExecuteButtonClick(TObject *Sender)
{
 ADOCommand1->Execute();
}
void __fastcall TDataForm::CancelButtonClick(TObject *Sender)
{
 ADOCommand1->Cancel();
}

The Cancel method only has an effect if there is a command pending and it was executed asynchronously
(eoAsynchExecute is in the ExecuteOptions parameter of the Execute method). A command is said to be pending
if the Execute method has been called but the command has not yet been completed or timed out.

1982

A command times out if it is not completed or canceled before the number of seconds specified in the
CommandTimeout property expire. By default, commands time out after 30 seconds.

Retrieving Result Sets with Commands
Unlike TADOQuery components, which use different methods to execute depending on whether they return a result
set, TADOCommand always uses the Execute command to execute the command, regardless of whether it returns
a result set. When the command returns a result set, Execute returns an interface to the ADO _RecordSet interface.

The most convenient way to work with this interface is to assign it to the RecordSet property of an ADO dataset.

For example, the following code uses TADOCommand (ADOCommand1) to execute a SELECT query, which returns
a result set. This result set is then assigned to the RecordSet property of a TADODataSet component
(ADODataSet1).

[Delphi]
with ADOCommand1 do begin
 CommandText := 'SELECT Company, State ' +
 'FROM customer ' +
 'WHERE State = :StateParam';
 CommandType := cmdText;
 Parameters.ParamByName('StateParam').Value := 'HI';
 ADODataSet1.Recordset := Execute;
end;

[C++]
ADOCommand1->CommandText = "SELECT Company, State ";
ADOCommand1->CommandText += "FROM customer ";
ADOCommand1->CommandText += "WHERE State = :StateParam";
ADOCommand1->CommandType = cmdText;
ADOCommand1->Parameters->ParamByName("StateParam")->Value = "HI";
ADOCommand1->Recordset = ADOCommand1->Execute();

As soon as the result set is assigned to the ADO dataset's Recordset property, the dataset is automatically activated
and the data is available.

Handling Command Parameters
There are two ways in which a TADOCommand object may use parameters:

The CommandText property can specify a query that includes parameters. Working with parameterized queries
in TADOCommand works like using a parameterized query in an ADO dataset.
The CommandText property can specify a stored procedure that uses parameters. Stored procedure
parameters work much the same using TADOCommand as with an ADO dataset.

There are two ways to supply parameter values when working with TADOCommand: you can supply them when
you call the Execute method, or you can specify them ahead of time using the Parameters property.

The Execute method is overloaded to include versions that take a set of parameter values as a Variant array. This
is useful when you want to supply parameter values quickly without the overhead of setting up the Parameters
property:

[Delphi]
ADOCommand1.Execute(VarArrayOf([Edit1.Text, Date]));

1983

[C++]
Variant Values[2];
Values[0] = Edit1->Text;
Values[1] = Date();
ADOCommand1.Execute(VarArrayOf(Values,1));

When working with stored procedures that return output parameters, you must use the Parameters property instead.
Even if you do not need to read output parameters, you may prefer to use the Parameters property, which lets you
supply parameters at design time and lets you work with TADOCommand properties in the same way you work with
the parameters on datasets.

When you set the CommandText property, the Parameters property is automatically updated to reflect the
parameters in the query or those used by the stored procedure. At design-time, you can use the Parameter Editor
to access parameters, by clicking the ellipsis button for the Parameters property in the Object Inspector. At runtime,
use properties and methods of TParameter to set (or get) the values of each parameter.

[Delphi]
with ADOCommand1 do begin
 CommandText := 'INSERT INTO Talley ' +
 '(Counter) ' +
 'VALUES (:NewValueParam)';
 CommandType := cmdText;
 Parameters.ParamByName("NewValueParam").Value := 57;
 Execute
end;

[C++]
ADOCommand1->CommandText = "INSERT INTO Talley ";
ADOCommand1->CommandText += "(Counter) ";
ADOCommand1->CommandText += "VALUES (:NewValueParam)";
ADOCommand1->CommandType = cmdText;
ADOCommand1->Parameters->ParamByName("NewValueParam")->Value = 57;
ADOCommand1->Execute()

1984

Using unidirectional datasets

Using Unidirectional Datasets
dbExpress is a set of lightweight database drivers that provide fast access to SQL database servers. For each
supported database, dbExpress provides a driver that adapts the server-specific software to a set of uniform
dbExpress interfaces. When you deploy a database application that uses dbExpress, you need only include a dll
(the server-specific driver) with the application files you build.

dbExpress lets you access databases using unidirectional datasets. Unidirectional datasets are designed for quick
lightweight access to database information, with minimal overhead. Like other datasets, they can send an SQL
command to the database server, and if the command returns a set of records, obtain a cursor for accessing those
records. However, unidirectional datasets can only retrieve a unidirectional cursor. They do not buffer data in
memory, which makes them faster and less resource-intensive than other types of dataset. However, because there
are no buffered records, unidirectional datasets are also less flexible than other datasets. Many of the capabilities
introduced by TDataSet are either unimplemented in unidirectional datasets, or cause them to raise exceptions. For
example:

The only supported navigation methods are the First and Next methods. Most others raise exceptions. Some,
such as the methods involved in bookmark support, simply do nothing.
There is no built-in support for editing because editing requires a buffer to hold the edits. The CanModify property
is always False, so attempts to put the dataset into edit mode always fail. You can, however, use unidirectional
datasets to update data using an SQL UPDATE command or provide conventional editing support by using a
dbExpress-enabled client dataset or connecting the dataset to a client dataset .
There is no support for filters, because filters work with multiple records, which requires buffering. If you try to
filter a unidirectional dataset, it raises an exception. Instead, all limits on what data appears must be imposed
using the SQL command that defines the data for the dataset.
There is no support for lookup fields, which require buffering to hold multiple records containing lookup values.
If you define a lookup field on a unidirectional dataset, it does not work properly.

Despite these limitations, unidirectional datasets are a powerful way to access data. They are the fastest data access
mechanism, and very simple to use and deploy.

The following topics describe unidirectional datasets in greater detail:

Types of unidirectional datasets
Connecting to the database server
Specifying what data to display
Fetching the data
Executing commands that do not return records

1985

Setting up master/detail linked cursors
Accessing Schema Information
Debugging dbExpress applications

Types of Unidirectional Datasets
The dbExpress category of the Tool palette contains four types of unidirectional dataset: TSQLDataSet,
TSQLQuery, TSQLTable, and TSQLStoredProc.

TSQLDataSet is the most general of the four. You can use an SQL dataset to represent any data available through
dbExpress, or to send commands to a database accessed through dbExpress. This is the recommended component
to use for working with database tables in new database applications.

TSQLQuery is a query-type dataset that encapsulates an SQL statement and enables applications to access the
resulting records, if any.

TSQLTable is a table-type dataset that represents all of the rows and columns of a single database table.

TSQLStoredProc is a stored procedure-type dataset that executes a stored procedure defined on a database server.

Note: The dbExpress page also includes TSimpleDataSet, which is not a unidirectional dataset. Rather, it is a client
dataset that uses a unidirectional dataset internally to access its data.

Connecting to the Database Server
The first step when working with a unidirectional dataset is to connect it to a database server. At design time, once
a dataset has an active connection to a database server, the Object Inspector can provide drop-down lists of values
for other properties. For example, when representing a stored procedure, you must have an active connection before
the Object Inspector can list what stored procedures are available on the server.

The connection to a database server is represented by a separate TSQLConnection component. You work with
TSQLConnection like any other database connection component.

To use TSQLConnection to connect a unidirectional dataset to a database server, set the SQLConnection property.
At design time, you can choose the SQL connection component from a drop-down list in the Object Inspector. If
you make this assignment at runtime, be sure that the connection is active:

[Delphi]
SQLDataSet1.SQLConnection := SQLConnection1;
SQLConnection1.Connected := True;

[C++]
SQLDataSet1->SQLConnection = SQLConnection1;
SQLConnection1->Connected = true;

Typically, all unidirectional datasets in an application share the same connection component, unless you are working
with data from multiple database servers. However, you may want to use a separate connection for each dataset if
the server does not support multiple statements per connection. Check whether the database server requires a
separate connection for each dataset by reading the MaxStmtsPerConn property. By default, TSQLConnection
generates connections as needed when the server limits the number of statements that can be executed over a
connection. If you want to keep stricter track of the connections you are using, set the AutoClone property to False.

1986

Before you assign the SQLConnection property, you will need to set up the TSQLConnection component so that it
identifies the database server and any required connection parameters (including which database to use on the
server, the host name of the machine running the server, the username, password, and so on).

Setting Up TSQLConnection
In order to describe a database connection in sufficient detail for TSQLConnection to open a connection, you must
identify both the driver to use and a set of connection parameters the are passed to that driver.

Identifying the driver
The driver is identified by the DriverName property, which is the name of an installed dbExpress driver, such as
INTERBASE, INFORMIX, ORACLE, MYSQL, MSSQL, or DB2. The driver name is associated with two files:

The dbExpress driver. This can be either a dynamic-link library with a name like dbexpint.dll, dbexpora.dll,
dbexpmysql.dll, or dbexpdb2.dll, or a compiled unit that you can statically link into your application
(dbexpint.dcu, dbexpora.dcu, dbexpmys.dcu, or dbexpdb2.dcu).
The dynamic-link library provided by the database vendor for client-side support.

The relationship between these two files and the database name is stored in a file called dbxdrivers.ini, which is
updated when you install a dbExpress driver. Typically, you do not need to worry about these files because the SQL
connection component looks them up in dbxdrivers.ini when given the value of DriverName. When you set the
DriverName property, TSQLConnection automatically sets the LibraryName and VendorLib properties to the names
of the associated dlls. Once LibraryName and VendorLib have been set, your application does not need to rely on
dbxdrivers.ini. (That is, you do not need to deploy dbxdrivers.ini with your application unless you set the
DriverName property at runtime.)

Specifying connection parameters
The Params property is a string list that lists name/value pairs. Each pair has the form Name=Value, where Name
is the name of the parameter, and Value is the value you want to assign.

The particular parameters you need depend on the database server you are using. However, one particular
parameter, Database, is required for all servers. Its value depends on the server you are using. For example, with
InterBase, Database is the name of the .gdb file, with ORACLE it is the entry in TNSNames.ora, while with DB2, it
is the client-side node name.

Other typical parameters include the User_Name (the name to use when logging in), Password (the password for
User_Name), HostName (the machine name or IP address of where the server is located), and TransIsolation (the
degree to which transactions you introduce are aware of changes made by other transactions). When you specify
a driver name, the Params property is preloaded with all the parameters you need for that driver type, initialized to
default values.

Because Params is a string list, at design time you can double-click on the Params property in the Object
Inspector to edit the parameters using the String List editor. At runtime, use the Params.Values property to assign
values to individual parameters.

Naming a connection description
Although you can always specify a connection using only the DatabaseName and Params properties, it can be more
convenient to name a specific combination and then just identify the connection by name. You can name
dbExpress database and parameter combinations, which are then saved in a file called dbxconnections.ini. The
name of each combination is called a connection name.

Once you have defined the connection name, you can identify a database connection by simply setting the
ConnectionName property to a valid connection name. Setting ConnectionName automatically sets the

1987

DriverName and Params properties. Once ConnectionName is set, you can edit the Params property to create
temporary differences from the saved set of parameter values, but changing the DriverName property clears both
Params and ConnectionName.

One advantage of using connection names arises when you develop your application using one database (for
example Local InterBase), but deploy it for use with another (such as ORACLE). In that case, DriverName and
Params will likely differ on the system where you deploy your application from the values you use during
development. You can switch between the two connection descriptions easily by using two versions of the
dbxconnections.ini file. At design-time, your application loads the DriverName and Params from the design-time
version of dbxconnections.ini. Then, when you deploy your application, it loads these values from a separate version
of dbxconnections.ini that uses the "real" database. However, for this to work, you must instruct your connection
component to reload the DriverName and Params properties at runtime. There are two ways to do this:

Set the LoadParamsOnConnect property to True. This causes TSQLConnection to automatically set
DriverName and Params to the values associated with ConnectionName in dbxconnections.ini when the
connection is opened.
Call the LoadParamsFromIniFile method. This method sets DriverName and Params to the values associated
with ConnectionName in dbxconnections.ini (or in another file that you specify). You might choose to use this
method if you want to then override certain parameter values before opening the connection.

Using the Connection Editor
The relationships between connection names and their associated driver and connection parameters is stored in
the dbxconnections.ini file. You can create or modify these associations using the Connection Editor.

To display the Connection Editor, double-click on the TSQLConnection component. The Connection Editor appears,
with a drop-down list containing all available drivers, a list of connection names for the currently selected driver, and
a table listing the connection parameters for the currently selected connection name.

You can use this dialog to indicate the connection to use by selecting a driver and connection name. Once you have
chosen the configuration you want, click the Test Connection button to check that you have chosen a valid
configuration.

In addition, you can use this dialog to edit the named connections in dbxconnections.ini:

Edit the parameter values in the parameter table to change the currently selected named connection. When
you exit the dialog by clicking OK, the new parameter values are saved to dbxconnections.ini.
Click the Add Connection button to define a new named connection. A dialog appears where you specify the
driver to use and the name of the new connection. Once the connection is named, edit the parameters to specify
the connection you want and click the OK button to save the new connection to dbxconnections.ini.
Click the Delete Connection button to delete the currently selected named connection from dbxconnections.ini.
Click the Rename Connection button to change the name of the currently selected named connection. Note that
any edits you have made to the parameters are saved with the new name when you click the OK button.

Specifying What Data to Display
There are a number of ways to specify what data a unidirectional dataset represents. Which method you choose
depends on the type of unidirectional dataset you are using and whether the information comes from a single
database table, the results of a query, or from a stored procedure.

When you work with a TSQLDataSet component, use the CommandType property to indicate where the dataset
gets its data. CommandType can take any of the following values:

ctQuery: When CommandType is ctQuery, TSQLDataSet executes a query you specify. If the query is a
SELECT command, the dataset contains the resulting set of records.

1988

ctTable: When CommandType is ctTable, TSQLDataSet retrieves all of the records from a specified table.
ctStoredProc: When CommandType is ctStoredProc, TSQLDataSet executes a stored procedure. If the stored
procedure returns a cursor, the dataset contains the returned records.

The following topics describe how you can specify a set of records for each type of source:

Representing the results of a query
Representing the records in a table
Representing the results of a stored procedure

Note: You can also populate the unidirectional dataset with metadata about what is available on the server. For
information on how to do this, see Fetching metadata into a unidirectional dataset.

Representing the Results of a Query
Using a query is the most general way to specify a set of records. Queries are simply commands written in SQL.
You can use either TSQLDataSet or TSQLQuery to represent the result of a query.

When using TSQLDataSet, set the CommandType property to ctQuery and assign the text of the query statement
to the CommandText property. When using TSQLQuery, assign the query to the SQL property instead. These
properties work the same way for all general-purpose or query-type datasets. Specifying the query discusses them
in greater detail.

When you specify the query, it can include parameters, or variables, the values of which can be varied at design
time or runtime. Parameters can replace data values that appear in the SQL statement. Using parameters in queries
and supplying values for those parameters is discussed in Using parameters in queries.

SQL defines queries such as UPDATE queries that perform actions on the server but do not return records. Such
queries are discussed in Executing commands that do not return records.

Representing the Records in a Table
When you want to represent all of the fields and all of the records in a single underlying database table, you can use
either TSQLDataSet or TSQLTable to generate the query for you rather than writing the SQL yourself.

Note: If server performance is a concern, you may want to compose the query explicitly rather than relying on an
automatically-generated query. Automatically-generated queries use wildcards rather than explicitly listing
all of the fields in the table. This can result in slightly slower performance on the server. The wildcard (*) in
automatically-generated queries is more robust to changes in the fields on the server.

Representing a table using TSQLDataSet
To make TSQLDataSet generate a query to fetch all fields and all records of a single database table, set the
CommandType property to ctTable.

When CommandType is ctTable, TSQLDataSet generates a query based on the values of two properties:

CommandText specifies the name of the database table that the TSQLDataSet object should represent.
SortFieldNames lists the names of any fields to use to sort the data, in the order of significance.

For example, if you specify the following:

1989

[Delphi]
SQLDataSet1.CommandType := ctTable;
SQLDataSet1.CommandText := 'Employee';
SQLDataSet1.SortFieldNames := 'HireDate,Salary'

[C++]
SQLDataSet1->CommandType = ctTable;
SQLDataSet1->CommandText = "Employee";
SQLDataSet1->SortFieldNames = "HireDate,Salary"

TSQLDataSet generates the following query, which lists all the records in the Employee table, sorted by HireDate
and, within HireDate, by Salary:

select * from Employee order by HireDate, Salary

Representing a table using TSQLTable
When using TSQLTable, specify the table you want using the TableName property.

To specify the order of fields in the dataset, you must specify an index. There are two ways to do this:

Set the IndexName property to the name of an index defined on the server that imposes the order you want.
Set the IndexFieldNames property to a semicolon-delimited list of field names on which to sort.
IndexFieldNames works like the SortFieldNames property of TSQLDataSet, except that it uses a semicolon
instead of a comma as a delimiter.

Representing the Results of a Stored Procedure
Stored procedures are sets of SQL statements that are named and stored on an SQL server. How you indicate the
stored procedure you want to execute depends on the type of unidirectional dataset you are using.

When using TSQLDataSet, to specify a stored procedure:

Set the CommandType property to ctStoredProc.
Specify the name of the stored procedure as the value of the CommandText property:

[Delphi]
SQLDataSet1.CommandType := ctStoredProc;
SQLDataSet1.CommandText := 'MyStoredProcName';

[C++]
SQLDataSet1->CommandType = ctStoredProc;
SQLDataSet1->CommandText = "MyStoredProcName";

When using TSQLStoredProc, you need only specify the name of the stored procedure as the value of the
StoredProcName property.

[Delphi]
SQLStoredProc1.StoredProcName := 'MyStoredProcName';

1990

[C++]
SQLStoredProc1->StoredProcName = "MyStoredProcName";

After you have identified a stored procedure, your application may need to enter values for any input parameters of
the stored procedure or retrieve the values of output parameters after you execute the stored procedure. See Working
with stored procedure parameters for information about working with stored procedure parameters.

Fetching the Data
Once you have specified the source of the data, you must fetch the data before your application can access it. Once
the dataset has fetched the data, data-aware controls linked to the dataset through a data source automatically
display data values and client datasets linked to the dataset through a provider can be populated with records.

As with any dataset, there are two ways to fetch the data for a unidirectional dataset:

One way is to set the Activeproperty to True, either at design time in the Object Inspector, or in code at runtime:

[Delphi]
CustQuery.Active := True;

[C++]
CustQuery->Active = true;

Another way is to call the Open method at runtime,

[Delphi]
CustQuery.Open;

[C++]
CustQuery->Open();

Use the Active property or the Open method with any unidirectional dataset that obtains records from the server. It
does not matter whether these records come from a SELECT query (including automatically-generated queries when
the CommandType is ctTable) or a stored procedure.

Preparing the dataset
Before a query or stored procedure can execute on the server, it must first be "prepared". Preparing the dataset
means that dbExpress and the server allocate resources for the statement and its parameters. If CommandType is
ctTable, this is when the dataset generates its SELECT query. Any parameters that are not bound by the server are
folded into a query at this point.

Unidirectional datasets are automatically prepared when you set Active to True or call the Open method. When you
close the dataset, the resources allocated for executing the statement are freed. If you intend to execute the query
or stored procedure more than once, you can improve performance by explicitly preparing the dataset before you
open it the first time. To explicitly prepare a dataset, set its Prepared property to True.

[Delphi]
CustQuery.Prepared := True;

1991

[C++]
CustQuery->Prepared = true;

When you explicitly prepare the dataset, the resources allocated for executing the statement are not freed until you
set Prepared to False.

Set the Prepared property to False if you want to ensure that the dataset is re-prepared before it executes (for
example, if you change a parameter value or the SortFieldNames property).

Fetching multiple datasets
Some stored procedures return multiple sets of records. The dataset only fetches the first set when you open it. In
order to access the other sets of records, call the NextRecordSet method:

[Delphi]
var
 DataSet2: TCustomSQLDataSet;
 nRows: Integer;
begin
 DataSet2 := SQLStoredProc1.NextRecordSet;
 ...

[C++]
TCustomSQLDataSet *DataSet2 = SQLStoredProc1->NextRecordSet();

NextRecordSet returns a newly created TCustomSQLDataSet component that provides access to the next set of
records. That is, the first time you call NextRecordSet, it returns a dataset for the second set of records. Calling
NextRecordSet returns a third dataset, and so on, until there are no more sets of records. When there are no
additional datasets, NextRecordSet returns nil.

Executing Commands That Do Not Return Records
You can use a unidirectional dataset even if the query or stored procedure it represents does not return any records.
Such commands include statements that use Data Definition Language (DDL) or Data Manipulation Language (DML)
statements other than SELECT statements (For example, INSERT, DELETE, UPDATE, CREATE INDEX, and
ALTER TABLE commands do not return any records). The language used in commands is server-specific, but
usually compliant with the SQL-92 standard for the SQL language.

The SQL command you execute must be acceptable to the server you are using. Unidirectional datasets neither
evaluate the SQL nor execute it. They merely pass the command to the server for execution.

Note: If the command does not return any records, you do not need to use a unidirectional dataset at all, because
there is no need for the dataset methods that provide access to a set of records. The SQL connection
component that connects to the database server can be used directly to execute a command on the server.
See Sending commands to the server for details.

The following topics discuss how to create and execute a command that does not return any records:

Specifying the command to execute
Executing the command

In addition, the topic,Creating and modifying server metadata, discusses some of the SQL commands that do not
return datasets:

1992

Specifying the Command to Execute
With unidirectional datasets, the way you specify the command to execute is the same whether the command results
in a dataset or not. That is:

When using TSQLDataSet, use the CommandType and CommandText properties to specify the command:

If CommandType is ctQuery, CommandText is the SQL statement to pass to the server.
If CommandType is ctStoredProc, CommandText is the name of a stored procedure to execute.

When using TSQLQuery, use the SQL property to specify the SQL statement to pass to the server.

When using TSQLStoredProc, use the StoredProcName property to specify the name of the stored procedure to
execute.

Just as you specify the command in the same way as when you are retrieving records, you work with query
parameters or stored procedure parameters the same way as with queries and stored procedures that return records.

Executing the Command
To execute a query or stored procedure that does not return any records, you do not use the Active property or the
Open method. Instead, you must use

The ExecSQL method if the dataset is an instance of TSQLDataSet or TSQLQuery.

[Delphi]
FixTicket.CommandText := 'DELETE FROM TrafficViolations WHERE (TicketID = 1099)';
FixTicket.ExecSQL;

[C++]
FixTicket->CommandText = "DELETE FROM TrafficViolations WHERE (TicketID = 1099)";
FixTicket->ExecSQL();

The ExecProc method if the dataset is an instance of TSQLStoredProc.

[Delphi]
SQLStoredProc1.StoredProcName := 'MyCommandWithNoResults';
SQLStoredProc1.ExecProc;

[C++]
SQLStoredProc1->StoredProcName = "MyCommandWithNoResults";
SQLStoredProc1->ExecProc();

[Delphi]

If you are executing the query or stored procedure multiple times, it is a good idea to set the Prepared property to True.

Creating and Modifying Server Metadata
Most of the commands that do not return data fall into two categories: those that you use to edit data (such as
INSERT, DELETE, and UPDATE commands), and those that you use to create or modify entities on the server such
as tables, indexes, and stored procedures.

1993

If you don't want to use explicit SQL commands for editing, you can link your unidirectional dataset to a client dataset
and let it handle all the generation of all SQL commands concerned with editing. In fact, this is the recommended
approach because data-aware controls are designed to perform edits through a dataset such as TClientDataSet.

The only way your application can create or modify metadata on the server, however, is to send a command. Not
all database drivers support the same SQL syntax. It is beyond the scope of this topic to describe the SQL syntax
supported by each database type and the differences between the database types. For a comprehensive and up-
to-date discussion of the SQL implementation for a given database system, see the documentation that comes with
that system.

In general, use the CREATE TABLE statement to create tables in a database and CREATE INDEX to create new
indexes for those tables. Where supported, use other CREATE statements for adding various metadata objects,
such as CREATE DOMAIN, CREATE VIEW, CREATE SCHEMA, and CREATE PROCEDURE.

For each of the CREATE statements, there is a corresponding DROP statement to delete the metadata object. These
statements include DROP TABLE, DROP VIEW, DROP DOMAIN, DROP SCHEMA, and DROP PROCEDURE.

To change the structure of a table, use the ALTER TABLE statement. ALTER TABLE has ADD and DROP clauses
to create new elements in a table and to delete them. For example, use the ADD COLUMN clause to add a new
column to the table and DROP CONSTRAINT to delete an existing constraint from the table.

For example, the following statement creates a stored procedure called GET_EMP_PROJ on an InterBase database:

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID CHAR(5))
AS
BEGIN
 FOR SELECT PROJ_ID
 FROM EMPLOYEE_PROJECT
 WHERE EMP_NO = :EMP_NO
 INTO :PROJ_ID
 DO
 SUSPEND;
END

The following code uses a TSQLDataSet to create this stored procedure. Note the use of the ParamCheck property
to prevent the dataset from confusing the parameters in the stored procedure definition (:EMP_NO and :PROJ_ID)
with a parameter of the query that creates the stored procedure.

[Delphi]
with SQLDataSet1 do
begin
 ParamCheck := False;
 CommandType := ctQuery;
 CommandText := 'CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT) ' +
 'RETURNS (PROJ_ID CHAR(5)) AS ' +
 'BEGIN ' +
 'FOR SELECT PROJ_ID FROM EMPLOYEE_PROJECT ' +
 'WHERE EMP_NO = :EMP_NO ' +
 'INTO :PROJ_ID ' +
 'DO SUSPEND; ' +
 END';
 ExecSQL;
end;

[C++]
SQLDataSet1->ParamCheck = false;
SQLDataSet1->CommandType = ctQuery;
SQLDataSet1->CommandText = "CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT) RETURNS

1994

(PROJ_ID CHAR(5)) AS BEGIN FOR SELECT PROJ_ID FROM EMPLOYEE_PROJECT WHERE EMP_NO = :EMP_NO
INTO :PROJ_ID DO SUSPEND; END";
SQLDataSet1->ExecSQL();

Setting Up Master/detail Linked Cursors
There are two ways to use linked cursors to set up a master/detail relationship with a unidirectional dataset as the
detail set. Which method you use depends on the type of unidirectional dataset you are using. Once you have set
up such a relationship, the unidirectional dataset (the "many" in a one-to-many relationship) provides access only
to those records that correspond to the current record on the master set (the "one" in the one-to-many relationship).

TSQLDataSet and TSQLQuery require you to use a parameterized query to establish a master/detail relationship.
This is the technique for creating such relationships on all query-type datasets. For details on creating master/detail
relationships with query-type datasets, see Establishing master/detail relationships using parameters.

To set up a master/detail relationship where the detail set is an instance of TSQLTable, use the MasterSource and
MasterFields properties, just as you would with any other table-type dataset. For details on creating master/detail
relationships with table-type datasets, see Creating Master/detail Relationships.

Accessing Schema Information
There are two ways to obtain information about what is available on the server. This information, called schema
information or metadata, includes information about what tables and stored procedures are available on the server
and information about these tables and stored procedures (such as the fields a table contains, the indexes that are
defined, and the parameters a stored procedure uses).

The simplest way to obtain this metadata is to use the methods of TSQLConnection. These methods fill an existing
string list or list object with the names of tables, stored procedures, fields, or indexes, or with parameter descriptors.
This technique is the same as the way you fill lists with metadata for any other database connection component.
These methods are described in Obtaining metadata.

If you require more detailed schema information, you can populate a unidirectional dataset with metadata. Instead
of a simple list, the unidirectional dataset is filled with schema information, where each record represents a single
table, stored procedure, index, field, or parameter. See Fetching metadata into a unidirectional dataset for details
on populating a unidirectional dataset with schema information.

Fetching Metadata into a Unidirectional Dataset
To populate a unidirectional datasets with metadata from the database server, you must first indicate what data you
want to see, using the SetSchemaInfo method. SetSchemaInfo takes three parameters:

The type of schema information (metadata) you want to fetch. This can be a list of tables (stTables), a list of
system tables (stSysTables), a list of stored procedures (stProcedures), a list of fields in a table (stColumns),
a list of indexes (stIndexes), or a list of parameters used by a stored procedure (stProcedureParams). Each
type of information uses a different set of fields to describe the items in the list. For details on the structures of
these datasets, see The structure of metadata datasets.
If you are fetching information about fields, indexes, or stored procedure parameters, the name of the table or
stored procedure to which they apply. If you are fetching any other type of schema information, this parameter
is nil.
A pattern that must be matched for every name returned. This pattern is an SQL pattern such as 'Cust%', which
uses the wildcards '%' (to match a string of arbitrary characters of any length) and '_' (to match a single arbitrary
character). To use a literal percent or underscore in a pattern, the character is doubled (%% or __). If you do
not want to use a pattern, this parameter can be nil.

1995

If you are fetching schema information about tables (stTables), the resulting schema information can describe
ordinary tables, system tables, views, and/or synonyms, depending on the value of the SQL connection's TableScope
property.

The following call requests a table listing all system tables (server tables that contain metadata):

[Delphi]
SQLDataSet1.SetSchemaInfo(stSysTable, "", "");

[C++]
SQLDataSet1->SetSchemaInfo(stSysTable, "", "");

When you open the dataset after this call to SetSchemaInfo, the resulting dataset has a record for each table, with
columns giving the table name, type, schema name, and so on. If the server does not use system tables to store
metadata (for example MySQL), when you open the dataset it contains no records.

The previous example used only the first parameter. Suppose, Instead, you want to obtain a list of input parameters
for a stored procedure named 'MyProc'. Suppose, further, that the person who wrote that stored procedure named
all parameters using a prefix to indicate whether they were input or output parameters ('inName', 'outValue' and so
on). You could call SetSchemaInfo as follows:

[Delphi]
SQLDataSet1.SetSchemaInfo(stProcedureParams, "MyProc", "in%");

[C++]
SQLDataSet1->SetSchemaInfo(stProcedureParams, "MyProc", "in%");

The resulting dataset is a table of input parameters with columns to describe the properties of each parameter.

Fetching data after using the dataset for metadata
There are two ways to return to executing queries or stored procedures with the dataset after a call to SetSchemaInfo:

Change the CommandText property, specifying the query, table, or stored procedure from which you want to
fetch data.
Call SetSchemaInfo, setting the first parameter to stNoSchema. In this case, the dataset reverts to fetching the
data specified by the current value of CommandText.

The Structure of Metadata Datasets
For each type of metadata you can access using TSQLDataSet, there is a predefined set of columns (fields) that
are populated with information about the items of the requested type.

Information about tables
When you request information about tables (stTables or stSysTables), the resulting dataset includes a record for
each table. It has the following columns:

Columns in tables of metadata listing tables
Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

1996

CATALOG_NAME ftString The name of the catalog (database) that contains the table. This is the same as the
Database parameter on an SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the table.

TABLE_NAME ftString The name of the table. This field determines the sort order of the dataset.

TABLE_TYPE ftInteger Identifies the type of table. It is a sum of one or more of the following values: 1: Table 2: View
4: System table 8: Synonym 16: Temporary table 32: Local table.

Information about stored procedures
When you request information about stored procedures (stProcedures), the resulting dataset includes a record for
each stored procedure. It has following columns:

Columns in tables of metadata listing stored procedures
Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the stored procedure. This is the same as
the Database parameter on an SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the stored procedure.

PROC_NAME ftString The name of the stored procedure. This field determines the sort order of the dataset.

PROC_TYPE ftInteger Identifies the type of stored procedure. It is a sum of one or more of the following values: 1:
Procedure 2: Function 4: Package 8: System procedure

IN_PARAMS ftSmallint The number of input parameters

OUT_PARAMS ftSmallint The number of output parameters.

Information about fields
When you request information about the fields in a specified table (stColumns), the resulting dataset includes a
record for each field. It includes the following columns:

Columns in tables of metadata listing fields
Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the table whose fields you listing. This
is the same as the Database parameter on an SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the field.

TABLE_NAME ftString The name of the table that contains the fields.

COLUMN_NAME ftString The name of the field. This value determines the sort order of the dataset.

COLUMN_POSITION ftSmallint The position of the column in its table.

COLUMN_TYPE ftInteger Identifies the type of value in the field. It is a sum of one or more of the following: 1: Row
ID 2: Row Version 4: Auto increment field 8: Field with a default value

COLUMN_DATATYPE ftSmallint The datatype of the column. This is one of the logical field type constants defined in
sqllinks.pas.

1997

COLUMN_TYPENAME ftString A string describing the datatype. This is the same information as contained in
COLUMN_DATATYPE and COLUMN_SUBTYPE, but in a form used in some DDL
statements.

COLUMN_SUBTYPE ftSmallint A subtype for the column's datatype. This is one of the logical subtype constants defined
in sqllinks.pas.

COLUMN_PRECISION ftInteger The size of the field type (number of characters in a string, bytes in a bytes field, significant
digits in a BCD value, members of an ADT field, and so on).

COLUMN_SCALE ftSmallint The number of digits to the right of the decimal on BCD values, or descendants on ADT
and array fields.

COLUMN_LENGTH ftInteger The number of bytes required to store field values.

COLUMN_NULLABLE ftSmallint A Boolean that indicates whether the field can be left blank (0 means the field requires a
value).

Information about indexes
When you request information about the indexes on a table (stIndexes), the resulting dataset includes a record for
each field in each record. (Multi-record indexes are described using multiple records) The dataset has the following
columns:

Columns in tables of metadata listing indexes
Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the index. This is the same as the
Database parameter on an SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the index.

TABLE_NAME ftString The name of the table for which the index is defined.

INDEX_NAME ftString The name of the index. This field determines the sort order of the dataset.

PKEY_NAME ftString Indicates the name of the primary key.

COLUMN_NAME ftString The name of the field (column) in the index.

COLUMN_POSITION ftSmallint The position of this field in the index.

INDEX_TYPE ftSmallint Identifies the type of index. It is a sum of one or more of the following values: 1: Non-unique
2: Unique 4: Primary key

SORT_ORDER ftString Indicates that the index is ascending (a) or descending (d).

FILTER ftString Describes a filter condition that limits the indexed records.

Information about stored procedure parameters
When you request information about the parameters of a stored procedure (stProcedureParams), the resulting
dataset includes a record for each parameter. It has the following columns:

Columns in tables of metadata listing parameters
Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the stored procedure. This is the same
as the Database parameter on an SQL connection component.

1998

SCHEMA_NAME ftString The name of the schema that identifies the owner of the stored procedure.

PROC_NAME ftString The name of the stored procedure that contains the parameter.

PARAM_NAME ftString The name of the parameter. This field determines the sort order of the dataset.

PARAM_TYPE ftSmallint Identifies the type of parameter. This is the same as a TParam object's ParamType
property.

PARAM_DATATYPE ftSmallint The datatype of the parameter. This is one of the logical field type constants defined in
sqllinks.pas.

PARAM_SUBTYPE ftSmallint A subtype for the parameter's datatype. This is one of the logical subtype constants defined
in sqllinks.pas.

PARAM_TYPENAME ftString A string describing the datatype. This is the same information as contained in
PARAM_DATATYPE and PARAM_SUBTYPE, but in a form used in some DDL
statements.

PARAM_PRECISION ftInteger The maximum number of digits in floating-point values or bytes (for strings and Bytes
fields).

PARAM_SCALE ftSmallint The number of digits to the right of the decimal on floating-point values.

PARAM_LENGTH ftInteger The number of bytes required to store parameter values.

PARAM_NULLABLE ftSmallint A Boolean that indicates whether the parameter can be left blank (0 means the parameter
requires a value).

Information about Oracle packages
Columns in tables of metadata listing stored procedures

Column Name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the package. This is the same as the
Database parameter on an SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the package.

OBJECT_NAME ftString The name of the package. This field determines the sort order of the dataset.

Debugging dbExpress Applications
While you are debugging your database application, it may prove useful to monitor the SQL messages that are sent
to and from the database server through your connection component, including those that are generated
automatically for you (for example by a provider component or by the dbExpress driver).

Using TSQLMonitor to monitor SQL commands
TSQLConnection uses a companion component, TSQLMonitor, to intercept these messages and save them in a
string list. TSQLMonitor works much like the SQL monitor utility that you can use with the BDE, except that it monitors
only those commands involving a single TSQLConnection component rather than all commands managed by
dbExpress.

1999

To use TSQLMonitor
1 Add a TSQLMonitor component to the form or data module containing the TSQLConnection component whose

SQL commands you want to monitor.
2 Set its SQLConnection property to the TSQLConnection component.
3 Set the SQL monitor's Active property to True.

Flags for monitoring SQL commands
Flag Meaning

traceUNKNOWN All SQL commands.

traceQPREPARE prepared queries sent to the server.

traceQEXECUTE Queries to be executed by the server. Note that a single statement may be prepared once and executed
several times with different parameter bindings.

traceERROR Error messages returned by the server. The error message may include an error code, depending on the
server.

traceSTMT Operations to be performed such as ALLOCATE, PREPARE, EXECUTE, and FETCH.

traceCONNECT Operations associated with connecting and disconnecting to databases, including allocation of connection
handles and freeing connection handles, if required by server.

traceTRANSACT Transaction operations such as BEGIN, COMMIT, and ROLLBACK (ABORT).

traceBLOB Operations on Binary Large Object (BLOB) data, including STORE BLOB, GET BLOB HANDLE, and so on.

traceMISC commands not covered by any other flag.

traceVENDOR API function calls to the server. For example, ORLON for Oracle, ISC_ATTACH for InterBase.

traceDATAIN Parameter data sent to servers when doing INSERTs or UPDATEs.

traceDATAOUT Data retrieved from servers.

As SQL commands are sent to the server, the SQL monitor's TraceList property is automatically updated to list all
the SQL commands that are intercepted.

You can save this list to a file by specifying a value for the FileName property and then setting the AutoSave property
to True. AutoSave causes the SQL monitor to save the contents of the TraceList property to a file every time is logs
a new message.

If you do not want the overhead of saving a file every time a message is logged, you can use the OnLogTrace event
handler to only save files after a number of messages have been logged. For example, the following event handler
saves the contents of TraceList every 10th message, clearing the log after saving it so that the list never gets too long:

[Delphi]
procedure TForm1.SQLMonitor1LogTrace(Sender: TObject; CBInfo: Pointer);
var
 LogFileName: string;
begin
 with Sender as TSQLMonitor do
 begin
 if TraceCount = 10 then
 begin
 LogFileName := 'c:\log' + IntToStr(Tag) + '.txt';
 Tag := Tag + 1; {ensure next log file has a different name }
 SaveToFile(LogFileName);
 TraceList.Clear; { clear list }
 end;

2000

 end;
end;

[C++]
void __fastcall TForm1::SQLMonitor1LogTrace(TObject *Sender, void *CBInfo)
{
 TSQLMonitor *pMonitor = dynamic_cast<TSQLMonitor *>(Sender);
 if (pMonitor->TraceCount == 10)
 {
 // build unique file name
 AnsiString LogFileName = "c:\\log";
 LogFileName = LogFileName + IntToStr(pMonitor->Tag);
 LogFileName = LogFileName + ".txt"
 pMonitor->Tag = pMonitor->Tag + 1;
 // Save contents of log and clear the list
 pMonitor->SaveToFile(LogFileName);
 pMonitor->TraceList->Clear();

}

Note: If you were to use the previous event handler, you would also want to save any partial list (fewer than 10
entries) when the application shuts down.

Using a callback to monitor SQL commands
Instead of using TSQLMonitor, you can customize the way your application traces SQL commands by using the SQL
connection component's SetTraceCallbackEvent method. SetTraceCallbackEvent takes two parameters: a callback
of type TSQLCallbackEvent, and a user-defined value that is passed to the callback function.

The callback function takes two parameters: CallType and CBInfo:

CallType is reserved for future use.
CBInfo is a pointer to a record that includes the category (the same as CallType), the text of the SQL command,
and the user-defined value that is passed to the SetTraceCallbackEvent method.

The callback returns a value of type CBRType, typically cbrUSEDEF.

The dbExpress driver calls your callback every time the SQL connection component passes a command to the server
or the server returns an error message.

Warning: Do not call SetTraceCallbackEvent if the TSQLConnection object has an associated TSQLMonitor
component. TSQLMonitor uses the callback mechanism to work, and TSQLConnection can only support
one callback at a time.

2001

Using client datasets

Using Client Datasets: Overview
Client datasets are specialized datasets that hold all their data in memory. The support for manipulating the data
they store in memory is provided by midaslib.dcu or midas.dll. The format client datasets use for storing data is self-
contained and easily transported, which allows client datasets to

Read from and write to dedicated files on disk, acting as a file-based dataset. Properties and methods supporting
this mechanism are described in Using a client dataset with file-based data.
Cache updates for data from a database server. Client dataset features that support cached updates are
described in Using a client dataset to cache updates.
Represent the data in the client portion of a multi-tiered application. To function in this way, the client dataset
must work with an external provider, as described in Using a client dataset with a provider. For information about
multi-tiered database applications, see Creating multi-tiered applications.
Represent the data from a source other than a dataset. Because a client dataset can use the data from an
external provider, specialized providers can adapt a variety of information sources to work with client datasets.
For example, you can use an XML provider to enable a client dataset to represent the information in an XML
document.

Whether you use client datasets for file-based data, caching updates, data from an external provider (such as working
with an XML document or in a multi-tiered application), or a combination of these approaches such as a "briefcase
model" application, you can take advantage of broad range of features client datasets support for working with data.

Working with Data Using a Client Dataset
Like any dataset, you can use client datasets to supply the data for data-aware controls using a data source
component. See Using data controls for information on how to display database information in data-aware controls.

Client datasets implement all the properties an methods inherited from TDataSet. For a complete introduction to this
generic dataset behavior, see Understanding datasets.

In addition, client datasets implement many of the features common to table type datasets such as

Sorting records with indexes.
Using Indexes to search for records.
Limiting records with ranges.
Creating master/detail relationships.
Controlling read/write access
Creating the underlying dataset

2002

Emptying the dataset
Synchronizing client datasets

Client datasets differ from other datasets in that they hold all their data in memory. Because of this, their support for
some database functions can involve additional capabilities or considerations. The following topics describe some
of these common functions and the differences introduced by client datasets:

Navigating data
Limiting What Records Appear
Editing data .
Constraining data values
Sorting and indexing .
Representing calculated values .
Copying data from another dataset.
Adding application-specific information to the data .

Navigating Data in Client Datasets
If an application uses standard data-aware controls, then a user can navigate through a client dataset's records
using the built-in behavior of those controls. You can also navigate programmatically through records using standard
dataset methods such as First, Last, Next, and Prior. For more information about these methods, see Navigating
datasets.

Unlike most datasets, client datasets can also position the cursor at a specific record in the dataset by using the
RecNo property. Ordinarily an application uses RecNo to determine the record number of the current record. Client
datasets can, however, set RecNo to a particular record number to make that record the current one.

Limiting What Records Appear
To restrict users to a subset of available data on a temporary basis, applications can use ranges and filters. When
you apply a range or a filter, the client dataset does not display all the data in its in-memory cache. Instead, it only
displays the data that meets the range or filter conditions. For more information about using filters, see Displaying
and editing a subset of data using filters. For more information about ranges, see Limiting records with ranges.

With most datasets, filter strings are parsed into SQL commands that are then implemented on the database server.
Because of this, the SQL dialect of the server limits what operations are used in filter strings. Client datasets
implement their own filter support, which includes more operations than that of other datasets. For example, when
using a client dataset, filter expressions can include string operators that return substrings, operators that parse
date/time values, and much more. Client datasets also allow filters on BLOB fields or complex field types such as
ADT fields and array fields.

The various operators and functions that client datasets can use in filters, along with a comparison to other datasets
that support filters, is given below:

Filter support in client datasets
Operator or function Example Supported by other datasets Comment

Comparisons

= State = 'CA' Yes

<> State <> 'CA' Yes

>= DateEntered >= '1/1/1998' Yes

2003

<= Total <= 100,000 Yes

> Percentile > 50 Yes

< Field1 < Field2 Yes

BLANK State <> 'CA' or State = BLANK Yes Blank records do not appear unless
explicitly included in the filter.

IS NULL Field1 IS NULL No

IS NOT NULL Field1 IS NOT NULL No

Logical operators

and State = 'CA' and Country = 'US' Yes

or State = 'CA' or State = 'MA' Yes

not not (State = 'CA') Yes

Arithmetic operators

+ Total + 5 > 100 Depends on driver Applies to numbers, strings, or date
(time) + number.

- Field1 - 7 <> 10 Depends on driver Applies to numbers, dates, or date
(time) - number.

* Discount * 100 > 20 Depends on driver Applies to numbers only.

/ Discount > Total / 5 Depends on driver Applies to numbers only.

String functions

Upper Upper(Field1) = 'ALWAYS' No

Lower Lower(Field1 + Field2) = 'josp' No

Substring Substring(DateFld,8) = '1998'

Substring(DateFld,1,3) = 'JAN'

No Value goes from position of second
argument to end or number of chars in
third argument. First char has position
1.

Trim Trim(Field1 + Field2)

Trim(Field1, '-')

No Removes third argument from front
and back. If no third argument, trims
spaces.

TrimLeft TrimLeft(StringField)

TrimLeft(Field1, '$') <> ''

No See Trim.

TrimRight TrimRight(StringField)

TrimRight(Field1, '.') <> ''

No See Trim.

DateTime functions

Year Year(DateField) = 2000 No

Month Month(DateField) <> 12 No

Day Day(DateField) = 1 No

Hour Hour(DateField) < 16 No

Minute Minute(DateField) = 0 No

Second Second(DateField) = 30 No

GetDate GetDate - DateField > 7 No Represents current date and time.

2004

Date DateField = Date(GetDate) No Returns the date portion of a datetime
value.

Time TimeField > Time(GetDate) No Returns the time portion of a datetime
value.

Miscellaneous

Like Memo LIKE '%filters%' No Works like SQL-92 without the ESC
clause. When applied to BLOB fields,
FilterOptions determines whether
case is considered.

In Day(DateField) in (1,7) No Works like SQL-92. Second argument
is a list of values all with the same type.

* State = 'M*' Yes Wildcard for partial comparisons.

When applying ranges or filters, the client dataset still stores all of its records in memory. The range or filter merely
determines which records are available to controls that navigate or display data from the client dataset.

Note: When fetching data from a provider, you can also limit the data that the client dataset stores by supplying
parameters to the provider. For details, see Limiting Records with Parameters.

Editing Data
Client datasets represent their data as an in-memory data packet. This packet is the value of the client dataset's
Data property. By default, however, edits are not stored in the Data property. Instead the insertions, deletions, and
modifications (made by users or programmatically) are stored in an internal change log, represented by the Delta
property. Using a change log serves two purposes:

The change log is required for applying updates to a database server or external provider component.
The change log provides sophisticated support for undoing changes.

The LogChanges property lets you disable logging. When LogChanges is True, changes are recorded in the log.
When LogChanges is False, changes are made directly to the Data property. You can disable the change log in file-
based applications if you do not want the undo support.

Edits in the change log remain there until they are removed by the application. Applications remove edits when

Undoing changes
Saving changes

Note: Saving the client dataset to a file does not remove edits from the change log. When you reload the dataset,
the Data and Delta properties are the same as they were when the data was saved.

Undoing Changes
Even though a record's original version remains unchanged in Data, each time a user edits a record, leaves it, and
returns to it, the user sees the last changed version of the record. If a user or application edits a record a number of
times, each changed version of the record is stored in the change log as a separate entry.

Storing each change to a record makes it possible to support multiple levels of undo operations should it be necessary
to restore a record's previous state:

To remove the last change to a record, call UndoLastChange. UndoLastChange takes a Boolean parameter,
FollowChange, that indicates whether to reposition the cursor on the restored record (True), or to leave the

2005

cursor on the current record (False). If there are several changes to a record, each call to UndoLastChange
removes another layer of edits. UndoLastChange returns a Boolean value indicating success or failure. If the
removal occurs, UndoLastChange returns True. Use the ChangeCount property to check whether there are
more changes to undo. ChangeCount indicates the number of changes stored in the change log.
Instead of removing each layer of changes to a single record, you can remove them all at once. To remove all
changes to a record, select the record, and call RevertRecord. RevertRecord removes any changes to the
current record from the change log.
To restore a deleted record, first set the StatusFilter property to [usDeleted], which makes the deleted records
"visible." Next, navigate to the record you want to restore and call RevertRecord. Finally, restore the
StatusFilter property to [usModified, usInserted, usUnmodified] so that the edited version of the dataset (now
containing the restored record) is again visible.
At any point during edits, you can save the current state of the change log using the SavePoint property. Reading
SavePoint returns a marker into the current position in the change log. Later, if you want to undo all changes
that occurred since you read the save point, set SavePoint to the value you read previously. Your application
can obtain values for multiple save points. However, once you back up the change log to a save point, the values
of all save points that your application read after that one are invalid.
You can abandon all changes recorded in the change log by calling CancelUpdates. CancelUpdates clears the
change log, effectively discarding all edits to all records. Be careful when you call CancelUpdates. After you call
CancelUpdates, you cannot recover any changes that were in the log.

Saving Changes
Client datasets use different mechanisms for incorporating changes from the change log, depending on whether the
client datasets stores its data in a file or represents data obtained through a provider. Whichever mechanism is used,
the change log is automatically emptied when all updates have been incorporated.

File-based applications can simply merge the changes into the local cache represented by the Data property. They
do not need to worry about resolving local edits with changes made by other users. To merge the change log into
the Data property, call the MergeChangeLog method. Merging changes into data describes this process.

You can't use MergeChangeLog if you are using the client dataset to cache updates or to represent the data from
an external provider component. The information in the change log is required for resolving updated records with
the data stored in the database (or source dataset). Instead, you call ApplyUpdates, which attempts to write the
modifications to the database server or source dataset, and updates the Data property only when the modifications
have been successfully committed. See Applying updates for more information about this process.

Constraining Data Values
Client datasets can enforce constraints on the edits a user makes to data. These constraints are applied when the
user tries to post changes to the change log. You can always supply custom constraints. These let you provide your
own, application-defined limits on what values users post to a client dataset.

In addition, when client datasets represent server data that is accessed using the BDE, they also enforce data
constraints imported from the database server. If the client dataset works with an external provider component, the
provider can control whether those constraints are sent to the client dataset, and the client dataset can control
whether it uses them. For details on how the provider controls whether constraints are included in data packets, see
Handling server constraints. For details on how and why client dataset can turn off enforcement of server constraints,
see Handling constraints from the server.

2006

Specifying custom constraints
You can use the properties of the client dataset's field components to impose your own constraints on what data
users can enter. Each field component has two properties that you can use to specify constraints:

The DefaultExpression property defines a default value that is assigned to the field if the user does not enter a
value. Note that if the database server or source dataset also assigns a default expression for the field, the client
dataset's version takes precedence because it is assigned before the update is applied back to the database
server or source dataset.
The CustomConstraint property lets you assign a constraint condition that must be met before a field value can
be posted. Custom constraints defined this way are applied in addition to any constraints imported from the
server. For more information about working with custom constraints on field components, see Creating a custom
constraint.

In addition, you can create record-level constraints using the client dataset's Constraints property. Constraints is a
collection of TCheckConstraint objects, where each object represents a separate condition. Use the
CustomConstraint property of a TCheckConstraint object to add your own constraints that are checked when you
post records.

Sorting and Indexing
Using indexes provides several benefits to your applications:

They allow client datasets to locate data quickly.
They let you apply ranges to limit the available records.
They let your application set up relationships with other datasets such as lookup tables or master/detail forms.
They specify the order in which records appear.

If a client dataset represents server data or uses an external provider, it inherits a default index and sort order based
on the data it receives. The default index is called DEFAULT_ORDER. You can use this ordering, but you cannot
change or delete the index.

In addition to the default index, the client dataset maintains a second index, called CHANGEINDEX, on the changed
records stored in the change log (Delta property). CHANGEINDEX orders all records in the client dataset as they
would appear if the changes specified in Delta were applied. CHANGEINDEX is based on the ordering inherited
from DEFAULT_ORDER. As with DEFAULT_ORDER, you cannot change or delete the CHANGEINDEX index.

You can use other existing indexes, and you can create your own indexes. The following sections describe how to
create and use indexes with client datasets:

Adding a new index
Deleting and switching indexes
Using indexes to group data

Note: You may also want to review the material on indexes in table type datasets, which also applies to client
datasets. This material is in Using Indexes to search for records and Limiting records with ranges.

Adding a New Index
There are three ways to add indexes to a client dataset:

2007

Methods Description

Use the IndexFieldNames property To create a temporary index at runtime that sorts the records in the client dataset, you
can use the IndexFieldNames property. Specify field names, separated by semicolons.
Ordering of field names in the list determines their order in the index.

This is the least powerful method of adding indexes. You can't specify a descending or
case-insensitive index, and the resulting indexes do not support grouping. These indexes
do not persist when you close the dataset, and are not saved when you save the client
dataset to a file.

Call AddIndex To create an index at runtime that can be used for grouping, call AddIndex. AddIndex
lets you specify the properties of the index, including:

The name of the index. This can be used for switching indexes at runtime.

The fields that make up the index. The index uses these fields to sort records and to
locate records that have specific values on these fields.

How the index sorts records. By default, indexes impose an ascending sort order (based
on the machine's locale). This default sort order is case-sensitive. You can set options to
make the entire index case-insensitive or to sort in descending order. Alternately, you
can provide a list of fields to be sorted case-insensitively and a list of fields to be sorted
in descending order.

The default level of grouping support for the index.

Indexes created with AddIndex do not persist when the client dataset is closed. (That is,
they are lost when you reopen the client dataset). You can"t call AddIndex when the
dataset is closed. Indexes you add using AddIndex are not saved when you save the
client dataset to a file.

Use the IndexDefs property The third way to create an index is at the time the client dataset is created. Before creating
the client dataset, specify the desired indexes using the IndexDefs property. The indexes
are then created along with the underlying dataset when you call CreateDataSet. See
Creating and deleting tables for more information about creating client datasets.

As with AddIndex, indexes you create with the dataset support grouping, can sort in
ascending order on some fields and descending order on others, and can be case
insensitive on some fields and case sensitive on others. Indexes created this way always
persist and are saved when you save the client dataset to a file.

Tip: You can index and sort on internally calculated fields with client datasets.

Deleting and Switching Indexes
To remove an index you created for a client dataset, call DeleteIndex and specify the name of the index to remove.
You cannot remove the DEFAULT_ORDER and CHANGEINDEX indexes.

To use a different index when more than one index is available, use the IndexName property to select the index to
use. At design time, you can select from available indexes in IndexName property drop-down box in the Object
Inspector.

Using Indexes to Group Data
When you use an index in your client dataset, it automatically imposes a sort order on the records. Because of this
order, adjacent records usually contain duplicate values on the fields that make up the index. For example, consider
the following fragment from an orders table that is indexed on the SalesRep and Customer fields:

2008

SalesRep Customer OrderNo Amount

1 1 5 100

1 1 2 50

1 2 3 200

1 2 6 75

2 1 1 10

2 3 4 200

Because of the sort order, adjacent values in the SalesRep column are duplicated. Within the records for SalesRep
1, adjacent values in the Customer column are duplicated. That is, the data is grouped by SalesRep, and within the
SalesRep group it is grouped by Customer. Each grouping has an associated level. In this case, the SalesRep group
has level 1 (because it is not nested in any other groups) and the Customer group has level 2 (because it is nested
in the group with level 1). Grouping level corresponds to the order of fields in the index.

Client datasets let you determine where the current record lies within any given grouping level. This allows your
application to display records differently, depending on whether they are the first record in the group, in the middle
of a group, or the last record in a group. For example, you might want to display a field value only if it is on the first
record of the group, eliminating the duplicate values. To do this with the previous table results in the following:

SalesRep Customer OrderNo Amount

1 1 5 100

2 50

2 3 200

6 75

2 1 1 10

3 4 200

To determine where the current record falls within any group, use the GetGroupState method. GetGroupState takes
an integer giving the level of the group and returns a value indicating where the current record falls the group (first
record, last record, or neither).

When you create an index, you can specify the level of grouping it supports (up to the number of fields in the index).
GetGroupState can't provide information about groups beyond that level, even if the index sorts records on additional
fields.

Representing Calculated Values
As with any dataset, you can add calculated fields to your client dataset. These are fields whose values you calculate
dynamically, usually based on the values of other fields in the same record.

Client datasets, however, let you optimize when fields are calculated by using internally calculated fields.

You can also tell client datasets to create calculated values that summarize the data in several records using
maintained aggregates.

Using Internally Calculated Fields in Client Datasets
In other datasets, your application must compute the value of calculated fields every time the record changes or the
user edits any fields in the current record. It does this in an OnCalcFields event handler.

2009

While you can still do this, client datasets let you minimize the number of times calculated fields must be recomputed
by saving calculated values in the client dataset's data. When calculated values are saved with the client dataset,
they must still be recomputed when the user edits the current record, but your application need not recompute values
every time the current record changes. To save calculated values in the client dataset's data, use internally calculated
fields instead of calculated fields.

Internally calculated fields, just like calculated fields, are calculated in an OnCalcFields event handler. However, you
can optimize your event handler by checking the State property of your client dataset. When State is
dsInternalCalc, you must recompute internally calculated fields. When State is dsCalcFields, you need only
recompute regular calculated fields.

To use internally calculated fields, you must define the fields as internally calculated before you create the client
dataset. Depending on whether you use persistent fields or field definitions, you do this in one of the following ways:

If you use persistent fields, define fields as internally calculated by selecting InternalCalc in the Fields editor.
If you use field definitions, set the InternalCalcField property of the relevant field definition to True.

Note: Other types of datasets use internally calculated fields. However, with other datasets, you do not calculate
these values in an OnCalcFields event handler. Instead, they are computed automatically by the BDE or
remote database server.

Using Maintained Aggregates
Client datasets provide support for summarizing data over groups of records. Because these summaries are
automatically updated as you edit the data in the dataset, this summarized data is called a "maintained aggregate."

In their simplest form, maintained aggregates let you obtain information such as the sum of all values in a column
of the client dataset. They are flexible enough, however, to support a variety of summary calculations and to provide
subtotals over groups of records defined by a field in an index that supports grouping.

The following topics describe how to

Specify aggregates.
Aggregate Over Groups of Records.
Obtain aggregate values.

Specifying Aggregates
To specify that you want to calculate summaries over the records in a client dataset, use the Aggregates
property. Aggregates is a collection of aggregate specifications (TAggregate). You can add aggregate specifications
to your client dataset using the Collection Editor at design time, or using the Add method of Aggregates at runtime.
If you want to create field components for the aggregates, create persistent fields for the aggregated values in the
Fields Editor.

Note: When you create aggregated fields, the appropriate aggregate objects are added to the client dataset's
Aggregates property automatically. Do not add them explicitly when creating aggregated persistent fields.

For each aggregate, the Expression property indicates the summary calculation it represents. Expression can
contain a simple summary expression such as

Sum(Field1)

or a complex expression that combines information from several fields, such as

2010

Sum(Qty * Price) - Sum(AmountPaid)

Aggregate expressions include one or more of the summary operators in the following table

Summary operators for maintained aggregates
Operator Use

Sum Totals the values for a numeric field or expression

Avg Computes the average value for a numeric or date-time field or expression

Count Specifies the number of non-blank values for a field or expression

Min Indicates the minimum value for a string, numeric, or date-time field or expression

Max Indicates the maximum value for a string, numeric, or date-time field or expression

The summary operators act on field values or on expressions built from field values using the same operators you
use to create filters. (You can't nest summary operators, however.) You can create expressions by using operators
on summarized values with other summarized values, or on summarized values and constants. However, you can't
combine summarized values with field values, because such expressions are ambiguous (there is no indication of
which record should supply the field value.) These rules are illustrated in the following expressions:

Sum(Qty * Price) {legal -- summary of an expression on
fields }

Max(Field1) - Max(Field2) {legal -- expression on summaries }

Avg(DiscountRate) * 100 {legal -- expression of summary and
constant }

Min(Sum(Field1)) {illegal -- nested summaries }

Count(Field1) - Field2 {illegal -- expression of summary and
field }

Aggregating over groups of records
By default, maintained aggregates are calculated so that they summarize all the records in the client dataset.
However, you can specify that you want to summarize over the records in a group instead. This lets you provide
intermediate summaries such as subtotals for groups of records that share a common field value. Before you can
specify a maintained aggregate over a group of records, you must use an index that supports the appropriate
grouping.

Once you have an index that groups the data in the way you want it summarized, specify the IndexName and
GroupingLevel properties of the aggregate to indicate what index it uses, and which group or subgroup on that index
defines the records it summarizes.

For example, consider the following fragment from an orders table that is grouped by SalesRep and, within SalesRep,
by Customer:

2011

SalesRep Customer OrderNo Amount

1 1 5 100

1 1 2 50

1 2 3 200

1 2 6 75

2 1 1 10

2 3 4 200

The following code sets up a maintained aggregate that indicates the total amount for each sales representative:

[Delphi]
Agg.Expression := 'Sum(Amount)';
Agg.IndexName := 'SalesCust';
Agg.GroupingLevel := 1;
Agg.AggregateName := 'Total for Rep';

[C++]
Agg->Expression = "Sum(Amount)";
Agg->IndexName = "SalesCust";
Agg->GroupingLevel = 1;
Agg->AggregateName = "Total for Rep";

To add an aggregate that summarizes for each customer within a given sales representative, create a maintained
aggregate with level 2.

Maintained aggregates that summarize over a group of records are associated with a specific index. The
Aggregates property can include aggregates that use different indexes. However, only the aggregates that
summarize over the entire dataset and those that use the current index are valid. Changing the current index changes
which aggregates are valid. To determine which aggregates are valid at any time, use the ActiveAggs property.

Obtaining Aggregate Values
To get the value of a maintained aggregate, call the Value method of the TAggregate object that represents the
aggregate. Value returns the maintained aggregate for the group that contains the current record of the client dataset.

When you are summarizing over the entire client dataset, you can call Value at any time to obtain the maintained
aggregate. However, when you are summarizing over grouped information, you must be careful to ensure that the
current record is in the group whose summary you want. Because of this, it is a good idea to obtain aggregate values
at clearly specified times, such as when you move to the first record of a group or when you move to the last record
of a group. Use the GetGroupState method to determine where the current record falls within a group.

To display maintained aggregates in data-aware controls, use the Fields editor to create a persistent aggregate field
component. When you specify an aggregate field in the Fields editor, the client dataset's Aggregates is automatically
updated to include the appropriate aggregate specification. The AggFields property contains the new aggregated
field component, and the FindField method returns it.

Copying Data from Another Dataset
To copy the data from another dataset at design time, right click the client dataset and choose Assign Local Data.
A dialog appears listing all the datasets available in your project. Select the one whose data and structure you want
to copy and choose OK. When you copy the source dataset, your client dataset is automatically activated.

2012

To copy from another dataset at runtime, you can assign its data directly or, if the source is another client dataset,
you can clone the cursor.

Assigning Data Directly
You can use the client dataset's Data property to assign data to a client dataset from another dataset. Data is a data
packet in the form of an OleVariant. A data packet can come from another client dataset or from any other dataset
by using a provider. Once a data packet is assigned to Data, its contents are displayed automatically in data-aware
controls connected to the client dataset by a data source component.

When you open a client dataset that represents server data or that uses an external provider component, data
packets are automatically assigned to Data.

When your client dataset does not use a provider, you can copy the data from another client dataset as follows:

[Delphi]
ClientDataSet1.Data := ClientDataSet2.Data;

[C++]
ClientDataSet1->Data = ClientDataSet2->Data;

Note: When you copy the Data property of another client dataset, you copy the change log as well, but the copy
does not reflect any filters or ranges that have been applied. To include filters or ranges, you must clone the
source dataset's cursor instead.

If you are copying from a dataset other than a client dataset, you can create a dataset provider component, link it to
the source dataset, and then copy its data:

[Delphi]
TempProvider := TDataSetProvider.Create(Form1);
TempProvider.DataSet := SourceDataSet;
ClientDataSet1.Data := TempProvider.Data;
TempProvider.Free;

[C++]
TempProvider = new TDataSetProvider(Form1);
TempProvider->DataSet = SourceDataSet;
ClientDataSet1->Data = TempProvider->Data;
delete TempProvider;

Note: When you assign directly to the Data property, the new data packet is not merged into the existing data.
Instead, all previous data is replaced.

If you want to merge changes from another dataset, rather than copying its data, you must use a provider component.
Create a dataset provider as in the previous example, but attach it to the destination dataset and instead of copying
the data property, use the ApplyUpdates method:

[Delphi]
TempProvider := TDataSetProvider.Create(Form1);
TempProvider.DataSet := ClientDataSet1;
TempProvider.ApplyUpdates(SourceDataSet.Delta, -1, ErrCount);
TempProvider.Free;

2013

[C++]
TempProvider = new TDataSetProvider(Form1);
TempProvider->DataSet = ClientDataSet1;
TempProvider->ApplyUpdates(SourceDataSet->Delta, -1, ErrCount);
delete TempProvider;

Cloning a Client Dataset Cursor
Client datasets use the CloneCursor method to let you work with a second view of the data at runtime.
CloneCursor lets a second client dataset share the original client dataset's data. This is less expensive than copying
all the original data, but, because the data is shared, the second client dataset can't modify the data without affecting
the original client dataset.

CloneCursor takes three parameters: Source specifies the client dataset to clone. The last two parameters (Reset
and KeepSettings) indicate whether to copy information other than the data. This information includes any filters,
the current index, links to a master table (when the source dataset is a detail set), the ReadOnly property, and any
links to a connection component or provider.

When Reset and KeepSettings are False, a cloned client dataset is opened, and the settings of the source client
dataset are used to set the properties of the destination. When Reset is True, the destination dataset's properties
are given the default values (no index or filters, no master table, ReadOnly is False, and no connection component
or provider is specified). When KeepSettings is True, the destination dataset's properties are not changed.

Adding Application-specific Information to the Data
Application developers can add custom information to the client dataset's Data property. Because this information
is bundled with the data packet, it is included when you save the data to a file or stream. It is copied when you copy
the data to another dataset. Optionally, it can be included with the Delta property so that a provider can read this
information when it receives updates from the client dataset.

To save application-specific information with the Data property, use the SetOptionalParam method. This method
lets you store an OleVariant that contains the data under a specific name.

To retrieve this application-specific information, use the GetOptionalParam method, passing in the name that was
used when the information was stored.

Using a Client Dataset to Cache Updates
By default, when you edit data in most datasets, every time you delete or post a record, the dataset generates a
transaction, deletes or writes that record to the database server, and commits the transaction. If there is a problem
writing changes to the database, your application is notified immediately: the dataset raises an exception when you
post the record.

If your dataset uses a remote database server, this approach can degrade performance due to network traffic
between your application and the server every time you move to a new record after editing the current record. To
minimize the network traffic, you may want to cache updates locally. When you cache updates, you application
retrieves data from the database, caches and edits it locally, and then applies the cached updates to the database
in a single transaction. When you cache updates, changes to a dataset (such as posting changes or deleting records)
are stored locally instead of being written directly to the dataset's underlying table. When changes are complete,
your application calls a method that writes the cached changes to the database and clears the cache.

Caching updates can minimize transaction times and reduce network traffic. However, cached data is local to your
application and is not under transaction control. This means that while you are working on your local, in-memory,
copy of the data, other applications can be changing the data in the underlying database table. They also can't see
any changes you make until you apply the cached updates. Because of this, cached updates may not be appropriate

2014

for applications that work with volatile data, as you may create or encounter too many conflicts when trying to merge
your changes into the database.

Although the BDE and ADO provide alternate mechanisms for caching updates, using a client dataset for caching
updates has several advantages:

Applying updates when datasets are linked in master/detail relationships is handled for you. This ensures that
updates to multiple linked datasets are applied in the correct order.
Client datasets give you the maximum of control over the update process. You can set properties to influence
the SQL that is generated for updating records, specify the table to use when updating records from a multi-
table join, or even apply updates manually from a BeforeUpdateRecord event handler.
When errors occur applying cached updates to the database server, only client datasets (and dataset providers)
provide you with information about the current record value on the database server in addition to the original
(unedited) value from your dataset and the new (edited) value of the update that failed.
Client datasets let you specify the number of update errors you want to tolerate before the entire update is rolled
back.

The following topics describe in more detail on how to use a client dataset to cache updates:

Overview of using cached updates.
Choosing the type of dataset for caching updates.
Indicating what records are modified.
Updating records.

Overview of Using Cached Updates
To use cached updates, the following order of processes must occur in an application:

Indicate the data you want to edit. How you do this depends on the type of client dataset you are using:

If you are using TClientDataSet, Specify the provider component that represent the data you want to edit.
If you are using a client dataset associated with a particular data access mechanism, you must
Identify the database server by setting the DBConnection property to an appropriate connection component.
Indicate what data you want to see by specifying the CommandText and CommandType properties.
CommandType indicates whether CommandText is an SQL statement to execute, the name of a stored
procedure, or the name of a table. If CommandText is a query or stored procedure, use the Params property
to provide any input parameters.
Optionally, use the Options property to indicate whether nested detail sets and BLOB data should be included
in data packets or fetched separately, whether specific types of edits (insertions, modifications, or deletions)
should be disabled, whether a single update can affect multiple server records, and whether the client dataset's
records are refreshed when it applies updates. Options is identical to a provider's Options property. As a result,
it allows you to set options that are not relevant or appropriate. For example, there is no reason to include
poIncFieldProps, because the client dataset does not fetch its data from a dataset with persistent fields.
Conversely, you do not want to exclude poAllowCommandText, which is included by default, because that would
disable the CommandText property, which the client dataset uses to specify what data it wants. For information
on the provider's Options property, see Setting options that influence the data packets.

Display and edit the data, permit insertion of new records, and support deletions of existing records. Both the
original copy of each record and any edits to it are stored in memory.This process is described in Editing data.

Fetch additional records as necessary. By default, client datasets fetch all records and store them in memory. If
a dataset contains many records or records with large BLOB fields, you may want to change this so that the client

2015

dataset fetches only enough records for display and re-fetches as needed. For details on how to control the record-
fetching process, see Requesting data from the source dataset or document.

Optionally, refresh the records. As time passes, other users may modify the data on the database server. This
can cause the client dataset's data to deviate more and more from the data on the server, increasing the chance of
errors when you apply updates. To mitigate this problem, you can refresh records that have not already been edited.
See Refreshing records for details.

Apply the locally cached records to the database or cancel the updates. For each record written to the database,
a BeforeUpdateRecord event is triggered. If an error occurs when writing an individual record to the database, an
OnUpdateError event enables the application to correct the error, if possible, and continue updating. When updates
are complete, all successfully applied updates are cleared from the local cache. For more information about applying
updates to the database, see Updating records.

Instead of applying updates, an application can cancel the updates, emptying the change log without writing the
changes to the database. You can cancel the updates by calling CancelUpdates method. All deleted records in the
cache are undeleted, modified records revert to original values, and newly inserted record simply disappear.

Choosing the Type of Dataset for Caching Updates
Delphi includes some specialized client dataset components for caching updates. Each client dataset is associated
with a particular data access mechanism. These are listed in the following table:

Specialized client datasets for caching updates
Client dataset Data access mechanism

TBDEClientDataSet Borland Database Engine

TSimpleDataSet dbExpress

TIBClientDataSet InterBase Express

In addition, you can cache updates using the generic client dataset (TClientDataSet) with an external provider and
source dataset. For information about using TClientDataSet with an external provider, see Using a client dataset
with a provider.

Note: The specialized client datasets associated with each data access mechanism actually use a provider and
source dataset as well. However, both the provider and the source dataset are internal to the client dataset.

It is simplest to use one of the specialized client datasets to cache updates. However, there are times when it is
preferable to use TClientDataSet with an external provider:

If you are using a data access mechanism that does not have a specialized client dataset, you must use
TClientDataSet with an external provider component. For example, if the data comes from an XML document
or custom dataset.
If you are working with tables that are related in a master/detail relationship, you should use TClientDataSet
and connect it, using a provider, to the master table of two source datasets linked in a master/detail relationship.
The client dataset sees the detail dataset as a nested dataset field. This approach is necessary so that updates
to master and detail tables can be applied in the correct order.
If you want to code event handlers that respond to the communication between the client dataset and the
provider (for example, before and after the client dataset fetches records from the provider), you must use
TClientDataSet with an external provider component. The specialized client datasets publish the most important
events for applying updates (OnReconcileError, BeforeUpdateRecord and OnGetTableName), but do not
publish the events surrounding communication between the client dataset and its provider, because they are
intended primarily for multi-tiered applications.
When using the BDE, you may want to use an external provider and source dataset if you need to use an update
object. Although it is possible to code an update object from the BeforeUpdateRecord event handler of

2016

TBDEClientDataSet, it can be simpler just to assign the UpdateObject property of the source dataset. For
information about using update objects, see Using update objects to update a dataset.

Indicating What Records Are Modified
While the user edits a client dataset, you may find it useful to provide feedback about the edits that have been made.
This is especially useful if you want to allow the user to undo specific edits, for example, by navigating to them and
clicking an "Undo" button.

The UpdateStatus method and StatusFilter properties are useful when providing feedback on what updates have
occurred:

UpdateStatus indicates what type of update, if any, has occurred for the current record. It can be any of the following
values:

usUnmodified indicates that the current record is unchanged.
usModified indicates that the current record has been edited.
usInserted indicates a record that was inserted by the user.
usDeleted indicates a record that was deleted by the user.

StatusFilter controls what type of updates in the change log are visible. StatusFilter works on cached records in
much the same way as filters work on regular data. StatusFilter is a set, so it can contain any combination of the
following values:

usUnmodified indicates an unmodified record.
usModified indicates a modified record.
usInserted indicates an inserted record.
usDeleted indicates a deleted record.

By default, StatusFilter is the set [usModified, usInserted, usUnmodified]. You can add usDeleted to this set to provide
feedback about deleted records as well.

Note: UpdateStatus and StatusFilter are also useful in BeforeUpdateRecord and OnReconcileError event handlers.
For information about BeforeUpdateRecord, see Intervening as updates are applied For information about
OnReconcileError, see Reconciling Update Errors.

The following example shows how to provide feedback about the update status of records using the UpdateStatus
method. It assumes that you have changed the StatusFilter property to include usDeleted, allowing deleted records
to remain visible in the dataset. It further assumes that you have added a calculated field to the dataset called "Status.
"

[Delphi]
procedure TForm1.ClientDataSet1CalcFields(DataSet: TDataSet);
begin
 with ClientDataSet1 do begin
 case UpdateStatus of
 usUnmodified: FieldByName('Status').AsString := '';
 usModified: FieldByName('Status').AsString := 'M';
 usInserted: FieldByName('Status').AsString := 'I';
 usDeleted: FieldByName('Status').AsString := 'D';
 end;
 end;
end;

2017

[C++]
void __fastcall TForm1::ClientDataSet1CalcFields(TDataSet *DataSet)
{
 switch (DataSet->UpdateStatus())
 {
 case usUnmodified:
 ClientDataSet1Status->Value = NULL; break;
 case usModified:
 ClientDataSet1Status->Value = "M"; break;
 case usInserted:
 ClientDataSet1Status->Value = "I"; break;
 case usDeleted:
 ClientDataSet1Status->Value = "D"; break;
 }
}

Updating Records
The contents of the change log are stored as a data packet in the client dataset's Delta property. To make the
changes in Delta permanent, the client dataset must apply them to the database (or source dataset or XML
document).

When a client applies updates to the server, the following steps occur:

1 The client application calls the ApplyUpdates method of a client dataset object. This method passes the contents
of the client dataset's Delta property to the (internal or external) provider. Delta is a data packet that contains a
client dataset's updated, inserted, and deleted records.

2 The provider applies the updates, caching any problem records that it can't resolve itself. See Responding to
client update requests for details on how the provider applies updates.

3 The provider returns all unresolved records to the client dataset in a Result data packet. The Result data packet
contains all records that were not updated. It also contains error information, such as error messages and error
codes.

4 The client dataset attempts to reconcile update errors returned in the Result data packet on a record-by-record
basis.

Applying Updates
Changes made to the client dataset's local copy of data are not sent to the database server (or XML document) until
the client application calls the ApplyUpdates method. ApplyUpdates takes the changes in the change log, and sends
them as a data packet (called Delta) to the provider. (Note that, when using most client datasets, the provider is
internal to the client dataset.)

ApplyUpdates takes a single parameter, MaxErrors, which indicates the maximum number of errors that the provider
should tolerate before aborting the update process. If MaxErrors is 0, then as soon as an update error occurs, the
entire update process is terminated. No changes are written to the database, and the client dataset's change log
remains intact. If MaxErrors is -1, any number of errors is tolerated, and the change log contains all records that
could not be successfully applied. If MaxErrors is a positive value, and more errors occur than are permitted by
MaxErrors, all updates are aborted. If fewer errors occur than specified by MaxErrors, all records successfully applied
are automatically cleared from the client dataset's change log.

ApplyUpdates returns the number of actual errors encountered, which is always less than or equal to MaxErrors
plus one. This return value indicates the number of records that could not be written to the database.

The client dataset's ApplyUpdates method does the following:

2018

It indirectly calls the provider's ApplyUpdates method. The provider's ApplyUpdates method writes the updates
to the database, source dataset, or XML document and attempts to correct any errors it encounters. Records
that it cannot apply because of error conditions are sent back to the client dataset.
The client dataset 's ApplyUpdates method then attempts to reconcile these problem records by calling the
Reconcile method. Reconcile is an error-handling routine that calls the OnReconcileError event handler. You
must code the OnReconcileError event handler to correct errors. For details about using OnReconcileError, see
Reconciling Update Errors.
Finally, Reconcile removes successfully applied changes from the change log and updates Data to reflect the
newly updated records. When Reconcile completes, ApplyUpdates reports the number of errors that occurred.

Warning: In some cases, the provider can't determine how to apply updates (for example, when applying updates
from a stored procedure or multi-table join). Client datasets and provider components generate events
that let you handle these situations. See Intervening as updates are applied for details.

Tip: If the provider is on a stateless application server, you may want to communicate with it about persistent state
information before or after you apply updates. TClientDataSet receives a BeforeApplyUpdates event before
the updates are sent, which lets you send persistent state information to the server. After the updates are
applied (but before the reconcile process), TClientDataSet receives an AfterApplyUpdates event where you
can respond to any persistent state information returned by the application server.

Intervening as Updates Are Applied
When a client dataset applies its updates, the provider determines how to handle writing the insertions, deletions,
and modifications to the database server or source dataset. When you use TClientDataSet with an external provider
component, you can use the properties and events of that provider to influence the way updates are applied. These
are described in Responding to client update requests.

When the provider is internal, however, as it is for any client dataset associated with a data access mechanism, you
can't set its properties or provide event handlers. As a result, the client dataset publishes one property and two
events that let you influence how the internal provider applies updates.

UpdateMode controls what fields are used to locate records in the SQL statements the provider generates for
applying updates. UpdateMode is identical to the provider's UpdateMode property. For information on the
provider's UpdateMode property, see Influencing how updates are applied.
OnGetTableName lets you supply the provider with the name of the database table to which it should apply
updates. This lets the provider generate the SQL statements for updates when it can't identify the database
table from the stored procedure or query specified by CommandText. For example, if the query executes a multi-
table join that only requires updates to a single table, supplying an OnGetTableName event handler allows the
internal provider to correctly apply updates. An OnGetTableName event handler has three parameters: the
internal provider component, the internal dataset that fetched the data from the server, and a parameter to return
the table name to use in the generated SQL.
BeforeUpdateRecord occurs for every record in the delta packet. This event lets you make any last-minute
changes before the record is inserted, deleted, or modified. It also provides a way for you to execute your own
SQL statements to apply the update in cases where the provider can't generate correct SQL (for example, for
multi-table joins where multiple tables must be updated.) A BeforeUpdateRecord event handler has five
parameters: the internal provider component, the internal dataset that fetched the data from the server, a delta
packet that is positioned on the record that is about to be updated, an indication of whether the update is an
insertion, deletion, or modification, and a parameter that returns whether the event handler performed the
update. The use of these is illustrated in the following event handler. For simplicity, the example assumes the
SQL statements are available as global variables that only need field values:

2019

[Delphi]
procedure TForm1.SimpleDataSet1BeforeUpdateRecord(Sender: TObject;
 SourceDS: TDataSet; DeltaDS: TCustomClientDataSet; UpdateKind: TUpdateKind;
 var Applied Boolean);
var
 SQL: string;
 Connection: TSQLConnection;
begin
 Connection := (SourceDS as TSimpleDataSet).Connection;
 case UpdateKind of
 ukModify:
 begin
 { 1st dataset: update Fields[1], use Fields[0] in where clause }
 SQL := Format(UpdateStmt1, [DeltaDS.Fields[1].NewValue, DeltaDS.Fields[0].OldValue]);
 Connection.Execute(SQL, nil, nil);
 { 2nd dataset: update Fields[2], use Fields[3] in where clause }
 SQL := Format(UpdateStmt2, [DeltaDS.Fields[2].NewValue, DeltaDS.Fields[3].OldValue]);
 Connection.Execute(SQL, nil, nil);
 end;
 ukDelete:
 begin
 { 1st dataset: use Fields[0] in where clause }
 SQL := Format(DeleteStmt1, [DeltaDS.Fields[0].OldValue]);
 Connection.Execute(SQL, nil, nil);
 { 2nd dataset: use Fields[3] in where clause }
 SQL := Format(DeleteStmt2, [DeltaDS.Fields[3].OldValue]);
 Connection.Execute(SQL, nil, nil);
 end;
 ukInsert:
 begin
 { 1st dataset: values in Fields[0] and Fields[1] }
 SQL := Format(InsertStmt1, [DeltaDS.Fields[0].NewValue, DeltaDS.Fields[1].NewValue]);
 Connection.Execute(SQL, nil, nil);
 { 2nd dataset: values in Fields[2] and Fields[3] }
 SQL := Format(InsertStmt2, [DeltaDS.Fields[2].NewValue, DeltaDS.Fields[3].NewValue]);
 Connection.Execute(SQL, nil, nil);
 end;
 end;
 Applied := True;
end;

[C++]
void __fastcall TForm1::SimpleDataSet1BeforeUpdateRecord(TObject *Sender,
 TDataSet *SourceDS, TCustomClientDataSet *DeltaDS, TUpdateKind UpdateKind, bool &Applied)
{
 TSQLConnection *pConn := (dynamic_cast<TSimpleDataSet *>(SourceDS)->Connection);
 char buffer[256];
 switch (UpdateKind)
 case ukModify:
 // 1st dataset: update Fields[1], use Fields[0] in where clause
 sprintf(buffer, UpdateStmt1, DeltaDS->Fields->Fields[1]->NewValue,
 DeltaDS->Fields->Fields[0]->OldValue);
 pConn->Execute(buffer, NULL, NULL);
 // 2nd dataset: update Fields[2], use Fields[3] in where clause
 sprintf(buffer, UpdateStmt2, DeltaDS->Fields->Fields[2]->NewValue,
 DeltaDS->Fields->Fields[3]->OldValue);
 pConn->Execute(buffer, NULL, NULL);
 break;
 case ukDelete:

2020

 // 1st dataset: use Fields[0] in where clause
 sprintf(buffer, DeleteStmt1, DeltaDS->Fields->Fields[0]->OldValue);
 pConn->Execute(buffer, NULL, NULL);
 // 2nd dataset: use Fields[3] in where clause
 sprintf(buffer, DeleteStmt2, DeltaDS->Fields->Fields[3]->OldValue);
 pConn->Execute(buffer, NULL, NULL);
 break;
 case ukInsert:
 // 1st dataset: values in Fields[0] and Fields[1]
 sprintf(buffer, UpdateStmt1, DeltaDS->Fields->Fields[0]->NewValue,
 DeltaDS->Fields->Fields[1]->NewValue);
 pConn->Execute(buffer, NULL, NULL);
 // 2nd dataset: values in Fields[2] and Fields[3]
 sprintf(buffer, UpdateStmt2, DeltaDS->Fields->Fields[2]->NewValue,
 DeltaDS->Fields->Fields[3]->NewValue);
 pConn->Execute(buffer, NULL, NULL);
 break;
}

Reconciling Update Errors
There are two events that let you handle errors that occur during the update process:

During the update process, the internal provider generates an OnUpdateError event every time it encounters
an update that it can't handle. If you correct the problem in an OnUpdateError event handler, then the error does
not count toward the maximum number of errors passed to the ApplyUpdates method. This event only occurs
for client datasets that use an internal provider. If you are using TClientDataSet, you can use the provider
component's OnUpdateError event instead.
After the entire update operation is finished, the client dataset generates an OnReconcileError event for every
record that the provider could not apply to the database server.

You should always code an OnReconcileError or OnUpdateError event handler, even if only to discard the records
returned that could not be applied. The event handlers for these two events work the same way. They include the
following parameters:

DataSet: A client dataset that contains the updated record which couldn't be applied. You can use this dataset's
methods to get information about the problem record and to edit the record in order to correct any problems. In
particular, you will want to use the CurValue, OldValue, and NewValue properties of the fields in the current record
to determine the cause of the update problem. However, you must not call any client dataset methods that change
the current record in your event handler.

E: An object that represents the problem that occurred. You can use this exception to extract an error message or
to determine the cause of the update error.

UpdateKind: The type of update that generated the error. UpdateKind can be ukModify (the problem occurred
updating an existing record that was modified), ukInsert (the problem occurred inserting a new record), or
ukDelete (the problem occurred deleting an existing record).

Action: A var parameter that indicates what action to take when the event handler exits. In your event handler, you
set this parameter to

Skip this record, leaving it in the change log. (rrSkip or raSkip)
Stop the entire reconcile operation. (rrAbort or raAbort)
Merge the modification that failed into the corresponding record from the server. (rrMerge or raMerge) This only
works if the server record does not include any changes to fields modified in the client dataset's record.
Replace the current update in the change log with the value of the record in the event handler, which has
presumably been corrected. (rrApply or raCorrect)

2021

Ignore the error completely. (rrIgnore) This possibility only exists in the OnUpdateError event handler, and is
intended for the case where the event handler applies the update back to the database server. The updated
record is removed from the change log and merged into Data, as if the provider had applied the update.
Back out the changes for this record on the client dataset, reverting to the originally provided values. (raCancel)
This possibility only exists in the OnReconcileError event handler.
Update the current record value to match the record on the server. (raRefresh) This possibility only exists in the
OnReconcileError event handler.

The following code shows an OnReconcileError event handler that uses the reconcile error dialog from the RecError
unit which ships in the objrepos directory. (To use this dialog, add RecError to your uses clause.)

[Delphi]
procedure TForm1.ClientDataSetReconcileError(DataSet: TCustomClientDataSet; E:
EReconcileError; UpdateKind: TUpdateKind, var Action TReconcileAction);
begin
 Action := HandleReconcileError(DataSet, UpdateKind, E);
end;

[C++]
void __fastcall TForm1::ClientDataSetReconcileError(TCustomClientDataSet *DataSet,
 EReconcileError *E, TUpdateKind UpdateKind, TReconcileAction &Action)
{
 Action = HandleReconcileError(this, DataSet, UpdateKind, E);
}

Using a Client Dataset with a Provider
A client dataset uses a provider to supply it with data and apply updates when

It caches updates from a database server or another dataset.
It represents the data in an XML document.
It stores the data in the client portion of a multi-tiered application.

For any client dataset other than TClientDataSet, this provider is internal, and so not directly accessible by the
application. With TClientDataSet, the provider is an external component that links the client dataset to an external
source of data.

An external provider component can reside in the same application as the client dataset, or it can be part of a separate
application running on another system. For more information about provider components, see Using Provider
Components. For more information about applications where the provider is in a separate application on another
system, see Creating multi-tiered applications.

When using an (internal or external) provider, the client dataset always caches any updates. For information on how
this works, see Using a client dataset to cache updates.

The following topics describe additional properties and methods of the client dataset that enable it to work with a
provider:

Specifying a provider
Requesting data from the source dataset or document.
Getting Parameters From the Application Server
Passing parameters to the source dataset
Handling constraints from the server

2022

Refreshing records.
Communicating with providers using custom events
Overriding the source dataset

Specifying a Provider
Unlike the client datasets that are associated with a data access mechanism, TClientDataSet has no internal provider
component to package data or apply updates. If you want it to represent data from a source dataset or XML
document, therefore, you must associated the client dataset with an external provider component.

The way you associate TClientDataSet with a provider depends on whether the provider is in the same application
as the client dataset or on a remote application server running on another system.

Provider's location How to associate TClientDataSet

The provider is in the same application as the client
dataset

If the provider is in the same application as the client dataset, you
can associate it with a provider by choosing a provider from the
drop-down list for the ProviderName property in the Object
Inspector. This works as long as the provider has the same Owner
as the client dataset. (The client dataset and the provider have the
same Owner if they are placed in the same form or data module.)
To use a local provider that has a different Owner, you must form
the association at runtime using the client dataset's SetProvider
method

If you think you may eventually scale up to a remote provider, or if
you want to make calls directly to the IAppServer interface, you
can also set the ConnectionBroker property to a TLocalConnection
component. If you use TLocalConnection, the TLocalConnection
instance manages the list of all providers that are local to the
application, and handles the client dataset's IAppServer calls. If
you do not use TLocalConnection, the application creates a hidden
object that handles the IAppServer calls from the client dataset.

The provider is on a remote application server If the provider is on a remote application server, then, in addition
to the ProviderName property, you need to specify a component
that connects the client dataset to the application server. There are
two properties that can handle this task: RemoteServer, which
specifies the name of a connection component from which to get
a list of providers, or ConnectionBroker, which specifies a
centralized broker that provides an additional level of indirection
between the client dataset and the connection component. The
connection component and, if used, the connection broker, reside
in the same data module as the client dataset. The connection
component establishes and maintains a connection to an
application server, sometimes called a "data broker." For more
information, see The structure of the client application

At design time, after you specify RemoteServer or
ConnectionBroker, you can select a provider from the drop-down
list for the ProviderName property in the Object Inspector. This
list includes both local providers (in the same form or data module)
and remote providers that can be accessed through the connection
component.

Note: If the connection component is an instance of TDCOMConnection, the application server must be registered
on the client machine.

2023

At runtime, you can switch among available providers (both local and remote) by setting ProviderName in code.

Requesting Data from the Source Dataset or Document
Client datasets can control how they fetch their data packets from a provider. By default, they retrieve all records
from the source dataset. This is true whether the source dataset and provider are internal components (as with
TBDEClientDataSet, TSimpleDataSet, and TIBClientDataSet), or separate components that supply the data for
TClientDataSet.

You can change how the client dataset fetches records using the PacketRecords and FetchOnDemand properties.

Incremental fetching
By changing the PacketRecords property, you can specify that the client dataset fetches data in smaller chunks.
PacketRecords specifies either how many records to fetch at a time, or the type of records to return. By default,
PacketRecords is set to -1, which means that all available records are fetched at once, either when the client dataset
is first opened, or when the application explicitly calls GetNextPacket. When PacketRecords is -1, then after the
client dataset first fetches data, it never needs to fetch more data because it already has all available records.

To fetch records in small batches, set PacketRecords to the number of records to fetch. For example, the following
statement sets the size of each data packet to ten records:

[Delphi]
ClientDataSet1.PacketRecords := 10;

[C++]
ClientDataSet1->PacketRecords = 10;

This process of fetching records in batches is called "incremental fetching". Client datasets use incremental fetching
when PacketRecords is greater than zero.

To fetch each batch of records, the client dataset calls GetNextPacket. Newly fetched packets are appended to the
end of the data already in the client dataset. GetNextPacket returns the number of records it fetches. If the return
value is the same as PacketRecords, the end of available records was not encountered. If the return value is greater
than 0 but less than PacketRecords, the last record was reached during the fetch operation. If GetNextPacket returns
0, then there are no more records to fetch.

Warning: Incremental fetching does not work if you are fetching data from a remote provider on a stateless
application server. See Supporting state information in remote data modules for information on how to
use incremental fetching with stateless remote data modules.

Note: You can also use PacketRecords to fetch metadata information about the source dataset. To retrieve
metadata information, set PacketRecords to 0.

Fetch-on-demand
Automatic fetching of records is controlled by the FetchOnDemand property. When FetchOnDemand is True (the
default), the client dataset automatically fetches records as needed. To prevent automatic fetching of records, set
FetchOnDemand to False. When FetchOnDemand is False, the application must explicitly call GetNextPacket to
fetch records.

For example, Applications that need to represent extremely large read-only datasets can turn off FetchOnDemand
to ensure that the client datasets do not try to load more data than can fit into memory. Between fetches, the client

2024

dataset frees its cache using the EmptyDataSet method. This approach, however, does not work well when the client
must post updates to the server.

The provider controls whether the records in data packets include BLOB data and nested detail datasets. If the
provider excludes this information from records, the FetchOnDemand property causes the client dataset to
automatically fetch BLOB data and detail datasets on an as-needed basis. If FetchOnDemand is False, and the
provider does not include BLOB data and detail datasets with records, you must explicitly call the FetchBlobs or
FetchDetails method to retrieve this information.

Getting Parameters from the Application Server
There are two circumstances when the client dataset needs to fetch parameter values:

The application needs the value of output parameters on a stored procedure.
The application wants to initialize the input parameters of a query or stored procedure to the current values on
the source dataset.

Client datasets store parameter values in their Params property. These values are refreshed with any output
parameters when the client dataset fetches data from the source dataset. However, there may be times a
TClientDataSet component in a client application needs output parameters when it is not fetching data.

To fetch output parameters when not fetching records, or to initialize input parameters, the client dataset can request
parameter values from the source dataset by calling the FetchParams method. The parameters are returned in a
data packet from the provider and assigned to the client dataset's Params property.

At design time, the Params property can be initialized by right-clicking the client dataset and choosing Fetch Params.

Note: There is never a need to call FetchParams when the client dataset uses an internal provider and source
dataset, because the Params property always reflects the parameters of the internal source dataset. With
TClientDataSet, the FetchParams method (or the Fetch Params command) only works if the client dataset
is connected to a provider whose associated dataset can supply parameters. For example, if the source
dataset is a table type dataset, there are no parameters to fetch.

The Params property can also be used to pass parameter values to the source dataset. For details on how to do
this, see Passing parameters to the source dataset.

If the provider is on a separate system as part of a stateless application server, you can't use FetchParams to retrieve
output parameters. In a stateless application server, other clients can change and rerun the query or stored
procedure, changing output parameters before the call to FetchParams. To retrieve output parameters from a
stateless application server, use the Execute method. If the provider is associated with a query or stored procedure,
Execute tells the provider to execute the query or stored procedure and return any output parameters. These returned
parameters are then used to automatically update the Params property.

Passing Parameters to the Source Dataset
Client datasets can pass parameters to the source dataset to specify what data they want provided in the data
packets it sends. These parameters can specify

Input parameter values for a query or stored procedure that is run on the application server
Field values that limit the records sent in data packets

You can specify parameter values that your client dataset sends to the source dataset at design time or at runtime.
At design time, select the client dataset and double-click the Params property in the Object Inspector. This brings
up the collection editor, where you can add, delete, or rearrange parameters. By selecting a parameter in the
collection editor, you can use the Object Inspector to edit the properties of that parameter.

2025

At runtime, use the CreateParam method of the Params property to add parameters to your client dataset.
CreateParam returns a parameter object, given a specified name, parameter type, and datatype. You can then use
the properties of that parameter object to assign a value to the parameter.

For example, the following code adds an input parameter named CustNo with a value of 605:

[Delphi]
with ClientDataSet1.Params.CreateParam(ftInteger, 'CustNo', ptInput) do
AsInteger := 605;

[C++]
TParam *pParam = ClientDataSet1->Params->CreateParam(ftInteger, "CustNo", ptInput);
pParam->AsInteger = 605;

If the client dataset is not active, you can send the parameters to the application server and retrieve a data packet
that reflects those parameter values simply by setting the Active property to True.

Note: You may want to initialize parameter values from the current settings on the source dataset. You can do this
by right-clicking the client dataset and choosing Fetch Params at design time or calling the FetchParams
method at runtime.

Sending Query or Stored Procedure Parameters
When the client dataset's CommandType property is ctQuery or ctStoredProc, or, if the client dataset is a
TClientDataSet instance, when the associated provider represents the results of a query or stored procedure, you
can use the Params property to specify parameter values. When the client dataset requests data from the source
dataset or uses its Execute method to run a query or stored procedure that does not return a dataset, it passes these
parameter values along with the request for data or the execute command. When the provider receives these
parameter values, it assigns them to its associated dataset. It then instructs the dataset to execute its query or stored
procedure using these parameter values, and, if the client dataset requested data, begins providing data, starting
with the first record in the result set.

Note: Parameter names should match the names of the corresponding parameters on the source dataset.

Limiting Records with Parameters
If the client dataset is

a TClientDataSet instance whose associated provider represents a TTable or TSQLTable component
a TSimpleDataSet or a TBDEClientDataSet instance whose CommandType property is ctTable

then it can use the Params property to limit the records that it caches in memory. Each parameter represents a field
value that must be matched before a record can be included in the client dataset's data. This works much like a filter,
except that with a filter, the records are still cached in memory, but unavailable.

Each parameter name must match the name of a field. When using TClientDataSet, these are the names of fields
in the TTable or TSQLTable component associated with the provider. When using TSimpleDataSet or
TBDEClientDataSet, these are the names of fields in the table on the database server. The data in the client dataset
then includes only those records whose values on the corresponding fields match the values assigned to the
parameters.

For example, consider an application that displays the orders for a single customer. When the user identifies the
customer, the client dataset sets its Params property to include a single parameter named CustID (or whatever field
in the source table is called) whose value identifies the customer whose orders should be displayed. When the client
dataset requests data from the source dataset, it passes this parameter value. The provider then sends only the

2026

records for the identified customer. This is more efficient than letting the provider send all the orders records to the
client application and then filtering the records using the client dataset.

Handling Constraints from the Server
When a database server defines constraints on what data is valid, it is useful if the client dataset knows about them.
That way, the client dataset can ensure that user edits never violate those server constraints. As a result, such
violations are never passed to the database server where they would be rejected. This means fewer updates
generate error conditions during the updating process.

Regardless of the source of data, you can duplicate such server constraints by explicitly adding them to the client
dataset. This process is described in Constraining data values.

It is more convenient, however, if the server constraints are automatically included in data packets. Then you need
not explicitly specify default expressions and constraints, and the client dataset changes the values it enforces when
the server constraints change. By default, this is exactly what happens: if the source dataset is aware of server
constraints, the provider automatically includes them in data packets and the client dataset enforces them when the
user posts edits to the change log.

Note: Only datasets that use the BDE can import constraints from the server. This means that server constraints
are only included in data packets when using TBDEClientDataSet or TClientDataSet with a provider that
represents a BDE-based dataset. For more information on how to import server constraints and how to
prevent a provider from including them in data packets, see Handling server constraints.

Note: For more information on working with the constraints once they have been imported, see Using server
constraints.

While importing server constraints and expressions is an extremely valuable feature that helps an application
preserve data integrity, there may be times when it needs to disable constraints on a temporary basis. For example,
if a server constraint is based on the current maximum value of a field, but the client dataset uses incremental
fetching, the current maximum value for a field in the client dataset may differ from the maximum value on the
database server, and constraints may be invoked differently. In another case, if a client dataset applies a filter to
records when constraints are enabled, the filter may interfere in unintended ways with constraint conditions. In each
of these cases, an application may disable constraint-checking.

To disable constraints temporarily, call the DisableConstraints method. Each time DisableConstraints is called, a
reference count is incremented. While the reference count is greater than zero, constraints are not enforced on the
client dataset.

To reenable constraints for the client dataset, call the dataset's EnableConstraints method. Each call to
EnableConstraints decrements the reference count. When the reference count is zero, constraints are enabled
again.

Tip: Always call DisableConstraints and EnableConstraints in paired blocks to ensure that constraints are enabled
when you intend them to be.

Refreshing Records
Client datasets work with an in-memory snapshot of the data from the source dataset. If the source dataset represents
server data, then as time elapses other users may modify that data. The data in the client dataset becomes a less
accurate picture of the underlying data.

Like any other dataset, client datasets have a Refresh method that updates its records to match the current values
on the server. However, calling Refresh only works if there are no edits in the change log. Calling Refresh when
there are unapplied edits results in an exception.

2027

Client datasets can also update the data while leaving the change log intact. To do this, call the RefreshRecord
method. Unlike the Refresh method, RefreshRecord updates only the current record in the client dataset.
RefreshRecord changes the record value originally obtained from the provider but leaves any changes in the change
log.

Warning: It is not always appropriate to call RefreshRecord. If the user's edits conflict with changes made to the
underlying dataset by other users, calling RefreshRecord masks this conflict. When the client dataset
applies its updates, no reconcile error occurs and the application can't resolve the conflict.

In order to avoid masking update errors, you may want to check that there are no pending updates before calling
RefreshRecord. For example, the following AfterScroll refreshes the current record every time the user moves to a
new record (ensuring the most up-to-date value), but only when it is safe to do so.:

[Delphi]
procedure TForm1.ClientDataSet1AfterScroll(DataSet: TDataSet);
begin
if ClientDataSet1.UpdateStatus = usUnModified then
ClientDataSet1.RefreshRecord;
end;

[C++]
void __fastcall TForm1::ClientDataSet1AfterScroll(TDataSet *DataSet)
{
 if (ClientDataSet1->UpdateStatus == usUnModified)
 ClientDataSet1->RefreshRecord();
}

Communicating with Providers Using Custom Events
Client datasets communicate with a provider component through a special interface called IAppServer. If the provider
is local, IAppServer is the interface to an automatically-generated object that handles all communication between
the client dataset and its provider. If the provider is remote, IAppServer is the interface to a remote data module on
the application server, or (in the case of a SOAP server) an interface generated by the connection component.

TClientDataSet provides many opportunities for customizing the communication that uses the IAppServer interface.
Before and after every IAppServer method call that is directed at the client dataset's provider, TClientDataSet
receives special events that allow it to communicate arbitrary information with its provider. These events are matched
with similar events on the provider. Thus for example, when the client dataset calls its ApplyUpdates method, the
following events occur:

1 The client dataset receives a BeforeApplyUpdates event, where it specifies arbitrary custom information in an
OleVariant called OwnerData.

2 The provider receives a BeforeApplyUpdates event, where it can respond to the OwnerData from the client
dataset and update the value of OwnerData to new information.

3 The provider goes through its normal process of assembling a data packet (including all the accompanying
events).

4 The provider receives an AfterApplyUpdates event, where it can respond to the current value of OwnerData and
update it to a value for the client dataset.

5 The client dataset receives an AfterApplyUpdates event, where it can respond to the returned value of
OwnerData.

Every other IAppServer method call is accompanied by a similar set of BeforeXXX and AfterXXX events that let you
customize the communication between client dataset and provider.

2028

In addition, the client dataset has a special method, DataRequest, whose only purpose is to allow application-specific
communication with the provider. When the client dataset calls DataRequest, it passes an OleVariant as a parameter
that can contain any information you want. This, in turn, generates an is the OnDataRequest event on the provider,
where you can respond in any application-defined way and return a value to the client dataset.

Overriding the Dataset On the Application Server
The client datasets that are associated with a particular data access mechanism use the CommandText and
CommandType properties to specify the data they represent. When using TClientDataSet, however, the data is
specified by the source dataset, not the client dataset. Typically, this source dataset has a property that specifies
an SQL statement to generate the data or the name of a database table or stored procedure.

If the provider allows, TClientDataSet can override the property on the source dataset that indicates what data it
represents. That is, if the provider permits, the client dataset's CommandText property replaces the property on the
provider's dataset that specifies what data it represents. This allows TClientDataSet to specify dynamically what
data it wants to see.

By default, external provider components do not let client datasets use the CommandText value in this way. To allow
TClientDataSet to use its CommandText property, you must add poAllowCommandText to the Options property of
the provider. Otherwise, the value of CommandText is ignored.

Note: Never remove poAllowCommandText from the Options property of TBDEClientDataSet or
TIBClientDataSet. The client dataset's Options property is forwarded to the internal provider, so removing
poAllowCommandText prevents the client dataset from specifying what data to access.

The client dataset sends its CommandText string to the provider at two times:

When the client dataset first opens. After it has retrieved the first data packet from the provider, the client dataset
does not send CommandText when fetching subsequent data packets.
When the client dataset sends an Execute command to provider.

To send an SQL command or to change a table or stored procedure name at any other time, you must explicitly use
the IAppServer interface that is available as the AppServer property. This property represents the interface through
which the client dataset communicates with its provider.

Using a Client Dataset with File-based Data
Client datasets can work with dedicated files on disk as well as server data. This allows them to be used in file-based
database applications and "briefcase model" applications. The special files that client datasets use for their data are
called MyBase.

Tip: All client datasets are appropriate for a briefcase model application, but for a pure MyBase application (one
that does not use a provider), it is preferable to use TClientDataSet, because it involves less overhead.

In a pure MyBase application, the client application cannot get table definitions and data from the server, and there
is no server to which it can apply updates. Instead, the client dataset must independently

Define and create tables
Load saved data
Merge edits into its data
Save data

2029

Creating a New Dataset
There are three ways to define and create client datasets that do not represent server data:

You can define and create a new client dataset using persistent fields or field and index definitions. This follows
the same scheme as creating any table type dataset. See Creating and deleting tables for details.
You can copy an existing dataset (at design or runtime).
You can create a client dataset from an arbitrary XML document. See Converting XML documents into data
packets for details.

Once the dataset is created, you can save it to a file. From then on, you do not need to recreate the table, only load
it from the file you saved. When beginning a file-based database application, you may want to first create and save
empty files for your datasets before writing the application itself. This way, you start with the metadata for your client
dataset already defined, making it easier to set up the user interface.

Loading Data from a File or Stream
To load data from a file, call a client dataset's LoadFromFile method. LoadFromFile takes one parameter, a string
that specifies the file from which to read data. The file name can be a fully qualified path name, if appropriate. If you
always load the client dataset's data from the same file, you can use the FileName property instead. If FileName
names an existing file, the data is automatically loaded when the client dataset is opened.

To load data from a stream, call the client dataset's LoadFromStream method. LoadFromStream takes one
parameter, a stream object that supplies the data.

The data loaded by LoadFromFile (LoadFromStream) must have previously been saved in a client dataset's data
format by this or another client dataset using the SaveToFile (SaveToStream) method, or generated from an XML
document. For more information about saving data to a file or stream, see Saving data to a file or stream. For
information about creating client dataset data from an XML document, see Using XML in database applications.

When you call LoadFromFile or LoadFromStream, all data in the file is read into the Data property. Any edits that
were in the change log when the data was saved are read into the Delta property. However, the only indexes that
are read from the file are those that were created with the dataset.

Merging Changes into Data
When you edit the data in a client dataset, all edits to the data exist only in an in-memory change log. This log can
be maintained separately from the data itself, although it is completely transparent to objects that use the client
dataset. That is, controls that navigate the client dataset or display its data see a view of the data that includes the
changes. If you do not want to back out of changes, however, you should merge the change log into the data of the
client dataset by calling the MergeChangeLog method. MergeChangeLog overwrites records in Data with any
changed field values in the change log.

After MergeChangeLog executes, Data contains a mix of existing data and any changes that were in the change
log. This mix becomes the new Data baseline against which further changes can be made. MergeChangeLog clears
the change log of all records and resets the ChangeCount property to 0.

Warning: Do not call MergeChangeLog for client datasets that use a provider. In this case, call ApplyUpdates to
write changes to the database. For more information, see Applying updates.

Note: It is also possible to merge changes into the data of a separate client dataset if that dataset originally provided
the data in the Data property. To do this, you must use a dataset provider. For an example of how to do this,
see Assigning data directly.

2030

If you do not want to use the extended undo capabilities of the change log, you can set the client dataset's
LogChanges property to False. When LogChanges is False, edits are automatically merged when you post records
and there is no need to call MergeChangeLog.

Saving Data to a File or Stream
Even when you have merged changes into the data of a client dataset, this data still exists only in memory. While it
persists if you close the client dataset and reopen it in your application, it will disappear when your application shuts
down. To make the data permanent, it must be written to disk. Write changes to disk using the SaveToFile method.

SaveToFile takes one parameter, a string that specifies the file into which to write data. The file name can be a fully
qualified path name, if appropriate. If the file already exists, its current contents are completely overwritten.

Note: SaveToFile does not preserve any indexes you added to the client dataset at runtime, only indexes that were
added when you created the client dataset.

If you always save the data to the same file, you can use the FileNameproperty instead. If FileName is set, the data
is automatically saved to the named file when the client dataset is closed.

You can also save data to a stream, using the SaveToStream method. SaveToStream takes one parameter, a stream
object that receives the data.

Note: If you save a client dataset while there are still edits in the change log, these are not merged with the data.
When you reload the data, using the LoadFromFile or LoadFromStream method, the change log will still
contain the unmerged edits. This is important for applications that support the briefcase model, where those
changes will eventually have to be applied to a provider component on the application server.

Using a Simple Dataset
TSimpleDataSet is a special type of client dataset designed for simple two-tiered applications. Like a unidirectional
dataset, it can use an SQL connection component to connect to a database server and specify an SQL statement
to execute on that server. Like other client datasets, it buffers data in memory to allow full navigation and editing
support.

TSimpleDataSet works the same way as a generic client dataset (TClientDataSet) that is linked to a unidirectional
dataset by a dataset provider. In fact, TSimpleDataSet has its own, internal provider, which it uses to communicate
with an internally created unidirectional dataset.

Using a simple dataset can simplify the process of two-tiered application development because you don't need to
work with as many components.

When to use TSimpleDataSet provides information on when and how to use a simple dataset:

When to Use TSimpleDataSet
TSimpleDataSet is intended for use in a simple two-tiered database applications and briefcase model applications.
It provides an easy-to-set up component for linking to the database server, fetching data, caching updates, and
applying them back to the server. It can be used in most two-tiered applications.

There are times, however, when it is more appropriate to use TClientDataSet:

If you are not using data from a database server (for example, if you are using a dedicated file on disk), then
TClientDataSet has the advantage of less overhead.
Only TClientDataSet can be used in a multi-tiered database application . Thus, if you are writing a multi-tiered
application, or if you intend to scale up to a multi-tiered application eventually, you should use TClientDataSet
with an external provider and source dataset.

2031

Because the source dataset is internal to the simple dataset component, you can't link two source datasets in
a master/detail relationship to obtain nested detail sets. (You can, however, link two simple datasets into a
master/detail relationship.)
The simple dataset does not surface any of the events or properties that occur on its internal dataset provider.
However, in most cases, these events are used in multi-tiered applications, and are not needed for two-tiered
applications.

Setting up a simple dataset provides information on setting up a simple dataset:

Setting Up a Simple Dataset
Setting up a simple dataset requires two essential steps. Set up:

1 The connection information.
2 The dataset information.

The following steps describe setting up a simple dataset in more detail.

To use TSimpleDataSet:
1 Place the TSimpleDataSet component in a data module or on a form. Set its Name property to a unique value

appropriate to your application.
2 Identify the database server that contains the data. There are two ways to do this:

If you have a named connection in the connections file, expand the Connection property and specify the
ConnectionName value.
For greater control over connection properties, transaction support, login support, and the ability to use a single
connection for more than one dataset, use a separate TSQLConnection component instead. Specify the
TSQLConnection component as the value of the Connection property. For details on TSQLConnection, see
Connecting to databases.

3 To indicate what data you want to fetch from the server, expand the DataSet property and set the appropriate
values. There are three ways to fetch data from the server:

Set CommandType to ctQuery and set CommandText to an SQL statement you want to execute on the server.
This statement is typically a SELECT statement. Supply the values for any parameters using the Params
property.
Set CommandType to ctStoredProc and set CommandText to the name of the stored procedure you want to
execute. Supply the values for any input parameters using the Params property.
Set CommandType to ctTable and set CommandText to the name of the database tables whose records you
want to use.

4 If the data is to be used with visual data controls, add a data source component to the form or data module, and
set its DataSet property to the TSimpleDataSet object. The data source component forwards the data in the client
dataset's in-memory cache to data-aware components for display. Connect data-aware components to the data
source using their DataSource and DataField properties.

5 Activate the dataset by setting the Active property to true (or, at runtime, calling the Open method).
6 If you executed a stored procedure, use the Params property to retrieve any output parameters.

2032

7 When the user has edited the data in the simple dataset, you can apply those edits back to the database server
by calling the ApplyUpdates method. Resolve any update errors in an OnReconcileError event handler. For more
information on applying updates, see Updating records.

2033

Using provider components

Using Provider Components
Provider components (TDataSetProvider and TXMLTransformProvider) supply the most common mechanism by
which client datasets obtain their data. Providers

Receive data requests from a client dataset (or XML broker), fetch the requested data, package the data into a
transportable data packet, and return the data to the client dataset (or XML broker). This activity is called
"providing."
Receive updated data from a client dataset (or XML broker), apply updates to the database server, source
dataset, or source XML document, and log any updates that cannot be applied, returning unresolved updates
to the client dataset for further reconciliation. This activity is called "resolving."

Most of the work of a provider component happens automatically. You need not write any code on the provider to
create data packets from the data in a dataset or XML document or to apply updates. However, provider components
include a number of events and properties that allow your application more direct control over what information is
packaged for clients and how your application responds to client requests.

When using TBDEClientDataSet, TSimpleDataSet, or TIBClientDataSet, the provider is internal to the client dataset,
and the application has no direct access to it. When using TClientDataSet or TXMLBroker, however, the provider is
a separate component that you can use to control what information is packaged for clients and for responding to
events that occur around the process of providing and resolving. The client datasets that have internal providers
surface some of the internal provider's properties and events as their own properties and events, but for the greatest
amount of control, you may want to use TClientDataSet with a separate provider component.

When using a separate provider component, it can reside in the same application as the client dataset (or XML
broker), or it can reside on an application server as part of a multi-tiered application.

The following topics describe how to use a provider component to control the interaction with client datasets or XML
brokers.

Determining the Source of Data
Communicating with the Client Dataset
Choosing How to Apply Updates Using a Dataset Provider
Controlling what Information is Included in Data Packets
Responding to Client Data Requests
Responding to Client Update Requests
Responding to Client-generated Events

2034

Handling Server Constraints

Determining the Source of Data
When you use a provider component, you must specify the source it uses to get the data it assembles into data
packets. Depending on your version of Delphi, you can specify the source as one of the following:

To provide the data from a dataset, use TDataSetProvider.
To provide the data from an XML document, use TXMLTransformProvider.

Using a dataset as the source of the data
If the provider is a dataset provider (TDataSetProvider), set the DataSet property of the provider to indicate the
source dataset. At design time, select from available datasets in the DataSet property drop-down list in the Object
Inspector.

TDataSetProvider interacts with the source dataset using the IProviderSupport interface. This interface is introduced
by TDataSet, so it is available for all datasets. However, the IProviderSupport methods implemented in TDataSet
are mostly stubs that don't do anything or that raise exceptions.

The dataset classes that ship with Delphi (BDE-enabled datasets, ADO-enabled datasets, dbExpress datasets, and
InterBase Express datasets) override these methods to implement the IProviderSupport interface in a more useful
fashion. Client datasets don't add anything to the inherited IProviderSupport implementation, but can still be used
as a source dataset as long as the ResolveToDataSet property of the provider is True.

Component writers that create their own custom descendants from TDataSet must override all appropriate
IProviderSupport methods if their datasets are to supply data to a provider. If the provider only provides data packets
on a read-only basis (that is, if it does not apply updates), the IProviderSupport methods implemented in
TDataSet may be sufficient.

Using an XML document as the source of the data
If the provider is an XML provider, set the XMLDataFile property of the provider to indicate the source document.

XML providers must transform the source document into data packets, so in addition to indicating the source
document, you must also specify how to transform that document into data packets. This transformation is handled
by the provider's TransformRead property. TransformRead represents a TXMLTransform object. You can set its
properties to specify what transformation to use, and use its events to provide your own input to the transformation.
For more information on using XML providers, see Using an XML document as the source for a provider.

Communicating with the Client Dataset
All communication between a provider and a client dataset or XML broker takes place through an IAppServer
interface. If the provider is in the same application as the client, this interface is implemented by a hidden object
generated automatically for you, or by a TLocalConnection component. If the provider is part of a multi-tiered
application, this is the interface for the application server's remote data module or (in the case of a SOAP server)
an interface generated by the connection component.

Most applications do not use IAppServer directly, but invoke it indirectly through the properties and methods of the
client dataset or XML broker. However, when necessary, you can make direct calls to the IAppServer interface by
using the AppServer property of a client dataset.

The following table lists the methods of the IAppServer interface, as well as the corresponding methods and events
on the provider component and the client dataset. These IAppServer methods include a Provider parameter. In multi-

2035

tiered applications, this parameter indicates the provider on the application server with which the client dataset
communicates. Most methods also include an OleVariant parameter called OwnerData that allows a client dataset
and a provider to pass custom information back and forth. OwnerData is not used by default, but is passed to all
event handlers so that you can write code that allows your provider to adjust to application-defined information before
and after each call from a client dataset.

AppServer interface members
IAppServer Provider Component TClientDataSet

AS_ApplyUpdatesAS_ApplyUpdates method ApplyUpdates method,
BeforeApplyUpdates event,
AfterApplyUpdates event

ApplyUpdates method,
BeforeApplyUpdates event,
AfterApplyUpdates event.

AS_DataRequest method DataRequest method,
OnDataRequest event

DataRequest method.

AS_Execute method Execute method, BeforeExecute
event, AfterExecute event

Execute method, BeforeExecute
event, AfterExecute event.

AS_GetParams method GetParams method,
BeforeGetParams event,
AfterGetParams event

FetchParams method,
BeforeGetParams event,
AfterGetParams event.

AS_GetProviderNames method Used to identify all available providers. Used to create a design-time list for
ProviderName property.

AS_GetRecords method GetRecords method,
BeforeGetRecords event,
AfterGetRecords event

GetNextPacket method, Data
property, BeforeGetRecords event,
AfterGetRecords event

AS_RowRequest method RowRequest method,
BeforeRowRequest event,
AfterRowRequest event

FetchBlobs method, FetchDetails
method, RefreshRecord method,
BeforeRowRequest event,
AfterRowRequest event

Choosing How to Apply Updates Using a Dataset Provider
TXMLTransformProvider components always apply updates to the associated XML document. When using
TDataSetProvider, however, you can choose how updates are applied. By default, when TDataSetProvider
components apply updates and resolve update errors, they communicate directly with the database server using
dynamically generated SQL statements. This approach has the advantage that your server application does not
need to merge updates twice (first to the dataset, and then to the remote server).

However, you may not always want to take this approach. For example, you may want to use some of the events
on the dataset component. Alternately, the dataset you use may not support the use of SQL statements (for example
if you are providing from a TClientDataSet component.

TDataSetProvider lets you decide whether to apply updates to the database server using SQL or to the source
dataset by setting the ResolveToDataSet property. When this property is True, updates are applied to the dataset.
When it is False, updates are applied directly to the underlying database server.

Controlling What Information Is Included in Data Packets
When working with a dataset provider, there are a number of ways to control what information is included in data
packets that are sent to and from the client. These include

Specifying what fields appear in data packets
Setting options that influence the data packets

2036

Adding custom information to data packets

Note: These techniques for controlling the content of data packets are only available for dataset providers. When
using TXMLTransformProvider, you can only control the content of data packets by controlling the
transformation file the provider uses.

Specifying What Fields Appear in Data Packets
When using a dataset provider, you can control what fields are included in data packets by creating persistent fields
on the dataset that the provider uses to build data packets. The provider then includes only these fields. Fields whose
values are generated dynamically by the source dataset (such as calculated fields or lookup fields) can be included,
but appear to client datasets on the receiving end as static read-only fields.

If the client dataset will be editing the data and applying updates, you must include enough fields so that there are
no duplicate records in the data packet. Otherwise, when the updates are applied, it is impossible to determine which
record to update. If you do not want the client dataset to be able to see or use extra fields provided only to ensure
uniqueness, set the ProviderFlags property for those fields to include pfHidden.

Note: Including enough fields to avoid duplicate records is also a consideration when the provider's source dataset
represents a query. You must specify the query so that it includes enough fields to ensure all records are
unique, even if your application does not use all the fields.

Setting Options That Influence the Data Packets
The Options property of a dataset provider lets you specify when BLOBs or nested detail tables are sent, whether
field display properties are included, what type of updates are allowed, and so on. The following table lists the
possible values that can be included in Options.

Provider options
Value Meaning

poAutoRefresh The provider refreshes the client dataset with current record values whenever it applies updates.

poReadOnly The client dataset can't apply updates to the provider.

poDisableEdits Client datasets can't modify existing data values. If the user tries to edit a field, the client dataset
raises exception. (This does not affect the client dataset's ability to insert or delete records).

poDisableInserts Client datasets can't insert new records. If the user tries to insert a new record, the client dataset
raises an exception. (This does not affect the client dataset's ability to delete records or modify
existing data)

poDisableDeletes Client datasets can't delete records. If the user tries to delete a record, the client dataset raises
an exception. (This does not affect the client dataset's ability to insert or modify records)

poFetchBlobsOnDemand BLOB field values are not included in data packets. Instead, client datasets must request these
values on an as-needed basis. If the client dataset's FetchOnDemand property is True, it
requests these values automatically. Otherwise, the application must call the client dataset's
FetchBlobs method to retrieve BLOB data.

poFetchDetailsOnDemand When the provider's dataset represents the master of a master/detail relationship, nested detail
values are not included in data packets. Instead, client datasets request these on an as-needed
basis. If the client dataset's FetchOnDemand property is True, it requests these values
automatically. Otherwise, the application must call the client dataset's FetchDetails method to
retrieve nested details.

2037

poIncFieldProps The data packet includes the following field properties (where applicable): Alignment,
DisplayLabel, DisplayWidth, Visible, DisplayFormat, EditFormat, MaxValue, MinValue,
Currency, EditMask, DisplayValues.

poCascadeDeletes When the provider's dataset represents the master of a master/detail relationship, the server
automatically deletes detail records when master records are deleted. To use this option, the
database server must be set up to perform cascaded deletes as part of its referential integrity.

poCascadeUpdates When the provider's dataset represents the master of a master/detail relationship, key values
on detail tables are updated automatically when the corresponding values are changed in
master records. To use this option, the database server must be set up to perform cascaded
updates as part of its referential integrity.

poAllowMultiRecordUpdates A single update can cause more than one record of the underlying database table to change.
This can be the result of triggers, referential integrity, SQL statements on the source dataset,
and so on. Note that if an error occurs, the event handlers provide access to the record that was
updated, not the other records that change in consequence.

poNoReset Client datasets can't specify that the provider should reposition the cursor on the first record
before providing data.

poPropogateChanges Changes made by the server to updated records as part of the update process are sent back
to the client and merged into the client dataset.

poAllowCommandText The client can override the associated dataset's SQL text or the name of the table or stored
procedure it represents.

poRetainServerOrder The client dataset should not re-sort the records in the dataset to enforce a default order.

Adding Custom Information to Data Packets
Dataset providers can add application-defined information to data packets using the OnGetDataSetProperties event.
This information is encoded as an OleVariant, and stored under a name you specify. Client datasets can then retrieve
the information using their GetOptionalParam method. You can also specify that the information be included in delta
packets that the client dataset sends when updating records. In this case, the client dataset may never be aware of
the information, but the provider can send a round-trip message to itself.

When adding custom information in the OnGetDataSetProperties event, each individual attribute (sometimes called
an "optional parameter") is specified using a Variant array that contains three elements: the name (a string), the
value (a Variant), and a boolean flag indicating whether the information should be included in delta packets when
the client applies updates. Add multiple attributes by creating a Variant array of Variant arrays. For example, the
following OnGetDataSetProperties event handler sends two values, the time the data was provided and the total
number of records in the source dataset. Only the time the data was provided is returned when client datasets apply
updates:

[Delphi]
procedure TMyDataModule1.Provider1GetDataSetProperties(Sender: TObject; DataSet: TDataSet;
out Properties: OleVariant);
begin
 Properties := VarArrayCreate([0,1], varVariant);
 Properties[0] := VarArrayOf(['TimeProvided', Now, True]);
 Properties[1] := VarArrayOf(['TableSize', DataSet.RecordCount, False]);
end;

[C++]
void __fastcall TMyDataModule1::Provider1GetDataSetProperties(TObject *Sender, TDataSet
*DataSet, out OleVariant Properties)
{
 int ArrayBounds[2];

2038

 ArrayBounds[0] = 0;
 ArrayBounds[1] = 1;
 Properties = VarArrayCreate(ArrayBounds, 1, varVariant);
 Variant values[3];
 values[0] = Variant("TimeProvided");
 values[1] = Variant(Now());
 values[2] = Variant(true);
 Properties[0] = VarArrayOf(values,2);
 values[0] = Variant("TableSize");
 values[1] = Variant(DataSet->RecordCount);
 values[2] = Variant(false);
 Properties[1] = VarArrayOf(values,2);
}

When the client dataset applies updates, the time the original records were provided can be read in the provider's
OnUpdateData event:

[Delphi]
procedure TMyDataModule1.Provider1UpdateData(Sender: TObject; DataSet:
TCustomClientDataSet);
var
 WhenProvided: TDateTime;
begin
 WhenProvided := DataSet.GetOptionalParam('TimeProvided');
 ...
end;

[C++]
void __fastcall TMyDataModule1::Provider1UpdateData(TObject *Sender, TCustomClientDataSet
*DataSet)
{
 Variant WhenProvided = DataSet->GetOptionalParam("TimeProvided");
 ...
}

Responding to Client Data Requests
Usually client requests for data are handled automatically. A client dataset or XML broker requests a data packet
by calling GetRecords (indirectly, through the IAppServer interface). The provider responds automatically by fetching
data from the associated dataset or XML document, creating a data packet, and sending the packet to the client.

The provider has the option of editing data after it has been assembled into a data packet but before the packet is
sent to the client. For example, you might want to remove records from the packet based on some criterion (such
as the user's level of access), or, in a multi-tiered application, you might want to encrypt sensitive data before it is
sent on to the client.

To edit the data packet before sending it on to the client, write an OnGetData event handler. OnGetData event
handlers provide the data packet as a parameter in the form of a client dataset. Using the methods of this client
dataset, you can edit data before it is sent to the client.

As with all method calls made through the IAppServer interface, the provider can communicate persistent state
information with a client dataset before and after the call to GetRecords. This communication takes place using the
BeforeGetRecords and AfterGetRecords event handlers.

2039

Responding to Client Update Requests
A provider applies updates to database records based on a Delta data packet received from a client dataset or XML
broker. The client requests updates by calling the ApplyUpdates method (indirectly, through the IAppServer
interface).

As with all method calls made through the IAppServer interface, the provider can communicate persistent state
information with a client dataset before and after the call to ApplyUpdates. This communication takes place using
the BeforeApplyUpdates and AfterApplyUpdates event handlers.

If you are using a dataset provider, a number of additional events allow you more control:

When a dataset provider receives an update request, it generates an OnUpdateData event, where you can edit the
Delta packet before it is written to the dataset or influence how updates are applied. After the OnUpdateData event,
the provider writes the changes to the database or source dataset.

The provider performs the update on a record-by-record basis. Before the dataset provider applies each record, it
generates a BeforeUpdateRecord event, which you can use to screen updates before they are applied. If an error
occurs when updating a record, the provider receives an OnUpdateError event where it can resolve the error. Usually
errors occur because the change violates a server constraint or a database record was changed by a different
application subsequent to its retrieval by the provider, but prior to the client dataset's request to apply updates.

Update errors can be processed by either the dataset provider or the client dataset. When the provider is part of a
multi-tiered application, it should handle all update errors that do not require user interaction to resolve. When the
provider can't resolve an error condition, it temporarily stores a copy of the offending record. When record processing
is complete, the provider returns a count of the errors it encountered to the client dataset, and copies the unresolved
records into a results data packet that it returns to the client dataset for further reconciliation.

The event handlers for all provider events are passed the set of updates as a client dataset. If your event handler is
only dealing with certain types of updates, you can filter the dataset based on the update status of records. By filtering
the records, your event handler does not need to sort through records it won't be using. To filter the client dataset
on the update status of its records, set its StatusFilter property.

Note: Applications must supply extra support when the updates are directed at a dataset that does not represent
a single table.

Editing Delta Packets Before Updating the Database
Before a dataset provider applies updates to the database, it generates an OnUpdateData event. The
OnUpdateData event handler receives a copy of the Delta packet as a parameter. This is a client dataset.

In the OnUpdateData event handler, you can use any of the properties and methods of the client dataset to edit the
Delta packet before it is written to the dataset. One particularly useful property is the UpdateStatus property.
UpdateStatus indicates what type of modification the current record in the delta packet represents. It can have any
of the values in the following table:

UpdateStatus values
Value Description

usUnmodified Record contents have not been changed

usModified Record contents have been changed

usInserted Record has been inserted

usDeleted Record has been deleted

For example, the following OnUpdateData event handler inserts the current date into every new record that is inserted
into the database:

2040

[Delphi]

procedure TMyDataModule1.Provider1UpdateData(Sender: TObject; DataSet:
TCustomClientDataSet);
begin
 with DataSet do
 begin
 First;
 while not Eof do
 begin
 if UpdateStatus = usInserted then
 begin
 Edit;
 FieldByName('DateCreated').AsDateTime := Date;
 Post;
 end;
 Next;
 end;
end;

[C++]
void __fastcall TMyDataModule1::Provider1UpdateData(TObject *Sender, TCustomClientDataSet
*DataSet)
{
 DataSet->First();
 while (!DataSet->Eof)
 {
 if (DataSet->UpdateStatus == usInserted)
 {
 DataSet->Edit();
 DataSet->FieldByName("DateCreated")->AsDateTime = Date();
 DataSet->Post();
 }
 DataSet->Next();
 }
}

Influencing How Updates Are Applied
The OnUpdateData event gives your dataset provider a chance to indicate how records in the delta packet are
applied to the database.

By default, changes in the delta packet are written to the database using automatically generated SQL UPDATE,
INSERT, or DELETE statements such as

UPDATE EMPLOYEES
set EMPNO = 748, NAME = 'Smith', TITLE = 'Programmer 1', DEPT = 52
WHERE
EMPNO = 748 and NAME = 'Smith' and TITLE = 'Programmer 1' and DEPT = 47

Unless you specify otherwise, all fields in the delta packet records are included in the UPDATE clause and in the
WHERE clause. However, you may want to exclude some of these fields. One way to do this is to set the UpdateMode
property of the provider. UpdateMode can be assigned any of the following values:

UpdateMode values

2041

Value Meaning

upWhereAll All fields are used to locate fields (the WHERE clause).

upWhereChanged Only key fields and fields that are changed are used to locate records.

upWhereKeyOnly Only key fields are used to locate records.

You might, however, want even more control. For example, with the previous statement, you might want to prevent
the EMPNO field from being modified by leaving it out of the UPDATE clause and leave the TITLE and DEPT fields
out of the WHERE clause to avoid update conflicts when other applications have modified the data. To specify the
clauses where a specific field appears, use the ProviderFlags property. ProviderFlags is a set that can include any
of the values in the following table

ProviderFlags values
Value Description

pfInWhere The field appears in the WHERE clause of generated INSERT, DELETE, and UPDATE statements when
UpdateMode is upWhereAll or upWhereChanged.

pfInUpdate The field appears in the UPDATE clause of generated UPDATE statements.

pfInKey The field is used in the WHERE clause of generated statements when UpdateMode is upWhereKeyOnly.

pfHidden The field is included in records to ensure uniqueness, but can't be seen or used on the client side.

Thus, the following OnUpdateData event handler allows the TITLE field to be updated and uses the EMPNO and
DEPT fields to locate the desired record. If an error occurs, and a second attempt is made to locate the record based
only on the key, the generated SQL looks for the EMPNO field only:

[Delphi]
procedure TMyDataModule1.Provider1UpdateData(Sender: TObject; DataSet:
TCustomClientDataSet);
begin
 with DataSet do
 begin
 FieldByName('TITLE').ProviderFlags := [pfInUpdate];
 FieldByName('EMPNO').ProviderFlags := [pfInWhere, pfInKey];
 FieldByName('DEPT').ProviderFlags := [pfInWhere];
 end;
end;

[C++]
void __fastcall TMyDataModule1::Provider1UpdateData(TObject *Sender, TCustomClientDataSet
*DataSet)
{
 DataSet->FieldByName("EMPNO")->ProviderFlags.Clear();
 DataSet->FieldByName("EMPNO")->ProviderFlags << pfInWHere << pfInKey;
 DataSet->FieldByName("TITLE")->ProviderFlags.Clear();
 DataSet->FieldByName("TITLE")->ProviderFlags << pfInUpdate;
 DataSet->FieldByName("DEPT")->ProviderFlags.Clear();
 DataSet->FieldByName("DEPT")->ProviderFlags << pfInWhere;
}

Note: You can use the UpdateFlags property to influence how updates are applied even if you are updating to a
dataset and not using dynamically generated SQL. These flags still determine which fields are used to locate
records and which fields get updated.

2042

Screening Individual Updates
Immediately before each update is applied, a dataset provider receives a BeforeUpdateRecord event. You can use
this event to edit records before they are applied, similar to the way you can use the OnUpdateData event to edit
entire delta packets. For example, the provider does not compare BLOB fields (such as memos) when checking for
update conflicts. If you want to check for update errors involving BLOB fields, you can use the
BeforeUpdateRecord event.

In addition, you can use this event to apply updates yourself or to screen and reject updates. The
BeforeUpdateRecord event handler lets you signal that an update has been handled already and should not be
applied. The provider then skips that record, but does not count it as an update error. For example, this event provides
a mechanism for applying updates to a stored procedure (which can't be updated automatically), allowing the provider
to skip any automatic processing once the record is updated from within the event handler.

Resolving Update Errors On the Provider
When an error condition arises as the dataset provider tries to post a record in the delta packet, an OnUpdateError
event occurs. If the provider can't resolve an update error, it temporarily stores a copy of the offending record. When
record processing is complete, the provider returns a count of the errors it encountered, and copies the unresolved
records into a results data packet that it passes back to the client for further reconciliation.

In multi-tiered applications, this mechanism lets you handle any update errors you can resolve mechanically on the
application server, while still allowing user interaction on the client application to correct error conditions.

The OnUpdateError handler gets a copy of the record that could not be changed, an error code from the database,
and an indication of whether the resolver was trying to insert, delete, or update the record. The problem record is
passed back in a client dataset. You should never use the data navigation methods on this dataset. However, for
each field in the dataset, you can use the NewValue, OldValue, and CurValue properties to determine the cause of
the problem and make any modifications to resolve the update error. If the OnUpdateError event handler can correct
the problem, it sets the Response parameter so that the corrected record is applied.

Applying Updates to Datasets That do Not Represent a Single Table
When a dataset provider generates SQL statements that apply updates directly to a database server, it needs the
name of the database table that contains the records. This can be handled automatically for many datasets such as
table type datasets or "live" TQuery components. Automatic updates are a problem however, if the provider must
apply updates to the data underlying a stored procedure with a result set or a multi-table query. There is no easy
way to obtain the name of the table to which updates should be applied.

If the query or stored procedure is a BDE-enabled dataset (TQuery or TStoredProc) and it has an associated update
object, the provider uses the update object. However, if there is no update object, you can supply the table name
programmatically in an OnGetTableName event handler. Once an event handler supplies the table name, the
provider can generate appropriate SQL statements to apply updates.

Supplying a table name only works if the target of the updates is a single database table (that is, only the records in
one table need to be updated). If the update requires making changes to multiple underlying database tables, you
must explicitly apply the updates in code using the BeforeUpdateRecord event of the provider. Once this event
handler has applied an update, you can set the event handler's Applied parameter to True so that the provider does
not generate an error.

Note: If the provider is associated with a BDE-enabled dataset, you can use an update object in the
BeforeUpdateRecord event handler to apply updates using customized SQL statements.

2043

Responding to Client-generated Events
Provider components implement a general-purpose event that lets you create your own calls from client datasets
directly to the provider. This is the OnDataRequest event.

OnDataRequest is not part of the normal functioning of the provider. It is simply a hook to allow your client datasets
to communicate directly with providers. The event handler takes an OleVariant as an input parameter and returns
an OleVariant. By using OleVariants, the interface is sufficiently general to accommodate almost any information
you want to pass to or from the provider.

To generate an OnDataRequest event, the client application calls the DataRequest method of the client dataset.

Handling Server Constraints
Most relational database management systems implement constraints on their tables to enforce data integrity. A
constraint is a rule that governs data values in tables and columns, or that governs data relationships across columns
in different tables. For example, most SQL-92 compliant relational databases support the following constraints:

NOT NULL, to guarantee that a value supplied to a column has a value.
NOT NULL UNIQUE, to guarantee that column value has a value and does not duplicate any other value already
in that column for another record.
CHECK, to guarantee that a value supplied to a column falls within a certain range, or is one of a limited number
of possible values.
CONSTRAINT, a table-wide check constraint that applies to multiple columns.
PRIMARY KEY, to designate one or more columns as the table's primary key for indexing purposes.
FOREIGN KEY, to designate one or more columns in a table that reference another table.

Note: This list is not exclusive. Your database server may support some or all of these constraints in part or in
whole, and may support additional constraints. For more information about supported constraints, see your
server documentation.

Database server constraints obviously duplicate many kinds of data checks that traditional desktop database
applications manage. You can take advantage of server constraints in multi-tiered database applications without
having to duplicate the constraints in application server or client application code.

If the provider is working with a BDE-enabled dataset, the Constraints property lets you replicate and apply server
constraints to data passed to and received from client datasets. When Constraints is True (the default), server
constraints stored in the source dataset are included in data packets and affect client attempts to update data.

Warning: Before the provider can pass constraint information on to client datasets, it must retrieve the constraints
from the database server.

There may be times when you do not want to apply server constraints to data sent to a client dataset. For example,
a client dataset that receives data in packets and permits local updating of records prior to fetching more records
may need to disable some server constraints that might be triggered because of the temporarily incomplete set of
data. To prevent constraint replication from the provider to a client dataset, set Constraints to False. Note that client
datasets can disable and enable constraints using the DisableConstraints and EnableConstraints methods. For more
information about enabling and disabling constraints from the client dataset, see Handling constraints from the
server.

2044

Creating multi-tiered applications

Creating Multi-tiered Applications: Overview
A multi-tiered client/server application is partitioned into logical units, called tiers, which run in conjunction on
separate machines. Multi-tiered applications share data and communicate with one another over a local-area
network or even over the Internet. They provide many benefits, such as centralized business logic and thin client
applications.

In its simplest form, sometimes called the "three-tiered model," a multi-tiered application is partitioned into thirds:

Client application: provides a user interface on the user's machine.
Application server: resides in a central networking location accessible to all clients and provides common data
services.
Remote database server: provides the relational database management system (RDBMS).

In this three-tiered model, the application server manages the flow of data between clients and the remote database
server, so it is sometimes called a "data broker." You usually only create the application server and its clients,
although, if you are really ambitious, you could create your own database back end as well.

In more complex multi-tiered applications, additional services reside between a client and a remote database server.
For example, there might be a security services broker to handle secure Internet transactions, or bridge services to
handle sharing of data with databases on other platforms.

Support for developing multi-tiered applications is an extension of the way client datasets communicate with a
provider component using transportable data packets. See Understanding multi-tiered database applications for an
overview of this technology and the architecture of a typical three-tiered application. Once you understand how to
create and manage a three-tiered application, you can create and add additional service layers based on your needs.

Building a multi-tiered application provides details on how to apply this architecture to build a three-tiered application.
Writing Web-based client applications describes how to combine this architecture with other technologies to create
a Web-based multi-tiered application.

Advantages of the Multi-tiered Database Model
The multi-tiered database model breaks a database application into logical pieces. The client application can focus
on data display and user interactions. Ideally, it knows nothing about how the data is stored or maintained. The
application server (middle tier) coordinates and processes requests and updates from multiple clients. It handles all
the details of defining datasets and interacting with the database server.

The advantages of this multi-tiered model include the following:

2045

Encapsulation of business logic in a shared middle tier. Different client applications all access the same
middle tier. This allows you to avoid the redundancy (and maintenance cost) of duplicating your business rules
for each separate client application.
Thin client applications. Your client applications can be written to make a small footprint by delegating more
of the processing to middle tiers. Not only are client applications smaller, but they are easier to deploy because
they don't need to worry about installing, configuring, and maintaining the database connectivity software (such
as the database server's client-side software). Thin client applications can be distributed over the Internet for
additional flexibility.
Distributed data processing. Distributing the work of an application over several machines can improve
performance because of load balancing, and allow redundant systems to take over when a server goes down.
Increased opportunity for security. You can isolate sensitive functionality into tiers that have different access
restrictions. This provides flexible and configurable levels of security. Middle tiers can limit the entry points to
sensitive material, allowing you to control access more easily. If you are using HTTP or COM+, you can take
advantage of the security models they support.

Understanding Multi-tiered Database Applications
Multi-tiered applications use the components on the DataSnap page, the Data Access page, and possibly the
WebServices page of the Tool palette, plus a remote data module that is created by a wizard on the Multitier or
WebServices page of the New Items dialog. They are based on the ability of provider components to package data
into transportable data packets and handle updates received as transportable delta packets.

The components needed for a multi-tiered application are described in the following table:

Components used in multi-tiered applications
Component Description

Remote data modules Specialized data modules that can act as a COM Automation server or implement a Web Service
to give client applications access to any providers they contain. Used on the application server.

Provider component A data broker that provides data by creating data packets and resolves client updates. Used on
the application server.

Client dataset component A specialized dataset that uses midas.dll or midaslib.dcu to manage data stored in data packets.
The client dataset is used in the client application. It caches updates locally, and applies them in
delta packets to the application server.

Connection components A family of components that locate the server, form connections, and make the IAppServer
interface available to client datasets. Each connection component is specialized to use a particular
communications protocol.

The provider and client dataset components require midas.dll or midaslib.dcu, which manages datasets stored as
data packets. (Note that, because the provider is used on the application server and the client dataset is used on
the client application, if you are using midas.dll, you must deploy it on both application server and client application.)

An overview of the architecture into which these components fit is described in Using a multi-tiered architecture. For
more information on how these components fit together to create a multi-tiered application, see

Overview of a Three-tiered Application
The Structure of the Client Application
The Structure of the Application Server
Choosing a Connection Protocol

2046

Overview of a Three-tiered Application
The following numbered steps illustrate a normal sequence of events for a provider-based three-tiered application:

1 A user starts the client application. The client connects to the application server (which can be specified at design
time or runtime). If the application server is not already running, it starts. The client receives an IAppServer
interface for communicating with the application server.

2 The client requests data from the application server. A client may request all data at once, or may request chunks
of data throughout the session (fetch on demand).

3 The application server retrieves the data (first establishing a database connection, if necessary), packages it for
the client, and returns a data packet to the client. Additional information, (for example, field display characteristics)
can be included in the metadata of the data packet. This process of packaging data into data packets is called
"providing."

4 The client decodes the data packet and displays the data to the user.
5 As the user interacts with the client application, the data is updated (records are added, deleted, or modified).

These modifications are stored in a change log by the client.
6 Eventually the client applies its updates to the application server, usually in response to a user action. To apply

updates, the client packages its change log and sends it as a data packet to the server.
7 The application server decodes the package and posts updates (in the context of a transaction if appropriate). If

a record can't be posted (for example, because another application changed the record after the client requested
it and before the client applied its updates), the application server either attempts to reconcile the client's changes
with the current data, or saves the records that could not be posted. This process of posting records and caching
problem records is called "resolving."

8 When the application server finishes the resolving process, it returns any unposted records to the client for further
resolution.

9 The client reconciles unresolved records. There are many ways a client can reconcile unresolved records.
Typically the client attempts to correct the situation that prevented records from being posted or discards the
changes. If the error situation can be rectified, the client applies updates again.

10The client refreshes its data from the server.

The Structure of the Client Application
To the end user, the client application of a multi-tiered application looks and behaves no differently than a two-tiered
application that uses cached updates. User interaction takes place through standard data-aware controls that display
data from a TClientDataSet component. For detailed information about using the properties, events, and methods
of client datasets, see Using Client Datasets.

TClientDataSet fetches data from and applies updates to a provider component, just as in two-tiered applications
that use a client dataset with an external provider. For details about providers, see Using Provider Components. For
details about client dataset features that facilitate its communication with a provider, see Using a Client Dataset with
a Provider.

The client dataset communicates with the provider through the IAppServer interface. It gets this interface from a
connection component. The connection component establishes the connection to the application server. Different
connection components are available for using different communications protocols.

These connection components are summarized in the following table:

Connection components
Component Protocol

TDCOMConnection DCOM

TSocketConnection Windows sockets (TCP/IP)

2047

TWebConnection HTTP

TSOAPConnection SOAP (HTTP and XML)

TCorbaConnection CORBA (IIOP)

Note: The DataSnap category of the Tool palette also includes a connection component that does not connect to
an application server at all, but instead supplies an IAppServer interface for client datasets to use when
communicating with providers in the same application. This component, TLocalConnection, is not required,
but makes it easier to scale up to a multi-tiered application later.

For more information about using connection components, see Connecting to the Application Server.

The Structure of the Application Server
When you set up and run an application server, it does not establish any connection with client applications. Rather,
client applications initiate and maintain the connection. The client application uses a connection component to
connect to the application server, and uses the interface of the application server to communicate with a selected
provider. All of this happens automatically, without your having to write code to manage incoming requests or supply
interfaces.

The basis of an application server is a remote data module, which is a specialized data module that supports the
IAppServer interface (for application servers that also function as a Web Service, the remote data module supports
the IAppServerSOAP interface as well, and uses it in preference to IAppServer.) Client applications use the remote
data module's interface to communicate with providers on the application server. When the remote data module
uses IAppServerSOAP, the connection component adapts this to an IAppServer interface that client datasets can
use.

There are three types of remote data modules:

TRemoteDataModule: This is a dual-interface Automation server. Use this type of remote data module if clients
use DCOM, HTTP, sockets, or OLE to connect to the application server, unless you want to install the application
server with COM+.
TMTSDataModule: This is a dual-interface Automation server. Use this type of remote data module if you are
creating the application server as an Active Library (.DLL) that is installed with COM+ (or MTS). You can use
MTS remote data modules with DCOM, HTTP, sockets, or OLE. See Using transactional data modules for
information about the benefits and limitations of using MTS or COM+ with the application server.
TSoapDataModule: This is a data module that implements an IAppServerSOAP interface in a Web Service
application. Use this type of remote data module to provide data to clients that access data as a Web Service.

Note: If the application server is to be deployed under COM+ (or MTS), the remote data module includes events
for when the application server is activated or deactivated. This allows it to acquire database connections
when activated and release them when deactivated.

The contents of the remote data module
As with any data module, you can include any nonvisual component in the remote data module. There are certain
components, however, that you must include:

It must include a dataset component to represent the records from that database server if the remote data module
is exposing information from a database server. Other components, such as a database connection component of
some type, may be required to allow the dataset to interact with a database server.

2048

For every dataset that the remote data module exposes to clients, it must include a dataset provider. A dataset
provider packages data into data packets that are sent to client datasets and applies updates received from client
datasets back to a source dataset or a database server.

It must include an XML provider for every XML document that the remote data module exposes to clients. An XML
provider acts like a dataset provider, except that it fetches data from and applies updates to an XML document rather
than a database server.

Note: Do not confuse database connection components, which connect datasets to a database server, with the
connection components used by client applications in a multi-tiered application. The connection components
in multi-tiered applications can be found on the DataSnap category or WebServices category of the Tool
palette.

Using Transactional Data Modules
You can write an application server that takes advantage of special services for distributed applications that are
supplied by COM+ (under Windows 2000 and later) or MTS (before Windows 2000). To do so, create a transactional
data module instead of an ordinary remote data module.

When you use a transactional data module, your application can take advantage of the following special services:

Security. COM+ (or MTS) provides role-based security for your application server. Clients are assigned roles,
which determine how they can access the MTS data module's interface. The MTS data module implements the
IsCallerInRole method, which you lets you check the role of the currently connected client and conditionally
allow certain functions based on that role. .
Database handle pooling. Transactional data modules automatically pool database connections that are made
via ADO or (if you are using MTS and turn on MTS POOLING) the BDE. When one client is finished with a
database connection, another client can reuse it. This cuts down on network traffic, because your middle tier
does not need to log off of the remote database server and then log on again. When pooling database handles,
your database connection component should set its KeepConnection property to False, so that your application
maximizes the sharing of connections. .
Transactions. When using a transactional data module, you can provide enhanced transaction support beyond
that available with a single database connection. Transactional data modules can participate in transactions
that span multiple databases, or include functions that do not involve databases at all. For more information
about the transaction support provided by transactional objects such as transactional data modules, see
Managing transactions in multi-tiered applications.
Just-in-time activation and as-soon-as-possible deactivation. You can write your server so that remote
data module instances are activated and deactivated on an as-needed basis. When using just-in-time activation
and as-soon-as-possible deactivation, your remote data module is instantiated only when it is needed to handle
client requests. This prevents it from tying up resources such as database handles when they are not in use.

Using just-in-time activation and as-soon-as-possible deactivation provides a middle ground between routing all
clients through a single remote data module instance, and creating a separate instance for every client connection.
With a single remote data module instance, the application server must handle all database calls through a single
database connection. This acts as a bottleneck, and can impact performance when there are many clients. With
multiple instances of the remote data module, each instance can maintain a separate database connection, thereby
avoiding the need to serialize database access. However, this monopolizes resources because other clients can't
use the database connection while it is associated with another client's remote data module.

To take advantage of transactions, just-in-time activation, and as-soon-as-possible deactivation, remote data module
instances must be stateless. This means you must provide additional support if your client relies on state information.
For example, the client must pass information about the current record when performing incremental fetches. For
more information about state information and remote data modules in multi-tiered applications, see Supporting state
information in remote data modules.

2049

By default, all automatically generated calls to a transactional data module are transactional (that is, they assume
that when the call exits, the data module can be deactivated and any current transactions committed or rolled back).
You can write a transactional data module that depends on persistent state information by setting the AutoComplete
property to False, but it will not support transactions, just-in-time activation, or as-soon-as-possible deactivation
unless you use a custom interface.

Warning: Application servers containing transactional data modules should not open database connections until
the data module is activated. While developing your application, be sure that all datasets are not active
and the database is not connected before running your application. In the application itself, add code to
open database connections when the data module is activated and close them when it is deactivated.

Pooling Remote Data Modules
Object pooling allows you to create a cache of remote data modules that are shared by their clients, thereby
conserving resources. How this works depends on the type of remote data module and on the connection protocol.

If you are creating a transactional data module that will be installed to COM+, you can use the COM+ Component
Manager to install the application server as a pooled object.

Even if you are not using a transactional data module, you can take advantage of object pooling if the connection is
formed using TWebConnection. Under this second type of object pooling, you limit the number of instances of your
remote data module that are created. This limits the number of database connections that you must hold, as well as
any other resources used by the remote data module.

When the Web Server application (which passes calls to your remote data module) receives client requests, it passes
them on to the first available remote data module in the pool. If there is no available remote data module, it creates
a new one (up to a maximum number that you specify). This provides a middle ground between routing all clients
through a single remote data module instance (which can act as a bottleneck), and creating a separate instance for
every client connection (which can consume many resources).

If a remote data module instance in the pool does not receive any client requests for a while, it is automatically freed.
This prevents the pool from monopolizing resources unless they are used.

To set up object pooling when using a Web connection (HTTP), your remote data module must override the
UpdateRegistry method. In the overridden method, call RegisterPooled when the remote data module registers and
UnregisterPooled when the remote data module unregisters.

When using either method of object pooling, your remote data module must be stateless. This is because a single
instance potentially handles requests from several clients. If it relied on persistent state information, clients could
interfere with each other. See Supporting State Information in Remote Data Modules for more information on how
to ensure that your remote data module is stateless.

Choosing a Connection Protocol
Each communications protocol you can use to connect your client applications to the application server provides its
own unique benefits. Before choosing a protocol, consider how many clients you expect, how you are deploying
your application, and future development plans.

The following topics describe the unique features for each connection protocol:

Using DCOM Connections
Using Socket Connections
Using Web Connections
Using SOAP Connections

2050

Using DCOM Connections
DCOM provides the most direct approach to communication, requiring no additional runtime applications on the
server.

DCOM provides the only approach that lets you use security services when writing a transactional data module.
These security services are based on assigning roles to the callers of transactional objects. When using DCOM,
DCOM identifies the caller to the system that calls your application server (COM+ or MTS). Therefore, it is possible
to accurately determine the role of the caller. When using other protocols, however, there is a runtime executable,
separate from the application server, that receives client calls. This runtime executable makes COM calls into the
application server on behalf of the client. Because of this, it is impossible to assign roles to separate clients: The
runtime executable is, effectively, the only client.

Using Socket Connections
TCP/IP Sockets let you create lightweight clients. For example, if you are writing a Web-based client application,
you can't be sure that client systems support DCOM. Sockets provide a lowest common denominator that you know
will be available for connecting to the application server. For more information about sockets, see Working with
Sockets.

Instead of instantiating the remote data module directly from the client (as happens with DCOM), sockets use a
separate application on the server (ScktSrvr.exe), which accepts client requests and instantiates the remote data
module using COM. The connection component on the client and ScktSrvr.exe on the server are responsible for
marshaling IAppServer calls.

Note: ScktSrvr.exe can run as an NT service application. Register it with the Service manager by starting it using
the -install command line option. You can unregister it using the -uninstall command line option.

Before you can use a socket connection, the application server must register its availability to clients using a socket
connection. By default, all new remote data modules automatically register themselves by adding a call to
EnableSocketTransport in the UpdateRegistry method. You can remove this call to prevent socket connections to
your application server.

Note: Because older servers did not add this registration, you can disable the check for whether an application
server is registered by unchecking the Connections Registered Objects Only menu item on
ScktSrvr.exe.

When using sockets, there is no protection on the server against client systems failing before they release a reference
to interfaces on the application server. While this results in less message traffic than when using DCOM (which
sends periodic keep-alive messages), this can result in an application server that can't release its resources because
it is unaware that the client has gone away.

Using Web Connections
HTTP lets you create clients that can communicate with an application server that is protected by a firewall. HTTP
messages provide controlled access to internal applications so that you can distribute your client applications safely
and widely. Like socket connections, HTTP messages provide a lowest common denominator that you know will be
available for connecting to the application server. For more information about HTTP messages, see Creating Internet
Server Applications

Instead of instantiating the remote data module directly from the client (as happens with DCOM), HTTP-based
connections use a Web server application on the server (httpsrvr.dll) that accepts client requests and instantiates
the remote data module using COM. Because of this, they are also called Web connections. The connection
component on the client and httpsrvr.dll on the server are responsible for marshaling IAppServer calls.

2051

Web connections can take advantage of the SSL security provided by wininet.dll (a library of Internet utilities that
runs on the client system). Once you have configured the Web server on the server system to require authentication,
you can specify the user name and password using the properties of the Web connection component.

As an additional security measure, the application server must register its availability to clients using a Web
connection. By default, all new remote data modules automatically register themselves by adding a call to
EnableWebTransport in the UpdateRegistry method. You can remove this call to prevent Web connections to your
application server.

Web connections can take advantage of object pooling. This allows your server to create a limited pool of remote
data module instances that are available for client requests. By pooling the remote data modules, your server does
not consume the resources for the data module and its database connection except when they are needed.

Unlike most other connection components, you can't use callbacks when the connection is formed via HTTP.

Using SOAP Connections
SOAP is the protocol that underlies the built-in support for Web Service applications. SOAP marshals method calls
using an XML encoding. SOAP connections use HTTP as a transport protocol.

SOAP connections have the advantage that they work in cross-platform applications because they are supported
on both the Windows and Linux. Because SOAP connections use HTTP, they have the same advantages as Web
connections: HTTP provides a lowest common denominator that you know is available on all clients, and clients can
communicate with an application server that is protected by a "firewall." For more information about using SOAP to
distribute applications, see Using Web Services..

As with HTTP connections, you can't use callbacks when the connection is formed via SOAP.

Building a Multi-tiered Application

To create a multi-tiered database application
1 Create the application server.
2 Register or install the application server.
3 Create a client application.

The order of creation is important. You should create and run the application server before you create a client. At
design time, you can then connect to the application server to test your client. You can, of course, create a client
without specifying the application server at design time, and only supply the server name at runtime. However, doing
so prevents you from seeing if your application works as expected when you code at design time, and you will not
be able to choose servers and providers using the Object Inspector.

Note: If you are not creating the client application on the same system as the server, and you are using a DCOM
connection, you may want to register the application server on the client system. This makes the connection
component aware of the application server at design time so that you can choose server names and provider
names from a drop-down list in the Object Inspector. (If you are using a Web connection, SOAP connection,
or socket connection, the connection component fetches the names of registered providers from the server
machine.)

Creating the Application Server
You create an application server very much as you create most database applications. The major difference is that
the application server uses a remote data module.

2052

To create an application server
1 Start a new project:

If you are using SOAP as a transport protocol, this should be a new Web Service application. Choose File
New Other, and on the WebServices page of the new items dialog, choose SOAP Server application. Select
the type of Web Server you want to use, and when prompted whether you want to define a new interface for
the SOAP module, say no.
For any other transport protocol, you need only choose File New Application.

Save the new project.

2 Add a new remote data module to the project. From the main menu, choose File New Other, and on the
ActiveX, Delphi Files, or WebServices page of the new items dialog, select

Remote Data Module if you are creating a COM Automation server that clients access using DCOM, HTTP,
or sockets.
Transactional Data Module if you are creating a remote data module that runs under COM+ (or MTS).
Connections can be formed using DCOM, HTTP, or sockets. However, only DCOM supports the security
services.
SOAP Server Data Module if you are creating a SOAP server in a Web Service application.

For more detailed information about setting up a remote data module, see Setting up the remote data module.

Note: Remote data modules are more than simple data modules. The SOAP data module implements
an invokable interface in a Web Service application. Other data modules are COM Automation
objects.

3 Place the appropriate dataset components on the data module and set them up to access the database server.
4 Place a TDataSetProvider component on the data module for each dataset you want to expose to clients. This

provider is required for brokering client requests and packaging data. Set the DataSet property for each provider
to the name of the dataset to access. You can set additional properties for the provider. See Using provider
components for more detailed information about setting up a provider.
If you are working with data from XML documents, you can use a TXMLTransformProvider component instead
of a dataset and TDataSetProvider component. When using TXMLTransformProvider, set the XMLDataFile
property to specify the XML document from which data is provided and to which updates are applied.

5 Write application server code to implement events, shared business rules, shared data validation, and shared
security. When writing this code, you may want to

Extend the application server's interface to provide additional ways for the client application to call the server.
Provide transaction support beyond the transactions automatically created when applying updates.
Create master/detail relationships between the datasets in your application server.
Ensure your application server is stateless.
Divide your application server into multiple remote data modules.

6 Save, compile, and register or install the application server.
7 If your server application does not use DCOM or SOAP, you must install the runtime software that receives client

messages, instantiates the remote data module, and marshals interface calls.

For TCP/IP sockets this is a socket dispatcher application, Scktsrvr.exe.
For HTTP connections this is httpsrvr.dll, an ISAPI/NSAPI DLL that must be installed with your Web server.

2053

Setting Up the Remote Data Module
When you create the remote data module, you must provide certain information that indicates how it responds to
client requests. This information varies, depending on the type of remote data module. See The Structure of the
Application Server for information on what type of remote data module you need.

The following topics describe how to configure each type of remote data module:

Configuring TRemoteDataModule
Configuring TMTSDataModule
Configuring TSoapDataModule

Configuring TRemoteDataModule
To add a TRemoteDataModule component to your application, choose File New Other and select Remote
Data Module from the ActiveX page of the new items dialog. You will see the Remote Data Module wizard.

You must supply a class name for your remote data module. This is the base name of a descendant of
TRemoteDataModule that your application creates. It is also the base name of the interface for that class. For
example, if you specify the class name MyDataServer, the wizard creates a new unit declaring TMyDataServer, a
descendant of TRemoteDataModule, which implements IMyDataServer, a descendant of IAppServer.

Note: You can add your own properties and methods to the new interface. For more information, see Extending
the application server's interface.

You must specify the threading model in the Remote Data Module wizard. You can choose Single-threaded,
Apartment-threaded, Free-threaded, or Both.

If you choose Single-threaded, COM ensures that only one client request is serviced at a time. You do not need
to worry about client requests interfering with each other.
If you choose Apartment-threaded, COM ensures that any instance of your remote data module services one
request at a time. When writing code in an Apartment-threaded library, you must guard against thread conflicts
if you use global variables or objects not contained in the remote data module. This is the recommended model
if you are using BDE-enabled datasets. (Note that you will need a session component with its
AutoSessionName property set to True to handle threading issues on BDE-enabled datasets).
If you choose Free-threaded, your application can receive simultaneous client requests on several threads. You
are responsible for ensuring your application is thread-safe. Because multiple clients can access your remote
data module simultaneously, you must guard your instance data (properties, contained objects, and so on) as
well as global variables. This is the recommended model if you are using ADO datasets.
If you choose Both, your library works the same as when you choose Free-threaded, with one exception: all
callbacks (calls to client interfaces) are serialized for you.
If you choose Neutral, the remote data module can receive simultaneous calls on separate threads, as in the
Free-threaded model, but COM guarantees that no two threads access the same method at the same time.

If you are creating an EXE, you must also specify what type of instancing to use. You can choose Single instance
or Multiple instance (Internal instancing applies only if the client code is part of the same process space.)

If you choose Single instance, each client connection launches its own instance of the executable. That process
instantiates a single instance of the remote data module, which is dedicated to the client connection.
If you choose Multiple instance, a single instance of the application (process) instantiates all remote data
modules created for clients. Each remote data module is dedicated to a single client connection, but they all
share the same process space.

2054

Configuring TMTSDataModule
To add a TMTSDataModule component to your application, choose File New Other and select Transactional
Data Module from the Multitier page of the new items dialog. You will see the Transactional Data Module wizard.

You must supply a class name for your remote data module. This is the base name of a descendant of
TMTSDataModule that your application creates. It is also the base name of the interface for that class. For example,
if you specify the class name MyDataServer, the wizard creates a new unit declaring TMyDataServer, a descendant
of TMTSDataModule, which implements IMyDataServer, a descendant of IAppServer.

Note: You can add your own properties and methods to your new interface. For more information, see Extending
the application server's interface.

You must specify the threading model in the Transactional Data Module wizard. Choose Single, Apartment, or Both.

If you choose Single, client requests are serialized so that your application services only one at a time. You do
not need to worry about client requests interfering with each other.
If you choose Apartment, the system ensures that any instance of your remote data module services one request
at a time, and calls always use the same thread. You must guard against thread conflicts if you use global
variables or objects not contained in the remote data module. Instead of using global variables, you can use
the shared property manager.
If you choose Both, MTS calls into the remote data module's interface in the same way as when you choose
Apartment. However, any callbacks you make to client applications are serialized, so that you don't need to
worry about them interfering with each other.

Note: The Apartment model under MTS or COM+ is different from the corresponding model under DCOM.

You must also specify the transaction attributes of your remote data module. You can choose from the following
options:

Requires a transaction. When you select this option, every time a client uses your remote data module's
interface, that call is executed in the context of a transaction. If the caller supplies a transaction, a new
transaction need not be created.
Requires a new transaction. When you select this option, every time a client uses your remote data module's
interface, a new transaction is automatically created for that call.
Supports transactions. When you select this option, your remote data module can be used in the context of a
transaction, but the caller must supply the transaction when it invokes the interface.
Does not support transactions. When you select this option, your remote data module can't be used in the
context of transactions.

Configuring TSOAPDataModule
To add a TSoapDataModule component to your application, choose File New Other and select SOAP Server
Data Module from the WebServices page of the new items dialog. The SOAP data module wizard appears.

You must supply a class name for your SOAP data module. This is the base name of a TSoapDataModule
descendantthat your application creates. It is also the base name of the interface for that class. For example, if you
specify the class name MyDataServer, the wizard creates a new unit declaring TMyDataServer, a descendant of
TSoapDataModule, which implements IMyDataServer, a descendant of IAppServerSOAP.

Note: To use TSoapDataModule, the new data module should be added to a Web Service application. The
IAppServerSOAP interface is an invokable interface, which is registered in the initialization section of the new
unit. This allows the invoker component in the main Web module to forward all incoming calls to your data
module.

2055

You may want to edit the definitions of the generated interface and TSoapDataModule descendant, adding your own
properties and methods. These properties and methods are not called automatically, but client applications that
request your new interface by name or GUID can use any of the properties and methods that you add.

Extending the Interface of the Application Server
Client applications interact with the application server by creating or connecting to an instance of the remote data
module. They use its interface as the basis of all communication with the application server.

You can add to your remote data module's interface to provide additional support for your client applications. This
interface is a descendant of IAppServer and is created for you automatically by the wizard when you create the
remote data module.

To add to the remote data module's interface, you can

Choose the Add to Interface command from the Edit menu in the IDE. Indicate whether you are adding a
procedure, function, or property, and enter its syntax. When you click OK, you will be positioned in the code
editor on the implementation of your new interface member.
Use the type library editor. Select the interface for your application server in the type library editor, and click the
tool button for the type of interface member (method or property) that you are adding. Give your interface
member a name in the Attributes page, specify parameters and type in the Parameters page, and then refresh
the type library. See Working with type libraries for more information about using the type library editor .

Note: Neither of these approaches works if you are implementing TSoapDataModule. For TSoapDataModule
descendants, you must edit the server interface directly.

When you add to a COM interface, your changes are added to your unit source code and the type library file (.TLB).

Note: You must explicitly save the TLB file by choosing Refresh in the type library editor and then saving the changes
from the IDE.

Once you have added to your remote data module's interface, locate the properties and methods that were added
to your remote data module's implementation. Add code to finish this implementation by filling in the bodies of the
new methods.

If you are not writing a SOAP data module, client applications call your interface extensions using the AppServer
property of their connection component. With SOAP data modules, they call the connection component's
GetSOAPServer method. For more information on how to call your interface extensions, see Calling server
interfaces.

Adding callbacks to the application server's interface
You can allow the application server to call your client application by introducing a callback. To do this, the client
application passes an interface to one of the application server's methods, and the application server later calls this
method as needed. However, if your extensions to the remote data module's interface include callbacks, you can't
use an HTTP or SOAP-based connection. TWebConnection and TSoapConnection do not support callbacks. If you
are using a socket-based connection, client applications must indicate whether they are using callbacks by setting
the SupportCallbacks property. All other types of connection automatically support callbacks.

Extending a transactional application server's interface
When using transactions or just-in-time activation, you must be sure all new methods call SetComplete to indicate
when they are finished. This allows transactions to complete and permits the remote data module to be deactivated.

Furthermore, you can't return any values from your new methods that allow the client to communicate directly with
objects or interfaces on the application server unless they provide a safe reference. If you are using a stateless MTS

2056

data module, neglecting to use a safe reference can lead to crashes because you can't guarantee that the remote
data module is active.

Managing Transactions in Multi-tiered Applications
When client applications apply updates to the application server, the provider component automatically wraps the
process of applying updates and resolving errors in a transaction. This transaction is committed if the number of
problem records does not exceed the MaxErrors value specified as an argument to the ApplyUpdates method.
Otherwise, it is rolled back.

In addition, you can add transaction support to your server application by adding a database connection component
or managing the transaction directly by sending SQL to the database server. This works the same way that you
would manage transactions in a two-tiered application. For more information about this sort of transaction control,
see Managing transactions.

If you have a transactional data module, you can broaden your transaction support by using COM+ (or MTS)
transactions. These transactions can include any of the business logic on your application server, not just the
database access. In addition, because they support two-phase commits, they can span multiple databases.

Only the BDE- and ADO-based data access components support two-phase commit. Do not use InterbaseExpress
or dbExpress components if you want to have transactions that span multiple databases.

Warning: When using the BDE, two-phase commit is fully implemented only on Oracle7 and MS-SQL databases.
If your transaction involves multiple databases, and some of them are remote servers other than Oracle7
or MS-SQL, your transaction runs a small risk of only partially succeeding. Within any one database,
however, you will always have transaction support.

By default, all IAppServer calls on a transactional data module are transactional. You need only set the transaction
attribute of your data module to indicate that it must participate in transactions. In addition, you can extend the
application server's interface to include method calls that encapsulate transactions that you define.

If your transaction attribute indicates that the remote data module requires a transaction, then every time a client
calls a method on its interface, it is automatically wrapped in a transaction. All client calls to your application server
are then enlisted in that transaction until you indicate that the transaction is complete. These calls either succeed
as a whole or are rolled back.

Note: Do not combine COM+ or MTS transactions with explicit transactions created by a database connection
component or using explicit SQL commands. When your transactional data module is enlisted in a
transaction, it automatically enlists all of your database calls in the transaction as well.

Supporting Master/detail Relationships
You can create master/detail relationships between client datasets in your client application in the same way you
set them up using any table-type dataset. For more information about setting up master/detail relationships in this
way, see Creating Master/detail Relationships.

However, this approach has two major drawbacks:

The detail table must fetch and store all of its records from the application server even though it only uses one
detail set at a time. (This problem can be mitigated by using parameters. For more information, see Limiting
records with parameters.)
It is very difficult to apply updates, because client datasets apply updates at the dataset level and master/detail
updates span multiple datasets. Even in a two-tiered environment, where you can use the database connection
component to apply updates for multiple tables in a single transaction, applying updates in master/detail forms
is tricky.

2057

In multi-tiered applications, you can avoid these problems by using nested tables to represent the master/detail
relationship. To do this when providing from datasets, set up a master/detail relationship between the datasets on
the application server. Then set the DataSet property of your provider component to the master table. To use nested
tables to represent master/detail relationships when providing from XML documents, use a transformation file that
defines the nested detail sets.

When clients call the GetRecords method of the provider, it automatically includes the detail dataset as a DataSet
field in the records of the data packet. When clients call the ApplyUpdates method of the provider, it automatically
handles applying updates in the proper order.

Supporting State Information in Remote Data Modules
The IAppServer interface, which client datasets use to communicate with providers on the application server, is
mostly stateless. When an application is stateless, it does not "remember" anything that happened in previous calls
by the client. This stateless quality is useful if you are pooling database connections in a transactional data module,
because your application server does not need to distinguish between database connections for persistent
information such as record currency. Similarly, this stateless quality is important when you are sharing remote data
module instances between many clients, as occurs with just-in-time activation or object pooling. SOAP data modules
must be stateless.

However, there are times when you want to maintain state information between calls to the application server. For
example, when requesting data using incremental fetching, the provider on the application server must "remember"
information from previous calls (the current record).

Before and after any calls to the IAppServer interface that the client dataset makes (AS_ApplyUpdates,
AS_Execute, AS_GetParams, AS_GetRecords, or AS_RowRequest), it receives an event where it can send or
retrieve custom state information. Similarly, before and after providers respond to these client-generated calls, they
receive events where they can retrieve or send custom state information. Using this mechanism, you can
communicate persistent state information between client applications and the application server, even if the
application server is stateless.

For example, consider a dataset that represents the following parameterized query:

SELECT * from CUSTOMER WHERE CUST_NO > :MinVal ORDER BY CUST_NO

To enable incremental fetching in a stateless application server, you can do the following:

When the provider packages a set of records in a data packet, it notes the value of CUST_NO on the last record in
the packet:

[Delphi]
TRemoteDataModule1.DataSetProvider1GetData(Sender: TObject; DataSet: TCustomClientDataSet);
begin
 DataSet.Last; { move to the last record }
 with Sender as TDataSetProvider do
 Tag := DataSet.FieldValues['CUST_NO']; {save the value of CUST_NO }
end;

[C++]
TRemoteDataModule1::DataSetProvider1GetData(TObject *Sender, TCustomClientDataSet *DataSet)
{
 DataSet->Last(); // move to the last record
 TComponent *pProvider = dynamic_cast<TComponent *>(Sender);
 pProvider->Tag = DataSet->FieldValues["CUST_NO"];
}

The provider sends this last CUST_NO value to the client after sending the data packet:

2058

[Delphi]
TRemoteDataModule1.DataSetProvider1AfterGetRecords(Sender: TObject;
 var OwnerData: OleVariant);
begin
 with Sender as TDataSetProvider do
 OwnerData := Tag; {send the last value of CUST_NO }
end;

[C++]
TRemoteDataModule1::DataSetProvider1AfterGetRecords(TObject *Sender, OleVariant &OwnerData)
{
 TComponent *pProvider = dynamic_cast<TComponent *>(Sender);
 OwnerData = pProvider->Tag;
}

On the client, the client dataset saves this last value of CUST_NO:

[Delphi]
TDataModule1.ClientDataSet1AfterGetRecords(Sender: TObject; var OwnerData: OleVariant);
begin
 with Sender as TClientDataSet do
 Tag := OwnerData; {save the last value of CUST_NO }
end;

[C++]
TDataModule1::ClientDataSet1AfterGetRecords(TObject *Sender, OleVariant &OwnerData)
{
 TComponent *pDS = dynamic_cast<TComponent *>(Sender);
 pDS->Tag = OwnerData;
}

Before fetching a data packet, the client sends the last value of CUST_NO it received:

[Delphi]
TDataModule1.ClientDataSet1BeforeGetRecords(Sender: TObject; var OwnerData: OleVariant);
begin
 with Sender as TClientDataSet do
 begin
 if not Active then Exit;
 OwnerData := Tag; { Send last value of CUST_NO to application server }
 end;
end;

[C++]
TDataModule1::ClientDataSet1BeforeGetRecords(TObject *Sender, OleVariant &OwnerData)
{
 TClientDataSet *pDS = dynamic_cast<TClientDataSet *>(Sender);
 if (!pDS->Active)
 return;
 OwnerData = pDS->Tag;
}

Finally, on the server, the provider uses the last CUST_NO sent as a minimum value in the query:

2059

[Delphi]
TRemoteDataModule1.DataSetProvider1BeforeGetRecords(Sender: TObject;
 var OwnerData: OleVariant);
begin
 if not VarIsEmpty(OwnerData) then
 with Sender as TDataSetProvider do
 with DataSet as TSQLDataSet do
 begin
 Params.ParamValues['MinVal'] := OwnerData;
 Refresh; { force the query to reexecute }
 end;
end;

[C++]
TRemoteDataModule1::DataSetProvider1BeforeGetRecords(TObject *Sender, OleVariant
&OwnerData)
{
 if (!VarIsEmpty(OwnerData))
 {
 TDataSetProvider *pProv = dynamic_cast<TDataSetProvider *>(Sender);
 TSQLDataSet *pDS = (dynamic_cast<TSQLDataSet *>(pProv->DataSet);
 pDS->Params->ParamValues["MinVal"] = OwnerData;
 pDS->Refresh(); // force the query to reexecute
 }
}

Using Multiple Remote Data Modules
You may want to structure your application server so that it uses multiple remote data modules. Using multiple remote
data modules lets you partition your code, organizing a large application server into multiple units, where each unit
is relatively self-contained.

Although you can always create multiple remote data modules on the application server that function independently,
a special connection component on the DataSnap category of the Tool palette provides support for a model where
you have one main "parent" remote data module that dispatches connections from clients to other "child" remote
data modules. This model requires that you use a COM-based application server (that is, not TSoapDataModule).

To create the parent remote data module, you must extend its IAppServer interface, adding properties that expose
the interfaces of the child remote data modules. That is, for each child remote data module, add a property to the
parent data module's interface whose value is the IAppServer interface for the child data module. The property getter
should look something like the following:

function ParentRDM.Get_ChildRDM: IChildRDM;
begin
 if not Assigned(ChildRDMFactory) then
 ChildRDMFactory :=
 TComponentFactory.Create(ComServer, TChildRDM, Class_ChildRDM,
 ciInternal, tmApartment);
 Result := ChildRDMFactory.CreateCOMObject(nil) as IChildRDM;
 Result.MainRDM := Self;
end;

For information about extending the parent remote data module's interface, see Extending the application server's
interface.

2060

Tip: You may also want to extend the interface for each child data module, exposing the parent data module's
interface, or the interfaces of the other child data modules. This lets the various data modules in your application
server communicate more freely with each other.

Once you have added properties that represent the child remote data modules to the main remote data module,
client applications do not need to form separate connections to each remote data module on the application server.
Instead, they share a single connection to the parent remote data module, which then dispatches messages to the
"child" data modules. Because each client application uses the same connection for every remote data module, the
remote data modules can share a single database connection, conserving resources. For information on how child
applications share a single connection, see Connecting to an Application Server That Uses Multiple Data Modules.

Registering the Application Server
Before client applications can locate and use an application server, it must be registered or installed.

If the application server uses DCOM, HTTP, or sockets as a communication protocol, it acts as an Automation
server and must be registered like any other COM server. For information about registering a COM server, see
Registering a COM Object.
If you are using a transactional data module, you do not register the application server. Instead, you install it
with COM+ or MTS. .
When the application server uses SOAP, the application must be a Web Service application. As such, it must
be registered with your Web Server, so that it receives incoming HTTP messages. In addition, you need to
publish a WSDL document that describes the invokable interfaces in your application. For information about
exporting a WSDL document for a Web Service application, see Generating WSDL Documents for a Web
Service Application.

Creating the Client Application
In most regards, creating a multi-tiered client application is similar to creating a two-tiered client that uses a client
dataset to cache updates. The major difference is that a multi-tiered client uses a connection component to establish
a conduit to the application server.

To create a multi-tiered client application
1 Add a new data module to the project.
2 Place a connection component on the data module. The type of connection component you add depends on the

communication protocol you want to use. See The Structure of the Client Application for details.
3 Set properties on your connection component to specify the application server with which it should establish a

connection. To learn more about setting up the connection component, see Connecting to the Application Server.
4 Set the other connection component properties as needed for your application. For example, you might set

the ObjectBroker property to allow the connection component to choose dynamically from several servers. For
more information about using the connection components, see Managing Server Connections.

5 Place as many TClientDataSet components as needed on the data module, and set the RemoteServer property
for each component to the name of the connection component you placed in Step 2. For a full introduction to
client datasets, see Using Client Datasets.

6 Set the ProviderName property for each TClientDataSet component. If your connection component is connected
to the application server at design time, you can choose available application server providers from the
ProviderName property's drop-down list.

7 Continue in the same way you would create any other database application. There are a few additional features
available to clients of multi-tiered applications:

2061

Your application may want to make direct calls to the application server. Calling Server Interfaces describes
how to do this.
You may want to use the special features of client datasets that support their interaction with the provider
components. These are described in Using a Client Dataset with a Provider.

Connecting to the Application Server
To establish and maintain a connection to an application server, a client application uses one or more connection
components. You can find these components on the DataSnap or WebServices category of the Tool Palette.

Use a connection component to

Identify the protocol for communicating with the application server. Each type of connection component
represents a different communication protocol. See Choosing a connection protocol for details on the benefits
and limitations of the available protocols.
Indicate how to locate the server machine. The details of identifying the server machine vary depending on the
protocol. See the following topics for details:
Specifying a connection using DCOM
Specifying a connection using sockets
Specifying a connection using HTTP
Specifying a connection using SOAP
Identify the application server on the server machine.
If you are not using SOAP, identify the server using the ServerName or ServerGUID property. ServerName
identifies the base name of the class you specify when creating the remote data module on the application
server. See Setting up the remote data module for details on how this value is specified on the server. If the
server is registered or installed on the client machine, or if the connection component is connected to the server
machine, you can set the ServerName property at design time by choosing from a drop-down list in the Object
Inspector. ServerGUID specifies the GUID of the remote data module's interface. You can look up this value
using the type library editor.
Manage server connections. Connection components can be used to create or drop connections and to call
application server interfaces.

If you are using SOAP, the server is identified in the URL you use to locate the server machine. Follow the steps in
Specifying a connection using SOAP.

Usually the application server is on a different machine from the client application, but even if the server resides on
the same machine as the client application (for example, during the building and testing of the entire multi-tier
application), you can still use the connection component to identify the application server by name, specify a server
machine, and use the application server interface.

Specifying a Connection Using DCOM
When using DCOM to communicate with the application server, client applications include a TDCOMConnection
component for connecting to the application server. TDCOMConnection uses the ComputerName property to identify
the machine on which the server resides.

When ComputerName is blank, the DCOM connection component assumes that the application server resides on
the client machine or that the application server has a system registry entry. If you do not provide a system registry
entry for the application server on the client when using DCOM, and the server resides on a different machine from
the client, you must supply ComputerName.

2062

Note: Even when there is a system registry entry for the application server, you can specify ComputerName to
override this entry. This can be especially useful during development, testing, and debugging.

If you have multiple servers that your client application can choose from, you can use the ObjectBroker property
instead of specifying a value for ComputerName. For more information, see Brokering connections.

If you supply the name of a host computer or server that cannot be found, the DCOM connection component raises
an exception when you try to open the connection.

Specifying a Connection Using Sockets
You can establish a connection to the application server using sockets from any machine that has a TCP/IP address.
This method has the advantage of being applicable to more machines, but does not provide for using any security
protocols. When using sockets, include a TSocketConnection component for connecting to the application server.

TSocketConnection identifies the server machine using the IP Address or host name of the server system, and the
port number of the socket dispatcher program (Scktsrvr.exe) that is running on the server machine. For more
information about IP addresses and port values, see Describing sockets.

Three properties of TSocketConnection specify this information:

Address specifies the IP Address of the server.
Host specifies the host name of the server.
Port specifies the port number of the socket dispatcher program on the application server.

Address and Host are mutually exclusive. Setting one unsets the value of the other. For information on which one
to use, see Describing the host.

If you have multiple servers that your client application can choose from, you can use the ObjectBroker property
instead of specifying a value for Address or Host. For more information, see Brokering connections.

By default, the value of Port is 211, which is the default port number of the socket dispatcher program that forwards
incoming messages to your application server. If the socket dispatcher has been configured to use a different port,
set the Port property to match that value.

Note: You can configure the port of the socket dispatcher while it is running by right-clicking the Borland Socket
Server tray icon and choosing Properties.

Although socket connections do not provide for using security protocols, you can customize the socket connection
to add your own encryption.

To add your own encryption
1 Create a COM object that supports the IDataIntercept interface. This is an interface for encrypting and decrypting

data.
2 Use TPacketInterceptFactory as the class factory for this object. If you are using a wizard to create the COM

object in step 1, replace the line in the initialization section that says TComponentFactory.Create(...) with
TPacketInterceptFactory.Create(...).

3 Register your new COM server on the client machine.
4 Set the InterceptName or InterceptGUID property of the socket connection component to specify this COM object.

If you used TPacketInterceptFactory in step 2, your COM server appears in the drop-down list of the Object
Inspector for the InterceptName property.

5 Finally, right click the Borland Socket Server tray icon, choose Properties, and on the properties tab set the
Intercept Name or Intercept GUID to the ProgId or GUID for the interceptor.

2063

This mechanism can also be used for data compression and decompression.

Specifying a Connection Using HTTP
You can establish a connection to the application server using HTTP from any machine that has a TCP/IP address.
Unlike sockets, however, HTTP allows you to take advantage of SSL security and to communicate with a server that
is protected behind a firewall. When using HTTP, include a TWebConnection component for connecting to the
application server.

The Web connection component establishes a connection to the Web server application (httpsrvr.dll), which in turn
communicates with the application server. TWebConnection locates httpsrvr.dll using a Uniform Resource Locator
(URL). The URL specifies the protocol (http or, if you are using SSL security, https), the host name for the machine
that runs the Web server and httpsrvr.dll, and the path to the Web server application (httpsrvr.dll). Specify this value
using the URL property.

Note: When using TWebConnection, wininet.dll must be installed on the client machine. If you have IE3 or higher
installed, wininet.dll can be found in the Windows system directory.

If the Web server requires authentication, or if you are using a proxy server that requires authentication, you must
set the values of the UserName and Password properties so that the connection component can log on.

If you have multiple servers that your client application can choose from, you can use the ObjectBroker property
instead of specifying a value for URL. For more information, see Brokering connections.

Specifying a Connection Using SOAP
You can establish a connection to a SOAP application server using the TSoapConnection component.
TSoapConnection is very similar to TWebConnection, because it also uses HTTP as a transport protocol. Thus, you
can use TSoapConnection from any machine that has a TCP/IP address, and it can take advantage of SSL security
and to communicate with a server that is protected by a firewall.

The SOAP connection component establishes a connection to a Web Service provider that implements the
IAppServerSOAP or IAppServer interface. (The UseSOAPAdapter property specifies which interface it expects the
server to support.) If the server implements the IAppServerSOAP interface, TSoapConnection converts that interface
to an IAppServer interface for client datasets. TSoapConnection locates the Web Server application using a Uniform
Resource Locator (URL). The URL specifies the protocol (http or, if you are using SSL security, https), the host name
for the machine that runs the Web server, the name of the Web Service application, and a path that matches the
path name of the THTTPSoapDispatcher on the application server. Specify this value using the URL property.

By default, TSOAPConnection automatically looks for an IAppServerSOAP (or IAppServer) interface. If the server
includes more than one remote data module, you must indicate the target data module's interface (an
IAppServerSOAP descendant) so that TSOAPConnection can identify the remote data module you want to use.
There are two ways to do this:

Set the SOAPServerIID property to indicate the interface of the target remote data module. This method works
for any server that implements an IAppServerSOAP descendant. SOAPServerIID identifies the target interface
by its GUID. At runtime, you can use the interface name, and the compiler automatically extracts the GUID.
However, at design time, in the Object Inspector, you must specify the GUID string.
If the server is written using the Delphi language, you can simply include the name of the SOAP data module's
interface following a slash at the end of the path portion of the URL. This lets you specify the interface by name
rather than GUID, but is only available when both client and server are written in Delphi.

Tip: The first approach, using the SOAPServerIID method, has the added advantage that it lets you call extensions
to the remote data module's interface.

2064

If you are using a proxy server, you must indicate the name of the proxy server using the Proxy property. If that proxy
requires authentication, you must also set the values of the UserName and Password properties so that the
connection component can log on.

Note: When using TSoapConnection, wininet.dll must be installed on the client machine. If you have IE3 or higher
installed, wininet.dll can be found in the Windows system directory.

Brokering Connections
If you have multiple COM-based servers that your client application can choose from, you can use an Object Broker
to locate an available server system. The object broker maintains a list of servers from which the connection
component can choose. When the connection component needs to connect to an application server, it asks the
Object Broker for a computer name (or IP address, host name, or URL). The broker supplies a name, and the
connection component forms a connection. If the supplied name does not work (for example, if the server is down),
the broker supplies another name, and so on, until a connection is formed.

Once the connection component has formed a connection with a name supplied by the broker, it saves that name
as the value of the appropriate property (ComputerName, Address, Host, RemoteHost, or URL). If the connection
component closes the connection later, and then needs to reopen the connection, it tries using this property value,
and only requests a new name from the broker if the connection fails.

Use an Object Broker by specifying the ObjectBroker property of your connection component. When the
ObjectBroker property is set, the connection component does not save the value of ComputerName, Address, Host,
RemoteHost, or URL to disk.

Note: You can not use the ObjectBroker property with SOAP connections.

Managing Server Connections
The main purpose of connection components is to locate and connect to the application server. Because they
manage server connections, you can also use connection components to call the methods of the application server's
interface.

The following topics describe how to use a connection component for

Connecting to the Server.
Dropping or Changing a Server Connection.
Calling Server Interfaces.
Connecting to an Application Server that Uses Multiple Data Modules.

Connecting to the Server
To locate and connect to the application server, you must first set the properties of the connection component to
identify the application server. This process is described in Connecting to the application server. Before opening the
connection, any client datasets that use the connection component to communicate with the application server
should indicate this by setting their RemoteServer property to specify the connection component.

The connection is opened automatically when client datasets try to access the application server. For example,
setting the Active property of the client dataset to True opens the connection, as long as the RemoteServer property
has been set.

If you do not link any client datasets to the connection component, you can open the connection by setting the
Connected property of the connection component to True.

2065

Before a connection component establishes a connection to an application server, it generates a BeforeConnect
event. You can perform any special actions prior to connecting in a BeforeConnect handler that you code. After
establishing a connection, the connection component generates an AfterConnect event for any special actions.

Dropping or Changing a Server Connection
A connection component drops a connection to the application server when you

set the Connected property to False.
free the connection component. A connection object is automatically freed when a user closes the client
application.
change any of the properties that identify the application server (ServerName, ServerGUID, ComputerName,
and so on). Changing these properties allows you to switch among available application servers at runtime. The
connection component drops the current connection and establishes a new one.

Note: Instead of using a single connection component to switch among available application servers, a client
application can instead have more than one connection component, each of which is connected to a different
application server.

Before a connection component drops a connection, it automatically calls its BeforeDisconnect event handler, if one
is provided. To perform any special actions prior to disconnecting, write a BeforeDisconnect handler. Similarly, after
dropping the connection, the AfterDisconnect event handler is called. If you want to perform any special actions after
disconnecting, write an AfterDisconnect handler.

Calling Server Interfaces
Applications do not need to call the IAppServer or IAppServerSOAP interface directly because the appropriate calls
are made automatically when you use the properties and methods of the client dataset. However, while it is not
necessary to work directly with the IAppServer or IAppServerSOAP interface, you may have added your own
extensions to the remote data module's interface. When you extend the application server's interface, you need a
way to call those extensions using the connection created by your connection component. Unless you are using
SOAP, you can do this using the AppServer property of the connection component.

AppServer is a Variant that represents the application server's interface. If you are not using SOAP, you can call an
interface method using AppServer by writing a statement such as

[Delphi]
MyConnection.AppServer.SpecialMethod(x,y);

However, this technique provides late (dynamic) binding of the interface call. That is, the SpecialMethod procedure
call is not bound until runtime when the call is executed. Late binding is very flexible, but by using it you lose many
benefits such as code insight and type checking. In addition, late binding is slower than early binding, because the
compiler generates additional calls to the server to set up interface calls before they are invoked.

Using early binding with DCOM
When you are using DCOM as a communications protocol, you can use early binding of AppServer calls. Use the
as operator to cast the AppServer variable to the IAppServer descendant you created when you created the remote
data module. For example:

2066

[Delphi]
with MyConnection.AppServer as IMyAppServer do
SpecialMethod(x,y);

To use early binding under DCOM, the server's type library must be registered on the client machine. You can use
TRegsvr.exe, which ships with Delphi to register the type library.

Note: See the TRegSvr demo (which provides the source for TRegsvr.exe) for an example of how to register the
type library programmatically.

Using dispatch interfaces with TCP/IP or HTTP
When you are using TCP/IP or HTTP, you can't use true early binding, but because the remote data module uses
a dual interface, you can use the application server's dispinterface to improve performance over simple late binding.
The dispinterface has the same name as the remote data module's interface, with the string 'Disp' appended. You
can assign the AppServer property to a variable of this type to obtain the dispinterface. Thus:

[Delphi]
var
TempInterface: IMyAppServerDisp;
begin
 TempInterface :=IMyAppServerDisp(IDispatch(MyConnection.AppServer));
...
TempInterface.SpecialMethod(x,y);
...
end;

Note: To use the dispinterface, you must add the _TLB unit that is generated when you save the type library to the
uses clause of your client module.

Calling the interface of a SOAP-based server
If you are using SOAP, you can't use the AppServer property. Instead, you must obtain the server's interface by
calling the GetSOAPServer method. Before you call GetSOAPServer, however, you must take the following steps:

Your client application must include the definition of the application server's interface and register it with the
invocation registry. You can add the definition of this interface to your client application by referencing a WSDL
document that describes the interface you want to call. For information on importing a WSDL document that
describes the server interface, see Importing WSDL documents. When you import the interface definition, the
WSDL importer automatically adds code to register it with the invocation registry. For more information about
interfaces and the invocation registry, see Understanding invokable interfaces.
The TSOAPConnection component must have its UseSOAPAdapter property set to True. This means that the
server must support the IAppServerSOAP interface. If the application server is built using Delphi 6 or Kylix 1, it
does not support IAppServerSOAP and you must use a separate THTTPRio component instead. For details on
how to call an interface using a THTTPRio component, see Calling invokable interfaces.
You must set the SOAPServerIID property of the SOAP connection component to the GUID of the server
interface. You must set this property before your application connects to the server, because it tells the
TSOAPConnection component what interface to fetch from the server.

Assuming the previous three conditions are met, you can fetch the server interface as follows:

2067

[Delphi]
with MyConnection.GetSOAPServer as IMyAppServer do
SpecialMethod(x,y);

[C++]
IDispatch* disp = (IDispatch*)(MyConnection->AppServer)
IMyAppServerDisp TempInterface((IMyAppServer*)disp);
TempInterface.SpecialMethod(x,y);

Connecting to an Application Server That Uses Multiple Data Modules
If a COM-based application server uses a main "parent" remote data module and several child remote data modules,
as described in Using multiple remote data modules, then you need a separate connection component for every
remote data module on the application server. Each connection component represents the connection to a single
remote data module.

While it is possible to have your client application form independent connections to each remote data module on the
application server, it is more efficient to use a single connection to the application server that is shared by all the
connection components. That is, you add a single connection component that connects to the "main" remote data
module on the application server, and then, for each "child" remote data module, add an additional component that
shares the connection to the main remote data module.

To use a single shared connection
1 For the connection to the main remote data module, add and set up a connection component as described in

Connecting to the Application Server. The only limitation is that you can't use a SOAP connection.
2 For each child remote data module, use a TSharedConnection component.

Set its ParentConnection property to the connection component you added in step 1. The
TSharedConnection component shares the connection that this main connection establishes.
Set its ChildName property to the name of the property on the main remote data module's interface that exposes
the interface of the desired child remote data module.

When you assign the TSharedConnection component placed in step 2 as the value of a client dataset's
RemoteServer property, it works as if you were using an entirely independent connection to the child remote data
module. However, the TSharedConnection component uses the connection established by the component you
placed in step 1.

Writing Web-based Client Applications
If you want to create Web-based clients for your multi-tiered database application, you must replace the client tier
with a special Web application that acts simultaneously as a client to an application server and as a Web server
application that is installed with a Web server on the same machine. This architecture is illustrated in the following
figure.

2068

There are two approaches that you can take to build the Web application:

You can combine the multi-tiered database architecture with an ActiveX form to distribute the client application
as an ActiveX control. This allows any browser that supports ActiveX to run your client application as an in-
process server.
You can use XML data packets to build an InternetExpress application. This allows browsers that supports
javascript to interact with your client application through html pages.

These two approaches are very different. Which one you choose depends on the following considerations:

Each approach relies on a different technology (ActiveX vs. javascript and XML). Consider what systems your
end users will use. The first approach requires a browser to support ActiveX (which limits clients to a Windows
platform). The second approach requires a browser to support javascript and the DHTML capabilities introduced
by Netscape 4 and Internet Explorer 4.
ActiveX controls must be downloaded to the browser to act as an in-process server. As a result, the clients using
an ActiveX approach require much more memory than the clients of an HTML-based application.
The InternetExpress approach can be integrated with other HTML pages. An ActiveX client must run in a
separate window.
The InternetExpress approach uses standard HTTP, thereby avoiding any firewall issues that confront an
ActiveX application.
The ActiveX approach provides greater flexibility in how you program your application. You are not limited by
the capabilities of the javascript libraries. The client datasets used in the ActiveX approach surface more features
(such as filters, ranges, aggregation, optional parameters, delayed fetching of BLOBs or nested details, and so
on) than the XML brokers used in the InternetExpress approach.

Warning: Your Web client application may look and act differently when viewed from different browsers. Test your
application with the browsers you expect your end-users to use.

Distributing a Client Application as an ActiveX Control
The multi-tiered database architecture can be combined with ActiveX features to distribute a client application as an
ActiveX control.

When you distribute your client application as an ActiveX control, create the application server as you would for any
other multi-tiered application.

When creating the client application, you must use an Active Form as the basis instead of an ordinary form. See
Creating an Active Form for the Client Application for details.

Once you have built and deployed your client application, it can be accessed from any ActiveX-enabled Web browser
on another machine. For a Web browser to successfully launch your client application, the Web server must be
running on the machine that has the client application.

If the client application uses DCOM to communicate between the client application and the application server, the
machine with the Web browser must be enabled to work with DCOM. If the machine with the Web browser is a
Windows 95 machine, it must have installed DCOM95, which is available from Microsoft.

2069

Creating an Active Form for the Client Application

To create an Active Form for the Client Application
1 Because the client application will be deployed as an ActiveX control, you must have a Web server that runs on

the same system as the client application. You can use a ready-made server such as Microsoft's Personal Web
server or you can write your own using the socket components described in "Working with Sockets."

2 Create the client application following the steps described in Creating the client application except start by
choosing File New ActiveX Active Form, rather than beginning an ordinary client project.

3 If your client application uses a data module, add a call to explicitly create the data module in the active form
initialization.

4 When your client application is finished, compile the project, and select Project Web Deployment Options.
In the Web Deployment Options dialog, you must do the following:
On the Project page, specify the Target directory, the URL for the target directory, and the HTML directory.
Typically, the Target directory and the HTML directory will be the same as the projects directory for your Web
Server. The target URL is typically the name of the server machine.

On the Additional Files page, include midas.dll with your client application.

5 Finally, select Project WebDeploy to deploy the client application as an active form.

Any Web browser that can run Active forms can run your client application by specifying the .HTM file that was
created when you deployed the client application. This .HTM file has the same name as your client application project,
and appears in the directory specified as the Target directory.

Building Web Applications Using InternetExpress
A client application can request that the application server provide data packets that are coded in XML instead of
OleVariants. By combining XML-coded data packets, special javascript libraries of database functions, and the Web
server application support, you can create thin client applications that can be accessed using a Web browser that
supports javascript. This combination of features is called InternetExpress.

Before building an InternetExpress application, you should understand the Web server application architecture and
the multi-tiered database architecture. These are described in Creating Internet Server Applications and Creating
multi-tiered Applications

An InternetExpress application extends the basic Web server application architecture to act as the client of an
application server. InternetExpress applications generate HTML pages that contain a mixture of HTML, XML, and
javascript. The HTML governs the layout and appearance of the pages seen by end users in their browsers. The
XML encodes the data packets and delta packets that represent database information. The javascript allows the
HTML controls to interpret and manipulate the data in these XML data packets on the client machine.

If the InternetExpress application uses DCOM to connect to the application server, you must take additional steps
to ensure that the application server grants access and launch permissions to its clients.

Tip: You can create an InternetExpress application to provide Web browsers with "live" data even if you do not have
an application server. Simply add the provider and its dataset to the Web module.

Building an InternetExpress Application
The following steps describe one way to build a Web application using InternetExpress. The result is an application
that creates HTML pages that let users interact with the data from an application server via a javascript-enabled

2070

Web browser. You can also build an InternetExpress application using the Site Express architecture by using the
InternetExpress page producer (TInetXPageProducer).

To build a Web application using InternetExpress
1 Choose File New Other to display the New Items dialog box, and on the New page select Web Server

application. This process is described in Creating Web server applications with Web Broker.
2 From the DataSnap category of the Tool palette, add a connection component to the Web Module that appears

when you create a new Web server application. The type of connection component you add depends on the
communication protocol you want to use. See Choosing a connection protocol for details.

3 Set properties on your connection component to specify the application server with which it should establish a
connection. To learn more about setting up the connection component, see Connecting to the application server.

4 Instead of a client dataset, add an TXMLBroker from the InternetExpress category of the Tool palette to the Web
module. Like TClientDataSet, TXMLBroker represents the data from a provider on the application server and
interacts with the application server through an IAppServer interface. However, unlike client datasets, XML
brokers request data packets as XML instead of as OleVariants and interact with InternetExpress components
instead of data controls.

5 Set the RemoteServer property of the XML broker to point to the connection component you added in step 2.
Set the ProviderName property to indicate the provider on the application server that provides data and applies
updates. For more information about setting up the XML broker, see Using an XML broker.

6 Add an InternetExpress page producer (TInetXPageProducer) to the Web module for each separate page that
users will see in their browsers. For each page producer, you must set the IncludePathURL property to indicate
where it can find the javascript libraries that augment its generated HTML controls with data management
capabilities.

7 Right-click a Web page and choose Action Editor to display the Action editor. Add action items for every message
you want to handle from browsers. Associate the page producers you added in step 6 with these actions by
setting their Producer property or writing code in an OnAction event handler. For more information on adding
action items using the Action editor, see Adding actions to the dispatcher.

8 Double-click each Web page to display the Web Page editor. (You can also display this editor by clicking the
ellipsis button in the Object Inspector next to the WebPageItems property.) In this editor you can add Web Items
to design the pages that users see in their browsers. For more information about designing Web pages for your
InternetExpress application, see Creating Web pages with an InternetExpress page producer.

9 Build your Web application. Once you install this application with your Web server, browsers can call it by
specifying the name of the application as the script name portion of the URL and the name of the Web Page
component as the pathinfo portion.

Using the Javascript Libraries
The HTML pages generated by the InternetExpress components and the Web items they contain make use of several
javascript libraries that ship in the source/webmidas directory:

Javascript libraries
Library Description

xmldom.js This library is a DOM-compatible XML parser written in javascript. It allows parsers that do not support XML to
use XML data packets. Note that this does not include support for XML Islands, which are supported by IE5
and later.

xmldb.js This library defines data access classes that manage XML data packets and XML delta packets.

xmldisp.js This library defines classes that associate the data access classes in xmldb with HTML controls in the HTML
page.

2071

xmlerrdisp.js This library defines classes that can be used when reconciling update errors. These classes are not used by
any of the built-in InternetExpress components, but are useful when writing a Reconcile producer.

xmlshow.js This library includes functions to display formatted XML data packets and XML delta packets. This library is not
used by any of the InternetExpress components, but is useful when debugging.

Once you have installed these libraries, you must set the IncludePathURL property of all InternetExpress page
producers to indicate where they can be found.

It is possible to write your own HTML pages using the javascript classes provided in these libraries instead of using
Web items to generate your Web pages. However, you must ensure that your code does not do anything illegal, as
these classes include minimal error checking (so as to minimize the size of the generated Web pages).

Granting Permission to Access and Launch the Application Server
Requests from the InternetExpress application appear to the application server as originating from a guest account
with the name IUSR_computername, where computername is the name of the system running the Web application.
By default, this account does not have access or launch permission for the application server. If you try to use the
Web application without granting these permissions, when the Web browser tries to load the requested page it times
out with EOLE_ACCESS_ERROR.

Note: Because the application server runs under this guest account, it can't be shut down by other accounts.

To grant the Web application access and launch permissions, run DCOMCnfg.exe, which is located in the System32
directory of the machine that runs the application server.

To configure your application server
1 When you run DCOMCnfg, select your application server in the list of applications on the Applications page.
2 Click the Properties button. When the dialog changes, select the Security page.
3 Select Use Custom Access Permissions, and press the Edit button. Add the name IUSR_computername to the

list of accounts with access permission, where computername is the name of the machine that runs the Web
application.

4 Select Use Custom Launch Permissions, and press the Edit button. Add IUSR_computername to this list as well.
5 Click the Apply button.

Using an XML Broker
The XML broker serves two major functions:

It fetches XML data packets from the application server and makes them available to the Web Items that
generate HTML for the InternetExpress application.
It receives updates in the form of XML delta packets from browsers and applies them to the application server.

Fetching XML data packets
Before the XML broker can supply XML data packets to the components that generate HTML pages, it must fetch
them from the application server. To do this, it uses the IAppServer interface, which it acquires from a connection
component.

2072

Note: Even when using SOAP, where the application server supports IAppServerSOAP, the XML broker uses
IAppServer because the connection component acts as an adapter between the two interfaces.

You must set the following properties so that the XML producer can use the IAppServer interface:

Set the RemoteServer property to the connection component that establishes the connection to the application
server and gets its IAppServer interface. At design time, you can select this value from a drop-down list in
the Object Inspector.
Set the ProviderName property to the name of the provider component on the application server that represents
the dataset for which you want XML data packets. This provider both supplies XML data packets and applies
updates from XML delta packets. At design time, if the RemoteServer property is set and the connection
component has an active connection, the Object Inspector displays a list of available providers. (If you are
using a DCOM connection the application server must also be registered on the client machine).

Two properties let you indicate what you want to include in data packets:

You can limit the number of records that are added to the data packet by setting the MaxRecords property. This
is especially important for large datasets because InternetExpress applications send the entire data packet to
client Web browsers. If the data packet is too large, the download time can become prohibitively long.
If the provider on the application server represents a query or stored procedure, you may want to provide
parameter values before obtaining an XML data packet. You can supply these parameter values using the
Params property.

The components that generate HTML and javascript for the InternetExpress application automatically use the XML
broker's XML data packet once you set their XMLBroker property. To obtain the XML data packet directly in code,
use the RequestRecords method.

Note: When the XML broker supplies a data packet to another component (or when you call RequestRecords), it
receives an OnRequestRecords event. You can use this event to supply your own XML string instead of the
data packet from the application server. For example, you could fetch the XML data packet from the
application server using GetXMLRecords and then edit it before supplying it to the emerging Web page.

Applying updates from XML delta packets
When you add the XML broker to the Web module (or data module containing a TWebDispatcher), it automatically
registers itself with the Web dispatcher as an auto-dispatching object. This means that, unlike other components,
you do not need to create an action item for the XML broker in order for it to respond to update messages from a
Web browser. These messages contain XML delta packets that should be applied to the application server. Typically,
they originate from a button that you create on one of the HTML pages produced by the Web client application.

So that the dispatcher can recognize messages for the XML broker, you must describe them using the WebDispatch
property. Set the PathInfo property to the path portion of the URL to which messages for the XML broker are sent.
Set MethodType to the value of the method header of update messages addressed to that URL (typically mtPost).
If you want to respond to all messages with the specified path, set MethodType to mtAny. If you don't want the XML
broker to respond directly to update messages (for example, if you want to handle them explicitly using an action
item), set the Enabled property to False. For more information on how the Web dispatcher determines which
component handles messages from the Web browser, see Dispatching request messages.

When the dispatcher passes an update message on to the XML broker, it passes the updates on to the application
server and, if there are update errors, receives an XML delta packet describing all update errors. Finally, it sends a
response message back to the browser, which either redirects the browser to the same page that generated the
XML delta packet or sends it some new content.

A number of events allow you to insert custom processing at all steps of this update process:

2073

1 When the dispatcher first passes the update message to the XML broker, it receives a BeforeDispatch event,
where you can preprocess the request or even handle it entirely. This event allows the XML broker to handle
messages other than update messages.

2 If the BeforeDispatch event handler does not handle the message, the XML broker receives an
OnRequestUpdate event, where you can apply the updates yourself rather than using the default processing.

3 If the OnRequestUpdate event handler does not handle the request, the XML broker applies the updates and
receives a delta packet containing any update errors.

4 If there are no update errors, the XML broker receives an OnGetResponse event, where you can create a
response message that indicates the updates were successfully applied or sends refreshed data to the browser.
If the OnGetResponse event handler does not complete the response (does not set the Handled parameter to
True), the XML broker sends a response that redirects the browser back to the document that generated the
delta packet.

5 If there are update errors, the XML broker receives an OnGetErrorResponse event instead. You can use this
event to try to resolve update errors or to generate a Web page that describes them to the end user. If the
OnGetErrorResponse event handler does not complete the response (does not set the Handled parameter to
True), the XML broker calls on a special content producer called the ReconcileProducer to generate the content
of the response message.

6 Finally, the XML broker receives an AfterDispatch event, where you can perform any final actions before sending
a response back to the Web browser.

Creating Web Pages with an InternetExpress Page Producer
Each InternetExpress page producer generates an HTML document that appears in the browsers of your
application's clients. If your application includes several separate Web documents, use a separate page producer
for each of them.

The InternetExpress page producer (TInetXPageProducer) is a special page producer component. As with other
page producers, you can assign it as the Producer property of an action item or call it explicitly from an OnAction
event handler. For more information about using content producers with action items, see Responding to request
messages with action items.

The InternetExpress page producer has a default template as the value of its HTMLDoc property. This template
contains a set of HTML-transparent tags that the InternetExpress page producer uses to assemble an HTML
document (with embedded javascript and XML) including content produced by other components. Before it can
translate all of the HTML-transparent tags and assemble this document, you must indicate the location of the
javascript libraries used for the embedded javascript on the page. This location is specified by setting the
IncludePathURL property.

You can specify the components that generate parts of the Web page using the Web page editor. Display the Web
page editor by double-clicking the Web page component or clicking the ellipsis button next to the WebPageItems
property in the Object Inspector.

The components you add in the Web page editor generate the HTML that replaces one of the HTML-transparent
tags in the InternetExpress page producer's default template. These components become the value of the
WebPageItems property. After adding the components in the order you want them, you can customize the template
to add your own HTML or change the default tags.

Using the Web Page Editor
The Web page editor lets you add Web items to your InternetExpress page producer and view the resulting HTML
page. Display the Web page editor by double-clicking on a InternetExpress page producer component.

2074

Note: You must have Internet Explorer 4 or better installed to use the Web page editor.

The top of the Web page editor displays the Web items that generate the HTML document. These Web items are
nested, where each type of Web item assembles the HTML generated by its subitems. Different types of items can
contain different subitems. On the left, a tree view displays all of the Web items, indicating how they are nested. On
the right, you can see the Web items included by the currently selected item. When you select a component in the
top of the Web page editor, you can set its properties using the Object Inspector.

Click the New Item button to add a subitem to the currently selected item. The Add Web Component dialog lists only
those items that can be added to the currently selected item.

The InternetExpress page producer can contain one of two types of item, each of which generates an HTML form:

TDataForm, which generates an HTML form for displaying data and the controls that manipulate that data or submit
updates.

Items you add to TDataForm display data in a multi-record grid (TDataGrid) or in a set of controls each of which
represents a single field from a single record (TFieldGroup). In addition, you can add a set of buttons to navigate
through data or post updates (TDataNavigator), or a button to apply updates back to the Web client
(TApplyUpdatesButton). Each of these items contains subitems to represent individual fields or buttons. Finally, as
with most Web items, you can add a layout grid (TLayoutGroup), that lets you customize the layout of any items it
contains.

TQueryForm, which generates an HTML form for displaying or reading application-defined values. For example, you
can use this form for displaying and submitting parameter values.

Items you add to TQueryForm display application-defined values(TQueryFieldGroup) or a set of buttons to submit
or reset those values (TQueryButtons). Each of these items contains subitems to represent individual values or
buttons. You can also add a layout grid to a query form, just as you can to a data form.

The bottom of the Web page editor displays the generated HTML code and lets you see what it looks like in a browser
(Internet Explorer).

Setting Web Item Properties
The Web items that you add using the Web page editor are specialized components that generate HTML. Each Web
item class is designed to produce a specific control or section of the final HTML document, but a common set of
properties influences the appearance of the final HTML.

When a Web item represents information from the XML data packet (for example, when it generates a set of field
or parameter display controls or a button that manipulates the data), the XMLBroker property associates the Web
item with the XML broker that manages the data packet. You can further specify a dataset that is contained in a
dataset field of that data packet using the XMLDataSetField property. If the Web item represents a specific field or
parameter value, the Web item has a FieldName or ParamName property.

You can apply a style attribute to any Web item, thereby influencing the overall appearance of all the HTML it
generates. Styles and style sheets are part of the HTML 4 standard. They allow an HTML document to define a set
of display attributes that apply to a tag and everything in its scope. Web items offer a flexible selection of ways to
use them:

The simplest way to use styles is to define a style attribute directly on the Web item. To do this, use the Style property.
The value of Style is simply the attribute definition portion of a standard HTML style definition, such as,

color: red.

You can define a style sheet that defines a set of style definitions. Each definition includes a style selector (the name
of a tag to which the style always applies or a user-defined style name) and the attribute definition in curly braces,

2075

H2 B {color: red}
.MyStyle {font-family: arial; font-weight: bold; font-size: 18px }

The entire set of definitions is maintained by the InternetExpress page producer as its Styles property. Each Web
item can then reference the styles with user-defined names by setting its StyleRule property.

If you are sharing a style sheet with other applications, you can also supply the style definitions as the value of the
InternetExpress page producer's StylesFile property instead of the Styles property. Individual Web items still
reference styles using the StyleRule property.

Another common property of Web items is the Custom property. Custom includes a set of options that you add to
the generated HTML tag. HTML defines a different set of options for each type of tag. The VCL reference for the
Custom property of most Web items gives an example of possible options. For more information on possible options,
use an HTML reference.

Customizing the InternetExpress Page Producer Template
The template of an InternetExpress page producer is an HTML document with extra embedded tags that your
application translates dynamically. Initially, the page producer generates a default template as the value of the
HTMLDoc property. This default template has the form

<HTML>

<HEAD>

</HEAD>

<BODY>

<#INCLUDES> <#STYLES> <#WARNINGS> <#FORMS> <#SCRIPT>

</BODY>

</HTML>

The HTML-transparent tags in the default template are translated as follows:

<#INCLUDES> generates the statements that include the javascript libraries. These statements have the form

<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmldom.js"> </SCRIPT>

<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmldb.js"> </SCRIPT>

<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmlbind.js"> </
SCRIPT>

<#STYLES> generates the statements that defines a style sheet from definitions listed in the Styles or StylesFile
property of the InternetExpress page producer.

2076

<#WARNINGS> generates nothing at runtime. At design time, it adds warning messages for problems detected
while generating the HTML document. You can see these messages in the Web page editor.

<#FORMS> generates the HTML produced by the components that you add in the Web page editor. The HTML
from each component is generated in the order it appears in WebPageItems.

<#SCRIPT> generates a block of javascript declarations that are used in the HTML generated by the components
added in the Web page editor.

You can replace the default template by changing the value of HTMLDoc or setting the HTMLFile property. The
customized HTML template can include any of the HTML-transparent tags that make up the default template. The
InternetExpress page producer automatically translates these tags when you call the Content method. In addition,
The InternetExpress page producer automatically translates three additional tags:

<#BODYELEMENTS> is replaced by the same HTML as results from the 5 tags in the default template. It is useful
when generating a template in an HTML editor when you want to use the default layout but add additional elements
using the editor.

<#COMPONENT Name=WebComponentName> is replaced by the HTML that the component named
WebComponentName generates. This component can be one of the components added in the Web page editor, or
it can be any component that supports the IWebContent interface and has the same Owner as the InternetExpress
page producer.

<#DATAPACKET XMLBroker=BrokerName> is replaced with the XML data packet obtained from the XML broker
specified by BrokerName. When, in the Web page editor, you see the HTML that the InternetExpress page producer
generates, you see this tag instead of the actual XML data packet.

In addition, the customized template can include any other HTML-transparent tags that you define. When the
InternetExpress page producer encounters a tag that is not one of the seven types it translates automatically, it
generates an OnHTMLTag event, where you can write code to perform your own translations. For more information
about HTML templates in general, see HTML templates.

Tip: The components that appear in the Web page editor generate static code. That is, unless the application server
changes the metadata that appears in data packets, the HTML is always the same, no matter when it is
generated. You can avoid the overhead of generating this code dynamically at runtime in response to every
request message by copying the generated HTML in the Web page editor and using it as a template. Because
the Web page editor displays a <#DATAPACKET> tag instead of the actual XML, using this as a template still
allows your application to fetch data packets from the application server dynamically.

2077

Using XML in database applications

Using XML in Database Applications
In addition to the support for connecting to database servers, Delphi lets you work with XML documents as if they
were database servers. XML (Extensible Markup Language) is a markup language for describing structured data.
XML documents provide a standard, transportable format for data that is used in Web applications, business-to-
business communication, and so on. For information on Delphi's support for working directly with XML documents,
see Working with XML Documents.

Support for working with XML documents in database applications is based on a set of components that can convert
data packets (the Data property of a client dataset) into XML documents and convert XML documents into data
packets. To use these components, you must first define the transformation between the XML document and the
data packet. Once you have defined the transformation, you can use special components to

convert XML documents into data packets.
provide data from and resolve updates to an XML document.
use an XML document as the client of a provider.

Defining Transformations
Before you can convert between data packets and XML documents, you must define the relationship between the
metadata in a data packet and the nodes of the corresponding XML document. A description of this relationship is
stored in a special XML document called a transformation.

Each transformation file contains two things: the mapping between the nodes in an XML schema and the fields in a
data packet, and a skeletal XML document that represents the structure for the results of the transformation. A
transformation is a one-way mapping: from an XML schema or document to a data packet or from the metadata in
a data packet to an XML schema. Often, you create transformation files in pairs: one that maps from XML to data
packet, and one that maps from data packet to XML.

In order to create the transformation files for a mapping, use the XMLMapper utility that ships in the bin directory.

Mapping Between XML Nodes and Data Packet Fields
XML provides a text-based way to store or describe structured data. Datasets provide another way to store and
describe structured data. To convert an XML document into a dataset, therefore, you must identify the
correspondences between the nodes in an XML document and the fields in a dataset.

2078

Consider, for example, an XML document that represents a set of email messages. It might look like the following
(containing a single message):

<?xml version="1.0" standalone="yes" ?>
<email>
 <head>
 <from>
 <name>Dave Boss</name>
 <address>dboss@MyCo.com</address>
 </from>
 <to>
 <name>Joe Engineer</name>
 <address>jengineer@MyCo.com</address>
 </to>
 <cc>
 <name>Robin Smith/name>
 <address>rsmith@MyCo.com</address>
 </cc>
 <cc>
 <name>Leonard Devon</name>
 <address>ldevon@MyCo.com</address>
 </cc>
 </head>
 <body>
 <subject>XML components</subject>
 <content>
 Joe,
 Attached is the specification for the XML component support in Delphi.
 This looks like a good solution to our buisness-to-buisness application!
 Also attached, please find the project schedule. Do you think its reasonable?
 Dave.
 </content>
 <attachment attachfile="XMLSpec.txt"/>
 <attachment attachfile="Schedule.txt"/>
 </body>
</email>

One natural mapping between this document and a dataset would map each e-mail message to a single record. The
record would have fields for the sender's name and address. Because an e-mail message can have multiple
recipients, the recipient (<to> would map to a nested dataset. Similarly, the cc list maps to a nested dataset. The
subject line would map to a string field while the message itself (<content>) would probably be a memo field. The
names of attachment files would map to a nested dataset because one message can have several attachments.
Thus, the e-mail above would map to a dataset something like the following:

SenderName SenderAddress To CC Subject Content Attach

Dave Boss dboss@MyCo.Com (DataSet) (DataSet) XML components (MEMO) (DataSet)

where the nested dataset in the "To" field is

Name Address

Joe Engineer jengineer@MyCo.Com

the nested dataset in the "CC" field is

Name Address

Robin Smith rsmith@MyCo.Com

2079

Leonard Devon ldevon@MyCo.Com

and the nested dataset in the "Attach" field is

Attachfile

XMLSpec.txt

Schedule.txt

Defining such a mapping involves identifying those nodes of the XML document that can be repeated and mapping
them to nested datasets. Tagged elements that have values and appear only once (such as <content>...</content>)
map to fields whose datatype reflects the type of data that can appear as the value. Attributes of a tag (such as the
AttachFile attribute of the attachment tag) also map to fields.

Note that not all tags in the XML document appear in the corresponding dataset. For example, the <head>...<head/
> element has no corresponding element in the resulting dataset. Typically, only elements that have values, elements
that can be repeated, or the attributes of a tag map to the fields (including nested dataset fields) of a dataset. The
exception to this rule is when a parent node in the XML document maps to a field whose value is built up from the
values of the child nodes. For example, an XML document might contain a set of tags such as

<FullName>
 <Title> Mr. </Title>
 <FirstName> John </FirstName>
 <LastName> Smith </LastName>
</FullName>

which could map to a single dataset field with the value

Mr. John Smith

Using XMLMapper
The XML mapper utility, xmlmapper.exe, lets you define mappings in three ways:

From an existing XML schema (or document) to a client dataset that you define. This is useful when you want
to create a database application to work with data for which you already have an XML schema.
From an existing data packet to a new XML schema you define. This is useful when you want to expose existing
database information in XML, for example to create a new business-to-business communication system.
Between an existing XML schema and an existing data packet. This is useful when you have an XML schema
and a database that both describe the same information and you want to make them work together.

Note: XML mapper relies on two .DLLs (midas.dll and msxml.dll) to work correctly. Be sure that you have both of
these .DLLs installed before you try to use xmlmapper.exe. In addition, msxml.dll must be registered as a
COM server. You can register it using Regsvr32.exe.

Loading an XML schema or data packet
Before you can define a mapping and generate a transformation file, you must first load descriptions of the XML
document and the data packet between which you are mapping.

You can load an XML document or schema by choosing File Open and selecting the document or schema in the
resulting dialog.

2080

You can load a data packet by choosing File Open and selecting a data packet file in the resulting dialog. (The
data packet is simply the file generated when you call a client dataset's SaveToFile method.) If you have not saved
the data packet to disk, you can fetch the data packet directly from the application server of a multi-tiered application
by right-clicking in the Datapacket pane and choosing Connect To Remote Server.

You can load only an XML document or schema, only a data packet, or you can load both. If you load only one side
of the mapping, XML mapper can generate a natural mapping for the other side.

Defining mappings
The mapping between an XML document and a data packet need not include all of the fields in the data packet or
all of the tagged elements in the XML document. Therefore, you must first specify those elements that are mapped.
To specify these elements, first select the Mapping page in the central pane of the dialog.

To specify the elements of an XML document or schema that are mapped to fields in a data packet, select the Sample
or Structure tab of the XML document pane and double-click on the nodes for elements that map to data packet fields.

To specify the fields of the data packet that are mapped to tagged elements or attributes in the XML document,
double-click on the nodes for those fields in the Datapacket pane.

If you have only loaded one side of the mapping (the XML document or the data packet), you can generate the other
side after you have selected the nodes that are mapped.

If you are generating a data packet from an XML document, you first define attributes for the selected nodes
that determine the types of fields to which they correspond in the data packet. In the center pane, select the
Node Repository page. Select each node that participates in the mapping and indicate the attributes of the
corresponding field. If the mapping is not straightforward (for example, a node with subnodes that corresponds
to a field whose value is built from those subnodes), check the User Defined Translation check box. You will
need to write an event handler later to perform the transformation on user defined nodes. Once you have
specified the way nodes are to be mapped, choose Create Datapacket from XML. The corresponding data
packet is automatically generated and displayed in the Datapacket pane.
If you are generating an XML document from a data packet, choose Create XML from Datapacket. A dialog
appears where you can specify the names of the tags and attributes in the XML document that correspond to
fields, records, and datasets in the data packet. For field values, the way you name them indicates whether they
map to a tagged element with a value or to an attribute. Names that begin with an @ symbol map to attributes
of the tag that corresponds to the record, while names that do not begin with an @ symbol map to tagged
elements that have values and that are nested within the element for the record.
If you have loaded both an XML document and a data packet (client dataset file), be sure you select
corresponding nodes in the same order. The corresponding nodes should appear next to each other in the table
at the top of the Mapping page.

Once you have loaded or generated both the XML document and the data packet and selected the nodes that appear
in the mapping, the table at the top of the Mapping page should reflect the mapping you have defined.

Generating transformation files
Once you define the mapping, you can generate the transformation files that are used to convert XML documents
to data packets and to convert data packets to XML documents. Note that only the transformation file is directional:
a single mapping can be used to generate both the transformation from XML to data packet and from data packet
to XML.

To generate a transformation file
1 First select the radio button that indicates what the transformation creates:

Choose the Datapacket to XML button if the mapping goes from data packet to XML document.

2081

Choose the XML to Datapacket button if the mapping goes from XML document to data packet.

2 If you are generating a data packet, you will also want to use the radio buttons in the Create Datapacket As
section. These buttons let you specify how the data packet will be used: as a dataset, as a delta packet for
applying updates, or as the parameters to supply to a provider before fetching data.

3 Click Create and Test Transformation to generate an in-memory version of the transformation. XML mapper
displays the XML document that would be generated for the data packet in the Datapacket pane or the data
packet that would be generated for the XML document in the XML Document pane.

4 Finally, choose File Save Transformation to save the transformation file. The transformation file is a special
XML file (with the .xtr extension) that describes the transformation you have defined.

Converting XML Documents into Data Packets
Once you have created a transformation file that indicates how to transform an XML document into a data packet,
you can create data packets for any XML document that conforms to the schema used in the transformation. These
data packets can then be assigned to a client dataset and saved to a file so that they form the basis of a file-based
database application.

The TXMLTransform component transforms an XML document into a data packet according to the mapping in a
transformation file.

Note: You can also use TXMLTransform to convert a data packet that appears in XML format into an arbitrary XML
document.

Specifying the source XML document
There are three ways to specify the source XML document:

If the source document is an .xml file on disk, you can use the SourceXmlFile property.
If the source document is an in-memory string of XML, you can use the SourceXml property.
If you have an IDOMDocument interface for the source document, you can use the SourceXmlDocument
property.

TXMLTransform checks these properties in the order listed above. That is, it first checks for a file name in the
SourceXmlFile property. Only if SourceXmlFile is an empty string does it check the SourceXml property. Only if
SourceXml is an empty string does it then check the SourceXmlDocument property.

Specifying the transformation
There are two ways to specify the transformation that converts the XML document into a data packet:

Set the TransformationFile property to indicate a transformation file that was created using xmlmapper.exe.
Set the TransformationDocument property if you have an IDOMDocument interface for the transformation.

TXMLTransform checks these properties in the order listed above. That is, it first checks for a file name in the
TransformationFile property. Only if TransformationFile is an empty string does it check the
TransformationDocument property.

2082

Obtaining the resulting data packet
To cause TXMLTransform to perform its transformation and generate a data packet, you need only read the Data
property. For example, the following code uses an XML document and transformation file to generate a data packet,
which is then assigned to a client dataset:

[Delphi]
XMLTransform1.SourceXMLFile := 'CustomerDocument.xml';
XMLTransform1.TransformationFile := 'CustXMLToCustTable.xtr';
ClientDataSet1.XMLData := XMLTransform1.Data;

[C++]
XMLTransform1->SourceXMLFile = "CustomerDocument.xml";
XMLTransform1->TransformationFile = "CustXMLToCustTable.xtr";
ClientDataSet1->XMLData = XMLTransform1->Data;

Converting user-defined nodes
When you define a transformation using xmlmapper.exe, you can specify that some of the nodes in the XML
document are "user-defined." User-defined nodes are nodes for which you want to provide the transformation in
code rather than relying on a straightforward node-value-to-field-value translation.

You can provide the code to translate user-defined nodes using the OnTranslate event. The OnTranslate event
handler is called every time the TXMLTransform component encounters a user-defined node in the XML document.
In the OnTranslate event handler, you can read the source document and specify the resulting value for the field in
the data packet.

For example, the following OnTranslate event handler converts a node in the XML document with the following form

<FullName>
 <Title> </Title>
 <FirstName> </FirstName>
 <LastName> </LastName>
</FullName>

into a single field value:

[Delphi]
procedure TForm1.XMLTransform1Translate(Sender: TObject; Id: String; SrcNode: IDOMNode;
 var Value: String; DestNode: IDOMNode);
var
 CurNode: IDOMNode;
begin
 if Id = 'FullName' then
 begin
 Value = '';
 if SrcNode.hasChildNodes then
 begin
 CurNode := SrcNode.firstChild;
 Value := Value + CurNode.nodeValue;
 while CurNode <> SrcNode.lastChild do
 begin
 CurNode := CurNode.nextSibling;
 Value := Value + ' ';
 Value := Value + CurNode.nodeValue;
 end;

2083

 end;
 end;
end;

[C++]
void __fastcall TForm1::XMLTransform1Translate(TObject *Sender, AnsiString Id,
_di_IDOMNode SrcNode, AnsiString &Value, _di_IDOMNode DestNode)
{
 if (Id == "FullName")
 {
 Value = "";
 if (SrcNode.hasChildNodes)
 {
 _di_IXMLDOMNode CurNode = SrcNode.firstChild;
 Value = SrcValue + AnsiString(CurNode.nodeValue);
 while (CurNode != SrcNode.lastChild)
 {
 CurNode = CurNode.nextSibling;
 Value = Value + AnsiString(" ");
 Value = Value + AnsiString(CurNode.nodeValue);
 }
 }
 }
}

Using an XML Document as the Source for a Provider
The TXMLTransformProvider component lets you use an XML document as if it were a database table.
TXMLTransformProvider packages the data from an XML document and applies updates from clients back to that
XML document. It appears to clients such as client datasets or XML brokers like any other provider component. For
information on provider components, see Using Provider Components. For information on using provider
components with client datasets, see Using a Client Dataset with a Provider.

You can specify the XML document from which the XML provider provides data and to which it applies updates using
the XMLDataFile property.

TXMLTransformProvider components use internal TXMLTransform components to translate between data packets
and the source XML document: one to translate the XML document into data packets, and one to translate data
packets back into the XML format of the source document after applying updates. These two TXMLTransform
components can be accessed using the TransformRead and TransformWrite properties, respectively.

When using TXMLTransformProvider, you must specify the transformations that these two TXMLTransform
components use to translate between data packets and the source XML document. You do this by setting the
TXMLTransform component's TransformationFile or TransformationDocument property, just as when using a stand-
alone TXMLTransform component.

In addition, if the transformation includes any user-defined nodes, you must supply an OnTranslate event handler
to the internal TXMLTransform components.

You do not need to specify the source document on the TXMLTransform components that are the values of
TransformRead and TransformWrite. For TransformRead, the source is the file specified by the provider's
XMLDataFile property (although, if you set XMLDataFile to an empty string, you can supply the source document
using TransformRead.XmlSource or TransformRead.XmlSourceDocument). For TransformWrite, the source is
generated internally by the provider when it applies updates.

2084

Using an XML Document as the Client of a Provider
The TXMLTransformClient component acts as an adapter to let you use an XML document (or set of documents)
as the client for an application server (or simply as the client of a dataset to which it connects via a
TDataSetProvider component). That is, TXMLTransformClient lets you publish database data as an XML document
and to make use of update requests (insertions or deletions) from an external application that supplies them in the
form of XML documents.

To specify the provider from which the TXMLTransformClient object fetches data and to which it applies updates,
set the ProviderName property. As with the ProviderName property of a client dataset, ProviderName can be the
name of a provider on a remote application server or it can be a local provider in the same form or data module as
the TXMLTransformClient object. For information about providers, see Using Provider Components.

If the provider is on a remote application server, you must use a DataSnap connection component to connect to that
application server. Specify the connection component using the RemoteServer property. For information on
DataSnap connection components, see Connecting to the Application Server.

Fetching an XML document from a provider
TXMLTransformClient uses an internal TXMLTransform component to translate data packets from the provider into
an XML document. You can access this TXMLTransform component as the value of the TransformGetData property.

Before you can create an XML document that represents the data from a provider, you must specify the
transformation file that TransformGetData uses to translate the data packet into the appropriate XML format. You
do this by setting the TXMLTransform component's TransformationFile or TransformationDocument property, just
as when using a stand-alone TXMLTransform component. If that transformation includes any user-defined nodes,
you will want to supply TransformGetData with an OnTranslate event handler as well.

There is no need to specify the source document for TransformGetData, TXMLTransformClient fetches that from
the provider. However, if the provider expects any input parameters, you may want to set them before fetching the
data. Use the SetParams method to supply these input parameters before you fetch data from the provider.
SetParams takes two arguments: a string of XML from which to extract parameter values, and the name of a
transformation file to translate that XML into a data packet. SetParams uses the transformation file to convert the
string of XML into a data packet, and then extracts the parameter values from that data packet.

Note: You can override either of these arguments if you want to specify the parameter document or transformation
in another way. Simply set one of the properties on TransformSetParams property to indicate the document
that contains the parameters or the transformation to use when converting them, and then set the argument
you want to override to an empty string when you call SetParams. For details on the properties you can use,
see Converting XML Documents Into Data Packets.

Once you have configured TransformGetData and supplied any input parameters, you can call the GetDataAsXml
method to fetch the XML. GetDataAsXml sends the current parameter values to the provider, fetches a data packet,
converts it into an XML document, and returns that document as a string. You can save this string to a file:

[Delphi]
var
 XMLDoc: TFileStream;
 XML: string;
begin
 XMLTransformClient1.ProviderName := 'Provider1';
 XMLTransformClient1.TransformGetData.TransformationFile := 'CustTableToCustXML.xtr';
 XMLTransformClient1.TransFormSetParams.SourceXmlFile := 'InputParams.xml';
 XMLTransformClient1.SetParams('', 'InputParamsToDP.xtr');
 XML := XMLTransformClient1.GetDataAsXml;
 XMLDoc := TFileStream.Create('Customers.xml', fmCreate or fmOpenWrite);
 try
 XMLDoc.Write(XML, Length(XML));

2085

 finally
 XMLDoc.Free;
 end;
end;

[C++]
XMLTransformClient1->ProviderName = "Provider1";
XMLTransformClient1->TransformGetData->TransformationFile = "CustTableToCustXML.xtr";
XMLTransformClient1->TransFormSetParams->SourceXmlFile = "InputParams.xml";
XMLTransformClient1->SetParams("", "InputParamsToDP.xtr");
AnsiString XML = XMLTransformClient1->GetDataAsXml();
TFileStream pXMLDoc = new TFileStream("Customers.xml", fmCreate || fmOpenWrite);
__try
{
 pXMLDoc->Write(XML.c_str(), XML.Length());
}
__finally
{
 delete pXMLDoc;
}

Applying updates from an XML document to a provider
TXMLTransformClient also lets you insert all of the data from an XML document into the provider's dataset or to
delete all of the records in an XML document from the provider's dataset. To perform these updates, call the
ApplyUpdatesmethod,passing in

A string whose value is the contents of the XML document with the data to insert or delete.
The name of a transformation file that can convert that XML data into an insert or delete delta packet. (When
you define the transformation file using the XML mapper utility, you specify whether the transformation is for an
insert or delete delta packet.)
The number of update errors that can be tolerated before the update operation is aborted. If fewer than the
specified number of records can't be inserted or deleted, ApplyUpdates returns the number of actual failures.
If more than the specified number of records can't be inserted or deleted, the entire update operation is rolled
back, and no update is performed.

The following call transforms the XML document Customers.xml into a delta packet and applies all updates
regardless of the number of errors:

[Delphi]
StringList1.LoadFromFile('Customers.xml');
nErrors := ApplyUpdates(StringList1.Text, 'CustXMLToInsert.xtr', -1);

[C++]
StringList1->LoadFromFile("Customers.xml");
nErrors = ApplyUpdates(StringList1->Text, "CustXMLToInsert.xtr", -1);

2086

Writing Internet Applications

2087

Creating Internet server applications

Creating Internet Applications: Overview
Web server applications extend the functionality and capability of existing Web servers. A Web server application
receives HTTP request messages from the Web server, performs any actions requested in those messages, and
formulates responses that it passes back to the Web server. Many operations that you can perform with an ordinary
application can be incorporated into a Web server application.

The IDE provides two different architectures for developing Web server applications: Web Broker and WebSnap.
Although these two architectures are different, WebSnap and Web Broker have many common elements. The
WebSnap architecture acts as a superset of Web Broker. It provides additional components and new features like
the Preview tab, which allows the content of a page to be displayed without the developer having to run the
application. Applications developed with WebSnap can include Web Broker components, whereas applications
developed with Web Broker cannot include WebSnap components.

About Web Broker and WebSnap
Part of the function of any application is to make data accessible to the user. In a standard application you accomplish
this by creating traditional front end elements, like dialogs and scrolling windows. Developers can specify the exact
layout of these objects using familiar form design tools. Web server applications must be designed differently,
however. All information passed to users must be in the form of HTML pages which are transferred through HTTP.
Pages are generally interpreted on the client machine by a Web browser application, which displays the pages in a
form appropriate for the user's particular system in its present state.

The first step in building a Web server application is choosing which architecture you want to use, Web Broker or
WebSnap. Both approaches provide many of the same features, including

Support for CGI and Apache DSO Web server application types. These are described in Types of Web Server
Applications.
Multithreading support so that incoming client requests are handled on separate threads.
Caching of Web modules for quicker responses.

Both the Web Broker and WebSnap components handle all of the mechanics of page transfer. WebSnap uses Web
Broker as its foundation, so it incorporates all of the functionality of Web Broker's architecture. WebSnap offers a
much more powerful set of tools for generating pages, however. Also, WebSnap applications allow you to use server-
side scripting to help generate pages at runtime. Web Broker does not have this scripting capability. The tools offered
in Web Broker are not nearly as complete as those in WebSnap, and are much less intuitive. If you are developing
a new Web server application, WebSnap is probably a better choice of architecture than Web Broker.

The major differences between these two approaches are outlined in the following table:

2088

Web Broker versus WebSnap
Web Broker WebSnap

Backward compatible Although WebSnap applications can use any Web Broker
components that produce content, the Web modules and
dispatcher that contain these are new.

Only one Web module allowed in an application. Multiple Web modules can partition the application into units,
allowing multiple developers to work on the same project with
fewer conflicts.

Only one Web dispatcher allowed in the application. Multiple, special-purpose dispatchers handle different types
of requests.

Specialized components for creating content include page
producers, InternetExpress components, and Web Services
components.

Supports all the content producers that can appear in Web
Broker applications, plus many others designed to let you
quickly build complex data-driven Web pages.

No scripting support. Support for server-side scripting allows HTML generation
logic to be separated from the business logic.

No built-in support for named pages. Named pages can be automatically retrieved by a page
dispatcher and addressed from server-side scripts.

No session support. Sessions store information about an end user that is needed
for a short period of time. This can be used for such tasks as
login/logout support.

Every request must be explicitly handled, using either an action
item or an auto-dispatching component.

Dispatch components automatically respond to a variety of
requests.

Only a few specialized components provide previews of the
content they produce. Most development is not visual.

WebSnaplets you build Web pages more visually and view
the results at design time. Previews are available for all
components.

For more information on Web Broker, see Using Web Broker. For more information on WebSnap, see Creating Web
Server Applications Using WebSnap.

Terminology and Standards
Many of the protocols that control activity on the Internet are defined in Request for Comment (RFC) documents that
are created, updated, and maintained by the Internet Engineering Task Force (IETF), the protocol engineering and
development arm of the Internet. There are several important RFCs that you will find useful when writing Internet
applications:

RFC822, "Standard for the format of ARPA Internet text messages," describes the structure and content of
message headers.
RFC1521, "MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing
the Format of Internet Message Bodies," describes the method used to encapsulate and transport multipart and
multiformat messages.
RFC1945, "Hypertext Transfer Protocol—HTTP/1.0," describes a transfer mechanism used to distribute
collaborative hypermedia documents.

The IETF maintains a library of the RFCs on their Web site, www.ietf.cnri.reston.va.us

These documents include, among other information, details about

Parts of a Uniform Resource Locator
HTTP request header information

2089

HTTP server activity

Parts of a Uniform Resource Locator
The Uniform Resource Locator (URL) is a complete description of the location of a resource that is available over
the net. It is composed of several parts that may be accessed by an application. These parts are illustrated in the
following figure:

The first portion (not technically part of the URL) identifies the protocol (http). This portion can specify other protocols
such as https (secure http), ftp, and so on.

The Host portion identifies the machine that runs the Web server and Web server application. Although it is not
shown in the preceding picture, this portion can override the port that receives messages. Usually, there is no need
to specify a port, because the port number is implied by the protocol.

The ScriptName portion specifies the name of the Web server application. This is the application to which the Web
server passes messages.

Following the script name is the pathinfo. This identifies the destination of the message within the Web server
application. Path info values may refer to directories on the host machine, the names of components that respond
to specific messages, or any other mechanism the Web server application uses to divide the processing of incoming
messages.

The Query portion contains a set a named values. These values and their names are defined by the Web server
application.

URI vs. URL
The URL is a subset of the Uniform Resource Identifier (URI) defined in the HTTP standard, RFC1945. Web server
applications frequently produce content from many sources where the final result does not reside in a particular
location, but is created as necessary. URIs can describe resources that are not location-specific.

HTTP Request Header Information
HTTP request messages contain many headers that describe information about the client, the target of the request,
the way the request should be handled, and any content sent with the request. Each header is identified by a name,
such as "Host" followed by a string value. For example, consider the following HTTP request:

GET /art/gallery.dll/animals?animal=dog&color=black HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (WinNT; I)
Host: www.TSite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

The first line identifies the request as a GET. A GET request message asks the Web server application to return the
content associated with the URI that follows the word GET (in this case /art/gallery.dll/animals?
animal=doc&color=black). The last part of the first line indicates that the client is using the HTTP 1.0 standard.

The second line is the Connection header, and indicates that the connection should not be closed once the request
is serviced. The third line is the User-Agent header, and provides information about the program generating the
request. The next line is the Host header, and provides the Host name and port on the server that is contacted to

2090

form the connection. The final line is the Accept header, which lists the media types the client can accept as valid
responses.

HTTP Server Activity
The client/server nature of Web browsers is deceptively simple. To most users, retrieving information on the World
Wide Web is a simple procedure: click on a link, and the information appears on the screen. More knowledgeable
users have some understanding of the nature of HTML syntax and the client/server nature of the protocols used.
This is usually sufficient for the production of simple, page-oriented Web site content. Authors of more complex Web
pages have a wide variety of options to automate the collection and presentation of information using HTML.

Before building a Web server application, it is useful to understand how the client issues a request and how the
server responds to client requests:

Composing client requests
Serving client requests
Responding to client requests

Composing Client Requests
When an HTML hypertext link is selected (or the user otherwise specifies a URL), the browser collects information
about the protocol, the specified domain, the path to the information, the date and time, the operating environment,
the browser itself, and other content information. It then composes a request.

For example, to display a page of images based on criteria selected by clicking buttons on a form, the client might
construct this URL:

http://www.TSite.com/art/gallery.dll/animals?animal=dog&color=black

which specifies an HTTP server in the www.TSite.com domain. The client contacts www.TSite.com, connects to the
HTTP server, and passes it a request. The request might look something like this:

GET /art/gallery.dll/animals?animal=dog&color=black HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (WinNT; I)
Host: www.TSite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Serving Client Requests
The Web server receives a client request and can perform any number of actions, based on its configuration. If the
server is configured to recognize the /gallery.dll portion of the request as a program, it passes information about the
request to that program. The way information about the request is passed to the program depends on the type of
Web server application:

If the program is a Common Gateway Interface (CGI) program, the server passes the information contained in
the request directly to the CGI program. The server waits while the program executes. When the CGI program
exits, it passes the content directly back to the server.
If the program is a dynamic-link library (DLL), the server loads the DLL (if necessary) and passes the information
contained in the request to the DLL as a structure. The server waits while the program executes. When the DLL
exits, it passes the content directly back to the server.

2091

In all cases, the program acts on the request of and performs actions specified by the programmer: accessing
databases, doing simple table lookups or calculations, constructing or selecting HTML documents, and so on.

Responding to Client Requests
When a Web server application finishes with a client request, it constructs a page of HTML code or other MIME
content, and passes it back (via the server) to the client for display. The way the response is sent may differ based
on the type of program.

When a DLL finishes, it passes the HTML page and any response information directly back to the server, which
passes them back to the client. Creating a Web server application as a DLL reduces system load and resource use
by reducing the number of processes and disk accesses necessary to service an individual request.

Types of Web Server Applications
Whether you use Web Broker or WebSnap, you can create five standard types of Web server applications. In
addition, you can create a Web Application Debugger executable, which integrates the Web server into your
application so that you can debug your application logic. The Web Application Debugger executable is intended only
for debugging. When you deploy your application, you should migrate to one of the other five types.

ISAPI and NSAPI
An ISAPI or NSAPI Web server application is a DLL that is loaded by the Web server. Client request information is
passed to the DLL as a structure and evaluated by the ISAPI/NSAPI application, which creates appropriate request
and response objects. Each request message is automatically handled in a separate execution thread.

CGI stand-alone
A CGI stand-alone Web server application is a console application that receives client request information on
standard input and passes the results back to the server on standard output. This data is evaluated by the CGI
application, which creates appropriate request and response objects. Each request message is handled by a
separate instance of the application.

Apache
An Apache Web server application is a DLL that is loaded by the Web server. Client request information is passed
to the DLL as a structure and evaluated by the Apache Web server application, which creates appropriate request
and response objects. Each request message is automatically handled in a separate execution thread. You can build
your Web server applications using Apache 1 or 2 as your target type.

When you deploy your Apache Web server application, you will need to specify some application-specific information
in the Apache configuration files. For example, in Apache 1 projects the default module name is the project name
with _module appended to the end. For example, a project named Project1 would have Project1_module as its
module name. Similarly, the default content type is the project name with -content appended, and the default handler
type is the project name with-handler appended.

These definitions can be changed in the project (.dpr) file when necessary. For example, when you create your
project a default module name is stored in the project file. Here is a common example:

[Delphi]
exports
apache_module name 'Project1_module';

2092

[C++]
extern "C"
{
Httpd::module __declspec(dllexport) Project1_module;
}

Note: When you rename the project during the save process, that name isn't changed automatically. Whenever
you rename your project, you must change the module name in your project file to match your project name.
The content and handler definitions should change automatically once the module name is changed.

For information on using module, content, and handler definitions in your Apache configuration files, see the
documentation on the Apache Web site httpd.apache.org.

Web App Debugger
The server types mentioned above have their advantages and disadvantages for production environments, but none
of them is well-suited for debugging. Deploying your application and configuring the debugger can make Web server
application debugging far more tedious than debugging other application types.

Fortunately, Web server application debugging doesn't need to be that complicated. The IDE includes a Web App
Debugger which makes debugging simple. The Web App Debugger acts like a Web server on your development
machine. If you build your Web server application as a Web App Debugger executable, deployment happens
automatically during the build process. To debug your application, start it using Run Run. Next, select Tools
 Web App Debugger, click the default URL and select your application in the Web browser which appears. Your
application will launch in the browser window, and you can use the IDE to set breakpoints and obtain debugging
information.

When your application is ready to be tested or deployed in a production environment, you can convert your Web
App Debugger project to one of the other target types using the steps given below.

Note: When you create a Web App Debugger project, you will need to provide a CoClass Name for your project.
This is simply a name used by the Web App Debugger to refer to your application. Most developers use the
application's name as the CoClass Name.

Converting Web server application target types
One powerful feature of Web Broker and WebSnap is that they offer several different target server types. The IDE
allows you to easily convert from one target type to another.

Because Web Broker and WebSnap have slightly different design philosophies, you must use a different conversion
method for each architecture.

To convert your Web Broker application target type
1 Right-click the Web module and choose Add To Repository.
2 In the Add To Repository dialog box, give your Web module a title, text description, Repository page (probably

Data Modules), author name, and icon.
3 Choose OK to save your Web module as a template.
4 From the main menu, choose File New and select Web Server Application. In the New Web Server Application

dialog box, choose the appropriate target type.
5 Delete the automatically generated Web module.

2093

6 From the main menu, choose File New and select the template you saved in step 3. This will be on the page
you specified in step 2.

To convert a WebSnap application's target type
1 Open your project in the IDE.
2 Display the Project Manager using View Project Manager. Expand your project so all of its units are visible.
3 In the Project Manager, click the New button to create a new Web server application project. Double-click the

WebSnap Application item in the WebSnap tab. Select the appropriate options for your project, including the
server type you want to use, then click OK.

4 Expand the new project in the Project Manager. Select any files appearing there and delete them.
5 One at a time, select each file in your project (except for the form file in a Web App Debugger project) and drag

it to the new project. When a dialog appears asking if you want to add that file to your new project, click Yes.

Debugging Server Applications
Debugging Web server applications presents some unique problems, because they run in response to messages
from a Web server. You can not simply launch your application from the IDE, because that leaves the Web server
out of the loop, and your application will not find the request message it is expecting.

The following topics describe techniques you can use to debug Web server applications:

Using the Web Application Debugger
Debugging Web Applications that are DLLs

Using the Web Application Debugger
The Web Application Debugger provides an easy way to monitor HTTP requests, responses, and response times.
The Web Application Debugger takes the place of the Web server. Once you have debugged your application, you
can convert it to one of the supported types of Web application and install it with a commercial Web server.

To use the Web Application Debugger, you must first create your Web application as a Web Application Debugger
executable. Whether you are using Web Broker or WebSnap, the wizard that creates your Web server application
includes this as an option when you first begin the application. This creates a Web server application that is also a
COM server.

For information on how to write this Web server application using Web Broker, see Using Web Broker. For more
information on using WebSnap, see Creating Web Server applications using WebSnap.

Launching your application with the Web Application Debugger
Once you have developed your Web server application, you can run and debug it.

To launch your application with the Web Application Debugger
1 With your project loaded in the IDE, set any breakpoints so that you can debug your application just like any other

executable.
2 Choose Run Run. This displays the console window of the COM server that is your Web server application.

The first time you run your application, it registers your COM server so that the Web App debugger can access it.

2094

3 Select Tools Web App Debugger.
4 Click the Start button. This displays the ServerInfo page in your default Browser.
5 The ServerInfo page provides a drop-down list of all registered Web Application Debugger executables. Select

your application from the drop-down list. If you do not find your application in this drop-down list, try running your
application as an executable. Your application must be run once so that it can register itself. If you still do not
find your application in the drop-down list, try refreshing the Web page. (Sometimes the Web browser caches
this page, preventing you from seeing the most recent changes.)

6 Once you have selected your application in the drop-down list, press the Go button. This launches your application
in the Web Application Debugger, which provides you with details on request and response messages that pass
between your application and the Web Application Debugger.

Converting your application to another type of Web server application
When you have finished debugging your Web server application with the Web Application Debugger, you will need
to convert it to another type that can be installed on a commercial Web server. To learn more about converting your
application, see "Converting Web server application target types" in the topic Types of Web server applications.

Debugging Web Applications That Are DLLs
ISAPI, NSAPI, and Apache applications are actually DLLs that contain predefined entry points. The Web server
passes request messages to the application by making calls to these entry points. Because these applications are
DLLs, you can debug them by setting your application's run parameters to launch the server.

To set up your application's run parameters, choose Run Parameters and set the Host Application and Run
Parameters to specify the executable for the Web server and any parameters it requires when you launch it. For
details about these values on your Web server, see the documentation provided by you Web server vendor.

Note: Some Web Servers require additional changes before you have the rights to launch the Host Application in
this way. See your Web server vendor for details.

Tip: If you are using Windows 2000 with IIS 5, details on all of the changes you need to make to set up your rights
properly are described at the following Web site:

http://community.borland.com/article/0,1410,23024,00.html

Once you have set the Host Application and Run Parameters, you can set up your breakpoints so that when the
server passes a request message to your DLL, you hit one of your breakpoints, and can debug normally.

Note: Before launching the Web server using your application's run parameters, make sure that the server is not
already running.

User rights necessary for DLL debugging
Under Windows, you must have the correct user rights to debug a DLL.

To obtain these rights
1 In the Administrative Tools portion of the Control Panel, click on Local Security Policy. Expand Local Policies

and double-click User Rights Assignment. Double-click Act as part of the operating system in the right-hand panel.
2 Select Add to add a user to the list. Add your current user.

2095

3 Reboot so the changes take effect.

2096

Using Web Broker

Using Web Broker
Web Broker components (located on the Internet tab of the Tool palette) enable you to create event handlers that
are associated with a specific Uniform Resource Identifier (URI). When processing is complete, you can
programmatically construct HTML or XML documents and transfer them to the client. You can use Web Broker
components for cross-platform application development.

Frequently, the content of Web pages is drawn from databases. You can use Internet components to automatically
manage connections to databases, allowing a single DLL to handle numerous simultaneous, thread-safe database
connections.

The following sections in this series explain how you use the Web Broker components to create a Web server
application.

Creating Web Server Applications with Web Broker
Web Broker components (located on the Internet tab of the Tool palette) enable you to create event handlers that
are associated with a specific Uniform Resource Identifier (URI). When processing is complete, you can
programmatically construct HTML or XML documents and transfer them to the client. You can use Web Broker
components for cross-platform application development.

To create a new Web server application using the Web Broker architecture:
1 Select File New Other.
2 In the New Items dialog box, select the New tab under Delphi Projects and choose Web Server Application.
3 A dialog box appears, where you can select one of the Web server application types:

ISAPI and NSAPI: Selecting this type of application sets up your project as a DLL, with the exported methods
expected by the Web server. It adds the library header to the project file and the required entries to the uses
list and exports clause of the project file.
CGI stand-alone: Selecting this type of application sets up your project as a console application, and adds the
required entries to the uses clause of the project file.
Apache: Selecting one of these two application types (1.x and 2.x) sets up your project as a DLL, with the
exported methods expected by the applicable Apache Web server. It adds the library header to the project file
and the required entries to the uses list and exports clause of the project file.
Web Application Debugger stand-alone executable: Selecting this type of application sets up an environment
for developing and testing Web server applications. This type of application is not intended for deployment.

2097

Choose the type of Web Server Application that communicates with the type of Web Server your application will
use. This creates a new project configured to use Internet components.

The Web Module
The Web module (TWebModule) is a descendant of TDataModule and may be used in the same way: to provide
centralized control for business rules and non-visual components in the Web application.

Add any content producers that your application uses to generate response messages. These can be the built-in
content producers such as TPageProducer, TDataSetPageProducer, TDataSetTableProducer,
TQueryTableProducer and TInetXPageProducer or descendants of TCustomContentProducer that you have written
yourself. If your application generates response messages that include material drawn from databases, you can add
data access components or special components for writing a Web server that acts as a client in a multi-tiered
database application.

In addition to storing non-visual components and business rules, the Web module also acts as a Web dispatcher,
matching incoming HTTP request messages to action items that generate the responses to those requests.

You may have a data module already that is set up with many of the non-visual components and business rules that
you want to use in your Web application. You can replace the Web module with your pre-existing data module.
Simply delete the automatically generated Web module and replace it with your data module. Then, add a
TWebDispatcher component to your data module, so that it can dispatch request messages to action items, the way
a Web module can. If you want to change the way action items are chosen to respond to incoming HTTP request
messages, derive a new dispatcher component from TCustomWebDispatcher, and add that to the data module
instead.

Your project can contain only one dispatcher. This can either be the Web module that is automatically generated
when you create the project, or the TWebDispatcher component that you add to a data module that replaces the
Web module. If a second data module containing a dispatcher is created during execution, the Web server application
generates a runtime error.

Note: The Web module that you set up at design time is actually a template. In ISAPI and NSAPI applications, each
request message spawns a separate thread, and separate instances of the Web module and its contents are
created dynamically for each thread.

Warning: The Web module in a DLL-based Web server application is cached for later reuse to increase response
time. The state of the dispatcher and its action list is not reinitialized between requests. Enabling or
disabling action items during execution may cause unexpected results when that module is used for
subsequent client requests.

The Web Application Object
The project that is set up for your Web application contains a global variable named Application. Application is a
descendant of TWebApplication that is appropriate to the type of application you are creating. It runs in response to
HTTP request messages received by the Web server.

Warning: Do not include the Forms or QForms unit in the project uses clause after the CGIApp, ApacheApp,
ApacheTwoApp, or ISAPIApp unit. Forms also declares a global variable named Application, and if it
appears after the CGIApp, ApacheApp, ApacheTwoApp, or ISAPIApp unit, Application will be initialized
to an object of the wrong type.

2098

The Structure of a Web Broker Application
When the Web application receives an HTTP request message, it creates a TWebRequest object to represent the
HTTP request message, and a TWebResponse object to represent the response that should be returned. The
application then passes these objects to the Web dispatcher (either the Web module or a TWebDispatcher
component).

The Web dispatcher controls the flow of the Web server application. The dispatcher maintains a collection of action
items (TWebActionItem) that know how to handle certain types of HTTP request messages. The dispatcher identifies
the appropriate action items or auto-dispatching components to handle the HTTP request message, and passes the
request and response objects to the identified handler so that it can perform any requested actions or formulate a
response message.

The action items are responsible for reading the request and assembling a response message. Specialized content
producer components aid the action items in dynamically generating the content of response messages, which can
include custom HTML code or other MIME content. The content producers can make use of other content producers
or descendants of THTMLTagAttributes, to help them create the content of the response message.

If you are creating the Web Client in a multi-tiered database application, your Web server application may include
additional, auto-dispatching components that represent database information encoded in XML and database
manipulation classes encoded in javascript. If you are creating a server that implements a Web Service, your Web
server application may include an auto-dispatching component that passes SOAP-based messages on to an invoker
that interprets and executes them. The dispatcher calls on these auto-dispatching components to handle the request
message after it has tried all of its action items.

When all action items (or auto-dispatching components) have finished creating the response by filling out the
TWebResponse object, the dispatcher passes the result back to the Web application. The application sends the
response on to the client via the Web server.

The Web Dispatcher
If you are using a Web module, it acts as a Web dispatcher. If you are using a pre-existing data module, you must
add a single dispatcher component (TWebDispatcher) to that data module. The dispatcher maintains a collection of
action items that know how to handle certain kinds of request messages. When the Web application passes a request
object and a response object to the dispatcher, it is responsible for dispatching the request message.

Set up the Web dispatcher by adding actions to the dispatcher.

Adding Actions to the Dispatcher
Open the action editor from the Object Inspector by clicking the ellipsis on the Actions property of the dispatcher.
Action items can be added to the dispatcher by clicking the Add button in the action editor.

Add actions to the dispatcher to respond to different request methods or target URIs. You can set up your action
items in a variety of ways. You can start with action items that preprocess requests, and end with a default action

2099

that checks whether the response is complete and either sends the response or returns an error code. Or, you can
add a separate action item for every type of request, where each action item completely handles the request.

Dispatching Request Messages
When the dispatcher receives the client request, it generates a BeforeDispatch event. This provides your application
with a chance to preprocess the request message before it is seen by any of the action items.

Next, the dispatcher iterates over its list of action items, looking for an entry that matches the PathInfo portion of the
request message's target URL and that also provides the service specified as the method of the request message.
It does this by comparing the PathInfo and MethodType properties of the TWebRequest object with the property of
the same name on the action item.

When the dispatcher finds an appropriate action item, it causes that action item to fire. When the action item fires,
it does one of the following:

Fills in the response content and sends the response or signals that the request is completely handled.
Adds to the response and then allows other action items to complete the job.
Defers the request to other action items.

After checking all its action items, if the message is not handled the dispatcher checks any specially registered auto-
dispatching components that do not use action items. These components are specific to multi-tiered database
applications, which are described in Building Web applications using InternetExpress

If, after checking all the action items and any specially registered auto-dispatching components, the request message
has still not been fully handled, the dispatcher calls the default action item. The default action item does not need
to match either the target URL or the method of the request.

If the dispatcher reaches the end of the action list (including the default action, if any) and no actions have been
triggered, nothing is passed back to the server. The server simply drops the connection to the client.

If the request is handled by the action items, the dispatcher generates an AfterDispatch event. This provides a final
opportunity for your application to check the response that was generated, and make any last minute changes.

Action Items
Each action item (TWebActionItem) performs a specific task in response to a given type of request message.

Action items can completely respond to a request or perform part of the response and allow other action items to
complete the job. Action items can send the HTTP response message for the request, or simply set up part of the
response for other action items to complete. If a response is completed by the action items but not sent, the Web
server application sends the response message.

Set up action items for your Web server application by

Adding actions to the dispatcher
Determining when action items fire
Responding to request messages with action items

Determining When Action Items Fire
Most properties of the action item determine when the dispatcher selects it to handle an HTTP request message.
To set the properties of an action item, you must first bring up the action editor: select the Actions property of the
dispatcher in the Object Inspector and click on the ellipsis. When an action is selected in the action editor, its
properties can be modified in the Object Inspector.

2100

The action item includes properties that specify

The target URL
The request method type

Other properties that influence when the dispatcher fires an action item are described in

Enabling and disabling action items
Choosing a default action item

The Target URL
The dispatcher compares the PathInfo property of an action item to the PathInfo of the request message. The value
of this property should be the path information portion of the URL for all requests that the action item is prepared to
handle. For example, given this URL,

http://www.TSite.com/art/gallery.dll/mammals?animal=dog&color=black

and assuming that the /gallery.dll part indicates the Web server application, the path information portion is

/mammals

Use path information to indicate where your Web application should look for information when servicing requests,
or to divide you Web application into logical subservices.

The Request Method Type
The MethodType property of an action item indicates what type of request messages it can process. The dispatcher
compares the MethodType property of an action item to the MethodType of the request message. MethodType can
take one of the following values:

MethodType values
Value Meaning

mtGet The request is asking for the information associated with the target URI to be returned in a response message.

mtHead The request is asking for the header properties of a response, as if servicing an mtGet request, but omitting the
content of the response.

mtPost The request is providing information to be posted to the Web application.

mtPut The request asks that the resource associated with the target URI be replaced by the content of the request message.

mtAny Matches any request method type, including mtGet, mtHead, mtPut, and mtPost.

Enabling and Disabling Action Items
Each action item has an Enabled property that can be used to enable or disable that action item. By setting Enabled to
False, you disable the action item so that it is not considered by the dispatcher when it looks for an action item to
handle a request.

A BeforeDispatch event handler can control which action items should process a request by changing the
Enabled property of the action items before the dispatcher begins matching them to the request message.

2101

Warning: Changing the Enabled property of an action during execution may cause unexpected results for
subsequent requests. If the Web server application is a DLL that caches Web modules, the initial state
will not be reinitialized for the next request. Use the BeforeDispatch event to ensure that all action items
are correctly initialized to their appropriate starting states.

Choosing a Default Action Item
Only one of the action items can be the default action item. The default action item is selected by setting its Default
property to True. When the Default property of an action item is set to True, the Default property for the previous
default action item (if any) is set to False.

When the dispatcher searches its list of action items to choose one to handle a request, it stores the name of the
default action item. If the request has not been fully handled when the dispatcher reaches the end of its list of action
items, it executes the default action item.

The dispatcher does not check the PathInfo or MethodType of the default action item. The dispatcher does not even
check the Enabled property of the default action item. Thus, you can make sure the default action item is only called
at the very end by setting its Enabled property to False.

The default action item should be prepared to handle any request that is encountered, even if it is only to return an
error code indicating an invalid URI or MethodType. If the default action item does not handle the request, no
response is sent to the Web client.

Warning: Changing the Default property of an action during execution may cause unexpected results for the current
request. If the Default property of an action that has already been triggered is set to True, that action will
not be reevaluated and the dispatcher will not trigger that action when it reaches the end of the action list.

Responding to Request Messages with Action Items
The real work of the Web server application is performed by action items when they execute. When the Web
dispatcher fires an action item, that action item can respond to the current request message in two ways:

If the action item has an associated producer component as the value of its Producer property, that producer
automatically assigns the Content of the response message using its Content method. The Internet page of the
Tool palette includes a number of content producer components that can help construct an HTML page for the
content of the response message.
After the producer has assigned any response content (if there is an associated producer), the action item
receives an OnAction event. The OnAction event handler is passed the TWebRequest object that represents
the HTTP request message and a TWebResponse object to fill with any response information.

If the action item's content can be generated by a single content producer, it is simplest to assign the content producer
as the action item's Producer property. However, you can always access any content producer from the OnAction
event handler as well. The OnAction event handler allows more flexibility, so that you can use multiple content
producers, assign response message properties, and so on.

Both the content-producer component and the OnAction event handler can use any objects or runtime library
methods to respond to request messages. They can access databases, perform calculations, construct or select
HTML documents, and so on. For more information about generating response content using content-producer
components, see Generating the content of response messages.

2102

Sending the response
An OnAction event handler can send the response back to the Web client by using the methods of the
TWebResponse object. However, if no action item sends the response to the client, it will still get sent by the Web
server application as long as the last action item to look at the request indicates that the request was handled.

Using multiple action items
You can respond to a request from a single action item, or divide the work up among several action items. If the
action item does not completely finish setting up the response message, it must signal this state in the OnAction
event handler by setting the Handled parameter to False.

If many action items divide up the work of responding to request messages, each setting Handled to False so that
others can continue, make sure the default action item leaves the Handled parameter set to True. Otherwise, no
response will be sent to the Web client.

When dividing the work among several action items, either the OnAction event handler of the default action item or
the AfterDispatch event handler of the dispatcher should check whether all the work was done and set an appropriate
error code if it is not.

Accessing Client Request Information
When an HTTP request message is received by the Web server application, the headers of the client request are
loaded into the properties of an object descended from TWebRequest. For example, in NSAPI and ISAPI
applications, the request message is encapsulated by a TISAPIRequest object, and console CGI applications use
TCGIRequest objects.

The properties of the request object are read-only. You can use them to gather all of the information available in the
client request, including

Request header information
The content of the request message

Properties That Contain Request Header Information
Most properties in a request object contain information about the request that comes from the HTTP request header.
Not every request supplies a value for every one of these properties. Also, some requests may include header fields
that are not surfaced in a property of the request object, especially as the HTTP standard continues to evolve. To
obtain the value of a request header field that is not surfaced as one of the properties of the request object, use the
GetFieldByName method.

The request header properties can be categorized by function:

Properties that identify the target
Properties that describe the Web client
Properties that identify the purpose of the request
Properties that describe the expected response
Properties that describe the content

2103

Properties That Identify the Target
The full target of the request message is given by the URL property. Usually, this is a URL that can be broken down
into the protocol (HTTP), Host (server system), ScriptName (server application), PathInfo (location on the host), and
Query.

Each of these pieces is surfaced in its own property. The protocol is always HTTP, and the Host and ScriptName
identify the Web server application. The dispatcher uses the PathInfo portion when matching action items to request
messages. The Query is used by some requests to specify the details of the requested information. Its value is also
parsed for you as the QueryFields property.

Properties That Describe the Web Client
The request includes several properties that provide information about where the request originated. These include
everything from the e-mail address of the sender (the From property), to the URI where the message originated (the
Referer or RemoteHost property). If the request contains any content, and that content does not arise from the same
URI as the request, the source of the content is given by the DerivedFrom property. You can also determine the IP
address of the client (the RemoteAddr property), and the name and version of the application that sent the request
(the UserAgent property).

Properties That Identify the Purpose of the Request
The Method property is a string describing what the request message is asking the server application to do. The
HTTP 1.1 standard defines the following methods:

Predefined tag names
Value What the message requests

OPTIONS Information about available communication options.

GET Information identified by the URL property.

HEAD Header information from an equivalent GET message, without the content of the response.

POST The server application to post the data included in the Content property, as appropriate.

PUT The server application to replace the resource indicated by the URL property with the data included in the Content
property.

DELETE The server application to delete or hide the resource identified by the URL property.

TRACE The server application to send a loop-back to confirm receipt of the request.

The Method property may indicate any other method that the Web client requests of the server.

The Web server application does not need to provide a response for every possible value of Method. The HTTP
standard does require that it service both GET and HEAD requests, however.

The MethodType property indicates whether the value of Method is GET (mtGet), HEAD (mtHead), POST (mtPost),
PUT (mtPut) or some other string (mtAny). The dispatcher matches the value of the MethodType property with
the MethodType of each action item.

Properties That Describe the Expected Response
The Accept property indicates the media types the Web client will accept as the content of the response message.
The IfModifiedSince property specifies whether the client only wants information that has changed recently. The
Cookie property includes state information (usually added previously by your application) that can modify the
response.

2104

Properties That Describe the Content
Most requests do not include any content, as they are requests for information. However, some requests, such as
POST requests, provide content that the Web server application is expected to use. The media type of the content
is given in the ContentType property, and its length in the ContentLength property. If the content of the message
was encoded (for example, for data compression), this information is in the ContentEncoding property. The name
and version number of the application that produced the content is specified by the ContentVersion property. The
Title property may also provide information about the content.

The Content of HTTP Request Messages
In addition to the header fields, some request messages include a content portion that the Web server application
should process in some way. For example, a POST request might include information that should be added to a
database accessed by the Web server application.

The unprocessed value of the content is given by the Content property. If the content can be parsed into fields
separated by ampersands (&), a parsed version is available in the ContentFields property.

Creating HTTP Response Messages
When the Web server application creates a TWebRequest descended object for an incoming HTTP request
message, it also creates a corresponding object descended from TWebResponse to represent the response
message that will be sent in return. For example, in NSAPI and ISAPI applications, the response message is
encapsulated by a TISAPIResponse object, and Console CGI applications use TCGIResponse objects.

The action items that generate the response to a Web client request fill in the properties of the response object. In
some cases, this may be as simple as returning an error code or redirecting the request to another URI. In other
cases, this may involve complicated calculations that require the action item to fetch information from other sources
and assemble it into a finished form. Most request messages require some response, even if it is only the
acknowledgment that a requested action was carried out.

Responding to HTTP requests involves

Filling in the response header
Setting the response content
Sending the response

Filling in the Response Header
Most of the properties of the TWebResponse object represent the header information of the HTTP response
message that is sent back to the Web client. An action item sets these properties from its OnAction event handler.

Not every response message needs to specify a value for every one of the header properties. The properties that
should be set depend on the nature of the request and the status of the response.

Use the response object properties for

Indicating the response status
Indicating the need for client action
Describing the server application
Describing the content

2105

Indicating the Response Status
Every response message must include a status code that indicates the status of the response. You can specify the
status code by setting the StatusCode property. The HTTP standard defines a number of standard status codes with
predefined meanings. In addition, you can define your own status codes using any of the unused possible values.

Each status code is a three-digit number where the most significant digit indicates the class of the response, as
follows:

1xx: Informational (The request was received but has not been fully processed).
2xx: Success (The request was received, understood, and accepted).
3xx: Redirection (Further action by the client is needed to complete the request).
4xx: Client Error (The request cannot be understood or cannot be serviced).
5xx: Server Error (The request was valid but the server could not handle it).

Associated with each status code is a string that explains the meaning of the status code. This is given by the
ReasonString property. For predefined status codes, you do not need to set the ReasonString property. If you define
your own status codes, you should also set the ReasonString property.

Indicating the Need for Client Action
When the status code is in the 300-399 range, the client must perform further action before the Web server application
can complete its request. If you need to redirect the client to another URI, or indicate that a new URI was created
to handle the request, set the Location property. If the client must provide a password before you can proceed, set
the WWWAuthenticate property.

Describing the Server Application
Some of the response header properties describe the capabilities of the Web server application. The Allow property
indicates the methods to which the application can respond. The Server property gives the name and version number
of the application used to generate the response. The Cookies property can hold state information about the client's
use of the server application which is included in subsequent request messages.

Describing the Content
Several properties describe the content of the response. ContentType gives the media type of the response, and
ContentVersion is the version number for that media type. ContentLength gives the length of the response. If the
content is encoded (such as for data compression), indicate this with the ContentEncoding property. If the content
came from another URI, this should be indicated in the DerivedFrom property. If the value of the content is time-
sensitive, the LastModified property and the Expires property indicate whether the value is still valid. The Title
property can provide descriptive information about the content.

Setting the Response Content
For some requests, the response to the request message is entirely contained in the header properties of the
response. In most cases, however, action item assigns some content to the response message. This content may
be static information stored in a file, or information that was dynamically produced by the action item or its content
producer.

You can set the content of the response message by using either the Content property or the ContentStream
property.

2106

The Content property is a string. Delphi strings are not limited to text values, so the value of the Content property
can be a string of HTML commands, graphics content such as a bit-stream, or any other MIME content type.

Use the ContentStream property if the content for the response message can be read from a stream. For example,
if the response message should send the contents of a file, use a TFileStream object for the ContentStream property.
As with the Content property, ContentStream can provide a string of HTML commands or other MIME content type.
If you use the ContentStream property, do not free the stream yourself. The Web response object automatically frees
it for you.

Note: If the value of the ContentStream property is not nil, the Content property is ignored.

Sending the Response
If you are sure there is no more work to be done in response to a request message, you can send a response directly
from an OnAction event handler. The response object provides two methods for sending a response: SendResponse
and SendRedirect. Call SendResponse to send the response using the specified content and all the header
properties of the TWebResponse object. If you only need to redirect the Web client to another URI, the
SendRedirect method is more efficient.

If none of the event handlers send the response, the Web application object sends it after the dispatcher finishes.
However, if none of the action items indicate that they have handled the response, the application will close the
connection to the Web client without sending any response.

Generating the Content of Response Messages
Web Broker provides a number of objects to assist your action items in producing content for HTTP response
messages. You can use these objects to generate strings of HTML commands that are saved in a file or sent directly
back to the Web client. You can write your own content producers, deriving them from TCustomContentProducer or
one of its descendants.

TCustomContentProducer provides a generic interface for creating any MIME type as the content of an HTTP
response message. Its descendants include page producers and table producers:

Page producers scan HTML documents for special tags that they replace with customized HTML code. They
are described in Using page producer components.
Table producers create HTML commands based on the information in a dataset. They are described in Using
database information in responses.

Using Page Producer Components
Page producers (TPageProducer and its descendants) take an HTML template and convert it by replacing special
HTML-transparent tags with customized HTML code. You can store a set of standard response templates that are
filled in by page producers when you need to generate the response to an HTTP request message. You can chain
page producers together to iteratively build up an HTML document by successive refinement of the HTML-
transparent tags.

HTML Templates
An HTML template is a sequence of HTML commands and HTML-transparent tags. An HTML-transparent tag has
the form

2107

<#TagName Param1=Value1 Param2=Value2 ...>

The angle brackets (< and >) define the entire scope of the tag. A pound sign (#) immediately follows the opening
angle bracket (<) with no spaces separating it from the angle bracket. The pound sign identifies the string to the
page producer as an HTML-transparent tag. The tag name immediately follows the pound sign with no spaces
separating it from the pound sign. The tag name can be any valid identifier and identifies the type of conversion the
tag represents.

Following the tag name, the HTML-transparent tag can optionally include parameters that specify details of the
conversion to be performed. Each parameter is of the form ParamName=Value, where there is no space between
the parameter name, the equals symbol (=) and the value. The parameters are separated by whitespace.

The angle brackets (< and >) make the tag transparent to HTML browsers that do not recognize the #TagName
construct.

When working with HTML templates, you will

Optionally, Use predefined HTML-transparent tag Names
Specify the HTML template
Convert HTML-transparent tags

Using Predefined HTML-transparent Tag Names
While you can create your own HTML-transparent tags to represent any kind of information processed by your page
producer, there are several predefined tag names associated with values of the TTag data type. These predefined
tag names correspond to HTML commands that are likely to vary over response messages. They are listed in the
following table:

Tag Name TTag value What the tag should be converted to

Link tgLink A hypertext link. The result is an HTML sequence beginning with an <A> tag and ending with an </
A> tag.

Image tgImage A graphic image. The result is an HTML tag.

Table tgTable An HTML table. The result is an HTML sequence beginning with a <TABLE> tag and ending with
a </TABLE> tag.

ImageMap tgImageMap A graphic image with associated hot zones. The result is an HTML sequence beginning with a
<MAP> tag and ending with a </MAP> tag.

Object tgObject An embedded ActiveX object. The result is an HTML sequence beginning with an <OBJECT> tag
and ending with an </OBJECT> tag.

Embed tgEmbed A Netscape-compliant add-in DLL. The result is an HTML sequence beginning with an <EMBED>
tag and ending with an </EMBED> tag.

Any other tag name is associated with tgCustom. The page producer supplies no built-in processing of the predefined
tag names. They are simply provided to help applications organize the conversion process into many of the more
common tasks.

Note: The predefined tag names are case insensitive.

Specifying the HTML Template
Page producers provide you with many choices in how to specify the HTML template. You can set the HTMLFile
property to the name of a file that contains the HTML template. You can set the HTMLDoc property to a TStrings

2108

object that contains the HTML template. If you use either the HTMLFile property or the HTMLDoc property to specify
the template, you can generate the converted HTML commands by calling the Content method.

In addition, you can call the ContentFromString method to directly convert an HTML template that is a single string
which is passed in as a parameter. You can also call the ContentFromStream method to read the HTML template
from a stream. Thus, for example, you could store all your HTML templates in a memo field in a database, and use
the ContentFromStream method to obtain the converted HTML commands, reading the template directly from a
TBlobStream object.

Converting HTML-transparent Tags
The page producer converts the HTML template when you call one of its Content methods. When the Content method
encounters an HTML-transparent tag, it triggers the OnHTMLTag event. You must write an event handler to
determine the type of tag encountered, and to replace it with customized content. See Using page producers from
an action item for a simple example of converting HTML-transparent tags.

If you do not create an OnHTMLTag event handler for the page producer, HTML-transparent tags are replaced with
an empty string.

Using Page Producers from an Action Item
A typical use of a page producer component uses the HTMLFile property to specify a file containing an HTML
template. The OnAction event handler calls the Content method to convert the template into a final HTML sequence:

[Delphi]
procedure WebModule1.MyActionEventHandler(Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 PageProducer1.HTMLFile := 'Greeting.html';
 Response.Content := PageProducer1.Content;
end;

[C++]
void __fastcall WebModule1::MyActionEventHandler(TObject *Sender,
 TWebRequest *Request, TWebResponse *Response, bool &Handled)
{
 PageProducer1->HTMLFile = "Greeting.html";
 Response->Content = PageProducer1->Content();
}

Greeting.html is a file that contains this HTML template:

<HTML>
<HEAD><TITLE>Our Brand New Web Site</TITLE></HEAD>
<BODY>
Hello <#UserName>! Welcome to our Web site.
</BODY>
</HTML>

The OnHTMLTag event handler replaces the custom tag (<#UserName>) in the HTML during execution:

[Delphi]
procedure WebModule1.PageProducer1HTMLTag(Sender : TObject;Tag: TTag;
 const TagString: string; TagParams: TStrings; var ReplaceText: string);
begin

2109

 if CompareText(TagString,'UserName') = 0 then
 ReplaceText := TPageProducer(Sender).Dispatcher.Request.Content;
end;

[C++]
void __fastcall WebModule1::HTMLTagHandler(TObject *Sender, TTag Tag,
 const AnsiString TagString, TStrings *TagParams, AnsiString &ReplaceText)
{
 if (CompareText(TagString,"UserName") == 0)
 ReplaceText = ((TPageProducer *)Sender)->Dispatcher->Request->Content;
}

If the content of the request message was the string Mr. Ed, the value of Response.Content would be

<HTML>
<HEAD><TITLE>Our Brand New Web Site</TITLE></HEAD>
<BODY>
Hello Mr. Ed! Welcome to our Web site.
</BODY>
</HTML>

Note: This example uses an OnAction event handler to call the content producer and assign the content of the
response message. You do not need to write an OnAction event handler if you assign the page producer's
HTMLFile property at design time. In that case, you can simply assign PageProducer1 as the value of the
action item's Producer property to accomplish the same effect as the OnAction event handler above.

Chaining Page Producers Together
The replacement text from an OnHTMLTag event handler need not be the final HTML sequence you want to use in
the HTTP response message. You may want to use several page producers, where the output from one page
producer is the input for the next.

The simplest way is to chain the page producers together is to associate each page producer with a separate action
item, where all action items have the same PathInfo and MethodType. The first action item sets the content of the
Web response message from its content producer, but its OnAction event handler makes sure the message is not
considered handled. The next action item uses the ContentFromString method of its associated producer to
manipulate the content of the Web response message, and so on. Action items after the first one use an OnAction
event handler such as the following:

[Delphi]
procedure WebModule1.Action2Action(Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 Response.Content := PageProducer2.ContentFromString(Response.Content);
end;

[C++]
void __fastcall WebModule1::Action2Action(TObject *Sender,
 TWebRequest *Request, TWebResponse *Response, bool &Handled)
{
 Response->Content = PageProducer2->ContentFromString(Response->Content);
}

For example, consider an application that returns calendar pages in response to request messages that specify the
month and year of the desired page. Each calendar page contains a picture, followed by the name and year of the

2110

month between small images of the previous month and next months, followed by the actual calendar. The resulting
image looks something like this:

The general form of the calendar is stored in a template file. It looks like this:

<HTML>
<Head></HEAD>
<BODY>
<#MonthlyImage> <#TitleLine><#MainBody>
</BODY>
</HTML>

The OnHTMLTag event handler of the first page producer looks up the month and year from the request message.
Using that information and the template file, it does the following:

Replaces <#MonthlyImage> with <#Image Month=January Year=2000>.
Replaces <#TitleLine> with <#Calendar Month=December Year=1999 Size=Small> January 2000 <#Calendar
Month=February Year=2000 Size=Small>.
Replaces <#MainBody> with <#Calendar Month=January Year=2000 Size=Large>.

The OnHTMLTag event handler of the next page producer uses the content produced by the first page producer,
and replaces the <#Image Month=January Year=2000> tag with the appropriate HTML tag. Yet another page
producer resolves the #Calendar tags with appropriate HTML tables.

Using Database Information in Responses
The response to an HTTP request message may include information taken from a database. Specialized content
producers on the Internet palette page can generate the HTML to represent the records from a database in an HTML
table.

To return database information in an HTTP response, you would typically

Add a session to the Web module
Represent the database information in HTML

2111

As an alternate approach, special components on the InternetExpress category of the Tool palette let you build
Web servers that are part of a multi-tiered database application. See Building Web applications using
InternetExpress for details.

Adding a Session to the Web Module
Console CGI applications are launched in response to HTTP request messages. When working with databases in
these types of applications, you can use the default session to manage your database connections, because each
request message has its own instance of the application. Each instance of the application has its own distinct, default
session.

When writing an ISAPI application or an NSAPI application, however, each request message is handled in a separate
thread of a single application instance. To prevent the database connections from different threads from interfering
with each other, you must give each thread its own session.

Each request message in an ISAPI or NSAPI application spawns a new thread. The Web module for that thread is
generated dynamically at runtime. Add a TSession object to the Web module to handle the database connections
for the thread that contains the Web module.

Separate instances of the Web module are generated for each thread at runtime. Each of those modules contains
the session object. Each of those sessions must have a separate name, so that the threads that handle separate
request messages do not interfere with each other's database connections. To cause the session objects in each
module to dynamically generate unique names for themselves, set the AutoSessionNameproperty of the session
object. Each session object will dynamically generate a unique name for itself and set the SessionName property
of all datasets in the module to refer to that unique name. This allows all interaction with the database for each
request thread to proceed without interfering with any of the other request messages. For more information on
sessions, see Managing database sessions.

Representing a Dataset in HTML
Specialized Content producer components on the Internet palette page supply HTML commands based on the
records of a dataset. There are two types of data-aware content producers:

The dataset page producer, which formats the fields of a dataset into the text of an HTML document.
Table producers, which format the records of a dataset as an HTML table.

Using Dataset Page Producers
Dataset page producers work like other page producer components: they convert a template that includes HTML-
transparent tags into a final HTML representation. They include the special ability, however, of converting tags that
have a tag name which matches the name of a field in a dataset into the current value of that field. For more
information about using page producers in general, see Using page producer components.

To use a dataset page producer, add a TDataSetPageProducer component to your Web module and set its DataSet
property to the dataset whose field values should be displayed in the HTML content. Create an HTML template that
describes the output of your dataset page producer. For every field value you want to display, include a tag of the form

<#FieldName>

in the HTML template, where FieldName specifies the name of the field in the dataset whose value should be
displayed.

When your application calls the Content, ContentFromString, or ContentFromStream method, the dataset page
producer substitutes the current field values for the tags that represent fields.

2112

Using Table Producers
The Internet palette page includes two components that create an HTML table to represent the records of a dataset:

Dataset table producers, which format the fields of a dataset into the text of an HTML document.
Query table producers, which runs a query after setting parameters supplied by the request message and
formats the resulting dataset as an HTML table.

Using either of the two table producers, you can customize the appearance of a resulting HTML table by specifying
properties for the table's color, border, separator thickness, and so on. To set the properties of a table producer at
design time, double-click the table producer component to display the Response Editor dialog.

Specifying the table attributes
Specifying the row attributes
Specifying the columns
Embedding tables in HTML documents

Specifying the Table Attributes
Table producers use the THTMLTableAttributes object to describe the visual appearance of the HTML table that
displays the records from the dataset. The THTMLTableAttributes object includes properties for the table's width
and spacing within the HTML document, and for its background color, border thickness, cell padding, and cell
spacing. These properties are all turned into options on the HTML <TABLE> tag created by the table producer.

At design time, specify these properties using the Object Inspector. Select the table producer object in the Object
Inspector and expand the TableAttributes property to access the display properties of the THTMLTableAttributes
object.

You can also specify these properties programmatically at runtime.

Specifying the Row Attributes
Similar to the table attributes, you can specify the alignment and background color of cells in the rows of the table
that display data. The RowAttributes property is a THTMLTableRowAttributes object.

At design time, specify these properties using the Object Inspector by expanding the RowAttributes property. You
can also specify these properties programmatically at runtime.

You can also adjust the number of rows shown in the HTML table by setting the MaxRows property.

Specifying the Columns
If you know the dataset for the table at design time, you can use the Columns editor to customize the columns' field
bindings and display attributes. Select the table producer component, and right-click. From the context menu, choose
the Columns editor. This lets you add, delete, or rearrange the columns in the table. You can set the field bindings
and display properties of individual columns in the Object Inspector after selecting them in the Columns editor.

If you are getting the name of the dataset from the HTTP request message, you can't bind the fields in the Columns
editor at design time. However, you can still customize the columns programmatically at runtime, by setting up the
appropriate THTMLTableColumn objects and using the methods of the Columns property to add them to the table.
If you do not set up the Columns property, the table producer creates a default set of columns that match the fields
of the dataset and specify no special display characteristics.

2113

Embedding Tables in HTML Documents
You can embed the HTML table that represents your dataset in a larger document by using the Header and Footer
properties of the table producer. Use Header to specify everything that comes before the table, and Footer to specify
everything that comes after the table.

You may want to use another content producer (such as a page producer) to create the values for the Header
and Footer properties.

If you embed your table in a larger document, you may want to add a caption to the table. Use the Caption and
CaptionAlignment properties to give your table a caption.

Using TDataSetTableProducer
TDataSetTableProducer is a table producer that creates an HTML table for a dataset. Set the DataSet property
of TDataSetTableProducer to specify the dataset that contains the records you want to display. You do not set
the DataSource property, as you would for most data-aware objects in a conventional database application. This is
because TDataSetTableProducer generates its own data source internally.

You can set the value of DataSet at design time if your Web application always displays records from the same
dataset. You must set the DataSet property at runtime if you are basing the dataset on the information in the HTTP
request message.

Using TQueryTableProducer
You can produce an HTML table to display the results of a query, where the parameters of the query come from the
HTTP request message. Specify the TQuery object that uses those parameters as the Query property of a
TQueryTableProducer component.

If the request message is a GET request, the parameters of the query come from the Query fields of the URL that
was given as the target of the HTTP request message. If the request message is a POST request, the parameters
of the query come from the content of the request message.

When you call the Content method of TQueryTableProducer, it runs the query, using the parameters it finds in the
request object. It then formats an HTML table to display the records in the resulting dataset.

As with any table producer, you can customize the display properties or column bindings of the HTML table, or
embed the table in a larger HTML document.

2114

Using WebSnap

Creating Web Server Applications Using WebSnap
WebSnap augments Web Broker with additional components, wizards, and views—making it easier to build Web
server applications that deliver complex, data-driven Web pages. WebSnap's support for multiple modules and for
server-side scripting makes development and maintenance easier for teams of developers and Web designers.

WebSnap allows HTML design experts on your team to make a more effective contribution to Web server
development and maintenance. The final product of the WebSnap development process includes a series of
scriptable HTML page templates. These pages can be changed using HTML editors that support embedded script
tags, like Microsoft FrontPage, or even a simple text editor. Changes can be made to the templates as needed, even
after the application is deployed. There is no need to modify the project source code at all, which saves valuable
development time. Also, WebSnap's multiple module support can be used to partition your application into smaller
pieces during the coding phases of your project. Developers can work more independently.

The dispatcher components automatically handle requests for page content, HTML form submissions, and requests
for dynamic images. WebSnap components called adapters provide a means to define a scriptable interface to the
business rules of your application. For example, the TDataSetAdapter object is used to make dataset components
scriptable. You can use WebSnap producer components to quickly build complex, data-driven forms and tables, or
to use XSL to generate a page. You can use the session component to keep track of end users. You can use the
user list component to provide access to user names, passwords, and access rights.

The Web application wizard allows you to quickly build an application that is customized with the components that
you will need. The Web page module wizard allows you to create a module that defines a new page in your
application. Or use the Web data module wizard to create a container for components that are shared across your
Web application.

When the Web Page module uses TAdapterPageProducer the page module views become available when this
component is double-clicked . The page module views show the result of server-side scripting without running the
application. You can view the generated HTML in text form using the HTML Result tab. The HTML Script tab shows
the page with server-side scripting, which is used to generate HTML for the page.

The following topics explain how to use the WebSnap components to create a Web server application:

Fundamental WebSnap components
Creating Web Server Applications
Server-side scripting in WebSnap
Dispatching requests

2115

Fundamental WebSnap Components
Before you can build Web server applications using WebSnap, you must first understand the fundamental
components used in WebSnap development. They fall into three categories:

Web modules, which contain the components that make up the application and define pages
Adapters, which provide an interface between HTML pages and the Web server application itself
Page producers, which contain the routines that create the HTML pages to be served to the end user

The following sections examine each type of component in more detail.

Web Modules
Web modules are the basic building block of WebSnap applications. Every WebSnap server application must have
at least one Web module. More can be added as needed. There are four Web module types:

Web application page modules (TWebAppPageModule objects)
Web application data modules (TWebAppDataModule objects)
Web page modules (TWebPageModule objects)
Web data modules (TWebDataModule objects)

Web page modules and Web application page modules provide content for Web pages. Web data modules and
Web application data modules act as containers for components shared across your application; they serve the
same purpose in WebSnap applications that ordinary data modules serve in regular applications. You can include
any number of Web page or data modules in your server application.

You may be wondering how many Web modules your application needs. Every WebSnap application needs one
(and only one) Web application module of some type. Beyond that, you can add as many Web page or data modules
as you need.

For Web page modules, a good rule of thumb is one per page style. If you intend to implement a page that can use
the format of an existing page, you may not need a new Web page module. Modifications to an existing page module
may suffice. If the page is very different from your existing modules, you will probably want to create a new module.
For example, let's say you are trying to build a server to handle online catalog sales. Pages which describe available
products might all share the same Web page module, since the pages can all contain the same basic information
types using the same layout. An order form, however, would probably require a different Web page module, since
the format and function of an order form is different from that of an item description page.

The rules are different for Web data modules. Components that can be shared by many different Web modules
should be placed in a Web data module to simplify shared access. You will also want to place components that can
be used by many different Web applications in their own Web data module. That way you can easily share those
items among applications. Of course, if neither of these circumstances applies you might choose not to use Web
data modules at all. Use them the same way you would use regular data modules, and let your own judgment and
experience be your guide.

The following topics describe Web modules in greater detail:

Web application module types
Web page modules
Web data modules

2116

Web Application Module Types
Web application modules provide centralized control for business rules and non-visual components in the Web
application. The two types of Web application modules are tabulated below.

Web application module types
Web application module type Description

Page Creates a content page. The page module contains a page producer which is responsible for
generating the content of a page. The page producer displays its associated page when the
HTTP request pathinfo matches the page name. The page can act as the default page when
the pathinfo is blank.

Data Used as a container for components shared by other modules, such as database components
used by multiple Web page modules.

Web application modules act as containers for components that perform functions for the application as a whole—
such as dispatching requests, managing sessions, and maintaining user lists. If you are already familiar with the
Web Broker architecture, you can think of Web application modules as being similar to TWebApplication objects.
Web application modules also contain the functionality of a regular Web module, either page or data, depending on
the Web application module type. Your project can contain only one Web application module. You will never need
more than one anyway; you can add regular Web modules to your server to provide whatever extra features you want.

Use the Web application module to contain the most basic features of your server application. If your server will
maintain a home page of some sort, you may want to make your Web application module a
TWebAppPageModule instead of a TWebAppDataModule, so you don't have to create an extra Web page module
for that page.

Web Page Modules
Each Web page module has a page producer associated with it. When a request is received, the page dispatcher
analyzes the request and calls the appropriate page module to process the request and return the content of the
page.

Like Web data modules, Web page modules are containers for components. A Web page module is more than a
mere container, however. A Web page module is used specifically to produce a Web page.

Page producer component
Web page modules have a property that identifies the page producer component responsible for generating content
for the page. The WebSnap page module wizard automatically adds a producer when creating a Web page module.
You can change the page producer component later by dropping in a different producer from the WebSnap category .
However, if the page module has a template file, be sure that the content of this file is compatible with the replacement
producer component.

Page name
Web page modules have a page name that can be used to reference the page in an HTTP request or within the
application's logic. A factory in the Web page module's unit specifies the page name for the Web page module.

Producer template
Most page producers use a template. HTML templates typically contain some static HTML mixed in with transparent
tags or server-side scripting. When page producers create their content, they replace the transparent tags with
appropriate values and execute the server-side script to produce the HTML that is displayed by a client browser.

2117

(The XSLPageProducer is an exception to this. It uses XSL templates, which contain XSL rather than HTML. The
XSL templates do not support transparent tags or server-side script.)

Web page modules may have an associated template file that is managed as part of the unit. A managed template
file appears in the Project Manager and has the same base file name and location as the unit service file. If the
Web page module does not have an associated template file, the properties of the page producer component specify
the template.

Web Data Modules
Like standard data modules, Web data modules are a container for components from the palette. Data modules
provide a design surface for adding, removing, and selecting components. The Web data module differs from a
standard data module in the structure of the unit and the interfaces that the Web data module implements.

Use the Web data module as a container for components that are shared across your application. For example, you
can put a dataset component in a data module and access the dataset from both:

a page module that displays a grid, and
a page module that displays an input form.

You can also use Web data modules to contain sets of components that can be used by several different Web server
applications.

Structure of a Web data module unit
Standard data modules have a variable called a form variable, which is used to access the data module object. Web
data modules replace the variable with a function, which is defined in a Web data module's unit and has the same
name as the Web data module. The function's purpose is the same as that of the variable it replaces. WebSnap
applications may be multi-threaded and may have multiple instances of a particular module to service multiple
requests concurrently. Therefore, the function is used to return the correct instance.

The Web data module unit also registers a factory to specify how the module should be managed by the WebSnap
application. For example, flags indicate whether to cache the module and reuse it for other requests or to destroy
the module after a request has been serviced.

Adapters
Adapters define a script interface to your server application. They allow you to insert scripting languages into a page
and retrieve information by making calls from your script code to the adapters. For example, you can use an adapter
to define data fields to be displayed on an HTML page. A scripted HTML page can then contain HTML content and
script statements that retrieve the values of those data fields. This is similar to the transparent tags used in Web
Broker applications. Adapters also support actions that execute commands. For example, clicking on a hyperlink or
submitting an HTML form can initiate adapter actions.

Adapters simplify the task of creating HTML pages dynamically. By using adapters in your application, you can
include object-oriented script that supports conditional logic and looping. Without adapters and server-side scripting,
you must write more of your HTML generation logic in event handlers. Using adapters can significantly reduce
development time.

See Server-side scripting in WebSnap for more details about scripting.

Four types of adapter components can be used to create page content: fields, actions, errors and records.

Fields
Fields are components that the page producer uses to retrieve data from your application and to display the content
on a Web page. Fields can also be used to retrieve an image. In this case, the field returns the address of the image

2118

written to the Web page. When a page displays its content, a request is sent to the Web server application, which
invokes the adapter dispatcher to retrieve the actual image from the field component.

Actions
Actions are components that execute commands on behalf of the adapter. When a page producer generates its
page, the scripting language calls adapter action components to return the name of the action along with any
parameters necessary to execute the command. For example, consider clicking a button on an HTML form to delete
a row from a table. This returns, in the HTTP request, the action name associated with the button and a parameter
indicating the row number. The adapter dispatcher locates the named action component and passes the row number
as a parameter to the action.

Errors
Adapters keep a list of errors that occur while executing an action. Page producers can access this list of errors and
display them in the Web page that the application returns to the end user.

Records
Some adapter components, such as TDataSetAdapter, represent multiple records. The adapter provides a scripting
interface which allows iteration through the records. Some adapters support paging and iterate only through the
records on the current page.

Page Producers
Page producers to generate content on behalf of a Web page module. Page producers provide the following
functionality:

They generate HTML content.
They can reference an external file using the HTMLFile property, or the internal string using the HTMLDoc
property.
When the producers are used with a Web page module, the template can be a file associated with a unit.
Producers dynamically generate HTML that can be inserted into the template using transparent tags or active
scripting. Transparent tags can be used in the same way as WebBroker applications. To learn more about using
transparent tags, see Converting HTML-transparent tags. Active scripting support allows you to embed JScript
or VBScript inside the HTML page.

The standard WebSnap method for using page producers is as follows. When you create a Web page module, you
must choose a page producer type in the Web Page Module wizard. You have many choices, but most WebSnap
developers prototype their pages by using an adapter page producer, TAdapterPageProducer. The adapter page
producer lets you build a prototype Web page using a process analogous to the standard component model. You
add a type of form, an adapter form, to the adapter page producer. As you need them, you can add adapter
components (such as adapter grids) to the adapter form. Using adapter page producers, you can create Web pages
in a way that is similar to the standard technique for building user interfaces.

There are some circumstances where switching from an adapter page producer to a regular page producer is more
appropriate. For example, part of the function of an adapter page producer is to dynamically generate script in a
page template at runtime. You may decide that static script would help optimize your server. Also, users who are
experienced with script may want to make changes to the script directly. In this case, a regular page producer must
be used to avoid conflicts between dynamic and static script. To learn how to change to a regular page producer,
see the Advanced HTML design topic.

2119

You can also use page producers the same way you would use them in Web Broker applications, by associating
the producer with a Web dispatcher action item. The advantages of using the Web page module are

the ability to preview the page's layout without running the application, and
the ability to associate a page name with the module, so that the page dispatcher can call the page producer
automatically.

Creating Web Server Applications with WebSnap
If you look at the source code for WebSnap, you will discover that WebSnap comprises hundreds of objects. In fact,
WebSnap is so rich in objects and features that you could spend a long time studying its architecture in detail before
understanding it completely. Fortunately, you really don't need to understand the whole WebSnap system before
you start developing your server application.

Here you will learn more about how WebSnap works by creating a new Web server application.

To create a new Web server application using the WebSnap architecture:
1 Choose File New Other, and select the WebSnap folder from Delphi Projects.
2 In the right pane of the New Items window choose WebSnap Application.

A dialog box appears (as shown below)

3 Specify the correct server type.
4 Use the components button to specify application module components.
5 Use the Page Options button to select application module options.

2120

For further information about adding application module components, see Specifying Application Module
Components.

Selecting a Server Type
Select one of the following types of Web server application, depending on your application's type of Web server.

Web server application types
Server type Description

ISAPI and NSAPI Sets up your project as a DLL with the exported methods expected by the Web server.

Apache Sets up your project as a DLL with the exported methods expected by the appropriate Apache
Web server. Both Apache 1 and 2 are supported.

CGI stand-alone Sets up your project as a console application which conforms to the Common Gateway
Interface (CGI) standard.

2121

Web App Debugger executable Creates an environment for developing and testing Web server applications. This type of
application is not intended for deployment.

Specifying Application Module Components
Application components provide the Web application's functionality. For example, including an adapter dispatcher
component automatically handles HTML form submissions and the return of dynamically generated images.
Including a page dispatcher automatically displays the content of a page when the HTTP request pathinfo contains
the name of the page.

For information on creating web server applications, see Creating Web Server Applications with WebSnap.

Selecting the Components button on the new WebSnap application dialog displays another dialog that allows you
to select one or more of the Web application module components. The dialog, which is called the Web App
Components dialog, is shown below.

The following table contains a brief explanation of the available components:

Web application components
Component type Description

Application Adapter Contains information about the application, such as the title. The default type is TApplicationAdapter.

2122

End User Adapter Contains information about the user, such as their name, access rights, and whether they are logged in.
The default type is TEndUserAdapter. TEndUserSessionAdapter may also be selected.

Page Dispatcher Examines the HTTP request's pathinfo and calls the appropriate page module to return the content of a
page. The default type is TPageDispatcher.

Adapter Dispatcher Automatically handles HTML form submissions and requests for dynamic images by calling adapter
action and field components. The default type is TAdapterDispatcher.

Dispatch Actions Allows you to define a collection of action items to handle requests based on pathinfo and method type.
Action items call user-defined events or request the content of page-producer components. The default
type is TWebDispatcher.

Locate File Service Provides control over the loading of template files, and script include files, when the Web application is
running. The default type is TLocateFileService.

Sessions Service Stores information about end users that is needed for a short period of time. For example, you can use
sessions to keep track of logged-in users and to automatically log a user out after a period of inactivity.
The default type is TSessionsService.

User List Service Keeps track of authorized users, their passwords, and their access rights. The default type is
TWebUserList.

For each of the above components, the component types listed are the default types shipped with the IDE. Users
can create their own component types or use third-party component types.

For information about modifying application module components, see Selecting Web Application Module Options.

Selecting Web Application Module Options
If the selected application module type is a page module, you can associate a name with the page by entering a
name in the Page Name field in the New WebSnap Application dialog box. At runtime, the instance of this module
can be either kept in cache or removed from memory when the request has been serviced. Select either of the
options from the Caching field. You can select more page module options by choosing the Page Options button.

For information on adding application module components, see Specifying Application Module Components.

The Application Module Page Options dialog is displayed and provides the following categories:

Note: The AdapterPageProducer supports only JScript.

Producer: The producer type for the page can be set to one of AdapterPageProducer, DataSetPageProducer,
InetXPageProducer, PageProducer, or XSLPageProducer. If the selected page producer supports scripting,
then use the Script Engine drop-down list to select the language used to script the page.
HTML: When the selected producer uses an HTML template this group will be visible.
XSL: When the selected producer uses an XSL template, such as TXSLPageProducer, this group will be visible.
New File: Check New File if you want a template file to be created and managed as part of the unit. A managed
template file appears in the Project Manager and has the same file name and location as the unit source file.
Uncheck New File if you want to use the properties of the producer component (typically the HTMLDoc or
HTMLFile property).
Template: When New File is checked, choose the default content for the template file from the Template drop-
down. The standard template displays the title of the application, the title of the page, and hyperlinks to published
pages. The blank template creates a blank page.
Page: Enter a page name and title for the page module. The page name is used to reference the page in an
HTTP request or within the application's logic, whereas the title is the name that the end user will see when the
page is displayed in a browser.
Published: Check Published to allow the page to automatically respond to HTTP requests where the page name
matches the pathinfo in the request message.

2123

Login Required: Check Login Required to require the user to log on before the page can be accessed.

Advanced HTML Design
Using adapters and adapter page producers, WebSnap makes it easy to create scripted HTML pages in your Web
server application. You can create a Web front end for your application data using WebSnap tools that may suit all
of your needs. One powerful feature of WebSnap, however, is the ability to incorporate Web design expertise from
other sources into your application. This section discusses some strategies for expanding the Web server design
and maintenance process to include other tools and non-programmer team members.

The end products of WebSnap development are your server application and HTML templates for the pages that the
server produces. The templates include a mixture of scripting and HTML. Once they have been generated initially,
they can be edited at any time using any HTML tool you like. (It would be best to use a tool that supports embedded
script tags, like Microsoft FrontPage, to ensure that the editor doesn't accidentally damage the script.) The ability to
edit template pages outside of the IDE can be used many ways.

After the product has been deployed, you may wish to change the look of the final HTML pages. Perhaps your
software development team is not even responsible for the final page layout. That duty may belong to a dedicated
Web page designer in your organization, for example. Your page designers may not have any experience with
software development. Fortunately, they don't have to. They can edit the page templates at any point in the product
development and maintenance cycle, without ever changing the source code. Thus, WebSnap HTML templates can
make server development and maintenance more efficient.

Manipulating server-side script in HTML files
HTML in page templates can be modified at any time in the development cycle. Server-side scripting can be a
different matter, however. It is always possible to manipulate the server-side script in the templates outside of the
IDE, but it is not recommended for pages generated by an adapter page producer. The adapter page producer is
different from ordinary page producers in that it can change the server-side scripting in the page templates at runtime.
It can be difficult to predict how your script will act if other script is added dynamically. If you want to manipulate
script directly, make sure that your Web page module contains a page producer instead of an adapter page producer.

If you have a Web page module that uses an adapter page producer, you can convert it to use a regular page
producer instead by using the following steps.

To modify a Web page module to use a regular page producer
1 You can access the page module view with server-side scripting using the HTML Script tab. In the module you

want to convert (let's call it ModuleName), copy all of the information from the HTML Script tab to the
ModuleName.html tab, replacing all of the information that it contained previously.

Note: When the Web Page module uses TAdapterPageProducer the page module views become
available when this component is double-clicked .

2 Drop a page producer (located on the Internet category of the Tool Palette) onto your Web page module.
3 Set the page producer's ScriptEngine property to match that of the adapter page producer it replaces.
4 Change the page producer in the Web page module from the adapter page producer to the new page producer.
5 The adapter page producer has now been bypassed. You may now delete it from the Web page module.

2124

Login Support
Many Web server applications require login support. For example, a server application may require a user to login
before granting access to some parts of a Web site. Pages may have a different appearance for different users;
logins may be necessary to enable the Web server to send the right pages. Also, because servers have physical
limitations on memory and processor cycles, server applications sometimes need the ability to limit the number of
users at any given time.

With WebSnap, incorporating login support into your Web server application is fairly simple and straightforward. You
can add login support, either by designing it in from the beginning of your development process or by retrofitting it
onto an existing application.

For additional information on adding login support, refer to Adding Login Support.

Adding Login Support
In order to implement login support, you need to make sure your Web application module has the following
components:

A user list service (an object of type TWebUserList), which contains the usernames, passwords and permissions
for server users
A sessions service (TSessionsService), which stores information about users currently logged in to the server
An end user adapter (TEndUserSessionAdapter) which handles actions associated with logging in

When you first create your Web server application, you can add these components using the New WebSnap
Application dialog box. Click the Components button on that dialog to display the New Web App Components dialog
box. Check the End User Adapter, Sessions Service and Web User List boxes. Select TEndUserSessionAdapter
on the drop down menu next to the End User Adapter box to select the end user adapter type. (The default choice,
TEndUserSessionAdapter, is not appropriate for login support because it cannot track the current user.) When you're
finished, your dialog should look like the one shown below. Click OK twice to dismiss the dialog boxes. Your Web
application module now has the necessary components for login support.

2125

If you are adding login support to an existing Web application module, you can drag these components directly into
your module from the WebSnap category of the Tool Palette. The Web application module will configure itself
automatically.

The sessions service and the end user adapter may not require your attention during your design phase, but the
Web user list probably will. You can add default users and set their read/modify permissions through the WebUserList
component editor. Double-click on the component to display an editor which lets you set usernames, passwords and
access rights. For more information on how to set up access rights, see the topic "User access rights".

For information on login support, see Login Support.

Using the Sessions Service
The sessions service, which is an object of type TSessionsService, keeps track of the users who are logged into
your Web server application. The sessions service is responsible for assigning a different session for each user and
for associating name/value pairs (such as a username) with a user.

Information contained in a sessions service is stored in the application's memory. Therefore, the Web server
application must keep running between requests for the sessions service to work. Some server application types,
such as CGI, terminate between requests.

Note: If you want your application to support logins, be sure to use a server type that does not terminate between
requests. If your project produces a Web App debugger executable, you must have the application running

2126

in the background before it receives a page request. Otherwise it will terminate after each page request, and
users will never be able to get past the login page.

There are two important properties in the sessions service which you can use to change default server behavior.
The MaxSessions property specifies how many users can be logged into the system at any given time. The default
value for MaxSessions is -1, which places no software limitation on the number of allowed users. Of course, your
server hardware can still run short of memory or processor cycles for new users, which can adversely affect system
performance. If you are concerned that excessive numbers of users might overwhelm your server, be sure to set
MaxSessions to an appropriate value.

The DefaultTimeout property specifies the defaut time-out period in minutes. After DefaultTimeout minutes have
passed without any user activity, the session is automatically terminated. If the user had logged in, all login
information is lost.. The default value is 20. You can override the default value in any given session by changing its
TimeoutMinutes property.

Login Pages
Of course, your Websnap application also needs a login page. Users enter their username and password for
authentication, either while trying to access a restricted page or prior to such an attempt. The user can also specify
which page they receive when authentication is completed. If the username and password match a user in the Web
user list, the user acquires the appropriate access rights and is forwarded to the page specified on the login page.
If the user isn't authenticated, the login page may be redisplayed (the default action) or some other action may occur.

Fortunately, WebSnap makes it easy to create a simple login page using a Web page module and the adapter page
producer. To create a login page, start by creating a new Web page module. Choose File New Other, and
select WebSnap from the Delphi Projects folder. In the right pane of the New Items window select the WebSnap
Page Module. Select AdapterPageProducer as the page producer type. Fill in the other options however you like.
Login tends to be a good name for the login page.

Now you should add the most basic login page fields: a username field, a password field, a selection box for selecting
which page the user receives after logging in, and a Login button which submits the page and authenticates the user.

To add these fields:
1 Add a TLoginFormAdapter component (which you can find on the WebSnap category of the Tool Palette) to the

Web page module you just created.
2 Double-click the AdapterPageProducer component to display a Web page editor window.
3 Right-click the AdapterPageProducer in the top left pane and select New Component. In the Add Web Component

dialog box, select AdapterForm and click OK.
4 Add an AdapterFieldGroup to the AdapterForm. (Right-click the AdapterForm in the top left pane and select New

Component. In the Add Web Component dialog box, select AdapterFieldGroup and click OK.)
5 Now go to the Object Inspector and set the Adapter property of your AdapterFieldGroup to your

LoginFormAdapter. The UserName, Password and NextPage fields should appear automatically in the Browser
tab of the Web page editor (accessed by double clicking the AdapterPageProducer) .

So, WebSnap takes care of most of the work in a few simple steps. The login page is still missing a Login button,
which submits the information on the form for authentication.

To add a Login button:
1 Add an AdapterCommandGroup to the AdapterForm.
2 Add an AdapterActionButton to the AdapterCommandGroup. Change its DisplayComponent to

AdapterFieldGroup using the Object Inspector.

2127

3 Click on the AdapterActionButton (listed in the upper right pane of the Web page editor) and change its
ActionName property to Login using the Object Inspector. You can see a preview of your login page in the Web
page editor's Browser tab.

Your Web page editor should look similar to the one shown below.

If the button doesn't appear below the AdapterFieldGroup, make sure that the AdapterCommandGroup is listed
below the AdapterFieldGroup on the Web page editor. If it appears above, select the AdapterCommandGroup and
click the down arrow on the Web page editor. (In general, Web page elements appear vertically in the same order
as they appear in the Web page editor.)

There is one more step necessary before your login page becomes functional. You need to specify which of your
pages is the login page in your end user session adapter. To do so, select the EndUserSessionAdapter component
in your Web application module. In the Object Inspector, change the LoginPage property to the name of your login
page. Your login page is now enabled for all the pages in your Web server application.

2128

Setting Pages to Require Logins
Once you have a working login page, you must require logins for those pages which need controlled access. The
easiest way to have a page require logins is to design that requirement into the page. When you first create a Web
page module, check the Login Required box in the Page section of the New WebSnap Page Module dialog box.

If you create a page without requiring logins, you can change your mind later.

To require logins after a Web page module has been created:
1 Open the source code file associated with the Web page module in the editor.
2 Scroll down to the implementation section. In the parameters for the

WebRequestHandler.AddWebModuleFactory command, find the creator of the TWebPageInfo object. It should
look like this:

[Delphi]
TWebPageInfo.Create([wpPublished {, wpLoginRequired}], '.html')

3 Uncomment the wpLoginRequired portion of the parameter list by removing the curly braces. The TWebPageInfo
creator should now look like this:

[Delphi]
TWebPageInfo.Create([wpPublished , wpLoginRequired], '.html')

[C++]
static TWebPageInit WebInit(__classid(TAdapterPageProducerPage3), crOnDemand, caCache,
PageAccess << wpPublished << wpLoginRequired, ".html", "", "", "", "");

To remove the login requirement from a page, reverse the process and recomment the wpLoginRequired portion of
the creator.

Note: You can use the same process to make the page published or not. Simply add or remove comment marks
around the wpPublished portion as needed.

User Access Rights
User access rights are an important part of any Web server application. You need to be able to control who can view
and modify the information your server provides. For example, let's say you are building a server application to
handle online retail sales. It makes sense to allow users to view items in your catalog, but you don't want them to
be able to change your prices! Clearly, access rights are an important issue.

Fortunately, WebSnap offers you several ways to control access to pages and server content. In previous topics,
you saw how you can control page access by requiring logins. You have other options as well. For example:

You can show data fields in an edit box to users with appropriate modify access rights; other users will see the
field contents, but not have the ability to edit them.
You can hide specific fields from users who don't have the correct view access rights.
You can prevent unauthorized users from receiving specific pages.

Descriptions for implementing these behaviors are included in this topic.

2129

Dynamically displaying fields as edit or text boxes
If you use the adapter page producer, you can change the appearance of page elements for users with different
access rights. For example, the Biolife demo (found in the WebSnap subdirectory of the Demos directory) contains
a form page which shows all the information for a given species. The form appears when the user clicks a Details
button on the grid. A user logged in as Will sees data displayed as plain text. Will is not allowed to modify the data,
so the form doesn't give him a mechanism to do so. User Ellen does have modify permissions, so when Ellen views
the form page, she sees a series of edit boxes which allow her to change field contents. Using access rights in this
manner can save you from creating extra pages.

The appearance of some page elements, such as TAdapterDisplayField, is determined by its ViewMode property.
If ViewMode is set to vmToggleOnAccess, the page element will appear as an edit box to users with modify access.
Users without modify access will see plain text. Set the ViewMode property to vmToggleOnAccess to allow the page
element's appearance and function to be determined dynamically.

A Web user list is a list of TWebUserListItem objects, one for each user who can login to the system. Permissions
for users are stored in their Web user list item's AccessRights property. AccessRights is a text string, so you are
free to specify permissions any way you like. Create a name for every kind of access right you want in your server
application. If you want a user to have multiple access rights, separate items in the list with a space, semicolon or
comma.

Access rights for fields are controlled by their ViewAccess and ModifyAccess properties. ViewAccess stores the
name of the access rights needed to view a given field. ModifyAccess dictates what access rights are needed to
modify field data. These properties appear in two places: in each field and in the adapter object that contains them.

Checking access rights is a two-step process. When deciding the appearance of a field in a page, the application
first checks the field's own access rights. If the value is an empty string, the application then checks the access rights
for the adapter which contains the field. If the adapter property is empty as well, the application will follow its default
behavior. For modify access, the default behavior is to allow modifications by any user in the Web user list who has
a non-empty AccessRights property. For view access, permission is automatically granted when no view access
rights are specified.

Hiding fields and their contents
You can hide the contents of a field from users who don't have appropriate view permissions. First set the
ViewAccess property for the field to match the permission you want users to have. Next, make sure that the
ViewAccess for the field's page element is set to vmToggleOnAccess. The field caption will appear, but the value of
the field won't.

Of course, it is often best to hide all references to the field when a user doesn't have view permissions. To do so,
set the HideOptions for the field's page element to include hoHideOnNoDisplayAccess. Neither the caption nor the
contents of the field will be displayed.

Preventing page access
You may decide that certain pages should not be accessible to unauthorized users. To grant check access rights
before displaying pages, alter your call to the TWebPageInfo constructor in the Web request handler's
AddWebModuleFactory command. This command appears in the initialization section of the source code for your
module.

The constructor for TWebPageInfo takes up to 6 arguments. WebSnap usually leaves four of them set to default
values (empty strings), so the call generally looks like this:

[Delphi]
TWebPageInfo.Create([wpPublished, wpLoginRequired], '.html')

2130

[C++]
static TWebPageInit WebInit(__classid(TAdapterPageProducerPage3), crOnDemand, caCache,
PageAccess << wpPublished /* << wpLoginRequired */, ".html", "", "", "", "");

To check permissions before granting access, you need to supply the string for the necessary permission in the sixth
parameter. For example, let's say that the permission is called "Access". This is how you could modify the creator:

[Delphi]
TWebPageInfo.Create([wpPublished, wpLoginRequired], '.html', '', '', '', 'Access')

[C++]
static TWebPageInit WebInit(__classid(TAdapterPageProducerPage3), crOnDemand, caCache,
PageAccess << wpPublished /* << wpLoginRequired */, ".html", "", "", "", "Access");

Access to the page will now be denied to anyone who lacks Access permission.

Server-side Scripting in WebSnap
Page producer templates can include scripting languages such as JScript or VBScript. The page producer executes
the script in response to a request for the producer's content. Because the Web server application evaluates the
script, it is called server-side script, as opposed to client-side script (which is evaluated by the browser).

This topic provides a conceptual overview of server-side scripting and how it is used by WebSnap applications.
Although server-side scripting is a valuable part of WebSnap, it is not essential that you use scripting in your
WebSnap applications. Scripting is used for HTML generation and nothing else. It allows you to insert application
data into an HTML page. In fact, almost all of the properties exposed by adapters and other script-enabled objects
are read-only. Server-side script isn't used to change application data, which is still managed by components and
event handlers written in your application's source code.

There are other ways to insert application data into an HTML page. You can use Web Broker's transparent tags or
some other tag-based solution, if you prefer. For example, several projects in the WebSnap examples directory use
XML and XSL instead of scripting. Without scripting, however, you will be forced to write most of your HTML
generation logic in source code, which will increase your development time.

The scripting used in WebSnap is object-oriented and supports conditional logic and looping, which can greatly
simplify your page generation tasks. For example, your pages may include a data field that can be edited by some
users but not others. With scripting, conditional logic can be placed in your template pages which displays an edit
box for authorized users and simple text for others. With a tag-based approach, you must program such decision-
making into your HTML generating source code.

Active scripting
WebSnap relies on active scripting to implement server-side script. Active scripting is a technology created by
Microsoft to allow a scripting language to be used with application objects through COM interfaces. Microsoft ships
two active scripting languages, VBScript and JScript. Support for other languages is available through third parties.

Script engine
The page producer's ScriptEngine property identifies the active scripting engine that evaluates the script within a
template. It is set to support JScript by default, but it can also support other scripting languages (such as VBScript).

Note: WebSnap's adapters are designed to produce JScript. You will need to provide your own script generation
logic for other scripting languages.

2131

Script blocks
Script blocks, which appear in HTML templates, are delimited by <% and %>. The script engine evaluates any text
inside script blocks. The result becomes part of the page producer's content. The page producer writes text outside
of a script block after translating any embedded transparent tags. Script blocks can also enclose text, allowing
conditional logic and loops to dictate the output of text. For example, the following JScript block generates a list of
five numbered lines:

<% for (i=0;i<5;i++) { %>
 Item <%=i %>
<% } %>

(The <%= delimiter is short for Response.Write.)

Creating script
Developers can take advantage of WebSnap features to automatically generate script.

Wizard templates
When creating a new WebSnap application or page module, WebSnap wizards provide a template field that is used
to select the initial content for the page module template. For example, the Default template generates JScript which,
in turn, displays the application title, page name, and links to published pages.

TAdapterPageProducer
The TAdapterPageProducer builds forms and tables by generating HTML and JScript. The generated JScript calls
adapter objects to retrieve field values, field image parameters, and action parameters.

Editing and viewing script
When the Web Page module uses TAdapterPageProducer the page module views become available when this
component is double-clicked. You can access the page module view with the HTML resulting from the executed
script using the HTML Script tab. The HTML Script tab displays the HTML and JScript generated by the
TAdapterPageProducer object. Consult this view to see how to write script that builds HTML forms to display adapter
fields and execute adapter actions.

Including script in a page
A template can include script from a file or from another page. To include script from a file, use the following code
statement:

<!-- #include file="filename.html" -->

When the template includes script from another page, the script is evaluated by the including page. Use the following
code statement to include the unevaluated content of page1.

<!-- #include page="page1" -- >

2132

Script Objects
Script objects are objects that script commands can reference. You make objects available for scripting by registering
an IDispatch interface to the object with the active scripting engine. The following objects are available for scripting:

Script objects
Script object Description

Application Provides access to the application adapter of the Web Application module.

EndUser Provides access to the end user adapter of the Web Application module.

Session Provides access to the session object of the Web Application module.

Pages Provides access to the application pages.

Modules Provides access to the application modules.

Page Provides access to the current page

Producer Provides access to the page producer of the Web Page module.

Response Provides access to the WebResponse. Use this object when tag replacement is not desired.

Request Provides access to the WebRequest.

Adapter objects All of the adapter components on the current page can be referenced without qualification. Adapters in other
modules must be qualified using the Modules objects.

Script objects on the current page, which all use the same adapter, can be referenced without qualification. Script
objects on other pages are part of another page module and have a different adapter object. They can be accessed
by starting the script object reference with the name of the adapter object. For example,

<%= FirstName %>

displays the contents of the FirstName property of the current page's adapter. The following script line displays the
FirstName property of Adapter1, which is in another page module:

<%= Adapter1.FirstName %>

Dispatching Requests and Responses
One reason to use WebSnap for your Web server application development is that WebSnap components
automatically handle HTML requests and responses. Instead of writing event handlers for common page transfer
chores, you can focus your efforts on your business logic and server design. Still, it can be helpful to understand
how WebSnap applications handle HTML requests and responses. This section gives you an overview of that
process.

Before handling any requests, the Web application module initializes the Web context object (of type TWebContext).
The Web context object, which is accessed by calling the global WebContext function, provides global access to
variables used by components servicing the request. For example, the Web context contains the TWebRequest and
TWebResponse objects to represent the HTTP request message and the response that should be returned.

The following topics describe Web request handling:

Using dispatcher components
Adapter dispatcher operation
Dispatching action items

2133

Page dispatcher operation

Dispatcher Components
The dispatcher components in the Web application module control the flow of the application. The dispatchers
determine how to handle certain types of HTTP request messages by examining the HTTP request.

The adapter dispatcher component (TAdapterDispatcher) looks for a content field, or a query field, that identifies an
adapter action component or an adapter image field component. If the adapter dispatcher finds a component, it
passes control to that component.

The Web dispatcher component (TWebDispatcher) maintains a collection of action items (of type
TWebActionItem) that know how to handle certain types of HTTP request messages. The Web dispatcher looks for
an action item that matches the request. If it finds one, it passes control to that action item. The Web dispatcher also
looks for auto-dispatching components that can handle the request.

The page dispatcher component (TPageDispatcher) examines the PathInfo property of the TWebRequest object,
looking for the name of a registered Web page module. If the dispatcher finds a Web page module name, it passes
control to that module.

Adapter Dispatcher Operation
The adapter dispatcher component (TAdapterDispatcher) automatically handles HTML form submissions, and
requests for dynamic images, by calling adapter action and field components.

Using adapter components to generate content
For WebSnap applications to automatically execute adapter actions and retrieve dynamic images from adapter fields,
the HTML content must be properly constructed. If the HTML content is not properly constructed, the resulting HTTP
request will not contain the information that the adapter dispatcher needs to call adapter action and field components.

To reduce errors in constructing the HTML page, adapter components indicate the names and values of HTML
elements. Adapter components have methods that retrieve the names and values of hidden fields that must appear
on an HTML form designed to update adapter fields. Typically, page producers use server-side scripting to retrieve
names and values from adapter components and then uses this information to generate HTML. For example, the
following script constructs an element that references the field called Graphic from Adapter1:

<img src="<%=Adapter1.Graphic.Image.AsHREF%>" alt="<%=Adapter1.Graphic.DisplayText%>">

When the Web application evaluates the script, the HTML src attribute will contain the information necessary to
identify the field and any parameters that the field component needs to retrieve the image. The resulting HTML might
look like this:

When the browser sends an HTTP request to retrieve this image to the Web application, the adapter dispatcher will
be able to determine that the Graphic field of Adapter1, in the module DM, should be called with "Species No=90090"
as a parameter. The adapter dispatcher will call the Graphic field to write an appropriate HTTP response.

The following script constructs an <A> element referencing the EditRow action of Adapter1 and creates a hyperlink
to a page called Details:

<a href="<%=Adapter1.EditRow.LinkToPage("Details", Page.Name).AsHREF%>">Edit...

2134

The resulting HTML might look like this:

Edit...

The end user clicks this hyperlink, and the browser sends an HTTP request. The adapter dispatcher can determine
that the EditRow action of Adapter1, in the module DM, should be called with the parameter Species No=903010.
The adapter dispatcher also displays the Edit page if the action executes successfully, and displays the Grid page
if action execution fails. It then calls the EditRow action to locate the row to be edited, and the page named Edit is
called to generate an HTTP response. The following figure shows how adapter components are used to generate
content.

Receiving Adapter Requests and Generating Responses
When the adapter dispatcher receives a client request, the adapter dispatcher creates adapter request and adapter
response objects to hold information about that HTTP request. The adapter request and adapter response objects
are stored in the Web context to allow access during the processing of the request.

The adapter dispatcher creates two types of adapter request objects: action and image. It creates the action request
object when executing an adapter action. It creates the image request object when retrieving an image from an
adapter field.

The adapter response object is used by the adapter component to indicate the response to an adapter action or
adapter image request. There are two types of adapter response objects, action and image.

Action requests
Action request objects are responsible for breaking the HTTP request down into information needed to execute an
adapter action. The types of information needed for executing an adapter action may include the following request
information:

Request information found in action requests
Request informaton Description

Component name Identifies the adapter action component.

Adapter mode Defines a mode. For example, TDataSetAdapter supports Edit, Insert, and Browse modes. An
adapter action may execute differently depending on the mode.

Success page Identifies the page displayed after successful execution of the action.

2135

Failure page Identifies the page displayed if an error occurs during execution of the action.

Action request parameters Identifies the parameters need by the adapter action. For example, the TDataSetAdapter Apply
action will include the key values identifying the record to be updated.

Adapter field values Specifies values for the adapter fields passed in the HTTP request when an HTML form is
submitted. A field value can include new values entered by the end user, the original values of
the adapter field, and uploaded files.

Record keys Specifies keys that uniquely identify each record.

Generating action responses
Action response objects generate an HTTP response on behalf of an adapter action component. The adapter action
indicates the type of response by setting properties within the object, or by calling methods in the action response
object. The properties include:

RedirectOptions—The redirect options indicate whether to perform an HTTP redirect instead of returning HTML
content.
ExecutionStatus—Setting the status to success causes the default action response to be the content of the
success page identified in the Action Request.

The action response methods include:

RespondWithPage—The adapter action calls this method when a particular Web page module should generate
the response.
RespondWithComponent—The adapter action calls this method when the response should come from the Web
page module containing this component.
RespondWithURL—The adapter action calls this method when the response is a redirect to a specified URL.

When responding with a page, the action response object attempts to use the page dispatcher to generate page
content. If it does not find the page dispatcher, it calls the Web page module directly.

The following figure illustrates how action request and action response objects handle a request.

2136

Image request
The image request object is responsible for breaking the HTTP request down into the information required by the
adapter image field to generate an image. The types of information represented by the Image Request include:

Component name - Identifies the adapter field component.
Image request parameters - Identifies the parameters needed by the adapter image. For example, the
TDataSetAdapterImageField object needs key values to identify the record that contains the image.

Image response
The image response object contains the TWebResponse object. Adapter fields respond to an adapter request by
writing an image to the Web response object.

The following figure illustrates how adapter image fields respond to a request.

Dispatching Action Items
When responding to a request, the Web dispatcher (TWebDispatcher) searches through its list of action items for
one that:

matches the PathInfo portion of the target URL's request message, and
can provide the service specified as the method of the request message.

It accomplishes this by comparing the PathInfo and MethodType properties of the TWebRequest object with the
properties of the same name on the action item.

When the dispatcher finds the appropriate action item, it causes that action item to fire. When the action item fires,
it does one of the following:

Fills in the response content and sends the response, or signals that the request has been completely handled.
Adds to the response, and then allows other action items to complete the job.
Defers the request to other action items.

After the dispatcher has checked all of its action items, if the message was not handled correctly, the dispatcher
checks for specially registered auto-dispatching components that do not use action items. (These components are
specific to multi-tiered database applications.) If the request message is still not fully handled, the dispatcher calls

2137

the default action item. The default action item does not need to match either the target URL or the method of the
request.

Page dispatcher operation
When the page dispatcher receives a client request, it determines the page name by checking the PathInfo portion
of the target URL's request message. If the PathInfo portion is not blank, the page dispatcher uses the ending word
of PathInfo as the page name. If the PathInfo portion is blank, the page dispatcher tries to determine a default page
name.

If the page dispatcher's DefaultPage property contains a page name, the page dispatcher uses this name as the
default page name. If the DefaultPage property is blank and the Web application module is a page module, the page
dispatcher uses the name of the Web application module as the default page name.

If the page name is not blank, the page dispatcher searches for a Web page module with a matching name. If it finds
a Web page module, it calls that module to generate a response. If the page name is blank, or if the page dispatcher
does not find a Web page module, the page dispatcher raises an exception.

The following figure shows how the page dispatcher responds to a request.

2138

Using IntraWeb

Creating Web Server Applications Using IntraWeb
IntraWeb is a tool which simplifies Web server application development. You can use IntraWeb to build Web server
applications exactly the same way you would build traditional GUI applications, using forms. You can write all of your
business logic in the Delphi language; IntraWeb will automatically convert program elements to script or HTML when
necessary.

You can use IntraWeb in any of the following modes:
1 Standalone mode. IntraWeb uses its own application object type to handle program execution. The application

isn't deployed on a commercial server; instead, IntraWeb's own Application Server is used for application
deployment.

2 Application Mode. The application object is provided by IntraWeb. The application is deployed on a commercial
server.

3 Page mode. The application object is provided by Web Broker or WebSnap. IntraWeb is used to develop pages.
The application is deployed on a commercial server.

IntraWeb applications can be targeted to any of the following server types:

ISAPI/NSAPI
Apache versions 1 and 2
CGI (page mode only)
Windows services

IntraWeb offers a wide range of browser compatibility. IntraWeb applications automatically detect the user's browser
type and generate HTML and script most appropriate for that browser. IntraWeb supports Internet Explorer versions
4 through 6, Netscape 4 and 6, and Mozilla.

Using IntraWeb Components
One of the advantages of IntraWeb is that it uses the same kinds of tools and techniques as regular VCL
development. You can build your user interface by dropping components on forms, like you would any other
application. There are a number of important differences that you must keep in mind, however. The forms and
components used in IntraWeb user interfaces are not the same ones used in non-Web GUI applications. When you
create a form or use a component, be sure to use an IntraWeb version instead of a VCL version.

Many VCL components have IntraWeb counterparts. Generally, the IntraWeb components have the same name as
their VCL counterparts, with the letters "IW" prefixed to the name. For example, IWCheckBox is the IntraWeb

2139

equivalent of CheckBox. (The name used in source code starts with the letter T, of course, like TIWCheckBox.) On
the Tool palette, the icons for IntraWeb components are nearly identical to their VCL counterparts, making it easier
to find the IntraWeb components you need.

The following table lists VCL components and their IntraWeb counterparts. For more information on these
components and how to use them, refer to the IntraWeb help files and other IntraWeb documentation.

VCL and IntraWeb components
VCL component IntraWeb equivalent Tool palette category for IntraWeb component

Button IWButton IW Standard

CheckBox IWCheckBox IW Standard

ComboBox IWComboBox IW Standard

DBCheckBox IWDBCheckBox IW Data

DBComboBox IWDBComboBox IW Data

DBEdit IWDBEdit IW Data

DBGrid IWDBGrid IW Data

DBImage IWDBImage IW Data

DBLabel IWDBLabel IW Data

DBListBox IWDBListBox IW Data

DBLookupComboBox IWDBLookupComboBox IW Data

DBLookupListBox IWDBLookupListBox IW Data

DBMemo IWDBMemo IW Data

DBNavigator IWDBNavigator IW Data

DBText IWDBText IW Data

Edit IWEdit IW Standard

Image IWImage or IWImageFile IW Standard

Label IWLabel IW Standard

ListBox IWListBox IW Standard

Memo IWMemo IW Standard

RadioGroup IWRadioGroup IW Standard

Timer IWTimer IW Standard

TreeView IWTreeView IW Standard

Getting Started with IntraWeb
If you have experience writing GUI applications using Borland's rapid application development tools, then you already
have the basic skills you need to start building applications with IntraWeb. The basic design method for the user
interface is the same for IntraWeb and regular GUI applications: find the components you need on the Tool
palette and drop them on a form. Unlike WebSnap's page modules, the appearance of the form mirrors the
appearance of the page. The IntraWeb forms and components are distinct from their VCL counterparts, but they are
named and arranged similarly.

For example, let's say you want to add a button to a form. In an ordinary VCL application, you would find the Button
component on the Standard Tool palette category and drop it on your form in an appropriate location. In the compiled
application, the button appears where you placed it. For an IntraWeb application, the only difference is that you use

2140

the IWButton component on the IW Standard category. Even the icons for the two different button components look
almost identical. The only difference is an "IW" in the top right corner of the IntraWeb button icon.

Follow the four step tutorial, below, to see how easy it is to build an IntraWeb application. The application you develop
in the tutorial asks the user for some input and displays the input in a popup window. The tutorial uses IntraWeb's
standalone mode, so the application you create will run without a commercial Web server.

The tutorial includes the following steps:
1 Creating a new IntraWeb application.
2 Editing the main form.
3 Writing an event handler for the button.
4 Running the completed application.

Creating a New IntraWeb Application
The first step in the process of creating the demo program is to create a new IntraWeb project. The project will be
a stand alone application, but you can convert it to ISAPI/NSAPI or Apache later by changing two lines of code.

To create the new project:
1 Using an external tool (such as Microsoft Windows Explorer), create a directory named Hello in your Projects

directory. This is where the project files will be stored. IntraWeb will set the new project's name to match that of
the directory.

2 Choose File New Other, then select the IntraWeb folder under Delphi Projects. The New Items dialog box
appears.

2141

3 Select Stand Alone Application and click OK.
4 Find your new Hello directory in the dialog box. Double-click it, then click OK.

You have just created your IntraWeb application in the Hello directory. All of its source code files have already been
saved. You are now ready to edit the main form to create the Web user interface for your application.

For information about editing the main form, see Editing the Main Form.

Editing the Main Form
You are now ready to edit the main form to create the Web user interface for your application.

For information on creating a new IntraWeb Application, see Creating a New IntraWeb Application.

To create the Web user interface for your application:
1 Choose File Open, then select IWUnit1.pas and click OK. The main form window (named formMain) should

appear in the IDE.
2 Click on the main form window. In the Object Inspector, change the form's Title property to "What is your name?

" This question will appear in the title bar of the Web browser when you run the application and view the page
corresponding to the main form.

3 Drop an IWLabel component (found on the IW Standard tab of the Tool palette) onto the form. In the Object
Inspector, change the Caption property to "What is your name?" That question should now appear on the form.

2142

4 Drop an IWEdit component onto the form underneath the IWLabel component. Use the Object Inspector to
make the following changes:

Empty the contents of the Text property.
Set the Name property to editName.

5 Drop an IWButton component on the form underneath the IWEdit component. Set its Caption property to OK.
Your form should look similar to this one:

You might want to save all your files before continuing.

For information about writing an event handler for the button, see Writing an Event Handler for the Button.

Writing an Event Handler for the Button
The form does not yet perform any actions when the user clicks the OK button.

For information on editing the main form, see Editing the Main Form.

You will now write an event handler that will display a greeting when the user clicks OK.
1 Double-click the OK button on the form. An empty event handler is created in the editor window, like the one

shown here:

procedure TformMain.IWButton1Click(Sender: TObject);
begin

end;

2 Using the editor, add code to the event handler so it looks like the following:

procedure TformMain.IWButton1Click(Sender: TObject);
var s: string;
begin
 s := editName.Text;
 if Length(s) = 0 then
 WebApplication.ShowMessage("Please enter your name.")
 else
 begin

2143

 WebApplication.ShowMessage("Hello, " + s +"!");
 editName.Text := "";
 end;
end;

For information about running the completed application, see Running the Completed Application.

Running the Completed Application
You can now test the IntraWeb application.

For information on writing the event handler, see Writing an Event Handler for the Button.

To test the IntraWeb application:
1 Select Run Run. The IntraWeb Application Server (shown below) will appear.

2 In the IntraWeb Application Server, select Run Execute. Your Web server application will appear in your
default Web browser window. For example, here are the results in a Netscape 6 window:

2144

3 Assume your name is World. Type World in the edit box and click the OK button. A modal dialog box will appear:

When you are finished using your application, you can terminate it by closing the browser window and then closing
the IntraWeb Application Server.

Using IntraWeb with Web Broker and WebSnap
IntraWeb is a powerful tool for developing Web server applications all by itself. Still, there are some things it can't
do alone, like create CGI applications. For CGI, you need Web Broker or WebSnap. Also, you may have existing
Web Broker and WebSnap applications that you want to extend but not rewrite. You can still take advantage of
IntraWeb's design tools by using IntraWeb forms and components in Web Broker or WebSnap projects. You can
use IntraWeb to create individual pages instead of entire applications.

To create Web pages using IntraWeb tools, use the following steps:
1 Create or open a Web Broker or WebSnap application, and drop a WebDispatcher component on your Web

module (Web Broker) or Web application module (WebSnap).
The WebDispatcher component is on the Internet tab of the Tool palette.

2 Drop an IWModuleController component on your Web module (Web Broker) or Web application module
(WebSnap). IWModuleController is on the IW Control category of the Tool palette.

3 In WebSnap applications, create a new Web page module if necessary. In the New WebSnap Page dialog,
uncheck the New File box in the HTML section before continuing.

Note: If you create a page module with the New File box checked, you can change the result later.
Open the page module's unit file in the editor. Next, change '.html' to an empty string (") in the
WebRequestHandler.AddWebModuleFactory call at the bottom of the unit.

4 Remove any existing page producer components from your Web module (Web Broker) or Web page module
(WebSnap).

2145

5 Drop an IWPageProducer component on your Web module or Web page module.
6 Select File New Other IntraWeb Page Form to create a new IntraWeb page form.
7 Add an OnGetForm event handler by double-clicking the IWPageProducer component on your Web module or

Web page module. A new method will appear in the editor window.
8 Connect the IntraWeb form to the Web module or Web page module by adding a line of code to your

OnGetForm event handler. The code line should be similar to, if not identical to, the following:

[Delphi]
VForm := TformMain.Create(AWebApplication);

[C++]
VForm = TformMain->Create(AWebApplication);

If necessary, change TformMain to the name of your IntraWeb form class. To find the form class name, click on
the form. Its name appears next to the form window name in the Object Inspector.

9 In the unit file where you changed the event handler, add IWApplication and IWPageForm to the uses clause.
Also, add the unit containing your form.

2146

Working with XML documents

Working with XML Documents
XML (Extensible Markup Language) is a markup language for describing structured data. It is similar to HTML, except
that the tags describe the structure of information rather than its display characteristics. XML documents provide a
simple, text-based way to store information so that it is easily searched or edited. They are often used as a standard,
transportable format for data in Web applications, business-to-business communication, and so on.

XML documents provide a hierarchical view of a body of data. Tags in the XML document describe the role or
meaning of each data element, as illustrated in the following document, which describes a collection of stock
holdings:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE StockHoldings SYSTEM "sth.dtd">
<StockHoldings>
 <Stock exchange="NASDAQ">
 <name>Borland</name>
 <price>15.375</price>
 <symbol>BORL</symbol>
 <shares>100</shares>
 </Stock>
 <Stock exchange="NYSE">
 <name>Pfizer</name>
 <price>42.75</price>
 <symbol>PFE</symbol>
 <shares type="preferred">25</shares>
 </Stock>
</StockHoldings>

This example illustrates a number of typical elements in an XML document. The first line is a processing instruction
called an XML declaration. The XML declaration is optional but you should include it, because it supplies useful
information about the document. In this example, the XML declaration says that the document conforms to version
1.0 of the XML specification, that it uses UTF-8 character encoding, and that it relies on an external file for its
document type declaration (DTD).

The second line, which begins with the <!DOCType> tag, is a document type declaration (DTD). The DTD is how
XML defines the structure of the document. It imposes syntax rules on the elements (tags) contained in the document.
The DTD in this example references another file (sth.dtd). In this case, the structure is defined in an external file,
rather than in the XML document itself. Other types of files that describe the structure of an XML document include
Reduced XML Data (XDR) and XML schemas (XSD).

2147

The remaining lines are organized into a hierarchy with a single root node (the <StockHoldings> tag). Each node in
this hierarchy contains either a set of child nodes, or a text value. Some of the tags (the <Stock> and <shares> tags)
include attributes, which are Name=Value pairs that provide details on how to interpret the tag.

Although it is possible to work directly with the text in an XML document, typically applications use additional tools
for parsing and editing the data. W3C defines a set of standard interfaces for representing a parsed XML document
called the Document Object Model (DOM). A number of vendors provide XML parsers that implement the DOM
interfaces to let you interpret and edit XML documents more easily.

Delphi provides a number of additional tools for working with XML documents. These tools use a DOM parser that
is provided by another vendor, and make it even easier to work with XML documents.They include

VCL components and interfaces for working with XML documents.
An XML Data Binding wizard for generating classes to represent a particular XML document.
Tools and components for converting between XML documents and data packets, which let you integrate XML
documents into database applications.

Using the Document Object Model
The Document Object Model (DOM) is a set of standard interfaces for representing a parsed XML document. These
interfaces are implemented by a number of different third-party vendors. If you do not want to use the default vendor
that ships with Delphi, there is a registration mechanism that lets you integrate additional DOM implementations by
other vendors into the XML framework.

The XMLDOM unit includes declarations for all the DOM interfaces defined in the W3C XML DOM level 2
specification. Each DOM vendor provides an implementation for these interfaces.

To use one of the DOM vendors for which Delphi already includes support, locate the unit that represents the
DOM implementation. These units end in the string 'xmldom.' For example, the unit for the Microsoft
implementation is MSXMLDOM, the unit for the Xerces implementation is XERCESXMLDOM, and the unit for
the Open XML implementation is OXMLDOM. If you add the unit for the desired implementation to your project,
the DOM implementation is automatically registered so that it is available to your code.
To use another DOM implementation, you must create a unit that defines a descendant of the TDOMVendor
class. This unit can then work like one of the built-in DOM implementations, making your DOM implementation
available when it is included in a project.
In your descendant class, you must override two methods: the Description method, which returns a string
identifying the vendor, and the DOMImplementation method, which returns the top-level interface
(IDOMImplementation).
Your new unit must register the vendor by calling the global RegisterDOMVendor procedure. This call typically
goes in the initialization section of the unit.
When your unit is unloaded, it needs to unregister itself to indicate that the DOM implementation is no longer
available. Unregister the vendor by calling the global UnRegisterDOMVendor procedure. This call typically goes
in the finalization section.

Some vendors supply extensions to the standard DOM interfaces. To allow you to uses these extensions, the
XMLDOM unit also defines an IDOMNodeEx interface. IDOMNodeEx is a descendant of the standard IDOMNode
that includes the most useful of these extensions.

You can work directly with the DOM interfaces to parse and edit XML documents. Simply call the GetDOM function
to obtain an IDOMImplementation interface, which you can use as a starting point.

Note: For detailed descriptions of the DOM interfaces, see the declarations in the XMLDOM unit, the documentation
supplied by your DOM Vendor, or the specifications provided on the W3C web site (www.w3.org).

2148

You may find it more convenient to use special XML classes rather than working directly with the DOM interfaces.
These are described in:

Working with XML components
Abstracting XML documents with the Data Binding wizard

Working with XML Components
The VCL defines a number of classes and interfaces for working with XML documents. These simplify the process
of loading, editing, and saving XML documents.

To use the XML classes for examining or editing an XML document you start by setting up an instance of
TXMLDocument. You can then work with the nodes of the XML document component to examine or edit the body
of the XML document.

Using TXMLDocument
The starting point for working with an XML document is the TXMLDocument component.

The following steps describe how to use TXMLDocument to work directly with an XML
document:
1 Add a TXMLDocument component to your form or data module. TXMLDocument appears on the Internet

category of the Tool Palette.
2 Set the DOMVendor property to specify the DOM implementation you want the component to use for parsing

and editing an XML document. The Object Inspector lists all the currently registered DOM vendors. For
information on DOM implementations, see Using the Document Object Model.

3 Depending on your implementation, you may want to set the ParseOptions property to configure how the
underlying DOM implementation parses the XML document.

4 If you are working with an existing XML document, specify the document:

If the XML document is stored in a file, set the FileName property to the name of that file.
You can specify the XML document as a string instead by using the XML property.

5 Set the Active property to True.

Once you have an active TXMLDocument object, you can traverse the hierarchy of its nodes, reading or setting their
values. The root node of this hierarchy is available as the DocumentElement property.

For information on working with the nodes of the XML document, see Working with XML nodes.

Working with XML Nodes
Once an XML document has been parsed by a DOM implementation, the data it represents is available as a hierarchy
of nodes. Each node corresponds to a tagged element in the document. For example, given the following XML:

[Delphi]
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE StockHoldings SYSTEM "sth.dtd">
<StockHoldings>
 <Stock exchange="NASDAQ">

2149

 <name>Borland</name>
 <price>15.375</price>
 <symbol>BORL</symbol>
 <shares>100</shares>
 </Stock>
 <Stock exchange="NYSE">
 <name>Pfizer</name>
 <price>42.75</price>
 <symbol>PFE</symbol>
 <shares type="preferred">25</shares>
 </Stock>
</StockHoldings>

TXMLDocument would generate a hierarchy of nodes as follows: The root of the hierarchy would be the
StockHoldings node. StockHoldings would have two child nodes, which correspond to the two Stock tags. Each of
these two child nodes would have four child nodes of its own (name, price, symbol, and shares). Those four child
nodes would act as leaf nodes. The text they contain would appear as the value of each of the leaf nodes.

Note: This division into nodes differs slightly from the way a DOM implementation generates nodes for an XML
document. In particular, a DOM parser treats all tagged elements as internal nodes. Additional nodes (of type
text node) are created for the values of the name, price, symbol, and shares nodes. These text nodes then
appear as the children of the name, price, symbol, and shares nodes.

Each node is accessed through an IXMLNode interface, starting with the root node, which is the value of the XML
document component's DocumentElement property.

Working with a node's value
Given an IXMLNode interface, you can check whether it represents an internal node or a leaf node by checking the
IsTextElement property.

If it represents a leaf node, you can read or set its value using the Text property.
If it represents an internal node, you can access its child nodes using the ChildNodes property.

Thus, for example, using the XML document above, you can read the price of Borland's stock as follows:

[Delphi]
BorlandStock := XMLDocument1.DocumentElement.ChildNodes[0];
Price := BorlandStock.ChildNodes['price'].Text;

[C++]
_di_IXMLNode BorlandStock = XMLDocument1->DocumentElement->ChildNodes->GetNode(0);
AnsiString Price = BorlandStock->ChildNodes->Nodes[WideString("price")]->Text;

Working with a node's attributes
If the node includes any attributes, you can work with them using the Attributes property. You can read or change
an attribute value by specifying an existing attribute name. You can add new attributes by specifying a new attribute
name when you set the Attributes property:

[Delphi]
BorlandStock := XMLDocument1.DocumentElement.ChildNodes[0];
BorlandStock.ChildNodes['shares'].Attributes['type'] := 'common';

2150

[C++]
_di_IXMLNode BorlandStock = XMLDocument1->DocumentElement->ChildNodes->GetNode(0);
BorlandStock->ChildNodes->Nodes[WideString("shares")]->Attributes[WideString("type")] =
"common";

Adding and deleting child nodes
You can add child nodes using the AddChild method. AddChild creates new nodes that correspond to tagged
elements in the XML document. Such nodes are called element nodes.

To create a new element node, specify the name that appears in the new tag and, optionally, the position where the
new node should appear. For example, the following code adds a new stock listing to the document above:

[Delphi]
var
 NewStock: IXMLNode;
 ValueNode: IXMLNode;
begin
 NewStock := XMLDocument1.DocumentElement.AddChild('stock');
 NewStock.Attributes['exchange'] := 'NASDAQ';
 ValueNode := NewStock.AddChild('name');
 ValueNode.Text := 'Cisco Systems'
 ValueNode := NewStock.AddChild('price');
 ValueNode.Text := '62.375';
 ValueNode := NewStock.AddChild('symbol');
 ValueNode.Text := 'CSCO';
 ValueNode := NewStock.AddChild('shares');
 ValueNode.Text := '25';
end;

[C++]
_di_IXMLNode NewStock = XMLDocument1->DocumentElement->AddChild(WideString("stock"));
NewStock->Attributes[WideString("exchange")] = "NASDAQ";
_di_IXMLNode ValueNode = NewStock->AddChild(WideString("name"));
ValueNode->Text = WideString("Cisco Systems");
ValueNode = NewStock->AddChild(WideString("price"));
ValueNode->Text = WideString("62.375");
ValueNode = NewStock->AddChild(WideString("symbol"));
ValueNode->Text = WideString("CSCO");
ValueNode = NewStock->AddChild(WideString("shares"));
ValueNode->Text = WideString("25");

An overloaded version of AddChild lets you specify the namespace URI in which the tag name is defined.

You can delete child nodes using the methods of the ChildNodes property. ChildNodes is an IXMLNodeList interface,
which manages the children of a node. You can use its Delete method to delete a single child node that is identified
by position or by name. For example, the following code deletes the last stock listed in the document above:

[Delphi]
StockList := XMLDocument1.DocumentElement;
StockList.ChildNodes.Delete(StockList.ChildNodes.Count - 1);

2151

[C++]
_di_IXMLNode StockList = XMLDocument1->DocumentElement;
StockList->ChildNodes->Delete(StockList->ChildNodes->Count - 1);

Abstracting XML Documents with the Data Binding Wizard
It is possible to work with an XML document using only the TXMLDocument component and the IXMLNode interface
it surfaces for the nodes in that document, or even to work exclusively with the DOM interfaces (avoiding even
TXMLDocument). However, you can write code that is much simpler and more readable by using the XML Data
Binding wizard.

The Data Binding wizard takes an XML schema or data file and generates a set of interfaces that map on top of it.
For example, given XML data that looks like the following:

<customer id=1>
 <name>Mark</name>
 <phone>(831) 431-1000</phone>
</customer>

The Data Binding wizard generates the following interface (along with a class to implement it):

[Delphi]
ICustomer = interface(IXMLNode)
 ['{8CD6A6E8-24FC-426F-9718-455F0C507C8E}']
 { Property Accessors }
 function Get_Id: Integer;
 function Get_Name: WideString;
 function Get_Phone: WideString;
 procedure Set_Id(Value: Integer);
 procedure Set_Name(Value: WideString);
 procedure Set_Phone(Value: WideString);
 { Methods & Properties }
 property Id: Integer read Get_Id write Set_Id;
 property Name: WideString read Get_Name write Set_Name;
 property Phone: WideString read Get_Phone write Set_Phone;
end;

[C++]
__interface INTERFACE_UUID("{F3729105-3DD0-1234-80e0-22A04FE7B451}") ICustomer :
 public IXMLNode
{
public:
 virtual int __fastcall Getid(void) = 0 ;
 virtual DOMString __fastcall Getname(void) = 0 ;
 virtual DOMString __fastcall Getphone(void) = 0 ;
 virtual void __fastcall Setid(int Value)= 0 ;
 virtual void __fastcall Setname(DOMString Value)= 0 ;
 virtual void __fastcall Setphone(DOMString Value)= 0 ;
 __property int id = {read=Getid, write=Setid};
 __property DOMString name = {read=Getname, write=Setname};
 __property DOMString phone = {read=Getphone, write=Setphone};
};

Every child node is mapped to a property whose name matches the tag name of the child node and whose value is
the interface of the child node (if the child is an internal node) or the value of the child node (for leaf nodes). Every

2152

node attribute is also mapped to a property, where the property name is the attribute name and the property value
is the attribute value.

In addition to creating interfaces (and implementation classes) for each tagged element in the XML document, the
wizard creates global functions for obtaining the interface to the root node. For example, if the XML above came
from a document whose root node had the tag <Customers>, the Data Binding wizard would create the following
global routines:

[Delphi]
function Getcustomers(Doc: IXMLDocument): IXMLCustomerType;
function Loadcustomers(const FileName: WideString): IXMLCustomerType;
function Newcustomers: IXMLCustomerType;

[C++]
extern PACKAGE _di_ICustomers __fastcall GetCustomers(TXMLDocument *XMLDoc);
extern PACKAGE _di_ICustomers __fastcall GetCustomers(_di_IXMLDocument XMLDoc);
extern PACKAGE _di_ICustomers __fastcall LoadCustomers(const WideString FileName);
extern PACKAGE _di_ICustomers __fastcall NewCustomers(void);

The Get... function takes the interface for a TXMLDocument instance . The Load... function dynamically creates a
TXMLDocument instance and loads the specified XML file as its value before returning an interface pointer. The
New... function creates a new (empty) TXMLDocument instance and returns the interface to the root node.

Using the generated interfaces simplifies your code, because they reflect the structure of the XML document more
directly. For example, instead of writing code such as the following:

[Delphi]
CustIntf := XMLDocument1.DocumentElement;
CustName := CustIntf.ChildNodes[0].ChildNodes['name'].Value;

[C++]
_di_IXMLNode CustIntf = XMLDocument1->DocumentElement;
CustName = CustIntf->ChildNodes->Nodes->GetNode(0)->ChildNodes->Nodes[WideString("name")]-
>Value;

Your code would look as follows:

[Delphi]
CustIntf := GetCustomers(XMLDocument1);
CustName := CustIntf[0].Name;

[C++]
_di_ICustomers CustIntf = GetCustomers(XMLDocument1);
CustName = CustIntf->Nodes->GetNode(0)->Name;

Note that the interfaces generated by the Data Binding wizard all descend from IXMLNode. This means you can still
add and delete child nodes in the same way as when you do not use the Data Binding wizard. (See the Adding and
deleting child nodes section of Working with XML Nodes.) In addition, when child nodes represent repeating elements
(when all of the children of a node are of the same type), the parent node is given two methods, Add, and Insert, for
adding additional repeats. These methods are simpler than using AddChild, because you do not need to specify the
type of node to create.

The following topics provide detailed information on using the XML Data Binding wizard:

Using the XML Data Binding wizard

2153

Using code that the XML Data Binding wizard generates

Using the XML Data Binding Wizard

To use the Data Binding wizard:
1 Choose File New Other and select the icon labeled XML Data Binding from the right pane of the New folder

located under Delphi Projects.
2 The XML Data Binding wizard appears.
3 On the first page of the wizard, specify the XML document or schema for which you want to generate interfaces.

This can be a sample XML document, a Document Type Definition (.dtd) file, a Reduced XML Data (.xdr) file, or
an XML schema (.xsd) file.

4 Click the Options button to specify the naming strategies you want the wizard to use when generating interfaces
and implementation classes and the default mapping of types defined in the schema to native Delphi data types.

5 Move to the second page of the wizard. This page lets you provide detailed information about every node type
in the document or schema. At the left is a tree view that shows all of the node types in the document. For complex
nodes (nodes that have children), the tree view can be expanded to display the child elements. When you select
a node in this tree view, the right-hand side of the dialog displays information about that node and lets you specify
how you want the wizard to treat that node.

The Source Name control displays the name of the node type in the XML schema.
The Source Datatype control displays the type of the node's value, as specified in the XML schema.
The Documentation control lets you add comments to the schema describing the use or purpose of the node.
If the wizard generates code for the selected node (that is, if it is a complex type for which the wizard generates
an interface and implementation class, or if it is one of the child elements of a complex type for which the wizard
generates a property on the complex type's interface), you can use the Generate Binding check box to specify
whether you want the wizard to generate code for the node. If you uncheck Generate Binding, the wizard does
not generate the interface or implementation class for a complex type, or does not create a property in the parent
interface for a child element or attribute.
The Binding Options section lets you influence the code that the wizard generates for the selected element. For
any node, you can specify the Identifier Name (the name of the generated interface or property). In addition, for
interfaces, you must indicate which one represents the root node of the document. For nodes that represent
properties, you can specify the type of the property and, if the property is not an interface, whether it is a read-
only property.

6 Once you have specified what code you want the wizard to generate for each node, move to the third page. This
page lets you choose some global options about how the wizard generates its code and lets you preview the
code that will be generated, and lets you tell the wizard how to save your choices for future use.

To preview the code the wizard generates, select an interface in the Binding Summary list and view the resulting
interface definition in the Code Preview control.
Use the Data Binding Settings to indicate how the wizard should save your choices. You can store the settings
as annotations in a schema file that is associated with the document (the schema file specified on the first page
of the dialog), or you can name an independent schema file that is used only by the wizard.

7 When you click Finish, the Data Binding wizard generates a new unit that defines interfaces and implementation
classes for all of the node types in your XML document. In addition, it creates a global function that takes a
TXMLDocument object and returns the interface for the root node of the data hierarchy.

2154

Using Code That the XML Data Binding Wizard Generates
Once the wizard has generated a set of interfaces and implementation classes, you can use them to work with XML
documents that match the structure of the document or schema you supplied to the wizard. Just as when you are
using only the built-in XML components, your starting point is the TXMLDocument component that appears on the
Internet category of the Tool Palette.

To work with an XML document, use the following steps:
1 Obtain an interface for the root node of your XML document. You can do this in one of three ways:

Method Description

Place a TXMLDocument component in your form or
data module. Bind the TXMLDocument to an XML
document by setting the FileName property.

(As an alternative approach, you can use a string of XML
by setting the XML property at runtime.) Then, In your
code, call the global function that the wizard created to
obtain an interface for the root node of the XML document.
For example, if the root element of the XML document was
the tag <StockList>, by default, the wizard generates a
function Getstocklist, which returns an
IXMLStockListType. interface:

[Delphi]
 var
 StockList: IXMLStockListType;
 begin
 XMLDocument1.FileName :=
'Stocks.xml';
 StockList := Getstocklist
(XMLDocument1);

[C++]
 XMLDocument1->FileName :=
"Stocks.xml";
 _di_IStockListType StockList =
GetStockListType(XMLDocument1);

Call the generated Load... function Call the generated Load... function to create and bind the
TXMLDocument instance and obtain its interface all in one
step. For example, using the same XML document
described above:

[Delphi]
 var
 StockList: IXMLStockListType;
 begin
 StockList := Loadstocklist
('Stocks.xml');

[C++]
 _di_IStockListType StockList =
LoadStockListType("Stocks.xml");

Call the generated New... function Call the generated New... function to create the
TXMLDocument instance for an empty document when
you want to create all the data in your application:

2155

[Delphi]
 var
 StockList: IXMLStockListType;
 begin
 StockList := Newstocklist;

[C++]
 _di_IStockListType StockList =
NewStockListType();

2 This interface has properties that correspond to the subnodes of the document's root element, as well as
properties that correspond to that root element's attributes. You can use these to traverse the hierarchy of the
XML document, modify the data in the document, and so on.

3 To save any changes you make using the interfaces generated by the wizard, call the TXMLDocument
component's SaveToFile method or read its XML property.

Tip: If you set the Options property of the TXMLDocument object to include doAutoSave, then you do not need to
explicitly call the SaveToFile method.

2156

Using Web Services

Using Web Services
Web Services are self-contained modular applications that can be published and invoked over the Internet. Web
Services provide well-defined interfaces that describe the services provided. Unlike Web server applications that
generate Web pages for client browsers, Web Services are not designed for direct human interaction. Rather, they
are accessed programmatically by client applications.

Web Services are designed to allow a loose coupling between client and server. That is, server implementations do
not require clients to use a specific platform or programming language. In addition to defining interfaces in a
language-neutral fashion, they are designed to allow multiple communications mechanisms as well.

Support for Web Services is designed to work using SOAP (Simple Object Access Protocol). SOAP is a standard
lightweight protocol for exchanging information in a decentralized, distributed environment. It uses XML to encode
remote procedure calls and typically uses HTTP as a communications protocol. For more information about SOAP,
see the SOAP specification available at

http://www.w3.org/TR/SOAP/

Note: Although the components that support Web Services are built to use SOAP and HTTP, the framework is
sufficiently general that it can be expanded to use other encoding and communications protocols.

In addition to letting you build SOAP-based Web Service applications (servers), special components and wizards
let you build clients of Web Services that use either a SOAP encoding or a Document Literal style. The Document
Literal style is used in .Net Web Services.

Web Service applications publish information on what interfaces are available and how to call them using a WSDL
(Web Service Definition Language) document. On the server side, your application can publish a WSDL document
that describes your Web Service. On the client side, a wizard or command-line utility can import a published WSDL
document, providing you with the interface definitions and connection information you need. If you already have a
WSDL document that describes the Web service you want to implement, you can generate the server-side code as
well when importing the WSDL document.

The following topics describe support for working with Web Services in greater detail:

Understanding invokable interfaces
Writing servers that support Web Services
Writing clients for Web Services

2157

Understanding Invokable Interfaces
Servers that support Web Services are built using invokable interfaces. Invokable interfaces are interfaces that are
compiled to include runtime type information (RTTI). On the server, this RTTI is used when interpreting incoming
method calls from clients so that they can be correctly marshaled. On clients, this RTTI is used to dynamically
generate a method table for making calls to the methods of the interface.

To create an invokable interface, you need only compile an interface with the {$M+} compiler option. The descendant
of any invokable interface is also invokable. However, if an invokable interface descends from another interface that
is not invokable, your Web Service can only use the methods defined in the invokable interface and its descendants.
Methods inherited from the non-invokable ancestors are not compiled with type information and so can't be used as
part of the Web Service.

When defining a Web service, you can derive an invokable interface from the base invokable interface, IInvokable.
IInvokable is defined in the System unit. IInvokable is the same as the base interface (IInterface), except that it is
compiled using the {$M+} compiler option. The {$M+} compiler option ensures that the interface and all its
descendants include RTTI.

For example, the following code defines an invokable interface that contains two methods for encoding and decoding
numeric values:

[Delphi]
IEncodeDecode = interface(IInvokable)
['{C527B88F-3F8E-1134-80e0-01A04F57B270}']
 function EncodeValue(Value: Integer): Double; stdcall;
 function DecodeValue(Value: Double): Integer; stdcall;
end;

[C++]
__interface INTERFACE_UUID("{C527B88F-3F8E-1134-80e0-01A04F57B270}") IEncodeDecode :
 public IInvokable
{
public:
 virtual double __stdcall EncodeValue(int Value) = 0 ;
 virtual int __stdcall DecodeValue(double Value) = 0 ;
};

Note: An invokable interface can use overloaded methods, but only if the different overloads can be distinguished
by parameter count. That is, one overload must not have the same number of parameters as another,
including the possible number of parameters when default parameters are taken into account.

Before a Web Service application can use this invokable interface, it must be registered with the invocation registry.
On the server, the invocation registry entry allows the invoker component (THTTPSOAPPascalInvoker) to identify
an implementation class to use for executing interface calls. On client applications, an invocation registry entry allows
remote interfaced objects (THTTPRio) to look up information that identifies the invokable interface and supplies
information on how to call it.

Typically, your Web Service client or server creates the code to define invokable interfaces either by importing a
WSDL document or using the Web Service wizard. By default, when the WSDL importer or Web Service wizard
generates an interface, the definition is added to a unit with the same name as the Web Service. This unit includes
both the interface definition and code to register the interface with the invocation registry. The invocation registry is
a catalog of all registered invokable interfaces, their implementation classes, and any functions that create instances
of the implementation classes. It is accessed using the global InvRegistry function, which is defined in the
InvokeRegistry unit.

The definition of the invokable interface is added to the interface section of the unit, and the code to register the
interface goes in the initialization section. The registration code looks like the following:

2158

[Delphi]
initialization
 InvRegistry.RegisterInterface(TypeInfo(IEncodeDecode));
end.

[C++]
static void RegTypes()
{
 InvRegistry()->RegisterInterface(__delphirtti(IEncodeDecode), "", "");
}
#pragma startup RegTypes 32

Note: The implementation section's uses clause must include the InvokeRegistry unit so that the call to the
InvRegistry function is defined.

The interfaces of Web Services must have a namespace to identify them among all the interfaces in all possible
Web Services. The previous example does not supply a namespace for the interface. When you do not explicitly
supply a namespace, the invocation registry automatically generates one for you. This namespace is built from a
string that uniquely identifies the application (the AppNamespacePrefix variable), the interface name, and the name
of the unit in which it is defined. If you do not want to use the automatically-generated namespace, you can specify
one explicitly using a second parameter to the RegisterInterface call.

You can use the same unit file to define an invokable interface for both client and server applications. If you are
doing this, it is a good idea to keep the unit that defines your invokable interfaces separate from the unit in which
you write the classes that implement them. Because the generated namespace includes the name of the unit in
which the interface is defined, sharing the same unit in both client and server applications enables them to
automatically use the same namespace, as long as they both use the same value for the AppNamespacePrefix
variable.

The preceding example uses only scalar types (integers and doubles) in the methods of the interface. You can use
nonscalar types as well, but they require a bit more work.

Using Nonscalar Types in Invokable Interfaces
The Web Services architecture automatically includes support for marshaling the following scalar types:

Boolean ByteBool WordBool

LongBool Char Byte

ShortInt SmallInt Word

Integer Cardinal LongInt

Int64 Single Double

Extended string WideString

Currency TDateTime Variant

You need do nothing special when you use these scalar types on an invokable interface. If your interface includes
any properties or methods that use other types, however, your application must register those types with the
remotable type registry.

Dynamic arrays can be used in invokable interfaces. They must be registered with the remotable type registry, but
this registration happens automatically when you register the interface. The remotable type registry extracts all the
information it needs from the type information that the compiler generates.

2159

Note: You should avoid defining multiple dynamic array types with the same element type. Because the compiler
treats these as transparent types that can be implicitly cast one to another, it doesn't distinguish their runtime
type information. As a result, the remotable type registry can't distinguish the types. This is not a problem for
servers, but can result in clients using the wrong type definition. As an alternate approach, you can use
remotable clases to represent array types.

Note: The dynamic array types defined in the Types unit are automatically registered for you, so your application
does not need to add any special registration code for them. One of these in particular, TByteDynArray,
deserves special notice because it maps to a 'base64' block of binary data, rather than mapping each array
element separately the way the other dynamic array types do.

Enumerated types and types that map directly to one of the automatically-marshaled scalar types can also be used
in an invokable interface. As with dynamic array types, they are automatically registered with the remotable type
registry.

For any other types, such as static arrays, structs or records, sets, interfaces, or classes, you must map the type to
a remotable class. A remotable class is a class that includes runtime type information (RTTI). Your interface must
then use the remotable class instead of the corresponding static array, struct or record, set, interface, or class. Any
remotable classes you create must be registered with the remotable type registry. As with other types, this registration
happens automatically.

Registering Nonscalar Types
Before an invokable interface can use any types other than the built-in scalar types listed in Using nonscalar types
in invokable interfaces, the application must register the type with the remotable type registry. To access the
remotable type registry, you must add the InvokeRegistry unit to your uses clause. This unit declares a global
function, RemTypeRegistry, which returns a reference to the remotable type registry.

Note: On clients, the code to register types with the remotable type registry is generated automatically when you
import a WSDL document. For servers, remotable types are registered for you automatically when you
register an interface that uses them. You only need to explicitly add code to register types if you want to
specify the namespace or type name rather than using the automatically-generated values.

The remotable type registry has two methods that you can use to register types: RegisterXSInfo and
RegisterXSClass. The first (RegisterXSInfo) lets you register a dynamic array or other type definition. The second
(RegisterXSClass) is for registering remotable classes that you define to represent other types.

If you are using dynamic arrays or enumerated types, the invocation registry can get the information it needs from
the compiler-generated type information. Thus, for example, your interface may use a type such as the following:

[Delphi]
type
 TDateTimeArray = array of TXSDateTime;

[C++]
typedef DynamicArray<TXSDateTime> TDateTimeArray;

This type is registered automatically when you register the invokable interface. However, if you want to specify the
namespace in which the type is defined or the name of the type, you must add code to explicitly register the type
using the RegisterXSInfo method of the remotable type registry.

The registration goes in the initialization section of the unit where you declare or use the dynamic array:

2160

[Delphi]
RemTypeRegistry.RegisterXSInfo(TypeInfo(TDateTimeArray), MyNameSpace, 'DTarray',
'DTarray');

[C++]
void RegTypes()
{
 RemTypeRegistry()->RegisterXSInfo(__arraytypeinfo(TDateTimeArray),
 MyNameSpace, "DTarray", "DTarray");
 InvRegistry()->RegisterInterface(__delphirtti(ITimeServices));
}

The first parameter of RegisterXSInfo is the type information for the type you are registering. The second parameter
is the namespace URI for the namespace in which the type is defined. If you omit this parameter or supply an empty
string, the registry generates a namespace for you. The third parameter is the name of the type as it appears in
native code. If you omit this parameter or supply an empty string, the registry uses the type name from the type
information you supplied as the first parameter. The final parameter is the name of the type as it appears in WSDL
documents. If you omit this parameter or supply an empty string, the registry uses the native type name (the third
parameter).

Registering a remotable class is similar, except that you supply a class reference rather than a type information
pointer. For example, the following line comes from the XSBuiltIns unit. It registers TXSDateTime, a TRemotable
descendant that represents TDateTime values:

[Delphi]
RemClassRegistry.RegisterXSClass(TXSDateTime, XMLSchemaNameSpace, 'dateTime', '',True);

[C++]
void RegTypes()
{
 RemTypeRegistry()->RegisterXSclass(__classid(TXSDateTime), XMLSchemaNameSpace,
"dateTime", "", true);
 InvRegistry()->RegisterInterface(__delphirtti(ITimeServices));
}

The first parameter is class reference for the remotable class that represents the type. The second is a uniform
resource identifier (URI) that uniquely identifies the namespace of the new class. If you supply an empty string, the
registry generates a URI for you. The third and fourth parameters specify the native and external names of the data
type your class represents. If you omit the fourth parameter, the type registry uses the third parameter for both values.
If you supply an empty string for both parameters, the registry uses the class name. The fifth parameter indicates
whether the value of class instances can be transmitted as a string. You can optionally add a sixth parameter (not
shown here) to control how multiple references to the same object instance should be represented in SOAP packets.

Using Remotable Objects
Use TRemotable as a base class when defining a class to represent a complex data type on an invokable interface.
For example, in the case where you would ordinarily pass a record or struct as a parameter, you would instead define
a TRemotable descendant where every member of the record or struct is a published property on your new class.

You can control whether the published properties of your TRemotable descendant appear as element nodes or
attributes in the corresponding SOAP encoding of the type. To make the property an attribute, use the stored directive
on the property definition, assigning a value of AS_ATTRIBUTE:

2161

[Delphi]
property MyAttribute: Boolean read FMyAttribute write FMyAttribute stored AS_ATTRIBUTE;

[C++]
__property bool MyAttribute = {read=FMyAttribute, write=FMyAttribute, stored= AS_ATTRIBUTE;

Note: If you do not include a stored directive, or if you assign any other value to the stored directive (even a function
that returns AS_ATTRIBUTE), the property is encoded as a node rather than an attribute.

If the value of your new TRemotable descendant represents a scalar type in a WSDL document, you should use
TRemotableXS as a base class instead. TRemotableXS is a TRemotable descendant that introduces two methods
for converting between your new class and its string representation. Implement these methods by overriding the
XSToNative and NativeToXS methods.

For certain commonly-used XML scalar types, the XSBuiltIns unit already defines and registers remotable classes
for you. These are listed in the following table:

Remotable classes
XML type remotable class

dateTime timeInstant TXSDateTime

date TXSDate

time TXSTime

durationtimeDuration TXSDuration

decimal TXSDecimal

hexBinary TXSHexBinary

After you define a remotable class, it must be registered with the remotable type registry, as described in Registering
nonscalar types. This registration happens automatically on servers when you register the interface that uses the
class. On clients, the code to register the class is generated automatically when you import the WSDL document
that defines the type. For an example of defining and registering a remotable class, see Remotable object example.

Tip: It is a good idea to implement and register TRemotable descendants in a separate unit from the rest of your
server application, including from the units that declare and register invokable interfaces. In this way, you can
use the type for more than one interface.

Representing attachments
One important TRemotable descendant is TSoapAttachment. This class represents an attachment. It can be used
as the value of a parameter or the return value of a method on an invokable interface. Attachments are sent with
SOAP messages as separate parts in a multipart form.

When a Web Service application or the client of a Web Service receives an attachment, it writes the attachment to
a temporary file. TSoapAttachment lets you access that temporary file or save its content to a permanent file or
stream. When the application needs to send an attachment, it creates an instance of TSoapAttachment and assigns
its content by specifying the name of a file, supplying a stream from which to read the attachment, or providing a
string that represents the content of the attachment.

Managing the lifetime of remotable objects
One issue that arises when using TRemotable descendants is the question of when they are created and destroyed.
Obviously, the server application must create its own local instance of these objects, because the caller's instance

2162

is in a separate process space. To handle this, Web Service applications create a data context for incoming requests.
The data context persists while the server handles the request, and is freed after any output parameters are
marshaled into a return message. When the server creates local instances of remotable objects, it adds them to the
data context, and those instances are then freed along with the data context.

In some cases, you may want to keep an instance of a remotable object from being freed after a method call. For
example, if the object contains state information, it may be more efficient to have a single instance that is used for
every message call. To prevent the remotable object from being freed along with the data context, change its
DataContext property.

Remotable Object Example
This example shows how to create a remotable object for a parameter on an invokable interface where you would
otherwise use an existing class. In this example, the existing class is a string list (TStringList). To keep the example
small, it does not reproduce the Objects property of the string list.

Because the new class is not scalar, it descends from TRemotable rather than TRemotableXS. It includes a published
property for every property of the string list you want to communicate between the client and server. Each of these
remotable properties corresponds to a remotable type. In addition, the new remotable class includes methods to
convert to and from a string list.

[Delphi]
TRemotableStringList = class(TRemotable)
 private
 FCaseSensitive: Boolean;
 FSorted: Boolean;
 FDuplicates: TDuplicates;
 FStrings: TStringDynArray;
 public
 procedure Assign(SourceList: TStringList);
 procedure AssignTo(DestList: TStringList);
 published
 property CaseSensitive: Boolean read FCaseSensitive write FCaseSensitive;
 property Sorted: Boolean read FSorted write FSorted;
 property Duplicates: TDuplicates read FDuplicates write FDuplicates;
 property Strings: TStringDynArray read FStrings write FStrings;
end;

[C++]
class TRemotableStringList: public TRemotable
{
 private:
 bool FCaseSensitive;
 bool FSorted;
 Classes::TDuplicates FDuplicates;
 System::TStringDynArray FStrings;
 public:
 void __fastcall Assign(Classes::TStringList *SourceList);
 void __fastcall AssignTo(Classes::TStringList *DestList);
__published:
 __property bool CaseSensitive = {read=FCaseSensitive, write=FCaseSensitive};
 __property bool Sorted = {read=FSorted, write=FSorted};
 __property Classes::TDuplicates Duplicates = {read=FDuplicates, write=FDuplicates};
 __property System::TStringDynArray Strings = {read=FStrings, write=FStrings};
}

Note that TRemotableStringList exists only as a transport class. Thus, although it has a Sorted property (to transport
the value of a string list's Sorted property), it does not need to sort the strings it stores, it only needs to record whether

2163

the strings should be sorted. This keeps the implementation very simple. You only need to implement the Assign
and AssignTo methods, which convert to and from a string list:

[Delphi]
procedure TRemotableStringList.Assign(SourceList: TStrings);
var I: Integer;
begin
 SetLength(Strings, SourceList.Count);
 for I := 0 to SourceList.Count - 1 do
 Strings[I] := SourceList[I];
 CaseSensitive := SourceList.CaseSensitive;
 Sorted := SourceList.Sorted;
 Duplicates := SourceList.Duplicates;
end;
procedure TRemotableStringList.AssignTo(DestList: TStrings);
var I: Integer;
begin
 DestList.Clear;
 DestList.Capacity := Length(Strings);
 DestList.CaseSensitive := CaseSensitive;
 DestList.Sorted := Sorted;
 DestList.Duplicates := Duplicates;
 for I := 0 to Length(Strings) - 1 do
 DestList.Add(Strings[I]);
end;

[C++]
void __fastcall TRemotableStringList::Assign(Classes::TStringList *SourceList)
{
 SetLength(Strings, SourceList->Count);
 for (int i = 0; i < SourceList->Count; i++)
 Strings[i] = SourceList->Strings[i];
 CaseSensitive = SourceList->CaseSensitive;
 Sorted = SourceList->Sorted;
 Duplicates = SourceList->Duplicates;
}
void __fastcall TRemotableStringList::AssignTo(Classes::TStringList *DestList)
{
 DestList->Clear();
 DestList->Capacity = Length(Strings);
 DestList->CaseSensitive = CaseSensitive;
 DestList->Sorted = Sorted;
 DestList->Duplicates = Duplicates;
 for (int i = 0; i < Length(Strings); i++)
 DestList->Add(Strings[i]);
}

Optionally, you may want to register the new remotable class so that you can specify its class name. If you do not
register the class, it is registered automatically when you register the interface that uses it. Similarly, if you register
the class but not the TDuplicates and TStringDynArray types that it uses, they are registered automatically. This
code shows how to register the TRemotableStringList class and the TDuplicates type. TStringDynArray is registered
automatically because it is one of the built-in dynamic array types declared in the Types unit.

This registration code goes in the initialization section of the unit where you define the remotable class:

2164

[Delphi]
RemClassRegistry.RegisterXSInfo(TypeInfo(TDuplicates), MyNameSpace, 'duplicateFlag');
RemClassRegistry.RegisterXSClass(TRemotableStringList, MyNameSpace, 'stringList',
'',False);

[C++]
void RegTypes()
{
 RemTypeRegistry()->RegisterXSclass(__classid(TRemotableStringList), MyNameSpace,
"stringList", "", false);
}
#pragma startup initServices 32

Writing Servers that Support Web Services
In addition to the invokable interfaces and the classes that implement them, your server requires two components:
a dispatcher and an invoker. The dispatcher (THTTPSoapDispatcher) receives incoming SOAP messages and
passes them on to the invoker. The invoker (THTTPSOAPPascalInvoker) interprets the SOAP message, identifies
the invokable interface it calls, executes the call, and assembles the response message.

Note: THTTPSoapDispatcher andTHTTPSoapPascalInvoker are designed to respond to HTTP messages
containing a SOAP request. The underlying architecture is sufficiently general, however, that it can support
other protocols with the substitution of different dispatcher and invoker components.

Once you register your invokable interfaces and their implementation classes, the dispatcher and invoker
automatically handle any messages that identify those interfaces in the SOAP Action header of the HTTP request
message.

Web services also include a publisher (TWSDLHTMLPublish). Publishers respond to incoming client requests by
creating the WSDL documents that describe how to call the Web Services in the application.

Building a Web Service server
Developer Studio 2006 provides a wizard to speed development of a Web Service server application.

Use the following steps to build a server application that implements a Web Service:
1 Choose File New Other and on the WebServices page, double-click the Soap Server Application icon to

launch the SOAP Server Application wizard. The wizard creates a new Web server application that includes the
components you need to respond to SOAP requests.

2 When you exit the SOAP Server Application wizard, it asks you if you want to define an interface for your Web
Service.
If you are creating a Web Service from scratch, click yes, and you will see the Add New Web Service wizard.
The wizard adds code to declare and register a new invokable interface for your Web Service. Edit the generated
code to define and implement your Web Service. If you want to add additional interfaces (or you want to define
the interfaces at a later time), choose File New Other, and on the WebServices page, double-click the
SOAP Web Service interface icon. For details on using the Add New Web Service wizard and completing the
code it generates, see Adding new Web Services.

3 If you are implementing a Web Service that has already been defined in a WSDL document, you can use the
WSDL importer to generate the interfaces, implementation classes, and registration code that your application
needs. You need only fill in the body of the methods the importer generates for the implementation classes. For
details on using the WSDL importer, see Using the WSDL importer.

2165

4 If you want to use the headers in the SOAP envelope that encodes messages between your application and
clients, you can define classes to represent those headers and write code to process them. This is described in
Defining and using SOAP headers.

5 If your application raises an exception when attempting to execute a SOAP request, the exception will be
automatically encoded in a SOAP fault packet, which is returned instead of the results of the method call. If you
want to convey more information than a simple error message, you can create your own exception classes that
are encoded and passed to the client. This is described in Creating custom exception classes for Web Services.

6 The SOAP Server Application wizard adds a publisher component (TWSDLHTMLPublish) to new Web Service
applications. This enables your application to publish WSDL documents that describe your Web Service to clients.
For information on the WSDL publisher, see Generating WSDL documents for a Web Service application.

Using the SOAP Application Wizard
Web Service applications are a special form of Web Server application. Because of this, support for Web Services
is built on top of the Web Broker architecture. To understand the code that the SOAP Application wizard generates,
therefore, it is helpful to understand the Web Broker architecture. Information about Web Server applications in
general, and Web Broker in particular, can be found in Creating Internet server applications and Using Web Broker.

To launch the SOAP application wizard, choose File New Other, and on the WebServices page, double-click
the Soap Server Application icon. Choose the type of Web server application you want to use for your Web Service.
For information about different types of Web Server applications, see Types of Web server applications.

The wizard generates a new Web server application that includes a Web module which contains three components:

An invoker component (THTTPSOAPPascalInvoker). The invoker converts between SOAP messages and the
methods of any registered invokable interfaces in your Web Service application.
A dispatcher component (THTTPSoapDispatcher). The dispatcher automatically responds to incoming SOAP
messages and forwards them to the invoker. You can use its WebDispatch property to identify the HTTP request
messages to which your application responds. This involves setting the PathInfo property to indicate the path
portion of any URL directed to your application, and the MethodType property to indicate the method header
for request messages.
A WSDL publisher (TWSDLHTMLPublish). The WSDL publisher publishes a WSDL document that describes
your interfaces and how to call them. The WSDL document tells clients that how to call on your Web Service
application. For details on using the WSDL publisher, see Generating WSDL documents for a Web Service
application.

The SOAP dispatcher and WSDL publisher are auto-dispatching components. This means they automatically
register themselves with the Web module so that it forwards any incoming requests addressed using the path
information they specify in their WebDispatch properties. If you right-click on the Web module, you can see that in
addition to these auto-dispatching components, it has a single Web action item named DefaultHandler.

DefaultHandler is the default action item. That is, if the Web module receives a request for which it can't find a handler
(can't match the path information), it forwards that message to the default action item. DefaultHandler generates a
Web page that describes your Web Service. To change the default action, edit this action item's OnAction event
handler.

Adding New Web Services
To add a new Web Service interface to your server application, choose File New Other, and on the WebServices
page double-click on the icon labeled SOAP Server Interface.

The Add New Web Service wizard lets you specify the name of the invokable interface you want to expose to clients,
and generates the code to declare and register the interface and its implementation class. By default, the wizard

2166

also generates comments that show sample methods and additional type definitions, to help you get started in editing
the generated files.

Editing the generated code
The interface definitions appear in the interface section of the generated unit. This generated unit has the name you
specified using the wizard. You will want to change the interface declaration, replacing the sample methods with the
methods you are making available to clients.

The wizard generates an implementation class that descends from TInvokableClass and that supports the invokable
interface). If you are defining an invokable interface from scratch, you must edit the declaration of the implementation
class to match any edits you made to the generated invokable interface.

When adding methods to the invokable interface and implementation class, remember that the methods must only
use remotable types. For information on remotable types and invokable interfaces, see Using nonscalar types in
invokable interfaces.

Using a different base class
The Add New WebService wizard generates implementation classes that descend from TInvokableClass. This is
the easiest way to create a new class to implement a Web Service. You can, however, replace this generated class
with an implementation class that has a different base class (for example, you may want to use an existing class as
a base class.) There are a number of considerations to take into account when you replace the generated
implementation class:

Your new implementation class must support the invokable interface directly. The invocation registry, with which
you register invokable interfaces and their implementation classes, keeps track of what class implements each
registered interface and makes it available to the invoker component when the invoker needs to call the interface.
It can only detect that a class implements an interface if the interface is directly included in the class declaration.
It does not detect support an interface if it is inherited along with a base class.
Your new implementation class must include support for the IInterface methods that are part of any interface.
This point may seem obvious, but it is an easy one to overlook.
You must change the generated code that registers the implementation class to include a factory method to
create instances of your implementation class.

This last point takes a bit of explanation. When the implementation class descends from TInvokableClass and does
not replace the inherited constructor with a new constructor that includes one or more parameters, the invocation
registry knows how to create instances of the class when it needs them. When you write an implementation class
that does not descend from TInvokableClass, or when you change the constructor, you must tell the invocation
registry how to obtain instances of your implementation class.

You can tell the invocation registry how to obtain instances of your implementation class by supplying it with a factory
procedure. Even if you have an implementation class that descends from TInvokableClass and that uses the inherited
constructor, you may want to supply a factory procedure anyway. For example, you can use a single global instance
of your implementation class rather than requiring the invocation registry to create a new instance every time your
application receives a call to the invokable interface.

The factory procedure must be of type TCreateInstanceProc. It returns an instance of your implementation class. If
the procedure creates a new instance, the implementation object should free itself when the reference count on its
interface drops to zero, as the invocation registry does not explicitly free object instances. The following code
illustrates another approach, where the factory procedure returns a single global instance of the implementation
class:

[Delphi]
procedure CreateEncodeDecode(out obj: TObject);

2167

begin
 if FEncodeDecode = nil then
 begin
 FEncodeDecode := TEncodeDecode.Create;
 {save a reference to the interface so that the global instance doesn't free itself }
 FEncodeDecodeInterface := FEncodeDecode as IEncodeDecode;
 end;
 obj := FEncodeDecode; { return global instance }
end;

[C++]
void __fastcall CreateEncodeDecode(System::TObject* &obj)
{
 if (!FEncodeDecode)
 {
 FEncodeDecode = new TEncodeDecodeImpl();
 // save a reference to the interface so that the global instance doesn't free itself
 TEncodeDecodeImpl->QueryInterface(FEncodeDecodeInterface);
 }
 obj = FEncodeDecode;
}

Note: In this example, FEncodeDecodeInterface is a variable of type IEncodeDecode.

You register the factory procedure with an implementation class by supplying it as a second parameter to the call
that registers the class with the invocation registry. First, locate the call the wizard generated to register the
implementation class. This appears in initialization section of the unit that defines the class. It looks something like
the following:

[Delphi]
InvRegistry.RegisterInvokableClass(TEncodeDecode);

[C++]
InvRegistry()->RegisterInvokableClass(__classid(TEncodeDecodeImpl));

Add a second parameter to this call that specifies the factory procedure:

[Delphi]
InvRegistry.RegisterInvokableClass(TEncodeDecode, CreateEncodeDecode);

[C++]
InvRegistry()->RegisterInvokableClass(__classid(TEncodeDecodeImpl), &CreateEncodeDecode);

Using the WSDL Importer
To use the WSDL importer, choose File|New|Other, and on the WebServices page double-click the icon labeled
WSDL importer. In the dialog that appears, specify the file name of a WSDL document (or XML file) or provide the
URL where that document is published.

Note: If you do not know the URL for the WSDL document you want to import, you can browse for one by clicking
the button labeled Search UDDI. This launches the UDDI browser.

2168

Tip: An advantage of using the UDDI browser, even if you know the location of the WSDL document, is that when
you locate the WSDL document using a UDDI description, client applications get fail-over support.

If the WSDL document is on a server that requires authentication (or must be reached using a proxy server that
requires authentication), you need to provide a user name and password before the wizard can retrieve the WSDL
document. To supply this information, click the Options button and provide the appropriate connection information.

When you click the Next button, the WSDL importer displays the code it generates for every definition in the WSDL
document that is compatible with the Web Services framework. That is, it only uses those port types that have a
SOAP binding. You can configure the way the importer generates code by clicking the Options button and choosing
the options you want.

You can use the WSDL importer when writing either a server or a client application. When writing a server, click the
Options button and in the resulting dialog, check the option that tells the importer to generate server code. When
you select this option, the importer generates implementation classes for the invokable interfaces, and you need
only fill in the bodies of the methods.

Warning: If you import a WSDL document to create a server that implements a Web Service that is already defined,
you must still publish your own WSDL document for that service. There may be minor differences in the
imported WSDL document and the generated implementation. For example, if the WSDL document or
XML schema file uses identifiers that are also keywords, the importer automatically adjusts their names
so that the generated code can compile.

When you click Finish, the importer creates new units that define and register invokable interfaces for the operations
defined in the document, and that define and register remotable classes for the types that the document defines.

As an alternate approach, you can use the command line WSDL importer instead. For a server, call the command
line importer with the -Os option, as follows:

[Delphi]
WSDLIMP -Os -P -V MyWSDLDoc.wsdl

[C++]
WSDLIMP -Os -C -V MyWSDLDoc.wsdl

For a client application, call the command line importer without the -Os option:

[Delphi]
WSDLIMP -P -V MyWSDLDoc.wsdl

[C++]
WSDLIMP -C -V MyWSDLDoc.wsdl

Tip: The command line interpreter includes some options that are not available when you use the WSDL importer
in the IDE. For details, see the help for WSDLIMP.

Browsing for Business Services
You can use the UDDI browser to locate and import the WSDL document that describes a Web Service. Launch the
UDDI browser by clicking the UDDI button on the WSDL importer.

One of the advantages of using the UDDI browser is that client applications gain fail-over support. That is, if a request
to the server returns a status code of 404, 405, or 410 (indicating that the requested interface or method is not

2169

available), the client application automatically returns to the UDDI entry where you found the WSDL document and
checks whether it has changed.

Understanding UDDI
UDDI stands for Universal Description, Discovery, and Integration. It is a generic format for registering services
available through the Web. A number of public registries exist, which make information about registered services
available. Ideally, these public registries all contain the same information, although there may be minor discrepancies
due to differences in when they update their information.

UDDI registries contain information about more than just Web Services. The format is sufficiently general that it can
be used to describe any business service. Entries in the UDDI registry are organized hierarchically; first by business,
then by type of service, and lastly by detailed information within a service. This detailed information is called a
TModel. A Web Service, which can include one or more invokable interfaces, makes up a single TModel. Thus, a
single business service can include multiple Web Services, as well as other business information. Each TModel can
include a variety of information, including contact information for people within the business, a description of the
service, and technical details such as a WSDL document.

For example, consider a hypothetical business, Widgets Inc. This business might have two services, widget
manufacturing and custom widget design. Under the widget manufacturing service, you might find two TModels, one
for selling parts to Widgets Inc, and one for ordering widgets. Each of these could be a Web Service. Under the
custom widget design service, you might find a Web Service for obtaining cost estimates, and another TModel that
is not a Web Service, which gives the address of a Web site for viewing past custom designs.

Using the UDDI browser
The first step after you launch the UDDI browser from the WSDL importer is to indicate the UDDI registry you want
to search. The public registries should all contain the same information, but there can be differences. In addition,
you may be using an internal, private registry. Select a public registry from the drop-down in the upper left corner,
or type in the address of a private registry you want to use.

The next step is to locate the business from which you want to import a Web Service. Enter the name of the business
in the edit control labeled Name. Other controls let you specify whether the browser must match this name exactly,
or whether you want a case-insensitive search or want to allow a partial match. You can also specify how many
matches you want to fetch (if multiple businesses meet your criteria) and how to sort the results.

Once you have specified the search criteria, click the Find button to locate the business. All of the matches appear
in the tree view in the upper right corner. Use this tree view to drill down, locating the service you want, and the
TModel within that service that corresponds to the Web Service you want to import. As you select items in this tree
view, the lower right portion of the browser provides information about the selected item. When you select a
TModel that represents a Web Service with a WSDL document, the Import button becomes enabled. When you
locate the Web Service you want to import, click the Import button.

Defining and Using SOAP Headers
The SOAP encoding of a request to your Web Service application and of the response your application sends include
a set of header nodes. Some of these, such as the SOAP Action header, are generated and interpreted automatically.
However, you can also define your own headers to customize the communication between your server and its clients.
Typically, these headers contain information that is associated with the entire invokable interface, or even with the
entire application, rather than just the method that is the subject of a single message.

Defining header classes
For each header you want to define, create a descendant of ISOAPHeaders. TSOAPHeader is a descendant of
TRemotable. That is, SOAP header objects are simply special types of remotable objects. As with any remotable

2170

object, you can add published properties to your TSOAPHeader descendant to represent the information that your
header communicates. Once you have defined a SOAP header class, it must be registered with the remotable type
registry. Note that unlike other remotable classes, which are registered automatically when you register an invokable
interface that uses them, you must explicitly write code to register your header types.

TSOAPHeader defines two properties that are used to represent attributes of the SOAP header node. These are
MustUnderstand and Actor. When the MustUnderstand attribute is True, the recipient of a message that includes
the header is required to recognize it. If the recipient can't interpret a header with the MustUnderstand attribute, it
must abort the interpretation of the entire message. An application can safely ignore any headers it does not
recognize if their MustUnderstand attribute is not set. The use of MustUnderstand is qualified by the Actor property.
Actor is a URI that identifies the application to which the header is directed. Thus, for example, if your Web Service
application forwards requests on to another service for further processing, some of the headers in client messages
may be targeted at that other service. If such a header includes the MustUnderstand attribute, you should not abort
the request even if your application can't understand the header. Your application is only concerned with those
headers that give its URL as the Actor.

Sending and receiving headers
Once you have defined and registered header classes, they are available for your application to use. When your
application receives a request, the headers on that message are automatically converted into the corresponding
TSOAPHeader descendants that you have defined. Your application identifies the appropriate header class by
matching the name of the header node against the type name you used when you registered the header class or
against a name you supply by registering the header class with the invocation registry. Any headers for which the
application can't find a match in the remotable type registry are ignored (or, if their MustUnderstand attribute is
True, the application generates a SOAP fault).

You can access the headers your application receives using the ISOAPHeaders interface. There are two ways to
obtain this interface: from an instance of TInvokableClass or, if you are implementing your invokable interface without
using TInvokableClass, by calling the global GetSOAPHeaders function.

Use the Get method of ISOAPHeaders to access the headers by name. For example:

[Delphi]
TServiceImpl.GetQuote(Symbol: string): Double;
var
 Headers: ISOAPHeaders;
 H: TAuthHeader;
begin
 Headers := Self as ISOAPHeaders;
 Headers.Get(AuthHeader, TSOAPHeader(H)); { Retrieve the authentication header }
 try
 if H = nil then
 raise ERemotableException.Create("SOAP header for authentication required");
 { code here to check name and password }
 finally
 H.Free;
 end;
 { now that user is authenticated, look up and return quote }
end;

If you want to include any headers in the response your application generates to a request message, you can use
the same interface. ISOAPHeaders defines a Send method to add headers to the outgoing response. Simply create
an instance of each header class that corresponds to a header you want to send, set its properties, and call Send:

[Delphi]
TServiceImpl.GetQuote(Symbol: string): Double;
var

2171

 Headers: ISOAPHeaders;
 H: TQuoteDelay;
 TXSDuration Delay;
begin
 Headers := Self as ISOAPHeaders;
 { code to lookup the quote and set the return value }
 { this code sets the Delay variable to the time delay on the quote }
 H := TQuoteDelay.Create;
 H.Delay := Delay;
 Headers.OwnsSentHeaders := True;
 Headers.Send(H);
end;

Handling scalar-type headers
Some Web Services define and use headers that are simple types (such as an integer or string) rather than a complex
structure that corresponds to a remotable type. However, Delphi's support for SOAP headers requires that you use
a TSOAPHeader descendant to represent header types. You can define header classes for simple types by treating
the TSOAPHeader class as a holder class. That is, the TSOAPHeader descendant has a single published property,
which is the type of the actual header. To signal that the SOAP representation does not need to include a node for
the TSOAPHeader descendant, call the remotable type registry's RegisterSerializeOptions method (after registering
the header type) and give your header type an option of xoSimpleTypeWrapper.

Communicating the structure of your headers to other applications
If your application defines headers, you need to allow its clients to access those definitions. If those clients are also
written in Delphi, you can share the unit that defines and registers your header classes with the client application.
However, you may want to let other clients know about the headers you use as well. To enable your application to
export information about its header classes, you must register them with the invocation registry. Registering a header
class also associates that class with a header name that is defined within a namespace.

Like the code that registers your invokable interface, the code to register a header class for export is added to the
initialization section of the unit in which it is defined. Use the global InvRegistry function to obtain a reference to the
invocation registry and call its RegisterHeaderClass method, indicating the interface with which the header is
associated:

[Delphi]
initialization
 InvRegistry.RegisterInterface(TypeInfo(IMyWebService)); {register the interface}
 InvRegistry.RegisterHeaderClass(TypeInfo(IMyWebService), TMyHeaderClass); {and the header}
end.

[C++]
static void RegTypes()
{
 // register the invokable interface:
 InvRegistry()->RegisterInterface(__delphirtti(IMyService), "", "");
// register the header to be used with it:
 InvRegistry()->RegisterHeaderClass(__delphirtti(IMyService), __classid(TMyHeader));
}
#pragma startup RegTypes 32

You can limit the header to a subset of the methods on the interface by subsequent calls to the
RegisterHeaderMethod method.

2172

Note: The implementation section's uses clause must include the InvokeRegistry unit so that the call to the
InvRegistry function is defined.

Once you have registered your header class with the invocation registry, its description is added to WSDL documents
when you publish your Web Service.

Note: This registration of your header class with the invocation registry is in addition to the registration of that class
with the remotable type registry.

Creating Custom Exception Classes for Web Services
When your Web Service application raises an exception in the course of trying to execute a SOAP request, it
automatically encodes information about that exception in a SOAP fault packet, which it returns instead of the results
of the method call. The client application then raises the exception.

By default, the client application raises a generic exception of type ERemotableException with the information from
the SOAP fault packet. You can transmit additional, application-specific information by deriving an
ERemotableException descendant. The values of any published properties you add to the exception class are
included in the SOAP fault packet so that the client can raise an equivalent exception.

To use an ERemotableException descendant, you must register it with the remotable type registry. Thus, in the unit
that defines your ERemotableException descendant, you must add the InvokeRegistry unit to the uses clause and
add a call to the RegisterXSClass method of the object that the global RemTypeRegistry function returns.

If the client also defines and registers your ERemotableException descendant, then when it receives the SOAP fault
packet, it automatically raises an instance of the appropriate exception class, with all properties set to the values in
the SOAP fault packet.

To allow clients to import information about your ERemotableException descendant, you must register it with the
invocation registry as well as the remotable type registry. Add a call to the RegisterException method of the object
that the global InvRegistry function returns.

Generating WSDL Documents for a Web Service Application
To allow client applications to know what Web Services your application makes available, you can publish a WSDL
document that describes your invokable interfaces and indicates how to call them.

To publish a WSDL document that describes your Web Service, include a TWSDLHTMLPublish component in your
Web Module. (The SOAP Server Application wizard adds this component by default.) TWSDLHTMLPublish is an
auto-dispatching component, which means it automatically responds to incoming messages that request a list of
WSDL documents for your Web Service. Use the WebDispatch property to specify the path information of the URL
that clients must use to access the list of WSDL documents. The Web browser can then request the list of WSDL
documents by specifying an URL that is made up of the location of the server application followed by the path in the
WebDispatch property. This URL looks something like the following:

http://www.myco.com/MyService.dll/WSDL

Tip: If you want to use a physical WSDL file instead, you can display the WSDL document in your Web browser
and then save it to generate a WSDL document file.

Note: In addition to the WSDL document, the THWSDLHTMLPublish also generates a WS-Inspection document
to describe the service for automated tools. The URL for this document looks something like the following:

2173

http://www.myco.com/MyService.dll/inspection.wsil

It is not necessary to publish the WSDL document from the same application that implements your Web Service. To
create an application that simply publishes the WSDL document, omit the code that implements and registers the
implementation objects and only include the code that defines and registers invokable interfaces, remotable classes
that represent complex types, and any remotable exceptions.

By default, when you publish a WSDL document, it indicates that the services are available at the same URL as the
one where you published the WSDL document (but with a different path). If you are deploying multiple versions of
your Web Service application, or if you are publishing the WSDL document from a different application than the one
that implements the Web Service, you will need to change the WSDL document so that it includes updated
information on where to locate the Web Service.

To change the URL, use the WSDL administrator. The first step is to enable the administrator. You do this by setting
the AdminEnabled property of the TWSDLHTMLPublish component to true. Then, when you use your browser to
display the list of WSDL documents, it includes a button to administer them as well. Use the WSDL administrator to
specify the locations (URLs) where you have deployed your Web Service application.

Writing Clients for Web Services
You can write clients that access Web Services that you have written, or any other Web Service that is defined in a
WSDL document. There are three steps to writing an application that is the client of a Web Service:

Importing the definitions from a WSDL document.
Obtaining an invokable interface and calling it to invoke the Web Service.
Processing the headers of the SOAP messages that pass between the client and the server.

Importing WSDL Documents
Before you can use a Web Service, your application must define and register the invokable interfaces and types that
are included in the Web Service application. To obtain these definitions, you can import a WSDL document (or XML
file) that defines the service. The WSDL importer creates a unit that defines and registers the interfaces, headers,
and types you need to use.

Calling Invokable Interfaces
To call an invokable interface, your client application must include any definitions of the invokable interfaces and
any remotable classes that implement complex types.

If the server is written in Delphi, you can use the same units that the server application uses to define and register
these interfaces and classes instead of the files generated by importing a WSDL file. Be sure that the unit uses the
same namespace URI and SOAPAction header when it registers invokable interfaces. These values can be explicitly
specified in the code that registers the interfaces, or it can be automatically generated. If it is automatically generated,
the unit that defines the interfaces must have the same name in both client and server, and both client and server
must define the global AppNameSpacePrefix variable to have the same value.

Once you have the definition of the invokable interface, there are two ways you can obtain an instance to call:

If you imported a WSDL document, the importer automatically generates a global function that returns the
interface, which you can then call.
You can use a remote interfaced object.

2174

Obtaining an invokable interface from the generated function
The WSDL importer automatically generates a function from which you can obtain the invokable interfaces you
imported. For example, if you imported a WSDL document that defined an invokable interface named
IServerInterface, the generated unit would include the following global function:

[Delphi]
function GetIServerInterface(UseWSDL: Boolean; Addr: string): IServerInterface;

[C++]
_di_IServerInterface GetIServerInterface(bool UseWSDL, AnsiString Addr);

The generated function takes two parameters: UseWSDL and Addr. UseWSDL indicates whether to look up the
location of the server from a WSDL document (true), or whether the client application supplies the URL for the server
(false).

When UseWSDL is false, Addr is the URL for the Web Service. When UseWSDL is true, Addr is the URL of a WSDL
document that describes the Web Service you are calling. If you supply an empty string, this defaults to the document
you imported. This second approach is best if you expect that the URL for the Web Service may change, or that
details such as the namespace or SOAP Action header may change. Using this second approach, this information
is looked up dynamically at the time your application makes the method call.

Note: The generated function uses an internal remote interfaced object to implement the invokable interface. If you
are using this function and find you need to access that underlying remote interfaced object, you can obtain
an IRIOAccess interface from the invokable interface, and use that to access the remote interfaced object:

[Delphi]
var
 Interf: IServerInterface;
 RIOAccess: IRIOAccess;
 X: THTTPRIO;
begin
 Intrf := GetIServerInterface(True,
 'http://MyServices.org/scripts/AppServer.dll/wsdl');
 RIOAccess := Intrf as IRIOAccess;
 X := RIOAccess.RIO as THTTPRIO;

Using a remote interfaced object
If you do not use the global function to obtain the invokable interface you want to call, you can create an instance
of THTTPRio for the desired interface:

[Delphi]
X := THTTPRio.Create(nil);

[C++]
X = new THTTPRio(NULL);

Note: It is important that you do not explicitly destroy the THTTPRio instance. If it is created without an Owner (as
in the previous line of code), it automatically frees itself when its interface is released. If it is created with an
Owner, the Owner is responsible for freeing the THTTPRio instance.

2175

Once you have an instance of THTTPRio, provide it with the information it needs to identify the server interface and
locate the server. There are two ways to supply this information:

If you do not expect the URL for the Web Service or the namespaces and soap Action headers it requires to change,
you can simply specify the URL for the Web Service you want to access. THTTPRio uses this URL to look up the
definition of the interface, plus any namespace and header information, based on the information in the invocation
registry. Specify the URL by setting the URL property to the location of the server:

[Delphi]
X.URL := 'http://www.myco.com/MyService.dll/SOAP/IServerInterface';

If you want to look up the URL, namespace, or Soap Action header from the WSDL document dynamically at runtime,
you can use the WSDLLocation, Service, and Port properties, and it will extract the necessary information from the
WSDL document:

[Delphi]
X.WSDLLocation := 'Cryptography.wsdl';
X.Service := 'Cryptography';
X.Port := 'SoapEncodeDecode';

After specifying how to locate the server and identify the interface, you can obtain an interface pointer for the
invokable interface from the THTTPRio object. You obtain this interface pointer using the as operator. Simply cast
the THTTPRio instance to the invokable interface:

[Delphi]
InterfaceVariable := X as IEncodeDecode;
Code := InterfaceVariable.EncodeValue(5);

[C++]
_di_IEncodeDecode InterfaceVariable;
if (X->QueryInterface(InterfaceVariable) == S_OK)
{
 Code = InterfaceVariable->EncodeValue(5);
}

When you obtain the interface pointer, THTTPRio creates a vtable for the associated interface dynamically in
memory, enabling you to make interface calls.

THTTPRio relies on the invocation registry to obtain information about the invokable interface. If the client application
does not have an invocation registry, or if the invokable interface is not registered, THTTPRio can't build its in-
memory vtable.

Warning: If you assign the interface you obtain from THTTPRio to a global variable, you must change that
assignment to nil before shutting down your application. For example, if InterfaceVariable in the previous
code sample is a global variable, rather than stack variable, you must release the interface before the
THTTPRio object is freed. Typically, this code goes in the OnDestroy event handler of the form or data
module:

[Delphi]
procedure TForm1.FormDestroy(Sender: TObject);
begin
 InterfaceVariable := nil;
end;

2176

[C++]
void __fastcall TForm1::FormDestroy(TObject *Sender)
{
 InterfaceVariable = NULL;
}

The reason you must reassign a global interface variable to nil is because THTTPRio builds its vtable dynamically
in memory. That vtable must still be present when the interface is released. If you do not release the interface along
with the form or data module, it is released when the global variable is freed on shutdown. The memory for global
variables may be freed after the form or data module that contains the THTTPRio object, in which case the vtable
will not be available when the interface is released.

Processing Headers in Client Applications
If the Web Service application you are calling expects your client to include any headers in its requests or if its
response messages include special headers, your client application needs the definitions of the header classes that
correspond to these headers. When you import a WSDL document that describes the Web Service application, the
importer automatically generates code to declare these header classes and register them with the remotable type
registry. If the server is written in Delphi, you can use the same units that the server application uses to define and
register these header classes instead of the files generated by importing a WSDL file. Be sure that the unit uses the
same namespace URI and SOAPAction header when it registers invokable interfaces. These values can be explicitly
specified in the code that registers the interfaces, or it can be automatically generated. If it is automatically generated,
the unit that defines the interfaces must have the same name in both client and server, and both client and server
must define the global AppSpacePrefix variable to have the same value.

Note: For more information about header classes, see Defining and using SOAP headers.

As with a server, client applications use the ISOAPHeaders interface to access incoming headers and add outgoing
headers. The remote interfaced object that you use to call invokable interfaces implements the ISOAPHeaders
interface. However, you can't obtain an ISOAPHeaders interface directly from the remote interfaced object. This is
because when you try to obtain an interface directly from a remote interfaced object, it generates an in-memory
vtable, assuming that the interface is an invokable interface. Thus, you must obtain the ISOAPHeaders interface
from the invokable interface rather than from the remote interfaced object:

var
 Service: IMyService;
 Hdr: TAuthHeader;
 Val: Double;
begin
 Service := HTTPRIO1 as IService;
 Hdr := TAUthHeader.Create;
 try
 Hdr.Name := "Frank Borland";
 Hdr.Password := "SuperDelphi";
 (Service as ISOAPHeaders).Send(Hdr); { add the header to outgoing message }
 Val := Service.GetQuote("BORL"); { invoke the service }
 finally
 Hdr.Free;
 end;
end;

2177

Working with sockets

Working with Sockets
The socket components let you create an application that can communicate with other systems using TCP/IP and
related protocols. Using sockets, you can read and write over connections to other machines without worrying about
the details of the underlying networking software. Sockets provide connections based on the TCP/IP protocol, but
are sufficiently general to work with related protocols such as User Datagram Protocol (UDP), Xerox Network System
(XNS), Digital's DECnet, or Novell's IPX/SPX family.

Using sockets, you can write network servers or client applications that read from and write to other systems. A
server or client application is usually dedicated to a single service such as Hypertext Transfer Protocol (HTTP) or
File Transfer Protocol (FTP). Using server sockets, an application that provides one of these services can link to
client applications that want to use that service. Client sockets allow an application that uses one of these services
to link to server applications that provide the service.

To write applications that use sockets, you should understand

Implementing services
Types of socket connections
Describing sockets
Using socket components
Responding to socket events
Reading and writing over socket connections

Implementing Services
Sockets provide one of the pieces you need to write network servers or client applications. For many services, such
as HTTP or FTP, third party servers are readily available. Some are even bundled with the operating system, so that
there is no need to write one yourself. However, when you want more control over the way the service is implemented,
a tighter integration between your application and the network communication, or when no server is available for the
particular service you need, then you may want to create your own server or client application. For example, when
working with distributed data sets, you may want to write a layer to communicate with databases on other systems.

To implement or use a service using sockets, you must understand

service protocols
services and ports

2178

Understanding Service Protocols
Before you can write a network server or client, you must understand the service that your application is providing
or using. Many services have standard protocols that your network application must support. If you are writing a
network application for a standard service such as HTTP, FTP, or even finger or time, you must first understand the
protocols used to communicate with other systems. See the documentation on the particular service you are
providing or using.

If you are providing a new service for an application that communicates with other systems, the first step is designing
the communication protocol for the servers and clients of this service. What messages are sent? How are these
messages coordinated? How is the information encoded?

Communicating with applications
Often, your network server or client application provides a layer between the networking software and an application
that uses the service. For example, an HTTP server sits between the Internet and a Web server application that
provides content and responds to HTTP request messages.

Sockets provide the interface between your network server or client application and the networking software. You
must provide the interface between your application and the clients that use it. You can copy the API of a standard
third party server (such as Apache), or you can design and publish your own API.

Services and Ports
Most standard services are associated, by convention, with specific port numbers. When implementing services,
you can consider the port number a numeric code for the service.

Types of Socket Connections
Socket connections can be divided into three basic types, which reflect how the connection was initiated and what
the local socket is connected to. These are

Client connections.
Listening connections.
Server connections.

Once the connection to a client socket is completed, the server connection is indistinguishable from a client
connection. Both end points have the same capabilities and receive the same types of events. Only the listening
connection is fundamentally different, as it has only a single endpoint.

Client Connections
Client connections connect a client socket on the local system to a server socket on a remote system. Client
connections are initiated by the client socket. First, the client socket must describe the server socket to which it
wishes to connect. The client socket then looks up the server socket and, when it locates the server, requests a
connection. The server socket may not complete the connection right away. Server sockets maintain a queue of
client requests, and complete connections as they find time. When the server socket accepts the client connection,
it sends the client socket a full description of the server socket to which it is connecting, and the connection is
completed by the client.

Listening Connections
Server sockets do not locate clients. Instead, they form passive "half connections" that listen for client requests.
Server sockets associate a queue with their listening connections; the queue records client connection requests as

2179

they come in. When the server socket accepts a client connection request, it forms a new socket to connect to the
client, so that the listening connection can remain open to accept other client requests.

Server Connections
Server connections are formed by server sockets when a listening socket accepts a client request. A description of
the server socket that completes the connection to the client is sent to the client when the server accepts the
connection. The connection is established when the client socket receives this description and completes the
connection.

Describing Sockets
Sockets let your network application communicate with other systems over the network. Each socket can be viewed
as an endpoint in a network connection. It has an address that specifies:

The system on which it is running.
The types of interfaces it understands.
The port it is using for the connection.

A full description of a socket connection includes the addresses of the sockets on both ends of the connection. You
can describe the address of each socket endpoint by supplying both the IP address or host and the port number.

Before you can make a socket connection, you must fully describe the sockets that form its endpoints. Some of the
information is available from the system your application is running on. For instance, you do not need to describe
the local IP address of a client socket—this information is available from the operating system.

The information you must provide depends on the type of socket you are working with. Client sockets must describe
the server they want to connect to. Listening server sockets must describe the port that represents the service they
provide.

Describing the Host
The host is the system that is running the application that contains the socket. You can describe the host for a socket
by giving its IP address, which is a string of four numeric (byte) values in the standard Internet dot notation, such as

123.197.1.2

A single system may support more than one IP address.

IP addresses are often difficult to remember and easy to mistype. An alternative is to use the host name. Host names
are aliases for the IP address that you often see in Uniform Resource Locators (URLs). They are strings containing
a domain name and service, such as

http://www.ASite.com

Most Intranets provide host names for the IP addresses of systems on the Internet. You can learn the host name
associated with any IP address (if one already exists) by executing the following command from a command prompt:

nslookup IPADDRESS

where IPADDRESS is the IP address you're interested in. If your local IP address doesn't have a host name and
you decide you want one, contact your network administrator. It is common for computers to refer to themselves
with the name localhost and the IP number 127.0.0.1.

2180

Server sockets do not need to specify a host. The local IP address can be read from the system. If the local system
supports more than one IP address, server sockets will listen for client requests on all IP addresses simultaneously.
When a server socket accepts a connection, the client socket provides the remote IP address.

Client sockets must specify the remote host by providing either its host name or IP address.

Choosing between a host name and an IP address
Most applications use the host name to specify a system. Host names are easier to remember, and easier to check
for typographical errors. Further, servers can change the system or IP address that is associated with a particular
host name. Using a host name allows the client socket to find the abstract site represented by the host name, even
when it has moved to a new IP address.

If the host name is unknown, the client socket must specify the server system using its IP address. Specifying the
server system by giving the IP address is faster. When you provide the host name, the socket must search for the
IP address associated with the host name, before it can locate the server system.

Using Ports
While the IP address provides enough information to find the system on the other end of a socket connection, you
also need a port number on that system. Without port numbers, a system could only form a single connection at a
time. Port numbers are unique identifiers that enable a single system to host multiple connections simultaneously,
by giving each connection a separate port number.

One way to look at port numbers is as numeric codes for the services implemented by network applications. This is
a convention that allows listening server connections to make themselves available on a fixed port number so that
they can be found by client sockets. Server sockets listen on the port number associated with the service they
provide. When they accept a connection to a client socket, they create a separate socket connection that uses a
different, arbitrary, port number. This way, the listening connection can continue to listen on the port number
associated with the service.

Client sockets use an arbitrary local port number, as there is no need for them to be found by other sockets. They
specify the port number of the server socket to which they want to connect so that they can find the server application.
Often, this port number is specified indirectly, by naming the desired service.

Using Socket Components
The Internet category includes three socket components that allow your network application to form connections to
other machines, and that allow you to read and write information over that connection. These are:

TTcpServer
TTcpClient
TUdpSocket

Associated with each of these socket components are socket objects, which represent the endpoint of an actual
socket connection. The socket components use the socket objects to encapsulate the socket server calls, so that
your application does not need to be concerned with the details of establishing the connection or managing the
socket messages.

If you want to customize the details of the connections that the socket components make on your behalf, you can
use the properties, events, and methods of the socket objects.

Getting Information About the Connection
After completing the connection to a client or server socket, you can use the client or server socket object associated
with your socket component to obtain information about the connection. Use the LocalHost and LocalPort properties

2181

to determine the address and port number used by the local client or server socket, or use the RemoteHost and
RemotePort properties to determine the address and port number used by the remote client or server socket. Use
the GetSocketAddr method to build a valid socket address based on the host name and port number. You can use
the LookupPort method to look up the port number. Use the LookupProtocol method to look up the protocol number.
Use the LookupHostName method to look up the host name based on the host machine's IP address.

To view network traffic in and out of the socket, use the BytesSent and BytesReceived properties.

Using Client Sockets
Add a TTcpClient or TUdpSocket component to your form or data module to turn your application into a TCP/IP or
UDP client. Client sockets allow you to specify the server socket you want to connect to, and the service you want
that server to provide. Once you have described the desired connection, you can use the client socket component
to complete the connection to the server.

Each client socket component uses a single client socket object to represent the client endpoint in a connection.

Use client sockets to

Specify the desired server.
Connect to the server.
Get information about the connection.
Read from or write to the server.
Close the connection.

Specifying the Desired Server
Client socket components have a number of properties that allow you to specify the server system and port to which
you want to connect. Use the RemoteHost property to specify the remote host server by either its host name or IP
address.

In addition to the server system, you must specify the port on the server system that your client socket will connect
to. You can use the RemotePort property to specify the server port number directly or indirectly by naming the target
service.

Forming the Connection
Once you have set the properties of your client socket component to describe the server you want to connect to,
you can form the connection at runtime by calling the Open method. If you want your application to form the
connection automatically when it starts up, set the Active property to True at design time, using the Object Inspector.

Getting Information About the Connection
After completing the connection to a server socket, you can use the client socket object associated with your client
socket component to obtain information about the connection. Use the LocalHost and LocalPort properties to
determine the address and port number used by the client and server sockets to form the end points of the
connection. You can use the Handle property to obtain a handle to the socket connection to use when making socket
calls.

2182

Closing the Connection
When you have finished communicating with a server application over the socket connection, you can shut down
the connection by calling the Close method. The connection may also be closed from the server end. If that is the
case, you will receive notification in an OnDisconnect event.

Using Server Sockets
Add a server socket component (TTcpServer or TUdpSocket) to your form or data module to turn your application
into an IP server. Server sockets allow you to specify the service you are providing or the port you want to use to
listen for client requests. You can use the server socket component to listen for and accept client connection requests.

Each server socket component uses a single server socket object to represent the server endpoint in a listening
connection. It also uses a server client socket object for the server endpoint of each active connection to a client
socket that the server accepts.

Use server sockets to

Specify the port.
Listen for client requests.
Connect to clients.
Read from or write to the server.
Close server connections.

Specifying the Port
Before your server socket can listen to client requests, you must specify the port that your server will listen on. You
can specify this port using the LocalPort property. If your server application is providing a standard service that is
associated by convention with a specific port number, you can also specify the service name using the LocalPort
property. It is a good idea to use the service name instead of a port number, because it is easy to introduce
typographical errors when specifying the port number.

Listening for Client Requests
Once you have set the port number of your server socket component, you can form a listening connection at runtime
by calling the Open method. If you want your application to form the listening connection automatically when it starts
up, set the Active property to True at design time, using the Object Inspector.

Connecting to Clients
A listening server socket component automatically accepts client connection requests when they are received. You
receive notification every time this occurs in an OnAccept event.

Closing Server Connections
When you want to shut down the listening connection, call the Close method or set the Active property to False. This
shuts down all open connections to client applications, cancels any pending connections that have not been
accepted, and then shuts down the listening connection so that your server socket component does not accept any
new connections.

2183

When TCP clients shut down their individual connections to your server socket, you are informed by an OnDisconnect
event.

Responding to Socket Events
When writing applications that use sockets, you can write or read to the socket anywhere in the program. You can
write to the socket using the SendBuf, SendStream, or Sendln methods in your program after the socket has been
opened. You can read from the socket using the similarly-named methods ReceiveBuf and Receiveln. The
OnSend and OnReceive events are triggered every time something is written or read from the socket. They can be
used for filtering. Every time you read or write, a read or write event is triggered.

Both client sockets and server sockets generate error events when they receive error messages from the connection.

Socket components also receive two events in the course of opening and completing a connection. If your application
needs to influence how the opening of the socket proceeds, you must use the SendBuf and ReceiveBuf methods to
respond to these client events or server events.

Error Events
Client and server sockets generate OnError events when they receive error messages from the connection. You
can write an OnError event handler to respond to these error messages. The event handler is passed information
about

What socket object received the error notification.
What the socket was trying to do when the error occurred.
The error code that was provided by the error message.

You can respond to the error in the event handler, and change the error code to 0 to prevent the socket from raising
an exception.

Client Events
When a client socket opens a connection, the following events occur:

The socket is set up and initialized for event notification.
An OnCreateHandle event occurs after the server and server socket is created. At this point, the socket object
available through the Handle property can provide information about the server or client socket that will form
the other end of the connection. This is the first chance to obtain the actual port used for the connection, which
may differ from the port of the listening sockets that accepted the connection.
The connection request is accepted by the server and completed by the client socket.
When the connection is established, the OnConnect notification event occurs.

Server Events
Server socket components form two types of connections: listening connections and connections to client
applications. The server socket receives events during the formation of each of these connections.

2184

Events when listening
Just before the listening connection is formed, the OnListening event occurs. You can use its Handle property to
make changes to the socket before it is opened for listing. For example, if you want to restrict the IP addresses the
server uses for listening, you would do that in an OnListening event handler.

Events with client connections
When a server socket accepts a client connection request, the following events occur:

An OnAccept event occurs, passing in the new TTcpClient object to the event handler. This is the first point
when you can use the properties of TTcpClient to obtain information about the server endpoint of the connection
to a client.
If BlockMode is bmThreadBlocking an OnGetThread event occurs. If you want to provide your own customized
descendant of ServerSocketThread, you can create one in an OnGetThread event handler, and that will be
used instead of TServerSocketThread. If you want to perform any initialization of the thread, or make any socket
API calls before the thread starts reading or writing over the connection, you should use the OnGetThread event
handler for these tasks as well.
The client completes the connection and an OnAccept event occurs. With a non-blocking server, you may want
to start reading or writing over the socket connection at this point.

Reading and Writing Over Socket Connections
The reason you form socket connections to other machines is so that you can read or write information over those
connections. What information you read or write, or when you read it or write it, depends on the service associated
with the socket connection.

Reading and writing over sockets can occur asynchronously, so that it does not block the execution of other code
in your network application. This is called a non-blocking connection. You can also form blocking connections, where
your application waits for the reading or writing to be completed before executing the next line of code.

Non-blocking Connections
Non-blocking connections read and write asynchronously, so that the transfer of data does not block the execution
of other code in you network application. To create a non-blocking connection for client or server sockets, set the
BlockMode property to bmNonBlocking.

When the connection is non-blocking, reading and writing events inform your socket when the socket on the other
end of the connection tries to read or write information.

Reading and Writing Events
Non-blocking sockets generate reading and writing events when they need to read or write over the connection. You
can respond to these notifications in an OnReceive or OnSend event handler.

The socket object associated with the socket connection is provided as a parameter to the read or write event
handlers. This socket object provides a number of methods to allow you to read or write over the connection.

To read from the socket connection, use the ReceiveBuf or Receiveln method. To write to the socket connection,
use the SendBuf, SendStream, or Sendln.

2185

Blocking Connections
When the connection is blocking, your socket must initiate reading or writing over the connection. It cannot wait
passively for a notification from the socket connection. Use a blocking socket when your end of the connection is in
charge of when reading and writing takes place.

For client or server sockets, set the BlockMode property to bmBlocking to form a blocking connection. Depending
on what else your client application does, you may want to create a new execution thread for reading or writing, so
that your application can continue executing code on other threads while it waits for the reading or writing over the
connection to be completed.

For server sockets, set the BlockMode property to bmBlocking or bmThreadBlocking to form a blocking connection.
Because blocking connections hold up the execution of all other code while the socket waits for information to be
written or read over the connection, server socket components always spawn a new execution thread for every client
connection when the BlockMode is bmThreadBlocking. When the BlockMode is bmBlocking, program execution is
blocked until a new connection is established.

2186

Developing COM-based Applications

2187

COM basics

Overview of COM Technologies
Delphi provides wizards and classes to make it easy to implement applications based on the Component Object
Model (COM) from Microsoft. With these wizards, you can create COM-based classes and components to use within
applications or you can create fully functional COM clients or servers that implement COM objects, Automation
servers (including Active Server Objects), ActiveX controls, or ActiveForms.

COM is a language-independent software component model that enables interaction between software components
and applications running on a Windows platform. The key aspect of COM is that it enables communication between
components, between applications, and between clients and servers through clearly defined interfaces. Interfaces
provide a way for clients to ask a COM component which features it supports at runtime. To provide additional
features for your component, you simply add an additional interface for those features.

Applications can access the interfaces of COM components that exist on the same computer as the application or
that exist on another computer on the network using a mechanism called Distributed COM (DCOM). For more
information on clients, servers, and interfaces see Parts of a COM Application.

COM as a specification and implementation
COM is both a specification and an implementation. The COM specification defines how objects are created and
how they communicate with each other. According to this specification, COM objects can be written in different
languages, run in different process spaces and on different platforms. As long as the objects adhere to the written
specification, they can communicate. This allows you to integrate legacy code as a component with new components
implemented in object-oriented languages.

The COM implementation is built into the Win32 subsystem, which provides a number of core services that support
the written specification. The COM library contains a set of standard interfaces that define the core functionality of
a COM object, and a small set of API functions designed for the purpose of creating and managing COM objects.

When you use Delphi wizards and VCL objects in your application, you are using Delphi’s implementation of the
COM specification. In addition, Delphi provides some wrappers for COM services for those features that it does not
implement directly. You can find these wrappers defined in the ComObj unit and the API definitions in the
AxCtrls unit.

Note: Delphi’s interfaces and language follow the COM specification. Delphi implements objects conforming to the
COM spec using a set of classes called the Delphi ActiveX framework (DAX). These classes are found in the
AxCtrls, OleCtrls, and OleServer units. In addition, the Delphi interface to the COM API is in ActiveX.
pas and ComSvcs.pas.

2188

COM extensions
As COM has evolved, it has been extended beyond the basic COM services. COM serves as the basis for other
technologies such as Automation, ActiveX controls, and Active Directories. For details on COM extensions, see
COM Extensions.

Delphi provides wizards to easily implement applications that incorporate the above technologies in the Delphi
environment. For details, see Implementing COM Objects with Wizards.

Parts of a COM Application
When implementing a COM application, you supply the following:

COM interface The way in which an object exposes its services externally to clients. A COM object provides an interface for
each set of related methods and properties. Note that COM properties are not identical to properties on VCL
objects. COM properties always use read and write access methods.

COM server A module, either an EXE, DLL, or OCX, that contains the code for a COM object. Object implementations
reside in servers. A COM object implements one or more interfaces.

COM client The code that calls the interfaces to get the requested services from the server. Clients know what they want
to get from the server (through the interface); clients do not know the internals of how the server provides the
services. Delphi eases the process in creating a client by letting you install COM servers (such as a Word
document or PowerPoint slide) as components on the Tool Palette. This allows you to connect to the server
and hook its events through the Object Inspector.

COM Interfaces
COM clients communicate with objects through COM interfaces. Interfaces are groups of logically or semantically
related routines which provide communication between a provider of a service (server object) and its clients. The
standard way to depict a COM interface is as follows:

For example, every COM object must implement the basic interface, IUnknown. Through a routine called
QueryInterface in IUnknown, clients can request other interfaces implemented by the server.

Objects can have multiple interfaces, where each interface implements a feature. An interface provides a way to
convey to the client what service it provides, without providing implementation details of how or where the object
provides this service.

Key aspects of COM interfaces are as follows:

Once published, interfaces are immutable; that is, they do not change. You can rely on an interface to provide
a specific set of functions. Additional functionality is provided by additional interfaces.
By convention, COM interface identifiers begin with a capital I and a symbolic name that defines the interface,
such as IMalloc or IPersist.
Interfaces are guaranteed to have a unique identification, called a Globally Unique Identifier (GUID), which
is a 128-bit randomly generated number. Interface GUIDs are called Interface Identifiers (IIDs). This eliminates
naming conflicts between different versions of a product or different products.
Interfaces are language independent. You can use any language to implement a COM interface as long as the
language supports a structure of pointers, and can call a function through a pointer either explicitly or implicitly.

2189

Interfaces are not objects themselves; they provide a way to access an object. Therefore, clients do not access
data directly; clients access data through an interface pointer. Windows 2000 adds an additional layer of
indirection known as an interceptor through which it provides COM+ features such as just-in-time activation and
object pooling.
Interfaces are always inherited from the fundamental interface, IUnknown.
Interfaces can be redirected by COM through proxies to enable interface method calls to call between threads,
processes, and networked machines, all without the client or server objects ever being aware of the redirection.
For more information, see In-process, out-of-process, and remote servers.

The Fundamental COM Interface, IUnknown
All COM objects must support the fundamental interface, called IUnknown, a typedef to the base interface type
IInterface. IUnknown contains the following routines:

QueryInterface Provides pointers to other interfaces that the object supports.

AddRef and Release Simple reference counting methods that keep track of the object's lifetime so that an object can delete
itself when the client no longer needs its service.

Clients obtain pointers to other interfaces through the IUnknown method, QueryInterface. QueryInterface knows
about every interface in the server object and can give a client a pointer to the requested interface. When receiving
a pointer to an interface, the client is assured that it can call any method of the interface.

Objects track their own lifetime through the IUnknown methods, AddRef and Release, which are simple reference
counting methods. As long as an object's reference count is nonzero, the object remains in memory. Once the
reference count reaches zero, the interface implementation can safely dispose of the underlying object(s).

COM Interface Pointers
An interface pointer is a pointer to an object instance that points, in turn, to the implementation of each method in
the interface. The implementation is accessed through an array of pointers to these methods, which is called a
vtable. Vtables are similar to the mechanism used to support virtual functions in Delphi. Because of this similarity,
the compiler can resolve calls to methods on the interface the same way it resolves calls to methods on Delphi
classes.

The vtable is shared among all instances of an object class, so for each object instance, the object code allocates
a second structure that contains its private data. The client's interface pointer, then, is a pointer to the pointer to the
vtable, as shown in the following diagram.

2190

In Windows 2000 and subsequent versions of Windows, when an object is running under COM+, an added level of
indirection is provided between the interface pointer and the vtable pointer. The interface pointer available to the
client points at an interceptor, which in turn points at the vtable. This allows COM+ to provide such services as just-
in-time activation, whereby the server can be deactivated and reactivated dynamically in a way that is opaque to the
client. To achieve this, COM+ guarantees that the interceptor behaves as if it were an ordinary vtable pointer.

COM Servers
A COM server is an application or a library that provides services to a client application or library. A COM server
consists of one or more COM objects, where a COM object is a set of properties and methods.

Clients do not know how a COM object performs its service; the object's implementation remains encapsulated. An
object makes its services available through its interfaces.

In addition, clients do not need to know where a COM object resides. COM provides transparent access regardless
of the object's location.

When a client requests a service from a COM object, the client passes a class identifier (CLSID) to COM. A CLSID
is simply a GUID that identifies a COM object. COM uses this CLSID, which is registered in the system registry, to
locate the appropriate server implementation. Once the server is located, COM brings the code into memory, and
has the server instantiate an object instance for the client. This process is handled indirectly, through a special object
called a class factory (based on interfaces) that creates instances of objects on demand.

As a minimum, a COM server must perform the following:

Register entries in the system registry that associate the server module with the class identifier (CLSID).
Implement a class factory object, which manufactures another object of a particular CLSID.
Expose the class factory to COM.
Provide an unloading mechanism through which a server that is not servicing clients can be removed from
memory.

Note: Delphi wizards automate the creation of COM objects and servers.

CoClasses and Class Factories
A COM object is an instance of a CoClass, which is a class that implements one or more COM interfaces. The COM
object provides the services as defined by its interfaces.

CoClasses are instantiated by a special type of object called a class factory. Whenever an object's services are
requested by a client, a class factory creates an object instance for that particular client. Typically, if another client
requests the object's services, the class factory creates another object instance to service the second client. (Clients
can also bind to running COM objects that register themselves to support it.)

A CoClass must have a class factory and a class identifier (CLSID) so that it can be instantiated externally, that is,
from another module. Using these unique identifiers for CoClasses means that they can be updated whenever new
interfaces are implemented in their class. A new interface can modify or add methods without affecting older versions,
which is a common problem when using DLLs.

Delphi wizards take care of assigning class identifiers and of implementing and instantiating class factories.

In-process, Out-of-process, and Remote Servers
With COM, a client does not need to know where an object resides, it simply makes a call to an object's interface.
COM performs the necessary steps to make the call. These steps differ depending on whether the object resides in

2191

the same process as the client, in a different process on the client machine, or in a different machine across the
network. The different types of servers are known as:

In-process server A library (DLL) running in the same process space as the client, for example, an
ActiveX control embedded in a Web page viewed under Internet Explorer or Netscape.
Here, the ActiveX control is downloaded to the client machine and invoked within the
same process as the Web browser.

The client communicates with the in-process server using direct calls to the COM
interface.

Out-of-process server (or local server) Another application (EXE) running in a different process space but on the same
machine as the client. For example, an Excel spreadsheet embedded in a Word
document are two separate applications running on the same machine.

The local server uses COM to communicate with the client.

Remote server A DLL or another application running on a different machine from that of the client.
For example, a Delphi database application is connected to an application server on
another machine in the network.

The remote server uses distributed COM (DCOM) to access interfaces and
communicate with the application server.

As shown in the following figure, for in-process servers, pointers to the object interfaces are in the same process
space as the client, so COM makes direct calls into the object implementation.

Note: This is not always true under COM+. When a client makes a call to an object in a different context, COM+
intercepts the call so that it behaves like a call to an out-of-process server (see below), even if the server is
in-process.

As shown in the following figure, when the process is either in a different process or in a different machine altogether,
COM uses a proxy to initiate remote procedure calls. The proxy resides in the same process as the client, so from
the client's perspective, all interface calls look alike. The proxy intercepts the client's call and forwards it to where
the real object is running. The mechanism that enables the client to access objects in a different process space, or
even different machine, as if they were in their own process, is called marshaling.

2192

The difference between out-of-process and remote servers is the type of interprocess communication used. The
proxy uses COM to communicate with an out-of-process server, it uses distributed COM (DCOM) to communicate
with a remote machine. DCOM transparently transfers a local object request to the remote object running on a
different machine.

Note: For remote procedure calls, DCOM uses the RPC protocol provided by Open Group's Distributed Computing
Environment (DCE). For distributed security, DCOM uses the NT LAN Manager (NTLM) security protocol.
For directory services, DCOM uses the Domain Name System (DNS).

The Marshaling Mechanism
Marshaling is the mechanism that allows a client to make interface function calls to remote objects in another process
or on a different machine. Marshaling

Takes an interface pointer in the server's process and makes a proxy pointer available to code in the client
process.
Transfers the arguments of an interface call as passed from the client and places the arguments into the remote
object's process space.

For any interface call, the client pushes arguments onto a stack and makes a function call through the interface
pointer. If the call to the object is not in-process, the call gets passed to the proxy. The proxy packs the arguments
into a marshaling packet and transmits the structure to the remote object. The object's stub unpacks the packet,
pushes the arguments onto the stack, and calls the object's implementation. In essence, the object recreates the
client's call in its own address space.

The type of marshaling that occurs depends on what interface the COM object implements. Objects can use a
standard marshaling mechanism provided by the IDispatch interface. This is a generic marshaling mechanism that
enables communication through a system-standard remote procedure call (RPC). For details on the IDispatch
interface, see Automation Interfaces. Even if the object does not implement IDispatch, if it limits itself to automation-
compatible types and has a registered type library, COM automatically provides marshaling support.

2193

Applications that do not limit themselves to automation-compatible types or register a type library must provide their
own marshaling. Marshaling is provided either through an implementation of the IMarshal interface, or by using a
separately generated proxy/stub DLL. Delphi does not support the automatic generation of proxy/stub DLLs.

Automation Servers
Sometimes, a server object makes use of another COM object to perform some of its functions. For example, an
inventory management object might make use of a separate invoicing object to handle customer invoices. If the
inventory management object wants to present the invoice interface to clients, however, there is a problem: Although
a client that has the inventory interface can call QueryInterface to obtain the invoice interface, when the invoice
object was created it did not know about the inventory management object and can't return an inventory interface
in response to a call to QueryInterface. A client that has the invoice interface can't get back to the inventory interface.

To avoid this problem, some COM objects support aggregation. When the inventory management object creates
an instance of the invoice object, it passes it a copy of its own IUnknown interface. The invoice object can then use
that IUnknown interface to handle any QueryInterface calls that request an interface, such as the inventory interface,
that it does not support. When this happens, the two objects together are called an aggregate. The invoice object is
called the inner, or contained object of the aggregate, and the inventory object is called the outer object.

Note: In order to act as the outer object of an aggregate, a COM object must create the inner object using the
Windows API CoCreateInstance or CoCreateInstanceEx, passing its IUnknown pointer as a parameter that
the inner object can use for QueryInterface calls.

In order to create an object that can act as the inner object of an aggregate, it must descend from TContainedObject.
When the object is created, the IUnknown interface of the outer object is passed to the constructor so that it can be
used by the QueryInterface method on calls that the inner object can't handle.

COM Clients
Clients can always query the interfaces of a COM object to determine what it is capable of providing. All COM objects
allow clients to request known interfaces. In addition, if the server supports the IDispatch interface, clients can query
the server for information about what methods the interface supports. Server objects have no expectations about
the client using its objects. Similarly, clients don't need to know how (or even where) an object provides the services;
they simply rely on server objects to provide the services they advertise through their interfaces.

There are two types of COM clients, controllers and containers. Controllers launch the server and interact with it
through its interface. They request services from the COM object or drive it as a separate process. Containers host
visual controls or objects that appear in the container's user interface. They use predefined interfaces to negotiate
display issues with server objects. It is impossible to have a container relationship over DCOM; for example, visual
controls that appear in the container's user interface must be located locally. This is because the controls are
expected to paint themselves, which requires that they have access to local GDI resources.

Delphi makes it easier for you to develop COM clients by letting you import a type library or ActiveX control into a
component wrapper so that server objects look like other VCL components. For details on this process, see Creating
COM clients

COM Extensions
COM was originally designed to provide core communication functionality and to enable the broadening of this
functionality through extensions. COM itself has extended its core functionality by defining specialized sets of
interfaces for specific purposes.

The following lists some of the services COM extensions currently provide.

2194

Automation servers Automation refers to the ability of an application to control the objects in another
application programmatically. Automation servers are the objects that can be
controlled by other executables at runtime.

ActiveX controls ActiveX controls are specialized in-process servers, typically intended for
embedding in a client application. The controls offer both design and runtime
behaviors as well as events.

Active Server Pages Active Server Pages are scripts that generate HTML pages. The scripting
language includes constructs for creating and running Automation objects. That
is, the Active Server Page acts as an Automation controller.

Active Documents Objects that support linking and embedding, drag-and-drop, visual editing, and
in-place activation. Word documents and Excel spreadsheets are examples of
Active Documents.

COM+ Event and event subscription objects Objects that support the loosely coupled COM+ Events model. Unlike the tightly
coupled model used by ActiveX controls, the COM+ Events model allows you
to develop event publishers independently of event subscribers.

Type libraries A collection of static data structures, often saved as a resource, that provides
detailed type information about an object and its interfaces. Clients of
Automation servers, ActiveX controls, and transactional objects expect type
information to be available.

The following diagram illustrates the relationship of the COM extensions and how they are built upon COM:

2195

COM objects can be visual or non-visual. Some must run in the same process space as their clients; others can run
in different processes or remote machines, as long as the objects provide marshaling support. The following table
summarizes the types of COM objects that you can create, whether they are visual, process spaces they can run
in, how they provide marshaling, and whether they require a type library.

COM object requirements
Object Visual Object? Process space Communication Type library

Active Document Usually In-process, or out-of-
process

OLE Verbs No

Automation Server Occasionally In-process, out-of-
process, or remote

Automatically marshaled
using the IDispatch interface
(for out-of process and
remote servers)

Required for automatic
marshaling

ActiveX Control Usually In-process Automatically marshaled
using the IDispatch interface

Required

COM+ Occasionally In-process for
MTS,any for COM+

Automatically marshaled via
a type library

Required

In-process custom
interface object

Optionally In-process No marshaling required for
in-process servers

Recommended

Other custom interface
object

Optionally In-process,out-of-
process, or remote

Automatically marshaled via
a type library; otherwise,
manually marshaled using
custom interfaces

Recommended

Automation Servers
Automation refers to the ability of an application to control the objects in another application programmatically, like
a macro that can manipulate more than one application at the same time. The server object being manipulated is
called the Automation object, and the client of the Automation object is referred to as an Automation controller.

Automation can be used on in-process, local, and remote servers.

Automation is characterized by two key points:

The Automation object defines a set of properties and commands, and describes their capabilities through type
descriptions. In order to do this, it must have a way to provide information about its interfaces, the interface
methods, and those methods' arguments. Typically, this information is available in a type library. The Automation
server can also generate type information dynamically when queried via its IDispatch interface (see following).
Automation objects make their methods accessible so that other applications can use them. For this, they
implement the IDispatch interface. Through this interface an object can expose all of its methods and properties.
Through the primary method of this interface, the object's methods can be invoked, once having been identified
through type information.

Developers often use Automation to create and use non-visual OLE objects that run in any process space because
the Automation IDispatch interface automates the marshaling process. Automation does, however, restrict the types
that you can use.

For a list of types that are valid for type libraries in general, and Automation interfaces in particular, see Valid types.

2196

Active Server Pages
The Active Server Page (ASP) technology lets you write simple scripts, called Active Server Pages, that can be
launched by clients via a Web server. Unlike ActiveX controls, which run on the client, Active Server Pages run on
the server, and return a resulting HTML page to clients.

Active Server Pages are written in Jscript or VB script. The script runs every time the server loads the Web page.
That script can then launch an embedded Automation server (or Enterprise Java Bean). For example, you can write
an Automation server, such as one to create a bitmap or connect to a database, and this server accesses data that
gets updated every time a client loads the Web page.

Active Server Pages rely on the Microsoft Internet Information Server (IIS) environment to serve your Web pages.

Delphi wizards let you Create Active Server Pages, which is an Automation object specifically designed to work with
an Active Server Page.

ActiveX Controls
ActiveX is a technology that allows COM components, especially controls, to be more compact and efficient. This
is especially necessary for controls that are intended for Intranet applications that need to be downloaded by a client
before they are used.

ActiveX controls are visual controls that run only as in-process servers, and can be plugged into an ActiveX control
container application. They are not complete applications in themselves, but can be thought of as prefabricated OLE
controls that are reusable in various applications. ActiveX controls have a visible user interface, and rely on
predefined interfaces to negotiate I/O and display issues with their host containers.

ActiveX controls make use of Automation to expose their properties, methods, and events. Features of ActiveX
controls include the ability to fire events, bind to data sources, and support licensing.

One use of ActiveX controls is on a Web site as interactive objects in a Web page. As such, ActiveX is a standard
that targets interactive content for the World Wide Web, including the use of ActiveX Documents used for viewing
non-HTML documents through a Web browser. For more information about ActiveX technology, see the Microsoft
ActiveX Web site.

Active Documents
Active Documents (previously referred to as OLE documents) are a set of COM services that support linking and
embedding, drag-and-drop, and visual editing. Active Documents can seamlessly incorporate data or objects of
different formats, such as sound clips, spreadsheets, text, and bitmaps.

Unlike ActiveX controls, Active Documents are not limited to in-process servers; they can be used in cross-process
applications.

Unlike Automation objects, which are almost never visual, Active Document objects can be visually active in another
application. Thus, Active Document objects are associated with two types of data: presentation data, used for visually
displaying the object on a display or output device, and native data, used to edit an object.

Active Document objects can be document containers or document servers. While Delphi does not provide an
automatic wizard for creating Active Documents, you can use the VCL class, TOleContainer, to support linking and
embedding of existing Active Documents.

You can also use TOleContainer as a basis for an Active Document container. To create objects for Active Document
servers, use the COM object wizard and add the appropriate interfaces, depending on the services the object needs
to support. For more information about creating and using Active Document servers, see the Microsoft ActiveX Web
site.

2197

Note: While the specification for Active Documents has built-in support for marshaling in cross-process applications,
Active Documents do not run on remote servers because they use types that are specific to a system on a
given machine such as window handles, menu handles, and so on.

Type Libraries
Type libraries provide a way to get more type information about an object than can be determined from an object's
interface. The type information contained in type libraries provides needed information about objects and their
interfaces, such as what interfaces exist on what objects (given the CLSID), what member functions exist on each
interface, and what arguments those functions require.

You can obtain type information either by querying a running instance of an object or by loading and reading type
libraries. With this information, you can implement a client which uses a desired object, knowing specifically what
member functions you need, and what to pass those member functions.

Clients of Automation servers, ActiveX controls, and transactional objects expect type information to be available.
All of Delphi's wizards generate a type library automatically, although the COM object wizard makes this optional.
You can view or edit this type information by using the Type Library Editor.

The content of type libraries
Type libraries contain type information, which indicates which interfaces exist in which COM objects, and the types
and numbers of arguments to the interface methods. These descriptions include the unique identifiers for the
CoClasses (CLSIDs) and the interfaces (IIDs), so that they can be properly accessed, as well as the dispatch
identifiers (dispIDs) for Automation interface methods and properties.

Type libraries can also contain the following information:

Descriptions of custom type information associated with custom interfaces
Routines that are exported by the Automation or ActiveX server, but that are not interface methods
Information about enumeration, record (structures), unions, alias, and module data types
References to type descriptions from other type libraries

Creating type libraries
With traditional development tools, you create type libraries by writing scripts in the Interface Definition Language
(IDL) or the Object Description Language (ODL), then running that script through a compiler. However, Delphi
automatically generates a type library when you create a COM object (including ActiveX controls, Automation
objects, remote data modules, and so on) using any of the wizards on the ActiveX page of the new items dialog.
(You can opt not to create a type library when using the COM object wizard.) You can also create a type library by
choosing from the main menu, File New Other, select the ActiveX folder under Delphi Projects, and in the right
pane choose Type Library .

You can view the type library using Delphi's Type Library Editor. You can easily edit your type library using the
Type Library editor and Delphi automatically updates the corresponding .tlb file (binary type library file) when the
type library is saved. For any changes to Interfaces and CoClasses that were created using a wizard, the Type
Library editor also updates your implementation files.

When to use type libraries
It is important to create a type library for each set of objects that is exposed to external users, for example,

2198

ActiveX controls require a type library, which must be included as a resource in the DLL that contains the ActiveX
controls.
Exposed objects that support vtable binding of custom interfaces must be described in a type library because
vtable references are bound at compile time. Clients import information about the interfaces from the type library
and use that information to compile. For more information about vtable and compile time binding, see Automation
interfaces.
Applications that implement Automation servers should provide a type library so that clients can early bind to it.
Objects instantiated from classes that support the IPr ovideClassInfo interface, such as all descendants of the
VCL TTypedComObject class, must have a type library.
Type libraries are not required, but are useful for identifying the objects used with OLE drag-and-drop.

When defining interfaces for internal use only (within an application) you do not need to create a type library. .

Accessing type libraries
The binary type library is normally a part of a resource file (.res) or a stand-alone file with a .tlb file-name extension.
When included in a resource file, the type library can be bound into a server (.dll, .ocx, or .exe).

Once a type library has been created, object browsers, compilers, and similar tools can access type libraries through
special type interfaces:

Special Type Interfaces
Interface Description

ITypeLib Provides methods for accessing a library of type descriptions.

ITypeLib2 Augments ITypeLib to include support for documentation strings, custom data, and statistics about the type
library.

ITypeInfo Provides descriptions of individual objects contained in a type library. For example, a browser uses this interface
to extract information about objects from the type library.

ITypeInfo2 Augments ITypeInfo to access additional type library information, including methods for accessing custom data
elements.

ITypeComp Provides a fast way to access information that compilers need when binding to an interface.

Delphi can import and use type libraries from other applications by choosing Project|Import Type Library. Most of
the VCL classes used for COM applications support the essential interfaces that are used to store and retrieve type
information from type libraries and from running instances of an object. The VCL class TTypedComObject supports
interfaces that provide type information, and is used as a foundation for the ActiveX object framework.

Benefits of using type libraries
Even if your application does not require a type library, you can consider the following benefits of using one:

Type checking can be performed at compile time.
You can use early binding with Automation, and controllers that do not support vtables or dual interfaces can
encode dispIDs at compile time, improving runtime performance.
Type browsers can scan the library, so clients can see the characteristics of your objects.
The RegisterTypeLib function can be used to register your exposed objects in the registration database.
The UnRegisterTypeLib function can be used to completely uninstall an application's type library from the system
registry.

2199

Local server access is improved because Automation uses information from the type library to package the
parameters that are passed to an object in another process.

Using type library tools
The tools for working with type libraries are listed below.

The TLIBIMP (Type Library Import) tool, which takes existing type libraries and creates Delphi Interface files
(_TLB.pas files), is incorporated into the Type Library editor. TLIBIMP provides additional configuration options
not available inside the Type Library editor.
TRegSvr is a tool for registering and unregistering servers and type libraries, which comes with Delphi. The
source to TRegSvr is available as an example in the Demos directory.
The Microsoft IDL compiler (MIDL) compiles IDL scripts to create a type library.
RegSvr32.exe is a standard Windows utility for registering and unregistering servers and type libraries.
OLEView is a type library browser tool, found on Microsoft's Web site.

Implementing COM Objects with Wizards
Delphi makes it easier to write COM server applications by providing wizards that handle many of the details involved.
Delphi provides separate wizards to create the following:

A simple COM object
An Automation object
A COM+ Event Object
A Type library
An ActiveX library

The wizards handle many of the tasks involved in creating each type of COM object. They provide the required COM
interfaces for each type of object. With a simple COM object, the wizard implements the one required COM interface,
IUnknown, which provides an interface pointer to the object.

The COM object wizard also provides an implementation for IDispatch if you specify that you are creating an object
that supports an IDispatch descendant.

For Automation and Active Server objects, the wizard implements IUnknown and IDispatch, which provides
automatic marshaling.

2200

For ActiveX control objects and ActiveX forms, the wizard implements all the required ActiveX control interfaces,
from IUnknown, IDispatch, IOleObject, IOleControl, and so on. For a complete list of interfaces, see the reference
page for TActiveXControl object.

The following table lists the various wizards and the interfaces they implement:

Delphi wizards for implementing COM, Automation, and ActiveX objects
Wizard Implemented interfaces What the wizard does

COM server IUnknown (and IDispatch if you select a default
interface that descends from IDispatch)

Exports routines that handle server registration, class
registration, loading and unloading the server, and
object instantiation.

Creates and manages class factories for objects
implemented on the server.

Provides registry entries for the object that specify the
selected threading model.

Declares the methods that implement a selected
interface, providing skeletal implementations for you
to complete.

Provides a type library, if requested.

Allows you to select an arbitrary interface that is
registered in the type library and implement it. If you
do this, you must use a type library.

Automation server IUnknown, IDispatch Performs the tasks of a COM server wizard
(described above), plus:

Implements the interface that you specify, either dual
or dispatch.

Provides server-side support for generating events,
if requested.

Provides a type library automatically.

COM+ Event object None, by default Creates a COM+ event object that you can define
using the Type Library editor. Unlike the other object
wizards, the COM+ Event object wizard does not
create an implementation unit because event objects

2201

have no implementation (it is provided by event
subscriber objects).

Type Library None, by default Creates a new type library and associates it with the
active project.

ActiveX library None, by default Creates a new ActiveX or Com server DLL and
exposes the necessary export functions.

You can add additional COM objects or reimplement an existing implementation. To add a new object, it is easiest
to use the wizard a second time. This is because the wizard sets up an association between the type library and an
implementation class, so that changes you make in the type library editor are automatically applied to your
implementation object.

Code Generated by Wizards
Delphi's wizards generate classes that are derived from the Delphi ActiveX framework (DAX). Despite its name, the
Delphi ActiveX framework supports all types of COM objects, not just ActiveX controls. The classes in this framework
provide the underlying implementation of the standard COM interfaces for the objects you create using a wizard.
The following figure illustrates the objects in the Delphi ActiveX framework:

Each wizard generates an implementation unit that implements your COM server object. The COM server object
(the implementation object) descends from one of the classes in DAX:

DAX Base classes for generated implementation classes
Wizard Base class from DAX Inherited support

COM server TTypedComObject Support for IUnknown and ISupportErrorInfo
interfaces.

Support for aggregation, OLE exception handling, and
safecall calling convention on dual interfaces.

Support for reading type library information.

Automation server or Creating Active Server
Pages

TAutoObject Everything provided by TTypedComObject, plus:

Support for the IDispatch interface.

Auto-marshaling support.

Corresponding to the classes in DAX is a hierarchy of class factory objects that handle the creation of these COM
objects. The wizard adds code to the initialization section of your implementation unit that instantiates the appropriate
class factory for your implementation class.

2202

The wizards also generate a type library and its associated unit, which has a name of the form Project1_TLB. The
Project1_TLB unit includes the definitions your application needs to use the type definitions and interfaces defined
in the type library. For more information on the contents of this file, see Code generated when you import type library
information.

You can modify the interface generated by the wizard using the type library editor. When you do this, the
implementation class is automatically updated to reflect those changes. You need only fill in the bodies of the
generated methods to complete the implementation.

2203

Working with type libraries

Working with Type Libraries: Overview
Type libraries are files that include information about data types, interfaces, member functions, and object classes
exposed by a COM object. They provide a way to identify what types of objects and interfaces are available on a
server. For a detailed overview on why and when to use type libraries, see Type libraries.

A type library can contain any and all of the following:

Information about custom data types such as aliases, enumerations, structures, and unions.
Descriptions of one or more COM elements, such as an interface, dispinterface, or CoClass. Each of these
descriptions is commonly referred to as type information.
Descriptions of constants and methods defined in external units.
References to type descriptions from other type libraries.

By including a type library with your COM application or ActiveX library, you make information about the objects in
your application available to other applications and programming tools through COM's type library tools and
interfaces.

With traditional development tools, you create type libraries by writing scripts in the Interface Definition Language
(IDL) or the Object Description Language (ODL), then run that script through a compiler. The Type Library editor
automates some of this process, easing the burden of creating and modifying your own type libraries.

When you create a COM server of any type (Automation object, remote data module, and so on) using Delphi's
wizards, the wizard automatically generates a type library for you (although in the case of the COM object wizard,
this is optional). Most of the work you do in customizing the generated object starts with the type library, because
that is where you define the properties and methods it exposes to clients: you change the interface of the CoClass
generated by the wizard, using the Type Library Editor. The Type Library editor automatically updates the
implementation unit for your object, so that all you need do is fill in the bodies of the generated methods.

Type Library Editor
The Type Library Editor enables developers to examine and create type information for COM objects. Using the
Type Library Editor can greatly simplify the task of developing COM objects by centralizing the tasks of defining
interfaces, CoClasses, and types, obtaining GUIDs for new interfaces, associating interfaces with CoClasses,
updating implementation units, and so on.

The Type Library Editor outputs two types of file that represent the contents of the type library:

Type Library editor files

2204

File Description

.TLB file The binary type library file. By default, you do not need to use this file, because the type library is automatically
compiled into the application as a resource. However, you can use this file to explicitly compile the type library into
another project or to deploy the type library separately from the .exe or .ocx. For more information, see Opening
an existing type library and Deploying type libraries.

_TLB unit This unit reflects the contents of the type library for use by your application. It contains all the declarations your
application needs to use the elements defined in the type library. Although you can open this file in the code editor,
you should never edit it—it is maintained by the Type Library Editor, so any changes you make will be overwritten
by the Type Library Editor. For more details on the contents of this file, see Code generated when you import
type library information

The following topics describe the Type Library Editor in greater detail:

Parts of the Type Library editor
Using the Type Library editor

Parts of the Type Library Editor
The main elements of the Type Library Editor are described in the following table:

Type Library editor parts
Part Description

Toolbar Includes buttons to add new types, CoClasses, interfaces, and interface members to your type library. The
toolbar also includes buttons for refreshing your implementation unit, registering the type library, and saving
an IDL file with the information in your type library.

Object list pane Displays all the existing elements in the type library. When you click on an item in the object list pane, it
displays pages valid for that object.

Status bar Displays syntax errors if you try to add invalid types to your type library.

Pages Display information about the selected object. Which pages appear here depends on the type of object
selected.

Toolbar
The Type Library Editor's toolbar located at the top of the Type Library Editor, contains buttons that you click to
add new objects into your type library.

The first group of buttons let you add elements to the type library. When you click a toolbar button, the icon for that
element appears in the object list pane. You can then customize its attributes in the right pane. Depending on the
type of icon you select, different pages of information appear to the right.

The following table lists the elements you can add to your type library:

Icon Meaning

An interface description.

A dispinterface description.

A CoClass.

2205

An enumeration.

An alias.

A record.

A union.

A module.

When you select one of the elements listed above in the object list pane, the second group of buttons displays
members that are valid for that element. For example, when you select Interface, the Method and Property icons in
the second box become enabled because you can add methods and properties to your interface definition. When
you select Enum, the second group of buttons changes to display the Const member, which is the only valid member
for Enum type information.

The following table lists the members that can be added to elements in the object list pane:

Icon Meaning

A method of the interface, dispinterface, or an entry point in a module.

A property on an interface or dispinterface.

A write-only property. (available from the drop-down list on the property button)

A read-write property. (available from the drop-down list on the property button)

A read-only property. (available from the drop-down list on the property button)

A field in a record or union.

A constant in an enum or a module.

The third group of buttons let you refresh, register, or export your type library (save it as an IDL file), as described
in Saving and registering type library information.

Object List Pane
The Object list pane displays all the elements of the current type library in a tree view. The root of the tree represents
the type library itself, and appears as the following icon:

Descending from the type library node are the elements in the type library:

2206

When you select any of these elements (including the type library itself), the pages of type information to the right
change to reflect only the relevant information for that element. You can use these pages to edit the definition and
properties of the selected element.

You can manipulate the elements in the object list pane by right clicking to get the object list pane context menu.
This menu includes commands that let you use the Windows clipboard to move or copy existing elements as well
as commands to add new elements or customize the appearance of the Type Library Editor.

Status Bar
When editing or saving a type library, syntax, translation errors, and warnings are listed in the Message pane.

For example, if you specify a type that the Type Library Editor does not support, you will get a syntax error. For a
complete list of types supported by the Type Library Editor, see Valid types.

Pages of Type Information
When you select an element in the object list pane, pages of type information appear in the Type Library Editor
that are valid for the selected element. Which pages appear depends on the element selected in the object list panel,
as follows:

Type Info element Page of type information Contents of page

Type library Attributes Name, version, and GUID for the type library, as well as information linking the
type library to help.

Uses List of other type libraries that contain definitions on which this one depends.

Flags Flags that determine how other applications can use the type library.

Text All definitions and declarations defining the type library itself (see discussion
below).

Interface Attributes Name, version, and GUID for the interface, the name of the interface from which
it descends, and information linking the interface to help.

Flags Flags that indicate whether the interface is hidden, dual, Automation-
compatible, and/or extensible.

Text The definitions and declarations for the Interface (see discussion below).

Dispinterface Attributes Name, version, and GUID for the interface, and information linking it to help.

Flags Flags that indicate whether the Dispinterface is hidden, dual, and/or extensible.

Text The definitions and declarations for the Dispinterface. (see discussion below).

2207

CoClass Attributes Name, version, and GUID for the CoClass, and information linking it to help.

Implements A List of interfaces that the CoClass implements, as well as their attributes.

COM+ The attributes of transactional objects, such as the transaction model, call
synchronization, just-in-time activation, object pooling, and so on. Also includes
the attributes of COM+ event objects.

Flags Flags that indicate various attributes of the CoClass, including how clients can
create and use instances, whether it is visible to users in a browser, whether it
is an ActiveX control, and whether it can be aggregated (act as part of a
composite).

Text The definitions and declarations for the CoClass (see discussion below).

Enumeration Attributes Name, version, and GUID for the enumeration, and information linking it to help.

Text The definitions and declarations for the enumerated type (see discussion
below).

Alias Attributes Name, version, and GUID for the enumeration, the type the alias represents,
and information linking it to help.

Text The definitions and declarations for the alias (see discussion below).

Record Attributes Name, version, and GUID for the record, and information linking it to help.

Text The definitions and declarations for the record (see discussion below).

Union Attributes Name, version, and GUID for the union, and information linking it to help.

Text The definitions and declarations for the union (see discussion below).

Module Attributes Name, version, GUID, and associated DLL for the module, and information
linking it to help.

Text The definitions and declarations for the module (see discussion below).

Method Attributes Name, dispatch ID or DLL entry point, and information linking it to help.

Parameters Method return type, and a list of all parameters with their types and any
modifiers.

Flags Flags to indicate how clients can view and use the method, whether this is a
default method for the interface, and whether it is replaceable.

Text The definitions and declarations for the method (see discussion below).

Property Attributes Name, dispatch ID, type of property access method (getter vs. setter), and
information linking it to help.

Parameters Property access method return type, and a list of all parameters with their types
and any modifiers.

Flags Flags to indicate how clients can view and use the property, whether this is a
default for the interface, whether the property is replaceable, bindable, and so
on.

Text The definitions and declarations for the property access method (see
discussion below).

Const Attributes Name, value, type (for module consts), and information linking it to help.

Flags Flags to indicate how clients can view and use the constant, whether this
represents a default value, whether the constant is bindable, and so on.

Text The definitions and declarations for the constant (see discussion below).

Field Attributes Name, type, and information linking it to help.

2208

Flags Flags to indicate how clients can view and use the field, whether this represents
a default value, whether the field is bindable, and so on.

Text The definitions and declarations for the field (see discussion below).

You can use each of the pages of type information to view or edit the values it displays. Most of the pages organize
the information into a set of controls so that you can type in values or select them from a list without requiring that
you know the syntax of the corresponding declarations. This can prevent many small mistakes such as typographic
errors when specifying values from a limited set. However, you may find it faster to type in the declarations directly.
To do this, use the Text page.

All type library elements have a text page that displays the syntax for the element. This syntax appears in an IDL
subset of Microsoft Interface Definition Language, or Delphi. See Using Delphi or IDL syntax for details. Any changes
you make in other pages of the element are reflected on the text page. If you add code directly in the text page,
changes are reflected in the other pages of the Type Library editor.

The Type Library Editor generates syntax errors if you add identifiers that are currently not supported by the editor;
the editor currently supports only those identifiers that relate to type library support (not RPC support or constructs
used by the Microsoft IDL compiler for C++ code generation or marshaling support).

Type Library Elements
The Type Library interface can seem overwhelmingly complicated at first. This is because it represents information
about a great number of elements, each of which has its own characteristics. However, many of these characteristics
are common to all elements. For example, every element (including the type library itself) has the following:

A Name, which is used to describe the element and which is used when referring to the element in code.
A GUID (globally unique identifier), which is a unique 128-bit value that COM uses to identify the element. This
should always be supplied for the type library itself and for CoClasses and interfaces. It is optional otherwise.
A Version number, which distinguishes between multiple versions of the element. This is always optional, but
should be provided for CoClasses and interfaces, because some tools can't use them without a version number.
Information linking the element to a Help topic. These include a Help String, and Help Context or Help String
Context value. The Help Context is used for a traditional Windows Help system where the type library has a
stand-alone Help file. The Help String Context is used when help is supplied by a separate DLL instead. The
Help Context or Help String Context refers to a Help file or DLL that is specified on the type library's
Attributes page. This is always optional.

Interfaces
An interface describes the methods (and any properties expressed as get and set functions) for an object that
must be accessed through a virtual function table (vtable). If an interface is flagged as dual, it will inherit from
IDispatch, and your object can provide both early-bound, vtable access, and runtime binding through OLE
automation. By default, the type library flags all interfaces you add as dual.

Interfaces can be assigned members: methods and properties. These appear in the object list pane as children of
the interface node. Properties for interfaces are represented by the get and set methods used to read and write
the property's underlying data. They are represented in the tree view using special icons that indicate their purpose.

Special Icons for 'get' and 'set' Methods

A write (set, put) by value property function.

A read (get) |write (set, put)|write by reference property function.

2209

A read (get) property function.

Note: When a property is specified as Write By Reference, it means it is passed as a pointer rather than by value.
Some applications, such a Visual Basic, use Write By Reference, if it is present, to optimize performance. To
pass the property only by reference rather than by value, use the property type By Reference Only. To pass
the property by reference as well as by value, select Read Write Write By Ref. To invoke this menu,
go to the toolbar and select the arrow next to the property icon.

Once you add the properties or methods using the toolbar button or the object list pane context menu, you describe
their syntax and attributes by selecting the property or method and using the pages of type information.

The Attributes page lets you give the property or method a name and dispatch ID (so that it can be called using
IDispatch). For properties, you also assign a type. The function signature is created using the Parameters page,
where you can add, remove, and rearrange parameters, set their type and any modifiers, and specify function return
types.

Note: Members of interfaces that need to raise exceptions should return an HRESULT and specify a return value
parameter (PARAM_RETVAL) for the actual return value. Declare these methods using the safecall calling
convention.

Note that when you assign properties and methods to an interface, they are implicitly assigned to its associated
CoClass. This is why the Type Library editor does not let you add properties and methods directly to a CoClass.

Dispinterfaces
Interfaces are more commonly used than dispinterfaces to describe the properties and methods of an object.
Dispinterfaces are only accessible through dynamic binding, while interfaces can have static binding through a
vtable.

You can add methods and properties to dispinterfaces in the same way you add them to interfaces. However, when
you create a property for a dispinterface, you can't specify a function kind or parameter types.

CoClasses
A CoClass describes a unique COM object that implements one or more interfaces. When defining a CoClass, you
must specify which implemented interface is the default for the object, and optionally, which dispinterface is the
default source for events. Note that you do not add properties or methods to a CoClass in the Type Library editor.
Properties and methods are exposed to clients by interfaces, which are associated with the CoClass using the
Implements page.

Type definitions
Enumerations, aliases, records, and unions all declare types that can then be used elsewhere in the type library.

Enums consist of a list of constants, each of which must be numeric. Numeric input is usually an integer in decimal
or hexadecimal format. The base value is zero by default. You can add constants to your enumeration by selecting
the enumeration in the object list pane and clicking the Const button on the toolbar or selecting New Const
command from the object list pane context menu.

Note: It is strongly recommended that you provide help strings for your enumerations to make their meaning clearer.
The following is a sample entry of an enumeration type for a mouse button and includes a help string for each
enumeration element.

2210

[Delphi]
mbLeft = 0 [helpstring 'mbLeft'];
mbRight = 1 [helpstring 'mbRight'];
mbMiddle = 3 [helpstring 'mbMiddle'];

[C++]
typedef enum TxMouseButton
{
[helpstring("mbLeft")]
mbLeft = 0,
[helpstring("mbRight)]
mbRight = 1.
[helpstring("mbMiddle)]
mbMiddle = 2
} TxMouseButton;

An alias creates an alias (type definition) for a type. You can use the alias to define types that you want to use in
other type info such as records or unions. Associate the alias with the underlying type definition by setting the Type
attribute on the Attributes page.

A record consists of a list of structure members or fields. A union is a record with only a variant part. Like a record,
a union consists of a list of structure members or fields. However, unlike the members of records, each member of
a union occupies the same physical address, so that only one logical value can be stored.

Add the fields to a record or union by selecting it in the object list pane and clicking the field button in the toolbar or
right clicking and choosing field from the object list pane context menu. Each field has a name and a type, which
you assign by selecting the field and assigning values using the Attributes page. Records and unions can be defined
with an optional tag.

Members can be of any built-in type, or you can specify a type using alias before you define the record.

Modules
A module defines a group of functions, typically a set of DLL entry points. You define a module by

Specifying a DLL that it represents on the attributes page.
Adding methods and constants using the toolbar or the object list pane context menu. For each method or
constant, you must then define its attributes by selecting the it in the object list pane and setting the values on
the Attributes page.

For module methods, you must assign a name and DLL entry point using the attributes page. Declare the function's
parameters and return type using the parameters page.

For module constants, use the Attributes page to specify a name, type, and value.

Note: The Type Library Editor does not generate any declarations or implementation related to a module. The
specified DLL must be created as a separate project.

Using the Type Library Editor
Using the type library editor, you can create new type libraries or edit existing ones. Typically, an application
developer uses a wizard to create the objects that are exposed in the type library, letting Delphi generate the type
library automatically. Then, the automatically-generated type library is opened in the Type Library editor so that the
interfaces can be defined (or modified), type definitions added, and so on.

2211

However, even if you are not using a wizard to define the objects, you can use the Type Library editor to define a
new type library. In this case, you must create any implementation classes yourself, because the Type Library editor
does not generate code for CoClasses that were not associated with a type library by a wizard.

The editor supports a subset of valid types in a type library

The following topics describe how to:

Create a new type library
Open an existing type library
Add an interface to the type library
Modify an interface
Add properties and methods to the type library
Add a CoClass to the type library
Add an interface to a CoClass
Add an enumeration to the type library
Add an alias to the type library
Add a record or union to the type library
Add a module to the type library
Save and register type library information

Valid Types
In the Type Library editor, you use different type identifiers, depending on whether you are working in IDL or Delphi.
Specify the language you want to use in the Environment options dialog.

The following types are valid in a type library for COM development. The Automation compatible column specifies
whether the type can be used by an interface that has its Automation or Dispinterface flag checked. These are the
types that COM can marshal via the type library automatically.

Delphi type IDL type variant type Automation compatible Description

Smallint short VT_I2 Yes 2-byte signed integer

Integer long VT_I4 Yes 4-byte signed integer

Single single VT_R4 Yes 4-byte real

Double double VT_R8 Yes 8-byte real

Currency CURRENCY VT_CY Yes currency

TDateTime DATE VT_DATE Yes date

WideString BSTR VT_BSTR Yes binary string

IDispatch IDispatch VT_DISPATCH Yes pointer to IDispatch interface

SCODE SCODE VT_ERROR Yes Ole Error Code

WordBool VARIANT_BOOL VT_BOOL Yes True = -1, False = 0

OleVariant VARIANT VT_VARIANT Yes Ole Variant

IUnknown IUnknown VT_UNKNOWN Yes pointer to IUnknown interface

Shortint byte VT_I1 No 1 byte signed integer

Byte unsigned char VT_UI1 Yes 1 byte unsigned integer

2212

Word unsigned short VT_UI2 Yes* 2 byte unsigned integer

LongWord unsigned long VT_UI4 Yes* 4 byte unsigned integer

Int64 __int64 VT_I8 No 8 byte signed integer

Largeuint uint64 VT_UI8 No 8 byte unsigned integer

SYSINT int VT_INT Yes* system dependent integer (Win32=Integer)

SYSUINT unsigned int VT_UINT Yes* system dependent unsigned integer

HResult HRESULT VT_HRESULT No 32 bit error code

Pointer VT_PTR -> VT_VOID No untyped pointer

SafeArray SAFEARRAY VT_SAFEARRAY No OLE Safe Array

PChar LPSTR VT_LPSTR No pointer to Char

PWideChar LPWSTR VT_LPWSTR No pointer to WideChar

* Word, LongWord, SYSINT, and SYSUINT may be Automation-compatible with some applications.

See safe arrays for more information about the SAFEARRAY Variant type.

Note: The Byte (VT_UI1) is Automation-compatible, but is not allowed in a Variant or OleVariant since many
Automation servers do not handle this value correctly.

Besides these IDL types, any interfaces and types defined in the library or defined in referenced libraries can be
used in a type library definition.

The Type Library editor stores type information in the generated type library (.TLB) file in binary form.

If a parameter type is specified as a Pointer type, the Type Library editor usually translates that type into a variable
parameter. When the type library is saved, the variable parameter's associated ElemDesc's IDL flags are marked
IDL_FIN or IDL_FOUT.

Often, ElemDesc IDL flags are not marked by IDL_FIN or IDL_FOUT when the type is preceded with a Pointer. Or,
in the case of dispinterfaces, IDL flags are not typically used. In these cases, you may see a comment next to the
variable identifier such as {IDL_None} or {IDL_In}. These comments are used when saving a type library to correctly
mark the IDL flags.

SafeArrays
COM requires that arrays be passed via a special data type known as a SafeArray. You can create and destroy
SafeArrays by calling special COM functions to do so, and all elements within a SafeArray must be valid automation-
compatible types. The Delphi compiler has built-in knowledge of COM SafeArrays and automatically calls the COM
API to create, copy, and destroy SafeArrays.

In the Type Library Editor, a SafeArray must specify the type of its elements. For example, the following line from
the text page declares a method with a parameter that is a SafeArray with an element type of Integer:

[Delphi]
procedure HighLightLines(Lines: SafeArray of Integer);

[C++]
HRESULT _stdcall HighlightLines(SAFEARRAY(long) Lines);

Note: Although you must specify the element type when declaring a SafeArray type in the Type Library Editor,
the declaration in the generated _TLB unit does not indicate the element type.

2213

Using Object Pascal or IDL Syntax
The Text page of the Type Library editor displays your type information in one of two ways:

Using an extension of Delphi syntax.
Using the Microsoft IDL.

You can select which language you want to use by changing the setting in the Environment Options dialog. Choose
Tools Options, and specify either Pascal or IDL as the Language on the Type Library page of the dialog.

Note: The choice of Delphi or IDL syntax also affects the choices available on the parameters attributes page.

Like Delphi applications in general, identifiers in type libraries are case insensitive. They can be up to 255 characters
long, and must begin with a letter or an underscore (_).

Attribute specifications
Delphi has been extended to allow type libraries to include attribute specifications. Attribute specifications appear
enclosed in square brackets and separated by commas. Each attribute specification consists of an attribute name
followed (if appropriate) by a value.

The following table lists the attribute names and their corresponding values.

Attribute syntax
Attribute name Example Applies to

aggregatable [aggregatable] typeinfo

appobject [appobject] CoClass typeinfo

bindable [bindable] members except CoClass members

control [control] type library, typeinfo

custom [custom '{7B5687A1-F4E9-11D1-92A8-
00C04F8C8FC4}' 0]

anything

default [default] CoClass members

defaultbind [defaultbind] members except CoClass members

defaultcollection [defaultcollection] members except CoClass members

defaultvtbl [defaultvtbl] CoClass members

dispid [dispid] members except CoClass members

displaybind [displaybind] members except CoClass members

dllname [dllname 'Helper.dll'] module typeinfo

dual [dual] interface typeinfo

helpfile [helpfile 'c:\help\myhelp.hlp'] type library

helpstringdll [helpstringdll 'c:\help\myhelp.dll'] type library

helpcontext [helpcontext 2005] anything except CoClass members and
parameters

helpstring [helpstring 'payroll interface'] anything except CoClass members and
parameters

helpstringcontext [helpstringcontext $17] anything except CoClass members and
parameters

hidden [hidden] anything except parameters

2214

immediatebind [immediatebind] members except CoClass members

lcid [lcid $324] type library

licensed [licensed] type library, CoClass typeinfo

nonbrowsable [nonbrowsable] members except CoClass members

nonextensible [nonextensible] interface typeinfo

oleautomation [oleautomation] interface typeinfo

predeclid [predeclid] typeinfo

propget [propget] members except CoClass members

propput [propput] members except CoClass members

propputref [propputref] members except CoClass members

public [public] alias typeinfo

readonly [readonly] members except CoClass members

replaceable [replaceable] anything except CoClass members and
parameters

requestedit [requestedit] members except CoClass members

restricted [restricted] anything except parameters

source [source] all members

uidefault [uidefault] members except CoClass members

usesgetlasterror [usesgetlasterror] members except CoClass members

uuid [uuid '{7B5687A1-F4E9-11D1-92A8-00C04F8C8FC4}'] type library, typeinfo (required)

vararg [vararg] members except CoClass members

version [version 1.1] type library, typeinfo

Interface syntax
The Delphi syntax for declaring interface type information has the form

interfacename = interface[(baseinterface)] [attributes]
functionlist
[propertymethodlist]
end;

For example, the following text declares an interface with two methods and one property:

Interface1 = interface (IDispatch)
 [uuid '{7B5687A1-F4E9-11D1-92A8-00C04F8C8FC4}', version 1.0]
 function Calculate(optional seed:Integer=0): Integer;
 procedure Reset;
 procedure PutRange(Range: Integer) [propput, dispid $00000005]; stdcall;
 function GetRange: Integer;[propget, dispid $00000005]; stdcall;
end;

The corresponding syntax in Microsoft IDL is

2215

[uuid '{5FD36EEF-70E5-11D1-AA62-00C04FB16F42}',version 1.0]
interface Interface1 :IDispatch
{
 long Calculate([in, optional, defaultvalue(0)] long seed);
 void Reset(void);
 [propput, id(0x00000005)] void _stdcall PutRange([in] long Value);
 [propput, id(0x00000005)] void _stdcall getRange([out, retval] long *Value);
};

Dispatch interface syntax
The Delphi syntax for declaring dispinterface type information has the form

dispinterfacename = dispinterface [attributes]
functionlist
[propertylist]
end;

For example, the following text declares a dispinterface with the same methods and property as the previous
interface:

MyDispObj = dispinterface
[uuid '{5FD36EEF-70E5-11D1-AA62-00C04FB16F42}',
 version 1.0,
 helpstring 'dispatch interface for MyObj'
 function Calculate(seed:Integer): Integer [dispid 1];
 procedure Reset [dispid 2];
 property Range: Integer [dispid 3];
end;

The corresponding syntax in Microsoft IDL is

[uuid '{5FD36EEF-70E5-11D1-AA62-00C04FB16F42}',
 version 1.0,
 helpstring "dispatch interface for MyObj"
dispinterface Interface1
{
 methods:
 [id(1)] int Calculate([in] int seed);
 [id(2)] void Reset(void);
 properties:
 [id(3)] int Value;
};

CoClass syntax
The Delphi syntax for declaring CoClass type information has the form

classname = coclass(interfacename[interfaceattributes], ...); [attributes];

For example, the following text declares a coclass for the interface IMyInt and dispinterface DmyInt:

2216

myapp = coclass(IMyInt [source], DMyInt);
[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
 version 1.0,
 helpstring 'A class',
 appobject]

The corresponding syntax in Microsoft IDL is

[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
 version 1.0,
 helpstring "A class",
 appobject]
coclass myapp
{
 methods:
 [source] interface IMyInt);
 dispinterface DMyInt;
};

Enum syntax
The Delphi syntax for declaring Enum type information has the form

enumname = ([attributes] enumlist);

For example, the following text declares an enumerated type with three values:

location = ([uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
 helpstring 'location of booth']
 Inside = 1 [helpstring 'Inside the pavillion'];
 Outside = 2 [helpstring 'Outside the pavillion'];
 Offsite = 3 [helpstring 'Not near the pavillion'];);

The corresponding syntax in Microsoft IDL is

[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
 helpstring "location of booth"]
typedef enum
{
 [helpstring "Inside the pavillion"] Inside = 1,
 [helpstring "Outside the pavillion"] Outside = 2,
 [helpstring "Not near the pavillion"] Offsite = 3
} location;

Alias syntax
The Delphi syntax for declaring Alias type information has the form

aliasname = basetype[attributes];

For example, the following text declares DWORD as an alias for integer:

2217

DWORD = Integer [uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}'];

The corresponding syntax in Microsoft IDL is

[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}'] typedef long DWORD;

Record syntax
The Delphi syntax for declaring Record type information has the form

recordname = record [attributes] fieldlist end;

For example, the following text declares a record:

Tasks = record [uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
 helpstring 'Task description']
 ID: Integer;
 StartDate: TDate;
 EndDate: TDate;
 Ownername: WideString;
 Subtasks: safearray of Integer;
end;

The corresponding syntax in Microsoft IDL is

[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
 helpstring "Task description"]
typedef struct
{
 long ID;
 DATE StartDate;
 DATE EndDate;
 BSTR Ownername;
 SAFEARRAY (int) Subtasks;
} Tasks;

Union syntax
The Delphi syntax for declaring Union type information has the form

unionname = record [attributes]
case Integer of
 0: field1;
 1: field2;
 ...
end;

For example, the following text declares a union:

MyUnion = record [uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
 helpstring "item description"]
case Integer of

2218

 0: (Name: WideString);
 1: (ID: Integer);
 3: (Value: Double);
end;

The corresponding syntax in Microsoft IDL is

[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
 helpstring "item description"]
typedef union
{
 BSTR Name;
 long ID;
 double Value;
 } MyUnion;

Module syntax
The Delphi syntax for declaring Module type information has the form

modulename = module constants entrypoints end;

For example, the following text declares the type information for a module:

MyModule = module [uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
 dllname 'circle.dll']
 PI: Double = 3.14159;
 function area(radius: Double): Double [entry 1]; stdcall;
 function circumference(radius: Double): Double [entry 2]; stdcall;
end;

The corresponding syntax in Microsoft IDL is

[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
 dllname("circle.dll")]
module MyModule
{
 double PI = 3.14159;
 [entry(1)] double _stdcall area([in] double radius);
 [entry(2)] double _stdcall circumference([in] double radius);
};

Creating a New Type Library
You may want to create a type library that is independent of a particular COM object. For example, you might want
to define a type library that contains type definitions that you use in several other type libraries. You can then create
a type library of basic definitions and add it to the uses page of other type libraries.

You can also create a type library for an object that is not yet implemented. Once the type library contains the interface
definition, you can use the COM object wizard to generate a CoClass and implementation.

2219

To create a new type library
1 Choose File New Other to open the New Items dialog box.
2 Choose the ActiveX folder under Delphi Projects
3 Select the Type Library icon in the right pane.
4 Choose OK.

Enter a name for the type library.

5 Continue by adding elements to your type library.

Opening an Existing Type Library
When you use the wizards to create an Automation object, COM object, transactional object, or a remote data
module, a type library is automatically created with an implementation unit. In addition, you may have type libraries
that are associated with other products (servers) that are available on your system.

To open a type library that is not currently part of your project,
1 Choose File Open from the main menu in the IDE.
2 In the Open dialog box, set the File Type to type library.
3 Navigate to the desired type library files and choose Open.

To open a type library associated with the current project,

Choose View Type Library.

Now, you can add interfaces, CoClasses, and other elements of the type library such as enumerations, properties,
and methods.

Note: Changes you make to any type library information with the Type Library Editor can be automatically reflected
in the associated implementation class. If you want to review the changes before they are added, be sure
that the Apply Updates dialog is on. It is on by default and can be changed in the setting, "Display updates
before refreshing," on theTools Options Delphi Options Type Library page.

Tip: When writing client applications, you do not need to open the type library. You only need the Project_TLB unit
that the Type Library Editor creates from a type library, not the type library itself. You can add this file directly
to a client project, or, if the type library is registered on your system, you can use the Import Type Library dialog
(Component Import Type Library).

Adding an Interface to the Type Library

To add an interface
1 On the toolbar, click on the interface icon.

An interface is added to the object list pane prompting you to add a name.

2 Type a name for the interface.

The new interface contains default attributes that you can modify as needed.

2220

You can add properties (represented by getter/setter functions) and methods to suit the purpose of the interface.

Modifying an Interface Using the Type Library
There are several ways to modify an interface or dispinterface once it is created.

You can change the interface's attributes using the page of type information that contains the information you
want to change. Select the interface in the Object List pane and then use the controls on the appropriate page
of type information. For example, you may want to change the parent interface using the attributes page, or use
the flags page to change whether or not it is a dual interface.
You can edit the interface declaration directly by selecting the interface in the object list pane and then editing
the declarations on the Text page.
You can Add properties and methods to the interface.
You can modify the properties and methods already in your interface by changing their type information.
You can associate it with a CoClass by selecting the CoClass in the object list pane, right-clicking on the
Implements page, and choosing Insert Interface.

If the interface is associated with a CoClass that was generated by a wizard, you can tell the Type Library Editor
to apply your changes to the implementation file by clicking the Refresh button on the toolbar. If you have the Apply
Updates dialog enabled, the Type Library Editor notifies you before updating the sources and warns you of potential
problems. For example, if you rename an event interface by mistake, you may get a warning in your source file that
looks like this:

Because of the presence of instance variables in your implementation file,
Delphi was not able to update the file to reflect the change in your event
interface name. As Delphi has updated the type library for you, however, you
must update the implementation file by hand.

You also get a TODO comment in your source file immediately above it.

Warning: If you ignore this warning and TODO comment, the code will not compile.

Adding Properties and Methods to the Type Library

To add properties or methods to an interface or dispinterface
1 Select the interface, and choose either a property or method icon from the toolbar. If you are adding a property,

you can click directly on the property icon to create a read/write property (with both a getter and a setter), or click
the down arrow to display a menu of property types.
The property access method members or method member is added to the object list pane, prompting you to add
a name.

2 Type a name for the member.

The new member contains default settings on its attributes, parameters, and flags pages that you can modify to suit
the member. For example, you will probably want to assign a type to a property on the attributes page. If you are
adding a method, you will probably want to specify its parameters on the parameters page.

As an alternate approach, you can add properties and methods by typing directly into the text page using Delphi or
IDL syntax. For example, if you are working in Delphi syntax, you can type the following property declarations into
the text page of an interface:

2221

Interface1 = interface(IDispatch)
 [uuid '{5FD36EEF-70E5-11D1-AA62-00C04FB16F42}',
 version 1.0,
 dual,
 oleautomation]
 function AutoSelect: Integer [propget, dispid $00000002]; safecall; // Add this
 function AutoSize: WordBool [propget, dispid $00000001]; safecall; // And this
 procedure AutoSize(Value: WordBool) [propput, dispid $00000001]; safecall; // And this
end;

If you are working in IDL, you can add the same declarations as follows:

[
 uuid(5FD36EEF-70E5-11D1-AA62-00C04FB16F42),
 version(1.0),
 dual,
 oleautomation
]
interface Interface1: IDispatch
{ // Add everything between the curly braces
[propget, id(0x00000002)]
 HRESULT _stdcall AutoSelect([out, retval] long Value);
 [propget, id(0x00000003)]
 HRESULT _stdcall AutoSize([out, retval] VARIANT_BOOL Value);
 [propput, id(0x00000003)]
 HRESULT _stdcall AutoSize([in] VARIANT_BOOL Value);
};

After you have added members to an interface using the interface text page, the members appear as separate items
in the object list pane, each with its own attributes, flags, and parameters pages. You can modify each new property
or method by selecting it in the object list pane and using these pages, or by making edits directly in the text page.

If the interface is associated with a CoClass that was generated by a wizard, you can tell the Type Library Editor
to apply your changes to the implementation file by clicking the Refresh button on the toolbar. The Type Library
Editor adds new methods to your implementation class to reflect the new members. You can then locate the new
methods in implementation unit's source code and fill in their bodies to complete the implementation.

If you have the Apply Updates dialog enabled, the Type Library Editor notifies you of all changes before updating
the sources and warns you of potential problems.

Adding a CoClass to the Type Library
The easiest way to add a CoClass to your project is to choose File New Other from the main menu in the IDE
and use the appropriate wizard on the ActiveX page of the New Items dialog. The advantage to this approach is
that, in addition to adding the CoClass and its interface to the type library, the wizard adds an implementation unit
and updates the project file to include the new implementation unit in its uses clause.

If you are not using a wizard, however, you can create a CoClass by clicking the CoClass icon on the toolbar and
then specifying its attributes. You will probably want to give the new CoClass a name (on the Attributes page), and
may want to use the Flags page to indicate information such as whether the CoClass is an application object, whether
it represents an ActiveX control, and so on.

Note: When you add a CoClass to a type library using the toolbar instead of a wizard, you must generate the
implementation for the CoClass yourself and update it by hand every time you change an element on one of
the CoClass' interfaces.

You can't add members directly to a CoClass. Instead, you implicitly add members when you add an interface to the
CoClass.

2222

Adding an Interface to a CoClass
CoClasses are defined by the interfaces they present to clients. While you can add any number of properties and
methods to the implementation class of a CoClass, clients can only see those properties and methods that are
exposed by interfaces associated with the CoClass.

To associate an interface with a CoClass, right-click in the Implements page for the class and choose Insert Interface
to display a list of interfaces from which you can choose. The list includes interfaces that are defined in the current
type library and those defined in any type libraries that the current type library references. Choose an interface you
want the class to implement. The interface is added to the page with its GUID and other attributes.

If the CoClass was generated by a wizard, the Type Library Editor automatically updates the implementation class
to include skeletal methods for the methods (including property access methods) of any interfaces you add this way.
If you have the Apply Updates dialog enabled, the Type Library Editor notifies you before updating the sources
and warns you of potential problems.

Adding an Enumeration to the Type Library

To add enumerations to a type library
1 On the toolbar, click on the enum icon.

An enum type is added to the Object List pane .

2 Type a name for the enumeration.
The new enum is empty and contains default attributes in its attributes page for you to modify.

Add values to the enum by right clicking the enum and selecting the New Const button . Then, select each
enumerated value and assign it a name (and possibly a value) using the attributes page.

Once you have added an enumeration, the new type is available for use by the type library or any other type library
that references it from its uses page. For example, you can use the enumeration as the type for a property or
parameter.

Adding an Alias to the Type Library

To add an alias to a type library
1 On the toolbar, click on the alias icon.

An alias type is added to the object list pane .

2 Type a name for the alias.
By default, the new alias stands for a Long Integer type. Use the Attributes page to change this to the type you
want the alias to represent.

Once you have added an alias, the new type is available for use by the type library or any other type library that
references it from its uses page. For example, you can use the alias as the type for a property or parameter.

2223

Adding a Record or Union to the Type Library

To add a record or union to a type library
1 On the toolbar, click on the record icon or the union icon.

The selected type element is added to the object list pane .

2 Type a name for the record or union.
At this point, the new record or union contains no fields.

3 With the record or union selected in the object list pane, click on the field icon in the toolbar. Specify the field's
name and type, using the Attributes page.

4 Repeat step 3 for as many fields as you need.

Once you have defined the record or union, the new type is available for use by the type library or any other type
library that references it from its uses page. For example, you can use the record or union as the type for a property
or parameter.

Adding a Module to the Type Library

To add a module to a type library
1 On the toolbar, click on the module icon.

The selected module is added to the object list pane .

2 Type a name for the module.
3 On the Attributes page, specify the name of the DLL whose entry points the Module represents.
4 Add any methods from the DLL you specified in step 3 by clicking on the Method icon in the toolbar and then

using the attributes pages to describe the method.
5 Add any constants you want the module to define by clicking on the Const icon on the toolbar. For each constant,

specify a name, type, and value.

Saving and Registering Type Library Information
After modifying your type library, you'll want to save and register the type library information.

Saving the type library automatically updates:

The binary type library file (.tlb extension).
The Project_TLB unit that represents its contents
The implementation code for any CoClasses that were generated by a wizard.

Note: The type library is stored as a separate binary (.TLB) file, but is also linked into the server (.EXE, DLL,
or .OCX).

The Type Library Editor gives you options for storing your type library information. Which way you choose depends
on what stage you are at in implementing the type library:

Save, to save both the .TLB and the Project_TLB unit to disk. (It is accessible through File Save in the IDE.)
Refresh, to update the type library units in memory only.

2224

Register, to add an entry for the type library in your system's Windows registry. This is done automatically when
the server with which the .TLB is associated is itself registered.
Export, to save a .IDL file that contains the type and interface definitions in IDL syntax.

All the above methods perform syntax checking. When you refresh, register, or save the type library, Delphi
automatically updates the implementation unit of any CoClasses that were created using a wizard. Optionally, you
can review these updates before they are committed, if you have the Type Library Editor option, Apply Updates on.

Apply Updates Dialog
The Apply Updates dialog appears when you refresh, register, or save the type library if you have selected Display
updates before refreshing in the Tools Options Type Library page (which is not checked off by default).

Without this option, the Type Library Editor automatically updates the sources of the associated object when you
make changes in the editor. With this option, you have a chance to veto the proposed changes when you attempt
to refresh, save, or register the type library.

The Apply Updates dialog will warn you about potential errors, and will insert TODO comments in your source file.
For example, if you rename an event by mistake, you will get a warning in your source file that looks like this:

Because of the presence of instance variables in your implementation file,
Delphi was not able to update the file to reflect the change in your event
interface name. As Delphi has updated the type library for you, however, you
must update the implementation file by hand.

You will also get a TODO comment in your source file immediately above it.

Note: If you ignore this warning and TODO comment, the code will not compile.

Saving a Type Library
Saving a type library:

Performs a syntax and validity check.
Saves information out to a .TLB file.
Saves information out to the Project_TLB unit.
Notifies the IDE's module manager to update the implementation, if the type library is associated with a CoClass
that was generated by a wizard.

To save the type library, choose File Save from the Delphi main menu.

Refreshing the Type Library
Refreshing the type library

Performs a syntax check.
Regenerates the Delphi type library units in memory only. It does not save any files to disk.
Notifies the IDE's module manager to update the implementation, if the type library is associated with a CoClass
that was generated by a wizard.

To refresh the type library choose the Refresh icon on the Type Library Editor toolbar.

2225

Note: If you have renamed items in the type library, refreshing the implementation may create duplicate entries. In
this case, you must move your code to the correct entry and delete any duplicates. Similarly, if you delete
items in the type library, refreshing the implementation does not remove them from CoClasses (under the
assumption that you are merely removing them from visibility to clients). You must delete these items
manually in the implementation unit if they are no longer needed.

Registering the Type Library
Typically, you do not need to explicitly register a type library because it is registered automatically when you register
your COM server application (see Registering a COM object). However, when you create a type library using the
Type Library wizard, it is not associated with a server object. In this case, you can register the type library directly
using the toolbar.

Registering the type library,

Performs a syntax check
Adds an entry to the Windows Registry for the type library

To register the type library, choose the Register icon on the Type Library Editor toolbar.

Exporting an IDL File
Exporting the type library,

Performs a syntax check.
Creates a Microsoft IDL file that contains the type information declarations.

To export the type library, choose the Export icon on the Type Library Editor toolbar.

Deploying Type Libraries
By default, when you have a type library that was created as part of an Automation server project, the type library
is automatically linked into the .DLL, .OCX, or EXE as a resource.

You can, however, deploy your application with the type library as a separate .TLB, as Delphi maintains the type
library, if you prefer.

Historically, type libraries for Automation applications were stored as a separate file with the .TLB extension. Now,
typical Automation applications compile the type libraries into the .OCX or .EXE file directly. The operating system
expects the type library to be the first resource in the executable (.DLL, .OCX, or .EXE) file.

When you make type libraries other than the primary project type library available to application developers, the type
libraries can be in any of the following forms:

Stand-alone binary files. The .TLB file output by the Type Library editor is a binary file.
A resource. This resource should have the type TYPELIB and an integer ID. If you choose to build type libraries
with a resource compiler, it must be declared in the resource (.RC) file as follows:

1 typelib mylib1.tlb
2 typelib mylib2.tlb

2226

Creating COM clients

Creating COM Clients
COM clients are applications that make use of a COM object implemented by another application or library. The
most common types are applications that control an Automation server (Automation controllers) and applications
that host an ActiveX control (ActiveX containers).

At first glance these two types of COM client are very different: The typical Automation controller launches an external
server EXE and issues commands to make that server perform tasks on its behalf. The Automation server is usually
nonvisual and out-of-process. The typical ActiveX client, on the other hand, hosts a visual control, using it much the
same way you use any control on the Component palette. ActiveX servers are always in-process servers.

However, the task of writing these two types of COM client is remarkably similar: The client application obtains an
interface for the server object and uses its properties and methods. Developer Studio 2006 makes this particularly
easy by letting you wrap the server CoClass in a component on the client, which you can even install on the
Component palette.

When writing a COM client, you must understand the interface that the server exposes to clients, just as you must
understand the properties and methods of a component from the Component palette to use it in your application.
This interface (or set of interfaces) is determined by the server application, and typically published in a type library.
For specific information on a particular server application’s published interfaces, you should consult that application’s
documentation.

Even if you do not choose to wrap a server object in a component wrapper and install it on the Component palette,
you must make its interface definition available to your application. To do this, you can import the server’s type
information.

Once you have imported the type information, you can write code to control the imported object.

Note: You can also query the type information directly using COM APIs, but Developer Studio 2006 provides no
special support for this.

Some older COM technologies, such as object linking and embedding (OLE), do not provide type information in a
type library. Instead, they rely on a standard set of predefined interfaces. These are discussed in Creating Clients
for Servers That Do Not Have a Type Library.

Importing Type Library Information
To make information about the COM server available to your client application, you must import the information
about the server that is stored in the server's type library. Your application can then use the resulting generated
classes to control the server object.

2227

There are two ways to import type library information:

You can use the Import Component dialog to import all available information about the server types, objects,
and interfaces. This is the most general method, because it lets you import information from any type library
and can optionally generate component wrappers for all creatable CoClasses in the type library that are not
flagged as Hidden, Restricted, or PreDeclID.
You can also use the Import Component dialog if you are importing from the type library of an ActiveX control.
This imports the same type information, but only creates component wrappers for CoClasses that represent
ActiveX controls.
You can use the command line utility tlibimp.exe which provides additional configuration options not available
from within the IDE.
A type library generated using a wizard is automatically imported using the same mechanism as the import type
library menu item.

Regardless of which method you choose to import type library information, the resulting dialog creates a unit with
the name TypeLibName_TLB, where TypeLibName is the name of the type library. This file contains declarations
for the classes, types, and interfaces defined in the type library. By including it in your project, those definitions are
available to your application so that you can create objects and call their interfaces. This file may be recreated by
the IDE from time to time; as a result, making manual changes to the file is not recommended.

In addition to adding type definitions to the TypeLibName_TLB unit, the dialog can also create VCL class wrappers
for any CoClasses defined in the type library. When you use the Import Type Library dialog, these wrappers are
optional. When you use the Import ActiveX dialog, they are always generated for all CoClasses that represent
controls.

The generated class wrappers represent the CoClasses to your application, and expose the properties and methods
of its interfaces. If a CoClass supports the interfaces for generating events (IConnectionPointContainer and
IConnectionPoint), the VCL class wrapper creates an event sink so that you can assign event handlers for the events
as simply as you can for any other component. If you tell the dialog to install the generated VCL classes on the Tool
Palette, you can use the Object Inspector to assign property values and event handlers.

Note: The Import Component dialog does not create class wrappers for COM+ event objects. To write a client
that responds to events generated by a COM+ event object, you must create the event sink programmatically.
This process is described in Handling COM+ events.

For more details about the code generated when you import a type library, see Code generated when you import
type library information.

Code Generated When You Import Type Library Information
Once you import a type library, you can view the generated TypeLibName_TLB unit. At the top, you will find the
following:

First, constant declarations giving symbolic names to the GUIDS of the type library and its interfaces and CoClasses.
The names for these constants are generated as follows:

the GUID for the type library has the form LBID_TypeLibName, where TypeLibName is the name of the type
library.
The GUID for an interface has the form IID_InterfaceName, where InterfaceName is the name of the interface.
The GUID for a dispinterface has the form DIID_InterfaceName, where InterfaceName is the name of the
dispinterface.
The GUID for a CoClass has the form CLASS_ClassName, where ClassName is the name of the CoClass.
The compiler directive VARPROPSETTER will be on. This allows the use of the keyword var in the parameter
list of property setter methods. This disables a compiler optimization that would cause parameters to be passed

2228

by value instead of by reference. The VARPROPSETTER directive must be on, when creating TLB units for
components written in a language other than Delphi.

Second, declarations for the CoClasses in the type library. These map each CoClass to its default interface.

Third, declarations for the interfaces and dispinterfaces in the type library.

Fourth, declarations for a creator class for each CoClass whose default interface supports VTable binding. The
creator class has two class methods, Create and CreateRemote, that can be used to instantiate the CoClass locally
(Create) or remotely (CreateRemote).These methods return the default interface for the CoClass.

These declarations provide you with what you need to create instances of the CoClass and access its interface. All
you need do is add the generated TypeLibName_TLB.pas file to the uses clause of the unit where you wish to bind
to a CoClass and call its interfaces.

Note: This portion of the TypeLibName_TLB unit is also generated when you use the Type Library editor or the
command-line utility TLIBIMP.

If you want to use an ActiveX control, you also need the generated VCL wrapper in addition to the declarations
described above. The VCL wrapper handles window management issues for the control. You may also have
generated a VCL wrapper for other CoClasses in the Import Type Library dialog. These VCL wrappers simplify the
task of creating server objects and calling their methods. They are especially recommended if you want your client
application to respond to events.

The declarations for generated VCL wrappers appear at the bottom of the interface section. Component wrappers
for ActiveX controls are descendants of TOleControl. Component wrappers for Automation objects descend from
TOleServer. The generated component wrapper adds the properties, events, and methods exposed by the CoClass's
interface. You can use this component like any other VCL component.

Warning: You should not edit the generated TypeLibName_TLB unit. It is regenerated each time the type library
is refreshed, so any changes will be overwritten.

Note: For the most up-to-date information about the generated code, refer to the comments in the automatically-
generated TypeLibName_TLB unit.

Controlling an Imported Object
After importing type library information, you are ready to start programming with the imported objects. How you
proceed depends in part on the objects, and in part on whether you have chosen to create component wrappers.
There are two basic approaches:

Using component wrappers.
Writing client code based on type library definitions.

Using Component Wrappers
If you generated a component wrapper for your server object, writing your COM client application is not very different
from writing any other application that contains VCL components. The server object's properties, methods, and
events are already encapsulated in the VCL component. You need only assign event handlers, set property values,
and call methods.

To use the properties, methods, and events of the server object, see the documentation for your server. The
component wrapper automatically provides a dual interface where possible. Delphi determines the VTable layout
from information in the type library.

2229

In addition, your new component inherits certain important properties and methods from its base class.

ActiveX wrappers
You should always use a component wrapper when hosting ActiveX controls, because the component wrapper
integrates the control's window into the VCL framework.

The properties and methods an ActiveX control inherits from TOleControl allow you to access the underlying interface
or obtain information about the control. Most applications, however, do not need to use these. Instead, you use the
imported control the same way you would use any other VCL control.

Typically, ActiveX controls provide a property page that lets you set their properties. Property pages are similar to
the component editors some components display when you double-click on them in the form designer. To display
an ActiveX control's property page, right click and choose Properties.

The way you use most imported ActiveX controls is determined by the server application. However, ActiveX controls
use a standard set of notifications when they represent the data from a database field. See TOleControl for
information on how to host such ActiveX controls.

Automation object wrappers
The wrappers for Automation objects let you control how you want to form the connection to your server object:

First, the ConnectKind property indicates whether the server is local or remote and whether you want to connect to
a server that is already running or if a new instance should be launched. When connecting to a remote server, you
must specify the machine name using the RemoteMachineName property.

Second, once you have specified the ConnectKind, there are three ways you can connect your component to the
server:

you can explicitly connect to the server by calling the component's Connect method.
You can tell the component to connect automatically when your application starts up by setting the AutoConnect
property to true.
You do not need to explicitly connect to the server. The component automatically forms a connection when you
use one of the server's properties or methods using the component.

Calling methods or accessing properties is the same as using any other component:

[Delphi]
TServerComponent1.DoSomething;

[C++]
TServerComponent1->DoSomething();

Handling events is easy, because you can use the Object Inspector to write event handlers. Note, however, that
the event handler on your component may have slightly different parameters than those defined for the event in the
type library. Specifically, pointer types (var parameters and interface pointers) are changed to Variants. You must
explicitly cast var parameters to the underlying type before assigning a value. Interface pointers can be cast to the
appropriate interface type using the as operator.

For example, the following code shows an event handler for the ExcelApplication event, OnNewWorkBook. The
event handler has a parameter that provides the interface of another CoClass (ExcelWorkbook). However, the
interface is not passed as an ExcelWorkbook interface pointer, but rather as an OleVariant.

2230

[Delphi]
procedure TForm1.XLappNewWorkbook(Sender: TObject; var Wb:OleVariant);
begin
 { Note how the OleVariant for the interface must be cast to the correct type }
 ExcelWorkbook1.ConnectTo((iUnknown(wb) as ExcelWorkbook));
end;

[C++]
void _fastcall TForm1::XLappNewWorkbook(TObject *Sender, ExcelWorkbookPtr Wb)
{
ExcelWorkbook1->ConnectTo(Wb);
}

In this example, the event handler assigns the workbook to an ExcelWorkbook component (ExcelWorkbook1). This
demonstrates how to connect a component wrapper to an existing interface by using the ConnectTo method. The
ConnectTo method is added to the generated code for the component wrapper.

Servers that have an application object expose a Quit method on that object to let clients terminate the connection.
Quit typically exposes functionality that is equivalent to using the File menu to quit the application. Code to call the
Quit method is generated in your component's Disconnect method. If it is possible to call the Quit method with no
parameters, the component wrapper also has an AutoQuit property. AutoQuit causes your controller to call Quit
when the component is freed. If you want to disconnect at some other time, or if the Quit method requires parameters,
you must call it explicitly. Quit appears as a public method on the generated component.

Writing Client Code Based On Type Library Definitions
Although you must use a component wrapper for hosting an ActiveX control, you can write an Automation controller
using only the definitions from the type library that appear in the TypeLibName_TLB unit. This process is a bit more
involved that letting a component do the work, especially if you need to respond to events.

The following topics describe how to implement the various actions your Automation controller needs to perform:

Connect to the server.
Control the Automation server using a dual interface.
Control the Automation server using a dispinterface.
Respond to events generated by the Automation server.

Connecting to a Server
Before you can drive an Automation server from your controller application, you must obtain a reference to an
interface it supports. Typically, you connect to a server through its main interface.

If the main interface is a dual interface, you can use the creator objects in the TypeLibName_TLB.pas file. The creator
classes have the same name as the CoClass, with the prefix "Co" added. You can connect to a server on the same
machine by calling the Create method, or a server on a remote machine using the CreateRemote method. Because
Create and CreateRemote are class methods, you do not need an instance of the creator class to call them.

[Delphi]
MyInterface := CoServerClassName.Create;
MyInterface := CoServerClassName.CreateRemote('Machine1');

2231

[C++]
pInterface = CoServerClassName.Create();
pInterface = CoServerClassName.CreateRemote("Machine1");

Create and CreateRemote return the default interface for the CoClass.

If the default interface is a dispatch interface, then there is no Creator class generated for the CoClass. Instead, you
can call the global CreateOleObject function, passing in the GUID for the CoClass (there is a constant for this GUID
defined at the top of the _TLB unit). CreateOleObject returns an IDispatch pointer for the default interface.

Controlling an Automation Server Using a Dual Interface
After using the automatically generated creator class to connect to the server, you call methods of the interface. For
example,

[Delphi]
var
 MyInterface : _Application;
begin
 MyInterface := CoWordApplication.Create;
 MyInterface.DoSomething;

[C++]
TComApplication AppPtr = CoWordApplication_.Create();
AppPtr->DoSomething;

The interface and creator class are defined in the TypeLibName_TLB unit that is generated automatically when you
import a type library.

Controlling an Automation Server Using a Dispatch Interface
Typically, you use the dual interface to control the Automation server. However, you may find a need to control an
Automation server with a dispatch interface because no dual interface is available.

To call the methods of a dispatch interface,
1 Connect to the server, using the global CreateOleObject function.
2 Use the as operator to cast the IDispatch interface returned by CreateOleObject to the dispinterface for the

CoClass. This dispinterface type is declared in the TypeLibName_TLB unit.
3 Control the Automation server by calling methods of the dispinterface.

Another way to use dispatch interfaces is to assign them to a Variant. By assigning the interface returned by
CreateOleObject to a Variant, you can take advantage of the Variant type's built-in support for interfaces. Simply
call the methods of the interface, and the Variant automatically handles all IDispatch calls, fetching the dispatch
ID and invoking the appropriate method. The Variant type includes built-in support for calling dispatch interfaces,
through its var.

2232

 V: Variant;
begin
 V:= CreateOleObject("TheServerObject");
 V.MethodName; { calls the specified method }
 ...

An advantage of using Variants is that you do not need to import the type library, because Variants use only the
standard IDispatch methods to call the server. The trade-off is that Variants are slower, because they use dynamic
binding at runtime.

Handling Events in an Automation Controller
When you generate a Component wrapper for an object whose type library you import, you can respond to events
simply using the events that are added to the generated component. If you do not use a Component wrapper,
however, (or if the server uses COM+ events), you must write the event sink code yourself.

Handling Automation events programmatically
Before you can handle events, you must define an event sink. This is a class that implements the event dispatch
interface that is defined in the server's type library.

To write the event sink, create an object that implements the event dispatch interface:

[Delphi]
TServerEventsSink = class(TObject, _TheServerEvents)
...{ declare the methods of _TheServerEvents here }
end;

[C++]
class MyEventSinkClass: TEventDispatcher<MyEventSinkClass, DIID_TheServerEvents>
{
...// declare the methods of DIID_TheServerEvents here
}

Once you have an instance of your event sink, you must inform the server object of its existence so that the server
can call it. To do this, you call the global InterfaceConnect procedure, passing it

The interface to the server that generates events.
The GUID for the event interface that your event sink handles.
An IUnknown interface for your event sink.
A variable that receives a Longint that represents the connection between the server and your event sink.

[Delphi]
{MyInterface is the server interface you got when you connected to the server }
InterfaceConnect(MyInterface, DIID_TheServerEvents,
 MyEventSinkObject as IUnknown, cookievar);

[C++]
pInterface = CoServerClassName.CreateRemote("Machine1");
MyEventSinkClass ES;
ES.ConnectEvents(pInterface);

2233

After calling InterfaceConnect, your event sink is connected and receives calls from the server when events occur.

You must terminate the connection before you free your event sink. To do this, call the global InterfaceDisconnect
procedure, passing it all the same parameters except for the interface to your event sink (and the final parameter is
ingoing rather than outgoing):

[Delphi]

InterfaceDisconnect(MyInterface, DIID_TheServerEvents, cookievar);

[C++]
ES.DisconnectEvents(pInterface);

Note: You must be certain that the server has released its connection to your event sink before you free it. Because
you don't know how the server responds to the disconnect notification initiated by InterfaceDisconnect, this
may lead to a race condition if you free your event sink immediately after the call. The easiest way to guard
against problems is to have your event sink maintain its own reference count that is not decremented until
the server releases the event sink's interface.

Handling COM+ events
Under COM+, servers use a special helper object to generate events rather than a set of special interfaces
(IConnectionPointContainer and IConnectionPoint). Because of this, you can't use an event sink that descends from
TEventDispatcher. TEventDispatcher is designed to work with those interfaces, not COM+ event objects.

Instead of defining an event sink, your client application defines a subscriber object. Subscriber objects, like event
sinks, provide the implementation of the event interface. They differ from event sinks in that they subscribe to a
particular event object rather than connecting to a server's connection point.

To define a subscriber object, use the COM Object wizard, selecting the event object's interface as the one you want
to implement. The wizard generates an implementation unit with skeletal methods that you can fill in to create your
event handlers.

Note: You may need to add the event object's interface to the registry using the wizard if it does not appear in the
list of interfaces you can implement.

Once you create the subscriber object, you must subscribe to the event object's interface or to individual methods
(events) on that interface. There are three types of subscriptions from which you can choose:

Transient subscriptions. Like traditional event sinks, transient subscriptions are tied to the lifetime of an object
instance. When the subscriber object is freed, the subscription ends and COM+ no longer forwards events to it.
Persistent subscriptions. These are tied to the object class rather than a specific object instance. When the
event occurs, COM locates or launches an instance of the subscriber object and calls its event handler. In-
process objects (DLLs) use this type of subscription.
Per-user subscriptions. These subscriptions provide a more secure version of transient subscriptions. Both
the subscriber object and the server object that fires events must be running under the same user account on
the same machine.

Note: Objects that subscribe to COM+ events must be installed in a COM+ application.

2234

Creating Clients for Servers That Do Not Have a Type Library
Some older COM technologies, such as object linking and embedding (OLE), do not provide type information in a
type library. Instead, they rely on a standard set of predefined interfaces. To write clients that host such objects, you
can use the TOleContainer component. This component appears on the System category of the Tool Palette.

TOleContainer acts as a host site for an Ole2 object. It implements the IOleClientSite interface and, optionally,
IOleDocumentSite. Communication is handled using OLE verbs.

To use TOleContainer
1 Place a TOleContainer component on your form.
2 Set the AllowActiveDoc property to true if you want to host an Active document.
3 Set the AllowInPlace property to indicate whether the hosted object should appear in the TOleContainer, or in a

separate window.
4 Write event handlers to respond when the object is activated, deactivated, moved, or resized.
5 To bind the TOleContainer object at design time, right click and choose Insert Object. In the Insert Object dialog,

choose a server object to host.
6 To bind the TOleContainer object at runtime, you have several methods to choose from, depending on how you

want to identify the server object. These include CreateObject, which takes a program id, CreateObjectFromFile,
which takes the name of a file to which the object has been saved, CreateObjectFromInfo, which takes a record
containing information on how to create the object, or CreateLinkToFile, which takes the name of a file to which
the object was saved and links to it rather than embeds it.

7 Once the object is bound, you can access its interface using the OleObjectInterface property. However, because
communication with Ole2 objects was based on OLE verbs, you will most likely want to send commands to the
server using the DoVerb method.

8 When you want to release the server object, call the DestroyObject method.

Using .NET Assemblies with Delphi
The Microsoft .NET Framework and the Common Language Runtime (CLR) provide a runtime environment in which
components written in .NET languages can seamlessly interact with each other. A compiler for a .NET language
does not emit native machine code. Instead, the language is compiled to an intermediate, platform neutral form
called Microsoft Intermediate Language (MSIL, or IL for short). The modules containing IL code are linked together
to form an assembly. An assembly can be made up of multiple modules, or it can be a single file. In either case, an
assembly is a self-describing entity; it holds information about the types it contains, the modules that comprise the
assembly, and dependencies on other assemblies. An assembly is the basic unit of deployment in the .NET
development environment, and the CLR manages loading, compilation to native machine code, and subsequent
execution of that code. Applications that run entirely within the context of the CLR are called managed code.

One of the services provided by the CLR is the ability for managed code to call on unmanaged code, that is, code
that was compiled to native machine language and which does not execute within the environment of the CLR. For
example, through a service called Platform Invoke (often shortened to PInvoke), managed code can call on native
Win32 APIs. This ability extends to using legacy COM objects from a managed .NET application. The ability to
interoperate between managed code and COM objects also goes in the other direction, making it possible to expose .
NET components to unmanaged applications. To the unmanaged application, loading and accessing the .NET
component almost entirely the same as accessing any other COM object.

Requirements for COM Interoperability
If you are developing new components with the .NET Framework, then you need to install the full .NET Framework
SDK, which is available from Microsoft's MSDN website: msdn.microsoft.com. If you are only using .NET types

2235

directly from the .NET Framework core assemblies, then you only need to install the .NET Framework
Redistributable, also available from the MSDN website. Of course, any unmanaged application that relies on services
provided by the .NET Framework will require the .NET Framework Redistributable to be deployed on the end-user's
machine.

.NET components are exposed to unmanaged code through the use of proxy objects called COM Callable Wrappers
(CCW). Since COM mechanisms are used to make the bridge between unmanaged and managed code, you must
register the .NET assemblies that contain components you wish to use. Use the .NET Framework utiltity called
regasm to create the necessary registry entries. The process is similar to registering any other COM object, and
will be covered in more detail later in this section.

The .NET assembly mscorlib.dll contains the types that are integral to the .NET Framework. All .NET assemblies
must reference the mscorlib assembly, simply because it provides the core functionality of the .NET Framework on
the Microsoft Windows platform. If you will be using types directly contained in the mscorlib assembly, then you must
run the regasm utility on mscorlib.dll. The Delphi installer registers the mscorlib assembly for you, if it is not already
registered.

.NET components can be deployed in two ways: In a global, shared location called the Global Assembly Cache
(GAC), or together in the same directory as the executable. Components that are shared among multiple applications
should be deployed in the GAC. Because they are shared, and because of the side-by-side deployment capabilities
of the .NET Framework, assemblies deployed in the GAC must be given a strong name (i.e. they must be digitally
signed). The .NET Framework contains a utility called sn, which is used to generate the encryption keys. After the
keys have been generated and the component has been built, the assembly is installed into the global assembly
cache using another .NET utility called gacutil.

A .NET component can also be deployed in the same directory as the unmanaged executable. In this deployment
scenario, the strong key and GAC installation utility are not required. However, the component must still be registered
using the regasm utility. Unlike an ordinary COM object, registering a .NET component does not make it accessible
to an application outside of the directory where the component is deployed.

.NET Components and Type Libraries
Both COM, and the .NET Framework contain mechanisms to expose type information. In COM, one such mechansim
is the type library. Type libraries are a binary, programming language-neutral way for a COM object to expose type
metadata at runtime. Because type libraries are opened and parsed by system APIs, languages such as Delphi can
import them and gain the advantages of vtable binding, even if the component was written in a different programming
language.

In the .NET development environment, the assembly doubles as a container for both IL, and type information. The .
NET Framework contains classes that are used to examine (or, "reflect") the types contained in an assembly. When
you access a .NET component from unmanaged code, you are actually using a proxy (the COM Callable Wrapper,
mentioned earlier), not the .NET component itself. The CCW mechanism, plus the self-describing nature of
assemblies, is enough to allow you to access a .NET component entirely through late binding.

Because you can access a .NET component through late binding, creating a type library for the component is not
strictly required. All that is required is that the assembly be registered. In fact, unmanaged clients are restricted to
late binding by default. Depending on how the .NET component was designed and built, you might find only an
"empty" class interface if you inspect its type library. Such a type library is useless, in terms of enabling clients to
use vtable binding instead of late binding through IDispatch.

The following example demonstrates how to late bind to the ArrayList collection class contained in mscorlib.dll. The
mscorlib assembly must be registered prior to using any type in the manner described here. The Delphi installer
automatically registers mscorlib, but you can run the regasm utility again if need be (e.g. you unregistered mscorlib
with the /u regasm option). Execute the command

regasm mscorlib.dll

in the .NET Framework directory to register the mscorlib assembly.

2236

Note: Do not use the /tlb option when registering mscorlib.dll. The .NET Framework already includes a type library
for the mscorlib assembly; you do not need to create a new one.

The following code is attached to a button click event of a Delphi form:

procedure TForm1.Button1Click(Sender: TObject);
var
 capacity: Integer;
 item:Variant;
 dotNetArrayList:Variant;
begin
 { Create the object }
 dotNetArrayList := CreateOleObject('System.Collections.ArrayList');

 { Get the capacity of the ArrayList }
 capacity := dotNetArrayList.Capacity;

 { Add an item }
 dotNetArrayList.Add('A string item');

 { Retrieve the item, using the Array interface method, Item(). }
 item := dotNetArrayList.Item(0);

 {Remove all items }
 dotNetArrayList.Clear;
end;

Accessing User-defined .NET Components
When you examine a type library for a .NET component, you might - depending on how the component was designed
and built - find only an empty class interface. The class interface will not contain any information about the parameters
expected by the methods implemented by the class. Also notably absent, are the dispids for the methods of the
class. The reason for this are the problems that can arise when a new version of the component is created.

In COM, inheriting via interface is the only option. In the .NET Framework, inheriting via interface or inheriting via
implementation is a design decision. .NET component writers can choose to add a new method or property at any
time. If changes are made to the .NET component, any COM client that depends on the layout of the interface (e.g.
by caching dispids) will break.

A .NET component writer must choose to expose type information in an exported type library; it is not the default
behavior. This is done through the use of the ClassInterfaceAttribute custom attribute. ClassInterfaceAttribute is
found in the System.Runtime.InteropServices namespace. It can take on the values of the ClassInterfaceType
enumeration, which are, AutoDispatch (the default), AutoDual, and None.

The AutoDispatch value is what causes the empty class interface to be generated. Clients are restricted to late
binding when accessing such a class. The AutoDual value causes all type information (including dispids) to be
included for a class so marked. When a class is marked with the AutoDual value, type information is also included
for all inherited classes. This is the most convenient approach, and it can work well when the .NET components are
developed in a controlled environment. However, this approach is also the one most prone to the versioning problems
mentioned earlier.

The ClassInterfaceType value None inhibits the generation of a class interface. When a .NET class is marked this
way, only the methods implemented in inherited interfaces can be invoked. For .NET components that are intended
to be used by an unmanaged COM client, inheritance via interface is the preferred method of interoperating between
managed and unmanaged code. This way, the COM client is less susceptible to changes in the .NET class. It also
reinforces a tried-and-true COM design principle, the immutability of interfaces.

2237

The following example demonstrates this approach. We start out with a C# interface called MyInterface, and a class
called MyClass.

 using System;
 using System.Reflection;
 using System.Runtime.InteropServices;
 using System.Windows.Forms;

 [assembly:AssemblyKeyFile("KeyFile.snk")]
 namespace InteropTest1 {
 public interface MyInterface {
 void myMethod1();
 void myMethod2(string msg);
 }

 // Restrict clients to using only implemented interfaces.
 [ClassInterface(ClassInterfaceType.None)]
 public class MyClass : MyInterface {

 // The class must have a parameterless constructor for COM interoperability
 public MyClass() {
 }

 // Implement MyInterface methods
 public void myMethod1() {
 MessageBox.Show("In C# Method!");
 }

 public void myMethod2(string msg) {
 MessageBox.Show(msg);
 }
 }
}

The assembly is marked with the AssemblyKeyFile attribute. This is required if the component is to be deployed
in the Global Assembly Cache. If you deploy your component in the same directory as the unmanaged executable
client, the strong key is not required. This example component will be deployed in the GAC, so we first generate the
keyfile using the Strong Name Utility of the .NET Framework SDK:

sn -k KeyFile.snk

Execute this command from the same directory where the C# source file is located.

The next step is to compile this code using the C# compiler. Assuming the C# code is in a file called interoptest1.cs:

csc /t:library interoptest1.cs

The result of this command is the creation of an assembly called interoptest1.dll. The assembly must now be
registered, using the regasm utility. Regasm is similar in concept to tregsvr; it creates entries in the Windows registry
that allow the component to be exposed to unmanaged COM clients.

regasm /tlb interoptest1.dll

The use of the /tlb option causes regasm to do two things: First, the registry entries for the assembly are created.
Second, the types in the assembly will be exported to a type library, and the type library will also be registered.

Finally, the component is deployed to the GAC using the gacutil command:

2238

gacutil -i interoptest1.dll

The -i option indicates the assembly is being installed into the GAC. The gacutil command must be executed each
time you build a new version of the .NET component. Later, if you wish to remove the component from the GAC,
execute the gacutil command again, this time with the -u option:

gacutil -u interoptest1

Note: When uninstalling a component, do not include the '.dll' extension on the assembly name.

Once the .NET component has been built, registered, and installed into the GAC (or, copied to the directory of the
unmanaged executable), accessing it in Delphi is the same as for any other COM object. Open or create your project,
and then select Component Import type library from the menu. Scroll through the list of registered type libraries
until you find the one for your component. You can create a package for the component and install it on the Tool
Palette by selecting the Install check box. The type library importer will create a _TLB file to wrap the component,
making it accessible to unmanaged Delphi code through vtable binding.

The Add button of the type library import dialog box will not correctly register a type library exported for a .NET
assembly. Instead, you must always use the regasm utility on the command line.

The type library importer will automatically create _TLB files (and their corresponding .dcr and .dcu files) for
any .NET assemblies that are referenced in the imported type library. Importing the type library for the example C#
component above would cause the creation of _TLB, .dcr, and .dcu files for the mscorlib and System.
Windows.Forms assemblies.

The example below demonstrates calling methods on the .NET component, after its type library has been imported
into Delphi. The class and method names come from the earlier C# example, and the variable MyClass1 is assumed
to be previously declared (e.g. as a member variable of a class, or a local variable of a procedure or function).

MyClass1 := TMyClass.Create(self);
MyClass1.myMethod1;
MyClass1.myMethod2('Display this message');
MyClass1.Free;

2239

Creating simple COM servers

Creating Simple COM Servers: Overview
Delphi provides wizards to help you create various COM objects. The simplest COM objects are servers that expose
properties and methods (and possibly events) through a default interface that clients can call.

Two wizards, in particular, ease the process of creating simple COM objects:

The COM Object wizard builds a lightweight COM object whose default interface descends from IUnknown or
that implements an interface already registered on your system. This wizard provides the most flexibility in the
types of COM objects you can create.
The Automation Object wizard creates a simple Automation object whose default interface descends from
IDispatch. IDispatch introduces a standard marshaling mechanism and support for late binding of interface calls.

Note: COM defines many standard interfaces and mechanisms for handling specific situations. The Delphi wizards
automate the most common tasks. However, some tasks, such as custom marshaling, are not supported by
any Delphi wizards. For information on that and other technologies not explicitly supported by Delphi, refer
to the Microsoft Developer's Network (MSDN) documentation. The Microsoft Web site also provides current
information on COM support.

Overview of creating a COM object
Whether you use the Automation Object wizard to create a new Automation server or the COM object wizard to
create some other type of COM object, the process you follow is the same.

It involves these steps:
1 Design the COM object.
2 Use the COM Object wizard or the Automation Object wizard to create the server object.
3 Define the interface that the object exposes to clients.
4 Register the COM object.
5 Test and debug the application.

2240

Designing a COM Object
When designing the COM object, you need to decide what COM interfaces you want to implement. You can write a
COM object to implement an interface that has already been defined, or you can define a new interface for your
object to implement. In addition, you can have your object support more than one interface. For information about
standard COM interfaces that you might want to support, see the MSDN documentation.

To create a COM object that implements an existing interface, use the COM Object wizard.
To create a COM object that implements a new interface that you define, use either the COM Object wizard or
the Automation Object wizard. The COM object wizard can generate a new default interface that descends from
IUnknown, and the Automation object gives your object a default interface that descends from IDispatch. No
matter which wizard you use, you can always use the Type Library editor later to change the parent interface
of the default interface that the wizard generates.

In addition to deciding what interfaces to support, you must decide whether the COM object is an in-process server,
out-of-process server, or remote server. For in-process servers and for out-of-process and remote servers that use
a type library, COM marshals the data for you. Otherwise, you must consider how to marshal the data to out-of-
process servers.

Using the COM Object Wizard
The COM object wizard performs the following tasks:

Creates a new unit.
Defines a new class that descends from TCOMObject and sets up the class factory constructor. For more
information on the base class, see Code generated by wizards.
Optionally, adds a type library to your project and adds your object and its interface to the type library.

Before you create a COM object, create or open the project for the application containing functionality that you want
to implement. The project can be either an application or ActiveX library, depending on your needs.

To bring up the COM object wizard
1 Choose File New Other to open the New Items dialog box.
2 Select the folder labeled ActiveX under Delphi Projects
3 Double-click the COM object icon in the right pane.

In the wizard, you must specify the following:

CoClass name: This is the name of the object as it appears to clients. The class created to implement your
object has this name with a 'T' prepended. If you do not choose to implement an existing interface, the wizard
gives your CoClass a default interface that has this name with an 'I' prepended.
Implemented Interface: By default, the wizard gives your object a default interface that descends from
IUnknown. After exiting the wizard, you can then use the Type Library editor to add properties and methods to
this interface. However, you can also select a pre-defined interface for your object to implement. Click the List
button in the COM object wizard to bring up the Interface Selection wizard, where you can select any dual or
custom interface defined in a type library registered on your system. The interface you select becomes the
default interface for your new CoClass. The wizard adds all the methods on this interface to the generated
implementation class, so that you only need to fill in the bodies of the methods in the implementation unit. Note
that if you select an existing interface, the interface is not added to your project's type library. This means that
when deploying your object, you must also deploy the type library that defines the interface.

2241

Instancing: Unless you are creating an in-process server, you need to indicate how COM launches the
application that houses your COM object. If your application implements more than one COM object, you should
specify the same instancing for all of them.
Threading Model: Typically, client requests to your object enter on different threads of execution. You can specify
how COM serializes these threads when it calls your object. Your choice of threading model determines how
the object is registered. You are responsible for providing any threading support implied by the model you
choose. For information on how to provide thread support to your application, see Writing multi-threaded
applications
Include Type Library: You can choose whether you want to include a type library for your object. This is
recommended for two reasons: it lets you use the Type Library editor to define interfaces, thereby updating
much of the implementation, and it gives clients an easy way to obtain information about your object and its
interfaces. If you are implementing an existing interface, Delphi requires your project to use a type library. This
is the only way to provide access to the original interface declaration.
Mark interfaceOleautomation: If you have opted to create a type library and are willing to confine yourself to
Automation-compatible types, you can let COM handle the marshaling for you when you are not generating an
in-process server. By marking your object's interface as OleAutomation in the type library, you enable COM to
set up the proxies and stubs for you and handles passing parameters across process boundaries. You can only
specify whether your interface is Automation-compatible if you are generating a new interface. If you select an
existing interface, its attributes are already specified in its type library. If your object's interface is not marked
as OleAutomation, you must either create an in-process server or write your own marshaling code.

You can optionally add a description of your COM object. This description appears in the type library for your object
if you create one.

Using the Automation Object Wizard
The Automation object wizard performs the following tasks:

Creates a new unit.
Defines a new class that descends from TAutoObject and sets up the class factory constructor. For more
information on the base class, see Code generated by wizards.
Adds a type library to your project and adds your object and its interface to the type library.

Before you create an Automation object, create or open the project for an application containing functionality that
you want to expose. The project can be either an application or ActiveX library, depending on your needs.

To display the Automation wizard:
1 Choose File New Other to open the New Items dialog box.
2 Select the folder labeled ActiveX under Delphi Projects.
3 Double-click the Automation Object icon in the right pane.
4 In the wizard dialog, specify the following:

CoClass name: This is the name of the object as it appears to clients. Your object's default interface is created
with a name based on this CoClass name with an 'I' prepended, and the class created to implement your object
has this name with a 'T' prepended.
Instancing: Unless you are creating an in-process server, you need to indicate how COM launches the
application that houses your COM object. If your application implements more than one COM object, you should
specify the same instancing for all of them.
Threading Model: Typically, client requests to your object enter on different threads of execution. You can specify
how COM serializes these threads when it calls your object. Your choice of threading model determines how

2242

the object is registered. You are responsible for providing any threading support implied by the model you
choose. For information on how to provide thread support to your application, see Writing multi-threaded
applications.
Generate Event support code: You must indicate whether you want your object to generate events to which
clients can respond. The wizard can provide support for the interfaces required to generate events and the
dispatching of calls to client event handlers.

The Automation object implements a dual interface, which supports both early (compile-time) binding through the
VTable and late (runtime) binding through the IDispatch interface.

COM Object Instancing Types
Many of the COM wizards require you to specify an instancing mode for the object. Instancing determines how many
instances of your object clients can create in a single executable. If you specify a Single Instance model, for example,
then once a client has instantiated your object, COM removes the application from view so that other clients must
launch their own instances of the application. Because this affects the visibility of your application as a whole, the
instancing mode must be consistent across all objects in your application that can be instantiated by clients. That
is, you should not create one object in your application that uses Single Instance mode and another in the same
application that uses Multiple Instance mode.

Note: Instancing is ignored when your COM object is used only as an in-process server.

When the wizard creates a new COM object, it can have any of the following instancing types:

Instancing Meaning

Internal The object can only be created internally. An external application cannot create an instance of the object
directly, although your application can create the object and pass an interface for it to clients.

Single Instance Allows clients to create only a single instance of the object for each executable (application), so creating
multiple instances results in launching multiple instances of the application. Each client has its own
dedicated instance of the server application.

Multiple Instances Specifies that multiple clients can create instances of the object in the same process space.

Choosing a Threading Model
When creating an object using a wizard, you select a threading model that your object agrees to support. By adding
thread support to your COM object, you can improve its performance, because multiple clients can access your
application at the same time.

The following table lists the different threading models you can specify.

Threading models for COM objects
Threading model Description Implementation pros and cons

Single The server provides no thread support.
COM serializes client requests so that
the application receives one request at
a time.

Clients are handled one at a time so no
threading support is needed.

No performance benefit.

Apartment (or Single-threaded
apartment)

COM ensures that only one client thread
can call the object at a time. All client
calls use the thread in which the object
was created.

Objects can safely access their own
instance data, but global data must be
protected using critical sections or some
other form of serialization.

The thread's local variables are reliable
across multiple calls.

2243

Some performance benefits.

Free (also called multi-threaded
apartment)

Objects can receive calls on any
number of threads at any time.

Objects must protect all instance and global
data using critical sections or some other
form of serialization.

Thread local variables are not reliable
across multiple calls.

Both This is the same as the Free-threaded
model except that outgoing calls (for
example, callbacks) are guaranteed to
execute in the same thread.

Maximum performance and flexibility.

Does not require the application to provide
thread support for parameters supplied to
outgoing calls.

Neutral Multiple clients can call the object on
different threads at the same time, but
COM ensures that no two calls conflict.

You must guard against thread conflicts
involving global data and any instance data
that is accessed by multiple methods.

This model should not be used with objects
that have a user interface (visual controls).

This model is only available under COM+.
Under COM, it is mapped to the Apartment
model.

Note: Local variables (except those in callbacks) are always safe, regardless of the threading model. This is
because local variables are stored on the stack and each thread has its own stack. Local variables may not
be safe in callbacks when using free-threading.

The threading model you choose in the wizard determines how the object is registered in the system Registry. You
must make sure that your object implementation adheres to the threading model you have chosen. For general
information on writing thread-safe code, see Writing multi-threaded applications.

For in-process servers, setting the threading model in the wizard sets the threading model key in the CLSID registry
entry.

Out-of-process servers are registered as EXE, and Delphi initializes COM for the highest threading model required.
For example, if an EXE includes a free-threaded object, it is initialized for free threading, which means that it can
provide the expected support for any free-threaded or apartment-threaded objects contained in the EXE. To manually
override threading behavior in EXEs, use the CoInitFlags variable.

Writing an object that supports the free threading model
Use the free threading (or both) model rather than apartment threading whenever the object needs to be accessed
from more than one thread. A common example is a client application connected to an object on a remote machine.
When the remote client calls a method on that object, the server receives the call on a thread from the thread pool
on the server machine. This receiving thread makes the call locally to the actual object; and, because the object
supports the free threading model, the thread can make a direct call into the object.

If the object supported the apartment threading model instead, the call would have to be transferred to the thread
on which the object was created, and the result would have to be transferred back into the receiving thread before
returning to the client. This approach requires extra marshaling.

To support free threading, you must consider how instance data can be accessed for each method. If the method
is writing to instance data, you must use critical sections or some other form of serialization, to protect the instance
data. Likely, the overhead of serializing critical calls is less than executing COM's marshaling code.

Note that if the instance data is read-only, serialization is not needed.

2244

Free-threaded in-process servers can improve performance by acting as the outer object in an aggregation with the
free-threaded marshaler. The free-threaded marshaler provides a shortcut for COM's standard thread handling when
a free-threaded DLL is called by a host (client) that is not free-threaded.

To aggregate with the free threaded marshaler, you must

Call CoCreateFreeThreadedMarshaler, passing your object's IUnknown interface for the resulting free-threaded
marshaler to use: CoCreateFreeThreadedMarshaler(self as IUnknown, FMarshaler);
CoCreateFreeThreadedMarshaler(static_cast<IUnknown *>(this), &FMarshaler);. This line
assigns the interface for the free-threaded marshaler to a class member, FMarshaler.
Using the Type Library Editor, add the IMarshal interface to the set of interfaces your CoClass implements.
In your object's QueryInterface method, delegate calls for IDD_IMarshal to the free-threaded marshaler (stored
as FMarshaler above).

Warning: The free-threaded marshaler violates the normal rules of COM marshaling to provide additional efficiency.
It should be used with care. In particular, it should only be aggregated with free-threaded objects in an
in-process server, and should only be instantiated by the object that uses it (not another thread).

Writing an object that supports the apartment threading model
To implement the (single-threaded) apartment threading model, you must follow a few rules:

The first thread in the application that gets created is COM's main thread. This is typically the thread on which
WinMain was called. This must also be the last thread to uninitialize COM.
Each thread in the apartment threading model must have a message loop, and the message queue must be
checked frequently.
When a thread gets a pointer to a COM interface, that pointer may only be used in that thread.

The single-threaded apartment model is the middle ground between providing no threading support and full, multi-
threading support of the free threading model. A server committing to the apartment model promises that the server
has serialized access to all of its global data (such as its object count). This is because different objects may try to
access the global data from different threads. However, the object's instance data is safe because the methods are
always called on the same thread.

Typically, controls for use in Web browsers use the apartment threading model because browser applications always
initialize their threads as apartment.

Writing an object that supports the neutral threading model
Under COM+, you can use another threading model that is in between free threading and apartment threading: the
neutral model. Like the free-threading model, this model allows multiple threads to access your object at the same
time. There is no extra marshaling to transfer to the thread on which the object was created. However, your object
is guaranteed to receive no conflicting calls.

Writing an object that uses the neutral threading model follows much the same rules as writing an apartment-threaded
object, except that you do need to guard instance data against thread conflicts if it can be accessed by different
methods in the object's interface. Any instance data that is only accessed by a single interface method is
automatically thread-safe.

Defining a COM Object's Interface
When you use a wizard to create a COM object, the wizard automatically generates a type library (unless you specify
otherwise in the COM object wizard). The type library provides a way for host applications to find out what the object

2245

can do. It also lets you define your object's interface using the Type Library editor. The interfaces you define in the
Type Library editor define what properties, methods, and events your object exposes to clients.

Note: If you selected an existing interface in the COM object wizard, you do not need to add properties and methods.
The definition of the interface is imported from the type library in which it was defined. Instead, simply locate
the methods of the imported interface in the implementation unit and fill in their bodies.

Adding a property to the object's interface
When you add a property to your object's interface using the Type Library Editor, it automatically adds a method
to read the property's value and/or a method to set the property's value. The Type Library Editor, in turn, adds
these methods to your implementation class, and in your implementation unit creates empty method implementations
for you to complete.

To add a property to your object's interface
1 In the Type Library Editor, select the default interface for the object.

The default interface should be the name of the object preceded by the letter "I." To determine the default, in the
Type Library Editor, click the CoClass and then select the Implements tab, and check the list of implemented
interfaces for the one marked, "Default."

2 To expose a read/write property, click the New Property button on the toolbar; otherwise, click the arrow next
to the New Property button on the toolbar, and then click the type of property to expose.

3 In the Attributes pane, specify the name and type of the property.
4 On the Type Library Editor toolbar, click the Refresh Implementation button.

A definition and skeletal implementations for the property access methods are inserted into the object's
implementation unit.

5 In the implementation unit, locate the access methods for the property. These have names of the form
Get_PropertyName and Set_PropertyName. Add code that gets or sets the property value of your object.
This code may simply call an existing function inside the application, access a data member that you add to the
object definition, or otherwise implement the property.

Adding a method to the object's interface
When you add a method to your object's interface using the Type Library Editor, the Type Library Editor can, in
turn, add the methods to your implementation class, and in your implementation unit create empty implementation
for you to complete.

To expose a method via your object's interface
1 In the Type Library Editor, select the default interface for the object.

The default interface should be the name of the object preceded by the letter "I". To determine the default, in the
Type Library Editor, click the CoClass and select the Implements tab, and check the list of implemented
interfaces for the one marked, "Default."

2 Click the New Method button.
3 In the Attributes pane, specify the name of the method.
4 In the Parameters pane, specify the method's return type and add the appropriate parameters.
5 On the Type Library Editor toolbar, click the Refresh Implementation button.

2246

A definition and skeletal implementation for the method is inserted into the object's implementation unit.

6 In the implementation unit, locate the newly inserted method implementation. The method is completely empty.
Fill in the body to perform whatever task the method represents.

Exposing events to clients
There are two types of events that a COM object can generate: traditional events and COM+ events.

COM+ events require that you create a separate event object using the event object wizard and add code to
call that event object from your server object.
You can use the wizard to handle much of the work in generating traditional events. This process is described
below.

Note: The COM object wizard does not generate event support code. If you want your object to generate traditional
events, you should use the Automation object wizard.

In order for an object to generate events, you need to do the following:
1 In the Automation Object wizard, check the box, Generate event support code.

The wizard creates an object that includes an Events interface as well as the default interface. This Events
interface has a name of the form I CoClassname Events. It is an outgoing (source) interface, which means that
it is not an interface your object implements, but rather is an interface that clients must implement and which your
object calls. (You can see this by selecting your CoClass, going to the Implements page, and noting that the
Source column on the Events interface says true.)

In addition to the Events interface, the wizard adds the IConnectionPointContainer interface to the declaration
of your implementation class, and adds several class members for handling events. Of these new class members,
the most important are FConnectionPoint and FConnectionPoints, which implement the IConnectionPoint and
IConnectionPointContainer interfaces using built-in VCL classes. FConnectionPoint is maintained by another
method that the wizard adds, EventSinkChanged.

2 In the Type Library Editor, select the outgoing Events interface for your object. (This is the one with a name of
the form I CoClassName Events)

3 Click the New Method button from the Type Library Editor toolbar. Each method you add to the Events interface
represents an event handler that the client must implement.

4 In the Attributes pane, specify the name of the event handler, such as MyEvent.
5 On the Type Library Editor toolbar, click the Refresh Implementation button.

Your object implementation now has everything it needs to accept client event sinks and maintain a list of
interfaces to call when the event occurs. To call these interfaces, you can create a method to generate each
event on clients.

6 In the Code Editor, add a method to your object for firing each event. For example,

[Delphi]

unit ev;
interface
uses
 ComObj, AxCtrls, ActiveX, Project1_TLB;
type
 TMyAutoObject = class (TAutoObject,IConnectionPointContainer, IMyAutoObject)

2247

private
 .
 .
 .
public
 procedure Initialize; override;
 procedure Fire_MyEvent; { Add a method to fire the event}

7 Implement the method you added in the last step so that it iterates through all the event sinks maintained by your
object's FConnectionPoint member:

[Delphi]

procedure TMyAutoObject.Fire_MyEvent;
var
 I: Integer;
 EventSinkList: TList;
 EventSink: IMyAutoObjectEvents;
begin
 if FConnectionPoint <> nil then
 begin
 EventSinkList :=FConnectionPoint.SinkList; {get the list of client sinks }
 for I := 0 to EventSinkList.Count - 1 do
 begin
 EventSink := IUnknown(FEvents[I]) as IMyAutoObjectEvents;
 EventSink.MyEvent;
 end;
 end;
end;

8 Whenever you need to fire the event so that clients are informed of its occurrence, call the method that dispatches
the event to all event sinks:

[Delphi]
if EventOccurs then Fire_MyEvent; { Call method you created to fire events.}

[C++]
if (EventOccurs) Fire_MyEvent; // Call method you created to fire events.

Managing Events in Your Automation Object
The Automation wizard automatically generates event code if you check the option, Generate Support Code in the
Automation Object wizard dialog box.

For a server to support traditional COM events, it must provide the definition of an outgoing interface which is
implemented by a client. This outgoing interface includes all the event handlers the client must implement to respond
to server events.

When a client has implemented the outgoing event interface, it registers its interest in receiving event notification by
querying the server's IConnectionPointContainer interface. The IConnectionPointContainer interface returns the
server's IConnectionPoint interface, which the client then uses to pass the server a pointer to its implementation of
the event handlers (known as a sink).

The server maintains a list of all client sinks and calls methods on them when an event occurs.

2248

When you select Generate Event Support Code, Delphi automatically generates the code necessary to support
IConnectionPoint and IConnectionPointContainer. This support, and the way you can use it to generate events is
described in Exposing events to clients.

Automation Interfaces
The Automation Object wizard implements a dual interface by default, which means that the Automation object
supports both

Late binding at runtime, which is through the IDispatch interface. This is implemented as a dispatch interface,
or dispinterface.
Early binding at compile-time, which is accomplished through directly calling one of the member functions in
the object's virtual function table (VTable). This is referred to as a custom interface.

Note: Any interfaces generated by the COM Object wizard that do not descend from IDispatch only support VTable
calls.

Dual Interfaces
A dual interface is a custom interface and a dispinterface at the same time. It is implemented as a COM VTable
interface that derives from IDispatch. For those controllers that can access the object only at runtime, the
dispinterface is available. For objects that can take advantage of compile-time binding, the more efficient VTable
interface is used.

Dual interfaces offer the following combined advantages of VTable interfaces and dispinterfaces:

For VTable interfaces, the compiler performs type checking and provides more informative error messages.
For Automation controllers that cannot obtain type information, the dispinterface provides runtime access to the
object.
For in-process servers, you have the benefit of fast access through VTable interfaces.
For out-of-process servers, COM marshals data for both VTable interfaces and dispinterfaces. COM provides
a generic proxy/stub implementation that can marshal the interface based on the information contained in a type
library.

The first three entries of the VTable for a dual interface refer to the IUnknown interface, the next four entries refer
to the IDispatch interface, and the remaining entries are COM entries for direct access to members of the custom
interface.

Dispatch Interfaces
Automation controllers are clients that use the COM IDispatch interface to access the COM server objects. The
controller must first create the object, then query the object's IUnknown interface for a pointer to its IDispatch
interface. IDispatch keeps track of methods and properties internally by a dispatch identifier (dispID), which is a
unique identification number for an interface member. Through IDispatch, a controller retrieves the object's type
information for the dispatch interface and then maps interface member names to specific dispIDs. These dispIDs
are available at runtime, and controllers get them by calling the IDispatch method, GetIDsOfNames.

Once it has the dispID, the controller can then call the IDispatch method, Invoke, to execute the appropriate code
(property or method), packaging the parameters for the property or method into one of the Invoke parameters.
Invoke has a fixed compile-time signature that allows it to accept any number of arguments when calling an interface
method.

2249

The Automation object's implementation of Invoke must then unpackage the parameters, call the property or method,
and be prepared to handle any errors that occur. When the property or method returns, the object passes its return
value back to the controller.

This is called late binding because the controller binds to the property or method at runtime rather than at compile
time.

Custom Interfaces
Custom interfaces are user-defined interfaces that allow clients to invoke interface methods based on their order in
the VTable and knowledge of the argument types. The VTable lists the addresses of all the properties and methods
that are members of the object, including the member functions of the interfaces that it supports. If the object does
not support IDispatch, the entries for the members of the object's custom interfaces immediately follow the members
of IUnknown.

If the object has a type library, you can access the custom interface through its VTable layout, which you can get
using the Type Library Editor. If the object has a type library and also supports IDispatch, a client can also get the
dispIDs of the IDispatch interface and bind directly to a VTable offset. Delphi's type library importer (TLIBIMP)
retrieves dispIDs at import time, so clients that use dispinterfaces can avoid calls to GetIDsOfNames; this information
is already in the _TLB unit. However, clients still need to call Invoke.

Marshaling Data
For out-of-process and remote servers, you must consider how COM marshals data outside the current process.
You can provide marshaling:

Automatically, using the IDispatch interface.
Automatically, by creating a type library with your server and marking the interface with the OLE Automation
flag. COM knows how to marshal all the Automation-compatible types in the type library and can set up the
proxies and stubs for you. Some type restrictions apply to enable automatic marshaling.
Manually by implementing all the methods of the IMarshal interface. This is called custom marshaling.

Note: The first method (using IDispatch) is only available on Automation servers. The second method is
automatically available on all objects that are created by wizards and which use a type library.

Automation compatible types
Function result and parameter types of the methods declared in dual and dispatch interfaces and interfaces that you
mark as OLE Automation must be Automation-compatible types. The following types are OLE Automation-
compatible:

First, the predefined valid types such as Smallint, Integer, Single, Double, WideString. For a complete list, see Valid
types.

Second, enumeration types defined in a type library. OLE Automation-compatible enumeration types are stored as
32-bit values and are treated as values of type Integer for purposes of parameter passing.

Third, interface types defined in a type library that are OLE Automation safe, that is, derived from IDispatch and
containing only OLE Automation compatible types.

Fourth, dispinterface types defined in a type library.

Fifth, any custom record type defined within the type library.

Sixth, IFont, IStrings, and IPicture. Helper objects must be instantiated to map

an IFont to a TFont

2250

an IStrings to a TStrings
an IPicture to a TPicture

The ActiveX control and ActiveForm wizards create these helper objects automatically when needed. To use the
helper objects, call the global routines, GetOleFont, GetOleStrings, GetOlePicture, respectively.

Type restrictions for automatic marshaling
For an interface to support automatic marshaling (also called Automation marshaling or type library marshaling), the
following restrictions apply. When you edit your object using the type library editor, the editor enforces these
restrictions:

String data types must be transferred as wide strings (BSTR). PChar and AnsiString cannot be marshaled safely.
All members of a dual interface must pass an HRESULT as the function's return value. If the method is declared
using the safecall calling convention, this condition is imposed automatically, with the declared return type
converted to an output parameter.
Members of a dual interface that need to return other values should specify these parameters as var or out,
indicating an output parameter that returns the value of the function.

Note: One way to bypass the Automation types restrictions is to implement a separate IDispatch interface and a
custom interface. By doing so, you can use the full range of possible argument types. This means that COM
clients have the option of using the custom interface, which Automation controllers can still access. In this
case, though, you must implement the marshaling code manually.

Custom marshaling
Typically, you use automatic marshaling in out-of-process and remote servers because it is easier—COM does the
work for you. However, you may decide to provide custom marshaling if you think you can improve marshaling
performance. When implementing your own custom marshaling, you must support the IMarshal interface. For more
information, on this approach, see the Microsoft documentation.

Registering a COM Object
You can register your server object as an in-process or an out-of-process server. For more information on the server
types, see In-process, out-of-process, and remote servers.

Note: Before you remove a COM object from your system, you should unregister it.

Registering an in-process server
To register an in-process server (DLL or OCX), choose Run Register ActiveX Server.

To unregister an in-process server, choose Run Unregister ActiveX Server.

Registering an out-of-process server
To register an out-of-process server, run the server with the /regserver command-line option. You can set command-
line options with the Run Parameters dialog box. You can also register the server by running it.

To unregister an out-of-process server, run the server with the /unregserver command-line option.

2251

As an alternative, you can use the tregsvr command from the command line or run the regsvr32 command from the
operating system.

Note: If the COM server is intended for use under COM+, you should install it in a COM+ application rather than
register it. (Installing the object in a COM+ application automatically takes care of registration.)

Testing and Debugging the Application
Once you have created a COM server application, you will want to test it before you deploy it.

To test and debug your COM server application,
1 Turn on debugging information using the Compiler page on the Project Options dialog box, if necessary.

Also, turn on Integrated Debugging in the Tools Options Debugger Options dialog.
2 For an in-process server, choose Run Parameters, type the name of the Automation controller in the Host

Application box, and choose OK.
3 Choose Run Run.
4 Set breakpoints in the Automation server.
5 Use the Automation controller to interact with the Automation server.

The Automation server pauses when the breakpoints are reached.

Note: As an alternate approach, if you are also writing the Automation controller, you can debug into an in-process
server by enabling COM cross-process support. Use the Borland Debuggers page of the Tools Options
 Debugger Options dialog to enable cross-process support.

2252

Creating an Active Server Page

Creating Active Server Pages: Overview
If you are using the Microsoft Internet Information Server (IIS) environment to serve your Web pages, you can use
Active Server Pages (ASP) to create dynamic Web-based client/server applications. Active Server Pages let you
write a script that gets called every time the server loads the Web page. This script can, in turn, call on Automation
objects to obtain information that it includes in a generated HTML page. For example, you can write a Delphi
Automation server, such as one to create a bitmap or connect to a database, and use this control to access data
that gets updated every time the server loads the Web page.

On the client side, the ASP acts like a standard HTML document and can be viewed by users on any platform using
any Web Browser.

ASP applications are analogous to applications you write using Delphi's Web broker technology. For more
information about the Web broker technology, see Creating Internet server applications. ASP differs, however, in
the way it separates the UI design from the implementation of business rules or complex application logic.

The UI design is managed by the Active Server Page. This is essentially an HTML document, but it can include
embedded script that calls on Active Server objects to supply it with content that reflects your business rules or
application logic.
The application logic is encapsulated by Active Server objects that expose simple methods to the Active Server
Page, supplying it with the content it needs.

Note: Although ASP provides the advantage of separating UI design from application logic, its performance is
limited in scale. For Web sites that respond to extremely large numbers of clients, an approach based on the
Web broker technology is recommended instead.

The script in your Active Server Pages and the Automation objects you embed in an active server page can make
use of the ASP intrinsics (built-in objects that provide information about the current application, HTTP messages
from the browser, and so on).

The following topics show how to create an Active Server Object using the Delphi Active Server Object wizard. This
special Automation control can then be called by an Active Server Page and supply it with content.

Here are the steps for creating an Active Server Object:

Create an Active Server Object for the application.
Define the Active Server Object's interface.
Register the Active Server Object.
Test and debug the application.

2253

Creating an Active Server Object
An Active Server Object is an Automation object that has access to information about the entire ASP application and
the HTTP messages it uses to communicate with browsers. It descends from TASPObject or TASPMTSObject
(which is in turn a descendant of TAutoObject), and supports Automation protocols, exposing itself for other
applications (or the script in the Active Server page) to use. You create an Active Server Object using the Active
Server Object wizard.

Your Active Server Object project can be either an executable (exe) or library (dll), depending on your needs.
However, you should be aware of the drawbacks of using an out-of-process server.

To display the Active Server Object wizard:
1 Choose File New Other.
2 Select the folder labeled ActiveX under Delphi Projects.
3 Double-click the Active Server Object icon.

In the wizard, give your new Active Server Object a name, and specify the instancing and threading models you
want to support. These details influence the way your object can be called. You must write the implementation
so that it adheres to the model (for example, avoiding thread conflicts).

The thing that makes an Active Server Object unique is its ability to access information about the ASP application
and the HTTP messages that pass between the Active Server page and client Web browsers. This information
is accessed using the ASP intrinsics. In the wizard, you can specify how your object accesses these by setting
the Active Server Type:

If you are working with IIS 3 or IIS 4, you use Page Level Event Methods. Under this model, your object
implements the methods, OnStartPage and OnEndPage, which are called when the Active Server page loads
and unloads. When your object is loaded, it automatically obtains an IScriptingContext interface, which it uses
to access the ASP intrinsics. These interfaces are, in turn, surfaced as properties inherited from the base class
(TASPObject).
If you are working with IIS5 or later, you use the Object Context type. Under this model, your object fetches an
IObjectContext interface, which it uses to access the ASP intrinsics. Again, these interfaces are surfaced as
properties in the inherited base class (TASPMTSObject). One advantage of this latter approach is that your
object has access to all of the other services available through IObjectContext. To access the IObjectContext
interface, simply call GetObjectContext (defined in the mtx unit) as follows: ObjectContext :=
GetObjectContext; For more information about the services available through IObjectContext, see Creating
MTS or COM+ objects

You can tell the wizard to generate a simple ASP page to host your new Active Server Object. The generated page
provides a minimal script (written in VBScript) that creates your Active Server Object based on its ProgID, and
indicates where you can call its methods. This script calls Server.CreateObject to launch your Active Server Object.

Note: Although the generated test script uses VBScript, Active Server Pages also can be written using Jscript.

When you exit the wizard, a new unit is added to the current project that contains the definition for the Active Server
Object. In addition, the wizard adds a type library project and opens the Type Library editor. Now you can expose
the properties and methods of the interface through the type library as described in Defining a COM object's interface
As you write the implementation of your object's properties and methods, you can take advantage of the ASP
intrinsics to obtain information about the ASP application and the HTTP messages it uses to communicate with
browsers.

The Active Server Object, like any other Automation object, implements a dual interface, which supports both early
(compile-time) binding through the VTable and late (runtime) binding through the IDispatch interface.

2254

Using the ASP Intrinsics
The ASP intrinsics are a set of COM objects supplied by ASP to the objects running in an Active Server Page. They
let your Active Server Object access information that reflects the messages passing between your application and
the Web browser, as well as a place to store information that is shared among Active Server Objects that belong to
the same ASP application.

To make these objects easy to access, the base class for your Active Server Object surfaces them as properties.
For a complete understanding of these objects, see the Microsoft documentation. However, the following topics
provide a brief overview.

Application
The Application object is accessed through an IApplicationObject interface. It represents the entire ASP application,
which is defined as the set of all .asp files in a virtual directory and its subdirectories. The Application object can be
shared by multiple clients, so it includes locking support that you should use to prevent thread conflicts.

IApplicationObject includes the following:

IApplicationObject interface members
Property, Method, or Event Meaning

Contents property Lists all the objects that were added to the application using script commands. This interface has
two methods, Remove and RemoveAll, that you can use to delete one or all objects from the list.

StaticObjects property Lists all the objects that were added to the application with the <OBJECT> tag.

Lock method Prevents other clients from locking the Application object until you call Unlock. All clients should
call Lock before accessing shared memory (such as the properties).

Unlock method Releases the lock that was set using the Lock method.

Application_OnEnd event Occurs when the application quits, after the Session_OnEnd event. The only intrinsics available
are Application and Server. The event handler must be written in VBScript or JScript.

Application_OnStart event Occurs before the new session is created (before Session_OnStart). The only intrinsics available
are Application and Server. The event handler must be written in VBScript or JScript.

Request
The Request object is accessed through an IRequest interface. It provides information about the HTTP request
message that caused the Active Server Page to be opened.

IRequest includes the following:

IRequest interface members
Property, Method, or Event Meaning

ClientCertificate property Indicates the values of all fields in the client certificate that is sent with the HTTP message.

Cookies property Indicates the values of all Cookie headers on the HTTP message.

Form property Indicates the values of form elements in the HTTP body. These can be accessed by name.

QueryString property Indicates the values of all variables in the query string from the HTTP header.

ServerVariables property Indicates the values of various environment variables. These variables represent most of the
common HTTP header variables.

TotalBytes property Indicates the number of bytes in the request body. This is an upper limit on the number of bytes
returned by the BinaryRead method.

2255

BinaryRead method Retrieves the content of a Post message. Call the method, specifying the maximum number of
bytes to read. The resulting content is returns as a Variant array of bytes. After calling
BinaryRead, you can't use the Form property.

Response
The Request object is accessed through an IResponse interface. It lets you specify information about the HTTP
response message that is returned to the client browser.

IResponse includes the following:

IResponse interface members
Property, Method, or Event Meaning

Cookies property Determines the values of all Cookie headers on the HTTP message.

Buffer property Indicates whether page output is buffered When page output is buffered, the server does not
send a response to the client until all of the server scripts on the current page are processed.

CacheControl property Determines whether proxy servers can cache the output in the response.

Charset property Adds the name of the character set to the content type header.

ContentType property Specifies the HTTP content type of the response message's body.

Expires property Specifies how long the response can be cached by a browser before it expires.

ExpiresAbsolute property Specifies the date and time when the response expires.

IsClientConnected property Indicates whether the client has disconnected from the server.

Pics property Set the value for the pics-label field of the response header.

Status property Indicates the status of the response. This is the value of an HTTP status header.

AddHeader method Adds an HTTP header with a specified name and value.

AppendToLog method Adds a string to the end of the Web server log entry for this request.

BinaryWrite method Writes raw (uninterpreted) information to the body of the response message.

Clear method Erases any buffered HTML output.

End method Stops processing the .asp file and returns the current result.

Flush method Sends any buffered output immediately.

Redirect method Sends a redirect response message, redirecting the client browser to a different URL.

Write method Writes a variable to the current HTTP output as a string.

Session
The Session object is accessed through the ISessionObject interface. It allows you to store variables that persist for
the duration of a client's interaction with the ASP application. That is, these variables are not freed when the client
moves from page to page within the ASP application, but only when the client exits the application altogether.

ISessionObject includes the following:

ISessionObject interface members

2256

Property, Method, or Event Meaning

Contents property Lists all the objects that were added to the session using the <OBJECT> tag. You can access
any variable in the list by name, or call the Contents object's Remove or RemoveAll method to
delete values.

StaticObjects property Lists all the objects that were added to the session with the <OBJECT> tag.

CodePage property Specifies the code page to use for symbol mapping. Different locales may use different code
pages.

LCID property Specifies the locale identifier to use for interpreting string content.

SessionID property Indicates the session identifier for the current client.

TimeOut property Specifies the time, in minutes, that the session persists without a request (or refresh) from the
client until the application terminates.

Abandon method Destroys the session and releases its resources.

Session_OnEnd event Occurs when the session is abandoned or times out. The only intrinsics available are Application,
Server, and Session. The event handler must be written in VBScript or JScript.

Session_OnStart event Occurs when the server creates a new session is created (after Application_OnStart but before
running the script on the Active Server Page). All intrinsics are available. The event handler must
be written in VBScript or JScript.

Server
The Server object is accessed through an IServer interface. It provides various utilities for writing your ASP
application.

IServer includes the following:

IServer interface members
Property, Method, or Event Meaning

ScriptTimeOut property Same as the TimeOut property on the Session object.

CreateObject method Instantiates a specified Active Server Object.

Execute method Executes the script in a specified .asp file.

GetLastError method Returns an ASPError object that describes the error condition.

HTMLEncode method Encodes a string for use in an HTML header, replacing reserved characters by the appropriate
symbolic constants.

MapPath method Maps a specified virtual path (an absolute path on the current server or a path relative to the
current page) into a physical path.

Transfer method Sends all of the current state information to another Active Server Page for processing.

URLEncode method Applies URL encoding rules, including escape characters, to a specified string

Creating ASPs for In-process or Out-of-process Servers
You can use Server.CreateObject in an ASP page to launch either an in-process or out-of-process server,
depending on your requirements. However, launching in-process servers is more common.

Unlike most in-process servers, an Active Server Object in an in-process server does not run in the client's process
space. Instead, it runs in the IIS process space. This means that the client does not need to download your application

2257

(as, for example, it does when you use ActiveX objects). In-process component DLLs are faster and more secure
than out-of-process servers, so they are better suited for server-side use.

Because out-of-process servers are less secure, it is common for IIS to be configured to not allow out-of-process
executables. In this case, creating an out-of-process server for your Active Server Object would result in an error
similar to the following:

Server object error 'ASP 0196'
Cannot launch out of process component
/path/outofprocess_exe.asp, line 11

Also, out-of-process components often create individual server processes for each object instance, so they are
slower than CGI applications. They do not scale as well as component DLLs.

If performance and scalability are priorities for your site, in-process servers are highly recommended. However,
Intranet sites that receive moderate to low traffic may use an out-of-process component without adversely affecting
the site's overall performance.

Registering an Active Server Object
You can register the Active Server Page as an in-process or an out-of-process server. However, in-process servers
are more common.

Note: When you want to remove the Active Server Page object from your system, you should first unregister it,
removing its entries from the Windows registry.

Registering an in-process server
To register an in-process server (DLL or OCX), choose Run Register ActiveX Server.

To unregister an in-process server, choose Run Unregister ActiveX Server.

Registering an out-of-process server
To register an out-of-process server, run the server with the /regserver command-line option. You can also register
the server by running it.

To unregister an out-of-process server, run the server with the /unregserver command-line option.

Testing and Debugging the Active Server Page Application
Debugging any in-process server such as an Active Server Object is much like debugging a DLL. You choose a host
application that loads the DLL, and debug as usual.

To test and debug an Active Server Object,
1 Turn on debugging information using the Compiler tab on the Project Options dialog box, if necessary. Also,

turn on Integrated Debugging in the Tools Options Debugger Options dialog.
2 Choose Run Parameters, type the name of your Web Server in the Host Application box, and choose OK.
3 Choose Run Run.
4 Set breakpoints in the Active Server Object implementation.

2258

5 Use the Web browser to interact with the Active Server Page.

The debugger pauses when the breakpoints are reached.

2259

Using ActiveX controls

Elements of an ActiveX Control
An ActiveX control involves many elements which each perform a specific function. The elements include a VCL
control, a corresponding COM object wrapper that exposes properties, methods, and events, and one or more
associated type libraries.

VCL control
The underlying implementation of an ActiveX control in Delphi is a VCL control. When you create an ActiveX control,
you must first design or choose the VCL control from which you will make your ActiveX control.

The underlying VCL control must be a descendant of TWinControl, because it must have a window that can be
parented by the host application. When you create an Active form, this object is a descendant of TActiveForm.

Note: The ActiveX control wizard lists the available TWinControl descendants from which you can choose to make
an ActiveX control. This list does not include all TWinControl descendants, however. Some controls, such as
THeaderControl, are registered as incompatible with ActiveX (using the RegisterNonActiveXprocedure
procedure) and do not appear in the list.

ActiveX wrapper
The actual COM object is an ActiveX wrapper object for the VCL control. For Active forms, this class is always
TActiveFormControl. For other ActiveX controls, it has a name of the form TVCLClassX, where TVCLClass is the
name of the VCL control class. Thus, for example, the ActiveX wrapper for TButton would be named TButtonX.

The wrapper class is a descendant of TActiveXControl, which provides support for the ActiveX interfaces. The
ActiveX wrapper inherits this support, which allows it to forward Windows messages to the VCL control and parent
its window in the host application.

The ActiveX wrapper exposes the VCL control's properties and methods to clients via its default interface. You must
implement the wrapper class' properties and methods, delegating method calls to the underlying VCL control. You
must also provide the wrapper class with methods that fire the VCL control's events on clients and assign these
methods as event handlers on the VCL control.

Type library
You must generate a type library for your ActiveX control that contains the type definitions for the wrapper class, its
default interface, and any type definitions that these require. This type information provides a way for your control

2260

to advertise its services to host applications. You can view and edit this information using the Type Library editor.
Although this information is stored in a separate, binary type library file (.TLB extension), you may also compile it
into the ActiveX control DLL as a resource.

Property page
You can optionally give your ActiveX control a property page. The property page allows the user of a host (client)
application to view and edit your control's properties. You can group several properties on a page, or use a page to
provide a dialog-like interface for a property. For information on how to create property pages, see Creating a property
page for an ActiveX control.

Designing an ActiveX Control
When designing an ActiveX control, you start by creating a custom VCL control. This forms the basis of your ActiveX
control. For information on creating custom controls, see Creating custom components.

When designing the VCL control, keep in mind that it will be embedded in another application; this control is not an
application in itself. For this reason, you probably do not want to use elaborate dialog boxes or other major user-
interface components. Your goal is typically to make a simple control that works inside of, and follows the rules of
the main application.

In addition, you should make sure that the types for all properties and methods you want your object to expose to
clients are Automation-compatible, because the ActiveX control's interface must support IDispatch. The wizards do
not add any methods to the wrapper class's interface that have parameters that are not Automation-compatible.

The wizards implement all the necessary ActiveX interfaces required using the COM wrapper class. They also
surface all Automation-compatible properties, methods, and events through the wrapper class's default interface.
Once a wizard has generated the COM wrapper class and its interface, you can use the Type Library editor to modify
the default interface or augment the wrapper class by implementing additional interfaces.

Generating an ActiveX Control Based On a VCL Form
Unlike other ActiveX controls, Active Forms are not first designed and then wrapped by an ActiveX wrapper class.
Instead, the ActiveForm wizard generates a blank form that you design later when the wizard leaves you in the Form
Designer.

When an ActiveForm is deployed on the Web, Delphi creates an HTML page to contain the reference to the
ActiveForm and specify its location on the page. The ActiveForm can then displayed and run from a Web browser.
Inside the browser, the form behaves just like a stand-alone Delphi form. The form can contain any VCL components
or ActiveX controls, including custom-built VCL controls.

To start the ActiveForm wizard,
1 Choose File New Other to open the New Items dialog box.
2 Select the tab labeled ActiveX.
3 Double-click the ActiveForm icon.

On the Active Form wizard, you can't specify the name of the VCL class to wrap. This is because Active forms are
always based on TActiveForm.

You can change the default names for the CoClass, implementation unit, and ActiveX library project. Similarly, this
wizard lets you indicate whether you want your Active Form to require a license, whether it should include version
information, and whether you want an About box form.

2261

When you exit the wizard, it generates the following:

An ActiveX Library project file, which contains the code required to start an ActiveX control. You usually don't
change this file.
A type library, which defines and CoClass for your control, the interface it exposes to clients, and any type
definitions that these require. For more information about the type library, see Working with type libraries.
A form that descends from TActiveForm. This form appears in the form designer, where you can use it to visually
design the Active Form that appears to clients. Its implementation appears in the generated implementation
unit. In the initialization section of the implementation unit, a class factory is created, setting up
TActiveFormControl as the ActiveX wrapper for this form.
An About box form and unit if you requested them.
A .LIC file if you enabled licensing.

At this point, you can add controls and design the form as you like.

After you have designed and compiled the ActiveForm project into an ActiveX library (which has the OCX extension),
you can deploy the project to your Web server and Delphi creates a test HTML page with a reference to the
ActiveForm.

Licensing ActiveX Controls
Licensing an ActiveX control consists of providing a license key at design-time and supporting the creation of licenses
dynamically for controls created at runtime.

To provide design-time licenses, a key is created for the control , which is stored in a file with the same name as the
project with the LIC extension. This .LIC file is added to the project. The user of the control must have a copy of the .
LIC file to open the control in a development environment. Each control in the project that has Make Control Licensed
checked has a separate key entry in the .LIC file.

To support runtime licenses, the wrapper class implements two methods, GetLicenseString and
GetLicenseFilename. These return the license string for the control and the name of the .LIC file, respectively. When
a host application tries to create the ActiveX control, the class factory for the control calls these methods and
compares the string returned by GetLicenseString with the string stored in the .LIC file.

Runtime licenses for the Internet Explorer require an extra level of indirection because users can view HTML source
code for any Web page, and because an ActiveX control is copied to the user's computer before it is displayed. To
create runtime licenses for controls used in Internet Explorer, you must first generate a license package file (LPK
file) and embed this file in the HTML page that contains the control. The LPK file is essentially an array of ActiveX
control CLSIDs and license keys.

Note: To generate the LPK file, use the utility, LPK_TOOL.EXE, which you can download from the Microsoft Web
site (www.microsoft.com).

To embed the LPK file in a Web page, use the HTML objects, <OBJECT> and <PARAM> as follows:

<OBJECT CLASSID="clsid:6980CB99-f75D-84cf-B254-55CA55A69452">
<PARAM NAME="LPKPath" VALUE="ctrllic.lpk">
</OBJECT>

The CLSID identifies the object as a license package and PARAM specifies the relative location of the license
package file with respect to the HTML page.

When Internet Explorer tries to display the Web page containing the control, it parses the LPK file, extracts the license
key, and if the license key matches the control's license (returned by GetLicenseString), it renders the control on the
page. If more than one LPK is included in a Web page, Internet Explorer ignores all but the first.

For more information, look for Licensing ActiveX Controls on the Microsoft Web site.

2262

Customizing the ActiveX Control's Interface
You can add, edit, and remove the properties, methods, and events in an ActiveX control by editing the type library.
You can use the Type Library editor as described in Using the Type Library Editor. Remember that when you add
events, they should be added to the Events interface, not the ActiveX control's default interface.

Note: You can add unpublished properties to your ActiveX control's interface. Such properties can be set at runtime
and will appear in a development environment, but changes made to them will not persist. That is, when the
user of the control changes the value of a property at design time, the changes are not reflected when the
control is run. If the source is a VCL object and the property is not already published, you can make properties
persistent by creating a descendant of the VCL object and publishing the property in the descendant.

You may also choose not to expose all of the VCL control's properties, methods, and events to host applications.
You can use the Type Library editor to remove these from the interfaces that the wizard generated. When you remove
properties and methods from an interface using the Type Library editor, the Type Library editor does not remove
them from the corresponding implementation class. Edit the ActiveX wrapper class in the implementation unit to
remove these after you have changed the interface in the Type Library editor.

Warning: Any changes you make to the type library will be lost if you regenerate the ActiveX control from the original
VCL control or form.

Tip: It is a good idea to check the methods that the wizard adds to your ActiveX wrapper class. Not only does this
give you a chance to note where the wizard omitted any data-aware properties or methods that were not
Automation-compatible, it also lets you detect methods for which the wizard could not generate an
implementation. Such methods appear with a comment in the implementation that indicates the problem.

Adding Additional Properties, Methods, and Events
You can add additional properties, methods, and events to the control using the type library editor. The declaration
is automatically added to the control's implementation unit, type library (TLB) file, and type library unit. The specifics
of what Delphi supplies depends on whether you have added a property or method or whether you have added an
event.

How Delphi Adds Properties
The ActiveX wrapper class implements properties in its interface using read and write access methods. That is, the
wrapper class has COM properties, which appear on an interface as getter and/or setter methods. Unlike VCL
properties, you do not see a "property" declaration on the interface for COM properties. Rather, you see methods
that are flagged as property access methods. When you add a property to the ActiveX control's default interface,
the wrapper class definition (which appears in the _TLB unit that is updated by the Type Library editor) gains one
or two new methods (a getter and/or setter) that you must implement, just as when you add a method to the interface,
the wrapper class gains a corresponding method for you to implement. Thus, adding properties to the wrapper class's
interface is essentially the same as adding methods: the wrapper class definition gains new skeletal method
implementations for you to complete.

Note: For details on what appears in the generated _TLB unit, see Code generated when you import type library
information.

For example, consider a Caption property, of type TCaption in the underlying VCL object. To Add this property to
the object's interface, you enter the following when you add a property to the interface via the type library editor:

2263

[Delphi]
property Caption: TCaption read Get_Caption write Set_Caption;

Delphi adds the following declarations to the wrapper class:

[Delphi]
function Get_Caption: WideString; safecall;
procedure Set_Caption(const Value: WideString); safecall;

[C++]
STDMETHOD(get_Caption(BSTR* Value));
STDMETHOD(set_Caption(BSTR Value));

In addition, it adds skeletal method implementations for you to complete:

[Delphi]
function TButtonX.Get_Caption: WideString;
begin
end;
procedure TButtonX.Set_Caption(Value: WideString);
begin
end;

[C++]
STDMETHODIMP TButtonXImpl::get_Caption(BSTR* Value)
{
 try
 {
 }
 catch(Exception &e)
 {
 return Error(e.Message.c_str(), IID_IButtonX);
 }
 return S_OK;
};
STDMETHODIMP TButtonXImpl::set_Caption(BSTR Value)
{
 try
 {
 }
 catch(Exception &e)
 {
 return Error(e.Message.c_str(), IID_IButtonX);
 }
 return S_OK;
};

Typically, you can implement these methods by simply delegating to the associated VCL control, which can be
accessed using the FDelphiControl member of the wrapper class:

[Delphi]
function TButtonX.Get_Caption: WideString;
begin
 Result := WideString(FDelphiControl.Caption);
end;

2264

procedure TButtonX.Set_Caption(const Value: WideString);
begin
 FDelphiControl.Caption := TCaption(Value);
end;

[C++]
STDMETHODIMP TButtonXImpl::get_Caption(BSTR* Value)
{
try
{
*Value = WideString(m_VclCtl->Caption).Copy();
}
catch(Exception &e)
{
return Error(e.Message.c_str(), IID_IButtonX);
}
return S_OK;
};
STDMETHODIMP TButtonXImpl::set_Caption(BSTR Value)
{
 try
 {
 m_VclCtl->Caption = AnsiString(Value);
 }
 catch(Exception &e)
 {
 return Error(e.Message.c_str(), IID_IButtonX);
 }
 return S_OK;
};

In some cases, you may need to add code to convert the COM data types to native Delphi types. The preceding
example manages this with typecasting.

Note: Because the Automation interface methods are declared safecall, you do not have to implement COM
exception code for these methods—the Delphi compiler handles this for you by generating code around the
body of safecall methods to catch Delphi exceptions and to convert them into COM error info structures and
return codes.

How Delphi Adds Events
The ActiveX control can fire events to its container in the same way that an automation object fires events to clients.
This mechanism is described in Managing events in your Automation object.

If the VCL control you are using as the basis of your ActiveX control has any published events, the wizards
automatically add the necessary support for managing a list of client event sinks to your ActiveX wrapper class and
define the outgoing dispinterface that clients must implement to respond to events.

You add events to this outgoing dispinterface. To add an event in the type library editor, select the event interface
and click on the method icon. Then manually add the list of parameters you want include using the parameter page.

Next, you must declare a method in your wrapper class that is of the same type as the event handler for the event
in the underlying VCL control. This is not generated automatically, because Delphi does not know which event
handler you are using:

2265

[Delphi]
procedure KeyPressEvent(Sender: TObject; var Key: Char);

Implement this method to use the host application's event sink, which is stored in the wrapper class's FEvents
member:

[Delphi]
procedure TButtonX.KeyPressEvent(Sender: TObject; var Key: Char);
var
 TempKey: Smallint;
begin
 TempKey := Smallint(Key); {cast to an OleAutomation compatible type }
 if FEvents <> nil then
 FEvents.OnKeyPress(TempKey)
 Key := Char(TempKey);
 end;

[C++]
void __fastcall TButtonXImpl::KeyPressEvent(TObject *Sender, char &Key)
{
short TempKey;
TempKey = (short)Key;
Fire_OnKeyPress(&TempKey);
Key = (short)TempKey;
};

Note: When firing events in an ActiveX control, you do not need to iterate through a list of event sinks because the
control only has a single host application. This is simpler than the process for most Automation servers.

Finally, you must assign this event handler to the underlying VCL control, so that it is called when the event occurs.
You make this assignment in the InitializeControl method:

[Delphi]
procedure TButtonX.InitializeControl;
begin
 FDelphiControl := Control as TButton;
 FDelphiControl.OnClick := ClickEvent;
 FDelphiControl.OnKeyPress := KeyPressEvent;
end;

[C++]
void InitializeControl()
{
 m_VclCtl->OnClick = ClickEvent;
 m_VclCtl->OnKeyPress = KeyPressEvent;
}

Enabling Simple Data Binding with the Type Library
With simple data binding, you can bind a property of your ActiveX control to a field in a database. To do this, the
ActiveX control must communicate with its host application about what value represents field data and when it
changes. You enable this communication by setting the property's binding flags using the Type Library editor.

2266

By marking a property bindable, when a user modifies the property (such as a field in a database), the control notifies
its container (the client host application) that the value has changed and requests that the database record be
updated. The container interacts with the database and then notifies the control whether it succeeded or failed to
update the record.

Note: The container application that hosts your ActiveX control is responsible for connecting the data-aware
properties you enable in the type library to the database.

Use the type library to enable simple data binding,
1 On the toolbar, click the property that you want to bind.
2 Choose the flags page.
3 Select the following binding attributes:

Binding attribute Description

Bindable Indicates that the property supports data binding. If marked bindable, the property notifies
its container when the property value has changed.

Request Edit Indicates that the property supports the OnRequestEdit notification. This allows the control
to ask the container if its value can be edited by the user.

Display Bindable Indicates that the container can show users that this property is bindable.

Default Bindable Indicates the single, bindable property that best represents the object. Properties that have
the default bind attribute must also have the bindable attribute. Cannot be specified on more
than one property in a dispinterface.

Immediate Bindable Allows individual bindable properties on a form to specify this behavior. When this bit is set,
all changes will be notified. The bindable and request edit attribute bits need to be set for this
new bit to have an effect.

4 Click the Refresh button on the toolbar to update the type library.
To test a data-binding control, you must register it first.

For example, to convert a TEdit control into a data-bound ActiveX control, create the ActiveX control from a
TEdit and then change the Text property flags to Bindable, Display Bindable, Default Bindable, and Immediate
Bindable.

After the control is registered and imported, it can be used to display data.

Creating a Property Page for an ActiveX Control
A property page is a dialog box similar to the Delphi Object Inspector in which users can change the properties of
an ActiveX control. A property page dialog allows you to group many properties for a control together to be edited
at once. Or, you can provide a dialog box for more complex properties.

Typically, users access the property page by right-clicking the ActiveX control and choosing Properties.

The process of creating a property page is similar to creating a form, you
1 Create a new property page.
2 Add controls to the property page.
3 Associate the controls the property page with the properties of an ActiveX control.

2267

4 Connect the property page to the ActiveX control.

Note: When adding properties to an ActiveX control or ActiveForm, you must publish the properties that you want
to persist. If they are not published in the underlying VCL control, you must make a custom descendant of
the VCL control that redeclares the properties as published and then create an ActiveX control from the
descendant class.

Creating a New Property Page
You use the Property Page wizard to create a new property page.

To create a new property page,
1 Choose File New Other.
2 Select the ActiveX folder under Delphi Projects .
3 Double-click the Property Page icon in the right pane.

The wizard creates a new form and implementation unit for the property page. The form is a descendant of
TPropertyPage, which lets you associate the form with the ActiveX control whose properties it edits.

Adding Controls to a Property Page
You must add a control to the property page for each property of the ActiveX control that you want the user to access.

For example, the following illustration shows a property page for setting the MaskEdit property of an ActiveX control.

The list box allows the user to select from a list of sample masks. The edit controls allow the user to test the mask
before applying it to the ActiveX control. You add controls to the property page the same as you would to a form.

Associating Property Page Controls with ActiveX Control Properties
After adding the controls you need to the property page, you must associate each control with its corresponding
property. You make this association by adding code to the property page's UpdatePropertyPage and UpdateObject
methods.

2268

Updating the Property Page
Add code to the UpdatePropertyPage method to update the control on the property page when the properties of the
ActiveX control change. You must add code to the UpdatePropertyPage method to update the property page with
the current values of the ActiveX control's properties.

You can access the ActiveX control using the property page's OleObject property, which is an OleVariant that
contains the ActiveX control's interface.

For example, the following code updates the property page's edit control (InputMask) with the current value of the
ActiveX control's EditMask property:

[Delphi]
procedure TPropertyPage1.UpdatePropertyPage;
begin
 { Update your controls from OleObject }
 InputMask.Text := OleObject.EditMask;
end;

For example, the following code updates the property page's edit control (InputMask) with tthe current value
of the ActiveX control's EditMask property:

[C++]
void __fastcall TPropertyPage1::UpdatePropertyPage(void)
{
InputMask->Text = OleObject.OlePropertyGet("EditMask");
}

Note: It is also possible to write a property page that represents more than one ActiveX control. In this case, you
don't use the OleObject property. Instead, you must iterate through a list of interfaces that is maintained by
the OleObjects property.

Updating the Object
Add code to the UpdateObject method to update the property when the user changes the controls on the property
page. You must add code to the UpdateObject method in order to set the properties of the ActiveX control to their
new values.

You use the OleObject property to access the ActiveX control.

For example, the following code sets the EditMask property of the ActiveX control using the value in the property
page's edit box control (InputMask):

[Delphi]
procedure TPropertyPage1.UpdateObject;
begin
 {Update OleObject from your control }
 OleObject.EditMask := InputMask.Text;
end;

2269

[C++]
void __fastcall TPropertyPage1::UpdateObject(void)
{
 // Update OleObject from your control
 OleObject.OlePropertySet<WideString>("EditMask", WideString(InputMast->Text).Copy());
}

Connecting a Property Page to an ActiveX Control

To connect a property page to an ActiveX control,
1 Add DefinePropertyPage with the GUID constant of the property page as the parameter to the

DefinePropertyPages method implementation in the control's implementation for the unit. For example,

[Delphi]
procedure TButtonX.DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage);
begin
 DefinePropertyPage(Class_PropertyPage1);
end;

[C++]
BEGIN_PROPERTY_MAP(TActiveFormXImpl)
// Define property pages here. Property pages are defined using
// the PROP_PAGE macro with the class id of the page. For example,
// PROP_PAGE(CLSID_ActiveFormXPage)
PROP_PAGE(CLSID_PropertyPage1)
END_PROPERTY_MAP()

The GUID constant, Class_PropertyPage1, of the property page can be found in the property pages unit.

The GUID is defined in the property page's implementation unit .

2 Add the property page unit to the uses clause of the controls implementation unit.

2270

Component Writer's Guide

2271

Introduction to component creation

Overview of Component Creation
This set of topics provides an overview of component design and the process of writing components for Delphi
applications. The material here assumes that you are familiar with Delphi and its standard components.

The main topics discussed are

Class library
Components and classes
Creating components
What goes into a component?
Creating a new component
Testing uninstalled components
Testing installed components

For information on installing new components, see Installing component packages.

Class library
Delphi's components reside in the Visual Component Library (VCL) . The following figure shows the relationship of
selected classes that make up the VCL hierarchy. For a more detailed discussion of class hierarchies and the
inheritance relationships among classes, see Object-oriented programming for component writers

The TComponent class is the shared ancestor of every component in the component library. TComponent provides
the minimal properties and events necessary for a component to work in the IDE. The various branches of the library
provide other, more specialized capabilities.

2272

When you create a component, you add to the component library by deriving a new class from one of the existing
class types in the hierarchy.

Components and Classes
Because components are classes, component writers work with objects at a different level from application
developers. Creating new components requires that you derive new classes.

Briefly, there are two main differences between creating components and using them in applications. When creating
components,

You access parts of the class that are inaccessible to application programmers.
You add new parts (such as properties) to your components.

Because of these differences, you need to be aware of more conventions and think about how application developers
will use the components you write.

Creating Components
A component can be almost any program element that you want to manipulate at design time. Creating a component
means deriving a new class from an existing one. You can derive a new component in several ways:

Modifying existing controls
Creating windowed controls
Creating graphic controls
Subclassing Windows controls
Creating nonvisual components

The following table summarizes the different kinds of components and the classes you use as starting points for each.

Component creation starting points
To do this Start with this type

Modify an existing component Any existing component, such as TButton or TListBox, or an abstract component type, such
as TCustomListBox

2273

Create a windowed control TWinControl

Create a graphic control TGraphicControl

Subclassing a control Any Windows control

Create a nonvisual component TComponent

You can also derive classes that are not components and cannot be manipulated on a form, such as TRegIniFile
and TFont.

Modifying Existing Controls
The simplest way to create a component is to customize an existing one. You can derive a new component from
any of the components provided in the component library.

Some controls, such as list boxes and grids, come in several variations on a basic theme. In these cases, the
component library includes an abstract class (with the word "custom" in its name, such as TCustomGrid) from which
to derive customized versions.

For example, you might want to create a special list box that does not have some of the properties of the
standard TListBox class. You cannot remove (hide) a property inherited from an ancestor class, so you need to
derive your component from something above TListBox in the hierarchy. Rather than force you to start from the
abstract TWinControlclass and reinvent all the list box functions, the component library provides TCustomListBox,
which implements the properties of a list box but does not publish all of them. When you derive a component from
an abstract class like TCustomListBox, you publish only the properties you want to make available in your component
and leave the rest protected.

The section Creating properties explains publishing inherited properties. The section Modifying an existing
component and the section Customizing a grid show examples of modifying existing controls.

Creating Original Controls
Windowed controls in the component library are objects that appear at runtime and that the user can interact with.
Each windowed control has a window handle, accessed through its Handle property, that lets the operating system
identify and operate on the control. If using VCL controls, the handle allows the control to receive input focus and
can be passed to Windows API functions. Each widget-based control has a handle, accessed through its Handle
property, that identifies the underlying widget.-->

All windowed controls descend from the TWinControlclass. These include most standard windowed controls, such
as pushbuttons, list boxes, and edit boxes. While you could derive an original control (one that's not related to any
existing control) directly from TWinControl, Delphi provides the TCustomControl component for this purpose.
TCustomControl is a specialized windowed control that makes it easier to draw complex visual images.

The section Customizing a grid presents an example of creating a windowed control.

Creating Graphic Controls
If your control does not need to receive input focus, you can make it a graphic control. Graphic controls are similar
to windowed controls, but have no window handles, and therefore consume fewer system resources. Components
like TLabel, which never receive input focus, are graphic controls. Although these controls cannot receive focus, you
can design them to react to mouse messages.

You can create custom controls through the TGraphicControl component. TGraphicControl is an abstract class
derived from TControl. Although you can derive controls directly from TControl, it is better to start from
TGraphicControl, which provides a canvas to paint on and on Windows, handles WM_PAINT messages; all you
need to do is override the Paint method.

2274

The section Creating a graphic control presents an example of creating a graphic control.

Subclassing Windows Controls
In traditional Windows programming, you create custom controls by defining a new window class and registering it
with Windows. The window class (which is similar to the objects or classes in object-oriented programming) contains
information shared among instances of the same sort of control; you can base a new window class on an existing
class, which is called subclassing. You then put your control in a dynamic-link library (DLL), much like the standard
Windows controls, and provide an interface to it.

You can create a component "wrapper" around any existing window class. So if you already have a library of custom
controls that you want to use in Delphi applications, you can create Delphi components that behave like your controls,
and derive new controls from them just as you would with any other component.

For examples of the techniques used in subclassing Windows controls, see the components in the StdCtls unit that
represent standard Windows controls, such as TEdit.

Creating Nonvisual Components
Nonvisual components are used as interfaces for elements like databases (TDataSet or TSQLConnection) and
system clocks (TTimer), and as placeholders for dialog boxes (TCommonDialog and its descendants). Most of the
components you write are likely to be visual controls. Nonvisual components can be derived directly from
TComponent, the abstract base class for all components.

What Goes into a Component?
To make your components reliable parts of the Delphi environment, you need to follow certain conventions in their
design. This section discusses the following topics:

Removing dependencies
Setting properties, methods, and events
Encapsulating graphics
Registering components

Removing Dependencies
One quality that makes components usable is the absence of restrictions on what they can do at any point in their
code. By their nature, components are incorporated into applications in varying combinations, orders, and contexts.
You should design components that function in any situation, without preconditions.

An example of removing dependencies is the Handle property of TWinControl. If you have written Windows
applications before, you know that one of the most difficult and error-prone aspects of getting a program running is
making sure that you do not try to access a windowed control until you have created it by calling the
CreateWindow API function. Delphi windowed controls relieve users from this concern by ensuring that a valid
window handle is always available when needed. By using a property to represent the window handle, the control
can check whether the window has been created; if the handle is not valid, the control creates a window and returns
the handle. Thus, whenever an application's code accesses the Handle property, it is assured of getting a valid
handle.

By removing background tasks like creating the window, Delphi components allow developers to focus on what they
really want to do. Before passing a window handle to an API function, you do not need to verify that the handle exists
or to create the window. The application developer can assume that things will work, instead of constantly checking
for things that might go wrong.

2275

Although it can take time to create components that are free of dependencies, it is generally time well spent. It not
only spares application developers from repetition and drudgery, but it reduces your documentation and support
burdens.

Setting Properties, Methods, and Events
Aside from the visible image manipulated in the Form designer, the most obvious attributes of a component are its
properties, events, and methods. Each of these has a section devoted to it in this file, but the discussion that follows
explains some of the motivation for their use.

Properties
Properties give the application developer the illusion of setting or reading the value of a variable, while allowing the
component writer to hide the underlying data structure or to implement special processing when the value is
accessed.

There are several advantages to using properties:

Properties are available at design time. The application developer can set or change initial values of properties
without having to write code.
Properties can check values or formats as the application developer assigns them. Validating input at design
time prevents errors.
The component can construct appropriate values on demand. Perhaps the most common type of error
programmers make is to reference a variable that has not been initialized. By representing data with a property,
you can ensure that a value is always available on demand.
Properties allow you to hide data under a simple, consistent interface. You can alter the way information is
structured in a property without making the change visible to application developers.

The section Overview of component creation explains how to add properties to your components.

Methods
Class methods are procedures and functions that operate on a class rather than on specific instances of the class.
For example, every component's constructor method (Create) is a class method. Component methods are
procedures and functions that operate on the component instances themselves. Application developers use methods
to direct a component to perform a specific action or return a value not contained by any property.

Because they require execution of code, methods can be called only at runtime. Methods are useful for several
reasons:

Methods encapsulate the functionality of a component in the same object where the data resides.
Methods can hide complicated procedures under a simple, consistent interface. An application developer can
call a component's AlignControls method without knowing how the method works or how it differs from the
AlignControls method in another component.
Methods allow updating of several properties with a single call.

The section Creating methods explains how to add methods to your components.

2276

Events
An event is a special property that invokes code in response to input or other activity at runtime. Events give the
application developer a way to attach specific blocks of code to specific runtime occurrences, such as mouse actions
and keystrokes. The code that executes when an event occurs is called an event handler.

Events allow application developers to specify responses to different kinds of input without defining new components.

The section Creating events explains how to implement standard events and how to define new ones.

Encapsulating Graphics
Delphi simplifies Windows graphics by encapsulating various graphics tools into a canvas. The canvas represents
the drawing surface of a window or control and contains other classes, such as a pen, a brush, and a font. A canvas
is like a Windows device context, but it takes care of all the bookkeeping for you.

If you have written a graphical Windows application, you are familiar with the requirements imposed by Windows'
graphics device interface (GDI). For example, GDI limits the number of device contexts available and requires that
you restore graphic objects to their initial state before destroying them.

With Delphi, you do not have to worry about these things. To draw on a form or other component, you access the
component's Canvas property. If you want to customize a pen or brush, you set its color or style. When you finish,
Delphi disposes of the resources. Delphi caches resources to avoid recreating them if your application frequently
uses the same kinds of resource.

You still have full access to the Windows GDI, but you will often find that your code is simpler and runs faster if you
use the canvas built into Delphi components.

How graphics images work in the component depends on the canvas of the object from which your component
descends. Graphics features are detailed in the section Using graphics in components.

Registering Components
Before you can install your components in the IDE, you have to register them. Registration tells Delphi where to
place the component on the Tool palette. You can also customize the way Delphi stores your components in the
form file. For information on registering a component, see Registering components.

Creating a New Component
This topic describes how to create and setup a component.

To create a component, follow these steps:
1 Creating a unit file
2 Deriving the component
3 Registering the component

Now you will have a minimally functional component ready to install on the Tool palette. After installing, you can add
your new component to a form and test it at both design time and runtime. You can then add more features to the
component, update the Tool palette, and continue testing.

2277

There are several basic steps that you perform whenever you create a new component.
These steps are described below; other examples in this document assume that you know
how to perform them.
1 Create a unit for the new component.
2 Derive your component from an existing component type.
3 Add properties, methods, and events.
4 Register your component with the IDE.
5 Create a bitmap for the component.
6 Create a package (a special dynamic-link library) so that you can install your component in the IDE.
7 Create a Help file for your component and its properties, methods, and events.

Note: Creating a Help file to instruct component users on how to use the component is optional.

When you finish, the complete component includes the following files:

A package (.BPL) or package collection (.DPC) file
A compiled package (.DCP) file
A compiled unit (.DCU) file
A palette bitmap (.DCR) file
A Help (.HLP) file

You can also create a bitmap to represent your new component. .

Creating a Component with the Component Wizard
The Component wizard simplifies the initial stages of creating a component. When you use the Component wizard,
you need to specify:

The class from which the component is derived.
The class name for the new component.
The Tool palette category where you want it to appear.
The name of the unit in which the component is created.
The search path where the unit is found.
The name of the package in which you want to place the component.

The Component wizard performs the same tasks you would when creating a component manually:

Creating a unit.
Deriving the component.
Registering the component.

The Component wizard cannot add components to an existing unit. You must add components to existing units
manually.

To add a new component with the Component Wizard
1 To start the Component wizard, choose one of these two methods:

Choose Component New VCL Component.

2278

Choose File New Other, goto the Delphi Projects Delphi Files page and double-click Component.

2 Fill in the fields in the Component wizard:

In the Ancestor Type field, specify the class from which you are deriving your new component.
In the Class Name field, specify the name of your new component class.
In the Palette Page field, specify the category on the Tool palette on which you want the new component to be
installed.
In the Unit file name field, specify the name of the unit you want the component class declared in. If the unit is
not on the search path, edit the search path in the Search Path field as necessary.

3 After you fill in the fields in the Component wizard,
Click Install. To place the component in a new or existing package, click Component Install and use the
dialog box that appears to specify a package.

4 Click OK. The IDE creates a new unit.

Warning: If you derive a component from a class whose name begins with "custom" (such as TCustomControl),
do not try to place the new component on a form until you have overridden any abstract methods in the
original component. Delphi cannot create instance objects of a class that has abstract properties or
methods.

To see the source code for your unit, click View Units... (If the Component wizard is already closed, open the
unit file in the Code editor by selecting File Open.) Delphi creates a new unit containing the class declaration and
the Register procedure, and adds a uses clause that includes all the standard Delphi units.

The unit looks like this:

[Delphi]
unit MyControl;
 interface
 uses
 Windows, Messages, SysUtils, Types, Classes, Controls;
 type
 TMyControl = class(TCustomControl)
 private
 { Private declarations }
 protected
 { Protected declarations }
 public
 { Public declarations }
 published
 { Published declarations }
 end;
 procedure Register;
 implementation
 procedure Register;
 begin
 RegisterComponents('Samples', [TMyControl]); //In CLX, use a different page than
'Samples'
 end;
 end.

[C++]

2279

//header file
#ifndef NewComponentH
#define NewComponentH
//---
#include <SysUtils.hpp>
#include <Controls.hpp>
#include <Classes.hpp>
#include <Forms.hpp>
//---
class PACKAGE TNewComponent : public TComponent
{
private:
protected:
public:
__fastcall TNewComponent(TComponent* Owner);
__published:
};
//---
#endif

[C++]

//implementation file
#include <vcl.h>
#pragma hdrstop
#include "NewComponent.h"
#pragma package(smart_init);
//---
// ValidCtrCheck is used to assure that the components created do not have
// any pure virtual functions.
//
static inline void ValidCtrCheck(TNewComponent *)
{
new TNewComponent(NULL);
}
//---
__fastcall TNewComponent::TNewComponent(TComponent* Owner)
: TComponent(Owner)
{
}
//---
namespace Newcomponent
{
void __fastcall PACKAGE Register()
{
TComponentClass classes[1] = {__classid(TNewComponent)};
RegisterComponents("Samples", classes, 0); //In CLX use a different page than Samples
}
}

Creating a Unit File
A unit is a separately compiled module of Delphi code. Delphi uses units for several purposes. Every form has its
own unit, and most components (or groups of related components) have their own units as well.

When you create a component, you either create a new unit for the component or add the new component to an
existing unit.

2280

To create a new unit for a component:
1 Choose either:

File New Unit.
File New Other to display the New Items dialog box, select Delphi Projects Delphi Files Unit, and
choose OK.

The IDE creates a new unit file and opens it in the Code editor.

2 Save the file with a meaningful name.
3 Derive the component class.

To open an existing unit:
1 Choose File Open and select the source code unit to which you want to add your component.

Note: When adding a component to an existing unit, make sure that the unit contains only component
code. For example, adding component code to a unit that contains a form causes errors in the
Tool palette.

2 Derive the component class.

Deriving the Component
Every component is a class derived from TComponent, from one of its more specialized descendants (such as
TControl or TGraphicControl), or from an existing component class. The section Creating components describes
which class to derive different kinds of components from.

Deriving classes is explained in more detail in The section Defining new classes.

To derive a component, add an object type declaration to the interface part of the unit that will contain the component.

A simple component class is a nonvisual component descended directly from TComponent.

Declaring A New Constructor (C++)
Each new component must have a constructor that overrides the constructor of the class from which it was derived.
When you write the constructor for your new component, it must always call the inherited constructor.

Within the class declaration, declare a virtual constructor in the public section of the class.

For example,

class PACKAGE TNewComponent : public TComponent
{
public:
 virtual __fastcall TNewComponent(TComponent* AOwner);
};

In the .CPP file, implement the constructor:

2281

__fastcall TNewComponent::TNewComponent(TComponent* AOwner): TComponent(AOwner)
{
}

Within the constructor, you add the code you want to execute when the component is created.

Registering the Component
Registration is a simple process that tells the IDE which components to add to its component library, and on which
pages of the Tool palette they should appear. For a more detailed discussion of the registration process, see Making
components available at design time

To register a component:
1 Add a procedure named Register to the interface part of the component's unit. Register takes no parameters,

so the declaration is very simple:

[Delphi]
procedure Register;

[C++]
namespace Newcomp
{
 void __fastcall PACKAGE Register()
 {
 }
}

[C++]
TComponentClass classes[1] = {__classid(TNewComponent)};

If you are adding a component to a unit that already contains components, it should already have a Register
procedure declared, so you do not need to change the declaration.

Note: Although Delphi is a case insensitive language, the Register procedure is case sensitive and
must be spelled with an uppercase R.

2 Write the Register procedure in the implementation part of the unit, calling RegisterComponents for each
component you want to register. RegisterComponents is a procedure that takes two parameters: the name of a
Tool palette category and a set of component types. If you are adding a component to an existing registration,
you can either add the new component to the set in the existing statement, or add a new statement that calls
RegisterComponents.

Making Source Files Available
Component writers should make all source files used by a component should be located in the same directory. These
files include source code files (.pas) and additional project files (.dfm/.xfm, .res, .rc, and .dcr).

The process of adding a component results in the creation of a number of files. These files are automatically put in
directories specified in the IDE environment options (use the menu command Tools Options, navigate to the
Environment Options Delphi Options Library page). The .lib files are placed in the DCP output directory. If

2282

adding the component entails creating a new package (as opposed to installing it into an existing package), the .bpl
file is put in the BPL output directory.

Testing Uninstalled Components
You can test the runtime behavior of a component before you install it on the Tool palette. This is particularly useful
for debugging newly created components, but the same technique works with any component, whether or not it is
on the Tool palette. For information on testing already installed components, see Testing installed components.

You test an uninstalled component by emulating the actions performed by Delphi when the component is selected
from the palette and placed on a form.

To test an uninstalled component,
1 Add the name of component's unit to the form unit's uses clause.
2 Add an object field to the form to represent the component.

This is one of the main differences between the way you add components and the way Delphi does it. You add
the object field to the public part at the bottom of the form's type declaration. Delphi would add it above, in the
part of the type declaration that it manages.

Never add fields to the Delphi-managed part of the form's type declaration. The items in that part of the type
declaration correspond to the items stored in the form file. Adding the names of components that do not exist on
the form can render your form file invalid.

3 Attach a handler to the form's OnCreate event.
4 Construct the component in the form's OnCreate handler.

When you call the component's constructor, you must pass a parameter specifying the owner of the component
(the component responsible for destroying the component when the time comes). You will nearly always pass
Self as the owner. In a method, Self is a reference to the object that contains the method. In this case, in the
form's OnCreate handler, Self refers to the form.

5 Assign the Parent property.
Setting the Parent property is always the first thing to do after constructing a control. The parent is the component
that contains the control visually; usually it is the form on which the control appears, but it might be a group box
or panel. Normally, you'll set Parent to Self, that is, the form. Always set Parent before setting other properties
of the control.

Warning: If your component is not a control (that is, if TControl is not one of its ancestors), skip this
step. If you accidentally set the form's Parent property (instead of the component's) to
Self, you can cause an operating-system problem.

6 Set any other component properties as desired.

Testing Installed Components
You can test the design-time behavior of a component after you install it on the Tool palette. This is particularly useful
for debugging newly created components, but the same technique works with any component, whether or not it is
on the Tool palette. For information on testing components that have not yet been installed, see Testing uninstalled
components.

Testing your components after installing allows you to debug the component that only generates design-time
exceptions when dropped on a form.

2283

Test an installed component using a second running instance of the IDE:
1 Choose Project Options and on the Directories/Conditionals page, set the Debug Source Path to the

component's source file.
2 Then select Tools Options. On the Debugger Options Borland Debuggers Language Exceptions

page, enable the exceptions you want to track.
3 Open the component source file and set breakpoints.
4 Select Run Parameters and set the Host Application field to the name and location of the Delphi executable file.
5 In the Run Parameters dialog, click the Load button to start a second instance of Delphi.
6 Then drop the components to be tested on the form, which should break on your breakpoints in the source.

2284

Object-oriented programming for
component writers

Object-oriented Programming for Component Writers: Overview
If you have written applications with Delphi, you know that a class contains both data and code, and that you can
manipulate classes at design time and at runtime. In that sense, you've become a component user.

When you create new components, you deal with classes in ways that application developers never need to. You
also try to hide the inner workings of the component from the developers who will use it. By choosing appropriate
ancestors for your components, designing interfaces that expose only the properties and methods that developers
need, and following the other guidelines in the following topics, you can create versatile, reusable components.

Before you start creating components, you should be familiar with these topics, which are related to object-oriented
programming (OOP):

Defining new classes
Ancestors, descendants, and class hierarchies
Controlling access
Dispatching methods
Abstract class members
Classes and pointers

Defining New Classes
The difference between component writers and application developers is that component writers create new classes
while application developers manipulate instances of classes.

A class is essentially a type. As a programmer, you are always working with types and instances, even if you do not
use that terminology. For example, you create variables of a type, such as Integer. Classes are usually more complex
than simple data types, but they work the same way: By assigning different values to instances of the same type,
you can perform different tasks.

For example, it is quite common to create a form containing two buttons, one labeled OK and one labeled Cancel.
Each is an instance of the class TButton, but by assigning different values to their Caption properties and different
handlers to their OnClick events, you make the two instances behave differently.

2285

Deriving New Classes
There are two reasons to derive a new class:

To change class defaults to avoid repetition
To add new capabilities to a class

In either case, the goal is to create reusable objects. If you design components with reuse in mind, you can save
work later on. Give your classes usable default values, but allow them to be customized.

Changing Class Defaults to Avoid Repetition
Most programmers try to avoid repetition. Thus, if you find yourself rewriting the same lines of code over and over,
you place the code in a subroutine or function, or build a library of routines that you can use in many programs. The
same reasoning holds for components. If you find yourself changing the same properties or making the same method
calls, you can create a new component that does these things by default.

For example, suppose that each time you create an application, you add a dialog box to perform a particular
operation. Although it is not difficult to recreate the dialog each time, it is also not necessary. You can design the
dialog once, set its properties, and install a wrapper component associated with it onto the Tool palette. By making
the dialog into a reusable component, you not only eliminate a repetitive task, but you encourage standardization
and reduce the likelihood of errors each time the dialog is recreated.

Modifying an existing component shows an example of changing a component's default properties.

Note: If you want to modify only the published properties of an existing component, or to save specific event handlers
for a component or group of components, you may be able to accomplish this more easily by creating a
component template.

Adding New Capabilities to a Class
A common reason for creating new components is to add capabilities not found in existing components. When you
do this, you derive the new component from either an existing component or an abstract base class, such as
TComponent or TControl.

Derive your new component from the class that contains the closest subset of the features you want. You can add
capabilities to a class, but you cannot take them away; so if an existing component class contains properties that
you do not want to include in yours, you should derive from that component's ancestor.

For example, if you want to add features to a list box, you could derive your component from TListBox. However, if
you want to add new features but exclude some capabilities of the standard list box, you need to derive your
component from TCustomListBox, the ancestor of TListBox. Then you can recreate (or make visible) only the list-
box capabilities you want, and add your new features.

Customizing a grid shows an example of customizing an abstract component class.

Declaring a New Component Class
In addition to standard components, Delphi provides many abstract classes designed as bases for deriving new
components. The Creating components topic shows the classes you can start from when you create your own
components.

To declare a new component class, add a class declaration to the component's unit file.

2286

Ancestors, Descendants, and Class Hierarchies
Application developers take for granted that every control has properties named Top and Left that determine its
position on the form. To them, it may not matter that all controls inherit these properties from a common ancestor,
TControl. When you create a component, however, you must know which class to derive it from so that it inherits
the appropriate features. And you must know everything that your control inherits, so you can take advantage of
inherited features without recreating them.

The class from which you derive a component is called its immediate ancestor. Each component inherits from its
immediate ancestor, and from the immediate ancestor of its immediate ancestor, and so forth. All of the classes from
which a component inherits are called its ancestors; the component is a descendant of its ancestors.

Together, all the ancestor-descendant relationships in an application constitute a hierarchy of classes. Each
generation in the hierarchy contains more than its ancestors, since a class inherits everything from its ancestors,
then adds new properties and methods or redefines existing ones.

If you do not specify an immediate ancestor, Delphi derives your component from the default ancestor, TObject.
TObject is the ultimate ancestor of all classes in the object hierarchy.

The general rule for choosing which object to derive from is simple: Pick the object that contains as much as possible
of what you want to include in your new object, but which does not include anything you do not want in the new
object. You can always add things to your objects, but you cannot take things out.

Controlling Access
There are five levels of access control - also called visibility - on properties, methods, and fields. Visibility determines
which code can access which parts of the class. By specifying visibility, you define the interface to your components.

The table below shows the levels of visibility, from most restrictive to most accessible:

Levels of visibility within an object
Visibility Meaning Used for

private Accessible only to code in the unit where the class is defined. Hiding implementation details.

protected Accessible to code in the unit(s) where the class and its descendants
are defined.

Defining the component writer's interface.

public Accessible to all code. Defining the runtime interface.

automated Accessible to all code. Automation type information is generated. OLE automation only.

published Accessible to all code and accessible from the Object Inspector.
Saved in a form file.

Defining the design-time interface.

Declare members as private if you want them to be available only within the class where they are defined; declare
them as protected if you want them to be available only within that class and its descendants. Remember, though,
that if a member is available anywhere within a unit file, it is available everywhere in that file. Thus, if you define two
classes in the same unit, the classes will be able to access each other's private methods. And if you derive a class
in a different unit from its ancestor, all the classes in the new unit will be able to access the ancestor's protected
methods.

Hiding Implementation Details
Declaring part of a class as private makes that part invisible to code outside the class's unit file. Within the unit that
contains the declaration, code can access the part as if it were public.

2287

Defining the Component Writer's Interface
Declaring part of a class as protected makes that part visible only to the class itself and its descendants (and to
other classes that share their unit files).

You can use protected declarations to define a component writer's interface to the class. Application units do not
have access to the protected parts, but derived classes do. This means that component writers can change the way
a class works without making the details visible to application developers.

Note: A common mistake is trying to access protected methods from an event handler. Event handlers are typically
methods of the form, not the component that receives the event. As a result, they do not have access to the
component's protected methods (unless the component is declared in the same unit as the form).

Defining the Runtime Interface
Declaring part of a class as public makes that part visible to any code that has access to the class as a whole.

Public parts are available at runtime to all code, so the public parts of a class define its runtime interface. The runtime
interface is useful for items that are not meaningful or appropriate at design time, such as properties that depend on
runtime input or which are read-only. Methods that you intend for application developers to call must also be public.

Defining the Design-time Interface
Declaring part of a class as published makes that part public and also generates runtime type information. Among
other things, runtime type information allows the Object Inspector to access properties and events.

Because they show up in the Object Inspector, the published parts of a class define that class's design-time
interface. The design-time interface should include any aspects of the class that an application developer might want
to customize at design time, but must exclude any properties that depend on specific information about the runtime
environment.

Read-only properties cannot be part of the design-time interface because the application developer cannot assign
values to them directly. Read-only properties should therefore be public, rather than published.

Dispatching Methods
Dispatch refers to the way a program determines where a method should be invoked when it encounters a method
call. The code that calls a method looks like any other procedure or function call. But classes have different ways of
dispatching methods.

The three types of method dispatch are

Static
Virtual
Dynamic

Regular Methods (C++)
Class methods are regular (or nonvirtual) unless you specifically declare them as virtual, or unless they override a
virtual method in a base class. The compiler can determine the exact address of a regular class member at compile
time. This is known as compile-time binding.

A base class regular method is inherited by derived classes. In the following example, an object of type Derived
can call the method Regular() as it were its own method. Declaring a method in a derived class with the same
name and parameters as a regular method in the class's ancestor replaces the ancestor's method. In the following

2288

example, when d->AnotherRegular() is called, it is being dispatched to the Derived class replacement for
AnotherRegular().

class Base
{
public:
 void Regular();
 void AnotherRegular();
 virtual void Virtual();
};
class Derived : public Base
{
public:
 void AnotherRegular(); // replaces Base::AnotherRegular()
 void Virtual(); // overrides Base::Virtual()
};
void FunctionOne()
{
 Derived *d;
 d = new Derived;
 d->Regular(); // Calling Regular() as it were a member of Derived
 // The same as calling d->Base::Regular()
 d->AnotherRegular(); // Calling the redefined AnotherRegular(), ...
 // ... the replacement for Base::AnotherRegular()
 delete d;
}
void FunctionTwo(Base *b)
{
 b->Virtual();
 b->AnotherRegular();
}

Static Methods
All methods are static unless you specify otherwise when you declare them. Static methods work like regular
procedures or functions. The compiler determines the exact address of the method and links the method at compile
time.

The primary advantage of static methods is that dispatching them is very quick. Because the compiler can determine
the exact address of the method, it links the method directly. Virtual and dynamic methods, by contrast, use indirect
means to look up the address of their methods at runtime, which takes somewhat longer.

A static method does not change when inherited by a descendant class. If you declare a class that includes a static
method, then derive a new class from it, the derived class shares exactly the same method at the same address.
This means that you cannot override static methods; a static method always does exactly the same thing no matter
what class it is called in. If you declare a method in a derived class with the same name as a static method in the
ancestor class, the new method simply replaces the inherited one in the derived class.

Virtual Methods
Virtual methods employ a more complicated, and more flexible, dispatch mechanism than static methods. A virtual
method can be redefined in descendant classes, but still be called in the ancestor class. The address of a virtual
method isn't determined at compile time; instead, the object where the method is defined looks up the address at
runtime.

2289

To make a method virtual, add the directive virtual after the method declaration. The virtual directive creates an
entry in the object's virtual method table, or VMT, which holds the addresses of all the virtual methods in an object
type.

When you derive a new class from an existing one, the new class gets its own VMT, which includes all the entries
from the ancestor's VMT plus any additional virtual methods declared in the new class.

Overriding Methods
Overriding a method means extending or refining it, rather than replacing it. A descendant class can override any
of its inherited virtual methods.

To override a method in a descendant class, add the directive override to the end of the method declaration.

Overriding a method causes a compilation error if

The method does not exist in the ancestor class.
The ancestor's method of that name is static.
The declarations are not otherwise identical (number and type of arguments parameters differ).

Dynamic Methods
Dynamic methods are virtual methods with a slightly different dispatch mechanism. Because dynamic methods don't
have entries in the object's virtual method table, they can reduce the amount of memory that objects consume.
However, dispatching dynamic methods is somewhat slower than dispatching regular virtual methods. If a method
is called frequently, or if its execution is time-critical, you should probably declare it as virtual rather than dynamic.

Objects must store the addresses of their dynamic methods. But instead of receiving entries in the virtual method
table, dynamic methods are listed separately. The dynamic method list contains entries only for methods introduced
or overridden by a particular class. (The virtual method table, in contrast, includes all of the object's virtual methods,
both inherited and introduced.) Inherited dynamic methods are dispatched by searching each ancestor's dynamic
method list, working backwards through the inheritance tree.

To make a method dynamic, add the directive dynamic after the method declaration.

Abstract Class Members
When a method is declared as abstract in an ancestor class, you should surface it (by redeclaring and implementing
it) in any descendant component before you use the new component in applications. On the Win32 platform, Delphi
can create instances of a class that contains abstract members. This is not recommended, however, and it is not
allowed on the .NET platform. For more information about surfacing inherited parts of classes, see Creating
properties and Creating methods.

Classes and Pointers
Every class (and therefore every component) is really a pointer. The compiler automatically dereferences class
pointers for you, so most of the time you do not need to think about this. The status of classes as pointers becomes
important when you pass a class as a parameter. In general, you should pass classes by value rather than by
reference. The reason is that classes are already pointers, which are references; passing a class by reference
amounts to passing a reference to a reference.

2290

Creating properties

Creating Properties: Overview
Properties are the most visible parts of components. The application developer can see and manipulate them at
design time and get immediate feedback as the components react in the Form Designer. Well-designed properties
make your components easier for others to use and easier for you to maintain.

To make the best use of properties in your components, you should understand the following:

Why create properties?
Types of properties
Publishing inherited properties
Defining properties
Creating array properties
Storing and loading properties

Why Create Properties?
From the application developer's standpoint, properties look like variables. Developers can set or read the values
of properties as if they were fields. (About the only thing you can do with a variable that you cannot do with a property
is pass it as a var parameter.)

Properties provide more power than simple fields because

Application developers can set properties at design time. Unlike methods, which are available only at runtime,
properties let the developer customize components before running an application. Properties can appear in the
Object Inspector, which simplifies the programmer's job; instead of handling several parameters to construct
an object, the Object Inspector supplies the values. The Object Inspector also validates property assignments
as soon as they are made.
Properties can hide implementation details. For example, data stored internally in an encrypted form can appear
unencrypted as the value of a property; although the value is a simple number, the component may look up the
value in a database or perform complex calculations to arrive at it. Properties let you attach complex effects to
outwardly simple assignments; what looks like an assignment to a field can be a call to a method which
implements elaborate processing.
Properties can be virtual. Hence, what looks like a single property to an application developer may be
implemented differently in different components.

2291

A simple example is the Top property of all controls. Assigning a new value to Top does not just change a stored
value; it repositions and repaints the control. And the effects of setting a property need not be limited to an individual
component; for example, setting the Down property of a speed button to True sets Down property of all other speed
buttons in its group to False.

Types of Properties
A property can be of any type. Different types are displayed differently in the Object Inspector, which validates
property assignments as they are made at design time.

How properties appear in the Object Inspector
Property type treatment

Simple Numeric, character, and string properties appear as numbers, characters, and strings. The application
developer can edit the value of the property directly.

Enumerated Properties of enumerated types (including Boolean) appear as editable strings. The developer can also cycle
through the possible values by double-clicking the value column, and there is a drop-down list that shows all
possible values.

Set Properties of set types appear as sets. By double-clicking on the property, the developer can expand the set
and treat each element as a Boolean value (true if it is included in the set).

Object Properties that are themselves classes often have their own property editors, specified in the component's
registration procedure. If the class held by a property has its own published properties, the Object Inspector
lets the developer to expand the list (by double-clicking) to include these properties and edit them individually.
Object properties must descend from TPersistent.

Interface Properties that are interfaces can appear in the Object Inspector as long as the value is an interface that is
implemented by a component (a descendant of TComponent). Interface properties often have their own
property editors.

Array Array properties must have their own property editors; the Object Inspector has no built-in support for editing
them. You can specify a property editor when you register your components.

Publishing Inherited Properties
All components inherit properties from their ancestor classes. When you derive a new component from an existing
one, your new component inherits all the properties of its immediate ancestor. If you derive from one of the abstract
classes, many of the inherited properties are either protected or public, but not published.

To make a protected or public property available at design time in the Object Inspector, you must redeclare the
property as published. Redeclaring means adding a declaration for the inherited property to the declaration of the
descendant class.

Defining Properties
This section shows how to declare new properties and explains some of the conventions followed in the standard
components. Topics include:

Property declarations
Internal data storage
Direct access
Access methods
Default property values

2292

Property Declarations
A property is declared in the declaration of its component class. To declare a property, you specify three things:

The name of the property.
The type of the property.
The methods used to read and write the value of the property. If no write method is declared, the property is
read-only.

Properties declared in a published section of the component's class declaration are editable in the Object Inspector
at design time. The value of a published property is saved with the component in the form file. Properties declared
in a public section are available at runtime and can be read or set in program code.

Internal Data Storage
There are no restrictions on how you store the data for a property. In general, however, Delphi components follow
these conventions:

Property data is stored in class fields.
The fields used to store property data are private and should be accessed only from within the component itself.
Derived components should use the inherited property; they do not need direct access to the property's internal
data storage.
Identifiers for these fields consist of the letter F followed by the name of the property. For example, the raw data
for the Width property defined in TControl is stored in a field called FWidth.

The principle that underlies these conventions is that only the implementation methods for a property should access
the data behind it. If a method or another property needs to change that data, it should do so through the property,
not by direct access to the stored data. This ensures that the implementation of an inherited property can change
without invalidating derived components.

Direct Access
The simplest way to make property data available is direct access. That is, the read and write parts of the property
declaration specify that assigning or reading the property value goes directly to the internal-storage field without
calling an access method. Direct access is useful when you want to make a property available in the Object Inspector
but changes to its value trigger no immediate processing.

It is common to have direct access for the read part of a property declaration but use an access method for the
write part. This allows the status of the component to be updated when the property value changes.

Access Methods (properties)
You can specify an access method instead of a field in the read and write parts of a property declaration. Access
methods should be protected, and are usually declared as virtual; this allows descendant components to override
the property's implementation.

Avoid making access methods public. Keeping them protected ensures that application developers do not
inadvertently modify a property by calling one of these methods.

The Read Method
The read method for a property is a function that takes no parameters (except as noted below) and returns a value
of the same type as the property. By convention, the function's name is Get followed by the name of the property.

2293

For example, the read method for a property called Count would be GetCount. The read method manipulates the
internal storage data as needed to produce the value of the property in the appropriate type.

The only exceptions to the no-parameters rule are for array properties and properties that use index specifiers (see
Creating array properties), both of which pass their index values as parameters. (Use index specifiers to create a
single read method that is shared by several properties. For more information about index specifiers, see the Delphi
Language Guide.)

If you do not declare a read method, the property is write-only. Write-only properties are seldom used.

The Write Method
The write method for a property is a procedure that takes a single parameter (except as noted below) of the same
type as the property. The parameter can be passed by reference or by value, and can have any name you choose.
By convention, the write method's name is Set followed by the name of the property. For example, the write method
for a property called Count would be SetCount. The value passed in the parameter becomes the new value of the
property; the write method must perform any manipulation needed to put the appropriate data in the property's
internal storage.

The only exceptions to the single-parameter rule are for array properties and properties that use index specifiers,
both of which pass their index values as a second parameter. (Use index specifiers to create a single write method
that is shared by several properties. For more information about index specifiers, see the Delphi Language Guide.)

If you do not declare a write method, the property is read-only.

Write methods commonly test whether a new value differs from the current value before changing the property. For
example, here is a simple write method for an integer property called Count that stores its current value in a field
called FCount.

[Delphi]
procedure TMyComponent.SetCount(Value: Integer);
begin
 if Value <> FCount then
 begin
 FCount := Value;
 Update;
 end;
end;

[C++]
void __fastcall TMyComponent::SetCount(int Value)
{
 if (Value != FCount)
 {
 FCount = Value;
 Update();
 }

Default Property Values
When you declare a property, you can specify a default value for it. The VCL uses the default value to determine
whether to store the property in a form file. If you do not specify a default value for a property, the VCL always stores
the property.

To specify a default value for a property, append the default directive to the property's declaration (or redeclaration),
followed by the default value. For example,

2294

[Delphi]
property Cool Boolean read GetCool write SetCool default True;

[C++]
__property bool IsTrue = {read=GetIsTrue, write=SetIsTrue, default=true};

Note: Declaring a default value does not set the property to that value. The component's constructor method should
initialize property values when appropriate. However, since objects always initialize their fields to 0, it is not
strictly necessary for the constructor to set integer properties to 0, string properties to null, or Boolean
properties to False.

Specifying No Default Value
When redeclaring a property, you can specify that the property has no default value, even if the inherited property
specified one.

To designate a property as having no default value, append the nodefault directive to the property's declaration.
For example,

[Delphi]
property FavoriteFlavor string nodefault;

[C++]
__property int NewInteger = {nodefault};

When you declare a property for the first time, there is no need to include nodefault. The absence of a declared
default value means that there is no default.

Creating Array Properties
Some properties lend themselves to being indexed like arrays. For example, the Lines property of TMemo is an
indexed list of the strings that make up the text of the memo; you can treat it as an array of strings. Lines provides
natural access to a particular element (a string) in a larger set of data (the memo text).

Array properties are declared like other properties, except that

The declaration includes one or more indexes with specified types. The indexes can be of any type.
The read and write parts of the property declaration, if specified, must be methods. They cannot be fields.

The read and write methods for an array property take additional parameters that correspond to the indexes. The
parameters must be in the same order and of the same type as the indexes specified in the declaration.

There are a few important differences between array properties and arrays. Unlike the index of an array, the index
of an array property does not have to be an integer type. You can index a property on a string, for example. In
addition, you can reference only individual elements of an array property, not the entire range of the property.

Creating Properties for Subcomponents
By default, when a property's value is another component, you assign a value to that property by adding an instance
of the other component to the form or data module and then assigning that component as the value of the property.

2295

However, it is also possible for your component to create its own instance of the object that implements the property
value. Such a dedicated component is called a subcomponent.

Subcomponents can be any persistent object (any descendant of TPersistent). Unlike separate components that
happen to be assigned as the value of a property, the published properties of subcomponents are saved with the
component that creates them. In order for this to work, however, the following conditions must be met:

The Owner of the subcomponent must be the component that creates it and uses it as the value of a published
property. For subcomponents that are descendants of TComponent, you can accomplish this by setting the
Owner property of the subcomponent. For other subcomponents, you must override the GetOwner method of
the persistent object so that it returns the creating component.
If the subcomponent is a descendant of TComponent, it must indicate that it is a subcomponent by calling
the SetSubComponent method. Typically, this call is made either by the owner when it creates the
subcomponent or by the constructor of the subcomponent.

Note: When a component that has subcomponents is streamed, the subcomponents will have their csLoading flag
set and their Loaded method called. This can create a complication for any subcomponent properties that
are writable. If you allow your subcomponent property to be assigned to an external component reference,
then you cannot free your subcomponent until it's owner's Loaded method is called. Otherwise, the streaming
system will attempt to call the subcomponent's Loaded method after the subcomponent has been freed.

Typically, properties whose values are subcomponents are read-only. If you allow a property whose value is a
subcomponent to be changed, the property setter must free the subcomponent when another component is assigned
as the property value. In addition, the component often re-instantiates its subcomponent when the property is set to
nil. Otherwise, once the property is changed to another component, the subcomponent can never be restored at
design time.

Note that the property setter above called the FreeNotification method of the component that is set as the property
value. This call ensures that the component that is the value of the property sends a notification if it is about to be
destroyed. It sends this notification by calling the Notification method. You handle this call by overriding the
Notification method.

Creating Properties for Interfaces
You can use an interface as the value of a published property, much as you can use an object. However, the
mechanism by which your component receives notifications from the implementation of that interface differs. In
Creating properties for subcomponents, the property setter called the FreeNotification method of the component that
was assigned as the property value. This allowed the component to update itself when the component that was the
value of the property was freed. When the value of the property is an interface, however, you don't have access to
the component that implements that interface. As a result, you can't call its FreeNotification method.

To handle this situation, you can call your component's ReferenceInterface method:

procedure TDemoComponent.SetMyIntfProp(const Value: IMyInterface);
begin
 ReferenceInterface(FIntfField, opRemove);
 FIntfField := Value;
 ReferenceInterface(FIntfField, opInsert);
end;

Calling ReferenceInterface with a specified interface does the same thing as calling another component's
FreeNotification method. Thus, after calling ReferenceInterface from the property setter, you can override the
Notification method to handle the notifications from the implementor of the interface:

procedure TDemoComponent.Notification(AComponent: TComponent; Operation: TOperation);
begin

2296

 inherited Notification(AComponent, Operation);
 if (Assigned(MyIntfProp)) and (AComponent.IsImplementorOf(MyInftProp)) then
 MyIntfProp := nil;
end;

Note that the Notification code assigns nil to the MyIntfProp property, not to the private field (FIntfField). This ensures
that Notification calls the property setter, which calls ReferenceInterface to remove the notification request that was
established when the property value was set previously. All assignments to the interface property must be made
through the property setter.

Storing and Loading Properties
Delphi stores forms and their components in form (.dfm in VCL applications) files. A form file stores the properties
of a form and its components. When Delphi developers add the components you write to their forms, your
components must have the ability to write their properties to the form file when saved. Similarly, when loaded into
Delphi or executed as part of an application, the components must restore themselves from the form file.

Most of the time you will not need to do anything to make your components work with form files because the ability
to store a representation and load from it are part of the inherited behavior of components. Sometimes, however,
you might want to alter the way a component stores itself or the way it initializes when loaded; so you should
understand the underlying mechanism.

These are the aspects of property storage you need to understand:

Using the store-and-load mechanism
Specifying default values
Determining what to store
Initializing after loading
Storing and loading unpublished properties

Using the Store-and-load Mechanism
The description of a form consists of a list of the form's properties, along with similar descriptions of each component
on the form. Each component, including the form itself, is responsible for storing and loading its own description.

By default, when storing itself, a component writes the values of all its published properties that differ from their
default values, in the order of their declaration. When loading itself, a component first constructs itself, setting all
properties to their default values, then reads the stored, non-default property values.

This default mechanism serves the needs of most components, and requires no action at all on the part of the
component writer. There are several ways you can customize the storing and loading process to suit the needs of
your particular components, however.

Specifying Default Values
Delphi components save their property values only if those values differ from the defaults. If you do not specify
otherwise, Delphi assumes a property has no default value, meaning the component always stores the property,
whatever its value.

To specify a default value for a property, add the default directive and the new default value to the end of the property
declaration.

You can also specify a default value when re-declaring a property. In fact, one reason to re-declare a property is to
designate a different default value.

2297

__property Alignment = {default=taCenter};

Note: Specifying the default value does not automatically assign that value to the property on creation of the object.
You must make sure that the component's constructor assigns the necessary value. A property whose value
is not set by a component's constructor assumes a zero value- that is, whatever value the property assumes
when its storage memory is set to 0. Thus numeric values default to 0, Boolean values to False, pointers
to nil, and so on. If there is any doubt, assign a value in the constructor method.

Determining What to Store
You can control whether Delphi stores each of your components' properties. By default, all properties in the published
part of the class declaration are stored. You can choose not to store a given property at all, or you can designate a
function that determines dynamically whether to store the property.

To control whether Delphi stores a property, add the stored directive to the property declaration, followed by True,
False, or the name of a Boolean function.

Initializing After Loading
After a component reads all its property values from its stored description, it calls a virtual method named Loaded,
which performs any required initializations. The call to Loaded occurs before the form and its controls are shown,
so you do not need to worry about initialization causing flicker on the screen.

To initialize a component after it loads its property values, override the Loaded method.

Note: The first thing to do in any Loaded method is call the inherited Loaded method. This ensures that any inherited
properties are correctly initialized before you initialize your own component.

The following code comes from the TDatabase component. After loading, the database tries to reestablish any
connections that were open at the time it was stored, and specifies how to handle any exceptions that occur while
connecting.

procedure TDatabase.Loaded;
begin
 inherited Loaded; { call the inherited method first}
 try
 if FStreamedConnected then Open { reestablish connections }
 else CheckSessionName(False);
 except
 if csDesigning in ComponentState then { at design time... }
 Application.HandleException(Self) { let Delphi handle the exception }
 else raise; { otherwise, reraise }
 end;
end;

Storing and Loading Unpublished Properties
By default, only published properties are loaded and saved with a component. However, it is possible to load and
save unpublished properties. This allows you to have persistent properties that do not appear in the Object Inspector.
It also allows components to store and load property values that Delphi does not know how to read or write because
the value of the property is too complex. For example, the TStrings object can't rely on Delphi's automatic behavior
to store and load the strings it represents and must use the following mechanism.

2298

You can save unpublished properties by adding code that tells Delphi how to load and save your property's value.

To write your own code to load and save properties, use the following steps:

1 Create methods to store and load the property value.
2 Override the DefineProperties method, passing those methods to a filer object.

Creating Methods to Store and Load Property Values
To store and load unpublished properties, you must first create a method to store your property value and another
to load your property value. You have two choices:

Create a method of type TWriterProc to store your property value and a method of type TReaderProc to load
your property value. This approach lets you take advantage of Delphi's built-in capabilities for saving and loading
simple types. If your property value is built out of types that Delphi knows how to save and load, use this
approach.
Create two methods of type TStreamProc, one to store and one to load your property's value. TStreamProc
takes a stream as an argument, and you can use the stream's methods to write and read your property values.

For example, consider a property that represents a component that is created at runtime. Delphi knows how to write
this value, but does not do so automatically because the component is not created in the form designer. Because
the streaming system can already load and save components, you can use the first approach. The following methods
load and store the dynamically created component that is the value of a property named MyCompProperty:

[Delphi]
procedure TSampleComponent.LoadCompProperty(Reader: TReader);
begin
 if Reader.ReadBoolean then
 MyCompProperty := Reader.ReadComponent(nil);
end;
procedure TSampleComponent.StoreCompProperty(Writer: TWriter);
begin
 Writer.WriteBoolean(MyCompProperty <> nil);
 if MyCompProperty <> nil then
 Writer.WriteComponent(MyCompProperty);
end;

[C++]
void __fastcall TSampleComponent::LoadCompProperty(TReader *Reader)
{
 if (Reader->ReadBoolean())
 MyCompProperty = Reader->ReadComponent(NULL);
}
void __fastcall TSampleComponent::StoreCompProperty(TWriter *Writer)
{
 if (MyCompProperty)
 {
 Writer->WriteBoolean(true);
 Writer->WriteComponent(MyCompProperty);
 }
 else
 Writer->WriteBoolean(false);
}

2299

Overriding the DefineProperties Method
Once you have created methods to store and load your property value, you can override the component's
DefineProperties method. Delphi calls this method when it loads or stores the component. In the DefineProperties
method, you must call the DefineProperty method or the DefineBinaryProperty method of the current filer, passing
it the method to use for loading or saving your property value. If your load and store methods are of type
TWriterProc and type TReaderProc, then you call the filer's DefineProperty method. If you created methods of type
TStreamProc, call DefineBinaryProperty instead.

No matter which method you use to define the property, you pass it the methods that store and load your property
value as well as a boolean value indicating whether the property value needs to be written. If the value can be
inherited or has a default value, you do not need to write it.

For example, given the LoadCompProperty method of type TReaderProc and the StoreCompProperty method of
type TWriterProc, you would override DefineProperties as follows:

[Delphi]
procedure TSampleComponent.DefineProperties(Filer: TFiler);
 function DoWrite: Boolean;
 begin
 if Filer.Ancestor <> nil then { check Ancestor for an inherited value }
 begin
 if TSampleComponent(Filer.Ancestor).MyCompProperty = nil then
 Result := MyCompProperty <> nil
 else if (MyCompProperty = nil) or
 (TMy5Comp(Filer.Ancestor).MyCompProperty.Name <> MyCompProperty.Name) then
 Result := True
 else Result := False;
 end
 else { no inherited value -- check for default (nil) value }
 Result := MyCompProperty <> nil;
 end;
begin
 inherited; { allow base classes to define properties }
 Filer.DefineProperty('MyCompProperty', LoadCompProperty, StoreCompProperty, DoWrite);
end;

2300

[C++]

void __fastcall TSampleComponent::DefineProperties(TFiler *Filer)
{
 // before we do anything, let the base class define its properties.
 // Note that this example assumes that TSampleComponent derives directly from TComponent
 TComponent::DefineProperties(Filer);
 bool WriteValue;
 if (Filer->Ancestor) // check for inherited value
 {
 if ((TSampleComponent *)Filer->Ancestor)->MyCompProperty == NULL)
 WriteValue = (MyCompProperty != NULL);
 else if ((MyCompProperty == NULL) ||
 (((TSampleComponent *)Filer->Ancestor)->MyCompProperty->Name !=
 MyCompProperty->Name))
 WriteValue = true;
 else WriteValue = false;
 }
 else // no inherited value, write property if not null
 WriteValue = (MyCompProperty != NULL);
 Filer->DefineProperty("MyCompProperty ",LoadCompProperty,StoreCompProperty, WriteValue);
end;

2301

Creating events

Creating Events: Overview
An event is a link between an occurrence in the system (such as a user action or a change in focus) and a piece of
code that responds to that occurrence. The responding code is an event handler, and is nearly always written by
the application developer. Events let application developers customize the behavior of components without having
to change the classes themselves. This is known as delegation.

Events for the most common user actions (such as mouse actions) are built into all the standard components, but
you can also define new events. To create events in a component, you need to understand the following:

What are events?
Implementing the standard events
Defining your own events

Events are implemented as properties, so you should already be familiar with the material in Creating properties
before you attempt to create or change a component's events.

What Are Events?
An event is a mechanism that links an occurrence to some code. More specifically, an event is a method pointer that
points to a method in a specific class instance.

From the application developer's perspective, an event is just a name related to a system occurrence, such as
OnClick, to which specific code can be attached. For example, a push button called Button1 has an OnClick method.
By default, when you assign a value to the OnClick event, the Form Designer generates an event handler called
Button1Click in the form that contains the button and assigns it to OnClick. When a click event occurs in the button,
the button calls the method assigned to OnClick, in this case, Button1Click.

To write an event, you need to understand the following:

Events are method pointers.
Events are properties.
Event types are method-pointer types.

2302

Event-handler types are procedures.
Event handlers are optional.

Events Are closures (C++)
Closures are used to implement events. A closure is a special pointer type that points to a specific method in a
specific class instance. As a component writer, you can treat the closure as a place holder: your code detects that
an event occurs, so you call the method (if any) specified by the user for that event.

Closures maintain a hidden pointer to a class instance. When the user assigns a handler to a component's event,
the assignment is not just to a method with a particular name, but rather to a specific method of a specific class
instance. That instance is usually the form that contains the component, but it need not be.

Events Are Method Pointers
Delphi uses method pointers to implement events. A method pointer is a special pointer type that points to a specific
method in a specific class instance. As a component writer, you can treat the method pointer as a placeholder: When
your code detects that an event occurs, you call the method (if any) specified by the user for that event.

Method pointers work just like any other procedural type, but they maintain a hidden pointer to a class instance.
When the application developer assigns a handler to a component's event, the assignment is not just to a method
with a particular name, but rather to a method of a specific class instance. That instance is usually the form that
contains the component, but it need not be.

Calling the Click-event Handler
All controls, for example, inherit a dynamic method called Click for handling click events:

[Delphi]
procedure Click; dynamic;

[C++]
virtual void __fastcall Click(void);

The implementation of Click calls the user's click-event handler, if one exists. If the user has assigned a handler to
a control's OnClick event, clicking the control results in that method being called. If no handler is assigned, nothing
happens.

Events Are Properties
Components use properties to implement their events. Unlike most other properties, events do not use methods to
implement their read and write parts. Instead, event properties use a private class field of the same type as the
property.

By convention, the field's name is the name of the property preceded by the letter F. For example, the OnClick
method's pointer is stored in a field called FOnClick of type TNotifyEvent, and the declaration of the OnClick event
property looks like this:

[Delphi]
type
 TControl = class(TComponent)
 private

2303

 FOnClick: TNotifyEvent; { declare a field to hold the method pointer }
 .
 .
 .
 protected
 property OnClick: TNotifyEvent read FOnClick write FOnClick;
 end;

[C++]
class PACKAGE TControl : public TComponent
{
private:
 TNotifyEvent FOnClick;
 .
 .
 .
protected:
 __property TNotifyEvent OnClick = {read=FOnClick, write=FOnClick};
 .
 .
 .
};

To learn about TNotifyEvent and other event types, see the next section, Event types are method-pointer types.

As with any other property, you can set or change the value of an event at runtime. The main advantage to having
events be properties, however, is that component users can assign handlers to events at design time, using the
Object Inspector.

Event Types Are Method-pointer Types
Because an event is a pointer to an event handler, the type of the event property must be a method-pointer type.
Similarly, any code to be used as an event handler must be an appropriately typed method of a class.

All event-handler methods are procedures. To be compatible with an event of a given type, an event-handler method
must have the same number and type of parameters, in the same order, passed in the same way.

Delphi defines method types for all its standard events. When you create your own events, you can use an existing
type if that is appropriate, or define one of your own.

Event Handler Types Are Procedures
Although the compiler allows you to declare method-pointer types that are functions, you should never do so for
handling events. Because an empty function returns an undefined result, an empty event handler that was a function
might not always be valid. For this reason, all your events and their associated event handlers should be procedures.

Although an event handler cannot be a function, you can still get information from the application developer's code
using var parameters. When doing this, make sure you assign a valid value to the parameter before calling the
handler so you don't require the user's code to change the value.

An example of passing var parameters to an event handler is the OnKeyPress event, of type TKeyPressEvent.
TKeyPressEvent defines two parameters, one to indicate which object generated the event, and one to indicate
which key was pressed:

type
 TKeyPressEvent = procedure(Sender: TObject; var Key: Char) of object;

2304

Normally, the Key parameter contains the character pressed by the user. Under certain circumstances, however,
the user of the component may want to change the character. One example might be to force all characters to
uppercase in an editor. In that case, the user could define the following handler for keystrokes:

procedure TForm1.Edit1KeyPressed(Sender: TObject; var Key: Char);
begin
 Key := UpCase(Key);
end;

You can also use var parameters to let the user override the default handling.

Event Handlers Have A Return Type of void (C++)
Event handlers must have a return type of void. Even though the handler can return only void, you can still get
information back from the user's code by passing arguments by reference. When you do this, make sure you assign
a valid value to the argument before calling the handler so you do not require the user's code to change the value.

An example of passing arguments by reference to an event handler is the key-pressed event, of type
TKeyPressEvent. TKeyPressEvent defines two arguments: one to indicate which object generated the event,
and one to indicate which key was pressed:

typedef void __fastcall (__closure *TKeyPressEvent)(TObject *Sender, Char &Key);

Normally, the Key parameter contains the character pressed by the user. Under certain circumstances, however,
the user of the component might want to change the character. One example might be to force all characters to
uppercase in an edit control. In that case, the user could define the following handler for keystrokes:

void __fastcall TForm1::Edit1KeyPress(TObject *Sender, Char &Key)
{
 Key = UpCase(Key);
}

You can also use arguments passed by reference to let the user override the default handling.

Event Types Are closure Types (C++)
Because an event is a pointer to an event handler, the type of the event property must be a closure type. Similarly,
any code to be used as an event handler must be an appropriately typed method of a class.

To be compatible with an event of a given type, an event-handler method must have the same number and type of
parameters, in the same order, passed in the same way.

C++Builder defines closures for all its standard events. When you create your own events, you can use an existing
closure if that is appropriate, or define one of your own.

Event Handlers Are Optional
When creating events, remember that developers using your components may not attach handlers to them. This
means that your component should not fail or generate errors simply because there is no handler attached to a
particular event. (The mechanics of calling handlers and dealing with events that have no attached handler are
explained in Calling the event.)

Events happen almost constantly in a GUI application. Just moving the mouse pointer across a visual component
sends numerous mouse-move messages, which the component translates into OnMouseMove events. In most

2305

cases, developers do not want to handle the mouse-move events, and this should not cause a problem. So the
components you create should not require handlers for their events.

Moreover, application developers can write any code they want in an event handler. The components in the class
library have events written in such a way as to minimize the chance of an event handler generating errors. Obviously,
you cannot protect against logic errors in application code, but you can ensure that data structures are initialized
before calling events so that application developers do not try to access invalid data.

Implementing the Standard Events
The controls that come with the component library inherit events for the most common occurrences. These are called
the standard events. Although all these events are built into the controls, they are often protected, meaning
developers cannot attach handlers to them. When you create a control, you can choose to make events visible to
users of your control.

There are three things you need to consider when incorporating the standard events into your controls:

Identifying standard events
Making events visible
Changing the standard event handling

Identifying Standard Events
There are two categories of standard events: those defined for all controls and those defined only for the standard
windowed controls.

Standard events for all controls
The most basic events are defined in the class TControl. All controls, whether windowed, graphical, or custom, inherit
these events. The following events are available in all controls:

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseMove
OnMouseDown
OnMouseUp

The standard events have corresponding protected virtual methods declared in TControl, with names that
correspond to the event names. For example, OnClick events call a method named Click, and OnEndDrag events
call a method named DoEndDrag.

Standard events for standard controls
In addition to the events common to all controls, standard windowed controls (those that descend from
TWinControl) have the following events:

OnEnter
OnKeyPress

2306

OnKeyDown
OnKeyUp
OnExit

Like the standard events in TControl, the windowed control events have corresponding methods. The standard key
events listed above respond to all normal keystrokes.

Note: To respond to special keystrokes (such as the Alt key), however, you must respond to the
WM_GETDLGCODE or CM_WANTSPECIALKEYS message from Windows. See Handling messages and
system notifications for information on writing message handlers.

Making Events Visible
The declarations of the standard events in TControl and TWinControl are protected, as are the methods that
correspond to them. If you are inheriting from one of these abstract classes and want to make their events accessible
at runtime or design time, you need to redeclare the events as either public or published.

Redeclaring a property without specifying its implementation keeps the same implementation methods, but changes
the protection level. You can, therefore, take an event that is defined in TControl but not made visible, and surface
it by declaring it as public or published.

Changing the Standard Event Handling
If you want to change the way your component responds to a certain kind of event, you might be tempted to write
some code and assign it to the event. As an application developer, that is exactly what you would do. But when you
are creating a component, you must keep the event available for developers who use the component.

This is the reason for the protected implementation methods associated with each of the standard events. By
overriding the implementation method, you can modify the internal event handling; and by calling the inherited
method you can maintain the standard handling, including the event for the application developer's code.

The order in which you call the methods is significant. As a rule, call the inherited method first, allowing the application
developer's event-handler to execute before your customizations (and in some cases, to keep the customizations
from executing). There may be times when you want to execute your code before calling the inherited method,
however. For example, if the inherited code is somehow dependent on the status of the component and your code
changes that status, you should make the changes and then allow the user's code to respond to them.

Defining Your Own Events
Defining entirely new events is relatively unusual. There are times, however, when a component introduces behavior
that is entirely different from that of any other component, so you will need to define an event for it.

There are the issues you will need to consider when defining an event:

Triggering the event
Defining the handler type
Declaring the event
Calling the event

Triggering the Event
You need to know what triggers the event. For some events, the answer is obvious. For example, a mouse-down
event occurs when the user presses the left button on the mouse and Windows sends a WM_LBUTTONDOWN

2307

message to the application. Upon receiving that message, a component calls its MouseDown method, which in turn
calls any code the user has attached to the OnMouseDown event.

However, some events are less clearly tied to specific external occurrences. For example, a scroll bar has an
OnChange event, which is triggered by several kinds of occurrence, including keystrokes, mouse clicks, and changes
in other controls. When defining your events, you must ensure that all the appropriate occurrences call the proper
events.

Two Kinds of Events
There are two kinds of occurrence you might need to provide events for: user interactions and state changes. User-
interaction events are nearly always triggered by a message from Windows, indicating that the user did something
your component may need to respond to. State-change events may also be related to messages from Windows
(focus changes or enabling, for example), but they can also occur through changes in properties or other code.

You have total control over the triggering of the events you define. Define the events with care so that developers
are able to understand and use them.

Defining the Handler Type
Once you determine when the event occurs, you must define how you want the event handled. This means
determining the type of the event handler. In most cases, handlers for events you define yourself are either simple
notifications or event-specific types. It is also possible to get information back from the handler.

Simple notifications
A notification event is one that only tells you that the particular event happened, with no specific information about
when or where. Notifications use the type TNotifyEvent, which carries only one parameter, the sender of the event.
All a handler for a notification "knows" about the event is what kind of event it was, and what component the event
happened to. For example, click events are notifications. When you write a handler for a click event, all you know is
that a click occurred and which component was clicked.

Notification is a one-way process. There is no mechanism to provide feedback or prevent further handling of a
notification.

Event-specific handlers
In some cases, it is not enough to know which event happened and what component it happened to. For example,
if the event is a key-press event, it is likely that the handler will want to know which key the user pressed. In these
cases, you need handler types that include parameters for additional information.

If your event was generated in response to a message, it is likely that the parameters you pass to the event handler
come directly from the message parameters.

Returning information from the handler
Because all event handlers are procedures, the only way to pass information back from a handler is through a var
parameter. Your components can use such information to determine how or whether to process an event after the
user's handler executes.

For example, all the key events (OnKeyDown, OnKeyUp, and OnKeyPress) pass by reference the value of the key
pressed in a parameter named Key. The event handler can change Key so that the application sees a different key
as being involved in the event. This is a way to force typed characters to uppercase, for example.

2308

Declaring the Event
Once you have determined the type of your event handler, you are ready to declare the method pointer and the
property for the event. Be sure to give the event a meaningful and descriptive name so that users can understand
what the event does. Try to be consistent with names of similar properties in other components.

Event names start with "On"
The names of most events in Delphi begin with "On." This is just a convention; the compiler does not enforce it. The
Object Inspector determines that a property is an event by looking at the type of the property: all method-pointer
properties are assumed to be events and appear on the Events page.

Developers expect to find events in the alphabetical list of names starting with "On." Using other kinds of names is
likely to confuse them.

Note: The main exception to this rule is that many events that occur before and after some occurrence begin with
"Before" and "After."

Calling the Event
You should centralize calls to an event. That is, create a virtual method in your component that calls the application's
event handler (if it assigns one) and provides any default handling.

Putting all the event calls in one place ensures that someone deriving a new component from yours can customize
event handling by overriding a single method, rather than searching through your code for places where you call the
event.

There are two other considerations when calling the event:

Empty handlers must be valid.
Users can override default handling.

Empty Handlers Must Be Valid
You should never create a situation in which an empty event handler causes an error, nor should the proper
functioning of your component depend on a particular response from the application's event-handling code.

Users Can Override Default Handling
For some kinds of events, developers may want to replace the default handling or even suppress all responses. To
allow this, you need to pass an argument by reference to the handler and check for a certain value when the handler
returns.

This is in keeping with the rule that an empty handler should have the same effect as no handler at all. Because an
empty handler will not change the values of arguments passed by reference, the default handling always takes place
after calling the empty handler.

2309

Creating methods

Creating Methods: Overview
Component methods are procedures and functions built into the structure of a class. Although there are essentially
no restrictions on what you can do with the methods of a component, Delphi does use some standards you should
follow. These guidelines include:

Avoiding dependencies
Naming methods
Protecting methods
Making methods virtual
Declaring methods

In general, components should not contain many methods and you should minimize the number of methods that an
application needs to call. The features you might be inclined to implement as methods are often better encapsulated
into properties. Properties provide an interface that suits the Delphi and are accessible at design time.

Avoiding Interdependencies
At all times when writing components, minimize the preconditions imposed on the developer. To the greatest extent
possible, developers should be able to do anything they want to a component, whenever they want to do it. There
will be times when you cannot accommodate that, but your goal should be to come as close as possible.

This list gives you an idea of the kinds of dependencies to avoid:

Methods that the user must call to use the component
Methods that must execute in a particular order
Methods that put the component into a state or mode where certain events or methods could be invalid

The best way to handle these situations is to ensure that you provide ways out of them. For example, if calling a
method puts your component into a state where calling another method might be invalid, then write that second
method so that if an application calls it when the component is in a bad state, the method corrects the state before
executing its main code. At a minimum, you should raise an exception in cases when a user calls a method that is
invalid.

In other words, if you create a situation where parts of your code depend on each other, the burden should be on
you to be sure that using the code in incorrect ways does not cause problems. A warning message, for example, is
preferable to a system failure if the user does not accommodate your dependencies.

2310

Naming Methods
Delphi imposes no restrictions on what you name methods or their parameters. There are a few conventions that
make methods easier for application developers, however. Keep in mind that the nature of a component architecture
dictates that many different kinds of people can use your components.

If you are accustomed to writing code that only you or a small group of programmers use, you might not think too
much about how you name things. It is a good idea to make your method names clear because people unfamiliar
with your code (and even unfamiliar with coding) might have to use your components.

Here are some suggestions for making clear method names:

Make names descriptive. Use meaningful verbs. A name like PasteFromClipboard is much more informative
than simply Paste or PFC.
Function names should reflect the nature of what they return.

Although it might be obvious to you as a programmer that a function named X returns the horizontal position of
something, a name like GetHorizontalPosition is more universally understandable.

As a final consideration, make sure the method really needs to be a method. A good guideline is that method names
have verbs in them. If you find that you create a lot of methods that do not have verbs in their names, consider
whether those methods ought to be properties.

Protecting Methods
All parts of classes, including fields, methods, and properties, have a level of protection or "visibility," as explained
in Controlling access. Choosing the appropriate visibility for a method is simple.

Most methods you write in your components are public or protected. You rarely need to make a method private,
unless it is truly specific to that type of component, to the point that even derived components should not have access
to it.

Methods That Should Be Public
Any method that application developers need to call must be declared as public. Keep in mind that most method
calls occur in event handlers, so methods should avoid tying up system resources or putting the operating system
in a state where it cannot respond to the user.

Note: Constructors and destructors should always be public.

Methods That Should Be Protected
Any implementation methods for the component should be protected so that applications cannot call them at the
wrong time. If you have methods that application code should not call, but that are called in derived classes, declare
them as protected.

For example, suppose you have a method that relies on having certain data set up for it beforehand. If you make
that method public, there is a chance that applications will call it before setting up the data. On the other hand, by
making it protected, you ensure that applications cannot call it directly. You can then set up other, public methods
that ensure that data setup occurs before calling the protected method.

Property-implementation methods should be declared as virtual protected methods. Methods that are so declared
allow the application developers to override the property implementation, either augmenting its functionality or
replacing it completely. Such properties are fully polymorphic. Keeping access methods protected ensures that
developers do not accidentally call them, inadvertently modifying a property.

2311

Abstract Methods
Sometimes a method is declared as abstract in a Delphi component. In the component library, abstract methods
usually occur in classes whose names begin with "custom," such as TCustomGrid. Such classes are themselves
abstract, in the sense that they are intended only for deriving descendant classes.

While you can create an instance object of a class that contains an abstract member, it is not recommended. Calling
the abstract member leads to an EAbstractError exception.

The abstract directive is used to indicate parts of classes that should be surfaced and defined in descendant
components; it forces component writers to redeclare the abstract member in descendant classes before actual
instances of the class can be created.

Making Methods Virtual
You make methods virtual when you want different types to be able to execute different code in response to the
same method call.

If you create components intended to be used directly by application developers, you can probably make all your
methods nonvirtual. On the other hand, if you create abstract components from which other components will be
derived, consider making the added methods virtual. This way, derived components can override the inherited
virtual methods.

Declaring Methods
Declaring a method in a component is the same as declaring any class method.

To declare a new method in a component, do the following:

Add the declaration to the component's object-type declaration.
Implement the method in the implementation part of the component's unit.

Example of Declaring Methods
The following code shows a component that defines two new methods, one protected method and one public virtual
method.

C++
This is the interface definition in the .H file:

[C++]
class PACKAGE TSampleComponent : public TControl
{
protected:
 void __fastcall MakeBigger();
public:
 virtual int __fastcall CalculateArea();
 .
 .
 .
};

This is the code in the .CPP file of the unit that implements the methods:

2312

[C++]
void __fastcall TSampleComponent::MakeBigger()
{
 Height = Height + 5;
 Width = Width + 5;
}
int __fastcall TSampleComponent::CalculateArea()
{
 return Width * Height;
}

Delphi

[Delphi]
type
 TSampleComponent = class(TControl)
 protected
 procedure MakeBigger; { declare protected static method }
 public
 function CalculateArea: Integer; virtual; { declare public virtual method }
 end;
.
.
.
implementation
.
.
.
procedure TSampleComponent.MakeBigger; { implement first method }
begin
 Height := Height + 5;
 Width := Width + 5;
end;
function TSampleComponent.CalculateArea: Integer; { implement second method }
begin
 Result := Width * Height;
end;

2313

Using graphics in components

Using Graphics in Components: Overview
Windows provides a powerful graphics device interface (GDI) for drawing device-independent graphics. The GDI,
however, imposes extra requirements on the programmer, such as managing graphic resources. Delphi takes care
of all the GDI drudgery, allowing you to focus on productive work instead of searching for lost handles or unreleased
resources.

As with any part of the Windows API, you can call GDI functions directly from your Delphi application. But you will
probably find that using Delphi's encapsulation of the graphic functions is faster and easier.

The topics in this section include:

Overview of graphics
Using the canvas
Working with pictures
Off-screen bitmaps
Responding to changes

Overview of Graphics
Delphi encapsulates the Windows GDI at several levels. The most important to you as a component writer is the
way components display their images on the screen. When calling GDI functions directly, you need to have a handle
to a device context, into which you have selected various drawing tools such as pens, brushes, and fonts. After
rendering your graphic images, you must restore the device context to its original state before disposing of it.

Instead of forcing you to deal with graphics at a detailed level, Delphi provides a simple yet complete interface: your
component's Canvas property. The canvas ensures that it has a valid device context, and releases the context when
you are not using it. Similarly, the canvas has its own properties representing the current pen, brush, and font.

The canvas manages all these resources for you, so you need not concern yourself with creating, selecting, and
releasing things like pen handles. You just tell the canvas what kind of pen it should use, and it takes care of the rest.

One of the benefits of letting Delphi manage graphic resources is that it can cache resources for later use, which
can speed up repetitive operations. For example, if you have a program that repeatedly creates, uses, and disposes
of a particular kind of pen tool, you need to repeat those steps each time you use it. Because Delphi caches graphic
resources, chances are good that a tool you use repeatedly is still in the cache, so instead of having to recreate a
tool, Delphi uses an existing one.

2314

An example of this is an application that has dozens of forms open, with hundreds of controls. Each of these controls
might have one or more TFont properties. Though this could result in hundreds or thousands of instances of
TFont objects, most applications wind up using only two or three font handles, thanks to a font cache.

Using the Canvas
The canvas class encapsulates graphics controls at several levels, including high-level functions for drawing
individual lines, shapes, and text; intermediate properties for manipulating the drawing capabilities of the canvas;
and in the component library, provides low-level access to the Windows GDI.

The following table summarizes the capabilities of the canvas.

Canvas capability summary
Level Operation Tools

High Drawing lines and shapes Methods such as MoveTo, LineTo, Rectangle, and Ellipse

Displaying and measuring text TextOut, TextHeight, TextWidth, and TextRect methods

Filling areas FillRect and FloodFill methods

Intermediate Customizing text and graphics Pen, Brush, and Font properties

Manipulating pixels Pixels property.

Copying and merging images Draw, StretchDraw, BrushCopy, and CopyRect methods; CopyMode property

Low Calling Windows GDI functions Handle property

Working with Pictures
Most of the graphics work you do in Delphi is limited to drawing directly on the canvases of components and forms.
Delphi also provides for handling stand-alone graphic images, such as bitmaps, metafiles, and icons, including
automatic management of palettes.

There are three important aspects to working with pictures in Delphi:

Using a picture, graphic, or canvas
Loading and storing graphics
Handling palettes

Using a Picture, Graphic, or Canvas
There are three kinds of classes in Delphi that deal with graphics:

A canvas represents a bitmapped drawing surface on a form, graphic control, printer, or bitmap. A canvas is
always a property of something else, never a stand-alone class.
A graphic represents a graphic image of the sort usually found in a file or resource, such as a bitmap, icon, or
metafile. Delphi defines classes TBitmap, TIcon, and TMetafile, all descended from a generic TGraphic. You
can also define your own graphic classes. By defining a minimal standard interface for all graphics, TGraphic
provides a simple mechanism for applications to use different kinds of graphics easily.
A picture is a container for a graphic, meaning it could contain any of the graphic classes. That is, an item of
type TPicture can contain a bitmap, an icon, a metafile, or a user-defined graphic type, and an application can

2315

access them all in the same way through the picture class. For example, the image control has a property called
Picture, of type TPicture, enabling the control to display images from many kinds of graphics.

Keep in mind that a picture class always has a graphic, and a graphic might have a canvas. (The only standard
graphic that has a canvas is TBitmap.) Normally, when dealing with a picture, you work only with the parts of the
graphic class exposed through TPicture. If you need access to the specifics of the graphic class itself, you can refer
to the picture's Graphic property.

Loading and Storing Graphics
All pictures and graphics in Delphi can load their images from files and store them back again (or into different files).
You can load or store the image of a picture at any time.

To load an image into a picture from a file, call the picture's LoadFromFile method. To save an image from a picture
into a file, call the picture's SaveToFile method.

LoadFromFile and SaveToFile each take the name of a file as the only parameter. LoadFromFile uses the extension
of the file name to determine what kind of graphic object it will create and load. SaveToFile saves whatever type of
file is appropriate for the type of graphic object being saved.

Handling Palettes
For VCL components, when running on a palette-based device (typically, a 256-color video mode), Delphi controls
automatically support palette realization. That is, if you have a control that has a palette, you can use two methods
inherited from TControl to control how Windows accommodates that palette.

Palette support for controls has these two aspects:

Specifying a palette for a control
Responding to palette changes

Most controls have no need for a palette, but controls that contain "rich color" graphic images (such as the image
control) might need to interact with Windows and the screen device driver to ensure the proper appearance of the
control. Windows refers to this process as realizing palettes.

Realizing palettes is the process of ensuring that the foremost window uses its full palette, and that windows in the
background use as much of their palettes as possible, then map any other colors to the closest available colors in
the "real" palette. As windows move in front of one another, Windows continually realizes the palettes.

Note: Delphi itself provides no specific support for creating or maintaining palettes, other than in bitmaps. If you
have a palette handle, however, Delphi controls can manage it for you.

Specifying a Palette for a Control
To specify a palette for a control, override the control's GetPalette method to return the handle of the palette.

Specifying the palette for a control does these things for your application:

It tells the application that your control's palette needs to be realized.
It designates the palette to use for realization.

2316

Responding to Palette Changes
If your VCL control specifies a palette by overriding GetPalette, Delphi automatically takes care of responding to
palette messages from Windows. The method that handles the palette messages is PaletteChanged.

The primary role of PaletteChanged is to determine whether to realize the control's palette in the foreground or the
background. Windows handles this realization of palettes by making the topmost window have a foreground palette,
with other windows resolved in background palettes. Delphi goes one step further, in that it also realizes palettes for
controls within a window in tab order. The only time you might need to override this default behavior is if you want
a control that is not first in tab order to have the foreground palette.

Off-screen Bitmaps
When drawing complex graphic images, a common technique in graphics programming is to create an off-screen
bitmap, draw the image on the bitmap, and then copy the complete image from the bitmap to the final destination
onscreen. Using an off-screen image reduces flicker caused by repeated drawing directly to the screen.

The bitmap class in Delphi, which represents bitmapped images in resources and files, can also work as an off-
screen image.

There are two main aspects to working with off-screen bitmaps:

Creating and managing off-screen bitmaps.
Copying bitmapped images.

Creating and Managing Off-screen Bitmaps
When creating complex graphic images, you should avoid drawing them directly on a canvas that appears onscreen.
Instead of drawing on the canvas for a form or control, you can construct a bitmap object, draw on its canvas, and
then copy its completed image to the onscreen canvas.

The most common use of an off-screen bitmap is in the Paint method of a graphic control. As with any temporary
object, the bitmap should be protected with a try..finally block:

type
 TFancyControl = class(TGraphicControl)
 protected
 procedure Paint; override; { override the Paint method }
 end;
procedure TFancyControl.Paint;
var
 Bitmap: TBitmap; { temporary variable for the off-screen bitmap }
begin
 Bitmap := TBitmap.Create; { construct the bitmap object }
 try
 { draw on the bitmap }
 { copy the result into the control's canvas }
 finally
 Bitmap.Free; { destroy the bitmap object }
 end;
end;

2317

Copying Bitmapped Images
Delphi provides four different ways to copy images from one canvas to another. Depending on the effect you want
to create, you call different methods.

The following table summarizes the image-copying methods in canvas objects.

Image-copying methods
To create this effect Call this method

Copy an entire graphic. Draw

Copy and resize a graphic. StretchDraw

Copy part of a canvas. CopyRect

Copy a bitmap with raster operations. BrushCopy (VCL)

Responding to Changes
All graphic objects, including canvases and their owned objects (pens, brushes, and fonts) have events built into
them for responding to changes in the object. By using these events, you can make your components (or the
applications that use them) respond to changes by redrawing their images.

Responding to changes in graphic objects is particularly important if you publish them as part of the design-time
interface of your components. The only way to ensure that the design-time appearance of the component matches
the properties set in the Object Inspector is to respond to changes in the objects.

To respond to changes in a graphic object, assign a method to the class's OnChange event.

2318

Handling messages

Handling Messages and System Notifications: Overview
Components often need to respond to notifications from the underlying operating system. The operating system
informs the application of occurrences such as what the user does with the mouse and keyboard. Some controls
also generate notifications, such as the results from user actions such as selecting an item in a list box. The
component library handles most of the common notifications already. It is possible, however, that you will need to
write your own code for handling such notifications.

For VCL applications, notifications arrive in the form of messages. These messages can come from any source,
including Windows, VCL components, and components you have defined. There are three aspects to working with
messages:

Understanding the message-handling system.
Changing message handling.
Creating new message handlers.

Understanding the message-handling system
All VCL classes have a built-in mechanism for handling messages, called message-handling methods or message
handlers. The basic idea of message handlers is that the class receives messages of some sort and dispatches
them, calling one of a set of specified methods depending on the message received. If no specific method exists for
a particular message, there is a default handler.

The following diagram shows the message-dispatch system:

The Visual Component Library defines a message-dispatching system that translates all Windows messages
(including user-defined messages) directed to a particular class into method calls. You should never need to alter
this message-dispatch mechanism. All you will need to do is create message-handling methods. See the section
Declaring a new message-handling method for more on this subject.

What's in a Windows Message?
A Windows message is a data record that contains several fields. The most important of these is an integer-size
value that identifies the message. Windows defines many messages, and the Messages unit declares identifiers for
all of them. Other useful information in a message comes in two parameter fields and a result field.

2319

One parameter contains 16 bits, the other 32 bits. You often see Windows code that refers to those values as wParam
and lParam, for word parameter and long parameter. Often, each parameter will contain more than one piece of
information, and you see references to names such as lParamHi, which refers to the high-order word in the long
parameter.

Originally, Windows programmers had to remember or look up in the Windows APIs what each parameter contained.
Now Microsoft has named the parameters. This so-called message cracking makes it much simpler to understand
what information accompanies each message. For example, the parameters to the WM_KEYDOWN message are
now called nVirtKey and lKeyData, which gives much more specific information than wParam and lParam.

For each type of message, Delphi defines a record type that gives a mnemonic name to each parameter. For
example, mouse messages pass the x- and y-coordinates of the mouse event in the long parameter, one in the high-
order word, and the other in the low-order word. Using the mouse-message structure, you do not have to worry about
which word is which, because you refer to the parameters by the names XPos and YPos instead of lParamLo and
lParamHi.

void MyKeyDownHandler(HWND hwnd, UINT nVirtKey, BOOL fDown, int CRepeat, UINT flags)
{
 .
 .
 .
}
LRESULT MyWndProc(HWND hwnd, UINT Message, WPARAM wParam, LPARAM lParam)
{
 switch(Message)
 {
 HANDLE_MSG(hwnd, WM_KEYDOWN, MyKeyDownHandler);
 .
 .
 .
}

Dispatching Messages
When an application creates a window, it registers a window procedure with the Windows kernel. The window
procedure is the routine that handles messages for the window. Traditionally, the window procedure contains a huge
case statement with entries for each message the window has to handle. Keep in mind that "window" in this sense
means just about anything on the screen: each window, each control, and so on. Every time you create a new type
of window, you have to create a complete window procedure.

The VCL simplifies message dispatching in several ways:

Each component inherits a complete message-dispatching system.
The dispatch system has default handling. You define handlers only for messages you need to respond to
specially.
You can modify small parts of the message handling and rely on inherited methods for most processing.

The greatest benefit of this message dispatch system is that you can safely send any message to any component
at any time. If the component does not have a handler defined for the message, the default handling takes care of
it, usually by ignoring the message.

Tracing the flow of messages
The VCL registers a method called MainWndProc as the window procedure for each type of component in an
application. MainWndProc contains an exception-handling block, passing the message structure from Windows to

2320

a virtual method called WndProc and handling any exceptions by calling the application class's HandleException
method.

MainWndProc is a nonvirtual method that contains no special handling for any particular messages. Customizations
take place in WndProc, since each component type can override the method to suit its particular needs.

WndProc methods check for any special conditions that affect their processing so they can "trap" unwanted
messages. For example, while being dragged, components ignore keyboard events, so the WndProc method of
TWinControl passes along keyboard events only if the component is not being dragged. Ultimately, WndProc calls
Dispatch, a nonvirtual method inherited from TObject, which determines which method to call to handle the message.

Dispatch uses the Msg field of the message structure to determine how to dispatch a particular message. If the
component defines a handler for that particular message, Dispatch calls the method. If the component does not
define a handler for that message, Dispatch calls DefaultHandler.

Changing Message Handling
Before changing the message handling of your components, make sure that is what you really want to do. The VCL
translates most Windows messages into events that both the component writer and the component user can handle.
Rather than changing the message-handling behavior, you should probably change the event-handling behavior.

To change message handling in VCL components, you override the message-handling method. You can also prevent
a component from handling a message under certain circumstances by trapping the message.

Overriding the Handler Method
To change the way a component handles a particular message, you override the message-handling method for that
message. If the component does not already handle the particular message, you need to declare a new message-
handling method.

To override a message-handling method, you declare a new method in your component with the same message
index as the method it overrides. Do not use the override directive; you must use the message directive and a
matching message index.

Note that the name of the method and the type of the single var parameter do not have to match the overridden
method. Only the message index is significant. For clarity, however, it is best to follow the convention of naming
message-handling methods after the messages they handle.

BEGIN_MESSAGE_MAP
 MESSAGE_HANDLER(parameter1, parameter2, parameter3)
END_MESSAGE_MAP

Using Message Parameters
Once inside a message-handling method, your component has access to all the parameters of the message
structure. Because the parameter passed to the message handler is a var parameter, the handler can change the
values of the parameters if necessary. The only parameter that changes frequently is the Result field for the message:
the value returned by the SendMessage call that sends the message.

Because the type of the Message parameter in the message-handling method varies with the message being
handled, you should refer to the documentation on Windows messages for the names and meanings of individual
parameters. If for some reason you need to refer to the message parameters by their old-style names (WParam,
LParam, and so on), you can typecast Message to the generic type TMessage, which uses those parameter names.

2321

Trapping Messages
Under some circumstances, you might want your components to ignore messages. That is, you want to keep the
component from dispatching the message to its handler. To trap a message, you override the virtual method
WndProc.

For VCL components, the WndProc method screens messages before passing them to the Dispatch method, which
in turn determines which method gets to handle the message. By overriding WndProc, your component gets a chance
to filter out messages before dispatching them. An override of WndProc for a control derived from TWinControl looks
like this:

[Delphi]
procedure TMyControl.WndProc(var Message: TMessage);
begin
 { tests to determine whether to continue processing }
 inherited WndProc(Message);
end;

[C++]
void __fastcall TMyControl::WndProc(TMessage& Message)
{
 // tests to determine whether to continue processing
if(Message.Msg != WM_LBUTTONDOWN)

}

The TControl component defines entire ranges of mouse messages that it filters when a user is dragging and
dropping controls. Overriding WndProc helps this in two ways:

It can filter ranges of messages instead of having to specify handlers for each one.
It can preclude dispatching the message at all, so the handlers are never called.

The WndProc Method

Note: This information is applicable when writing VCL components only.

Here is part of the WndProc method for TControl, for example:

procedure TControl.WndProc(var Message: TMessage);
begin
 .
 .
 .
 if (Message.Msg >= WM_MOUSEFIRST) and (Message.Msg <= WM_MOUSELAST) then
 if Dragging then { handle dragging specially }
 DragMouseMsg(TWMMouse(Message))
 else
 . { handle others normally }
 .
 .
 end;
. { otherwise process normally }
.
.
end;

2322

Creating New Message Handlers
Because the VCL provides handlers for most common messages, the time you will most likely need to create new
message handlers is when you define your own messages. Working with user-defined messages has three aspects:

Defining your own messages.
Declaring a new message-handling method.
Sending messages.

Defining Your Own Messages
A number of the standard components define messages for internal use. The most common reasons for defining
messages are broadcasting information not covered by standard messages and notification of state changes. You
can define your own messages in the VCL.

Defining a message is a two-step process. The steps are:

1 Declaring a message identifier.
2 Declaring a message-record type.

Declaring a Message Identifier
A message identifier is an integer-sized constant. Windows reserves the messages below 1,024 for its own use, so
when you declare your own messages you should start above that level.

The constant WM_APP represents the starting number for user-defined messages. When defining message
identifiers, you should base them on WM_APP.

Be aware that some standard Windows controls use messages in the user-defined range. These include list boxes,
combo boxes, edit boxes, and command buttons. If you derive a component from one of these and want to define
a new message for it, be sure to check the Messages unit to see which messages Windows already defines for that
control.

Declaring a Message-structure Type
If you want to give useful names to the parameters of your message, you need to declare a message-record type
for that message. The message-record is the type of the parameter passed to the message-handling method. If you
do not use the message's parameters, or if you want to use the old-style parameter notation (wParam, lParam, and
so on), you can use the default message-record, TMessage.

To declare a message-record type, follow these conventions:
1 Name the record type after the message, preceded by a T.
2 Call the first field in the record Msg, of type TMsgParam.
3 Define the next two bytes to correspond to the Word parameter, and the next two bytes as unused.

Or

Define the next four bytes to correspond to the Longint parameter.

4 Add a final field called Result, of type Longint.

2323

Declaring a New Message-handling Method
There are two sets of circumstances that require you to declare new message-handling methods:

Your component needs to handle a Windows message that is not already handled by the standard components.
You have defined your own message for use by your components.

To declare a message-handling method, do the following:
1 Declare the method in a protected part of the component's class declaration.
2 Make the method a procedure.
3 Name the method after the message it handles, but without any underline characters.
4 Pass a single var parameter called Message, of the type of the message record.
5 Within the message method implementation, write code for any handling specific to the component.
6 Call the inherited message handler.

Sending Messages
Typically, an application sends message to send notifications of state changes or to broadcast information. Your
component can broadcast messages to all the controls in a form, send messages to a particular control (or to the
application itself), or even send messages to itself.

There are several different ways to send a Windows message. Which method you use depends on why you are
sending the message. The following topics describe the different ways to send Windows messages:

Broadcasting a message to all controls in a form.
Calling a control's message handler directly.
Sending a message using the Windows message queue.
Sending a message that does not execute immediately.

Broadcasting a Message to All Controls in a Form
When your component changes global settings that affect all of the controls in a form or other container, you may
want to send a message to those controls so that they can update themselves appropriately. Not every control may
need to respond to the notification, but by broadcasting the message, you can inform all controls that know how to
respond and allow the other controls to ignore the message.

To broadcast a message to all the controls in another control, use the Broadcast method. Before you broadcast a
message, you fill out a message record with the information you want to convey.

[Delphi]
var
Msg: TMessage;
begin
 Msg.Msg := MY_MYCUSTOMMESSAGE;
 Msg.WParam := 0;
 Msg.LParam := Longint(Self);
 Msg.Result := 0;

2324

[C++]
TMessage Msg;
Msg.Msg = MY_MYCUSTOMMESSAGE;
Msg.WParam = 0;
Msg.LParam = (int)(this);
Msg.Result = 0;

Then, pass this message record to the parent of all the controls you want to notify. This can be any control in the
application. For example, it can be the parent of the control you are writing:

[Delphi]
Parent.Broadcast(Msg);

[C++]
Parent->Broadcast(Msg);

It can be the form that contains your control:

[Delphi]
GetParentForm(self).Broadcast(Msg);

[C++]
GetParentForm(this)->Broadcast(Msg);

It can be the active form:

[Delphi]
Screen.ActiveForm.Broadcast(Msg);

[C++]
Screen->ActiveForm->Broadcast(Msg);

It can even be all the forms in your application:

[Delphi]
for I:= 0 to Screen.FormCount - 1 do
 Screen.Forms[I].Broadcast(Msg);

[C++]
for (int i = 0; i < Screen->FormCount; i++)
 Screen->Forms[i]->Broadcast(Msg);

Calling a Control's Message Handler Directly
Sometimes there is only a single control that needs to respond to your message. If you know the control that should
receive your message, the simplest and most straightforward way to send the message is to call the control's Perform
method.

There are two main reasons why you call a control's Perform method:

2325

You want to trigger the same response that the control makes to a standard Windows (or other) message. For
example, when a grid control receives a keystroke message, it creates an inline edit control and then sends the
keystroke message on to the edit control.
You may know what control you want to notify, but not know what type of control it is. Because you don't know
the type of the target control, you cannot use any of its specialized methods, but all controls have message-
handling capabilities so you can always send a message. If the control has a message handler for the message
you send, it will respond appropriately. Otherwise, it will ignore the message you send and return 0.

To call the Perform method, you do not need to create a message record. You need only pass the message identifier,
WParam, and LParam as parameters. Perform returns the message result.

Sending a Message Using the Windows Message Queue
In a multithreaded application, you can't just call the Perform method because the target control is in a different
thread than the one that is executing. However, by using the Windows message queue, you can safely communicate
with other threads. Message handling always occurs in the main VCL thread, but you can send a message using
the Windows message queue from any thread in the application. A call to SendMessage is synchronous. That is,
SendMessage does not return until the target control has handled the message, even if it is in another thread.

Use the Windows API call, SendMessage, to send a message to a control using the Windows message queue.
SendMessage takes the same parameters as the Perform method, except that you must identify the target control
by passing its Window handle. Thus, instead of writing

[Delphi]
MsgResult := TargetControl.Perform(MY_MYMESSAGE, 0, 0);

[C++]
MsgResult = TargetControl->Perform(MY_MYMESSAGE, 0, 0);

you would write

[Delphi]
MsgResult := SendMessage(TargetControl.Handle, MYMESSAGE, 0, 0);

[C++]
MsgResult = SendMessage(TargetControl->Handle, MYMESSAGE, 0, 0);

For more information on the SendMessage function, see the Microsoft MSDN documentation. For more information
on writing multiple threads that may be executing simultaneously, see Coordinating threads.

Sending a Message That Does Not Execute Immediately
There are times you may want to send a message but you do not know whether it is safe for the target of the message
to execute right away. For example, if the code that sends a message is called from an event handler on the target
control, you may want to make sure that the event handler has finished executing before the control executes your
message. You can handle this situation as long as you do not need to know the message result.

Use the Windows API call, PostMessage, to send a message to a control but allow the control to wait until it has
finished any other messages before it handles yours. PostMessage takes exactly the same parameters as
SendMessage.

For more information on the PostMessage function, see the Microsoft MSDN documentation.

2326

Responding to Signals
The underlying widget layer emits a variety of signals, each of which represents a different type of notification. These
signals include system events (the event signal) as well as notifications that are specific to the widget that generates
them. For example, all widgets generate a destroyed signal when the widget is freed, trackbar widgets generate
a valueChanged signal, header controls generate a sectionClicked signal, and so on.

Each CLX component responds to signals from its underlying widget by assigning a method as the handler for the
signal. It does this using a special hook object that is associated with the underlying widget. The hook object is a
lightweight object that is really just a collection of method pointers, each method pointer specific to a particular signal.
When a method of the CLX component has been assigned to the hook object as the handler for a specific signal,
then every time the widget generates the specific signal, the method on the CLX component gets called.

Note: The methods for each hook object are declared in the Qt unit. The methods are flattened into global routines
with names that reflect the hook object to which they belong. For example, all methods on the hook object
associated with the application widget (QApplication) begin with ‘QApplication_hook.’ This flattening is
necessary so that the Delphi CLX object can access the methods of the C++ hook object.

Assigning Custom Signal Handlers
Many CLX controls already assign methods to handle signals from the underlying widget. Typically, these methods
are private and not virtual. Thus, if you want to write your own method to respond to a signal, you must assign your
own method to the hook object associated with your widget. To do this, override the HookEvents method.

Note: If the signal to which you want to respond is a system event notification, you must not use an override of the
HookEvents method. For details on how to respond to system events, see Responding to system events.

In your override of the HookEvents method, declare a variable of type TMethod.

Then for each method you want to assign to the hook object as a signal handler, do the
following:
1 Initialize the variable of type TMethod to represent a method handler for the signal.
2 Assign this variable to the hook object. You can access the hook object using the Hooks property that your

component inherits from THandleComponent or TWidgetControl.

In your override, always call the inherited HookEvents method so that the signal handlers that base classes assign
are also hooked up.

The following code is the HookEvents method of TTrackBar. It illustrates how to override the HookEvents method
to add custom signal handlers.

[Delphi]
procedure TTrackBar.HookEvents;
var
 Method: TMethod;
begin
 // initialize Method to represent a handler for the QSlider valueChanged signal
 // ValueChangedHook is a method of TTrackBar that responds to the signal.
 QSlider_valueChanged_Event(Method) := ValueChangedHook;
 // Assign Method to the hook object. Note that you can cast Hooks to the
 // type of hook object associated with the underlying widget.
 QSlider_hook_hook_valueChanged(QSlider_hookH(Hooks), Method);
 // Repeat the process for the sliderMoved event:
 QSlider_sliderMoved_Event(Method) := ValueChangedHook;

2327

 QSlider_hook_hook_valueChanged(QSlider_hookH(Hooks), Method);
 // Call the inherited method so that inherited signal handlers are hooked up:
 inherited HookEvents;
end;

[C++]
virtual void __fastcall TTrackBar::HookEvents(void)
{
 TMethod Method;
 // initialize Method to represent a handler for the QSlider valueChanged signal
 // ValueChangedHook is a method of TTrackBar that responds to the signal.
 QSlider_valueChanged_Event(Method) = @ValueChangedHook;
 // Assign Method to the hook object. Note that you can cast Hooks to the
 // type of hook object associated with the underlying widget.
 QSlider_hook_hook_valueChanged(dynamic_cast<QSlider_hookH>(Hooks), Method);
 // Repeat the process for the sliderMoved event:
 QSlider_sliderMoved_Event(Method) := @ValueChangedHook;
 QSlider_hook_hook_valueChanged(dynamic_cast<QSlider_hookH>(Hooks), Method);
 // Call the inherited method so that inherited signal handlers are hooked up:
 TWidgetControl::HookEvents();
}

Responding to System Events
When the widget layer receives an event notification from the operating system, it generates a special event object
(QEvent or one of its descendants) to represent the event. The event object contains read-only information about
the event that occurred. The type of the event object indicates the type of event that occurred.

The widget layer notifies your CLX component of system events using a special signal of type event. It passes
the QEvent object to the signal handler for the event. The processing of the event signal is a bit more complicated
than processing other signals because it goes first to the application object. This means an application has two
opportunities to respond to a system event: once at the application level (TApplication) and once at the level of the
individual component (your TWidgetControl or THandleComponent descendant.) All of these classes (TApplication,
TWidgetControl, and THandleComponent) already assign a signal handler for the event signal from the widget layer.
That is, all system events are automatically directed to the EventFilter method, which plays a role similar to the
WndProc method on VCL controls.

EventFilter handles most of the commonly used system notifications, translating them into the events that are
introduced by your component's base classes. Thus, for example, the EventFilter method of TWidgetControl
responds to mouse events (QMouseEvent) by generating the OnMouseDown, OnMouseMove, and OnMouseUp
events, to keyboard events (QKeyEvent) by generating the OnKeyDown, OnKeyPress, OnKeyString, and
OnKeyUp events, and so on.

The following topics describe how to customize the way your control works with system events:

Commonly used events
Overriding the EventFilter method
Generating Qt events

Commonly Used Events
The EventFilter method of TWidgetControl handles many of the common system notifications by calling on protected
methods that are introduced in TControl or TWidgetControl. Most of these methods are virtual or dynamic, so that
you can override them when writing your own components and implement your own responses to the system event.

2328

When overriding these methods, you do not need to worry about working with the event object or (in most cases)
any of the other objects in the underlying widget layer.

When you want your CLX component to respond to system notifications, it is a good idea to first check whether there
is a protected method that already responds to the notification. You can check the documentation for TControl or
TWidgetControl (and any other base classes from which you derive your component) to see if there is a protected
method that responds to the event in which you are interested. The following table lists many of the most commonly
used protected methods from TControl and TWidgetControl that you can use.

TWidgetControl protected methods for responding to system notifications
Method Description

BeginAutoDrag Called when the user clicks the left mouse button if the control has a DragMode of dmAutomatic.

Click Called when the user releases the mouse button over the control.

DblClick Called when the user double-clicks with the mouse over the control.

DoMouseWheel Called when the user rotates the mouse wheel.

DragOver Called when the user drags the mouse cursor over the control.

KeyDown Called when the user presses a key while the control has focus.

KeyPress Called after KeyDown if KeyDown does not handle the keystroke.

KeyString Called when the user enters a keystroke when the system uses a multibyte character system.

KeyUp Called when the user releases a key while the control has focus.

MouseDown Called when the user clicks the mouse button over the control.

MouseMove Called when the user moves the mouse cursor over the control.

MouseUp Called when the user releases the mouse button over the control.

PaintRequest Called when the system needs to repaint the control.

WidgetDestroyed Called when a widget underlying a control is destroyed.

In the override, call the inherited method so that any default processes still take place.

Note: In addition to the methods that respond to system events, controls include a number of similar methods that
originate with TControl or TWidgetControl to notify the control of various events.Although these do not
respond to system events, they perform the same task as many Windows messages that are sent to VCL
controls. The following table lists some of these methods.

TWidgetControl protected methods for responding to events from controls
Method Description

BoundsChanged Called when the control is resized.

ColorChanged Called when the color of the control changes.

CursorChanged Called when the cursor changes shape. The mouse cursor assumes this shape when it's over this widget.

EnabledChanged Called when an application changes the enabled state of a window or control.

FontChanged Called when the collection of font resources changes.

PaletteChanged Called when the widget's palette changes.

ShowHintChanged Called when Help hints are displayed or hidden on a control.

StyleChanged Called when the window or control's GUI styles change.

TabStopChanged Called when the tab order on the form changes.

TextChanged Called when the control's text changes.

2329

VisibleChanged Called when a control is hidden or shown.

Overriding the EventFilter Method
If you want to respond to an event notification and there is no protected method for that event that you can override,
you can override the EventFilter method itself. In your override, check the type of the Event parameter of the
EventFilter method, and perform your special processing when it represents the type of notification to which you
want to respond. You can prevent further processing of the event notification by having your EventFilter method
return True.

Note: See the Qt documentation from TrollTech for details about the different types of QEvent objects.

The following code is the EventFilter method on TCustomControl. It illustrates how to obtain the event type from the
QEvent object when overriding EventFilter. Note that, although it is not shown here, you can cast the QEvent object
to an appropriate specialized QEvent descendant (such as QMouseEvent) once you have identified the event type.

[Delphi]
function TCustomControl.EventFilter(Sender: QObjectH; Event: QEventH): Boolean;
begin
 Result := inherited EventFilter(Sender, Event);
 case QEvent_type(Event) of
 QEventType_Resize,
 QEventType_FocusIn,
 QEventType_FocusOut:
 UpdateMask;
 end;
end;

[C++]
virtual bool __fastcall TCustomControl::EventFilter(Qt::QObjectH* Sender, Qt::QEventH*
Event)
{
 bool retval = TWidgetControl::EventFilter(Sender, Event);
 switch (QEvent_type(Event))
 {
 case QEventType_Resize:
 case QEventType_FocusIn:
 case QEventType_FocusOut:
 UpdateMask();
 }
 return retval;
}

Generating Qt Events
Similar to the way a VCL control can define and send custom Windows messages, you can make your CLX control
define and generate Qt system events. The first step is to define a unique ID for the event (similar to the way you
must define a message ID when defining a custom Windows message):

[Delphi]
const
 MyEvent_ID = Integer(QCLXEventType_ClxUser) + 50;

2330

[C++]
static const MyEvent_ID = (int) QCLXEventType_ClxUser + 50;

In the code where you want to generate the event, use the QCustomEvent_create function (declared in the Qt unit)
to create an event object with your new event ID. An optional second parameter lets you supply the event object
with a data value that is a pointer to information you want to associate with the event:

[Delphi]
var
 MyEvent: QCustomEventH;
begin
 MyEvent := QCustomEvent_create(MyEvent_ID, self);

[C++]
QCustomEventH *MyEvent = QCustomEvent_create(MyEvent_ID, this);

Once you have created the event object, you can post it by calling the QApplication_postEvent method:

[Delphi]
QApplication_postEvent(Application.Handle, MyEvent);

[C++]
QApplication_postEvent(Application->Handle, MyEvent);

For any component to respond to this notification, it need only override its EventFilter method, checking for an event
type of MyEvent_ID. The EventFilter method can retrieve the data you supplied to the constructor by calling the
QCustomEvent_data method that is declared in the Qt unit.

2331

Making components available at design
time

Making Components Available at Design Time: Overview
Making your components available at design time requires several steps:

Registering components
Providing Help for your component
Adding property editors
Adding component editors
Compiling components into packages

Not all these steps apply to every component. For example, if you don't define any new properties or events, you
don't need to provide Help for them. The only steps that are always necessary are registration and compilation.

Once your components have been registered and compiled into packages, they can be distributed to other
developers and installed in the IDE. For information on installing packages in the IDE, see Installing component
packages.

Registering Components
Registration works on a compilation unit basis, so if you create several components in a single compilation unit, you
can register them all at once.

To register a component, add a Register procedure to the unit. Within the Register procedure, you register the
components and determine where to install them on the Tool palette.

Note: If you create your component by choosing Component New Component in the IDE, the code required
to register your component is added automatically.

The steps for manually registering a component are:

Declaring the Register procedure
Writing the Register procedure

2332

Declaring the Register Procedure
Registration involves writing a single procedure in the unit, which must have the name Register. The Register
procedure must appear in the interface part of the unit, and (unlike the rest of Delphi) its name is case-sensitive.

Note: Although Delphi is a case insensitive language, the Register procedure is case sensitive and must be spelled
with an uppercase R.

The following code shows the outline of a simple unit that creates and registers new components:

[Delphi]
unit MyBtns;
interface
type
 ... { declare your component types here }
procedure Register; { this must appear in the interface section }
implementation
 ... { component implementation goes here }
procedure Register;
begin
 ... { register the components }
end;
end.

[C++]
namespace Newcomp
{
void __fastcall PACKAGE Register()
{
}
}

Within the Register procedure, call RegisterComponents for each component you want to add to the Tool palette. If
the unit contains several components, you can register them all in one step.

Writing the Register Procedure
Inside the Register procedure of a unit containing components, you must register each component you want to add
to the Tool palette. If the unit contains several components, you can register them at the same time.

To register a component, call the RegisterComponents procedure once for each category of the Tool palette to which
you want to add components. RegisterComponents involves three important things:

1 Specifying the components.
2 Specifying the palette page.
3 Using the RegisterComponents function.

Specifying the Components
Within the Register procedure, pass the component names in an open array, which you can construct inside the call
to RegisterComponents.

2333

[Delphi]
RegisterComponents('Miscellaneous', [TMyComponent]);

[C++]
TMetaClass classes[1] = {__classid(TNewComponent)};

You could also register several components on the same page at once, or register components on different pages,
as shown in the following code:

[Delphi]
procedure Register;
begin
 RegisterComponents('Miscellaneous', [TFirst, TSecond]); { two on this page... }
 RegisterComponents('Assorted', [TThird]); { ...one on another... }
 RegisterComponents(LoadStr(srStandard), [TFourth]); { ...and one on the Standard page }
end;

[C++]
TMetaClass classes[2] =
{__classid(TNewComponent), __classid(TAnotherComponent)};

[C++]

//Another way to add a component to the array
TMetaClass classes[2];
classes[0] = __classid(TNewComponent);
classes[1] = __classid(TAnotherComponent);

Specifying the Palette Page
The palette category name is a string. If the name you give for the palette category does not already exist, Delphi
creates a new category with that name. Delphi stores the names of the standard categories in string-list resources
so that international versions of the product can name the categories in their native languages. If you want to install
a component on one of the standard categories, you should obtain the string for the category name by calling the
LoadStr function, passing the constant representing the string resource for that category, such as srSystem for the
System category.

Using the RegisterComponents Function
Within the Register procedure, call RegisterComponents to register the components in the classes array.
RegisterComponents is a function that takes two parameters: the name of a Tool palette category and the array of
component classes.

Set the Page parameter to the name of the category on the Tool palette where the components should appear. If
the named category already exists, the components are added to that category. If the named category does not
exist, Delphi creates a new palette category with that name.

Call RegisterComponents from the implementation of the Register procedure in one of the units that defines the
custom components. The units that define the components must then be compiled into a package and the package
must be installed before the custom components are added to the Tool palette.

2334

[Delphi]
procedure Register;
begin
 RegisterComponents('System', [TSystem1, TSystem2]); {add to system
category}
 RegisterComponents('MyCustomPage',[TCustom1, TCustom2]); { new category}
end;

[C++]
namespace Newcomp
{
void __fastcall PACKAGE Register()
{
TMetaClass classes[1] = {__classid(TMyComponent)};
RegisterComponents("Miscellaneous", classes, 0);
}
}

[C++]
namespace Mycomps
{
 void __fastcall PACKAGE Register()
{
// declares an array that holds two components
TMetaClass classes1[2] = {__classid(TFirst), __classid(TSecond)};
// adds a new palette page with the two components in the classes1 array
RegisterComponents("Miscellaneous", classes1, 1);
// declares a second array
TMetaClass classes2[1];
// assigns a component to be the first element in the array
classes2[0] = __classid(TThird);
// adds the component in the classes2 array to the Samples page
RegisterComponents("Samples", classes2, 0);
}
}

Providing Help for Your Component
When you select a standard component on a form, or a property or event in the Object Inspector, you can press
F1 to get Help on that item. You can provide developers with the same kind of documentation for your components
if you create the appropriate Help files.

You can provide a small Help file to describe your components, and your Help file becomes part of the user's overall
Delphi Help system.

See the section Creating the Help file for information on how to compose the Help file for use with a component.

Creating the Help File
You can use any tool you want to create the source file for a Windows Help file (in .rtf format). Delphi includes the
Microsoft Help Workshop, which compiles your Help files and provides an online Help authoring guide. You can find
complete information about creating Help files in the online guide for Help Workshop.

Composing Help files for components consists of the steps:

Creating the entries.

2335

Making component Help context-sensitive.

Creating the Entries
To make your component's Help integrate seamlessly with the Help for the rest of the components in the library,
observe the following conventions:

Each component should have a Help topic:

The component topic should show which unit the component is declared in and briefly describe the component. The
component topic should link to secondary windows that describe the component's position in the object hierarchy
and list all of its properties, events, and methods. Application developers access this topic by selecting the component
on a form and pressing F1. For an example of a component topic, place any component on a form and press F1.

The component topic must have a # footnote with a value unique to the topic. The # footnote uniquely identifies each
topic by the Help system.

The component topic should have a K footnote for keyword searching in the Help system Index that includes the
name of the component class. For example, the keyword footnote for the TMemo component is "TMemo."

The component topic should also have a $ footnote that provides the title of the topic. The title appears in the Topics
Found dialog box, the Bookmark dialog box, and the History window.

Each component should include the following secondary navigational topics:

A hierarchy topic with links to every ancestor of the component in the component hierarchy.
A list of all properties available in the component, with links to entries describing those properties.
A list of all events available in the component, with links to entries describing those events.
A list of methods available in the component, with links to entries describing those methods.

Links to object classes, properties, methods, or events in the Delphi Help system can be made using Alinks. When
linking to an object class, the Alink uses the class name of the object, followed by an underscore and the string
"object". For example, to link to the TCustomPanel object, use the following:

!AL(TCustomPanel_object,1)

When linking to a property, method, or event, precede the name of the property, method, or event by the name of
the object that implements it and an underscore. For example, to link to the Text property which is implemented by
TControl, use the following:

!AL(TControl_Text,1)

To see an example of the secondary navigation topics, display the Help for any component and click on the links
labeled hierarchy, properties, methods, or events.

Each property, method, and event that is declared within the component should have a topic:

A property, event, or method topic should show the declaration of the item and describe its use. Application
developers see these topics either by highlighting the item in the Object Inspector and pressing F1 or by placing the
cursor in the Code editor on the name of the item and pressing F1. To see an example of a property topic, select
any item in the Object Inspector and press F1.

The property, event, and method topics should include a K footnote that lists the name of the property, method, or
event, and its name in combination with the name of the component. Thus, the Text property of TControl has the
following K footnote:

2336

Text,TControl;TControl,Text;Text,

The property, method, and event topics should also include a $ footnote that indicates the title of the topic, such as
TControl.Text.

All of these topics should have a topic ID that is unique to the topic, entered as a # footnote.

Making Component Help Context-sensitive
Each component, property, method, and event topic must have an A footnote. The A footnote is used to display the
topic when the user selects a component and presses F1, or when a property or event is selected in the Object
Inspector and the user presses F1. The A footnotes must follow certain naming conventions:

If the Help topic is for a component, the A footnote consists of two entries separated by a semicolon using this syntax:

ComponentClass_Object;ComponentClass

where ComponentClass is the name of the component class.

If the Help topic is for a property or event, the A footnote consists of three entries separated by semicolons using
this syntax:

ComponentClass_Element;Element_Type;Element

where ComponentClass is the name of the component class, Element is the name of the property, method, or event,
and Type is the either Property, Method, or Event

For example, for a property named BackgroundColor of a component named TMyGrid, the A footnote is

TMyGrid_BackgroundColor;BackgroundColor_Property;BackgroundColor

Adding Property Editors
The Object Inspector provides default editing for all types of properties. You can, however, provide an alternate
editor for specific properties by writing and registering property editors. You can register property editors that apply
only to the properties in the components you write, but you can also create editors that apply to all properties of a
certain type.

At the simplest level, a property editor can operate in either or both of two ways: displaying and allowing the user to
edit the current value as a text string, and displaying a dialog box that permits some other kind of editing. Depending
on the property being edited, you might find it useful to provide either or both kinds.

Writing a property editor requires these five steps:

1 Deriving a property-editor class.
2 Editing the property as text.
3 Editing the property as a whole.
4 Specifying editor attributes.
5 Registering the property editor.

2337

Deriving a Property-editor Class
Both the component library define several kinds of property editors, all of which descend from TPropertyEditor. When
you create a property editor, your property-editor class can either descend directly from TPropertyEditor or indirectly
through one of the property-editor classes described in the table below. The classes in the DesignEditors unit can
be used for VCL applications.

Note: All that is absolutely necessary for a property editor is that it descend from TBasePropertyEditor and that it
support the IProperty interface. TPropertyEditor, however, provides a default implementation of the
IProperty interface.

The list in the table below is not complete. The VCLEditors unit also defines some very specialized property editors
used by unique properties such as the component name. The listed property editors are the ones that are the most
useful for user-defined properties.

Predefined property-editor types
Type Properties edited

TOrdinalProperty All ordinal-property editors (those for integer, character, and enumerated properties) descend from
TOrdinalProperty.

TIntegerProperty All integer types, including predefined and user-defined subranges.

TCharProperty Char-type and subranges of Char, such as 'A'..'Z'.

TEnumProperty Any enumerated type.

TFloatProperty All floating-point numbers.

TStringProperty Strings.

TSetElementProperty Individual elements in sets, shown as Boolean values

TSetProperty All sets. Sets are not directly editable, but can expand into a list of set-element properties.

TClassProperty Classes. Displays the name of the class and allows expansion of the class's properties.

TMethodProperty Method pointers, most notably events.

TComponentProperty Components in the same form. The user cannot edit the component's properties, but can point to a
specific component of a compatible type.

TColorProperty Component colors. Shows color constants if applicable, otherwise displays hexadecimal value. Drop
down list contains the color constants. Double-click opens the color-selection dialog box.

TFontNameProperty Font names. The drop down list displays all currently installed fonts.

TFontProperty Fonts. Allows expansion of individual font properties as well as access to the font dialog box.

Setting the Property Value
The property editor's SetValue method takes a string typed by the user in the Object Inspector, converts it into the
appropriate type, and sets the value of the property. If the string does not represent a proper value for the property,
SetValue should throw an exception and not use the improper value.

To read string values into properties, override the property editor's SetValue method.

SetValue should convert the string and validate the value before calling one of the Set methods.

2338

Editing the Property as a Whole
You can optionally provide a dialog box in which the user can visually edit a property. The most common use of
property editors is for properties that are themselves classes. An example is the Font property, for which the user
can open a font dialog box to choose all the attributes of the font at once.

To provide a whole-property editor dialog box, override the property-editor class's Edit method.

Edit methods use the same Get and Set methods used in writing GetValue and SetValue methods. In fact, an Edit
method calls both a Get method and a Set method. Because the editor is type-specific, there is usually no need to
convert the property values to strings. The editor generally deals with the value "as retrieved."

When the user clicks the '...' button next to the property or double-clicks the value column, the Object Inspector calls
the property editor's Edit method.

Within your implementation of the Edit method, follow these steps:
1 Construct the editor you are using for the property.
2 Read the current value and assign it to the property using a Get method.
3 When the user selects a new value, assign that value to the property using a Set method.
4 Destroy the editor.

Specifying Editor Attributes
The property editor must provide information that the Object Inspector can use to determine what tools to display.
For example, the Object Inspector needs to know whether the property has subproperties or can display a list of
possible values.

To specify editor attributes, override the property editor's GetAttributes method.

GetAttributes is a method that returns a set of values of type TPropertyAttributes that can include any or all of the
following values:

Property-editor attribute flags
Flag Related method Meaning if included

paValueList GetValues The editor can give a list of enumerated values.

paSubProperties GetProperties The property has subproperties that can display.

paDialog Edit The editor can display a dialog box for editing the entire property.

paMultiSelect N/A The property should display when the user selects more than one
component.

paAutoUpdate SetValue Updates the component after every change instead of waiting for approval
of the value.

paSortList N/A The Object Inspector should sort the value list.

paReadOnly N/A Users cannot modify the property value.

paRevertable N/A Enables the Revert to Inherited menu item on the Object Inspector's context
menu. The menu item tells the property editor to discard the current property
value and return to some previously established default or standard value.

paFullWidthName N/A The value does not need to be displayed. The Object Inspector uses its full
width for the property name instead.

paVolatileSubProperties GetProperties The Object Inspector re-fetches the values of all subproperties any time the
property value changes.

2339

paReference GetComponentValue The value is a reference to something else. When used in conjunction with
paSubProperties the referenced object should be displayed as sub
properties to this property.

Registering the Property Editor
Once you create a property editor, you need to register it with Delphi. Registering a property editor associates a type
of property with a specific property editor. You can register the editor with all properties of a given type or just with
a particular property of a particular type of component.

To register a property editor, call the RegisterPropertyEditor procedure.

RegisterPropertyEditor takes four parameters:

A type-information pointer for the type of property to edit—this is always a call to the built-in function TypeInfo,
such as TypeInfo(TMyComponent)__typeinfo(TMyComponent).

The type of the component to which this editor applies—if this parameter is nil, the editor applies to all properties
of the given type.
The name of the property—this parameter only has meaning if the previous parameter specifies a particular
type of component. In that case, you can specify the name of a particular property in that component type to
which this editor applies.
The type of property editor to use for editing the specified property.

Property Categories
In the IDE, the Object Inspector lets you selectively hide and display properties based on property categories. The
properties of new custom components can be fit into this scheme by registering properties in categories. Do this at
the same time you register the component by calling RegisterPropertyInCategory or
RegisterPropertiesInCategory. Use RegisterPropertyInCategory to register a single property. Use
RegisterPropertiesInCategory to register multiple properties in a single function call. These functions are defined in
the unit DesignIntf.

Note that it is not mandatory that you register properties or that you register all of the properties of a custom
component when some are registered. Any property not explicitly associated with a category is included in the
TMiscellaneousCategory category. Such properties are displayed or hidden in the Object Inspector based on that
default categorization.

In addition to these two functions for registering properties, there is an IsPropertyInCategory function. This function
is useful for creating localization utilities, in which you must determine whether a property is registered in a given
property category.

Registering one property at a time
Registering multiple properties at once
Specifying property categories
Using the IsPropertyInCategory function

2340

Registering One Property at a Time
Register one property at a time and associate it with a property category using the RegisterPropertyInCategory
function. RegisterPropertyInCategory comes in four overloaded variations, each providing a different set of criteria
for identifying the property in the custom component to be associated with the property category.

The first variation lets you identify the property by the property's name. The line below registers a property related
to visual display of the component, identifying the property by its name, "AutoSize".

[Delphi]
RegisterPropertyInCategory('Visual', 'AutoSize');

[C++]
RegisterPropertyInCategory("Visual", "AutoSize");

The second variation is much like the first, except that it limits the category to only those properties of the given
name that appear on components of a given type. The example below registers (into the 'Help and Hints' category)
a property named "HelpContext" of a component of the custom class TMyButton.

[Delphi]
RegisterPropertyInCategory('Help and Hints', TMyButton, 'HelpContext');

[C++]
RegisterPropertyInCategory("Help and Hints", __classid(TMyButton), "HelpContext");

The third variation identifies the property using its type rather than its name. The example below registers a property
based on its type, Integer.

[Delphi]
RegisterPropertyInCategory('Visual', TypeInfo(Integer));

[C++]
RegisterPropertyInCategory("Visual", typeid(TArrangement));

The final variation uses both the property's type and its name to identify the property. The example below registers
a property based on a combination of its type, TBitmap, and its name, "Pattern."

[Delphi]
RegisterPropertyInCategory('Visual', TypeInfo(TBitmap), 'Pattern');

[C++]
RegisterPropertyInCategory("Visual", typeid(TBitmap), "Pattern");

See the section Specifying property categories for a list of the available property categories and a brief description
of their uses.

Registering Multiple Properties at Once
Register multiple properties at one time and associate them with a property category using the
RegisterPropertiesInCategory function. RegisterPropertiesInCategory comes in three overloaded variations, each
providing a different set of criteria for identifying the property in the custom component to be associated with property
categories.

2341

The first variation lets you identify properties based on property name or type. The list is passed as an array of
constants. In the example below, any property that either has the name "Text" or belongs to a class of type TEdit is
registered in the category 'Localizable.'

[Delphi]
RegisterPropertiesInCategory('Localizable', ['Text', TEdit]);

[C++]
RegisterPropertiesInCategory("Localizable", ARRAYOFCONST("Text", __typeinfo(TEdit)));

The second variation lets you limit the registered properties to those that belong to a specific component. The list of
properties to register include only names, not types. For example, the following code registers a number of properties
into the 'Help and Hints' category for all components:

[Delphi]
RegisterPropertiesInCategory('Help and Hints', TComponent, ['HelpContext', 'Hint',
'ParentShowHint', 'ShowHint']);

[C++]
RegisterPropertyInCategory("Help and Hints", __classid(TComponent), ARRAYOFCONST
("HelpContext", "Hint", "ParentShowHint"));

The third variation lets you limit the registered properties to those that have a specific type. As with the second
variation, the list of properties to register can include only names:

[Delphi]
RegisterPropertiesInCategory('Localizable', TypeInfo(String), ['Text', 'Caption']);

[C++]
RegisterPropertiesInCategory("Localizable", __typeinfo(TStrings), ARRAYOFCONST("Lines",
"Commands"));

See the section Specifying property categories for a list of the available property categories and a brief description
of their uses.

Specifying Property Categories
When you register properties in a category, you can use any string you want as the name of the category. If you use
a string that has not been used before, the Object Inspector generates a new property category class with that name.
You can also, however, register properties into one of the categories that are built-in. The built-in property categories
are described in the following table:

Property categories
Category Purpose

Action Properties related to runtime actions; the Enabled and Hint properties of TEdit are in this category.

Database Properties related to database operations; the DatabaseName and SQL properties of TQuery are
in this category.

Drag, Drop, and Docking Properties related to drag-and-drop and docking operations; the DragCursor and DragKind
properties of TImage are in this category.

Help and Hints Properties related to using online Help or hints; the HelpContext and Hint properties of TMemo are
in this category.

2342

Layout Properties related to the visual display of a control at design-time; the Top and Left properties of
TDBEdit are in this category.

Legacy Properties related to obsolete operations; the Ctl3D and ParentCtl3D properties of TComboBox are
in this category.

Linkage Properties related to associating or linking one component to another; the DataSet property of
TDataSource is in this category.

Locale Properties related to international locales; the BiDiMode and ParentBiDiMode properties of
TMainMenu are in this category.

Localizable Properties that may require modification in localized versions of an application. Many string
properties (such as Caption) are in this category, as are properties that determine the size and
position of controls.

Visual Properties related to the visual display of a control at runtime; the Align and Visible properties of
TScrollBox are in this category.

Input Properties related to the input of data (need not be related to database operations); the Enabled
and ReadOnly properties of TEdit are in this category.

Miscellaneous Properties that do not fit a category or do not need to be categorized (and properties not explicitly
registered to a specific category); the AllowAllUp and Name properties of TSpeedButton are in this
category.

Using the IsPropertyInCategory Function
An application can query the existing registered properties to determine whether a given property is already
registered in a specified category. This can be especially useful in situations like a localization utility that checks the
categorization of properties preparatory to performing its localization operations. Two overloaded variations of the
IsPropertyInCategory function are available, allowing for different criteria in determining whether a property is in a
category.

The first variation lets you base the comparison criteria on a combination of the class type of the owning component
and the property's name. In the command line below, for IsPropertyInCategory to return True, the property must
belong to a TCustomEdit descendant, have the name "Text," and be in the property category 'Localizable'.

[Delphi]
IsItThere := IsPropertyInCategory('Localizable', TCustomEdit, 'Text');

[C++]
IsItThere = IsPropertyInCategory("Localizable", __classid(TCustomEdit), "Text");

The second variation lets you base the comparison criteria on a combination of the class name of the owning
component and the property's name. In the command line below, for IsPropertyInCategory to return True, the
property must be a TCustomEdit descendant, have the name "Text", and be in the property category 'Localizable'.

[Delphi]
IsItThere := IsPropertyInCategory('Localizable', 'TCustomEdit', 'Text');

[C++]
IsItThere = IsPropertyInCategory("Localizable", "TCustomEdit", "Text");

2343

Adding Component Editors
Component editors determine what happens when the component is double-clicked in the designer and add
commands to the context menu that appears when the component is right-clicked. They can also copy your
component to the Windows clipboard in custom formats.

If you do not give your components a component editor, Delphi uses the default component editor. The default
component editor is implemented by the class TDefaultEditor. TDefaultEditor does not add any new items to a
component's context menu. When the component is double-clicked, TDefaultEditor searches the properties of the
component and generates (or navigates to) the first event handler it finds.

To add items to the context menu, change the behavior when the component is double-clicked, or add new clipboard
formats, derive a new class from TComponentEditor and register its use with your component. In your overridden
methods, you can use the Component property of TComponentEditor to access the component that is being edited.

Adding a custom component editor consists of the steps:

Adding items to the context menu
Changing the double-click behavior
Adding clipboard formats
Registering the component editor

Adding Items to the Context Menu
When the user right-clicks the component, the GetVerbCount and GetVerb methods of the component editor are
called to build context menu. You can override these methods to add commands (verbs) to the context menu.

Adding items to the context menu requires the steps:

Specifying menu items
Implementing commands

Specifying Menu Items
Override the GetVerbCount method to return the number of commands you are adding to the context menu. Override
the GetVerb method to return the strings that should be added for each of these commands. When overriding
GetVerb, add an ampersand (&) to a string to cause the following character to appear underlined in the context menu
and act as a shortcut key for selecting the menu item. Be sure to add an ellipsis (...) to the end of a command if it
brings up a dialog. GetVerb has a single parameter that indicates the index of the command.

The following code overrides the GetVerbCount and GetVerb methods to add two commands to the context menu.

[Delphi]
function TMyEditor.GetVerbCount: Integer;
begin
 Result := 2;
end;
function TMyEditor.GetVerb(Index: Integer): String;
begin
 case Index of
 0: Result := '&DoThis ...';
 1: Result := 'Do&That';
 end;
end;

2344

[C++]
int __fastcall TMyEditor::GetVerbCount(void)
{
return 2;
}
System::AnsiString __fastcall TMyEditor::GetVerb(int Index)
{
switch (Index)
{
case 0: return "&DoThis ..."; break;
case 1: return "Do&That"; break;
}
}

Note: Be sure that your GetVerb method returns a value for every possible index indicated by GetVerbCount.

Implementing Commands
When the command provided by GetVerb is selected in the designer, the ExecuteVerb method is called. For every
command you provide in the GetVerb method, implement an action in the ExecuteVerb method. You can access
the component that is being edited using the Component property of the editor.

For example, the following ExecuteVerb method implements the commands for the GetVerb method in the previous
example.

[Delphi]
procedure TMyEditor.ExecuteVerb(Index: Integer);
var
 MySpecialDialog: TMyDialog;
begin
 case Index of
 0: begin
 MyDialog := TMySpecialDialog.Create(Application); { instantiate the editor }
 if MySpecialDialog.Execute then; { if the user OKs the dialog... }
 MyComponent.FThisProperty := MySpecialDialog.ReturnValue; { ...use the value }
 MySpecialDialog.Free; { destroy the editor }
 end;
 1: That; { call the That method }
 end;
end;

[C++]
void __fastcall TMyEditor::ExecuteVerb(int Index)
{
switch (Index)
{
case 0:
TMyDialog *MySpecialDialog = new TMyDialog();
MySpecialDialog->Execute();
((TMyComponent *)Component)->ThisProperty = MySpecialDialog->ReturnValue;
delete MySpecialDialog;
break;
case 1:
That(); // call the "That" method
break;

2345

}
}

Changing the Double-click Behavior
When the component is double-clicked, the Edit method of the component editor is called. By default, the Edit method
executes the first command added to the context menu. Thus, in the previous example, double-clicking the
component executes the DoThis command.

While executing the first command is usually a good idea, you may want to change this default behavior. For example,
you can provide an alternate behavior if

you are not adding any commands to the context menu.
you want to display a dialog that combines several commands when the component is double-clicked.

Override the Edit method to specify a new behavior when the component is double-clicked. For example, the
following Edit method brings up a font dialog when the user double-clicks the component:

[Delphi]
procedure TMyEditor.Edit;
var
 FontDlg: TFontDialog;
begin
 FontDlg := TFontDialog.Create(Application);
 try
 if FontDlg.Execute then
 MyComponent.FFont.Assign(FontDlg.Font);
 finally
 FontDlg.Free
 end;
end;

[C++]
void __fastcall TMyEditor::Edit(void)
{
TFontDialog *pFontDlg = new TFontDialog(NULL);
pFontDlg->Execute();
((TMyComponent *)Component)->Font = pFontDlg->Font;
delete pFontDlg;
}

Note: If you want a double-click on the component to display the Code editor for an event handler, use
TDefaultEditor as a base class for your component editor instead of TComponentEditor. Then, instead of
overriding the Edit method, override the protected TDefaultEditor.EditProperty method instead.
EditProperty scans through the event handlers of the component, and brings up the first one it finds. You can
change this to look a particular event instead. For example:

[Delphi]

procedure TMyEditor.EditProperty(PropertyEditor: TPropertyEditor;
 Continue, FreeEditor: Boolean)
begin
 if (PropertyEditor.ClassName = 'TMethodProperty') and
 (PropertyEditor.GetName = 'OnSpecialEvent') then

2346

 // DefaultEditor.EditProperty(PropertyEditor, Continue, FreeEditor);
end;

[C++]
void __fastcall TMyEditor::EditProperty(TPropertyEditor* PropertyEditor,
bool &Continue, bool &FreeEditor)
{
if (PropertyEditor->ClassNameIs("TMethodProperty") &&
CompareText(PropertyEditor->GetName, "OnSpecialEvent") == 0)
{
TDefaultEditor::EditProperty(PropertyEditor, Continue, FreeEditor);
}
}

Adding Clipboard Formats
By default, when a user chooses Copy while a component is selected in the IDE, the component is copied in Delphi's
internal format. It can then be pasted into another form or data module. Your component can copy additional formats
to the Clipboard by overriding the Copy method.

For example, the following Copy method allows a TImage component to copy its picture to the Clipboard. This picture
is ignored by the Delphi IDE, but can be pasted into other applications.

[Delphi]
procedure TMyComponent.Copy;
var
 MyFormat : Word;
 AData,APalette : THandle;
begin
 TImage(Component).Picture.Bitmap.SaveToClipBoardFormat(MyFormat, AData, APalette);
 ClipBoard.SetAsHandle(MyFormat, AData);
end;

[C++]
void __fastcall TMyComponentEditor::Copy(void)
{
WORD AFormat;
int AData;
HPALETTE APalette;
((TImage *)Component)->Picture->SaveToClipboardFormat(AFormat, AData, APalette);
TClipboard *pClip = Clipboard(); // don't clear the clipboard!
pClip->SetAsHandle(AFormat, AData);
}

Registering the Component Editor
Once the component editor is defined, it can be registered to work with a particular component class. A registered
component editor is created for each component of that class when it is selected in the form designer.

To create the association between a component editor and a component class, call RegisterComponentEditor.
RegisterComponentEditor takes the name of the component class that uses the editor, and the name of the
component editor class that you have defined. For example, the following statement registers a component editor
class named TMyEditor to work with all components of type TMyComponent:

2347

[Delphi]
RegisterComponentEditor(TMyComponent, TMyEditor);

[C++]
RegisterComponentEditor(__classid(TMyComponent), __classid(TMyEditor));

Place the call to RegisterComponentEditor in the Register procedure where you register your component. For
example, if a new component named TMyComponent and its component editor TMyEditor are both implemented in
the same unit, the following code registers the component and its association with the component editor.

[Delphi]

procedure Register;
begin
 RegisterComponents('Miscellaneous', [TMyComponent);
 RegisterComponentEditor(classes[0], TMyEditor);
end;

[C++]
namespace Newcomp
{
 void __fastcall PACKAGE Register()
 {

 RegisterComponents("Miscellaneous", classes, 0);
 RegisterComponentEditor(classes[0], __classid(TMyEditor));
 }
}

Compiling Components into Packages
Once your components are registered, you must compile them as packages before they can be installed in the IDE.
A package can contain one or several components as well as custom property editors. For more information about
packages, see Working with packages and components .

To create and compile a package, see Creating and editing packages . Put the source-code units for your custom
components in the package's Contains list. If your components depend on other packages, include those packages
in the Requires list.

To install your components in the IDE, see Installing component packages.

Troubleshooting Custom Components (C++)
A common problem when registering and installing custom components is that the component does not appear in
the list of components after the package is successfully installed.

The most common causes for components not appearing in the list or on the palette:

Missing PACKAGE modifier on the Register function

Missing PACKAGE modifier on the class
Missing #pragma package(smart_init) in the C++ source file

Register function is not found in a namespace with the same name as the source code module name.

2348

Register is not being successfully exported. Use tdump on the .BPL to look for the exported function:

tdump -ebpl mypack.bpl mypack.dmp

In the exports section of the dump, you should see the Register function (within the namespace) being exported.

2349

Modifying an existing component

Modifying an Existing Component: Overview
The easiest way to create a component is to derive it from a component that does nearly everything you want, then
make whatever changes you need. What follows is a simple example that modifies the standard memo component
to create a memo that does not wrap words by default.

The value of the memo component's WordWrap property is initialized to True. If you frequently use non-wrapping
memos, you can create a new memo component that does not wrap words by default.

Note: To modify published properties or save specific event handlers for an existing component, it is often easier
to use a component template rather than create a new class.

Modifying an existing component takes only two steps:

Creating and registering the component.
Modifying the component class.

Creating and Registering the Component
You create every component the same way: you create a unit, derive a component class, register it, and install it on
the Tool palette. This process is outlined in Creating a new component.

For this example, follow the general procedure for creating a component, with these specifics:

Call the component's unit Memos.
Derive a new component type called TWrapMemo, descended from TMemo.
Register TWrapMemo on the Samples page of the Tool palette.
The resulting unit should look like this:

[Delphi]
unit Memos;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, StdCtrls;
type
 TWrapMemo = class(TMemo)
 end;

2350

procedure Register;
implementation
procedure Register;
begin
 RegisterComponents('Samples', [TWrapMemo]);
end;
end.

[C++]
#include <vcl.h>
#pragma hdrstop
#include "Yelmemo.h"
//---
#pragma package(smart_init);
//---
// ValidCtrCheck is used to assure that the components created do not have
// any pure virtual functions.
//
static inline void ValidCtrCheck(TYellowMemo *)
{
 new TYellowMemo(NULL);
}
//---
__fastcall TYellowMemo::TYellowMemo(TComponent* Owner)
: TMemo(Owner)
{
}
//---
namespace Yelmemo
{
 void __fastcall PACKAGE Register()
 {
 TComponentClass classes[1] = {__classid(TYellowMemo)};
 RegisterComponents("Samples", classes, 0); //"Common Controls" in CLX applications
 }
}

[C++]
#ifndef YelMemoH
#define YelmemoH
//---
#include <sysutils.hpp>
#include <controls.hpp>
#include <classes.hpp>
#include <forms.hpp>
#include <StdCtrls.hpp>
//---
class PACKAGE TYellowMemo : public TMemo
{
private:
protected:
public:
__published:
};
//---
#endif

If you compile and install the new component now, it behaves exactly like its ancestor, TMemo. In the next section,
you will make a simple change to your component.

2351

Modifying the Component Object
Once you have created a new component class, you can modify it in almost any way. In this case, you will change
only the initial value of one property in the memo component. This involves two small changes to the component
class:

Overriding the constructor.
Specifying the new default property value.

The constructor actually sets the value of the property. The default tells Delphi what values to store in the form
(.dfm for VCL applications) file. Delphi stores only values that differ from the default, so it is important to perform
both steps.

Overriding the Constructor
When a component is placed on a form at design time, or when an application constructs a component at runtime,
the component's constructor sets the property values. When a component is loaded from a form file, the application
sets any properties changed at design time.

Note: When you override a constructor, the new constructor must call the inherited constructor before doing
anything else. For more information, see Overriding methods.

For this example, your new component needs to override the constructor inherited from TMemo to set the
WordWrap property to False. To achieve this, add the constructor override to the forward declaration, then write the
new constructor in the implementation part of the unit:

[Delphi]
type
 TWrapMemo = class(TMemo)
 public { constructors are always public }
 constructor Create(AOwner: TComponent); override; { this syntax is always the same }
 end;
.
.
.
constructor TWrapMemo.Create(AOwner: TComponent); { this goes after implementation }
begin
 inherited Create(AOwner); { ALWAYS do this first! }
 WordWrap := False; { set the new desired value }
end;

[C++]
class PACKAGE TYellowMemo : public TMemo
{
public:
 virtual __fastcall TYellowMemo(TComponent* Owner); // the constructor declaration
__published:
 __property Color;
};
__fastcall TYellowMemo::TYellowMemo(TComponent* Owner)
 : TMemo(Owner) // the constructor implementation
first... // ...calls the constructor for TMemo
{
 Color = clYellow; // colors the component yellow
}

2352

Now you can install the new component on the Tool palette and add it to a form. Note that the WordWrap property
is now initialized to False.

If you change an initial property value, you should also designate that value as the default. If you fail to match the
value set by the constructor to the specified default value, Delphi cannot store and restore the proper value.

Specifying the New Default Property Value
When Delphi stores a description of a form in a form file, it stores the values only of properties that differ from their
defaults. Storing only the differing values keeps the form files small and makes loading the form faster. If you create
a property or change the default value, it is a good idea to update the property declaration to include the new default.
Form files, loading, and default values are explained in more detail in Making components available at design time.

To change the default value of a property, redeclare the property name, followed by the directive default and the
new default value. You don't need to redeclare the entire property, just the name and the default value.

For the word-wrapping memo component, you redeclare the WordWrap property in the published part of the object
declaration, with a default value of False:

[Delphi]
type
 TWrapMemo = class(TMemo)
 .
 .
 .
 published
 property WordWrap default False;
 end;

[C++]

//header file
class PACKAGE TYellowMemo : public TMemo
{
public:
 virtual __fastcall TYellowMemo(TComponent* Owner);
__published:
 __property Color = {default=clYellow};
};

[C++]

//implmentation file
__fastcall TYellowMemo::TYellowMemo(TComponent* AOwner) : TMemo(AOwner)
{
 Color = clYellow;
 WordWrap = false;
}

[C++]

//header file with WordWrap as default value of false:
class PACKAGE TYellowMemo : public TMemo
{
public:
 virtual __fastcall TYellowMemo(TComponent* Owner);

2353

__published:
 __property Color = {default=clYellow};
 __property WordWrap = {default=false};
};

Specifying the default property value does not affect the workings of the component. You must still initialize the value
in the component's constructor. Redeclaring the default ensures that Delphi knows when to write WordWrap to the
form file.

2354

Creating a graphic component

Creating a Graphic Component
A graphic control is a simple kind of component. Because a purely graphic control never receives focus, it does not
have or need its own window handle. Users can still manipulate the control with the mouse, but there is no keyboard
interface.

The graphic control presented in the following topics is TShape, the shape component on the Additional page of the
Tool palette. Although the component created is identical to the standard shape component, you need to call it
something different to avoid duplicate identifiers. The following topics use the name TSampleShape and show you
all the steps involved in creating the shape component:

Creating and registering the component.
Publishing inherited properties.
Adding graphic capabilities.

Creating and Registering the Component
You create every component in the same way: create a unit, derive a component class, register it, compile it, and
install it on the Tool palette. This process is outlined in Creating a new component.

For this example, follow the general procedure for creating a component, with these
specifics:
1 Call the component's unit Shapes.
2 Derive a new component type called TSampleShape, descended from TGraphicControl.
3 Register TSampleShape on the Samples category of the Tool palette.

The resulting unit should look like this:

[Delphi]
unit Shapes;
interface
uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms;
type
 TSampleShape = class(TGraphicControl)
 end;

2355

procedure Register;
implementation
procedure Register;
begin
 RegisterComponent('Samples', [TSampleShape]);
end;
end.

[C++]
//---
#include <vcl.h>
#pragma hdrstop
#include "Shapes.h"
//---
#pragma package(smart_init);
//---
// ValidCtrCheck is used to assure that the components created do not have
// any pure virtual functions.
//
static inline void ValidCtrCheck(TSampleShape *)
{
 new TSampleShape(NULL);
}
//---
__fastcall TSampleShape::TGraphicControl(TComponent* Owner)
: TGraphicControl(Owner)
{
}
//---
namespace Shapes
{
 void __fastcall PACKAGE Register()
 {
 TComponentClass classes[1] = {__classid(TSampleShape)};
 RegisterComponents("Samples", classes, 0);
 }
}

[C++]
//---
#ifndef ShapesH
#define ShapesH
//---
#include <sysutils.hpp>
#include <controls.hpp>
#include <classes.hpp>
#include <forms.hpp>
//---
class PACKAGE TSampleShape : public TGraphicControl
{
private:
protected:
public:
__published:
};
//---
#endif

2356

Publishing Inherited Properties
Once you derive a component type, you can decide which of the properties and events declared in the protected
parts of the ancestor class you want to surface in the new component. TGraphicControl already publishes all the
properties that enable the component to function as a control, so all you need to publish is the ability to respond to
mouse events and handle drag-and-drop.

Publishing inherited properties and events is explained in Publishing inherited properties and Making events visible.
Both processes involve redeclaring just the name of the properties in the published part of the class declaration.

For the shape control, you can publish the three mouse events, the three drag-and-drop events, and the two drag-
and-drop properties:

[Delphi]
type
 TSampleShape = class(TGraphicControl)
 published
 property DragCursor; { drag-and-drop properties }
 property DragMode;
 property OnDragDrop; { drag-and-drop events }
 property OnDragOver;
 property OnEndDrag;
 property OnMouseDown; { mouse events }
 property OnMouseMove;
 property OnMouseUp;
 end;

[C++]
class PACKAGE TSampleShape : public TGraphicControl
{
private:
__published:
 __property DragCursor ;
 __property DragMode ;
 __property OnDragDrop ;
 __property OnDragOver ;
 __property OnEndDrag ;
 __property OnMouseDown ;
 __property OnMouseMove ;
 __property OnMouseUp ;
};

The sample shape control now makes mouse and drag-and-drop interactions available to its users.

Adding Graphic Capabilities
Once you have declared your graphic component and published any inherited properties you want to make available,
you can add the graphic capabilities that distinguish your component. You have two tasks to perform when creating
a graphic control:

1 Determining what to draw.
2 Drawing the component image.

In addition, for the shape control example, you will add some properties that enable application developers to
customize the appearance of the shape at design time.

2357

Determining What to Draw
A graphic control can change its appearance to reflect a dynamic condition, including user input. A graphic control
that always looks the same should probably not be a component at all. If you want a static image, you can import
the image instead of using a control.

In general, the appearance of a graphic control depends on some combination of its properties. The gauge control,
for example, has properties that determine its shape and orientation and whether it shows its progress numerically
as well as graphically. Similarly, the shape control has a property that determines what kind of shape it should draw.

To give your control a property that determines the shape it draws, add a property called Shape. This requires

1 Declaring the property type.
2 Declaring the property.
3 Writing the implementation method.

Creating properties is explained in more detail in Creating properties.

Declaring the Property Type
When you declare a property of a user-defined type, you must declare the type first, before the class that includes
the property. The most common sort of user-defined type for properties is enumerated.

For the shape control, you need an enumerated type with an element for each kind of shape the control can draw.

Add the following type definition above the shape control class's declaration.

[Delphi]
type
 TSampleShapeType = (sstRectangle, sstSquare, sstRoundRect, sstRoundSquare,
 sstEllipse, sstCircle);
 TSampleShape = class(TGraphicControl) { this is already there }

[C++]
enum TSampleShapeType { sstRectangle, sstSquare, sstRoundRect, sstRoundSquare, sstEllipse,
sstCircle };
class PACKAGE TSampleShape : public TGraphicControl // this is already there

You can now use this type to declare a new property in the class.

Declaring the Property
When you declare a property, you usually need to declare a private field to store the data for the property, then
specify methods for reading and writing the property value. Often, you don't need to use a method to read the value,
but can just point to the stored data instead.

For the shape control, you will declare a field that holds the current shape, then declare a property that reads that
field and writes to it through a method call.

Add the following declarations to TSampleShape:

[Delphi]
type
 TSampleShape = class(TGraphicControl)
 private
 FShape: TSampleShapeType; { field to hold property value }
 procedure SetShape(Value: TSampleShapeType);

2358

 published
 property Shape: TSampleShapeType read FShape write SetShape;
 end;

[C++]
class PACKAGE TSampleShape : public TGraphicControl
{
private:
 TSampleShapeType FShape;
 void __fastcall SetShape(TSampleShapeType Value);
__published:
 __property TSampleShapeType Shape = {read=FShape, write=SetShape, nodefault};
};

Now all that remains is to add the implementation of SetShape.

Writing the Implementation Method
When the read or write part of a property definition uses a method instead of directly accessing the stored property
data, you need to implement the method.

Add the implementation of the SetShape method to the implementation part of the unit:

[Delphi]
procedure TSampleShape.SetShape(Value: TSampleShapeType);
begin
 if FShape <> Value then { ignore if this isn"t a change }
 begin
 FShape := Value; { store the new value }
 Invalidate; { force a repaint with the new shape }
 end;
end;

[C++]
void __fastcall TSampleShape::SetShape(TSampleShapeType Value)
{
 if (FShape != Value) // ignore if this isn't a change
 {
 FShape = Value; // store the new value
 Invalidate(); // force a repaint with the new shape
 }
}

Overriding the Constructor and Destructor
To change default property values and initialize owned classes for your component, you must override the inherited
constructor and destructor. In both cases, remember always to call the inherited method in your new constructor or
destructor.

Changing default property values
The default size of a graphic control is fairly small, so you can change the width and height in the constructor.
Changing default property values is explained in more detail in Modifying an existing component.

2359

In this example, the shape control sets its size to a square 65 pixels on each side.
1 Add the overridden constructor to the declaration of the component class:

[Delphi]
type
 TSampleShape = class(TGraphicControl)
 public { constructors are always public }
 constructor Create(AOwner: TComponent); override { remember override directive }
 end;

[C++]
class PACKAGE TSampleShape : public TGraphicControl
{
public:
 virtual __fastcall TSampleShape(TComponent *Owner);
};

2 Redeclare the Height and Width properties with their new default values:

[Delphi]
type
 TSampleShape = class(TGraphicControl)
 .
 .
 .
 published
 property Height default 65;
 property Width default 65;
 end;

[C++]
class PACKAGE TSampleShape : public TGraphicControl
{
 .
 .
 .
__published:
 __property Height;
 __property Width;
}

3 Write the new constructor in the implementation part of the unit:

[Delphi]
constructor TSampleShape.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { always call the inherited constructor }
 Width := 65;
 Height := 65;
end;

[C++]
__fastcall TSampleShape::TSampleShape(TComponent* Owner) : TGraphicControl(Owner)
{

2360

 Width = 65;
 Height = 65;
}

Publishing the Pen and Brush
By default, a canvas has a thin black pen and a solid white brush. To let developers change the pen and brush, you
must provide classes for them to manipulate at design time, then copy the classes into the canvas during painting.
Classes such as an auxiliary pen or brush are called owned classes because the component owns them and is
responsible for creating and destroying them.

Managing owned classes requires:

1 Declaring the class fields.
2 Declaring the access properties.
3 Initializing owned classes.
4 Setting owned classes' properties.

Declaring the Class Fields
Each class a component owns must have a class field declared for it in the component. The class field ensures that
the component always has a pointer to the owned object so that it can destroy the class before destroying itself. In
general, a component initializes owned objects in its constructor and destroys them in its destructor.

Fields for owned objects are nearly always declared as private. If applications (or other components) need access
to the owned objects, you can declare published or public properties for this purpose.

Add fields for a pen and brush to the shape control:

[Delphi]
type
 TSampleShape = class(TGraphicControl)
 private { fields are nearly always private }
 FPen: TPen; { a field for the pen object }
 FBrush: TBrush; { a field for the brush object }
 .
 .
 .
 end;

[C++]
class PACKAGE TSampleShape : public TGraphicControl
{
private: // data members are always private
 TPen *FPen; // a data member for the pen object
 TBrush *FBrush; // a data member for the brush object
 .
 .
 .
};

2361

Declaring the Access Properties
You can provide access to the owned objects of a component by declaring properties of the type of the objects. That
gives developers a way to access the objects at design time or runtime. Usually, the read part of the property just
references the class field, but the write part calls a method that enables the component to react to changes in the
owned object.

To the shape control, add properties that provide access to the pen and brush fields. You will also declare methods
for reacting to changes to the pen or brush.

[Delphi]
type
 TSampleShape = class(TGraphicControl)
 .
 .
 .
 private { these methods should be private }
 procedure SetBrush(Value: TBrush);
 procedure SetPen(Value: TPen);
 published { make these available at design time }
 property Brush: TBrush read FBrush write SetBrush;
 property Pen: TPen read FPen write SetPen;
 end;

[C++]
class PACKAGE TSampleShape : public TGraphicControl
{
 .
 .
 .
private:
 TPen *FPen;
 TBrush *FBrush;
 void __fastcall SetBrush(TBrush *Value);
 void __fastcall SetPen(TPen *Value);
 .
 .
 .
__published:
 __property TBrush* Brush = {read=FBrush, write=SetBrush, nodefault};
 __property TPen* Pen = {read=FPen, write=SetPen, nodefault};
};

Then, write the SetBrush and SetPen methods in the implementation part of the unit:

[Delphi]
procedure TSampleShape.SetBrush(Value: TBrush);
begin
 FBrush.Assign(Value); { replace existing brush with parameter }
end;
procedure TSampleShape.SetPen(Value: TPen);
begin
 FPen.Assign(Value); { replace existing pen with parameter }
end;

[C++]
void __fastcall TSampleShape::SetBrush(TBrush* Value)
{

2362

 FBrush->Assign(Value);
}
void __fastcall TSampleShape::SetPen(TPen* Value)
{
 FPen->Assign(Value);
}

To directly assign the contents of Value to FBrush-

[Delphi]
 FBrush := Value;

[C++]
 FBrush = Value;

- would overwrite the internal pointer for FBrush, lose memory, and create a number of ownership problems.

Initializing Owned Classes
If you add classes to your component, the component's constructor must initialize them so that the user can interact
with the objects at runtime. Similarly, the component's destructor must also destroy the owned objects before
destroying the component itself.

Because you have added a pen and a brush to the shape control, you need to initialize
them in the shape control's constructor and destroy them in the control's destructor:
1 Construct the pen and brush in the shape control constructor:

[Delphi]
constructor TSampleShape.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { always call the inherited constructor }
 Width := 65;
 Height := 65;
 FPen := TPen.Create; { construct the pen }
 FBrush := TBrush.Create; { construct the brush }
end;

[C++]
__fastcall TSampleShape::TSampleShape(TComponent* Owner) : TGraphicControl(Owner)
{
 Width = 65;
 Height = 65;
 FBrush = new TBrush(); // construct the pen
 FPen = new TPen(); // construct the brush
}

2 Add the overridden destructor to the declaration of the component class:

[Delphi]
type
 TSampleShape = class(TGraphicControl)
 public { destructors are always public}

2363

 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override; { remember override directive }
 end;

[C++]
class PACKAGE TSampleShape : public TGraphicControl
{
 .
 .
 .
public: // destructors are always public
 virtual __fastcall TSampleShape(TComponent* Owner);
 __fastcall ~TSampleShape(); // the destructor
 .
 .
 .
};

3 Write the new destructor in the implementation part of the unit:

[Delphi]
destructor TSampleShape.Destroy;
begin
 FPen.Free; { destroy the pen object }
 FBrush.Free; { destroy the brush object }
 inherited Destroy; { always call the inherited destructor, too }
end;

[C++]
__fastcall TSampleShape::~TSampleShape()
{
 delete FPen; // delete the pen object
 delete FBrush; // delete the brush object
}

Setting Owned Classes' Properties
As the final step in handling the pen and brush classes, you need to make sure that changes in the pen and brush
cause the shape control to repaint itself. Both pen and brush classes have OnChange events, so you can create a
method in the shape control and point both OnChange events to it.

Add the following method to the shape control, and update the component's constructor to set the pen and brush
events to the new method:

[Delphi]
type
 TSampleShape = class(TGraphicControl)
 published
 procedure StyleChanged(Sender: TObject);
 end;
.
.
.
implementation

2364

.

.

.
constructor TSampleShape.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { always call the inherited constructor }
 Width := 65;
 Height := 65;
 FPen := TPen.Create; { construct the pen }
 FPen.OnChange := StyleChanged; { assign method to OnChange event }
 FBrush := TBrush.Create; { construct the brush }
 FBrush.OnChange := StyleChanged; { assign method to OnChange event }
end;
procedure TSampleShape.StyleChanged(Sender: TObject);
begin
 Invalidate; { erase and repaint the component }
end;

[C++]

//header file
class PACKAGE TSampleShape : public TGraphicControl
{
 .
 .
 .
public:
 void __fastcall StyleChanged(TObject* Owner);
 .
 .
 .
};

[C++]

//implmentation file
__fastcall TSampleShape::TSampleShape(TComponent* Owner) : TGraphicControl(Owner)
{
 Width = 65;
 Height = 65;
 FBrush = new TBrush();
 FBrush->OnChange = StyleChanged;
 FPen = new TPen();
 FPen->OnChange = StyleChanged;
}

[C++]

//also include StyleChanged method in the implementation file
void __fastcall TSampleShape::StyleChanged(TObject* Sender)
{
 Invalidate(); // repaints the component
}

With these changes, the component redraws to reflect changes to either the pen or the brush.

2365

Drawing the Component Image
The essential element of a graphic control is the way it paints its image on the screen. The abstract type
TGraphicControl defines a method called Paint that you override to paint the image you want on your control.

The Paint method for the shape control needs to do several things:

Use the pen and brush selected by the user.
Use the selected shape.
Adjust coordinates so that squares and circles use the same width and height.

Overriding the Paint method requires two steps:
1 Add Paint to the component's declaration.
2 Write the Paint method in the implementation part of the unit.

For the shape control, add the following declaration to the class declaration:

[Delphi]
type
 TSampleShape = class(TGraphicControl)
 .
 .
 .
 protected
 procedure Paint; override;
 .
 .
 .
 end;

[C++]
class PACKAGE TSampleShape : public TGraphicControl
{
 .
 .
 .
protected:
 virtual void __fastcall Paint();
 .
 .
 .
};

Then write the method in the implementation part of the unit:

[Delphi]
procedure TSampleShape.Paint;
begin
 with Canvas do
 begin
 Pen := FPen; { copy the component's pen }
 Brush := FBrush; { copy the component's brush }
 case FShape of
 sstRectangle, sstSquare:

2366

 Rectangle(0, 0, Width, Height); { draw rectangles and squares }
 sstRoundRect, sstRoundSquare:
 RoundRect(0, 0, Width, Height, Width div 4, Height div 4); { draw rounded shapes }
 sstCircle, sstEllipse:
 Ellipse(0, 0, Width, Height); { draw round shapes }
 end;
 end;
end;

[C++]
void __fastcall TSampleShape::Paint()
{
 int X,Y,W,H,S;
 Canvas->Pen = FPen; // copy the component's pen
 Canvas->Brush = FBrush; // copy the component's brush
 W=Width; // use the component width
 H=Height; // use the component height
 X=Y=0; // save smallest for circles/squares
 if(W<H)
 S=W;
 else
 S=H;
 switch(FShape)
 {
 case sstRectangle: // draw rectangles and squares
 case sstSquare:
 Canvas->Rectangle(X,Y,X+W,Y+H);
 break;
 case sstRoundRect: // draw rounded rectangles and squares
 case sstRoundSquare:
 Canvas->RoundRect(X,Y,X+W,Y+H,S/4,S/4);
 break;
 case sstCircle: // draw circles and ellipses
 case sstEllipse:
 Canvas->Ellipse(X,Y,X+W,Y+H);
 break;
 default:
 break;
 }
}

Paint is called whenever the control needs to update its image. Controls are painted when they first appear or when
a window in front of them goes away. In addition, you can force repainting by calling Invalidate, as the
StyleChanged method does.

Refining the Shape Drawing
The standard shape control does one more thing that your sample shape control does not yet do: it handles squares
and circles as well as rectangles and ellipses. To do that, you need to write code that finds the shortest side and
centers the image.

Here is a refined Paint method that adjusts for squares and ellipses:

[Delphi]
procedure TSampleShape.Paint;
var
 X, Y, W, H, S: Integer;
begin with Canvas do

2367

 begin
 Pen := FPen; { copy the component's pen }
 Brush := FBrush; { copy the component's brush }
 W := Width; { use the component width }
 H := Height; { use the component height }
 if W < H then S := W else S := H; { save smallest for circles/squares }
 case FShape of { adjust height, width and position }
 sstRectangle, sstRoundRect, sstEllipse:
 begin
 X := 0; { origin is top-left for these shapes }
 Y := 0;
 end;
 sstSquare, sstRoundSquare, sstCircle:
 begin
 X := (W - S) div 2; { center these horizontally... }
 Y := (H - S) div 2; { ...and vertically }
 W := S; { use shortest dimension for width... }
 H := S; { ...and for height }
 end;
 end;
 case FShape of
 sstRectangle, sstSquare:
 Rectangle(X, Y, X + W, Y + H); { draw rectangles and squares }
 sstRoundRect, sstRoundSquare:
 RoundRect(X, Y, X + W, Y + H, S div 4, S div 4); { draw rounded shapes }
 sstCircle, sstEllipse:
 Ellipse(X, Y, X + W, Y + H); { draw round shapes }
 end;
 end;
end;

[C++]
void __fastcall TSampleShape::Paint(void)
{
 int X,Y,W,H,S;
 Canvas->Pen = FPen; // copy the component's pen
 Canvas->Brush = FBrush; // copy the component's brush
 W=Width; // use the component width
 H=Height; // use the component height
 X=Y=0; // save smallest for circles/squares
 if(W<H)
 S=W;
 else
 S=H;
 switch(FShape) // adjust height, width and position
 {
 case sstRectangle:
 case sstRoundRect:
 case sstEllipse:
 Y=X=0; // origin is top-left for these shapes
 break;
 case sstSquare:
 case sstRoundSquare:
 case sstCircle:
 X= (W-S)/2; // center these horizontally
 Y= (H-S)/2; // and vertically
 break;
 default:
 break;
 }

2368

 switch(FShape)
 {
 case sstSquare: // draw rectangles and squares
 W=H=S; // use shortest dimension for width and height
 case sstRectangle:
 Canvas->Rectangle(X,Y,X+W,Y+H);
 break;
 case sstRoundSquare: // draw rounded rectangles and squares
 W=H=S;
 case sstRoundRect:
 Canvas->RoundRect(X,Y,X+W,Y+H,S/4,S/4);
 break;
 case sstCircle: // draw circles and ellipses
 W=H=S;
 case sstEllipse:
 Canvas->Ellipse(X,Y,X+W,Y+H);
 break;
 default:
 break;
 }
}

2369

Customizing a grid

Customizing a Grid: Overview
The component library provides abstract components you can use as the basis for customized components. The
most important of these are grids and list boxes. The following topics describe how to create a small one month
calendar from the basic grid component, TCustomGrid:

Creating and registering the component
Publishing inherited properties
Changing initial values
Resizing the cells
Filling in the cells
Navigating months and years
Navigating days

In VCL applications, the resulting component is similar to the TCalendar component on the Samples category of the
Tool palette. See Specifying the palette page.

Creating and registering the component
You create every component the same way: create a unit, derive a component class, register it, compile it, and install
it on the Tool palette. Creating a new component.

For this example, follow the general procedure for creating a component, with these
specifics:
1 Save the component's unit as CalSamp.
2 Derive a new component type called TSampleCalendar, descended from TCustomGrid.
3 Register TSampleCalendar on the Samples category of the Tool palette.

The resulting unit descending from TCustomGrid in a VCL application should look like this:

[Delphi]
unit CalSamp;
interface
uses

2370

 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, Grids;
type
 TSampleCalendar = class(TCustomGrid)
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponents('Samples', [TSampleCalendar]);
end;
end.

[C++]
#include <vcl\vcl.h>
#pragma hdrstop
#include "CalSamp.h"
//---
#pragma package(smart_init);
//---
static inline TSampleCalendar *ValidCtrCheck()
{
 return new TSampleCalendar(NULL);
}
//---
namespace Calsamp
{
 void __fastcall PACKAGE Register()
 {
 TComponentClass classes[1] = {__classid(TSampleCalendar)};
 RegisterComponents("Samples", classes, 0); //Use a different page in CLX applications
 }
}

[C++]
#ifndef CalSampH
#define CalSampH
//---
#include <vcl\sysutils.hpp>
#include <vcl\controls.hpp>
#include <vcl\classes.hpp>
#include <vcl\forms.hpp>
#include <vcl\grids.hpp>
//---
class PACKAGE TSampleCalendar : public TCustomGrid
{
private:
protected:
public:
__published:
};
//---
#endif

If you install the calendar component now, you will find that it appears on the Samples category. The only properties
available are the most basic control properties. The next step is to make some of the more specialized properties
available to users of the calendar.

2371

Note: While you can install the sample calendar component you have just compiled, do not try to place it on a form
yet. The TCustomGrid component has an abstract DrawCell method that must be redeclared before instance
objects can be created. Overriding the DrawCell method is described in Filling in the cells

Publishing Inherited Properties
The abstract grid component, TCustomGrid, provides a large number of protected properties. You can choose which
of those properties you want to make available to users of the calendar control.

To make inherited protected properties available to users of your components, redeclare the properties in the
published part of your component's declaration.

For the calendar control, publish the following properties and events, as shown here:

[Delphi]
type
 TSampleCalendar = class(TCustomGrid)
 published
 property Align; { publish properties }
 property BorderStyle;
 property Color;
 property Font;
 property GridLineWidth;
 property ParentColor;
 property ParentFont;
 property OnClick; { publish events }
 property OnDblClick;
 property OnDragDrop;
 property OnDragOver;
 property OnEndDrag;
 property OnKeyDown;
 property OnKeyPress;
 property OnKeyUp;
 end;

[C++]
class PACKAGE TSampleCalendar : public TCustomGrid
{
.
.
.
__published:
 __property Align ; // publish properties
 __property BorderStyle ;
 __property Color ;
 __property Font ;
 __property GridLineWidth ;
 __property ParentColor ;
 __property ParentFont ;
 __property OnClick ; // publish events
 __property OnDblClick ;
 __property OnDragDrop ;
 __property OnDragOver ;
 __property OnEndDrag ;
 __property OnKeyDown ;
 __property OnKeyPress ;

2372

 __property OnKeyUp ;
};

There are a number of other properties you could also publish, but which do not apply to a calendar, such as the
Options property that would enable the user to choose which grid lines to draw.

If you install the modified calendar component to the Tool palette and use it in an application, you will find many
more properties and events available in the calendar, all fully functional. You can now start adding new capabilities
of your own design.

Changing Initial Values
A calendar is essentially a grid with a fixed number of rows and columns, although not all the rows always contain
dates. For this reason, you have not published the grid properties ColCount and RowCount, because it is highly
unlikely that users of the calendar will want to display anything other than seven days per week. You still must set
the initial values of those properties so that the week always has seven days, however.

To change the initial values of the component's properties, override the constructor to set the desired values. The
constructor must be virtual.

Remember that you need to add the constructor to the public part of the component's object declaration, then write
the new constructor in the implementation part of the component's unit. The first statement in the new constructor
should always be a call to the inherited constructor. Then add the StdCtrls unit to the uses clause.

[Delphi]
type
 TSampleCalendar = class(TCustomGrid)
 public
 constructor Create(AOwner: TComponent); override;
 .
 .
 .
 end;
.
.
.
constructor TSampleCalendar.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { call inherited constructor }
 ColCount := 7; { always seven days/week }
 RowCount := 7; { always six weeks plus the headings }
 FixedCols := 0; { no row labels }
 FixedRows := 1; { one row for day names }
 ScrollBars := ssNone; { no need to scroll }
 Options := Options - [goRangeSelect] + [goDrawFocusSelected]; {disable range selection}
end;

[C++]
//header file
class PACKAGE TSampleCalendar : public TCustomGrid
{
protected:
 virtual void __fastcall DrawCell(int ACol, int ARow, const Windows::TRect &Rect,
 TGridDrawState AState);
 .
 .
 .
public:

2373

 __fastcall TSampleCalendar(TComponent *Owner); // the added constructor
 .
 .
 .
};

[C++]

//implementation file
__fastcall TSampleCalendar::TSampleCalendar(TComponent *Owner) : TCustomGrid(Owner)
{
 ColCount = 7;
 RowCount = 7;
 FixedCols = 0;
 FixedRows = 1;
 ScrollBars = ssNone;
 Options = (Options >> goRangeSelect) << goDrawFocusSelected;
}
void __fastcall TSampleCalendar::DrawCell(int ACol, int ARow, const Windows::TRect
 &ARect, TGridDrawState AState)
{
}

The calendar now has seven columns and seven rows, with the top row fixed, or nonscrolling.

Resizing the Cells

Note: When a user or application changes the size of a window or control, Windows sends a message called
WM_SIZE to the affected window or control so it can adjust any settings needed to later paint its image in
the new size. Your VCL component can respond to that message by altering the size of the cells so they all
fit inside the boundaries of the control. To respond to the WM_SIZE message, you will add a message-
handling method to the component.

Creating a message-handling method is described in detail in the section Creating new message handlers.

In this case, the calendar control needs a response to WM_SIZE, so add a protected method called WMSize to the
control indexed to the WM_SIZE message, then write the method so that it calculates the proper cell size to allow
all cells to be visible in the new size:

[Delphi]
type
 TSampleCalendar = class(TCustomGrid)
 protected
 procedure WMSize(var Message: TWMSize); message WM_SIZE;
 .
 .
 .
 end;
.
.
.
procedure TSampleCalendar.WMSize(var Message: TWMSize);
var
 GridLines: Integer; { temporary local variable }
begin
 GridLines := 6 * GridLineWidth; { calculate combined size of all lines }
 DefaultColWidth := (Message.Width - GridLines) div 7; { set new default cell width }

2374

 DefaultRowHeight := (Message.Height - GridLines) div 7; { and cell height }
end;

[C++]

//header file
class PACKAGE TSampleCalendar : public TCustomGrid
{
.
.
.
protected:
 void __fastcall WMSize(TWMSize &Message);
BEGIN_MESSAGE_MAP
 MESSAGE_HANDLER(WM_SIZE, TWMSize, WMSize)
END_MESSAGE_MAP(TCustomGrid)
};

[C++]

//implementation file
void __fastcall TSampleCalendar::WMSize(TWMSize &Message)
{
 int GridLines; // temporary local variable
 GridLines = 6 * GridLineWidth; // calculated combined size of all lines
 DefaultColWidth = (Message.Width - GridLines) / 7; // set new default cell width
 DefaultRowHeight = (Message.Height - GridLines) / 7; // and cell height
}

Now when the calendar is resized, it displays all the cells in the largest size that will fit in the control.

In this case, the calendar control needs to override BoundsChanged so that it calculates the proper cell size to allow
all cells to be visible in the new size:

[Delphi]
type
 TSampleCalendar = class(TCustomGrid)
 protected
 procedure BoundsChanged; override;
 .
 .
 .
 end;
.
.
.
procedure TSampleCalendar.BoundsChanged;
var
 GridLines: Integer; { temporary local variable }
begin
 GridLines := 6 * GridLineWidth; { calculate combined size of all lines }
 DefaultColWidth := (Width - GridLines) div 7; { set new default cell width }
 DefaultRowHeight := (Height - GridLines) div 7; { and cell height }
 inherited; {now call the inherited method }
end;

2375

[C++]

//header file
class PACKAGE TSampleCalendar : public TCustomGrid
{
.
.
.
protected:
 void __fastcall BoundsChanged(void);
};

[C++]

//implementation file
void __fastcall TSampleCalendar::BoundsChanged(void)
{
 int GridLines; // temporary local variable
 GridLines = 6 * GridLineWidth; // calculated combined size of all lines
 DefaultColWidth = (Width - GridLines) / 7; // set new default cell width
 DefaultRowHeight = (Height - GridLines) / 7; // and cell height
 TCustomGrid::BoundsChanged(); // now call the inherited method
}

Filling in the Cells
A grid control fills in its contents cell-by-cell. In the case of the calendar, that means calculating which date, if any,
belongs in each cell. The default drawing for grid cells takes place in a virtual method called DrawCell.

To fill in the contents of grid cells, override the DrawCell method.

The easiest part to fill in is the heading cells in the fixed row. The runtime library contains an array with short day
names, so for the calendar, use the appropriate one for each column:

[Delphi]

type
 TSampleCalendar = class(TCustomGrid)
 protected
 procedure DrawCell(ACol, ARow: Longint; ARect: TRect; AState: TGridDrawState);
 override;
 end;
.
.
.
procedure TSampleCalendar.DrawCell(ACol, ARow: Longint; ARect: TRect;
 AState: TGridDrawState);
begin
 if ARow = 0 then
 Canvas.TextOut(ARect.Left, ARect.Top, ShortDayNames[ACol + 1]); { use RTL strings }
end;

[C++]

void __fastcall TSampleCalendar::DrawCell(int ACol, int ARow, const Windows::TRect &ARect,

2376

 TGridDrawState AState)
{
 String TheText;
 int TempDay;
 if (ARow == 0) TheText = ShortDayNames[ACol + 1];
 else
 {
 TheText = "";
 TempDay = DayNum(ACol, ARow); // DayNum is defined later
 if (TempDay != -1) TheText = IntToStr(TempDay);
 }
 Canvas->TextRect(ARect, ARect.Left + (ARect.Right - ARect.Left
 - Canvas->TextWidth(TheText)) / 2,
 ARect.Top + (ARect.Bottom - ARect.Top - Canvas->TextHeight(TheText)) / 2, TheText);
}

Tracking the Date
For the calendar control to be useful, users and applications must have a mechanism for setting the day, month,
and year. Delphi stores dates and times in variables of type TDateTime. TDateTime is an encoded numeric
representation of the date and time, which is useful for programmatic manipulation, but not convenient for human use.

You can therefore store the date in encoded form, providing runtime access to that value, but also provide Day,
Month, and Year properties that users of the calendar component can set at design time.

Tracking the date in the calendar consists of the processes:

Storing the internal date
Accessing the day, month, and year
Generating the day numbers
Selecting the current day

Storing the Internal Date
To store the date for the calendar, you need a private field to hold the date and a runtime-only property that provides
access to that date.

Adding the internal date to the calendar requires three steps:
1 Declare a private field to hold the date:

[Delphi]
type
 TSampleCalendar = class(TCustomGrid)
 private
 FDate: TDateTime;
 .
 .
 .

[C++]

2377

class PACKAGE TSampleCalendar : public TCustomGrid
{
public:
 __property TDateTime CalendarDate = {read=FDate, write=SetCalendarDate, nodefault};
 .
 .
 .
};

[C++]

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:
 TDateTime FDate;
 .
 .
 .
};

2 Initialize the date field in the constructor:

[Delphi]
constructor TSampleCalendar.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { this is already here }
 . { other initializations here }
 .
 .
 FDate := Date; { get current date from RTL }
end;

[C++]

__fastcall TSampleCalendar::TSampleCalendar(TComponent *Owner) : TCustomGrid(Owner)
{
 .
 .
 .
 FDate = FDate.CurrentDate();
}

3 Declare a runtime property to allow access to the encoded date.
You'll need a method for setting the date, because setting the date requires updating the onscreen image of the
control:

[Delphi]
type
 TSampleCalendar = class(TCustomGrid)
 private
 procedure SetCalendarDate(Value: TDateTime);
 public
 property CalendarDate: TDateTime read FDate write SetCalendarDate;
 .
 .
 .

2378

procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin
 FDate := Value; { set new date value }
 Refresh; { update the onscreen image }
end;

[C++]

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:
 void __fastcall SetCalendarDate(TDateTime Value);
 .
 .
 .
};

[C++]

void __fastcall TSampleCalendar::SetCalendarDate(TDateTime Value)
{
 FDate = Value; // Set the new date value
 Refresh(); // Update the onscreen image
}

Accessing the Day, Month, and Year
An encoded numeric date is fine for applications, but humans prefer to work with days, months, and years. You can
provide alternate access to those elements of the stored, encoded date by creating properties.

Because each element of the date (day, month, and year) is an integer, and because setting each requires encoding
the date when set, you can avoid duplicating the code each time by sharing the implementation methods for all three
properties. That is, you can write two methods, one to read an element and one to write one, and use those methods
to get and set all three properties.

To provide design-time access to the day, month, and year, you do the following:
1 Declare the three properties, assigning each a unique index number:

[Delphi]
type
 TSampleCalendar = class(TCustomGrid)
 public
 property Day: Integer index 3 read GetDateElement write SetDateElement;
 property Month: Integer index 2 read GetDateElement write SetDateElement;
 property Year: Integer index 1 read GetDateElement write SetDateElement;
 .
 .
 .

[C++]
class PACKAGE TSampleCalendar : public TCustomGrid

2379

{
 .
 .
 .
public:
 __property int Day = {read=GetDateElement, write=SetDateElement, index=3,
 nodefault};
 __property int Month = {read=GetDateElement, write=SetDateElement, index=2,
nodefault};
 __property int Year = {read=GetDateElement, write=SetDateElement, index=1,
nodefault};
};

2 Declare and write the implementation methods, setting different elements for each index value:

[Delphi]
type
 TSampleCalendar = class(TCustomGrid)
 private
 function GetDateElement(Index: Integer): Integer; { note the Index parameter }
 procedure SetDateElement(Index: Integer; Value: Integer);
 .
 .
 .
function TSampleCalendar.GetDateElement(Index: Integer): Integer;
var
 AYear, AMonth, ADay: Word;
begin
 DecodeDate(FDate, AYear, AMonth, ADay); { break encoded date into elements }
 case Index of
 1: Result := AYear;
 2: Result := AMonth;
 3: Result := ADay;
 else Result := -1;
 end;
end;
procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
var
 AYear, AMonth, ADay: Word;
begin
 if Value > 0 then { all elements must be positive }
 begin
 DecodeDate(FDate, AYear, AMonth, ADay); { get current date elements }
 case Index of { set new element depending on Index }
 1: AYear := Value;
 2: AMonth := Value;
 3: ADay := Value;
 else Exit;
 end;
 FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified date }
 Refresh; { update the visible calendar }
 end;
end;

[C++]
// header file
class PACKAGE TSampleCalendar : public TCustomGrid
{
private:

2380

 int __fastcall GetDateElement(int Index); // note the Index parameter
 void __fastcall SetDateElement(int Index, int Value);
 .
 .
 .
};

[C++]
// implementation file
int __fastcall TSampleCalendar::GetDateElement(int Index)
{
 unsigned short AYear, AMonth, ADay;
 int result;
 FDate.DecodeDate(&AYear, &AMonth, &ADay); // break encoded date into elements
 switch (Index)
 {
 case 1: result = AYear; break;
 case 2: result = AMonth; break;
 case 3: result = ADay; break;
 default: result = -1;
 }
 return result;
}
void __fastcall TSampleCalendar::SetDateElement(int Index, int Value)
{
 unsigned short AYear, AMonth, ADay;
 if (Value > 0) // all elements must be positive
 {
 FDate.DecodeDate(&AYear, &AMonth, &ADay); // get current date elements
 switch (Index)
 {
 case 1: AYear = Value; break;
 case 2: AMonth = Value; break;
 case 3: ADay = Value; break;
 default: return;
 }
 }
 FDate = TDateTime(AYear, AMonth, ADay); // encode the modified date
 Refresh(); // update the visible calendar
}

Now you can set the calendar's day, month, and year at design time using the Object Inspector or at runtime using
code. Of course, you have not yet added the code to paint the dates into the cells, but now you have the needed data.

Generating the Day Numbers
Putting numbers into the calendar involves several considerations. The number of days in the month depends on
which month it is, and whether the given year is a leap year. In addition, months start on different days of the week,
dependent on the month and year. Use the IsLeapYear function to determine whether the year is a leap year. Use
the MonthDays array in the SysUtils unit to get the number of days in the month.

Once you have the information on leap years and days per month, you can calculate where in the grid the individual
dates go. The calculation is based on the day of the week the month starts on.

Because you will need the month-offset number for each cell you fill in, the best practice is to calculate it once when
you change the month or year, then refer to it each time. You can store the value in a class field, then update that
field each time the date changes.

2381

To fill in the days in the proper cells, you do the following:
1 Add a month-offset field to the object and a method that updates the field value:

[Delphi]
type
 TSampleCalendar = class(TCustomGrid)
 private
 FMonthOffset: Integer; { storage for the offset }
 .
 .
 .
 protected
 procedure UpdateCalendar; virtual; { property for offset access }
 end;
.
.
.
procedure TSampleCalendar.UpdateCalendar;
var
 AYear, AMonth, ADay: Word;
 FirstDate: TDateTime; { date of the first day of the month }
begin
 if FDate <> 0 then { only calculate offset if date is valid }
 begin
 DecodeDate(FDate, AYear, AMonth, ADay); { get elements of date }
 FirstDate := EncodeDate(AYear, AMonth, 1); { date of the first }
 FMonthOffset := 2 - DayOfWeek(FirstDate); { generate the offset into the grid }
 end;
 Refresh; { always repaint the control }
end;

[C++]
class PACKAGE TSampleCalendar : public TCustomGrid
{
private:
 int FMonthOffset; // storage for the offset
 .
 .
 .
protected:
 virtual void __fastcall UpdateCalendar(void);
 .
 .
 .
};
void __fastcall TSampleCalendar::UpdateCalendar(void)
{
 unsigned short AYear, AMonth, ADay;
 TDateTime FirstDate; // date of first day of the month
 if ((int)FDate != 0) // only calculate offset if date is valid
 {
 FDate.DecodeDate(&AYear, &AMonth, &ADay); // get elements of date
 FirstDate = TDateTime(AYear, AMonth, 1); // date of the first
 FMonthOffset = 2 - FirstDate.DayOfWeek(); // generate the offset into the grid
 }
 Refresh(); // always repaint the control
}

2382

2 Add statements to the constructor and the SetCalendarDate and SetDateElement methods that call the new
update method whenever the date changes:

[Delphi]
constructor TSampleCalendar.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { this is already here }
 . { other initializations here }
 .
 .
 UpdateCalendar; { set proper offset }
end;
procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin FDate := Value; { this was already here }
 UpdateCalendar; { this previously called Refresh }
end;
procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
begin
 .
 .
 .
 FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified date }
 UpdateCalendar; { this previously called Refresh }
 end;
end;

[C++]
__fastcall TSampleCalendar::TSampleCalendar(TComponent *Owner)
 : TCustomGrid(Owner)
{
 .
 .
 .
 UpdateCalendar();
}
void __fastcall TSampleCalendar::SetCalendarDate(TDateTime Value)
{
 FDate = Value; // this was already here
 UpdateCalendar(); // this previously called Refresh
}
void __fastcall TSampleCalendar::SetDateElement(int Index, int Value)
{
 .
 .
 .
 FDate = TDateTime(AYear, AMonth, ADay); // this was already here
 UpdateCalendar(); // this previously called Refresh
}

3 Add a method to the calendar that returns the day number when passed the row and column coordinates of a cell:

2383

[Delphi]
function TSampleCalendar.DayNum(ACol, ARow: Integer): Integer;
begin
 Result := FMonthOffset + ACol + (ARow - 1) * 7; { calculate day for this cell }
 if (Result < 1) or (Result > MonthDays[IsLeapYear(Year), Month]) then
 Result := -1; { return -1 if invalid }
end;

[C++]
int __fastcall TSampleCalendar::DayNum(int ACol, int ARow)
{
 int result = FMonthOffset + ACol + (ARow - 1) * 7; // calculate day for this cell
 if ((result < 1)||(result > MonthDays[IsLeapYear(Year)][Month]))
 result = -1; // return -1 if invalid
 return result;
}

Remember to add the declaration of DayNum to the component's type declaration.

4 Now that you can calculate where the dates go, you can update DrawCell to fill in the dates:

[Delphi]
procedure TCalendar.DrawCell(ACol, ARow: Longint; ARect: TRect; AState: TGridDrawState);
var
 TheText: string;
 TempDay: Integer;
begin
 if ARow = 0 then { if this is the header row ...}
 TheText := ShortDayNames[ACol + 1] { just use the day name }
 else begin
 TheText := ''; { blank cell is the default }
 TempDay := DayNum(ACol, ARow); { get number for this cell }
 if TempDay <> -1 then TheText := IntToStr(TempDay); { use the number if valid }
 end;
 with ARect, Canvas do
 TextRect(ARect, Left + (Right - Left - TextWidth(TheText)) div 2,
 Top + (Bottom - Top - TextHeight(TheText)) div 2, TheText);
end;

2384

[C++]
void __fastcall TSampleCalendar::DrawCell(int ACol, int ARow, const TRect &ARect,
 TGridDrawState AState)
{
 String TheText;
 int TempDay;
 if (ARow == 0) // this is the header row
 TheText = ShortDayNames[ACol + 1]; // just use the day name
 else
 {
 TheText = ""; // blank cell is the default
 TempDay = DayNum(ACol, ARow); // get number for this cell
 if (TempDay != -1) TheText = IntToStr(TempDay); // use the number if valid
 }
 Canvas->TextRect(ARect, ARect.Left + (ARect.Right - ARect.Left -
 Canvas->TextWidth(TheText)) / 2,
 ARect.Top + (ARect.Bottom - ARect.Top - Canvas->TextHeight(TheText)) / 2, TheText);
}

Now if you reinstall the calendar component and place one on a form, you will see the proper information for the
current month.

Selecting the Current Day
Now that you have numbers in the calendar cells, it makes sense to move the selection highlighting to the cell
containing the current day. By default, the selection starts on the top left cell, so you need to set the Row and
Column properties both when constructing the calendar initially and when the date changes.

To set the selection on the current day, change the UpdateCalendar method to set Row and Column before calling
Refresh:

[Delphi]
procedure TSampleCalendar.UpdateCalendar;
begin
 if FDate <> 0 then
 begin
 . { existing statements to set FMonthOffset }
 .
 .
 Row := (ADay - FMonthOffset) div 7 + 1;
 Col := (ADay - FMonthOffset) mod 7;
 end;
 Refresh; { this is already here }
end;

[C++]
void __fastcall TSampleCalendar::UpdateCalendar(void)
{
 unsigned short AYear, AMonth, ADay;
 TDateTime FirstDate;
 if ((int) FDate != 0)
 {
 .
 .
 . // existing statements to set FMonthOffset
 Row = (ADay - FMonthOffset) / 7 + 1;

2385

 Col = (ADay - FMonthOffset) % 7;
 }
 Refresh(); // this is already here
}

Note that you are now reusing the ADay variable previously set by decoding the date.

Navigating Months and Years
Properties are useful for manipulating components, especially at design time. But sometimes there are types of
manipulations that are so common or natural, often involving more than one property, that it makes sense to provide
methods to handle them. One example of such a natural manipulation is a "next month" feature for a calendar.
Handling the wrapping around of months and incrementing of years is simple, but very convenient for the developer
using the component.

The only drawback to encapsulating common manipulations into methods is that methods are only available at
runtime. However, such manipulations are generally only cumbersome when performed repeatedly, and that is fairly
rare at design time.

For the calendar, add the following four methods for next and previous month and year. Each of these methods uses
the IncMonth function in a slightly different manner to increment or decrement CalendarDate, by increments of a
month or a year.

[Delphi]
procedure TCalendar.NextMonth;
begin
 CalendarDate := IncMonth(CalendarDate, 1);
end;
procedure TCalendar.PrevMonth;
begin
 CalendarDate := IncMonth(CalendarDate, -1);
end;
procedure TCalendar.NextYear;
begin
 CalendarDate := IncMonth(CalendarDate, 12);
end;
procedure TCalendar.PrevYear;
begin
 CalendarDate := DecodeDate(IncMonth(CalendarDate, -12);
end;

2386

[C++]
void __fastcall TSampleCalendar::NextMonth()
{
 CalendarDate = IncMonth(CalendarDate, 1);
}
void __fastcall TSampleCalendar::PrevMonth()
{
 CalendarDate = IncMonth(CalendarDate, -1);
}
void __fastcall TSampleCalendar::NextYear()
{
 CalendarDate = IncMonth(CalendarDate, 12);
}
void __fastcall TSampleCalendar::PrevYear()
{
 CalendarDate = IncMonth(CalendarDate, -12);
}

Be sure to add the declarations of the new methods to the class declaration.

Now when you create an application that uses the calendar component, you can easily implement browsing through
months or years.

Navigating Days
Within a given month, there are two obvious ways to navigate among the days. The first is to use the arrow keys,
and the other is to respond to clicks of the mouse. The standard grid component handles both as if they were clicks.
That is, an arrow movement is treated like a click on an adjacent cell.

The process of navigating days consists of

Moving the selection
Providing an OnChange event
Excluding blank cells

Moving the Selection
The inherited behavior of a grid handles moving the selection in response to either arrow keys or clicks, but if you
want to change the selected day, you need to modify that default behavior.

To handle movements within the calendar, override the Click method of the grid.

When you override a method such as Click that is tied in with user interactions, you will nearly always include a call
to the inherited method, so as not to lose the standard behavior.

The following is an overridden Click method for the calendar grid. Be sure to add the declaration of Click to
TSampleCalendar, including the override directive afterward.

[Delphi]
procedure TSampleCalendar.Click;
var
 TempDay: Integer;
begin
 inherited Click; { remember to call the inherited method! }
 TempDay := DayNum(Col, Row); { get the day number for the clicked cell }

2387

 if TempDay <> -1 then Day := TempDay; { change day if valid }
end;

[C++]
void __fastcall TSampleCalendar::Click()
{
 int TempDay = DayNum(Col, Row); // get the day number for the clicked cell
 if (TempDay != -1) Day = TempDay; // change day if valid
}

Providing an OnChange Event
Now that users of the calendar can change the date within the calendar, it makes sense to allow applications to
respond to those changes.

Add an OnChange event to TSampleCalendar.
1 Declare the event, a field to store the event, and a dynamic method to call the event:

[Delphi]
type
 TSampleCalendar = class(TCustomGrid)
 private
 FOnChange: TNotifyEvent;
 protected
 procedure Change; dynamic;
 .
 .
 .
 published
 property OnChange: TNotifyEvent read FOnChange write FOnChange;
 .
 .
 .

[C++]
class PACKAGE TSampleCalendar : public TCustomGrid
{
private:
 TNotifyEvent FOnChange;
 .
 .
 .
protected:
 virtual void __fastcall Change();
__published:
 __property TNotifyEvent OnChange = {read=FOnChange, write=FOnChange};
 .
 .
 .
}

2 Write the Change method:

2388

[Delphi]
procedure TSampleCalendar.Change;
begin
 if Assigned(FOnChange) then FOnChange(Self);
end;

[C++]
void __fastcall TSampleCalendar::Change()
{
 if(FOnChange != NULL) FOnChange(this);
}

3 Add statements calling Change to the end of the SetCalendarDate and SetDateElement methods:

[Delphi]
procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin
 FDate := Value;
 UpdateCalendar;
 Change; { this is the only new statement }
end;
procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
begin
 . { many statements setting element values }
 .
 .
 FDate := EncodeDate(AYear, AMonth, ADay);
 UpdateCalendar;
 Change; { this is new }
 end;
end;

[C++]
void __fastcall TSampleCalendar::SetCalendarDate(TDateTime Value)
{
 FDate = Value;
 UpdateCalendar();
 Change(); // this is the only new statement
}
void __fastcall TSampleCalendar::SetDateElement(int Index, int Value)
{
 .
 .
 . // many statements setting element values
 FDate = TDateTime(AYear, AMonth, ADay);
 UpdateCalendar();
 Change(); // this is new
}

Applications using the calendar component can now respond to changes in the date of the component by attaching
handlers to the OnChange event.

2389

Excluding Blank Cells
As the calendar is written, the user can select a blank cell, but the date does not change. It makes sense, then, to
disallow selection of the blank cells.

To control whether a given cell is selectable, override the SelectCell method of the grid.

SelectCell is a function that takes a column and row as parameters, and returns a Boolean value indicating whether
the specified cell is selectable.

You can override SelectCell to return False if the cell does not contain a valid date:

[Delphi]
function TSampleCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin
 if DayNum(ACol, ARow) = -1 then Result := False { -1 indicates invalid date }
 else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited value }
end;

[C++]
bool __fastcall TSampleCalendar::SelectCell(int ACol, int ARow)
{
 if (DayNum(ACol,ARow) == -1) return false; // -1 indicates invalid date
 else return TCustomGrid::SelectCell(ACol, ARow); // otherwise, use inherited value
}

Now if the user clicks a blank cell or tries to move to one with an arrow key, the calendar leaves the current cell
selected.

2390

Making a control data aware

Making a Control Data Aware
When working with database connections, it is often convenient to have controls that are data aware. That is, the
application can establish a link between the control and some part of a database. Delphi includes data-aware labels,
edit boxes, list boxes, combo boxes, lookup controls, and grids. You can also make your own controls data aware.
For more information about using data-aware controls, see Using data controls .

There are several degrees of data awareness. The simplest is read-only data awareness, or data browsing, the
ability to reflect the current state of a database. More complicated is editable data awareness, or data editing, where
the user can edit the values in the database by manipulating the control. Note also that the degree of involvement
with the database can vary, from the simplest case, a link with a single field, to more complex cases, such as multiple-
record controls.

This section first illustrates the simplest case, making a read-only control that links to a single field in a dataset. The
specific control used will be the TSampleCalendar calendar created in Customizing a grid You can also use the
standard calendar control on the Samples page of the Tool palette, TCalendar.

The section then continues with an explanation of how to make the new data browsing control a data editing control.

Creating a Data Browsing Control
Creating a data-aware calendar control, whether it is a read-only control or one in which the user can change the
underlying data in the dataset, involves the following steps:

Creating and registering the component.
Adding the data link.
Responding to data changes.

Creating and registering the component
You create every component the same way: create a unit, derive a component class, register it, compile it, and install
it on the Tool palette. This process is outlined in Creating a new component.

For this example, follow the general procedure for creating a component, with these specifics:

Call the component's unit DBCal.
Derive a new component class called TDBCalendar, descended from the component TSampleCalendar. The
section Customizing a grid shows you how to create the TSampleCalendar component.

2391

Register TDBCalendar on the Samples page of the Tool palette.

The resulting unit descending from TCustomGrid in a VCL application should look like this:

unit CalSamp;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, Grids;
type
 TSampleCalendar = class(TCustomGrid)
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponents('Samples', [TSampleCalendar]);
end;
end.

If you install the calendar component now, you will find that it appears on the Samples page. The only properties
available are the most basic control properties. The next step is to make some of the more specialized properties
available to users of the calendar.

Note: While you can install the sample calendar component you have just compiled, do not try to place it on a form
yet. The TCustomGrid component has an abstract DrawCell method that must be redeclared before instance
objects can be created. Overriding the DrawCell method is described in Filling in the cells.

Making the Control Read-only
Because this data calendar will be read-only with respect to the data, it makes sense to make the control itself read-
only, so users will not make changes within the control and expect them to be reflected in the database.

Making the calendar read-only involves:

Adding the ReadOnly property.
Allowing needed updates.

Note: Note that if you started with the TCalendar component from Delphi's Samples page instead of
TSampleCalendar, it already has a ReadOnly property, so you can skip these steps.

Adding the ReadOnly property
By adding a ReadOnly property, you will provide a way to make the control read-only at design time. When that
property is set to True, you can make all cells in the control unable to be selected.

To add the ReadOnly property, follow these steps:
1 Add the property declaration and a private field to hold the value:

[Delphi]
type
 TDBCalendar = class(TSampleCalendar)
 private

2392

 FReadOnly: Boolean; { field for internal storage }
 public
 constructor Create(AOwner: TComponent); override; { must override to set default }
 published
 property ReadOnly: Boolean read FReadOnly write FReadOnly default True;
 end;
.
.
.
constructor TDBCalendar.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { always call the inherited constructor! }
 FReadOnly := True; { set the default value }
end;

[C++]

//header file
class PACKAGE TDBCalendar : public TSampleCalendar
{
private:
 bool FReadOnly; // field for internal storage
protected:
public:
 virtual __fastcall TDBCalendar(TComponent* Owner);
__published:
 __property ReadOnly = {read=FReadOnly, write=FReadOnly, default=true};
};

[C++]

//implementation file:
virtual __fastcall TDBCalendar::TDBCalendar(TComponent* Owner) :
 TSampleCalendar(Owner)
{
 FReadOnly = true; // sets the default value
}

2 Override the SelectCell method to disallow selection if the control is read-only. Use of SelectCell is explained in
Excluding blank cells.

[Delphi]
function TDBCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin
 if FReadOnly then Result := False { cannot select if read only }
 else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited method }
end;

[C++]
bool __fastcall TDBCalendar::SelectCell(long ACol, long ARow)
{
 if (FReadOnly) return false; // can't select if read only
 return TSampleCalendar::SelectCell(ACol, ARow); // otherwise, use inherited method
}

2393

Remember to add the declaration of SelectCell to the type declaration of TDBCalendar, and append the override
directive.

If you now add the calendar to a form, you will find that the component ignores clicks and keystrokes. It also fails to
update the selection position when you change the date.

Allowing Needed Updates
The read-only calendar uses the SelectCell method for all kinds of changes, including setting the Row and Col
properties. The UpdateCalendar method sets Row and Col every time the date changes, but because SelectCell
disallows changes, the selection remains in place, even though the date changes.

To get around this absolute prohibition on changes, you can add an internal Boolean flag to the calendar, and permit
changes when that flag is set to True:

[Delphi]
type
 TDBCalendar = class(TSampleCalendar)
 private
 FUpdating: Boolean; { private flag for internal use }
 protected
 function SelectCell(ACol, ARow: Longint): Boolean; override;
 public
 procedure UpdateCalendar; override; { remember the override directive }
 end;
.
.
.
function TDBCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin
 if (not FUpdating) and FReadOnly then Result := False { allow select if updating }
 else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited method }
end;
procedure TDBCalendar.UpdateCalendar;
begin
 FUpdating := True; { set flag to allow updates }
 try
 inherited UpdateCalendar; { update as usual }
 finally
 FUpdating := False; { always clear the flag }
 end;
end;

[C++]
class PACKAGE TDBCalendar : public TSampleCalendar
{
private:
 .
 .
 .
 bool FUpdating; // private flag for internal use
protected:
 virtual bool __fastcall SelectCell(long ACol, long ARow);
public:
 .
 .
 .
 virtual void __fastcall UpdateCalendar();

2394

 .
 .
 .
};
bool __fastcall TDBCalendar::SelectCell(long ACol, long ARow)
{
 if (!FUpdating && FReadOnly) return false; // can't select if read only
 return TSampleCalendar::SelectCell(ACol, ARow); // otherwise, use inherited method
}
void __fastcall TDBCalendar::UpdateCalendar()
{
 FUpdating=true; // set flag to allow updates
 try
 {
 TSampleCalendar::UpdateCalendar(); // update as usual
 }
 catch(...)
 {
 FUpdating = false;
 throw;
 }
 FUpdating = false; // always clear the flag
}

The calendar still disallows user changes, but now correctly reflects changes made in the date by changing the date
properties. Now that you have a true read-only calendar control, you are ready to add the data browsing ability.

Adding the Data Link
The connection between a control and a database is handled by a class called a data link. The data link class that
connects a control with a single field in a database is TFieldDataLink. There are also data links for entire tables.

A data-aware control owns its data link class. That is, the control has the responsibility for constructing and destroying
the data link. For details on management of owned classes, see Creating a graphic control

Establishing a data link as an owned class requires these three steps:
1 Declaring the class field.
2 Declaring the access properties.
3 Initializing the data link.

Declaring the Class Field
A component needs a field for each of its owned classes, as explained in Declaring the class fields. In this case, the
calendar needs a field of type TFieldDataLink for its data link.

Declare a field for the data link in the calendar:

[Delphi]
type
 TDBCalendar = class(TSampleCalendar)
 private
 FDataLink: TFieldDataLink;
 .
 .

2395

 .
 end;

[C++]
class PACKAGE TDBCalendar : public TSampleCalendar
{
private:
 TFieldDataLink *FDataLink;
 .
 .
 .
};

[C++]
#include <DB.hpp>
#include <DBTables.hpp>

Before you can compile the application, you need to add DB and DBCtrls to the unit's uses clause.

Declaring the Access Properties for a Data-aware Control
Every data-aware control has a DataSource property that specifies which data source class in the application
provides the data to the control. In addition, a control that accesses a single field needs a DataField property to
specify that field in the data source.

Unlike the access properties for the owned classes in the example in Creating a graphic control these access
properties do not provide access to the owned classes themselves, but rather to corresponding properties in the
owned class. That is, you will create properties that enable the control and its data link to share the same data source
and field.

Declare the DataSource and DataField properties and their implementation methods, then write the methods as
"pass-through" methods to the corresponding properties of the data link class.

Initializing the Data Link
A data-aware control needs access to its data link throughout its existence, so it must construct the data link object
as part of its own constructor, and destroy the data link object before it is itself destroyed.

Override the Create and Destroy methods of the calendar to construct and destroy the datalink object, respectively:

[Delphi]
type
 TDBCalendar = class(TSampleCalendar)
 public { constructors and destructors are always public }
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 .
 .
 .
 end;
.
.
.
constructor TDBCalendar.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { always call the inherited constructor first }

2396

 FDataLink := TFieldDataLink.Create; { construct the datalink object }
 FDataLink.Control := self; {let the datalink know about the calendar }
 FReadOnly := True; { this is already here }
end;
destructor TDBCalendar.Destroy;
begin
 FDataLink.Free; { always destroy owned objects first... }
 inherited Destroy; { ...then call inherited destructor }
end;

[C++]
class PACKAGE TDBCalendar : public TSampleCalendar
{
public:
 virtual __fastcall TDBCalendar(TComponent *Owner);
 __fastcall ~TDBCalendar();
};
__fastcall TDBCalendar::TDBCalendar(TComponent* Owner) : TSampleCalendar(Owner)
{
 FReadOnly = true;
 FDataLink = new TFieldDataLink();
 FDataLink->Control = this;
}
__fastcall TDBCalendar::~TDBCalendar()
{
 FDataLink->Control = NULL;
 FDataLink->OnUpdateData = NULL;
 delete FDataLink;
}

Now you have a complete data link, but you have not yet told the control what data it should read from the linked
field. The next section explains how to do that.

Responding to Data Changes
Once a control has a data link and properties to specify the data source and data field, it needs to respond to changes
in the data in that field, either because of a move to a different record or because of a change made to that field.

Data link classes all have events named OnDataChange. When the data source indicates a change in its data, the
data link object calls any event handler attached to its OnDataChange event.

To update a control in response to data changes, attach a handler to the data link's OnDataChange event.

In this case, you will add a method to the calendar, then designate it as the handler for the data link's OnDataChange.

Declare and implement the DataChange method, then assign it to the data link's OnDataChange event in the
constructor. In the destructor, detach the OnDataChange handler before destroying the object.

Creating a Data Editing Control
When you create a data editing control, you create and register the component and add the data link just as you do
for a data browsing control. You also respond to data changes in the underlying field in a similar manner, but you
must handle a few more issues.

For example, you probably want your control to respond to both key and mouse events. Your control must respond
when the user changes the contents of the control. When the user exits the control, you want the changes made in
the control to be reflected in the dataset.

2397

The data editing control described here is the same calendar control described in Creating a data browsing control.
The control is modified so that it can edit as well as view the data in its linked field.

Modifying the existing control to make it a data editing control involves:

Changing the default value of FReadOnly.
Handling mouse-down and key-down messages.
Updating the field data link class.
Modifying the Change method.
Updating the dataset.

Changing the Default Value of FReadOnly
Because this is a data editing control, the ReadOnly property should be set to False by default. To make the
ReadOnly property False, change the value of FReadOnly in the constructor:

[Delphi]
constructor TDBCalendar.Create(AOwner: TComponent);
begin
 .
 .
 .
 FReadOnly := False; { set the default value }
 .
 .
 .
end;

[C++]
__fastcall TDBCalendar::TDBCalendar (TComponent* Owner) : TSampleCalendar(Owner)
{
 FReadOnly = false; // set the default value
 .
 .
 .
}

Handling Mouse-down and Key-down Messages
When the user of the control begins interacting with it, the control receives either mouse-down messages
(WM_LBUTTONDOWN, WM_MBUTTONDOWN, or WM_RBUTTONDOWN) or a key-down message
(WM_KEYDOWN) from Windows. To enable a control to respond to these messages, you must write handlers that
respond to these messages.

Responding to mouse-down messages.
Responding to key-down messages.

2398

Responding to Mouse-down Messages
A MouseDown method is a protected method for a control's OnMouseDown event. The control itself calls
MouseDown in response to a Windows mouse-down message. When you override the inherited MouseDown
method, you can include code that provides other responses in addition to calling the OnMouseDown event.

To override MouseDown, add the MouseDown method to the TDBCalendar class:

[Delphi]
type
 TDBCalendar = class(TSampleCalendar);
 .
 .
 .
 protected
 procedure MouseDown(Button: TButton, Shift: TShiftState, X: Integer, Y: Integer);
 override;
 .
 .
 .
 end;
procedure TDBCalendar.MouseDown(Button: TButton; Shift: TShiftState; X, Y: Integer);
var
 MyMouseDown: TMouseEvent;
begin
 if not ReadOnly and FDataLink.Edit then
 inherited MouseDown(Button, Shift, X, Y)
 else
 begin
 MyMouseDown := OnMouseDown;
 if Assigned(MyMouseDown then MyMouseDown(Self, Button, Shift, X, Y);
 end;
end;

[C++]

//header file
class PACKAGE TDBCalendar : public TSampleCalendar
{
.
.
.
protected:
 virtual void __fastcall MouseDown(TMouseButton Button, TShiftState Shift, int X,
int Y);
 .
 .
 .
};

[C++]

//implmentation file
void __fastcall TDBCalendar::MouseDown(TMouseButton Button, TShiftState Shift, int X,
int Y)
{
 TMouseEvent MyMouseDown; // declare event type
 if (!FReadOnly && FDataLink->Edit()) // if the field can be edited
 TSampleCalendar::MouseDown(Button, Shift, X, Y); // call the inherited MouseDown

2399

 else
 {
 MyMouseDown = OnMouseDown; // assign OnMouseDown event
 if (MyMouseDown != NULL) MyMouseDown(this, Button, // execute code in the...
 Shift, X, Y); // ...OnMouseDown event handler
 }
}

When MouseDown responds to a mouse-down message, the inherited MouseDown method is called only if the
control's ReadOnly property is False and the data link object is in edit mode, which means the field can be edited.
If the field cannot be edited, the code the programmer put in the OnMouseDown event handler, if one exists, is
executed.

Responding to Key-down Messages
A KeyDown method is a protected method for a control's OnKeyDown event. The control itself calls KeyDown in
response to a Windows key-down message. When overriding the inherited KeyDown method, you can include code
that provides other responses in addition to calling the OnKeyDown event.

To override KeyDown, follow these steps:
1 Add a KeyDown method to the TDBCalendar class:

[Delphi]
type
 TDBCalendar = class(TSampleCalendar);
 .
 .
 .
 protected
 procedure KeyDown(var Key: Word; Shift: TShiftState; X: Integer; Y: Integer);
 override;
 .
 .
 .
 end;

[C++]
class PACKAGE TDBCalendar : public TSampleCalendar
{
 .
 .
 .
protected:
 virtual void __fastcall KeyDown(unsigned short &Key, TShiftState Shift);
 .
 .
 .
};

2 Implement the KeyDown method:

[Delphi]
procedure KeyDown(var Key: Word; Shift: TShiftState);
var

2400

 MyKeyDown: TKeyEvent;
begin
 if not ReadOnly and (Key in [VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT, VK_END,
 VK_HOME, VK_PRIOR, VK_NEXT]) and FDataLink.Edit then
 inherited KeyDown(Key, Shift)
 else
 begin
 MyKeyDown := OnKeyDown;
 if Assigned(MyKeyDown) then MyKeyDown(Self, Key, Shift);
 end;
end;

[C++]

void __fastcall TDBCalendar::KeyDown(unsigned short &Key, TShiftState Shift)
{
 TKeyEvent MyKeyDown; // declare event type
 Set<unsigned short,0,8> keySet;
 keySet = keySet << VK_UP << VK_DOWN << VK_LEFT // assign virtual keys to set
 << VK_RIGHT << VK_END << VK_HOME << VK_PRIOR << VK_NEXT;
 if (!FReadOnly && // if control is not read only...
 (keySet.Contains(Key)) && // ...and key is in the set...
 FDataLink->Edit()) // ...and field is in edit mode
 {
 TCustomGrid::KeyDown(Key, Shift); // call the inherited KeyDown method
 }
 else
 {
 MyKeyDown = OnKeyDown; // assign OnKeyDown event
 if (MyKeyDown != NULL) MyKeyDown(this,Key,Shift); // execute code in...
 } // ...OnKeyDown event handler
}

When KeyDown responds to a mouse-down message, the inherited KeyDown method is called only if the control's
ReadOnly property is False, the key pressed is one of the cursor control keys, and the data link object is in edit
mode, which means the field can be edited. If the field cannot be edited or some other key is pressed, the code the
programmer put in the OnKeyDown event handler, if one exists, is executed.

Updating the Field Data Link Class
There are two types of data changes:

A change in a field value that must be reflected in the data-aware control.
A change in the data-aware control that must be reflected in the field value.

The TDBCalendar component already has a DataChange method that handles a change in the field's value in the
dataset by assigning that value to the CalendarDate property. The DataChange method is the handler for the
OnDataChange event. So the calendar component can handle the first type of data change.

Similarly, the field data link class also has an OnUpdateData event that occurs as the user of the control modifies
the contents of the data-aware control. The calendar control has a UpdateData method that becomes the event
handler for the OnUpdateData event. UpdateData assigns the changed value in the data-aware control to the field
data link.

2401

To reflect a change made to the value in the calendar in the field value:
1 Add an UpdateData method to the private section of the calendar component:

[Delphi]
type
 TDBCalendar = class(TSampleCalendar);
 private
 procedure UpdateData(Sender: TObject);
 .
 .
 .
 end;

[C++]
class PACKAGE TDBCalendar : public TSampleCalendar
{
private:
 void __fastcall UpdateData(TObject *Sender);
};

2 Implement the UpdateData method:

[Delphi]
procedure UpdateData(Sender: TObject);
begin
 FDataLink.Field.AsDateTime := CalendarDate; { set field link to calendar date }
end;

[C++]
void __fastcall TDBCalendar::UpdateData(TObject* Sender)
{
 FDataLink->Field->AsDateTime = CalendarDate; // set field link to calendar date
}

3 Within the constructor for TDBCalendar, assign the UpdateData method to the OnUpdateData event:

[Delphi]
constructor TDBCalendar.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FReadOnly := True;
 FDataLink := TFieldDataLink.Create;
 FDataLink.OnDataChange := DataChange;
 FDataLink.OnUpdateData := UpdateData;
end;

2402

[C++]
__fastcall TDBCalendar::TDBCalendar(TComponent* Owner)
 : TSampleCalendar(Owner)
{
 FDataLink = new TFieldDataLink(); // this was already here
 FDataLink->OnDataChange = DataChange; // this was here too
 FDataLink->OnUpdateData = UpdateData; // assign UpdateData to the OnUpdateData event
}

Modifying the Change Method
The Change method of the TDBCalendar is called whenever a new date value is set. Change calls the OnChange
event handler, if one exists. The component user can write code in the OnChange event handler to respond to
changes in the date.

When the calendar date changes, the underlying dataset should be notified that a change has occurred. You can
do that by overriding the Change method and adding one more line of code.

These are the steps to follow:
1 Add a new Change method to the TDBCalendar component:

[Delphi]
type
 TDBCalendar = class(TSampleCalendar);
 private
 procedure Change; override;
 .
 .
 .
 end;

[C++]
class PACKAGE TDBCalendar : public TSampleCalendar
{
protected:
 virtual void __fastcall Change();
 .
 .
 .
};

2 Write the Change method, calling the Modified method that informs the dataset the data has changed, then call
the inherited Change method:

[Delphi]
procedure TDBCalendar.Change;
begin
 FDataLink.Modified; { call the Modified method }
 inherited Change; { call the inherited Change method }
end;

2403

[C++]
void __fastcall TDBCalendar::Change()
{
 if (FDataLink != NULL)
 FDataLink->Modified(); // call the Modified method
 TSampleCalendar::Change(); // call the inherited Change method
}

Updating the Dataset
So far, a change within the data-aware control has changed values in the field data link class. The final step in
creating a data editing control is to update the dataset with the new value. This should happen after the person
changing the value in the data-aware control exits the control by clicking outside the control or pressing the Tab key.

Note: VCL applications define message control IDs for operations on controls. For example, the CM_EXIT message
is sent to the control when the user exits the control. You can write message handlers that respond to the
message. In this case, when the user exits the control, the CMExit method, the message handler for
CM_EXIT, responds by updating the record in the dataset with the changed values in the field data link class.
For more information about message handlers, see Handling messages and system notifications.

To update the dataset within a message handler, follow these steps:
1 Add the message handler to the TDBCalendar component:

[Delphi]
type
 TDBCalendar = class(TSampleCalendar);
 private
 procedure CMExit(var Message: TWMNoParams); message CM_EXIT;
 .
 .
 .
 end;

[C++]
class PACKAGE TDBCalendar : public TSampleCalendar
{
private:
 void __fastcall CMExit(TWMNoParams Message);
BEGIN_MESSAGE_MAP
 MESSAGE_HANDLER(CM_EXIT, TWMNoParams, CMExit)
END_MESSAGE_MAP
};

2 Implement the CMExit method so it looks like this:

[Delphi]
procedure TDBCalendar.CMExit(var Message: TWMNoParams);
begin
 try
 FDataLink.UpdateRecord; { tell data link to update database }

2404

 except
 on Exception do SetFocus; { if it failed, don't let focus leave }
 end;
 inherited;
end;

[C++]
void __fastcall TDBCalendar::CMExit(TWMNoParams &Message)
{
 try
 {
 FDataLink.UpdateRecord(); // tell data link to update database
 }
 catch(...)
 {
 SetFocus(); // if it failed, don't let focus leave
 throw;
 }
}

To update the dataset when the user exits the control, follow these steps:
1 Add an override for the DoExit method to the TDBCalendar component:

[Delphi]
type
 TDBCalendar = class(TSampleCalendar);
 private
 procedure DoExit; override;
 .
 .
 .
 end;

[C++]
class PACKAGE TDBCalendar : public TSampleCalendar
{
private:
 DYNAMIC void __fastcall DoExit(void);
 .
 .
 .
};

2 Implement the DoExit method so it looks like this:

[Delphi]
procedure TDBCalendar.CMExit(var Message: TWMNoParams);
begin
 try
 FDataLink.UpdateRecord; { tell data link to update database }
 except
 on Exception do SetFocus; { if it failed, don't let focus leave }
 end;

2405

 inherited; { let the inherited method generate an OnExit event }
end;

[C++]
void __fastcall TDBCalendar::DoExit(void)
{
 try
 {
 FDataLink.UpdateRecord(); // tell data link to update database
 }
 catch(...)
 {
 SetFocus(); // if it failed, don't let focus leave
 throw;
 }
 TCustomGrid::DoExit(); // let the inherited method generate an OnExit event
}

2406

Making a dialog box a component

Making a Dialog Box a Component: Overview
You will find it convenient to make a frequently used dialog box into a component that you add to the Tool palette.
Your dialog box components will work just like the components that represent the standard common dialog boxes.
The goal is to create a simple component that a user can add to a project and set properties for at design time.

Making a dialog box a component requires these steps:

1 Defining the component interface
2 Creating and registering the component
3 Creating the component interface
4 Testing the component

The Delphi "wrapper" component associated with the dialog box creates and executes the dialog box at runtime,
passing along the data the user specified. The dialog-box component is therefore both reusable and customizable.

In this section, you will see how to create a wrapper component around the generic About Box form provided in the
Delphi Object Repository.

Note: Copy the files ABOUT.PAS and ABOUT.DFM into your working directory.

There are not many special considerations for designing a dialog box that will be wrapped into a component. Nearly
any form can operate as a dialog box in this context.

Defining the Component Interface
Before you can create the component for your dialog box, you need to decide how you want developers to use it.
You create an interface between your dialog box and applications that use it.

For example, look at the properties for the common dialog box components. They enable the developer to set the
initial state of the dialog box, such as the caption and initial control settings, then read back any needed information
after the dialog box closes. There is no direct interaction with the individual controls in the dialog box, just with the
properties in the wrapper component.

The interface must therefore contain enough information that the dialog box form can appear in the way the developer
specifies and return any information the application needs. You can think of the properties in the wrapper component
as being persistent data for a transient dialog box.

2407

In the case of the About box, you do not need to return any information, so the wrapper's properties only have to
contain the information needed to display the About box properly. Because there are four separate fields in the About
box that the application might affect, you will provide four string-type properties to provide for them.

Creating and Registering the Component
Creation of every component begins the same way: create a unit, derive a component class, register it, compile it,
and install it on the Tool palette. This process is outlined in Creating a new component.

For this example, follow the general procedure for creating a component, with these specifics:

Call the component's unit AboutDlg.
Derive a new component type called TAboutBoxDlg, descended from TComponent.
Register TAboutBoxDlg on the Samples page of the Tool palette.

The resulting unit should look like this:

[Delphi]
unit AboutDlg;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms;
type
 TAboutBoxDlg = class(TComponent)
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponents('Samples', [TAboutBoxDlg]);
end;
end.

[C++]
#include <vcl\vcl.h>
#pragma hdrstop
#include "AboutDlg.h"
//---
#pragma package(smart_init);
//---
static inline TAboutBoxDlg *ValidCtrCheck()
{
 return new TAboutBoxDlg(NULL);
}
//---
namespace AboutDlg {
{
 void __fastcall PACKAGE Register()
 {
 TComponentClass classes[1] = {__classid(TAboutBoxDlg)};
 RegisterComponents("Samples", classes, 0);
 }
}

[C++]
#ifndef AboutDlgH

2408

#define AboutDlgH
//---
#include <vcl\sysutils.hpp>
#include <vcl\controls.hpp>
#include <vcl\classes.hpp>
#include <vcl\forms.hpp>
//---
class PACKAGE TAboutBoxDlg : public TComponent
{
private:
protected:
public:
__published:
};
//---
#endif

The new component now has only the capabilities built into TComponent. It is the simplest nonvisual component.
In the next section, you will create the interface between the component and the dialog box.

Creating the Component Interface
These are the steps to create the component interface:

1 Including the form unit files.
2 Adding interface properties.
3 Adding the Execute method.

Including the Form Unit
For your wrapper component to initialize and display the wrapped dialog box, you must add the form's unit to the
uses clause of the wrapper component's unit.

Append About to the uses clause of the AboutDlg unit.

The uses clause now looks like this:

[Delphi]
uses
 Windows, SysUtils, Messages, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms,
 About;

[C++]
// for C++
#include "About.h"
#pragma link "About.obj"

The form unit always declares an instance of the form class. In the case of the About box, the form class is
TAboutBox, and the About unit includes the following declaration:

2409

[Delphi]
var
 AboutBox: TAboutBox;

[C++]
extern TAboutBox *AboutBox;

So by adding About to the uses clause, you make AboutBox available to the wrapper component.

Adding Interface Properties
Before proceeding, decide on the properties your wrapper needs to enable developers to use your dialog box as a
component in their applications. Then, you can add declarations for those properties to the component's class
declaration.

Properties in wrapper components are somewhat simpler than the properties you would create if you were writing
a regular component. Remember that in this case, you are just creating some persistent data that the wrapper can
pass back and forth to the dialog box. By putting that data in the form of properties, you enable developers to set
data at design time so that the wrapper can pass it to the dialog box at runtime.

Declaring an interface property requires two additions to the component's class declaration:

A private class field, which is a variable the wrapper uses to store the value of the property
The published property declaration itself, which specifies the name of the property and tells it which field to use
for storage

Interface properties of this sort do not need access methods. They use direct access to their stored data. By
convention, the class field that stores the property's value has the same name as the property, but with the letter
F in front. The field and the property must be of the same type.

Adding the Execute Method
The final part of the component interface is a way to open the dialog box and return a result when it closes. As with
the common dialog box components, you use a boolean function called Execute that returns True if the user clicks
OK, or False if the user cancels the dialog box.

The declaration for the Execute method always looks like this:

[Delphi]
type
 TMyWrapper = class(TComponent)
 public
 function Execute: Boolean;
 end;

[C++]
class PACKAGE TMyWrapper : public TComponent
{
 .
 .
 .
public:
 bool __fastcall Execute();
 .

2410

 .
 .
};

The minimum implementation for Execute needs to construct the dialog box form, show it as a modal dialog box,
and return either True or False, depending on the return value from ShowModal.

Testing the Component
Once you have installed the dialog box component, you can use it as you would any of the common dialog boxes,
by placing one on a form and executing it. A quick way to test the About box is to add a command button to a form
and execute the dialog box when the user clicks the button.

For example, if you created an About dialog box, made it a component, and added it to the
Tool palette, you can test it with the following steps:
1 Create a new project.
2 Place an About box component on the main form.
3 Place a command button on the form.
4 Double-click the command button to create an empty click-event handler.
5 In the click-event handler, type the following line of code:

[Delphi]
AboutBoxDlg1.Execute;

[C++]
AboutBoxDlg1->Execute();

6 Run the application.

When the main form appears, click the command button. The About box appears with the default project icon and
the name Project1. Choose OK to close the dialog box.

You can further test the component by setting the various properties of the About box component and again running
the application.

2411

Extending the IDE

Extending the IDE
You can extend and customize the IDE with your own menu items, tool bar buttons, dynamic form-creation wizards,
and more, using the Open Tools API (often shortened to just Tools API). The Tools API is a suite of over 100
interfaces that interact with and control the IDE, including the main menu, the tool bars, the main action list and
image list, the source editor's internal buffers, keyboard macros and bindings, forms and their components in the
form editor, the debugger and the process being debugged, code completion, the message view, and the To-Do list.

Using the Tools API is simply a matter of writing classes that implement certain interfaces, and calling on services
provided by other interfaces. Your Tools API code must be compiled and loaded into the IDE at design-time as a
design-time package or in a DLL. Thus, writing a Tools API extension is somewhat like writing a property or
component editor. Before tackling this material, make sure you are familiar with the basics of working with packages
and registering components.

The following topics describe how to use the Tools API:

Overview of the Tools API
Writing a wizard class
Obtaining Tools API services
Working with files and editors
Creating forms and projects
Notifying a wizard of IDE events

Overview of the Tools API
All of the Tools API declarations reside in a single unit, ToolsAPI. To use the Tools API, you typically use the designide
package, which means you must build your Tools API add-in as a design-time package or as a DLL that uses runtime
packages. For information about package and library issues, see Installing the wizard package.

The main interface for writing a Tools API extension is IOTAWizard, so most IDE add-ins are called wizards. C+
+Builder and Delphi wizards are, for the most part, interoperable. You can write and compile a wizard in Delphi, then
use it in C++Builder, and vice versa. Interoperability works best with the same version number, but it is also possible
to write wizards so they can be used in future versions of both products.

To use the Tools API, you write wizard classes that implement one or more of the interfaces defined in the ToolsAPI
unit.

A wizard makes use of services that the Tools API provides. Each service is an interface that presents a set of related
functions. The implementation of the interface is hidden within the IDE. The Tools API publishes only the interface,

2412

which you can use to write your wizards without concerning yourself with the implementation of the interfaces. The
various services offer access to the source editor, form designer, debugger, and so on. See Obtaining Tools API
services for information about using the interfaces that expose services to your wizard.

The service and other interfaces fall into two basic categories. You can tell them apart by the prefix used for the type
name:

The NTA (native tools API) grants direct access to actual IDE objects, such as the IDE's TMainMenu object.
When using these interfaces, the wizard must use Borland packages, which also means the wizard is tied to a
specific version of the IDE. The wizard can reside in a design-time package or in a DLL that uses runtime
packages.
The OTA (open tools API) does not require packages and accesses the IDE only through interfaces. In theory,
you could write a wizard in any language that supports COM-style interfaces, provided you can also work with
the Delphi calling conventions and Delphi types such as AnsiString. OTA interfaces do not grant full access to
the IDE, but almost all the functionality of the Tools API is available through OTA interfaces. If a wizard uses
only OTA interfaces, it is possible to write a DLL that is not dependent on a specific version of the IDE.

The Tools API has two kinds of interfaces: those that you, the programmer, must implement and those that the IDE
implements. Most of the interfaces are in the latter category: the interfaces define the capability of the IDE but hide
the actual implementation. The kinds of interfaces that you must implement fall into three categories: wizards,
notifiers, and creators:

As mentioned earlier in this topic, a wizard class implements the IOTAWizard interface and possibly derived
interfaces.
A notifier is another kind of interface in the Tools API. The IDE uses notifiers to call back to your wizard when
something interesting happens. You write a class that implements the notifier interface, register the notifier with
the Tools API, and the IDE calls back to your notifier object when the user opens a file, edits source code,
modifies a form, starts a debugging session, and so on. Notifiers are covered in Notifying a wizard of IDE events .
A creator is another kind of interface that you must implement. The Tools API uses creators to create new units,
projects, or other files, or to open existing files. See Creating forms and projects for information about creator
interfaces.

Other important interfaces are modules and editors. A module interface represents an open unit, which has one or
more files. An editor interface represents an open file. Different kinds of editor interfaces give you access to different
aspects of the IDE: the source editor for source files, the form designer for form files, and project resources for a
resource file. See Working with files and editors for information about module and editor interfaces.

Writing a Wizard Class
There are four kinds of wizards, where the wizard kind depends on the interfaces that the wizard class implements.
The following table describes the four kinds of wizards.

The four kinds of wizards
Interface Description

IOTAFormWizard Typically creates a new unit, form, or other file

IOTAMenuWizard Automatically added to Help menu

IOTAProjectWizard Typically creates a new application or other project

IOTAWizard Miscellaneous wizard that doesn't fit into other categories

The four kinds of wizards differ only in how the user invokes the wizard:

A menu wizard is added to the IDE's Help menu. When the user picks the menu item, the IDE calls the wizard's
Execute function. Plain wizards offer much more flexibility, so menu wizards are typically used only for
prototypes and debugging.

2413

Form and project wizards are called repository wizards because they reside in the Object Repository. The user
invokes these wizards from the New Items dialog box. The user can also see the wizards in the object repository
(by choosing the Tools Repository menu item). The user can check the New Form check box for a form
wizard, which tells the IDE to invoke the form wizard when the user chooses the File New Form menu
item. The user can also check the Main Form check box. This tells the IDE to use the form wizard as the default
form for a new application. The user can check the New Project check box for a project wizard. When the user
chooses File New Application, the IDE invokes the selected project wizard.
The fourth kind of wizard is for situations that don't fit into the other categories. A plain wizard does not do
anything automatically or by itself. Instead, you must define how the wizard is invoked.

The Tools API does not enforce any restrictions on wizards, such as requiring a project wizard to create a project.
You can just as easily write a project wizard to create a form and a form wizard to create a project (if that's something
you really want to do).

The following topics provide details on how to implement and install a wizard:

Implementing the wizard interfaces
Installing the wizard package

Implementing the Wizard Interfaces
Every wizard class must implement at least IOTAWizard, which requires implementing its ancestors, too:
IOTANotifier and IInterface. Form and project wizards must implement all their ancestor interfaces, namely,
IOTARepositoryWizard, IOTAWizard, IOTANotifier, and IInterface.

For C++, to use NotifierObject as a base class you must use multiple inheritance. Your wizard class must inherit
from NotifierObject and from the wizard interfaces that you need to implement, such as IOTAWizard. Because
IOTAWizard inherits from IOTANotifier and IInterface, there is an ambiguity in the derived class: functions such as
AddRef() are declared in every branch of the ancestral inheritance graph. To resolve this problem, pick one base
class as the primary base class and delegate all ambiguous functions to that one class. For example, the class
declaration might look as follows:

class PACKAGE MyWizard : public NotifierObject, public IOTAMenuWizard {
 typedef NotifierObject inherited;
 public:
 // IOTAWizard
 virtual AnsiString __fastcall GetIDString();
 virtual AnsiString __fastcall GetName();
 virtual TWizardState __fastcall GetState();
 virtual void __fastcall Execute();
 // IOTAMenuWizard
 virtual AnsiString __fastcall GetMenuText();
 void __fastcall AfterSave();
 void __fastcall BeforeSave();
 void __fastcall Destroyed();
 void __fastcall Modified();
 protected:
 // IInterface
 virtual HRESULT __stdcall QueryInterface(const GUID&, void**);
 virtual ULONG __stdcall AddRef();
 virtual ULONG __stdcall Release();
};

// implementation
ULONG __stdcall MyWizard::AddRef() { return inherited::AddRef(); }

2414

ULONG __stdcall MyWizard::Release() { return inherited::Release(); }
HRESULT __stdcall MyWizard::QueryInterface(const GUID& iid, void** obj)
{
 if (iid == __uuidof(IOTAMenuWizard)) {
 obj = static_cast<IOTAMenuWizard>(this);
 static_cast<IOTAMenuWizard*>(*obj)->AddRef();
 return S_OK;
 }
 if (iid == __uuidof(IOTAWizard)) {
 obj = static_cast<IOTAWizard>(this);
 static_cast<IOTAWizard*>(*obj)->AddRef();
 return S_OK;
 }
 return inherited::QueryInterface(iid, obj);
}

Your implementation of IInterface must follow the normal rules for Delphi interfaces, which are the same as the rules
for COM interfaces. That is, QueryInterface performs type casts, and _AddRef and _Release manage reference
counting. You might want to use a common base class to simplify writing wizard and notifier classes. For this purpose,
the ToolsAPI unit defines a class, TNotifierObject, which implements IOTANotifier interface with empty method
bodies.

You can write a class similar to TNotifierObject in C++.

class PACKAGE NotifierObject : public IOTANotifier {
 public:
 __fastcall NotifierObject() : ref_count(0) {}
 virtual __fastcall ~NotifierObject();
 void __fastcall AfterSave();
 void __fastcall BeforeSave();
 void __fastcall Destroyed();
 void __fastcall Modified();
 protected:
 // IInterface
 virtual HRESULT __stdcall QueryInterface(const GUID&, void**);
 virtual ULONG __stdcall AddRef();
 virtual ULONG __stdcall Release();
 private:
 long ref_count;
};

// implementation
ULONG __stdcall NotifierObject::AddRef()
{
 return InterlockedIncrement(&ref_count);
}
ULONG __stdcall NotifierObject::Release()
{
 ULONG result = InterlockedDecrement(&ref_count);
 if (ref_count == 0)
 delete this;
 return result;
}
HRESULT __stdcall NotifierObject::QueryInterface(const GUID& iid, void** obj)
{
 if (iid == __uuidof(IInterface)) {
 obj = static_cast<IInterface>(this);
 static_cast<IInterface*>(*obj)->AddRef();

2415

 return S_OK;
 }
 if (iid == __uuidof(IOTANotifier)) {
 obj = static_cast<IOTANotifier>(this);
 static_cast<IOTANotifier*>(*obj)->AddRef();
 return S_OK;
 }
 return E_NOINTERFACE;
}

Although wizards inherit from IOTANotifier, and must therefore implement all of its functions, the IDE does not usually
make use of those functions, so your implementations can be empty (as they are in TNotifierObject). Thus, when
you write your wizard class, you need only declare and implement those interface methods introduced by the wizard
interfaces, accepting the TNotifierObject implementation of IOTANotifier.

// C++ empty implementations
void __fastcall NotifierObject::AfterSave() {}
void __fastcall NotifierObject::BeforeSave() {}
void __fastcall NotifierObject::Destroyed() {}
void __fastcall NotifierObject::Modified() {}

Installing the Wizard Package
As with any other design-time package, a wizard package must have a Register function. (See Registering
components for details about the Register function.) In the Register function, you can register any number of wizards
by calling RegisterPackageWizard, and passing a wizard object as the sole argument, as shown below:

[Delphi]
procedure Register;
begin
 RegisterPackageWizard(MyWizard.Create);
 RegisterPackageWizard(MyOtherWizard.Create);
end;

[C++]
namespace Example {
 void __fastcall PACKAGE Register()
 {
 RegisterPackageWizard(new MyWizard());
 RegisterPackageWizard(new MyOtherWizard());
 }
}

You can also register property editors, components, and so on, as part of the same package.

Remember that a design-time package is part of the main Developer Studio 2006 application, which means any form
names must be unique throughout the entire application and all other design-time packages. This is the main
disadvantage to using packages: you never know what someone else might name their forms.

During development, install the wizard package the way you would any other design-time package: click the Install
button in the package manager. The IDE will compile and link the package and attempt to load it. The IDE displays
a dialog box telling you whether it successfully loaded the package.

2416

Obtaining Tools API Services
To do anything useful, a wizard needs access to the IDE: its editors, windows, menus, and so on. This is the role of
the service interfaces. The Tools API includes many services, such as action services to perform file actions, editor
services to access the source code editor, debugger services to access the debugger, and so on. The following table
summarizes all the service interfaces.

Tools API service interfaces
Interface Description

INTAServices Provides access to native IDE objects: main menu, action list, image list, and tool bars.

IOTAActionServices Performs basic file actions: open, close, save, and reload a file.

IOTACodeCompletionServices Provides access to code completion, allowing a wizard to install a custom code completion
manager.

IOTADebuggerServices Provides access to debugger.

IOTAEditorServices Provides access to source code editor and its internal buffers.

IOTAKeyBindingServices Permits a wizard to register custom keyboard bindings.

IOTAKeyboardServices Provides access to keyboard macros and bindings.

IOTAKeyboardDiagnostics Toggle debugging of keystrokes.

IOTAMessageServices Provides access to message view.

IOTAModuleServices Provides access to open files.

IOTAPackageServices Queries the names of all installed packages and their components.

IOTAServices Miscellaneous services.

IOTAToDoServices Provides access to the To-Do list, allowing a wizard to install a custom To-Do manager.

IOTAToolsFilter Registers tools filter notifiers.

IOTAWizardServices Registers and unregisters wizards.

To use a service interface, cast the BorlandIDEServices variable to the desired service using the global Supports
function, which is defined in the SysUtils unit. For example,

[Delphi]
procedure set_keystroke_debugging(debugging: Boolean);
var
 diag: IOTAKeyboardDiagnostics
begin
 if Supports(BorlandIDEServices, IOTAKeyboardDiagnostics, diag) then
 diag.KeyTracing := debugging;
end;

[C++]
void set_keystroke_debugging(bool debugging)
{
_di_IOTAKeyboardDiagnostics diag;
if (BorlandIDEServices->Supports(diag))
diag->KeyTracing = debugging;
}

If your wizard needs to use a specific service often, you can keep a pointer to the service as a data member of your
wizard class.

The following topics discuss special considerations when working with the Tools API service interfaces:

2417

Using native IDE objects
Debugging a wizard
Interface version numbers

Using Native IDE Objects
Wizards have full access to the main menu, tool bars, action list, and image list of the IDE. (Note that the IDE's many
context menus are not accessible through the Tools API.)

The starting point for working with native IDE objects is the INTAServices interface. Use this interface to add an
image to the image list, an action to the action list, a menu item to the main menu, and a button to a tool bar. You
can tie the action to the menu item and tool button. When the wizard is destroyed, it must clean up the objects it
creates, but it must not delete the image it added to the image list. Deleting an image would scramble the indices
for all images added after this wizard.

The wizard uses the actual TMainMenu, TActionList, TImageList, and TToolBar objects from the IDE, so you can
write code the way you would any other application. It also means you have a lot of scope for crashing the IDE or
otherwise disabling important features, such as deleting the File menu. Debugging a wizard discusses steps you
can take to debug your wizard if you find it has caused problems like these.

The following topics illustrate how to perform these tasks:

Adding an image to the image list
Adding an action to the action list
Deleting toolbar buttons

Adding an Image to the Image List
Suppose you want to add a menu item to invoke your wizard. You also want to enable the user to add a toolbar
button that invokes the wizard. The first step is to add an image to the IDE's image list. The index of your image can
then be used for the action, which in turn is used by the menu item and toolbar button. Create a resource file that
contains a 16 by 16 bitmap resource. Add the following code to your wizard's constructor:

[Delphi]
constructor MyWizard.Create;
var
 Services: INTAServices;
 Bmp: TBitmap;
 ImageIndex: Integer;
begin
 inherited;
 Supports(BorlandIDEServices, INTAServices, Services);
 { Add an image to the image list. }
 Bmp := TBitmap.Create;
 Bmp.LoadFromResourceName(HInstance, 'Bitmap1');
 ImageIndex := Services.AddMasked(Bmp, Bmp.TransparentColor,
 'Tempest Software.intro wizard image');
 Bmp.Free;
end;

[C++]
_di_INTAServices services;
BorlandIDEServices->Supports(services);

2418

// Add an image to the image list.
Graphics::TBitmap* bitmap(new Graphics::TBitmap());
bitmap->LoadFromResourceName(reinterpret_cast<unsigned>(HInstance), "Bitmap1");
int image = services->AddMasked(bitmap, bitmap->TransparentColor,
 "Tempest Software.intro wizard image");
delete bitmap;

Be sure to load the resource by the name or ID you specify in the resource file. You must choose a color that will be
interpreted as the background color for the image. If you don't want a background color, choose a color that does
not exist in the bitmap.

Adding an Action to the Action List
The image index obtained in Adding an image to the image list is used to create an action, as shown below. The
wizard uses the OnExecute and OnUpdate events. A common scenario is for a wizard to use the OnUpdate event
to enable or disable the action. Be sure the OnUpdate event returns quickly, or the user will notice that the IDE
becomes sluggish after loading your wizard. The action's OnExecute event is similar to the wizard's Execute method.
If you are using a menu item to invoke a form or project wizard, you might even want to have OnExecute call
Execute directly.

[Delphi]
NewAction := TAction.Create(nil);
NewAction.ActionList := Services.ActionList;
NewAction.Caption := GetMenuText();
NewAction.Hint := 'Display a silly dialog box';
NewAction.ImageIndex := ImageIndex;
NewAction.OnUpdate := action_update;
NewAction.OnExecute := action_execute;

[C++]
action = new TAction(0);
action->ActionList = services->ActionList;
action->Caption = GetMenuText();
action->Hint = "Display a silly dialog box";
action->ImageIndex = image;
action->OnUpdate = action_update;
action->OnExecute = action_execute;

The menu item sets its Action property to the newly created action. The tricky part of creating the menu item is
knowing where to insert it. The example below looks for theView menu, and inserts the new menu item as the first
item in the View menu. (In general, relying on absolute position is not a good idea: you never know when another
wizard might insert itself in the menu. Future versions of Delphi are likely to reorder the menu, too. A better approach
is to search the menu for a menu item with a specific name. The simplistic approach follows for the sake of clarity.)

[Delphi]
for I := 0 to Services.MainMenu.Items.Count - 1 do
begin
 with Services.MainMenu.Items[I] do
 begin
 if CompareText(Name, 'ViewsMenu') = 0 then
 begin
 NewItem := TMenuItem.Create(nil);
 NewItem.Action := NewAction;
 Insert(0, NewItem);
 end;

2419

 end;
end;

[C++]
for (int i = 0; i < services->MainMenu->Items->Count; ++i)
{
TMenuItem* item = services->MainMenu->Items->Items[i];
if (CompareText(item->Name, "ViewsMenu") == 0)
{
menu_item = new TMenuItem(0);
menu_item->Action = action;
item->Insert(0, menu_item);
}
}

By adding the action to the IDE's action list, the user can see the action when customizing the toolbars. The user
can select the action and add it as a button to any toolbar. This causes a problem when your wizard is unloaded: all
the tool buttons end up with dangling pointers to the non-existent action and OnClick event handler. To prevent
access violations, your wizard must find all tool buttons that refer to its action, and remove those buttons.

Deleting Toolbar Buttons
There is no convenient function for removing a button from a toolbar; you must send the CM_CONTROLCHANGE
message, where the first parameter is the control to change, and the second parameter is zero to remove it or non-
zero to add it to the toolbar. After removing the toolbar buttons, the destructor deletes the action and menu item.
Deleting these items automatically removes them from the IDE's ActionList and MainMenu.

[Delphi]
procedure remove_action (Action: TAction; ToolBar: TToolBar);
var
 I: Integer;
 Btn: TToolButton;
begin
 for I := ToolBar.ButtonCount - 1 downto 0 do
 begin
 Btn := ToolBar.Buttons[I];
 if Btn.Action = Action then
 begin
 { Remove "Btn" from "ToolBar" }
 ToolBar.Perform(CM_CONTROLCHANGE, WPARAM(Btn), 0);
 Btn.Free;
 end;
 end;
end;
destructor MyWizard.Destroy;
var
 Services: INTAServices;
 Btn: TToolButton;
begin
 Supports(BorlandIDEServices, INTAServices, Services);
 { Check all the toolbars, and remove any buttons that use this action. }
remove_action(NewAction, Services.ToolBar[sCustomToolBar]);
remove_action(NewAction, Services.ToolBar[sDesktopToolBar]);
remove_action(NewAction, Services.ToolBar[sStandardToolBar]);
remove_action(NewAction, Services.ToolBar[sDebugToolBar]);
remove_action(NewAction, Services.ToolBar[sViewToolBar]);
remove_action(NewAction, Services.ToolBar[sInternetToolBar]);

2420

 NewItem.Free;
 NewAction.Free;
end;

[C++]
void __fastcall remove_action (TAction* action, TToolBar* toolbar)
{
for (int i = toolbar->ButtonCount; --i >= 0;)
{
TToolButton* button = toolbar->Buttons[i];
if (button->Action == action)
{
// Remove "button" from "toolbar".
toolbar->Perform(CM_CONTROLCHANGE, WPARAM(button), 0);
delete button;
}
}
}
__fastcall MyWizard::~MyWizard()
{
_di_INTAServices services;
 BorlandIDEServices->Supports(services);
 // Check all the toolbars, and remove any buttons that use
// this action.
remove_action(action, services->ToolBar[sCustomToolBar]);
remove_action(action, services->ToolBar[sDesktopToolBar]);
remove_action(action, services->ToolBar[sStandardToolBar]);
remove_action(action, services->ToolBar[sDebugToolBar]);
remove_action(action, services->ToolBar[sViewToolBar]);
remove_action(action, services->ToolBar[sInternetToolBar]);
 delete menu_item;
delete action;
}

Debugging a Wizard
The Tools API provides you with a lot of flexibility in how your wizard interacts with the IDE. With the flexibility comes
responsibility, however. It is easy to wind up with dangling pointers or other access violations.

When writing wizards that use the native tools API, you can write code that causes the IDE to crash. It is also possible
that you write a wizard that installs but does not act the way you want it to. One of the challenges of working with
design-time code is debugging. It's an easy problem to solve, however. Because the wizard is installed in Delphi
itself, you simply need to set the package's Host Application to the Delphi executable from the Run
Parameters... menu item.

When you want (or need) to debug the package, don't install it. Instead, choose Run Run from the menu bar.
This starts up a new instance of Delphi. In the new instance, install the already-compiled package by choosing
Components Install Package... from the menu bar. Back in the original instance of Delphi, you should now see
the telltale blue dots that tell you where you can set breakpoints in the wizard source code. (If not, double-check
your compiler options to be sure you enabled debugging; make sure you loaded the right package; and double-check
the process modules to make extra sure that you loaded the .bpl file you wanted to load.)

You cannot debug into the VCL or RTL code this way, but you have full debug capabilities for the wizard itself, which
might be enough to tell what is going wrong.

2421

Interface Version Numbers
If you look closely at the declarations of some of the interfaces, such as IOTAMessageServices, you will see that
they inherit from other interfaces with similar names, such as IOTAMessageServices50, which inherits from
IOTAMessageServices40. This use of version numbers helps insulate your code from changes between releases
of Delphi.

The Tools API follows the basic principle of COM, namely, that an interface and its GUID never change. If a new
release adds features to an interface, the Tools API declares a new interface that inherits from the old one. The
GUID remains the same, attached to the old, unchanged interface. The new interface gets a brand new GUID. Old
wizards that use the old GUIDs continue to work.

The Tools API also changes interface names to try to preserve source-code compatibility. To see how this works, it
is important to distinguish between the two kinds of interfaces in the Tools API: Borland-implemented and user-
implemented. If the IDE implements the interface, the name stays with the most recent version of the interface. The
new functionality does not affect existing code. The old interfaces have the old version number appended.

For a user-implemented interface, however, new member functions in the base interface require new functions in
your code. Therefore, the name tends to stick with the old interface, and the new interface has a version number
tacked onto the end.

For example, consider the message services. Delphi 6 introduced a new feature: message groups. Therefore, the
basic message services interface required new member functions. These functions were declared in a new interface
class, which retained the name IOTAMessageServices. The old message services interface was renamed to
IOTAMessageServices50 (for version 5). The GUID of the old IOTAMessageServices is the same as the GUID of
the new IOTAMessageServices50 because the member functions are the same.

Consider
IOTAIDENotifier as an example of a user-implemented interface. Delphi 5 added new overloaded functions:
AfterCompile and BeforeCompile. Existing code that used IOTAIDENotifier did not need to change, but new code
that required the new functionality had to be modified to override the new functions inherited from
IOTAIDENotifier50. Version 6 did not add any more functions, so the current version to use is IOTAIDENotifier50.

The rule of thumb is to use the most-derived class when writing new code. Leave the source code alone if you are
merely recompiling an existing wizard under a new release of Delphi.

Working with Files and Editors
It is important to understand how the Tools API works with files. The main interface is IOTAModule. A module
represents a set of logically related open files. For example, a single module represents a single unit. The module,
in turn, has one or more editors, where each editor represents one file, such as the unit source (.pas) or form (.dfm
or .xfm) file. The editor interfaces reflect the internal state of the IDE's editors, so a wizard can see the modified code
and forms that the user sees, even if the user has not saved any changes.

The following topics provide information about the module and editor interfaces:

Using module interfaces
Using editor interfaces

Using Module Interfaces
To obtain a module interface, start with the module services (IOTAModuleServices). You can query the module
services for all open modules, look up a module from a file name or form name, or open a file to obtain its module
interface.

2422

There are different kinds of modules for different kinds of files, such as projects, resources, and type libraries. Cast
a module interface to a specific kind of module interface to learn whether the module is of that type. For example,
one way to obtain the current project group interface is as follows:

[Delphi]
{ Return the current project group, or nil if there is no project group. }
function CurrentProjectGroup: IOTAProjectGroup;
var
 I: Integer;
 Svc: IOTAModuleServices;
 Module: IOTAModule;
begin
 Supports(BorlandIDEServices, IOTAModuleServices, Svc);
 for I := 0 to Svc.ModuleCount - 1 do
 begin
 Module := Svc.Modules[I];
 if Supports(Module, IOTAProjectGroup, Result) then
 Exit;
 end;
 Result := nil;
end;

[C++]
// Return the current project group, or 0 if there is no project group.
_di_IOTAProjectGroup __fastcall CurrentProjectGroup()
{
_di_IOTAModuleServices svc;
 BorlandIDEServices->Supports(svc);
 for (int i = 0; i < svc->ModuleCount; ++i)
{
_di_IOTAModule module = svc->Modules[i];
_di_IOTAProjectGroup group;
if (module->Supports(group))
return group;
}
return 0;
}

Using Editor Interfaces
Every module has at least one editor interface. Some modules have several editors, such as a source (.pas) file and
form description (.dfm) file. All editors implement the IOTAEditor interface; cast the editor to a specific type to learn
what kind of editor it is. For example, to obtain the form editor interface for a unit, you can do the following:

[Delphi]
{ Return the form editor for a module, or nil if the unit has no form. }
function GetFormEditor(Module: IOTAModule): IOTAFormEditor;
var
 I: Integer;
 Editor: IOTAEditor;
begin
 for I := 0 to Module.ModuleFileCount - 1 do
 begin
 Editor := Module.ModuleFileEditors[I];
 if Supports(Editor, IOTAFormEditor, Result) then
 Exit;

2423

 end;
 Result := nil;
end;

[C++]
// Return the form editor for a module, or 0 if the unit has no form.
_di_IOTAFormEditor __fastcall GetFormEditor(_di_IOTAModule module)
{
for (int i = 0; i < module->ModuleFileCount; ++i)
{
_di_IOTAEditor editor = module->ModuleFileEditors[i];
_di_IOTAFormEditor formEditor;
if (editor->Supports(formEditor))
return formEditor;
}
return 0;
}

The editor interfaces give you access to the editor's internal state. You can examine the source code or components
that the user is editing, make changes to the source code, components, or properties, change the selection in the
source and form editors, and carry out almost any editor action that the end user can perform.

Using a form editor interface, a wizard can access all the components on the form. Each component (including the
root form or data module) has an associated IOTAComponent interface. A wizard can examine or change most of
the component's properties. If you need complete control over the component, you can cast the IOTAComponent
interface to INTAComponent. The native component interface enables your wizard to access the TComponent
pointer directly. This is important if you need to read or modify a class-type property, such as TFont, which is possible
only through NTA-style interfaces.

Creating Forms and Projects
Delphi comes with a number of form and project wizards already installed, and you can write your own. The Object
Repository lets you create static templates that can be used in a project, but a wizard offers much more power
because it is dynamic. The wizard can prompt the user and create different kinds of files depending on the user's
responses.

A form or project wizard typically creates one or more new files. Instead of real files, however, it is best to create
unnamed, unsaved modules. When the user saves them, the IDE prompts the user for a file name. A wizard uses
a creator object to create such modules.

A creator class implements a creator interface, which inherits from IOTACreator. The wizard passes a creator object
to the module service's CreateModule method, and the IDE calls back to the creator object for the parameters it
needs to create the module.

For example, a form wizard that creates a new form typically implements GetExisting to return false and
GetUnnamed to return true. This creates a module that has no name (so the user must pick a name before the file
can be saved) and is not backed by an existing file (so the user must save the file even if the user does not make
any changes). Other methods of the creator tell the IDE what kind of file is being created (e.g., project, unit, or form),
provide the contents of the file, or return the form name, ancestor name, and other important information. Additional
callbacks let a wizard add modules to a newly created project, or add components to a newly created form.

To create a new file, which is often required in a form or project wizard, you usually need to provide the contents of
the new file. To do so, write a new class that implements the IOTAFile interface. If your wizard can make do with
the default file contents, you can return nil from any function that returns IOTAFile.

For example, suppose your organization has a standard comment block that must appear at the top of each source
file. You could do this with a static template in the Object Repository, but the comment block would need to be

2424

updated manually to reflect the author and creation date. Instead, you can use a creator to dynamically fill in the
comment block when the file is created.

The first step is to write a wizard that creates new units and forms. Most of the creator's functions return zero, empty
strings, or other default values, which tells the Tools API to use its default behavior for creating a new unit or form.
Override GetCreatorType to inform the Tools API what kind of module to create: a unit or a form. To create a unit,
return sUnit. To create a form, return sForm. To simplify the code, use a single class that takes the creator type as
an argument to the constructor. Save the creator type in a data member, so that GetCreatorType can return its value.
Implement NewImplSource and NewIntfSource to return the desired file contents.

[Delphi]
TCreator = class(TInterfacedObject, IOTAModuleCreator)
public
constructor Create(const CreatorType: string);
 { IOTAModuleCreator }
 function GetAncestorName: string;
 function GetImplFileName: string;
 function GetIntfFileName: string;
 function GetFormName: string;
 function GetMainForm: Boolean;
 function GetShowForm: Boolean;
 function GetShowSource: Boolean;
 function NewFormFile(const FormIdent, AncestorIdent: string): IOTAFile;
 function NewImplSource(const ModuleIdent, FormIdent, AncestorIdent: string): IOTAFile;
 function NewIntfSource(const ModuleIdent, FormIdent, AncestorIdent: string): IOTAFile;
 procedure FormCreated(const FormEditor: IOTAFormEditor);
 { IOTACreator }
 function GetCreatorType: string;
 function GetExisting: Boolean;
 function GetFileSystem: string;
 function GetOwner: IOTAModule;
 function GetUnnamed: Boolean;
private
 FCreatorType: string;
end;

[C++]
class PACKAGE Creator : public IOTAModuleCreator {
public:
__fastcall Creator(const AnsiString creator_type)
: ref_count(0), creator_type(creator_type) {}
virtual __fastcall ~Creator();
// IOTAModuleCreator
virtual AnsiString __fastcall GetAncestorName();
virtual AnsiString __fastcall GetImplFileName();
virtual AnsiString __fastcall GetIntfFileName();
virtual AnsiString __fastcall GetFormName();
virtual bool __fastcall GetMainForm();
virtual bool __fastcall GetShowForm();
virtual bool __fastcall GetShowSource();
virtual _di_IOTAFile __fastcall NewFormFile(
const AnsiString FormIdent, const AnsiString AncestorIdent);
virtual _di_IOTAFile __fastcall NewImplSource(
const AnsiString ModuleIdent, const AnsiString FormIdent,
const AnsiString AncestorIdent);
virtual _di_IOTAFile __fastcall NewIntfSource(
const AnsiString ModuleIdent, const AnsiString FormIdent,
const AnsiString AncestorIdent);
virtual void __fastcall FormCreated(

2425

const _di_IOTAFormEditor FormEditor);
// IOTACreator
virtual AnsiString __fastcall GetCreatorType();
 virtual bool __fastcall GetExisting();
virtual AnsiString __fastcall GetFileSystem();
virtual _di_IOTAModule __fastcall GetOwner();
virtual bool __fastcall GetUnnamed();
protected:
// IInterface
virtual HRESULT __stdcall QueryInterface(const GUID&, void**);
virtual ULONG __stdcall AddRef();
virtual ULONG __stdcall Release();
private:
long ref_count;
const AnsiString creator_type;
};

Most of the members of TCreator return zero, nil, or empty strings. The boolean methods return true, except
GetExisting, which returns false. The most interesting method is GetOwner, which returns a pointer to the current
project module, or nil if there is no project. There is no simple way to discover the current project or the current
project group. Instead, GetOwner must iterate over all open modules. If a project group is found, it must be the only
project group open, so GetOwner returns its current project. Otherwise, the function returns the first project module
it finds, or nil if no projects are open.

[Delphi]
function TCreator.GetOwner: IOTAModule;
var
 I: Integer;
 Svc: IOTAModuleServices;
 Module: IOTAModule;
 Project: IOTAProject;
 Group: IOTAProjectGroup;
begin
 { Return the current project. }
 Supports(BorlandIDEServices, IOTAModuleServices, Svc);
 Result := nil;
 for I := 0 to Svc.ModuleCount - 1 do
 begin
 Module := Svc.Modules[I];
 if Supports(Module, IOTAProject, Project) then
 begin
 { Remember the first project module}
 if Result = nil then
 Result := Project;
 end
 else if Supports(Module, IOTAProjectGroup, Group) then
 begin
 { Found the project group, so return its active project}
 Result := Group.ActiveProject;
 Exit;
 end;
 end;
end;

[C++]
_di_IOTAModule __fastcall Creator::GetOwner()
{
// Return the current project.
_di_IOTAProject result = 0;

2426

 _di_IOTAModuleServices svc = interface_cast<IOTAModuleServices>(BorlandIDEServices);
 for (int i = 0; i < svc->ModuleCount; ++i)
 begin
 _di_IOTAModule module = svc->Modules[i];
_di_IOTAProject project;
_di_IOTAProjectGroup group;
if (module->Supports(project)) {
// Remember the first project module.
if (result == 0)
result = project;
} else if (module->Supports(group)) {
// Found the project group, so return its active project.
result = group->ActiveProject;
break;
}
}
return result;
}

The creator returns nil from NewFormSource, to generate a default form file. The interesting methods are
NewImplSource and NewIntfSource, which create an IOTAFile instance that returns the file contents.

The TFile class implements the IOTAFile interface. It returns -1 as the file age (which means the file does not exist),
and returns the file contents as a string. To keep the TFile class simple, the creator generates the string, and the
TFile class simply passes it on.

[Delphi]
TFile = class(TInterfacedObject, IOTAFile)
public
constructor Create(const Source: string);
 function GetSource: string;
 function GetAge: TDateTime;
private
 FSource: string;
end;
constructor TFile.Create(const Source: string);
begin
 FSource := Source;
end;
 function TFile.GetSource: string;
begin
 Result := FSource;
end;
 function TFile.GetAge: TDateTime;
begin
 Result := TDateTime(-1);
end;

[C++]
class File : public IOTAFile {
public:
__fastcall File(const AnsiString source);
virtual __fastcall ~File();
AnsiString __fastcall GetSource();
System::TDateTime __fastcall GetAge();
protected:
// IInterface
virtual HRESULT __stdcall QueryInterface(const GUID&, void**);
virtual ULONG __stdcall AddRef();

2427

virtual ULONG __stdcall Release();
private:
long ref_count;
AnsiString source;
};
__fastcall File::File(const AnsiString source)
: ref_count(0), source(source)
{}
AnsiString __fastcall File::GetSource()
{
return source;
}
System::TDateTime __fastcall File::GetAge()
{
return -1;
}

You can store the text for the file contents in a resource to make it easier to modify, but for the sake of simplicity,
this example hardcodes the source code in the wizard. The example below generates the source code, assuming
there is a form. You can easily add the simpler case of a plain unit. Test FormIdent, and if it is empty, create a plain
unit; otherwise create a form unit. The basic skeleton for the code is the same as the IDE's default (with the addition
of the comments at the top, of course), but you can modify it any way you desire.

[Delphi]
function TCreator.NewImplSource(
 const ModuleIdent, FormIdent, AncestorIdent: string): IOTAFile;
var
 FormSource: string;
begin
 FormSource :=
 '{ --- ' + #13#10 +
 '%s - description'+ #13#10 +
 'Copyright © %y Your company, inc.'+ #13#10 +
 'Created on %d'+ #13#10 +
 'By %u'+ #13#10 +
 ' --- }' + #13#10 +
#13#10;
 return TFile.Create(Format(FormSource, ModuleIdent, FormIdent,
AncestorIdent));
}

[C++]
_di_IOTAFile __fastcall Creator::NewImplSource(
const AnsiString ModuleIdent,
const AnsiString FormIdent,
const AnsiString AncestorIdent)
{
const AnsiString form_source =
"/*---\n"
" %m - description\n"
" Copyright \xa9 %y Your company, inc.\n"
" Created on %d\n"
" By %u\n"
" ---*/\n"
"\n"
"#include <vcl.h>\n"
"#pragma hdrstop\n"
"\n"
"#include \"%m.h\"\n"

2428

"//---\n"
"#pragma package(smart_init)\n"
"#pragma resource \"*.dfm\"\n"
"T%f *%f;\n"
"//---\n"
"__fastcall T%m::T%m(TComponent* Owner)\n"
" : T%a(Owner)\n"
"{\n"
"}\n"
"//--\n";
 return new File(expand(form_source, ModuleIdent, FormIdent,
AncestorIdent));
}

The final step is to create two form wizards: one uses sUnit as the creator type, and the other uses sForm. As an
added benefit for the user, you can use INTAServices to add a menu item to the File New menu to invoke each
wizard. The menu item's OnClick event handler can call the wizard's Execute function.

Some wizards need to enable or disable the menu items, depending on what else is happening in the IDE. For
example, a wizard that checks a project into a source code control system should disable its Check In menu item
if no files are open in the IDE. You can add this capability to your wizard by using notifiers.

Notifying a Wizard of IDE Events
An important aspect of writing a well-behaved wizard is to have the wizard respond to IDE events. In particular, any
wizard that keeps track of module interfaces must know when the user closes the module, so the wizard can release
the interface. To do this, the wizard needs a notifier, which means you must write a notifier class.

All notifier classes implement one or more notifier interfaces. The notifier interfaces define callback methods; the
wizard registers a notifier object with the Tools API, and the IDE calls back to the notifier when something important
happens.

Every notifier interface inherits from IOTANotifier, although not all of its methods are used for a particular notifier.
The following table lists all the notifier interfaces, and gives a brief description of each one.

Notifier interfaces
Interface Description

IOTANotifier Abstract base class for all notifiers

IOTABreakpointNotifier Triggering or changing a breakpoint in the debugger

IOTADebuggerNotifier Running a program in the debugger, or adding or deleting breakpoints

IOTAEditLineNotifier Tracking movements of lines in the source editor

IOTAEditorNotifier Modifying or saving a source file, or switching files in the editor

IOTAFormNotifier Saving a form, or modifying the form or any components on the form (or data module)

IOTAIDENotifier Loading projects, installing packages, and other global IDE events

IOTAMessageNotifier Adding or removing tabs (message groups) in the message view

IOTAModuleNotifier Changing, saving, or renaming a module

IOTAProcessModNotifier Loading a process module in the debugger

IOTAProcessNotifier Creating or destroying threads and processes in the debugger

IOTAThreadNotifier Changing a thread's state in the debugger

IOTAToolsFilterNotifier Invoking a tools filter

2429

To see how to use notifiers, consider the example in Creating forms and projects. Using module creators, the example
creates a wizard that adds a comment to each source file. The comment includes the unit's initial name, but the user
almost always saves the file under a different name. In that case, it would be a courtesy to the user if the wizard
updated the comment to match the file's true name.

To do this, you need a module notifier. The wizard saves the module interface that CreateModule returns, and uses
it to register a module notifier. The module notifier receives notification when the user modifies the file or saves the
file, but these events are not important for this wizard, so the AfterSave and related functions all have empty bodies.
The important function is ModuleRenamed, which the IDE calls when the user saves the file under a new name. The
declaration for the module notifier class is shown below:

[Delphi]
TModuleIdentifier = class(TNotifierObject, IOTAModuleNotifier)
public
constructor Create(const Module: IOTAModule);
 destructor Destroy; override;
 function CheckOverwrite: Boolean;
 procedure ModuleRenamed(const NewName: string);
 procedure Destroyed;
private
 FModule: IOTAModule;
 FName: string;
 FIndex: Integer;
end;

[C++]
class ModuleNotifier : public NotifierObject, public IOTAModuleNotifier
{
typedef NotifierObject inherited;
public:
__fastcall ModuleNotifier(const _di_IOTAModule module);
__fastcall ~ModuleNotifier();
// IOTAModuleNotifier
virtual bool __fastcall CheckOverwrite();
virtual void __fastcall ModuleRenamed(const AnsiString NewName);
// IOTANotifier
void __fastcall AfterSave();
void __fastcall BeforeSave();
void __fastcall Destroyed();
void __fastcall Modified();
protected:
// IInterface
virtual HRESULT __stdcall QueryInterface(const GUID&, void**);
virtual ULONG __stdcall AddRef();
virtual ULONG __stdcall Release();
private:
_di_IOTAModule module;
AnsiString name; // Remember the module's old name.
int index; // Notifier index.
};

One way to write a notifier is to have it register itself automatically in its constructor. The destructor unregisters the
notifier. In the case of a module notifier, the IDE calls the Destroyed method when the user closes the file. In that
case, the notifier must unregister itself and release its reference to the module interface. The IDE releases its
reference to the notifier, which reduces its reference count to zero and frees the object. Therefore, you need to write
the destructor defensively: the notifier might already be unregistered.

2430

[Delphi]
constructor TModuleNotifier.Create(const Module: IOTAModule);
begin
 FIndex := -1;
 FModule := Module;
 { Register this notifier. }
 FIndex := Module.AddNotifier(self);
 { Remember the module's old name. }
 FName := ChangeFileExt(ExtractFileName(Module.FileName), '');
end;
destructor TModuleNotifier.Destroy;
begin
 { Unregister the notifier if that hasn't happened already. }
 if Findex >= 0 then
 FModule.RemoveNotifier(FIndex);
end;
procedure TModuleNotifier.Destroyed;
begin
 { The module interface is being destroyed, so clean up the notifier. }
 if Findex >= 0 then
 begin
 { Unregister the notifier. }
 FModule.RemoveNotifier(FIndex);
 FIndex := -1;
 end;
 FModule := nil;
end;

[C++]
__fastcall ModuleNotifier::ModuleNotifier(const _di_IOTAModule module)
: index(-1), module(module)
{
// Register this notifier.
index = module->AddNotifier(this);
// Remember the module's old name.
name = ChangeFileExt(ExtractFileName(module->FileName), "");
}
__fastcall ModuleNotifier::~ModuleNotifier()
{
// Unregister the notifier if that hasn't happened already.
if (index >= 0)
module->RemoveNotifier(index);
}
void __fastcall ModuleNotifier::Destroyed()
{
// The module interface is being destroyed, so clean up the notifier.
if (index >= 0)
{
// Unregister the notifier.
module->RemoveNotifier(index);
index = -1;
}
module = 0;
}

The IDE calls back to the notifier's ModuleRenamed function when the user renames the file. The function takes the
new name as a parameter, which the wizard uses to update the comment in the file. To edit the source buffer, the
wizard uses an edit position interface. The wizard finds the right position, double checks that it found the right text,
and replaces that text with the new name.

2431

[Delphi]
procedure TModuleNotifier.ModuleRenamed(const NewName: string);
var
 ModuleName: string;
 I: Integer;
 Editor: IOTAEditor;
 Buffer: IOTAEditBuffer;
 Pos: IOTAEditPosition;
 Check: string;
begin
 { Get the module name from the new file name. }
 ModuleName := ChangeFileExt(ExtractFileName(NewName), '');
for I := 0 to FModule.GetModuleFileCount - 1 do
 begin
 { Update every source editor buffer. }
 Editor := FModule.GetModuleFileEditor(I);
 if Supports(Editor, IOTAEditBuffer, Buffer) then
 begin
 Pos := Buffer.GetEditPosition;
{ The module name is on line 2 of the comment.
 Skip leading white space and copy the old module name,
 to double check we have the right spot. }
 Pos.Move(2, 1);
 Pos.MoveCursor(mmSkipWhite or mmSkipRight);
Check := Pos.RipText('', rfIncludeNumericChars or rfIncludeAlphaChars);
if Check = FName then
 begin
 Pos.Delete(Length(Check)); // Delete the old name.
 Pos.InsertText(ModuleName); // Insert the new name.
 FName := ModuleName; // Remember the new name.
 end;
 end;
 end;
end;

[C++]
void __fastcall ModuleNotifier::ModuleRenamed(const AnsiString NewName)
{
// Get the module name from the new file name.
AnsiString ModuleName = ChangeFileExt(ExtractFileName(NewName), "");
for (int i = 0; i < module->GetModuleFileCount(); ++i)
{
// Update every source editor buffer.
_di_IOTAEditor editor = module->GetModuleFileEditor(i);
_di_IOTAEditBuffer buffer;
if (editor->Supports(buffer))
{
_di_IOTAEditPosition pos = buffer->GetEditPosition();
// The module name is on line 2 of the comment.
// Skip leading white space and copy the old module name,
// to double check we have the right spot.
pos->Move(2, 1);
pos->MoveCursor(mmSkipWhite | mmSkipRight);
AnsiString check = pos->RipText("", rfIncludeNumericChars | rfIncludeAlphaChars);
if (check == name)
{
pos->Delete(check.Length()); // Delete the old name.
pos->InsertText(ModuleName); // Insert the new name.
name = ModuleName; // Remember the new name.

2432

}
}
}
}

What if the user inserts additional comments above the module name? In that case, you need to use an edit line
notifier to keep track of the line number where the module name sits. To do this, use the IOTAEditLineNotifier
and IOTAEditLineTracker interfaces.

You need to be cautious when writing notifiers. You must make sure that no notifier outlives its wizard. For example,
if the user were to use the wizard to create a new unit, then unload the wizard, there would still be a notifier attached
to the unit. The results would be unpredictable, but most likely, the IDE would crash. Thus, the wizard needs to keep
track of all of its notifiers, and must unregister every notifier before the wizard is destroyed. On the other hand, if the
user closes the file first, the module notifier receives a Destroyed notification, which means the notifier must
unregister itself and release all references to the module. The notifier must remove itself from the wizard's master
notifier list, too.

Below is the final version of the wizard's Execute function. It creates the new module, uses the module interface and
creates a module notifier, then saves the module notifier in an interface list (TInterfaceList).

[Delphi]
procedure DocWizard.Execute;
var
 Svc: IOTAModuleServices;
 Module: IOTAModule;
 Notifier: IOTAModuleNotifier;
begin
 { Return the current project. }
 Supports(BorlandIDEServices, IOTAModuleServices, Svc);
 Module := Svc.CreateModule(TCreator.Create(creator_type));
 Notifier := TModuleNotifier.Create(Module);
list.Add(Notifier);
end

[C++]
void __fastcall DocWizard::Execute()
{
_di_IOTAModuleServices svc;
 BorlandIDEServices->Supports(svc);
_di_IOTAModule module = svc->CreateModule(new Creator(creator_type));
_di_IOTAModuleNotifier notifier = new ModuleNotifier(module);
list->Add(notifier);
}

The wizard's destructor iterates over the interface list and unregisters every notifier in the list. Simply letting the
interface list release the interfaces it holds is not sufficient because the IDE also holds the same interfaces. You
must tell the IDE to release the notifier interfaces in order to free the notifier objects. In this case, the destructor tricks
the notifiers into thinking their modules have been destroyed. In a more complicated situation, you might find it best
to write a separate Unregister function for the notifier class.

[Delphi]
destructor DocWizard.Destroy; override;
var
 Notifier: IOTAModuleNotifier;
 I: Integer;
begin
 { Unregister all the notifiers in the list. }
for I := list.Count - 1 downto 0 do

2433

 begin
 Supports(list.Items[I], IOTANotifier, Notifier);
 { Pretend the associated object has been destroyed.
 That convinces the notifier to clean itself up. }
 Notifier.Destroyed;
 list.Delete(I);
 end;
 list.Free;
 FItem.Free;
end;

[C++]
__fastcall DocWizard::~DocWizard()
{
// Unregister all the notifiers in the list.
for (int i = list->Count; --i >= 0;)
{
_di_IOTANotifier notifier;
 list->Items[i]->Supports(notifier);
// Pretend the associated object has been destroyed.
// That convinces the notifier to clean itself up.
notifier->Destroyed();
list->Delete(i);
}
delete list;
delete item;
}

The rest of the wizard manages the mundane details of registering the wizard, installing menu items, and the like.

2434

Index
.NET data types

BDP.NET, 885
ADO.NET

ASP.NET, 812
Adapter Preview Editor, 1065 1065
architecture, 877
Command Text Editor, 1059 1059
CommandText Editor, 1063 1063
database applications, 1169 1169
namespace, 879
Windows Forms, 850

ADO.NET application, 955
building, 1017 1017 1017

ASP.NET
architecture, 811
DB Web Controls, 949 949 949

ASP.NET application, 953
ASP.NET errors

HTTP messages, 971 971
ASP.NET lifecycle

ASP.NET processing, 827
Assembly Metadata Explorer, 177
audit, 95
BDP.NET

data providers, 882
BDP.NET components

BDP.NET, 882
bitmap images, 1191
bookmarks, using, 349
browsing a database, 1009
build configurations

inherit checkbox, 1263
default check box, 1263
overriding inherited options, 1263

building
VCL Forms hello world, 1167 1167
VCL forms applications with XML components, 1171
 1171
VCL Forms menus, 1193 1193

Caliber
Requirements, 49

callback functions
functions, 923

cascading deletes
database, 823

cascading updates
database, 824

ClearSessionChanges method, 819
code

templates, 333 357 333 357

Code Editor
customizing, 335 335

code folding, 353
CodeGuard

using, 1283 1283
code insight, 355
Code Template, 91
COM interfaces

interfaces, 925
COM Interop

Terminology, 913
Interop assemblies in the IDE, 916
SDK Tools, 915

comment blocks, 40
component designers

relationship, 889
Command Text Editor, 890
configure data adapter, 891
Connection Editor, 890
Dataset, 891
Stored Procedure Dialog, 890

components
data-aware, 815
connection, 816
importing, 857
Windows Forms, 849

component templates, 165
constructors

destructors, 868
data

remoting, 1013 1013
migration, 1041 1041

data-aware controls
controls, 1773

database
connections, 973 973 973

data binding
DB Web Control binding, 827

data explorer
definition, 891

Data Explorer
executing SQL, 1037 1037
modifying connections, 1043 1043

data providers
architecture, 881

DataSet
table mappings, 1035 1035

data types
BDP.NET, 883

DataView limitations
inserting records, 819

2435

DataViews
runtime properties, 819

DB2
BDP.NET, 885

DB Web Controls
architecture, 815
library, 995 995 995
namespace, 816

DB Web interfaces, 829
debugging

adding a watch, 287 287
attaching to a process, 289 289
breakpoints, 321 321
inspecting data elements, 301 301
modifying expressions, 305 305
preparation, 293 307 293 307
remote applications, 291 291
Web Application Debugger, 1228

declare field, 115
declare variable

initial type, 115
declare variable and field samples, 116
declare variable rules, 115
Delphi for .NET

Web Forms, 811
Windows Forms, 849

deploying
BDP.NET applications, 909
ASP.NET Deployment Manager, 991 991
BDE applications for .NET, 910
dbExpress applications for .NET, 909
dbGo applications for .NET, 910

deployment
DB Web Controls, 816

Design Pattern, 91
displaying bitmap images, 1181
doc comment, 85
documentation generation, 97
drawing

polygons, 1183 1183 1405 1405
rectangles and ellipses, 1185 1185 1409 1409
round rectangles, 1407 1407
straight lines, 1187 1187 1411 1411

dynamic properties, 193
ECO

ECO terminology, 735
Behavioral Modeling with state machines, 741
Building Applications with the ECO Framework,
1103 1103
Chained evaluation, 749
Converting to ECO 3, 1113 1113
Creating an ECO space subclass, 1115 1115

Deployment, 1133 1133
Designtime functionality, 736
EcoSpaceProvider, 787
Interaction with Model View, 740
Pooling, 788
Predefined OCL Types, 777
Projects and wizards, 739
Reevaluate and Resubscribe, 755
Regenerating source code, 1145 1145
Regions of a state, 767
Rooted handles, 751
Root handles, 750
Runtime functionality, 737
Shared Persistence Mappers, 789
State machine basics, 763
Structural modeling with class diagram, 740
Subclassing SubscriberAdapterBase, 1141 1141
SubscriberAdapterBase abstract class, 758
Subscription Mechanism, 755
Subscriptions and derived attributes, 757
Synchronizing ECO Spaces, 789
Syntax of OCL Expressions, 778

ECO class diagram
Derived association end, 1073 1073
Association class, 1121 1121
Derived attribute, 1075 1075
Deriving attributes in source code, 1135 1135

ECO handles
Columns and nestings, 1097 1097
Configuring OclVariables, 1107 1107
Event derived columns, 1131 1131

ECO multi-client
Creating an ECO ASP.NET application, 1123 1123

ECO Object Constraint Language
OCL expression editor, 1153 1153

ECO packages
Adding a reference to an ECO package DLL, 1083
 1083
Adding a UML package to a project, 1091 1091
ECO package in a DLL, 1127 1127

ECO space designer
Adding a PersistenceMapperClient, 1079 1079
Adding a Connection Handle, 1095 1095
Adding a PersistenceMapperSharer, 1081 1081
Configuring the Persistence Method, 1111 1111
Creating an Empty Interbase Database, 1129 1129
Mulitple data sources, 1105 1105
Object-relational mapping files, 1149 1149
Persistence mapper provider, 1119 1119
PersistenceMapperProvider Designer, 1155 1155
Reverse engineering an existing database, 1139
1139
Selecting ECO UML Packages, 1147 1147
Using the ECO space designer, 1151 1151

2436

ECO state machines
Guard expressions, 1077 1077
Adding a Region to a State, 1085 1085
Adding a Trigger Method, 1087 1087
Adding States and Substates, 1101 1101
Creating a state machine, 1125 1125
Effects, 1093 1093
Entry and exit actions, 1099 1099

ECO Winforms
Adding an ECO enabled Windows Form, 1089
1089

ECO winforms
Creating a new ECO Windows Forms application,
1117 1117

editing code
class completion, 351 351

Evaluate/Modify
debugging, 145

expandable tooltips, 327
find references sample, 119
getcurdir, 1276
graphics

VCL Forms applications, 1373 1373
hello world

VCL Forms, 1341 1379 1427 1341 1379 1427
help

Delphi for .NET, 45
.NET Framework, 46
borland site, 46
quick start guide, 46
typographic, 46

History Manager, 361
HTML tag editor

editing HTML tags, 997 997
IDBWebColumnLink

IDBWebDataLink, 821
IDBWebLookupColumnLink, 821

IDBWebDataLink, 821
ide

welcome page, 27
Code Editor, 32
design surface, 28
forms, 27
MS Active Accessibility, 27
Object Inspector, 29
object repository, 30
Project Manager, 30
tool palette, 29

IIS
troubleshooting, 987 987

InterBase
BDP.NET, 886

components, 903
InterBase components

getting started, 1241
Interfaces

BDP.NET, 883
internal errors, 319
Janeva

installing to Tools menu, 1161 1161
logical data types

BDP.NET, 885
macro

recording, 341 341
master-detail

DataViews, 819
MDA, 85
menus

VCL Forms, 1383 1387 1403 1431 1383 1387
 1403 1431

metadata
DataSet mappings, 967 967 967

method rename, 109
metric, 95
modal

VCL Forms, 1413 1413
modeless

VCL Forms, 1415 1415
modifying DB Web controls

extending controls, 829
MS SQL

BDP.NET, 886
multithreaded applications

simultaneous thread access, 1337 1337
cleaning up threads, 1439 1439
exception handling, 1417 1417
initializing threads, 1419 1419
main thread, 1433 1433
thread object, 1391 1391
waiting for threads, 1435 1435
writing the thread function, 1441 1441

name mapping, 87
New Language Features, 859
object references

passing references, 924
OCL, 89

constraint, 89
supported diagram types, 89

Oracle
BDP.NET, 887

override Render
Render, 828

packages

2437

units, 273 273 273
parameters

database, 1051 1051 1051
Pascal

language changes, 859
Pattern Organizer, 91
Pattern Registry, 91
Patterns as First Class Citizens, 92

adding participants, 615 615
placing bitmap images, 1425
pointer types

porting, 861
porting

VCL.NET porting, 857
projects

types of, 33
additional projects, 35

radio buttons
data-aware, 1778

Rave Reports
creating new reports, 937
creating reports, 1279
Tools, 1333 1333

refactoring
preview, 279 279 279 279
procedures, 313 313 313

references
projects, 157 157

rename
renaming, 1429 1429

rename symbol
refactoring, 281 281 281 281

resolving
multiple tables, 1011 1011

resources
migrating, 872

sample
ASP.NET hello world, 951 951

sets, 96
socket components

Windows socket objects, 2181
source control, 53
StarTeam

embedded client, 53
active process item, 389 389
added features, 54
adding files, 377 377
advanced features, 54
checking in files, 379 379
checking out files, 381 381
comparing file revisions, 385 385

configuring, 387 387
finding files, 391 391
locking and unlocking files, 395 395
merging files, 397 397
migrating from SCC, 399 399
placing projects, 401 401
pulling projects from, 403 403
removing files, 405 405
reverting files, 407 407
updating projects, 383 409 383 409
version control support, 54

StarTeam Client
launching, 393 393

string
char, 865

strings
sort list, 1335 1335
adding and sorting, 1375 1389 1395 1421 1375
 1389 1395 1421

structures
pointers, 921

stub implementation, 92
Sybase

BDP.NET, 887
Sync Edit, 359
table mappings

errors, 1039 1039
to-do lists

overview, 40
planning, 207 207

toolbars
customizing, 173 173

Tool Palette
components, 155 155

transform to source code, 87
translation tools

adding languages to a project, 365 365
editing with Translation Manager, 367 367
External Translation Manager, 375 375
setting the active language, 369 369
setting up the External Translation Manager, 371
371

typecasts
crackers, 866

UML, 71
UML In Color, 71
units

linking, 277 277 277
unit tests, 727
unmanaged code, 35
unmanaged functions

Win32 API, 919

2438

update objects
executing statements, 1956

user interfaces
ADO.NET, 878

variants
TVarRec, 871

VCL
Architecture, 1249

VCL.NET
architecture, 855
namespace, 857
porting, 872

VCL.NET components
VCL.NET, 856

VCL applications
forms, 1163 1163
dbExpress, 1351 1351
dbExpress database applications, 1165 1165
graphics, 1175 1175
VCL Forms, 1345 1345

VCL forms
menus, 1179 1179

VCL Forms
multithreaded applications, 1339 1339
ActiveX Active Forms, 1385 1385
ADO.NET database applications, 1343 1343
decision support, 1347 1347
MDI applications, 1353 1355 1353 1355
SDI applications, 1359 1359
XML components, 1367 1367

VCL versus VCL.NET, 1249
virtual directory, creating in IDE, 963
Web Application Support

Win32, 1227
WebBroker, 1227
web browser

VCL Forms, 1361 1361
Web modules

data modules, 2097
web service clients

porting, 860
Web Services

ASP.NET, 812
client, 1195 1195

web services
ASP.NET, 812
architecture, 839
client support, 845
discovery, 844
files, 841
namespaces, 846
porting Win32 to .NET, 979 979 979

prerequisites, 839
protocol, 843
scenarios, 840
server support, 846
service description, 844
service transport, 844
web references, 943 943 943
xml messaging, 844

WebSnap, 1227
hello world, 1443 1443

Win32 API
unmanaged code, 868

Windows Forms
architecture, 849
hello world, 1363 1363
menus, 1215 1215
namespace, 850

Windows Forms application, 1207
building, 1365 1365

Windows Forms hello world
building, 1213 1213

XML and authentication
XML caching, 825

XML files
XML advantages, 825
DBWeb XML files, 965 965 965

2439

	General
	Getting Started
	What's Developer Studio 2006?
	Defining Requirements
	Modeling Applications
	Designing User Interfaces
	Generating and Editing Code
	Compiling, Debugging, and Deploying Applications
	Controlling Access and Tracking Changes to Code
	The .NET Framework

	What's New in Developer Studio 2006
	C++ Personality
	IDE
	Form Designer
	Code Editor
	Debugger
	ECO Framework
	Modeling
	ASP.NET Web Development
	Database
	dbExpress
	BDP.NET Updates
	General database features

	VCL`
	Delphi Language Enhancements
	StarTeam Integration
	CaliberRM Integration

	Tour of the IDE
	Welcome Page
	Accessibility Options
	Forms
	Windows Forms
	ASP.NET Web Forms
	VCL Forms

	Form Designer
	Visual Components
	Form Preview
	HTML Designer
	Nonvisual Components and the Component Tray
	Design Guidelines

	Tool Palette
	Customized Components
	Component Templates

	Object Inspector
	Object Repository
	Inside the Object Repository
	Object Repository Templates

	Project Manager
	Add References
	Copy References to a Local Path
	Add Web References

	Data Explorer
	Structure View
	History Manager
	Code Editor

	Starting a Project
	Type of Projects
	Windows Applications
	ASP.NET Web Applications
	ASP.NET Web Services Applications
	VCL.NET Applications
	Database Applications
	Model-Driven Applications
	Assemblies

	Additional Projects
	Unmanaged Code and COM/Interop

	Code Editor
	Change Bars
	Code Insight
	Code Parameter Hints
	Code Hints
	Help Insight
	Code Completion
	Class Completion
	Block Completion
	Code Browsing

	Code Navigation
	Method Hopping
	Finding Classes
	Finding Units

	Code Templates
	Code Folding
	To-Do Lists
	Keystroke Macros
	Bookmarks
	Block Comments

	Getting Started with Together
	About Together

	Help on Help
	Developer Studio 2006 Help
	Conceptual Overviews
	How-To Procedures
	Reference Topics
	Context Sensitive F1 Help

	Microsoft SDK Help
	Borland Developer Support Services and Web Site
	Developer Studio 2006 Quick Start Guide
	Typographic Conventions Used in the Help

	Managing the Development Life Cycle
	Managing the Development Cycle Overview
	Requirements Management
	Source Control Integration
	User Interface Design
	Code Visualization
	Build, Compile, Run, and Debug

	Using Source Control
	Source Control Basics
	Repository Basics
	Working with Projects
	Working with Files
	Using the StarTeam Integration
	How Developer Studio 2006 Interacts with StarTeam
	StarTeam Client
	Standard Version Control Support
	Advanced Features
	Developer Studio 2006 Features

	Managing Requirements with CaliberRM
	Using the Integrated CaliberRM Client
	Logging On To the CaliberRM Server
	Linking Between a Requirement and Source Code

	Designing User Interfaces
	Using the Designer
	Setting Designer Options
	Setting Designer Guidelines with VCL Components

	Together Features Overview
	Modeling Overview
	Together Project Overview
	Namespace and Package Overview
	Together Diagram Overview
	Supported UML Specifications
	UML 1.5 and UML 2.0
	UML In Color

	Model Element Overview
	Annotation Overview
	Shortcut Overview
	Diagram Format Overview
	Diagram Layout Overview
	Hyperlinking Overview
	Why use hyperlinking?
	Hyperlink types

	LiveSource Overview
	About MDA
	Doc comment properties

	Transformation to Source Code Overview
	About transformation to source code
	Name mapping

	OCL Support Overview
	About OCL
	OCL constraint and expression
	OCL constraint
	OCL expression

	Supported diagram types

	Patterns Overview
	Pattern Registry
	Pattern Organizer
	Code templates
	Design patterns
	Patterns as First Class Citizens
	Stub implementation pattern

	Refactoring Overview
	Quality Assurance Facilities Overview
	Audits
	Metrics
	Bar chart
	Kiviat chart

	Sets of audits and metrics

	Documentation Generation Facility Overview
	Documentation files
	HTML documentation frames

	Import and Export Overview
	Interoperability Overview

	Compiling, Building, and Running Applications
	Compiler Options
	Compiler Status and Information
	Compiler Errors

	Refactoring Applications
	Refactoring Overview
	Symbol Rename Overview (Delphi, C#, C++)
	Rename Method

	Extract Method Overview (Delphi)
	Extract Resource String (Delphi)
	Declare Variable and Declare Field Overview (Delphi)
	Declare Variable
	Initial Type Suggestion
	Declare Field
	Sample Refactorings

	Find References Overview (Delphi, C#, C++)
	Sample Refactoring

	Change Parameters Overview (Delphi)
	Sync Edit Mode (Delphi, C#, C++)
	Undoing a Refactoring (Delphi, C#)

	Testing Applications
	Unit Testing Overview
	What Gets Installed
	DUnit
	NUnit

	Test Projects
	Test Cases
	Test Fixtures

	DUnit Overview
	Building DUnit Tests
	DUnit Functions
	DUnit Test Runners

	NUnit Overview
	Building NUnit Tests
	Setup
	TearDown

	NUnit Asserts
	NUnit Test Runners

	Localizing Applications
	The Wizards
	Translation Manager
	Translation Repository
	Files Generated by the Translation Tools

	Debugging Applications
	Overview of Debugging
	Stepping Through Code
	Evaluate/Modify
	Breakpoints
	Watches
	Debug Windows
	Remote Debugging

	Overview of Remote Debugging
	The Remote Debugger Executable
	Local and Remote Files
	Source Files
	Executable Files
	Symbol Files

	Local and Remote Machines

	Deploying Applications
	Deploying .NET Applications
	Applications That Include Shared Assemblies
	Deploying VCL.NET Applications
	Deploying ASP.NET Applications
	Redistributing the .NET Framework
	Before Deploying a C# Application

	Deploying Win32 Applications
	Using Installation Programs
	Redistributing Developer Studio 2006 Files
	Redistributing Third Party Software

	Procedures
	Getting Started Procedures
	Adding and Removing Files
	To add a file to a project
	To remove a file from a project

	Adding Components to a Form
	To add components to a form

	Adding References
	To add references

	Adding Templates to the Object Repository
	To add a template to the Object Repository

	Configuring Together
	To configure Together settings:
	To disable configuration changes:

	Copying References to a Local Path
	To a copy reference to a local path

	Creating a Component Template
	To create a component template
	To use a component template
	To delete a component template

	Creating a Project
	To add a new project
	To add an existing project

	Customizing the Form
	To customize the form

	Customizing the Tool Palette
	To arrange individual components
	To arrange an entire category of components
	To add additional categories

	Customizing Toolbars
	To arrange your toolbars
	To delete icons from the toolbar
	To add icons to the toolbar

	Docking Tool Windows
	To use Auto-Hide to hide your tools
	To dock the tools with one another
	To undock the tools from one another

	Exploring .NET Assembly Metadata
	To inspect a .NET assembly
	Using the Call Graph tab

	Exploring Windows Type Libraries
	To Inspect a Windows Type Library

	Finding Items on the Tool Palette
	To find items on the Tool Palette

	Installing Custom Components
	To install custom components

	Installing More Computer Languages
	To add more computer languages to your IDE:

	Renaming Files Using the Project Manager
	To rename a file

	Saving Desktop Layouts
	To save a desktop layout
	To set a debug desktop layout

	Setting Component Properties
	To set component properties

	Setting Dynamic Properties
	To set a dynamic property in the Object Inspector
	To change a dynamic property value in the configuration file

	Setting Project Options
	To change compiler options
	To change application options
	To change debugger options

	Setting Properties and Events
	To set object properties
	To set an event handler

	Setting The IDE To Mimic Delphi 7
	To turn off the Embedded Designer layout

	Setting Tool Preferences
	To set tool preferences

	Using Design Guidelines with VCL Components
	To see and use the design guidelines:

	Using Online Help
	To get assistance while you work, do one of the following:
	To filter help information, do the following:

	Using To-Do Lists
	To create a to-do list and add an item to it
	To add a to-do list item as a comment in code
	To mark a to-do list item as completed
	To filter the items in a to-do list
	To delete an item from a to-do list

	Writing Event Handlers
	To write an event handler

	CaliberRM Procedures
	Adding a Document Reference
	To add a document reference for a requirement

	Adding a Table into a Requirement Description
	To add a table to a requirement description

	Adding an Image to a Requirement Description
	To add an image to a requirement description

	Assigning an Owner to a Requirement
	To edit requirement status

	Assigning Responsible Users
	To assign responsible users to a requirement

	Choosing a CaliberRM Baseline
	To choose a CaliberRM baseline

	Choosing a CaliberRM Project
	To choose a CaliberRM project

	Creating a CaliberRM Requirement
	To create a CaliberRM requirement

	Creating CaliberRM Traces
	To create a CaliberRM trace

	Deleting a CaliberRM Requirement
	To delete a CaliberRM Requirement

	Displaying Requirement Numbers
	To display requirement numbers

	Editing a Requirement
	To edit a requirement

	Editing a Requirement Description
	To edit a requirement description

	Editing a Requirement Name
	To edit a requirement name

	Editing Requirement Priority
	To edit requirement status

	Editing Requirement Status
	To edit requirement status

	Find a Requirement by ID
	To search for a requirement

	Launching CaliberRM Estimate Professional
	To launch CaliberRM Estimate Professional

	Logging On To CaliberRM
	To log on to CaliberRM

	Modifying CaliberRM Traceability Links
	To modify trace link information

	Moving a Requirement
	To move a requirement

	Posting a New Requirement Discussion Message
	To post a new requirement discussion message

	Refreshing Discussion Messages
	To refresh a requirement discussion message

	Replying to a Discussion Message
	To reply to a requirement discussion message

	Requirement History
	To view the history of a requirement

	Requirement Validation
	To define the requirement validation procedure

	Specifying Requirement Comment Format
	To specify the format for requirement comments

	Updating Requirement Comments
	To update a requirement comment

	Viewing a CaliberRM Project Description
	To view a CaliberRM project description

	Viewing CaliberRM Custom Tabs
	To view CaliberRM custom tabs

	Viewing CaliberRM Requirement Type Information
	To view CaliberRM requirement type information

	Compiling and Building Procedures
	Building Packages
	To create a new package
	To add a package to a project
	To add a component package to the Tool Palette

	Finding References
	To create a Find References list
	To clear results from the Find References window
	To clear all results from the Find References window

	Linking Delphi Units Into an Application
	To link in a Delphi unit

	Previewing and Applying Refactoring Operations
	To preview a refactoring operation
	To jump to a refactoring target from the Message Pane
	To apply refactorings

	Renaming a Symbol
	To rename a symbol

	Setting Project Options
	To change compiler options
	To change application options
	To change debugger options

	Using Build Configurations
	To create and use a new build configuration
	To create a new build configuration
	To change build configuration settings
	To activate a build configuration

	Debugging Procedures
	Adding a Watch
	To add a watch

	Attaching to a Running Process
	To attach to a running process

	Debugging Remote Applications
	Use the following set of procedures to debug an application running on a remote machine

	Debugging VCL for .NET Source Code
	To enable options for debugging VCL for .NET source code

	Displaying Expanded Watch Information
	To display expanded watch information in the Watch List window

	Establishing a Connection for Remote Debugging
	To connect the local machine and the remote machine

	Finding References
	To create a Find References list
	To clear results from the Find References window
	To clear all results from the Find References window

	Inspecting and Changing the Value of Data Elements
	To inspect a data element directly from the Code Editor
	To inspect a data element from the menu
	To view members of the object you are inspecting
	To change the value of a data element
	To inspect local variable values

	Installing a Debugger on a Remote Machine
	To install the remote debugger
	To install the remote debugger from the installation disk
	To install the remote debugger if the installation disk is not available

	Modifying Variable Expressions
	To change the value of an expression

	Preparing a Project for Debugging
	To activate the integrated debugger
	To set debug options

	Preparing Files for Remote Debugging
	To prepare files for debugging on a remote machine

	Previewing and Applying Refactoring Operations
	To preview a refactoring operation
	To jump to a refactoring target from the Message Pane
	To apply refactorings

	Refactoring Code
	To rename a symbol
	To declare a variable
	To declare a field
	To create a method from a code fragment
	To convert a string constant to a resource string (for the Delphi language only)
	To find and add a namespace or unit to the uses clause

	Renaming a Symbol
	To rename a symbol

	Resolving Internal Errors
	To resolve an internal error
	If the problem still exists
	Review your code at the last modification point
	Other techniques for resolving internal errors
	When all else fails
	Configuring the IDE to avoid internal errors

	Setting and Modifying Source Breakpoints
	To set a breakpoint
	To modify a breakpoint
	To create a breakpoint group
	To enable or disable a breakpoint or breakpoint group
	To create a conditional breakpoint
	To associate actions with a breakpoint
	To change the color of the text at the execution point and breakpoints

	Setting the Search Order for Debug Symbol Tables
	To set the order in which symbol tables are searched
	To specify the general project search path
	To specify the global path for all projects (for Delphi and C++ only)
	To specify the language-specific path for the project
	To specify global paths

	Using Tooltips During Debugging
	To expand tooltips during debugging

	Deploying Applications
	Building Packages
	To create a new package
	To add a package to a project
	To add a component package to the Tool Palette

	Linking Delphi Units Into an Application
	To link in a Delphi unit

	Editing Code Procedures
	Creating Code Templates
	To add a Code Template using the Menu Commands:
	To add a Code Template using the Template Manager window:

	Customizing Code Editor
	To customize general Code Editor options

	Finding References
	To create a Find References list
	To clear results from the Find References window
	To clear all results from the Find References window

	Previewing and Applying Refactoring Operations
	To preview a refactoring operation
	To jump to a refactoring target from the Message Pane
	To apply refactorings

	Recording a Keystroke Macro
	To record a macro
	To run a macro

	Refactoring Code
	To rename a symbol
	To declare a variable
	To declare a field
	To create a method from a code fragment
	To convert a string constant to a resource string (for the Delphi language only)
	To find and add a namespace or unit to the uses clause

	Renaming a Symbol
	To rename a symbol

	Using Bookmarks
	To set a bookmark
	To jump to a bookmark
	To remove a bookmark

	Using Class Completion
	To use class completion

	Using Code Folding
	To collapse and expand code
	To add a code folding region

	Using Code Insight
	To enable Code Insight
	To use Code completion
	Code Insight Examples
	To use Code parameters
	To use ToolTip expression evaluation
	To use ToolTip symbol insight

	Using Code Templates
	To insert an existing Code Template into your code:
	To use Code Completion with your template:
	To Surround text with a template using the mouse:
	To Surround text with a template using the Template Manager window:

	Using Sync Edit
	To use Sync Edit

	Using the History Manager
	To create and display file versions in the Contents page
	To compare file versions using the Diff page
	To make a prior file version the current version

	Localization Procedures
	Adding Languages to a Project
	To add a language to a project
	To remove a language from a project
	To restore a language to a project

	Editing Resource Files in the Translation Manager
	To edit resource strings
	To add a resource string to the Translation Repository
	To get a resource string from the Translation Repository
	To open the resource file in a text editor

	Setting the Active Language for a Project
	To set the active language

	Setting Up the External Translation Manager
	To set up and register the ETM files
	To set up the project to be translated

	Updating Resource Modules
	To update resource modules

	Using the External Translation Manager
	To run the ETM
	To localize an application using the ETM
	To remove languages from your project

	Source Control Procedures
	StarTeam: Adding Files
	To add a file to StarTeam

	StarTeam: Checking In Files
	To check in the active file

	StarTeam: Checking Out Files
	To check out files

	StarTeam: Committing Projects
	To commit a project

	StarTeam: Comparing File Revisions
	To compare the active working file with the latest revision in the repository
	To compare the contents of any two files in the repository

	StarTeam: Configuring the Integration
	To manage StarTeam associations for your projects
	To manage a non-relative path
	To modify personal options

	StarTeam: Editing the Active Process Item
	To set the active process item
	To edit the active process item

	StarTeam: Finding Files in the Repository
	To find the active working file

	StarTeam: Launching the Client
	To launch and use the StarTeam Client

	StarTeam: Locking and Unlocking Files
	To lock or unlock the active working file

	StarTeam: Merging Source Files
	To merge a file on checkout

	StarTeam: Migrating Projects from the SCC Interface to the StarTeam Integration
	To associate an SCC controlled project with the StarTeam integration

	StarTeam: Placing Projects and Project Groups
	To place a project into StarTeam

	StarTeam: Pulling Projects and Project Groups
	To pull a project or a project group

	StarTeam: Removing Files
	To remove files from StarTeam control

	StarTeam: Reverting Files
	To revert a file to the latest revision in the repository

	StarTeam: Updating Projects
	To update a project

	Together Diagram Procedures
	Adding a Conditional Block
	To add a statement block to the activation bar:
	Alternatively:
	To set the type of the conditional block (if, for, and so on):

	Adding a Member to a Container
	To add a member to a container:

	Aligning Model Elements
	To align model elements on a diagram:

	Annotating a Diagram
	Use the following actions to annotate a diagram:
	To draw an annotation:
	To draw an annotation link:
	To type comments:

	Assigning an Element Stereotype
	Use the following techniques to specify a stereotype:
	To assign a stereotype by using the in-place editor:
	To assign a stereotype by using the Object Inspector:

	Associating a Lifeline with a Classifier
	To associate a lifeline with a classifier:

	Associating a Message Link with a Method
	Use the following techniques to associate a message link with a method (operation):
	To create a new method for an existing message link:
	To associate an existing method with a message link:
	To unlink a method:

	Associating a Transition or a State with an Activity
	To associate a transition with an activity:

	Associating an Object with a Classifier
	To associate an object with an existing classifier:
	To create a new classifier for an existing object:
	To unlink an object:
	To navigate between classifiers and objects:
	To create a shortcut to a classifier on an interaction diagram:

	Branching Message Links
	To branch a message link with the previous one:
	To remove branching:

	Browsing a Diagram with Overview Pane
	To open the Overview pane:

	Changing Appearance of Compartments
	To collapse or expand compartments:
	To view the compartment controls:

	Changing Appearance of Interfaces
	To show an interface as a circle sing the context menu:
	To show an interface as a circle using the Object Inspector:

	Changing Diagram Notation
	Use the following techniques to change diagram notation:

	Changing Type of a Link
	Use the following techniques to change the type of a link:
	To set the link type by using the Object Inspector:
	To set the link type by using the context menu:

	Closing a Diagram
	To close a diagram:

	Converting Between UML 1.5 Sequence and Collaboration Diagrams
	To convert between sequence and collaboration diagrams:

	Copying and Pasting an Execution or Invocation Specification
	To copy and paste an execution or invocation specification:

	Copying and Pasting Model Elements
	To copy an element:

	Creating a Browse-Through Sequence
	To create a browse-through sequence:

	Creating a Deferred Event
	To create a deferred event:

	Creating a Delegation Connector
	To create a delegation connector:

	Creating a Diagram
	To create a diagram:

	Creating a Guard Condition for a Transition
	To create a guard condition for a transition:

	Creating a History Element
	To create a history element for a state:

	Creating a Link with Bending Points
	To create a link with bending points:

	Creating a Member for a State
	To create a member for a state:

	Creating a Multiple Transition
	To create a multiple transition (a fork or a join):

	Creating a Pin
	To add an input pin, output pin, or value pin, do one of the following:
	Alternatively:

	Creating a Port
	To create a port:

	Creating a Referenced Part
	To create a referenced part:

	Creating a Self-Transition
	To create a self-transition:
	Alternatively:

	Creating a Sequence or Communication Diagram from an Interaction
	To create a sequence or a communication diagram from an interaction:

	Creating a Shortcut
	Use the following techniques to create a shortcut:
	To create a shortcut by using the Add Shortcuts dialog window:
	To create a shortcut by using drag-and-drop:
	To create a shortcut by copying and pasting:
	To create a shortcut by using the Model View context menu:

	Creating a Simple Link
	To create a simple link between two nodes:

	Creating a Single Model Element
	To create a single model element:

	Creating a State
	To create a state:

	Creating a State Invariant
	To create a state invariant as an OCL comment:
	To connect a state invariant to a state:

	Creating an Activity for a State
	To create an activity for a state:

	Creating an Association Class
	To create an association class:
	To delete an association class:

	Creating an Extension Point
	To create an extension point:

	Creating an Inner Classifier
	To create an inner classifier by Using the context menu:
	Using cut, copy, and paste:
	Using drag-and-drop:

	Creating an Internal Structure for a Node
	To create an internal structure for a node:

	Creating an Internal Transition
	To create an internal transition:

	Creating Multiple Elements
	To create multiple elements:

	Deleting a Diagram
	To delete a diagram:

	Designing a UML 1.5 Activity Diagram
	To design a UML 1.5 Activity Diagram, follow this general procedure:

	Designing a UML 1.5 Component Diagram
	To design a UML 1.5 Component Diagram, follow this general procedure:

	Designing a UML 1.5 Deployment Diagram
	To design a UML 1.5 Deployment Diagram, follow this general procedure:

	Designing a UML 1.5 Statechart Diagram
	To design a UML 1.5 Statechart Diagram, follow this general procedure:
	To create entry and exit actions:

	Designing a UML 2.0 Activity Diagram
	To design a UML 2.0 Activity Diagram, follow this general procedure:
	To add an activity parameter to an activity:

	Designing a UML 2.0 Component Diagram
	To design a UML 2.0 Component Diagram, follow this general procedure:

	Designing a UML 2.0 Deployment Diagram
	To design a UML 2.0 Deployment Diagram, follow this general procedure:
	To deploy an artifact to a target node:
	To define parameters of an operation:

	Designing a UML 2.0 Sequence or Communication Diagram
	To design a UML 2.0 Sequence Diagram, follow this general procedure:
	To create an interaction use:
	To navigate to a referenced interaction:
	To associate a lifeline with a referenced element:
	To associate a lifeline with a type:
	To define decomposition for a lifeline:

	Designing a UML 2.0 State Machine Diagram
	To design a UML 2.0 State Machine Diagram, follow this general procedure:

	Designing Use Case Hierarchy
	To design use case hierarchy:

	Exporting a Diagram to an Image
	To export a diagram to an image:

	Grouping Actions into an Activity
	Use the following techniques to group actions into an activity:
	Use the Tool Palette buttons:
	Use drag and drop:
	Use the context menu of the activity element:

	Hiding and Showing Model Elements
	To hide by using one of the following methods:
	To show or hide diagram elements using the Show Hidden dialog box:

	Hyperlinking Diagrams
	Use the following techniques to create a hyperlink:
	To create a hyperlink to an existing diagram or element:
	To create a hyperlink to a new diagram:
	To create a hyperlink to an external URL or file:
	To browse hyperlinks:
	To remove a hyperlink:

	Instantiating a Classifier
	To instantiate a classifier:

	Laying Out a Diagram Automatically
	To lay out a diagram by using one of the algorithms:
	To set up the diagram layout:

	Linking Another Interaction from an Interaction Diagram
	To link another interaction from an interaction diagram:

	Moving Model Elements
	To move an element:

	Printing a Diagram
	To print a diagram:

	Putting Diagram Files Under Version Control
	To put diagram files under version control:
	To exclude files from version control:
	To check in and check out a project or a project group:
	To check in and check out diagrams:
	To undo check out:
	To compare diagram versions:

	Renaming a Diagram
	To rename a diagram:
	Alternatively:

	Rerouting a Link
	To reroute a link:

	Resizing Model Elements
	To resize an element manually:
	To optimize a node element size:
	To optimize the elements on an entire diagram:

	Searching Diagrams
	To search diagrams:

	Searching Source Code for Usages
	To search source code for element usages:

	Selecting Model Elements
	To select a model element:

	Specifying Entry and Exit Actions
	To specify entry and exit actions using the in-place editor:
	To specify entry and exit actions using internal transitions:

	Using a Class Diagram as a View
	To use a class diagrams as a view:

	Using Drag-and-Drop
	To move a link to a new destination:

	Using Grid and Other Appearance Options
	To show grid:

	Using the UML in Color Profile
	To enable or disable the “UML in color” profile:
	To draw UML nodes in colors:

	Using View Filters
	To enable, disable view filters:
	To filter classes:

	Working with a Collaboration Use
	To create a collaboration use:
	To link to a collaboration type:
	To unlink from a collaboration type:
	To bind with a role (part):
	To bind the roles (parts) of the different classifiers via the collaboration use:
	To define an owner:

	Working with a Combined Fragment
	To create a combined fragment:
	To create a nested operator:
	To create an operand:

	Working with a Complex State
	Use the following techniques to create a composite (nested) state:
	To create a nested substate using drag-and-drop:
	To create a nested substate using the context menu of the state element:

	Working with a Constructor
	To define the constructor parameters (implementation projects only):

	Working with a Field
	To rename a field:
	To define the visibility modifier:
	To define the stereotype of a field:
	To define modifiers, initial values, associated objects and so on:

	Working with a Provided or Required Interface
	To create a provided interface:
	To create a required interface:

	Working with a Relationship
	To draw an association link:
	To set the directed property of an association link:

	Working with a Tie Frame
	To spread a frame to several lifelines:

	Working with a UML 1.5 Message
	Use the following techniques for messages:
	To create a self message:
	To reorder a message link:
	To specify creation of an object with a message:
	To specify destruction of an object with a message:
	To specifying a return link by using the Tool Palette (Toolbox):
	To specify a return link by using the Object Inspector (Properties Window):

	Working with a UML 2.0 Message
	Use the following technique for UML 2.0 messages:
	To show or hide reply message:
	To nest messages:
	To create a message from a lifeline back to itself:
	To create a message link that corresponds to an operation call:

	Working with an Instance Specification
	Use the following techniques with an instance specification:
	To instantiate a classifier using the Object Inspector:
	To instantiate a classifier using the in-place editor:
	To define the features of an instance specification:
	To add a slot to an instance specification element:
	To associate a slot with a structural feature:
	To set the slot value:
	To define the slot stereotype:

	Working with an Interface
	To create an interface:
	To hide an interface:

	Working with an Object Flow or a Control Flow
	Use the following techniques with an object flow or a control flow:
	To create a flow:
	To create a fork or a join:
	To create a decision or a merge:

	Working with User Properties
	To create user properties:

	Zooming a Diagram
	To specify the magnification in the Diagram View:

	Together Documentation Generation Procedures
	Configuring the Documentation Generation Facility
	To configure the documentation generation facility:

	Generating Project Documentation
	To generate project documentation:

	Together Object Constraint Language (OCL) Procedures
	Creating a Guard Condition for a Transition
	To create a guard condition for a transition:

	Creating a State
	To create a state:

	Creating a State Invariant
	To create a state invariant as an OCL comment:
	To connect a state invariant to a state:

	Creating an OCL Constraint
	To create an object constraint and link it with the context:
	Alternatively, follow these steps:

	Editing an OCL Expression
	To activate the OCL Editor:

	Showing and Hiding an OCL Constraint
	To hide an individual constraint:
	To hide multiple constraints:
	To reveal the hidden constraints:

	Working with a Combined Fragment
	To create a combined fragment:
	To create a nested operator:
	To create an operand:

	Together Pattern Procedures
	Adding Participants to the Patterns as First Class Citizens
	To add a participant to a GoF pattern:

	Assigning Patterns to Shortcuts
	To assign a pattern to a shortcut:

	Copying and Pasting Shortcuts, Folders or Pattern Trees
	To copy and paste a folder or a shortcut:

	Creating a Folder
	To create a new folder:

	Creating a Link by Pattern
	To create a link by pattern:

	Creating a Model Element by Pattern
	To create model elements by pattern:

	Creating a Pattern
	To create a pattern:

	Creating a Shortcut to a Pattern
	To create a new shortcut to a pattern:

	Creating a Virtual Pattern Tree
	To create a new pattern tree:

	Deleting Patterns as First Class Citizens from the Model
	To delete a GoF pattern with participants:

	Deleting shortcuts, folders or pattern trees
	To delete a node from the Pattern Organizer:

	Editing Properties
	To edit properties of a tree, shortcut or folder:

	Exporting a Pattern
	To export a pattern:

	Importing a Legacy Pattern
	To reuse a custom pattern, follow this general procedure:

	Opening the Pattern Organizer
	To open the Pattern Organizer:

	Saving Changes in the Pattern Registry
	To save changes in the Pattern Registry:

	Sharing Patterns
	To create shared patterns:

	Sorting Patterns
	To sort patterns the Pattern Organizer:

	Using the Pattern Organizer
	

	Using the Pattern Registry
	To filter patterns in the Pattern Registry:

	Using the Stub Implementation Pattern
	To create an inheritance link with stub implementation using the Link by Pattern button:
	To create an inheritance link with stub implementation using the Node by Pattern button:
	To create an inheritance link with stub implementation using the Create by Pattern context menu:
	To create a stub implementation using the class context menu:
	To create a stub implementation using the Node by Pattern button:
	To create a stub implementation using the Create by Pattern context menu:

	Together Project Procedures
	Activating Together Support for Projects
	To activate Together support follow these steps:

	Creating a Project
	To create a Together project:

	Exporting a Project to XMI Format
	To export a project to XMI format:

	Importing a Project Created in TCC or TAR
	To import a project, follow these steps:
	To configure TCC or TAR to automatically set namespaces for classifiers in implementation projects:
	To set up a project in Delphi:
	To create the file structure:
	To add the TCC or TAR source code items to the new project:

	Importing a Project Created in TVS, TEC, TJB, or TPT
	The general procedure for importing a project created in TVS, TEC, TJB, or TPT consists of the following steps:
	To create a new project for import:
	To import the model information:

	Importing a Project in IBM Rational Rose (MDL) Format
	To create a design project on the base of an IBM Rational Rose (MDL) project:

	Importing a Project in XMI Format
	To import a project in XMI format:

	Opening an Existing Project for Modeling
	To open an existing implementation project for modeling:

	Sharing a Project Between TCC/TAR and Developer Studio 2006
	Use the following general procedure for creating a shared project:
	To set up a C# project:
	To create the folder hierarchy:
	To create a project in Together ControlCenter or Together Architect:
	To configure Together ControlCenter to automatically set namespaces for classifiers:
	To populate the analysis model:
	To populate the requirements model:
	To access the diagrams created with Together ControlCenter or Together Architect:

	Synchronizing the Model View, Diagram View, and Source Code
	You can navigate between the Model View, Diagram View, and source code by using the following techniques:
	To navigate to a diagram from the Model View to the Diagram View:
	To navigate to a model element from the Model View to the Diagram View:
	To navigate from the Diagram View to the Model View:
	To navigate from a lifeline to its classifier in the Model View or a Class diagram:
	To navigate from source code to the Model View:
	To navigate from the Model View or Diagram View to source code (for implementation projects):
	To edit a synchronized element:

	Transforming a Design Project to Source Code
	To generate source code from a design project:
	To insert source code to an implementation project:

	Troubleshooting a Model
	Use the following techniques to troubleshoot your model:
	To refresh a model:
	To reload a model:
	To fix a model:

	Working with a Namespace or a Package
	Use the following techniques for a namespace or a package:
	To view a namespace or a package:
	To open a namespace or a package:
	To delete a namespace or a package:
	To rename a namespace or a package:

	Working with a Referenced Project
	To add a project to references:
	To view a diagram of a referenced project:
	To view the MsCorLib.dll (a standard DLL added automatically to your projects):

	Together Quality Assurance Procedures
	Creating a Metrics Chart
	To create a bar chart:
	To create a Kiviat chart:
	To save a chart:
	To export a chart to image:
	To add a chart to project:

	Exporting Audit Results
	To save the audit results in a separate file:

	Printing Audit Results
	To print the list of audit violations:

	Running Audits
	To run audits:

	Running Metrics
	To run metrics:

	Viewing Audit Results
	Use the following techniques when viewing audit results:
	To sort all the items according to the values for a specific column:
	To group items according to the current column:
	To navigate to the specific location of the violation:

	Viewing Metric Results
	Use the following techniques when viewing metric results:
	To sort results by column:
	To filter results:
	To update results:
	To navigate to the source code:
	To view the metric description:

	Working with a Set of Audits
	To create a set of audits:
	To use a saved set of audits:

	Working with a Set of Metrics
	To create a set of metrics:
	To use a saved set of metrics:

	Together Refactoring Procedures
	Refactoring: "Safe Delete"
	To safely delete an element:

	Refactoring: Changing Parameters
	To change parameters, follow these steps:

	Refactoring: Creating Inline Variables
	To create an inline variable:

	Refactoring: Extracting Interfaces
	To extract an interface:

	Refactoring: Extracting Method
	To extract a method:

	Refactoring: Extracting Superclass
	To use the "Extract superclass" operation:

	Refactoring: Introducing Fields
	To introduce a field:

	Refactoring: Introducing Variables
	To introduce a new variable:

	Refactoring: Moving Members
	To move a static member to a different class:

	Refactoring: “Pull Members Up" and “Push Members Down”
	To move a member:

	Unit Test Procedures
	Building Tests
	To build a test project
	To build a test case
	To write a test case
	To run the test case in the GUI Test Runner

	.NET
	Building Applications with the ECO framework
	Introduction
	Overview of the ECO framework
	Introduction to the ECO framework
	ECO framework Terminology
	Designtime Functionality
	Runtime Functionality

	ECO Modeling Tools Overview
	ECO Modeling Tools in Developer Studio 2006
	ECO Projects and Code Templates
	Working with ECO in the Model View Window
	Structural Modeling with the ECO Class Diagram
	Behavioral Modeling with the ECO State Machine Diagram

	Working with the ECO Service API
	The Borland.Eco.Services Namespace
	Service API Overview
	Accessing the ECO Space
	Accessing the Service API

	Working with ECO Handles
	Handles in the ECO framework
	Handles and Chained Evaluation
	Root Handles
	Rooted Handles

	Types of Root Handles
	ReferenceHandle
	VariableHandle

	Types of Rooted Handles
	ExpressionHandle
	OclPSHandle

	Using the Objects Referenced by Handles

	Working with ECO Subscriptions
	The ECO Subscription Mechanism
	Reevaluate and Resubscribe
	Using Subscriptions with Derived Attributes
	Using the SubscriberAdapterBase Abstract Class

	Using State Machines with the ECO framework
	Modeling Behavior with State Machines
	Definition and Properties of a State Machine
	Properties of a State
	Properties of a State Transition
	Initial and Final States
	A Simple State Machine Diagram

	Activities in ECO framework State Machines
	A Basic ECO State Machine
	Tracking the State of an Order
	Adding OCL Guards to the State Machine
	Adding Activities to the State Machine

	Using Substates with the ECO framework
	Regions and Substates
	Composite States and Substates
	Concurrent Substates
	Entry and Exit from Composite States
	Entry into a Composite State
	Exit from a Composite State

	Object Constraint Language (OCL) and ECO Action Language
	Overview of the Object Constraint Language
	Establishing the Context of an OCL Expression
	Predefined OCL Types
	The Basic Anatomy of an OCL Expression
	OCL with Association Classes
	Operations on Types
	Operations on Basic Types
	Operations on Meta Types
	Other Type-related Operations
	Operations on Collections
	Iterators

	Using ECO Action Language
	ECO Action Language Operations
	Using ECO Action Language

	Using the ECO framework with Multi-Client Applications
	The ECO framework and ASP.NET
	Requests, Sessions and Applications
	The ECO Space Provider
	ECO Space Pooling

	Using the ECO Framework in Multi-Client Applications
	Shared Persistence Mappers
	Using a Shared Persistence Mapper in a Single Process
	Using a Shared Persistence Mapper in a Separate Process

	Sychronizing ECO Spaces
	Synchronization and Conflict Resolution

	Custom OR Mapping
	Custom ECO Object-Relational Mapping Files
	Custom OR Mapping File Format
	XML Mapping File Specification
	XML Elements of Custom OR Mapping Files
	Classes Stored in Multiple Tables

	Custom Object-Relational Map Files and Database Evolution

	Custom OR Mapping with Auto-Increment Columns
	Custom OR Mapping with BLOB Tables
	Custom OR Mapping with Objects stored in multiple tables, with multiple keys
	Custom OR Mapping with Singlelink and Compound Keys
	Custom OR Mapping Using Type Discriminator Columns

	Building Web Applications with ASP.NET
	ASP.NET Overview
	ASP.NET Architecture
	Web Forms, Server Controls, and HTML Elements
	Data Access
	Web Services
	Supported Web Servers
	Designtime Features
	Editing HTML and CSS Files
	Designer Flow Layout and Grid Layout

	Sample Applications

	Borland DB Web Controls Overview
	DB Web Controls Architecture
	Data-Aware Components Advantages
	Supported Data Access Components
	DB Web Controls Namespace
	ASP.NET Application Deployment with DB Web Controls

	DB Web Controls Navigation API Overview
	Working with DataViews
	Runtime Properties
	Master-Detail Relationships
	ClearSessionChanges Method
	DataView Limitations

	Working with WebDataLink Interfaces
	IDBWebDataLink
	IDBWebColumnLink:IDBWebDataLink
	IDBWebLookupColumnLink:IDBWebColumnLink

	Using DB Web Controls in Master-Detail Applications
	Cascading Deletes
	NoMasterDelete
	ServerCascadeDelete
	ServerNoForeignKey

	Cascading Updates
	NoMasterUpdate
	ServerCascadeUpdate
	ServerNoForeignKey

	Using XML Files with DB Web Controls
	XML Files as Data Sources
	Suggested Workflow Strategy
	Authentication and Caching Issues

	DB Web Control Wizard Overview
	The ASP.NET Control Execution Lifecycle (CEL)
	Data Binding
	Overriding ASP.NET Methods
	Implementing DB Web Interfaces
	Essential Code Modifications
	Change the ToolboxBitmap Attribute
	Change the Control Declaration
	Declare the Correct Render Method
	Implement the IDBWebDataLink Interface
	Modify or Extend the Render Method
	Modify Hidden Field Registration
	Set Data Binding on Specific Properties

	Deploying ASP.NET Applications
	Web Server Requirements
	Pre-Deploy Recommendations
	The Developer Studio 2006 ASP.NET Deployment Manager

	Building Web Services with ASP.NET
	ASP.NET Web Services Overview
	ASP.NET Web Services Architecture
	Web Service Prerequisites
	Web Service Scenarios
	ASP.NET Web Services Files

	Web Services Protocol Stack
	Layers of the Web Services Protocol Stack
	Transport Layer
	XML Messaging
	WSDL Layer
	UDDI Layer

	ASP.NET Web Services Support
	ASP.NET Web Services Client Support
	Windows Forms Versus ASP.NET Web Forms
	Add Web Reference

	ASP.NET Web Services Server Support
	ASP.NET Web Services Namespaces

	Building Applications with Windows Forms
	Windows Forms Overview
	Windows Forms Architecture
	Windows Forms
	Windows Forms Components
	Windows Forms Data Access
	Windows Forms Namespace

	Deploying Windows Forms Applications

	Building Applications with VCL.NET Components
	VCL for .NET Overview
	VCL for .NET Architecture
	VCL for .NET and the .NET Framework
	VCL for .NET Components
	Visual Components
	Non-Visual Components

	Borland.VCL Namespace
	Porting Delphi Applications to Developer Studio 2006
	Importing .NET Components for Use in VCL for .NET Applications

	Porting VCL Applications
	General Language Issues
	Renaming Packages
	New Language Features
	Porting Web Service Client Applications

	Language Issues in Porting VCL Applications to Developer Studio 2006
	Migrating Pointer Types
	Untyped Pointers
	Procedure Pointers
	String Pointers
	Writing Strings to Streams
	Other Pointer Types

	Migrating Char and String Types
	ANSI Strings and Wide Strings
	String Operations
	Uninitialized Strings

	Typecasts
	Message Crackers
	Accessing Protected Members from Classes in Other Units

	Creating and Destroying Objects
	Working with the Unmanaged Win32 API
	Isolating Windows Dependencies
	Calling the Windows API
	Working with Windows Messages
	Changes to the Threading Model

	Migrating Variants
	Changes to TVarRec
	Changes to OLE Variants
	Changes to Custom Variants

	Working With Resources
	Resource Strings
	Bitmaps

	Change to TTreeView.OnCompare

	Building Database Applications with ADO.NET
	ADO.NET Overview
	ADO.NET Architecture
	Data Source
	Data Providers
	DataSet

	ADO.NET User Interfaces
	Web Forms
	Windows Forms

	BDP.NET Namespace

	Borland Data Providers for Microsoft .NET
	Data Provider Architecture
	BDP.NET Advantages
	BDP.NET and ADO.NET Components
	Supported BDP.NET Providers
	BDP.NET Data Types
	BDP.NET Interfaces

	BDP.NET Data Types
	BDP.NET and .NET Framework
	Data Types
	DB2
	InterBase
	MS SQL and MSDE
	Oracle
	Sybase

	BDP.NET Component Designers
	Component Designer Relationships
	Connections Editor
	Command Text Editor
	Stored Procedure Dialog Box
	Generate DataSets
	Configure Data Adapter
	Data Explorer

	Stored Procedure Overview
	VCL for .NET Database Technologies
	Building .NET Applications with dbExpress.NET
	Building .NET Applications with the DataSnap .NET Client (DCOM)
	Building .NET Applications with IBX.NET
	Building .NET Applications with BDE.NET
	Building .NET Applications with dbGo
	dbExpress Components overview
	Connection Strings
	dbExpress Connections
	Connection Strings for VCL Components

	dbExpress Components

	dbGo Components Overview
	BDP Connection Pooling Overview

	Getting Started with InterBase Express
	IBX components

	Deploying Database Applications for the .NET Framework
	BDP.NET Application Deployment
	dbExpress for .NET Application Deployment
	dbGo for .NET Application Deployment
	BDE for .NET Application Deployment

	Building Applications with Unmanaged Code
	Using COM Interop in Managed Applications
	COM Interop Overview
	COM Interop Terminology
	Metadata
	Custom Attributes
	Reflection
	Global Assembly Cache
	Strong Names
	Runtime Callable Wrappers and COM Callable Wrappers
	Primary Interop Assembly

	COM Interop Tools in the .NET Framework SDK
	Importing and Exporting Type Libraries
	Importing ActiveX Control Libraries
	Generating Strong Names
	Deploying a .NET Component to the Global Assembly Cache

	Using COM Interop Assemblies in the IDE
	Type Libraries and Interop Assemblies
	Importing ActiveX Controls
	Interop Assemblies and the Project Manager

	Using Platform Invoke with Developer Studio 2006
	Calling Unmanaged Functions
	Data Types
	Advanced Techniques
	Special Cases

	Structures
	Data Types
	Advanced topics
	Special cases

	Callback Functions
	Data types
	Special cases

	Passing Object References
	Data types
	Advanced techniques

	Using COM Interfaces
	Data types
	Advanced techniques
	Special cases

	Virtual Library Interfaces
	Standard PInvoke
	Using Virtual Library Interfaces

	Using DrInterop
	Deploying COM Interop Applications

	Building Reports for .NET Applications
	Using Rave Reports in Developer Studio 2006
	Creating New Reports in Developer Studio 2006
	Using Rave Reports ActiveX Components

	Procedures
	ASP.NET Procedures
	Adding Aggregate Values with DBWebAggregateControl
	To create and configure a DBWebAggregateControl
	To set the caption for DBWebAggregateControl

	Adding Web References in ASP.NET Projects
	To create an ASP.NET project
	To design the ASP.NET web page
	To add the Web Reference for DeadOrAliveWS
	To write the application logic
	To run the application

	Binding Columns in the DBWebGrid
	To open the Property Builder
	To change column order

	Building an Application with DB Web Controls
	To prepare an ASP.NET project for DB Web Controls
	To configure a DBWebDataSource
	To configure DB Web Controls

	Building an ASP.NET "Hello World" Application
	To create an ASP.NET project
	To change Web server settings (optional)
	To create the ASP.NET page
	To associate code with the button control
	To run the "Hello World" application

	Building an ASP.NET Application
	To create an ASP.NET project
	To change Web server settings (optional)
	To create an ASP.NET page
	To add code-behind logic to a component

	Building an ASP.NET Database Application
	To create an ASP.NET project
	To change Web server settings (optional)
	To configure data components
	To set up a connection
	To set a command
	To connect a DataGrid to a DataSet
	To add a DataBind call

	Converting HTML Elements to Server Controls
	To convert an HTML table element to a server control
	To convert an HTML body element to a server control manually

	Creating a Briefcase Application with DB Web Controls
	To create a briefcase application
	To configure the AutoUpdateCache and UseUniqueFileName properties

	Creating a Virtual Directory
	To create a virtual directory for an existing application

	Creating an XML File for DB Web Controls
	To create and use an XML file
	To create an ASP.NET application using DBWeb Controls
	To specify the XML file as a data source for a new ASP.NET application

	Creating Metadata for a DataSet
	To set up the application
	To create the metadata

	Debugging and Updating ASP.NET Applications
	To update the web.config file for a Delphi 8 ASP.NET application

	Generating HTTP Messages in ASP.NET
	To generate more meaningful error messages

	Modifying Database Connections
	To modify different types of database connections
	To modify an InterBase connection
	To modify an MS SQL Server connection
	To modify a DB2 connection
	To modify an Oracle connection
	To modify an MS Access connection
	To modify a Sybase connection

	Porting a Delphi for Win32 Web Service Client Application to Delphi for .NET
	To port your web service
	To change your existing form components
	To change the uses clause
	To add a web reference
	To change the web service invocation code

	Setting Permissions for XML File Use
	To give users rights when the UseUniqueFileName property is false
	To give users rights when UseUniqueFileName is true and user authentication is in use

	Setting Up a Cassini Web Server
	To configure the CassiniWebServer:
	To xxxxxxx
	To xxxxxx
	To xxxxxx

	Troubleshooting ASP.NET Applications
	To troubleshoot your ASP.NET application
	To install or reinstall ASP.NET
	To create or check your ASP.NET user account
	To install or reinstall IIS
	To restart IIS
	To configure IIS to recognize your application
	To add document types to IIS
	To set anonymous authentication
	To check your database connection

	Using the ASP.NET Deployment Manager
	To remove debugger references in the web.config file
	To deploy an ASP.NET application
	To create an IIS virtual directory for a new destination directory

	Using the DB Web Control Wizard
	To start the DB Web Control Wizard

	Using the HTML Tag Editor
	To view HTML code for an individual control
	To view the HTML code for all controls
	To modify a control
	To change editor properties
	To zoom between contents of the form and the form container
	To close the Tag Editor

	Working with ASP.NET User Controls
	To create an ASP.NET user control
	To add an ASP.NET user control to a Web Form

	Database Procedures
	Adding a New Connection to the Data Explorer
	To add a new connection

	Adding Aggregate Values with DBWebAggregateControl
	To create and configure a DBWebAggregateControl
	To set the caption for DBWebAggregateControl

	Adding an BDP Reconcile Error dialog to your BDP Application
	To add a BDP Reconcile Error dialog:

	Binding Columns in the DBWebGrid
	To open the Property Builder
	To change column order

	Browsing a Database in the Data Explorer
	To browse database objects
	To retrieve data from the database
	To run a stored procedure

	Building a Database Application that Resolves to Multiple Tables
	To create a database project from the Data Explorer
	To add and configure a DataSync component
	To add and configure a DataHub component

	Building a Distributed Database Application
	To create the server-side application
	To create the client-side application

	Building a Windows Forms Database Application
	
	To configure connection components and a data source
	To set up a connection
	To create and configure a data adapter
	To create a dataset
	To connect a DataGrid to a DataSet

	Building an Application with DB Web Controls
	To prepare an ASP.NET project for DB Web Controls
	To configure a DBWebDataSource
	To configure DB Web Controls

	Building an ASP.NET Database Application
	To create an ASP.NET project
	To change Web server settings (optional)
	To configure data components
	To set up a connection
	To set a command
	To connect a DataGrid to a DataSet
	To add a DataBind call

	Creating a Briefcase Application with DB Web Controls
	To create a briefcase application
	To configure the AutoUpdateCache and UseUniqueFileName properties

	Creating an XML File for DB Web Controls
	To create and use an XML file
	To create an ASP.NET application using DBWeb Controls
	To specify the XML file as a data source for a new ASP.NET application

	Creating Database Projects from the Data Explorer
	To create a database project from the Data Explorer

	Creating Metadata for a DataSet
	To set up the application
	To create the metadata

	Creating Table Mappings
	To create a table mapping
	To create an application
	To configure the database components
	To set table mappings
	To delete a mapping

	Executing SQL in the Data Explorer
	To open a SQL Window
	To execute SQL

	Handling Errors in Table Mapping
	To set the MissingMappingAction property
	To set the MissingSchemaAction property

	Migrating Data Between Databases
	To migrate multiple tables
	To migrate a single table

	Modifying Connections in the Data Explorer
	To modify connections
	To refresh a connection
	To delete a connection
	To modify a connection
	To close a connection
	To rename a connection

	Modifying Database Connections
	To modify different types of database connections
	To modify an InterBase connection
	To modify an MS SQL Server connection
	To modify a DB2 connection
	To modify an Oracle connection
	To modify an MS Access connection
	To modify a Sybase connection

	Passing Parameters in a Database Application
	To pass a parameter
	To create a data adapter and connection
	To add a parameter to the data adapter
	To add controls to the form
	To configure the data grid
	To add code to the button Click event
	To compile and run the application

	Using Standard DataSets
	To use DataSets
	To generate a DataSet
	To add multiple tables to one DataSet
	To define primary keys for each DataTable in the DataSet
	To define column properties for your DataSet columns
	To define constraints for your columns
	To define relationships between tables in the DataSet

	Using the Command Text Editor
	To generate the commands

	Using the Connection Editor Designer
	To add a new connection
	To remove a connection
	To rename a connection

	Using the Data Adapter Designer
	To invoke the commands

	Using the Data Adapter Preview
	To use the Data Adapter Preview

	Using the DB Web Control Wizard
	To start the DB Web Control Wizard

	Using Typed DataSets
	To create a strongly typed DataSet
	To modify how columns appear
	To modify the structure of the dataset
	To set the Namespace property for a dataset

	ECO Framework Procedures
	Adding a Derived Association End to an ECO Class Diagram
	To add a derived association end

	Adding a Derived Attribute to an ECO Class
	To add a derived attribute

	Adding a Guard Expression to a State Transition
	To add a guard expression to a state transition

	Adding a PersistenceMapperClient to an ECO Space
	To add a PersistenceMapperClient to an ECO space

	Adding a PersistenceMapperSharer to an ECO Space
	To add PersistenceMapperSharer to an ECO space

	Adding a Reference to an ECO Package in a DLL
	To add a reference to ECO packages in a DLL

	Adding a Region to a State
	To add a region using the ECO state machine diagram
	To add a region using the Model View
	To edit the properties of a region

	Adding a Trigger Method to an ECO Class
	To add a trigger method using the Model View
	To add a trigger method using the ECO class diagram
	To change the properties of a trigger

	Adding an ECO Enabled Windows Form to a Project
	To add an ECO-enabled Windows form to your project

	Adding an ECO UML Package to a Project
	To add a new ECO UML package to your project

	Adding an Effect to a State Transition
	To add an effect to a state transition

	Adding and Configuring a Connection Handle on an ECO Space
	To add and configure a connection handle

	Adding Columns and Nestings to an ECO Handle
	To add a column to an expression handle
	To add a nesting to a column

	Adding Entry and Exit Actions to a State
	To add entry and exit actions to a state

	Adding States and Substates to an ECO State Machine Diagram
	To add a state using the ECO state machine diagram context menu
	To add a state using the Model View
	To add a state using the Tool Palette
	To edit the properties of a state or substate

	Building Applications with the ECO Framework
	To create an ECO-enabled application

	Configuring a PersistenceMapperMultiDb Component
	To configure a PersistenceMapperMultiDb component

	Configuring an OclVariables Component
	To configure the VariableHandle component
	To retrieve the search string from the text box
	To configure the OclVariables component
	To configure the ExpressionHandle to use the OclVariables component

	Configuring the Persistence Method of an ECO Space
	To configure the ECO Space for the chosen persistence method

	Converting an ECO framework Project to Developer Studio 2006
	To add references to new assemblies
	To set the EcoCompatibility property
	To add a new SyncHandler component
	To upgrade the model

	Creating a New ECO Space Subclass
	To create a new subclass of the EcoSpace class

	Creating a New ECO Windows Forms Application
	To create a new ECO Windows Forms application

	Creating a PersistenceMapperProvider
	To create a new PersistenceMapperProvider

	Creating an Association Class on an ECO Class Diagram
	To create an association class

	Creating an ECO ASP.NET Application
	To create an ECO ASP.NET application
	To change Web server settings (optional)

	Creating an ECO framework State Machine Diagram
	To create a new ECO state machine diagram
	To develop a state machine diagram

	Creating an ECO Package in a DLL
	To create an ECO Package in a DLL

	Creating an Empty InterBase Database
	To create an empty InterBase database using the IBConsole program

	Creating an Event Derived Column
	To create an event derived column

	Deploying an ECO framework Application
	To deploy an ECO application

	Deriving an Attribute in Source Code
	To create the source code method

	Generating a Model and OR Mapping from an Existing Database
	To wrap an existing database

	Implementing a Subclass of SubscriberAdapterBase
	To implement a subclass of SubscriberAdapterBase

	Regenerating and Updating ECO Source Code
	To completely regenerate ECO source code
	To update ECO source code

	Selecting ECO UML Packages
	To select UML packages

	Using a Custom Object-Relational Mapping File
	To specify a custom OR mapping file
	To use ECO database evolution with a custom OR mapping file

	Using the ECO Space Designer
	To configure an ECO Space

	Using the Expression Editor to Build OCL and ECO Action Language Expressions
	To open the Expression Editor
	To use the OCL Expression Editor when adding columns

	Using the PersistenceMapperProvider Designer
	To configure the PersistenceMapperProvider

	Interoperable Applications Procedures
	Adding a Reference to a COM Server
	To Add a Reference to a COM Server

	Adding an ActiveX Control to the Tool Palette
	To Add an ActiveX Control to the Tool Palette

	Installing Janeva Compilers in the Tools Menu
	To install a compiler to the Tools menu

	VCL for .NET Procedures
	Building a VCL Forms Application
	To create a VCL Form
	To associate code with a control

	Building a VCL Forms dbExpress.NET Database Application
	To add a dbExpress connection component
	To set up the unidirectional dataset
	To add the provider
	To add client dataset
	To add the data source
	To connect a DataGrid to the DataSet

	Building a VCL Forms Hello World Application
	To create a VCL Form
	To display the "Hello World" string
	To run the "Hello World" application

	Building a VCL.NET Forms ADO.NET Database Application
	To add an ADO connection component
	To set up the dataset
	To add the provider
	To add client dataset
	To add the data source
	To connect a DataGrid to the DataSet

	Building an Application with XML Components
	The basic steps are:
	To create the XML document
	To create a form with an XMLDocument component
	To set up the VCL components
	To display child node contents in the XML file
	To compile and run the application

	Building VCL Forms Applications With Graphics
	

	Creating a New VCL.NET Component
	To create a new VCL.NET component
	To specify an ancestor component
	To specify a class name
	To create a unit
	To install a unit into an existing package
	To install a unit into a new package

	Creating Actions in a VCL Forms Application
	To add the main menu, actionlist, and memo to a form
	To create the actions
	To add the cut and paste actions to the edit category in the main menu
	To build and run the application

	Displaying a Bitmap Image in a VCL Forms Application
	To create a VCL form and button
	To provide a bitmap image
	To write the OnClick event handler
	To run the program

	Drawing a Rounded Rectangle in a VCL Forms Application
	To create a VCL form
	To write the OnPaint event handler
	To run the program

	Drawing Rectangles and Ellipses in a VCL Forms Application
	To create a VCL form
	To write the OnPaint event handler
	To run the program

	Drawing Straight Lines In a VCL Forms Application
	To create a VCL form and place an image on it
	To write the OnPaint event handler
	To run the program

	Importing .NET Controls to VCL.NET
	To use .NET components in a VCL.NET Form
	To run the WinForm Control Import Wizard
	To build and add the package

	Placing a Bitmap Image in a Control in a VCL Forms Application
	To create a VCL form with a ComboBox component
	To set the component properties
	To add the event handler code
	To run the program

	Using ActionManager to Create Actions in a VCL Forms Application
	To add a file open action to ActionManager
	To create the main menu and add the File action to it
	To build and run the application

	Web Services Procedures
	Accessing an ASP.NET "Hello World" Web Services Application
	To access a simple "Hello World" ASP.NET Web Services application
	To create a client application
	To add a Web Reference for an ASP.NET Web Services application
	To create the code-behind logic
	To run the client application

	Adding Web References in ASP.NET Projects
	To create an ASP.NET project
	To design the ASP.NET web page
	To add the Web Reference for DeadOrAliveWS
	To write the application logic
	To run the application

	Building an ASP.NET "Hello World" Web Services Application
	To create a simple "Hello World" application with ASP.NET Web Services
	To create an an ASP.NET Web Services application
	To create a WebMethod
	To test and run the XML web service manually

	Porting a Delphi for Win32 Web Service Client Application to Delphi for .NET
	To port your web service
	To change your existing form components
	To change the uses clause
	To add a web reference
	To change the web service invocation code

	Windows Forms Procedures
	Building a Windows Forms Application
	To create a Windows Forms project
	To associate code with a control

	Building a Windows Forms Database Application
	
	To configure connection components and a data source
	To set up a connection
	To create and configure a data adapter
	To create a dataset
	To connect a DataGrid to a DataSet

	Building a Windows Forms Hello World Application
	To create a Windows Form
	To associate code with the button control
	To run the "Hello World" application

	Building Windows Forms Menus
	To create a menu
	To create an event handler for a menu item
	To use keyboard sequences for menus
	To use shortcut menus

	Passing Parameters in a Database Application
	To pass a parameter
	To create a data adapter and connection
	To add a parameter to the data adapter
	To add controls to the form
	To configure the data grid
	To add code to the button Click event
	To compile and run the application

	Win32
	Building Windows Applications with Win32 Forms
	Windows Overview
	GUI Applications
	Single Document Interface
	Multiple Document Interface

	Console Applications
	Service Applications
	Creating Packages and DLLs

	Building Web Applications with WebSnap
	Win32 Web Applications Overview
	Win32 Web Application Support
	ISAPI
	CGI
	Web Application Debugger

	Web Broker Overview
	Web Snap Overview
	Debugging With the Web Application Debugger
	Launching your application with the Web Application Debugger
	Converting your application to another type of Web server application after debugging

	Building Web Services with Win32 Applications
	Web Services Overview

	Building Database Applications for the Win32 Platform
	dbGo Overview
	dbExpress Components
	BDE Overview
	Getting Started with InterBase Express
	IBX components

	Building Applications with VCL Components
	VCL Overview
	VCL Architecture
	VCL versus VCL.NET
	VCL Components
	Visual Components
	NonVisual Components
	Other VCL Classes

	Working With Components
	Using Events
	Setting Component Properties

	Building Interoperable Applications
	Building COM Applications
	COM Technologies Overview
	COM Interfaces
	The IUnknown interface
	COM Interface Pointers

	COM Servers
	COM Clients
	COM Extensions
	Automation Servers
	Active X Controls
	Active Documents
	Transactional Objects
	Type Libraries

	Build Configurations
	Managing C++ Build Configurations
	Build Configuration Inheritance
	The Inherit Check Box
	Overriding Inherited Options
	Setting Project Defaults

	Debugging C++ Applications with CodeGuard Error Reporting
	CodeGuard Overview
	Memory and Resource Use
	Function Call Validation

	CodeGuard Errors
	Access Errors
	Access In Freed Memory
	Access In Uninitialized Stack
	Access In Invalid Stack

	Resource Errors
	Bad Parameter
	Reference To Freed Resource
	Resource Type Mismatch
	Resource Leaks
	Resource From Different RTL

	Exception Errors
	General Protection Fault
	Divide By Zero

	Function Failure Errors

	CodeGuard Warnings
	String Comparison Warnings
	Memory Block Comparison Warnings
	Pathname Merging and Splitting Warnings
	fnmerge
	fnsplit
	getcurdir

	Building Reports for Win32 Applications
	Using Rave Reports in Developer Studio 2006
	Creating New Reports in Developer Studio 2006

	Procedures
	CodeGuard Procedures
	Using CodeGuard
	To run C++ application with CodeGuard reporting
	To enable the CodeGuard reporting tool
	To enable CodeGuard compiler options for your project

	Database Procedures
	Accessing Schema Information
	To access schema information

	Configuring TSQL Connection
	To configure a TSQL Connection
	To identify the driver
	To specify a connection parameter
	To identify a database connection
	To display the Connection Editor
	To define and modify connections using the Connection Editor

	Connecting to Databases with TDatabase
	To connect to databases with TDatabase
	To associate a database component with a session
	To identify the database
	To open a connection using TDatabase

	Connecting to the Application Server using DataSnap Components
	To connect to the application server using DataSnap components

	Debugging dbExpress Applications using TSQLMonitor
	To debug dbExpress applications
	To use a callback to monitor SQL commands

	Executing the Commands using TSQLDataSet
	To execute commands
	To specify the command to execute
	To execute the command
	To create and modify server metadata

	Fetching the Data using TSQLDataSet
	To fetch the data

	Managing Database Sessions Using TSession
	To manage database sessions

	Specifying the Data to Display using TSQLDataSet
	To specify the data to display
	To display results from a query
	To display records in a table
	To display the results of a stored procedure

	Specifying the Provider using TLocalConnection or TConnectionBroker
	To specify the provider

	Using BDE
	To use BDE

	Using DataSnap
	To build multi-tiered database applications using DataSnap

	Using dbExpress
	To build a database applications using dbExpress

	Using TBatchMove
	To use TBatchMove

	Using TQuery
	To use TQuery
	To associate a dataset with database and session connections
	To create mixed queries
	To obtain an editable result set
	To update read-only result sets

	Using TSimpleDataSet
	To use TSQLStoredProc

	Using TSimpleObjectBroker
	To use TSimpleObjectBroker

	Using TSQLQuery
	To use TSQLQuery

	Using TSQLStoredProc
	To use TSQLStoredProc

	Using TSQLTable
	To use TSQLTable

	Using TStoredProc
	To use TStoredProc
	To associate a dataset with database and session connections
	To bind parameters

	Using TTable
	To use TTable
	To associate a dataset with database and session connections
	To specify the TableType and control read/write access
	To specify a dBASE index file
	To rename local tables
	To import data from another table

	Using TUpdateSQL to Update a Dataset
	To update a dataset using an update object

	Interoperable Applications Procedures
	Using COM Wizards
	To use a COM wizard

	Reporting Procedures
	Adding Rave Reports to Developer Studio 2006
	To add a Rave Reports command to the Tools menu

	VCL Procedures
	Adding and Sorting Strings
	To create a VCL Form with Button, Label, and ListBox controls
	To write the copy stream procedure
	To run the application

	Avoiding Simultaneous Thread Access to the Same Memory
	To lock objects
	To use a critical section
	To use the multi-read exclusive-write synchronizer

	Building a Multithreaded Application
	To drop a component on a form

	Building a VCL Forms "Hello world" Application
	To create a VCL Form
	To display the "Hello world" string
	To run the "Hello world" application

	Building a VCL Forms ADO Database Application
	To add an ADO connection component
	To set up the dataset
	To add the provider
	To add client dataset
	To add the data source
	To connect a DataGrid to the DataSet

	Building a VCL Forms Application
	To create a VCL Form
	To associate code with a control

	Building a VCL Forms Application with Decision Support Components
	To create a VCL form
	To add a decision dataset
	To add a decision cube
	To add a decision source
	To add a decision pivot
	To create a decision grid
	To create a decision graph
	To run the application

	Building a VCL Forms dbExpress Database Application
	To add a dbExpress connection component
	To set up the unidirectional dataset
	To add the provider
	To add client dataset
	To add the data source
	To connect a DataGrid to the DataSet

	Building a VCL Forms MDI Application Using a Wizard
	To create a new MDI application using a wizard

	Building a VCL Forms MDI Application Without Using a Wizard
	The basic steps to create a new MDI application with a child window without using a wizard are
	To create the main window form
	To create a child window
	To have the main window create the child window
	To write the event handler code to close the child window
	To create the main menu and commands
	To add event handlers for the New child and Close All commands
	To close the child window
	To compile and run the MDI application

	Building a VCL Forms SDI Application
	To create a new SDI application

	Building a VCL Forms Web Browser Application
	To create a VCL Form
	To code a button click event that launches the browser
	To run the application

	Building a Windows "Hello World" Application
	To create the "Hello world" application
	To create a Windows form
	To associate code with the button control
	To run the "Hello World" application

	Building a Windows Application
	To create a Windows project
	To associate code with a control

	Building an Application with XML Components
	The basic steps are:
	To create the XML document
	To create a form with an XMLDocument component
	To set up the VCL components
	To display child node contents in the XML file
	To compile and run the application

	Building Application Menus
	To create application menus
	To build application menus
	To use the Menu Designer
	To create an event handler for a menu item
	To move menu items
	To add images to menu items

	Building VCL Forms Applications With Graphics
	

	Copying a Complete String List
	To create a VCL Form with Button, ComboBox, and Memo controls
	To create the string list
	To copy the string list
	To run the application

	Copying Data From One Stream To Another
	To set up your project directory and a text file to copy
	To create a VCL Form with a button control
	To write the copy stream procedure
	To run the application

	Creating a New VCL Component
	To create a new VCL component
	To specify an ancestor component
	To specify a class name
	To create a unit
	To install a unit into an existing package
	To install a unit into a new package

	Creating a VCL Form Instance Using a Local Variable
	To create the two forms
	To optionally remove Form2's invocation at startup
	To link Form1 to Form2
	To display Form2 from Form1
	To build and run the application

	Creating a VCL Forms ActiveX Active Form
	To create an Active X library project for an ActiveX Active Form
	To add some functionality to the Active Form
	To deploy the Active Form to your Web browser
	To test the Active Form

	Creating Actions in a VCL Forms Application
	To create a main window
	To add the File category to the main menu
	To add the File Open action to the File category
	To build and run the application

	Creating Strings
	To create a VCL Form with TButton and TComboBox controls
	To write the create string procedure
	To run the application

	Defining the Thread Object
	To define the thread object

	Deleting Strings
	To create a VCL Form with TButton and ListBox controls
	To add strings to a list
	To delete a string from the list
	To run the application

	Displaying a Bitmap Image in a VCL Forms Application
	To create a VCL form and button
	To provide a bitmap image
	To write the OnClick event handler
	To run the program

	Displaying a Full View Bitmap Image in a VCL Forms Application
	To create a VCL form and button
	To provide a bitmap image
	To write the OnClick event handler
	To run the program

	Displaying an Auto-Created VCL Form
	To create the two forms
	To link Form1 to Form2
	To display Form2 from Form1
	To build and run the application

	Drawing a Polygon in a VCL Forms Application
	To create a VCL form
	To write the OnPaint event handler
	To run the program

	Drawing a Rounded Rectangle in a VCL Forms Application
	To create a VCL form
	To run the program

	Drawing Rectangles and Ellipses in a VCL Forms Application
	To create a VCL form and place an image on it
	To write the OnPaint event handler
	To run the program

	Drawing Straight Lines In a VCL Forms Application
	To create a VCL form and place an image on it
	To write the OnPaint event handler
	To run the program

	Dynamically Creating a VCL Modal Form
	To create the two forms
	To remove Form2's invocation at startup
	To link Form1 to Form2
	To display Form2 from Form1
	To build and run the application

	Dynamically Creating a VCL Modeless Form
	To create the two forms
	To remove Form2's invocation at startup
	To link Form1 to Form2
	To display Form2 from Form1
	To build and run the application

	Handling Exceptions
	To handle exceptions in the thread function

	Initializing a Thread
	To initialize a thread object
	To assign a default priority
	To indicate when a thread is freed

	Iterating Through Strings in a List
	To create a VCL Form with TButton and TListBox controls
	To create a string list and add strings to it
	To change all characters to uppercase
	To run the application

	Placing A Bitmap Image in a Control in a VCL Forms Application
	To create a VCL form with a TComboBox component
	To set the component properties
	To add the event handler code
	To run the program

	Reading a String and Writing It To a File
	To create a VCL Form
	To read and write a string
	To run the "Hello world" application

	Renaming Files
	To set up your project directory and a text file to copy
	To create a VCL Form with a button and label
	To write the rename file procedure
	To run the application

	Using ActionManager to Create Actions in a VCL Forms Application
	To create a main window and add a File open action
	To create the main menu
	To build and run the application

	Using the Main VCL Thread
	To create a separate routine
	To call CheckSynchronize
	To use a thread-local variable

	Waiting for Threads
	To wait for a thread to finish executing
	To wait for a task to complete
	To check if another thread is waiting on your thread to terminate

	Writing Cleanup Code
	To clean up after your thread finishes executing

	Writing the Thread Function
	To implement Execute, coordinate thread execution by

	WebSnap Procedures
	Building a WebSnap "Hello World" Application
	To create a WebSnap project
	To change included components (optional)
	To set the page title in the page options
	To modify the HTML template
	To run the "Hello world" application

	Building a WebSnap Application
	To create a WebSnap project
	To change included components (optional)
	To set page options (optional)
	To create additional WebSnap pages

	Debugging a WebSnap Application using the Web Application Debugger
	To debug a WebSnap Application using the Web Application Debugger
	To register the server information application for the Web Application Debugger
	To register your web application with the Debugger
	To launch the Web Application Debugger
	To select and launch your web application

	Win32 Developer's Guide
	Programming with Delphi
	Delphi programming fundamentals
	Designing Applications
	Creating Projects
	Editing Code
	Compiling Applications
	Debugging Applications
	Deploying Applications

	Understanding the component library
	Understanding the Component Library
	Properties, Methods, and Events
	Properties
	Methods
	Events

	Types of Events
	User events
	System events
	Internal events

	Objects, Components, and Controls
	TObject Branch
	TPersistent Branch
	TComponent Branch
	TControl Branch
	TWinControl/TWidgetControl Branch

	Using the object model
	Using the Object Model
	What Is an Object?
	Examining a Delphi Object
	Changing the Name of a Component
	Inheriting Data and Code from an Object
	Scope and Qualifiers
	Private, Protected, Public, and Published Declarations
	Using Object Variables
	Creating, Instantiating, and Destroying Objects
	Components and Ownership
	Defining New Classes
	To define a class:
	Using Interfaces
	Using Interfaces Across the Hierarchy
	Using Interfaces with Procedures
	Implementing IInterface
	TInterfacedObject
	Using the as Operator with Interfaces
	Reusing Code and Delegation
	Using Implements for Delegation
	Aggregation
	Memory Management of Interface Objects
	Using Reference Counting
	Not Using Reference Counting
	Using Interfaces in Distributed Applications

	Using the VCL/RTL
	Using the VCL/RTL: Overview
	Using Streams
	Using Streams to Read or Write Data
	Stream methods for reading and writing
	Reading and writing components
	Reading and writing strings

	Copying Data from One Stream to Another
	Specifying the Stream Position and Size
	Seeking to a specific position
	Using Position and Size properties

	Working with Files
	Approaches to File I/O
	Using File Streams
	Creating and opening files using file streams
	Using the file handle

	Manipulating Files
	Deleting a File
	Finding a File
	Renaming a File
	File Date-time Routines
	Copying a File
	Working with ini Files and the System Registry
	Using TIniFile and TMemIniFile
	Using TRegistryIniFile
	Using TRegistry
	Working with Lists
	Common List Operations
	Adding list items
	Deleting list items
	Accessing list items
	Rearranging list items

	Persistent Lists
	Working with String Lists
	Loading and Saving String Lists
	Creating a New String List
	Short-term string lists

	To create a short-term string list:
	Long-term string lists

	To create a long-term string list:
	Manipulating Strings in a List
	Counting the Strings in a List
	Accessing a Particular String
	Locating Items in a String List
	Iterating Through Strings in a List
	Adding a String to a List
	Deleting a String from a List
	Copying a Complete String List
	Associating Objects with a String List
	Working with Strings
	Wide Character Routines
	Commonly Used Long String Routines
	Commonly Used Routines for Null-terminated Strings
	Declaring and Initializing Strings
	Mixing and Converting String Types
	String to PChar Conversions
	String Dependencies
	Returning a PChar Local Variable
	Passing a Local Variable as a PChar
	Compiler Directives for Strings
	Creating Drawing Spaces
	Printing
	Converting Measurements
	Performing Conversions
	Performing simple conversions
	Performing complex conversions

	Adding New Measurement Types
	Creating a Simple Conversion Family and Adding Units
	Declare variables
	Register the conversion family
	Register measurement units
	Use the new units

	Using a Conversion Function
	Declare variables
	Register the conversion family
	Register the base unit
	Write methods to convert to and from the base unit
	Register the other units
	Use the new units

	Using a Class to Manage Conversions
	Creating the conversion class
	Declare variables
	Register the conversion family and the other units
	Use the new units

	Defining Custom Variants
	To create a Variant type:
	Storing a Custom Variant Type's Data
	Creating a Class to Enable the Custom Variant Type
	Enabling Casting
	Implementing Binary Operations
	Implementing Comparison Operations
	Implementing Unary Operations
	Copying and Clearing Custom Variants
	Loading and Saving Custom Variant Values
	Using the TCustomVariantType Descendant
	Writing Utilities to Work with a Custom Variant Type
	Supporting Properties and Methods in Custom Variants
	Using TInvokeableVariantType
	Using TPublishableVariantType

	Working with components
	Setting Component Properties
	Setting Properties at Design Time
	Using Property Editors
	Setting Properties at Runtime
	Calling Methods
	Working with Events and Event Handlers
	Generating a New Event Handler
	To create an event handler:
	Generating a Handler for a Component's Default Event
	Locating Event Handlers
	To locate an event handler that's not the default:
	Associating an Event with an Existing Event Handler
	To associate an event with an existing event handler
	Using the Sender Parameter
	Displaying and Coding Shared Events
	Associating Menu Events with Event Handlers
	To create an event handler for a menu item:
	To associate a menu item with an existing OnClick event handler:
	Deleting Event Handlers
	Cross-platform and Non-cross-platform Components
	Adding Custom Components to the Tool Palette

	Working with controls
	Implementing Drag and Drop in Controls
	Starting a Drag Operation
	Accepting Dragged Items
	Dropping Items
	Ending a Drag Operation
	Customizing Drag and Drop with a Drag Object
	Changing the Drag Mouse Pointer
	Implementing Drag and Dock in Controls
	Making a Windowed Control a Docking Site
	To make a windowed control a docking site:
	Making a Control a Dockable Child
	To make a control a dockable child:
	Controlling How Child Controls Are Docked
	Controlling How Child Controls Are Undocked
	Controlling How Child Controls Respond to Drag-and-dock Operations
	Working with Text in Controls
	Setting Text Alignment
	Adding Scroll Bars at Runtime
	To add scroll bars at runtime:
	Adding the Clipboard Object
	To add the Clipboard object to an application:
	Selecting Text
	Selecting All Text
	Cutting, Copying, and Pasting Text
	Deleting Selected Text
	Disabling Menu Items
	Providing a Pop-up Menu
	To add a pop-up menu to a form:
	Handling the OnPopup Event
	To adjust menu items on a pop-up menu before displaying them:
	Adding Graphics to Controls
	To create an owner-draw control:
	Indicating That a Control Is Owner-drawn
	Adding Graphical Objects to a String List
	Adding Images to an Application
	To store bitmaps for owner-draw controls in hidden image controls:
	Adding Images to a String List
	Drawing Owner-drawn Items
	To draw the items in an owner-draw control, do the following for each visible item in the control. Use a single event handler for all items.
	Sizing Owner-draw Items
	Drawing Owner-draw Items

	Building applications, components, and libraries
	Creating Applications
	GUI Applications
	User Interface Models
	SDI Applications
	To create a new SDI application:
	MDI Applications
	To create a new MDI application using a wizard:
	To create a new MDI application without using a wizard:
	Setting IDE, Project, and Compiler Options
	Setting default project options

	Code Templates
	To add a template:
	Console Applications
	Service Applications
	To create an application that implements a Win32 service:
	To create the example:
	Service Threads
	To create the example:
	Service Name Properties
	TDependency properties
	TService name properties

	Debugging Service Applications
	To debug:
	For Windows NT:
	Creating Packages and DLLs
	When to Use Packages and DLLs
	Creating DLLs Containing VCL Components (C++)
	Using DLLs in Developer Studio 2006 (C++)
	Linking DLLs
	Writing Database Applications
	Distributing Database Applications
	Creating Web Server Applications
	Creating Web Broker Applications
	Creating WebSnap Applications
	Creating Web Services Applications
	Writing Applications Using COM
	Using COM and DCOM
	Using MTS and COM+

	Using Data Modules
	Creating and Editing Standard Data Modules
	Naming a Data Module and Its Unit File
	To rename a data module:
	Placing and Naming Components
	To change the name of a component in a data module:
	Using Component Properties and Events in a Data Module
	Creating Business Rules in a Data Module
	Accessing a Data Module from a Form
	Adding a Remote Data Module to an Application Server Project
	To add a remote data module to a project:
	Using the Object Repository
	Sharing Items Within a Project
	Adding Items to the Object Repository
	To add an item to the Object Repository
	Sharing Objects in a Team Environment
	To use a shared repository, all team members must select the same Shared Repository directory in the Environment Options dialog:
	Using an Object Repository Item in a Project
	Copying an Item
	Inheriting an Item
	Using an Item
	Using Project Templates
	To create a new project from a template:
	Modifying Shared Items
	Enabling Help in Applications
	Help System Interfaces
	Implementing ICustomHelpViewer
	Communicating with the Help Manager
	Asking the Help Manager for Information
	Displaying Keyword-based Help
	Displaying Tables of Contents
	Implementing IExtendedHelpViewer
	Implementing IHelpSelector
	Registering Help System Objects
	Registering Help viewers
	Registering Help selectors

	Using Help in a VCL Application
	How TApplication Processes VCL Help
	How VCL Controls Process Help
	Calling a Help System Directly
	Using IHelpSystem
	Customizing the IDE Help System
	To register a custom Help viewer with the IDE:

	Developing the application user interface
	Developing the Application User Interface: Overview
	Controlling Application Behavior
	Working at the Application Level
	Handling the Screen
	Using the Main Form
	To change the project main form:
	Hiding the Main Form
	To hide the main form at startup:
	Adding Forms
	Linking forms

	To link a form to another form:
	Avoiding circular unit references

	Managing Layout
	Using Forms
	Controlling When Forms Reside in Memory
	Displaying an Auto-created Form
	Creating Forms Dynamically
	To create a form at a different stage during execution using the IDE:
	Creating Modeless Forms Such as Windows
	Creating a Form Instance Using a Local Variable
	Passing Additional Arguments to Forms
	Retrieving Data from Forms
	Retrieving Data from Modeless Forms
	Retrieving Data from Modal Forms
	Reusing Components and Groups of Components
	Creating and Using Component Templates
	To create a component template:
	Working with Frames
	Creating Frames
	Adding frames to the Tool palette

	Using and Modifying Frames
	Sharing Frames
	Developing Dialog Boxes
	Using Windows Common Dialog Boxes
	Organizing Actions for Toolbars and Menus
	What Is an Action?
	Setting Up Action Bands
	Creating Toolbars and Menus
	To create menus and toolbars using action bands:
	Adding Color, Patterns, or Pictures to Menus, Buttons, and Toolbars
	Adding Icons to Menus and Toolbars
	To add icons to menus and toolbars:
	Selecting Menu and Toolbar Styles
	To select menu and toolbar styles:
	To customize the look and feel of a colormap:
	Creating Dynamic Menus
	Creating Customizable Toolbars and Menus
	To allow the user of your application to customize an action band in your application:
	Hiding Unused Items and Categories in Action Bands
	Creating Most Recently Used Lists
	Using Action Lists
	Setting Up Action Lists
	Here are the steps in more detail:
	What Happens When an Action Fires
	Responding with events

	How Actions Find Their Targets
	Updating Actions
	Predefined Action Classes
	Writing Action Components
	Registering Actions
	Creating and Managing Menus
	Opening the Menu Designer
	Building Menus
	Naming Menus
	Naming the Menu Items
	Adding, Inserting, and Deleting Menu Items
	To add menu items at design time:
	To insert a new, blank menu item:
	To delete a menu item or command:
	Specifying Accelerator Keys and Keyboard Shortcuts
	Creating Submenus
	To create a submenu:
	Creating submenus by demoting existing menus

	Moving Menu Items
	To move a menu item along the menu bar:
	To move a menu item into a menu list:
	Adding Images to Menu Items
	To add an image to a menu item using an image list:
	Viewing the Menu
	To view the menu:
	Editing Menu Items in the Object Inspector
	To close the Menu Designer window and continue editing menu items:
	Using the Menu Designer Context Menu
	Commands on the context menu

	Switching Between Menus at Design Time
	To use the context menu to switch between menus in a form:
	To use the Object Inspector to switch between menus in a form:
	Using Menu Templates
	To add a menu template to your application
	To delete a menu template
	Saving a Menu as a Template
	To save a menu as a template
	Naming Conventions for Template Menu Items and Event Handlers
	Manipulating Menu Items at Runtime
	Merging Menus
	Specifying the Active Menu: Menu Property
	Determining the Order of Merged Menu Items: GroupIndex Property
	Importing Resource Files
	To load existing .RC menu files
	Designing Toolbars and Cool Bars
	Adding a Toolbar Using a Panel Component
	To add a toolbar to a form using the panel component
	Adding a Speed Button to a Panel
	Assigning a Speed Button's Glyph
	To assign a glyph to a speed button at design time
	Setting the Initial Condition of a Speed Button
	Creating a Group of Speed Buttons
	Allowing Toggle Buttons
	Adding a Toolbar Using the Toolbar Component
	To add a toolbar to a form using the toolbar component
	Adding a Tool Button
	Assigning Images to Tool Buttons
	To assign images to tool buttons at design time
	Setting Tool Button Appearance and Initial Conditions
	Creating Groups of Tool Buttons
	Allowing Toggled Tool Buttons
	Adding a Cool Bar Component
	To add a cool bar to a form in a VCL application:
	Setting the Appearance of the Cool Bar
	Responding to Clicks
	Assigning a Menu to a Tool Button
	To assign a menu to a tool button
	Adding Hidden Toolbars
	To create a hidden toolbar:
	Hiding and Showing Toolbars
	Demo Programs: Actions, Action Lists, Menus, and Toolbars
	Common Controls and XP Themes

	Types of controls
	Text Controls
	Edit Controls
	Memo and Rich Edit Controls
	Text Viewing Controls
	Labels
	Specialized Input Controls
	Scroll Bars
	Track Bars
	Up-down Controls (VCL Only)
	Hot Key Controls (VCL Only)
	Splitter Controls
	Buttons and Similar Controls
	Button Controls
	Bitmap Buttons
	Speed Buttons
	Check Boxes
	Radio Buttons
	Toolbars
	Cool Bars (VCL Only)
	List Controls
	List Boxes and Check-list Boxes
	To create a simple list box
	Combo Boxes
	To create a combo box
	Tree Views
	List Views
	Date-time Pickers and Month Calendars
	Grouping Controls
	Group Boxes and Radio Groups
	Panels
	Scroll Boxes
	Tab Controls
	Page Controls
	Header Controls
	Display Controls
	Status Bars
	Progress Bars
	Help and Hint Properties
	Grids
	Draw Grids
	String Grids
	Value List Editors (VCL Only)
	Graphic Controls
	Images
	Shapes
	Bevels
	Paint Boxes
	Animation Control

	Working with graphics and multimedia
	Working with Graphics and Multimedia: Overview
	Overview of Graphics Programming
	Refreshing the Screen
	Types of Graphic Objects
	Common Properties and Methods of Canvas
	Using the Properties of the Canvas Object
	Using Pens
	Changing the Pen Color
	Changing the Pen Width
	Changing the Pen Style
	To create one click-event handler for six pen-style buttons on a pen's toolbar, do the following:
	Changing the Pen Mode
	Getting the Pen Position
	Using Brushes
	Changing the Brush Color
	Changing the Brush Style
	Setting the Brush Bitmap Property
	Reading and Setting Pixels
	Using Canvas Methods to Draw Graphic Objects
	Drawing Lines and Polylines
	Drawing Lines
	Drawing Polylines
	Drawing Shapes
	Drawing Rectangles and Ellipses
	Drawing Rounded Rectangles
	Drawing Polygons
	Handling Multiple Drawing Objects in Your Application
	Keeping Track of Which Drawing Tool to Use
	Changing the Tool with Speed Buttons
	Using Drawing Tools
	Drawing Shapes
	Sharing Code Among Event Handlers
	To add a method to a form:
	Drawing On a Graphic
	Making Scrollable Graphics
	Adding an Image Control
	Placing the Control
	Setting the Initial Bitmap Size
	To create a blank bitmap when the application starts
	Drawing On the Bitmap
	Loading and Saving Graphics Files
	Loading a Picture from a File
	Saving a Picture to a File
	Replacing the Picture
	Using the Clipboard with Graphics
	Copying Graphics to the Clipboard
	Cutting Graphics to the Clipboard
	Pasting Graphics from the Clipboard
	To paste a graphic from the clipboard:
	Rubber Banding Example
	Responding to the Mouse
	What's in a Mouse Event
	Responding to a Mouse-down Action
	Responding to a Mouse-up Action
	Responding to a Mouse Move
	Adding a Field to a Form Object to Track Mouse Actions
	Refining Line Drawing
	Tracking the Origin Point
	Tracking Movement
	Working with Multimedia
	Adding Silent Video Clips to an Application
	To add silent videop clips
	Example of Adding Silent Video Clips
	To run this example, create a new project and save the Unit1.pas file as Frmlogo.pas and save the Project1.dpr file as Logo.dpr. Then:
	Adding Audio and/or Video Clips to an Application
	To add an audio and/or video clip to an application:
	Example of Adding Audio and/or Video Clips (VCL Only)
	To run this example, create a new project and save the Unit1.pas file to FrmAd.pas and save the Project1.dpr file to DelphiAd.dpr. Then:

	Writing multi-threaded applications
	Writing Multi-threaded Applications
	Defining Thread Objects
	To use a thread object in your application
	Initializing the Thread
	Assigning a default priority
	Indicating when threads are freed

	Writing the Thread Function
	Using the Main VCL Thread
	Using Thread-local Variables
	Checking for Termination by Other Threads
	Handling Exceptions in the Thread Function
	Writing Clean-up Code
	Coordinating Threads
	Avoiding Simultaneous Access
	Locking Objects
	Using Critical Sections
	Using the Multi-read Exclusive-write Synchronizer
	Other Techniques for Sharing Memory
	Waiting for Other Threads
	Waiting for a Thread to Finish Executing
	Waiting for a Task to Be Completed
	Executing Thread Objects
	Overriding the Default Priority
	Starting and Stopping Threads
	Debugging Multi-threaded Applications
	Naming a Thread
	Converting an Unnamed Thread to a Named Thread
	To convert an unnamed thread to a named thread
	Assigning Separate Names to Similar Threads
	To assign separate names to similar threads
	To create the thread object

	Exception handling
	Exception Handling
	Defining Protected Blocks
	Writing the Try Block
	Raising an Exception
	Writing Exception Handlers
	Exception-handling Statements
	Handling Classes of Exceptions
	Scope of Exception Handlers
	Reraising Exceptions
	Writing finally Blocks
	Writing a Finally Block
	Handling Exceptions in VCL Applications
	VCL Exception Classes
	Default Exception Handling in VCL
	Silent Exceptions
	Defining Your Own VCL Exceptions
	Throwing An Exception (C++)
	Constructors In Exception Handling (C++)
	Writing A finally Block
	Unwinding Exceptions (C++)
	Smart Pointers (C++)
	Exception Handling Options (C++)

	Working with packages and components
	Working with Packages and Components: Overview
	Why Use Packages?
	Packages and Standard DLLs
	Runtime Packages
	Loading Packages in an Application
	To load packages using the >Project>Options dialog box
	Loading Packages with the LoadPackage Function
	Deciding Which Runtime Packages to Use
	Custom Packages
	Design-time Packages
	Installing Component Packages
	To install or uninstall your own components, or components from a third-party vendor
	Creating and Editing Packages
	Creating a Package
	To create a package
	Editing an Existing Package
	To edit an existing package:
	Understanding the Structure of a Package
	Naming packages
	Requires clause
	Avoiding circular package references
	Handling duplicate package references
	Contains clause
	Avoiding redundant source code uses

	Editing Package Source Files Manually
	To open a package source file in the Code editor
	Compiling Packages
	To recompile a package by itself from the IDE
	Package-specific Compiler Directives
	Weak Packaging
	Compiling and Linking from the Command Line
	Package Files Created by Compiling
	Deploying Packages
	Deploying applications that use packages
	Distributing packages to other developers

	Package Collection Files
	To create package collection files

	Creating international applications
	Creating International Applications: Overview
	Internationalization and Localization
	Internationalization
	Localization
	Internationalizing Applications
	Enabling Application Code
	Character Sets
	OEM and ANSI Character Sets
	Multibyte Character Sets
	Wide Characters
	Including Bi-directional Functionality in Applications
	bdLeftToRight
	bdRightToLeft
	bdRightToLeftNoAlign
	bdRightToLeftReadingOnly

	ParentBiDiMode Property
	FlipChildren Method
	Additional Methods
	Locale-specific Features
	Designing the User Interface
	Text
	Graphic Images
	Formats and Sort Order
	Keyboard Mappings
	Isolating Resources
	Creating Resource DLLs
	Using Resource DLLs
	Dynamic Switching of Resource DLLs
	Localizing Applications
	Localizing resources

	Deploying applications
	Deploying Applications: Overview
	Deploying General Applications
	Using Installation Programs
	Identifying Application Files
	Application Files, Listed by File Name Extension
	Package Files
	Merge Modules
	ActiveX Controls
	Helper Applications
	DLL Locations
	Deploying Database Applications
	Deploying dbExpress Database Applications
	Deploying BDE Applications
	Borland Database Engine
	Deploying Multi-tiered Database Applications (DataSnap)
	Deploying Web Applications
	Deploying On Apache Servers
	Enabling modules
	CGI applications

	Programming for Varying Host Environments
	Screen Resolutions and Color Depths
	Considerations When Not Dynamically Resizing
	Considerations When Dynamically Resizing Forms and Controls
	Accommodating Varying Color Depths
	Fonts
	Operating System Versions
	Software License Requirements
	DEPLOY
	README
	No-nonsense license agreement
	Third-party product documentation

	Developing Database Applications
	Designing database applications
	Designing Database Applications: Overview
	Using Databases
	Types of Databases
	Database Security
	Transactions
	Referential Integrity, Stored Procedures, and Triggers
	Database Architecture
	The user interface form
	The data module
	The data source
	The dataset
	The data connection

	Connecting Directly to a Database Server
	Using a Dedicated File on Disk
	Connecting to Another Dataset
	Connecting a Client Dataset to Another Dataset in the Same Application
	Using a Multi-Tiered Architecture
	Combining Approaches
	Designing the User Interface
	Analyzing Data
	Writing Reports

	Using data controls
	Using Data Controls
	Using Common Data Control Features
	Associating a Data Control with a Dataset
	To associate a data control with a dataset
	Changing the Associated Dataset at Runtime
	Enabling and Disabling the Data Source
	Responding to Changes Mediated by the Data Source
	Editing and Updating Data
	Enabling Editing in Controls On User Entry
	Editing Data in a Control
	Disabling and Enabling Data Display
	Refreshing Data Display
	Enabling Mouse, Keyboard, and Timer Events
	Choosing How to Organize the Data
	Displaying a Single Record
	Displaying Data as Labels
	Displaying and Editing Fields in an Edit Box
	Displaying and Editing Text in a Memo Control
	Displaying and Editing Text in a Rich Edit Memo Control
	Displaying and Editing Graphics Fields in an Image Control
	Displaying and Editing Data in List and Combo Boxes
	Using TDBListBox and TDBComboBox
	Displaying and Editing Data in Lookup List and Combo Boxes
	To specify the lookup field for the list box items
	To specify a secondary data source for list box items
	Handling Boolean Field Values with Check Boxes
	Restricting Field Values with Radio Controls
	Displaying Multiple Records
	Viewing and Editing Data with TDBGrid
	Using a Grid Control in Its Default State
	Creating a Customized Grid
	Understanding persistent columns

	Creating Persistent Columns
	To create persistent columns for a grid control
	To create persistent columns for all fields
	To create persistent columns individually
	Deleting Persistent Columns
	To remove a persistent column from a grid
	Arranging the Order of Persistent Columns
	To change the order of a column
	Setting Column Properties at Design Time
	Defining a Lookup List Column
	Putting a Button in a Column
	To create an ellipsis button in a column
	Restoring Default Values to a Column
	Displaying ADT and Array Fields
	Setting Grid Options
	Editing in the Grid
	Controlling Grid Drawing
	Responding to User Actions at Runtime
	Creating a Grid That Contains Other Data-aware Controls
	To use a database control grid
	Navigating and Manipulating Records
	Choosing Navigator Buttons to Display
	Hiding and showing navigator buttons at design time
	Hiding and showing navigator buttons at runtime

	Displaying Fly-over Help
	Using a Single Navigator for Multiple Datasets

	Creating reports with Rave Reports
	Rave Reports: Overview
	Getting Started with Rave Reports
	To add a simple report to an existing database application
	To design your report and create a report project file (.rav file) using the Rave Visual Designer
	Rave Visual Designer
	Rave Component Overview
	VCL components
	Engine components
	Render components
	Data connection components
	Rave project component
	Reporting components
	Project components
	Data objects
	Standard components
	Drawing components
	Report components
	Bar code components

	Getting More Information

	Using decision support components
	Using Decision Support Components
	Overview of Decision Support Components
	About Crosstabs
	One-Dimensional Crosstabs
	Multidimensional Crosstabs
	Guidelines for Using Decision Support Components
	To create a form with tables and graphs of multidimensional data
	Using Datasets with Decision Support Components
	Creating Decision Datasets with TQuery or TTable
	Creating Decision Datasets with the Decision Query Editor
	To use the Decision Query editor
	Using Decision Cubes
	Decision Cube Properties and Events
	Using the Decision Cube Editor
	Viewing and Changing Dimension Settings
	Setting the Maximum Available Dimensions and Summaries
	Viewing and Changing Design Options
	Using Decision Sources
	Using Decision Pivots
	Decision Pivot Properties
	Creating and Using Decision Grids
	Creating Decision Grids
	To create a form with one or more tables of cross-tabulated data
	Using Decision Grids
	Opening and Closing Decision Grid Fields
	Reorganizing Rows and Columns in Decision Grids
	Drilling Down for Detail in Decision Grids
	Limiting Dimension Selection in Decision Grids
	Decision Grid Properties
	Creating and Using Decision Graphs
	Creating Decision Graphs
	To create a form with one or more decision graphs
	Using Decision Graphs
	The Decision Graph Display
	Customizing Decision Graphs
	To customize a graph
	Setting Decision Graph Template Defaults
	Changing the Default Decision Graph Type
	To change the default graph type
	Changing Other Decision Graph Template Properties
	To change color or other properties of a template
	Viewing Overall Decision Graph Properties
	To view and set decision graph properties other than type and series
	Customizing Decision Graph Series
	Changing the Series Graph Type
	To change the graph type for a single series
	Changing Other Decision Graph Series Properties
	To change color or other properties of a decision graph series
	Saving Decision Graph Series Settings
	Decision Support Components at Runtime
	Decision Pivots: Runtime Behavior
	Decision Grids at Runtime
	Decision Graphs at Runtime
	Decision Support Components and Memory Control
	Setting Maximum Dimensions, Summaries, and Cells
	Setting Dimension State
	Using Paged Dimensions

	Connecting to databases
	Connecting to Databases: Overview
	Using Implicit Connections
	Controlling Connections
	Connecting to a Database Server
	Disconnecting from a Database Server
	Controlling Server Login
	Managing Transactions
	Starting a transaction
	Ending a transaction

	Specifying the Transaction Isolation Level
	Sending Commands to the Server
	Working with Associated Datasets
	Closing all datasets without disconnecting from the server
	Iterating through the associated datasets

	Obtaining Metadata
	Listing available tables
	Listing the fields in a table
	Listing available stored procedures
	Listing available indexes
	Listing stored procedure parameters

	Understanding datasets
	Understanding Datasets: Overview
	Using TDataSet Descendants
	Determining Dataset States
	Opening and Closing Datasets
	Navigating Datasets
	Using the First and Last Methods
	Using the Next and Prior Methods
	Using the MoveBy Method
	Using the Eof and Bof Properties
	Eof
	Bof

	Marking and Returning to Records
	The Bookmark property
	The GetBookmark method
	The GotoBookmark and BookmarkValid methods
	The CompareBookmarks method
	The FreeBookmark method
	A bookmarking example

	Searching Datasets
	Using Locate
	Using Lookup
	Displaying and Editing a Subset of Data Using Filters
	Enabling and Disabling Filtering
	To enable filters on a dataset
	Creating Filters
	Setting the Filter Property
	Writing an OnFilterRecord Event Handler
	Setting Filter Options
	Navigating Records in a Filtered Dataset
	Modifying Data
	Editing Records
	Adding New Records
	Inserting records
	Appending records

	Deleting Records
	Posting Data
	Canceling Changes
	Modifying Entire Records
	Calculating Fields
	Types of Datasets
	Using Table Type Datasets
	To use a table type dataset
	Advantages of using table type datasets

	Sorting Records with Indexes
	Obtaining Information About Indexes
	Specifying an Index with IndexName
	Creating an Index with IndexFieldNames
	Using Indexes to Search for Records
	Executing a Search with Goto Methods
	To execute a search using Goto methods
	Executing a Search with Find Methods
	To execute a search using Find methods
	Specifying the Current Record After a Successful Search
	Searching On Partial Keys
	Searching On Partial Keys
	Limiting Records with Ranges
	Understanding the Differences Between Ranges and Filters
	Specifying Ranges
	Setting the beginning of a range
	Setting the end of a range
	Setting start- and end-range values
	Specifying a range based on partial keys
	Including or excluding records that match boundary values

	Modifying a Range
	To edit and apply a range
	Editing the start of a range
	Editing the end of a range

	Applying or Canceling a Range
	Applying a range
	Canceling a range

	Creating Master/detail Relationships
	Making the Table a Detail of Another Dataset
	To create a simple form
	Using Nested Detail Tables
	Controlling Read/Write Access to Tables
	Creating and Deleting Tables
	Creating tables
	Deleting tables

	Emptying Tables
	Synchronizing Tables
	Using Query-type Datasets
	To use a query-type dataset
	Specifying the Query
	Specifying a query using the SQL property
	Specifying a query using the CommandText property

	Using Parameters in Queries
	Supplying Parameters at Design Time
	Supplying Parameters at Runtime
	Establishing Master/detail Relationships Using Parameters
	To set up the Customer dataset
	Preparing Queries
	Executing Queries That Don't Return a Result Set
	Using Unidirectional Result Sets
	Using Stored Procedure-type Datasets
	To access a stored procedure on a server
	Working with Stored Procedure Parameters
	Setting up parameters at design time
	Using parameters at runtime

	Preparing Stored Procedures
	Executing Stored Procedures That Don't Return a Result Set
	Fetching Multiple Result Sets

	Working with field components
	Working with Field Components: Overview
	Dynamic Field Components
	To use dynamic fields in an application
	Persistent Field Components
	Creating Persistent Fields
	To create persistent fields for a dataset
	Arranging Persistent Fields
	To change the order of fields
	Defining New Persistent Fields
	Defining a Data Field
	To create a replacement data field for a field in a table underlying a dataset
	Defining a Calculated Field
	To create a calculated field in the New Field dialog box
	Programming a Calculated Field
	To program a value for a calculated field
	Defining a Lookup Field
	To create a lookup field in the New Field dialog box
	Defining an Aggregate Field
	To create an aggregate field in the New Field dialog box
	Deleting Persistent Field Components
	To remove one or more persistent field components for a dataset
	Setting Persistent Field Properties and Events
	Setting Display and Edit Properties at Design Time
	Setting Field Component Properties at Runtime
	Creating Attribute Sets for Field Components
	To create an attribute set based on a field component in a dataset
	Associating Attribute Sets with Field Components
	To apply an attribute set to a field component
	Removing Attribute Associations
	To remove an attribute association
	Controlling and Masking User Input
	To invoke the Input Mask editor for a field component
	Using Default Formatting for Numeric, Date, and Time Fields
	Handling Events
	To write an event handler for a field component
	Working with Field Component Methods at Runtime
	Displaying, Converting, and Accessing Field Values
	Displaying Field Component Values in Standard Controls
	Converting Field Values
	Accessing Field Values with the Default Dataset Property
	Accessing Field Values with a Dataset's Fields Property
	Accessing Field Values with a Dataset's FieldByName Method
	Setting a Default Value for a Field
	Working with Constraints
	Creating a Custom Constraint
	Using Server Constraints
	Using Object Fields
	Displaying ADT and array fields

	Working with ADT Fields
	Using persistent field components
	Using the dataset's FieldByName method
	Using the dateset's FieldValues property
	Using the ADT field's FieldValues property
	Using the ADT field's Fields property

	Working with Array Fields
	Using persistent fields
	Using the array field's FieldValues property
	Using the array field's Fields property

	Working with DataSet Fields
	Displaying dataset fields
	Accessing data in a nested dataset

	To access the data in a dataset field
	Working with Reference Fields
	Displaying reference fields
	Accessing data in a reference field

	To access data in a reference field

	Using the Borland Database Engine
	Using the Borland Database Engine
	BDE-based Architecture
	Using BDE-enabled Datasets
	Associating a Dataset with Database and Session Connections
	Caching BLOBs
	Working with BDE Handle Properties
	Using TTable
	Specifying the Table Type for Local Tables
	Controlling Read/Write Access to Local Tables
	Specifying a dBASE Index File
	Renaming a Table
	Importing Data from Another Table
	Using TQuery
	Creating Heterogenous Queries
	To perform a heterogeneous query
	Obtaining an Editable Result Set
	Updating a Read-only Result Set
	Using TStoredProc
	Binding Parameters
	Working with Oracle Overloaded Stored Procedures
	Connecting to Databases with TDatabase
	Associating a Database Component with a Session
	Understanding Database and Session Component Interactions
	Identifying the Database
	Setting BDE Alias Parameters
	Identifying the Database
	Working with network protocols
	Using ODBC

	Using Database Components in Data Modules
	Managing Database Sessions
	Activating a Session
	Specifying Default Database Connection Behavior
	Managing Database Connections
	Opening Database Connections
	Closing Database Connections
	Dropping Inactive Database Connections
	Searching for a Database Connection
	Iterating Through a Session's Database Components
	Working with Password-protected Paradox and dBASE Tables
	Using the AddPassword method
	Using the RemovePassword and RemoveAllPasswords methods
	Using the GetPassword method and OnPassword event

	Specifying Paradox Directory Locations
	Working with BDE Aliases
	Retrieving Information About a Session
	Creating Additional Sessions
	To enable dynamic creation of a session component at runtime
	Naming a Session
	Managing Multiple Sessions
	Using Transactions with the BDE
	Using Passthrough SQL
	Using Local Transactions
	Using the BDE to Cache Updates
	Enabling BDE-based Cached Updates
	Applying BDE-based Cached Updates
	Applying Cached Updates Using a Database
	Applying Cached Updates with Dataset Component Methods
	Creating an OnUpdateRecord Event Handler
	Handling Cached Update Errors
	Using Update Objects to Update a Dataset
	To update a dataset
	Creating SQL Statements for Update Components
	Using the Update SQL Editor
	To create the SQL statements for an update component
	Understanding Parameter Substitution in Update SQL Statements
	Composing Update SQL Statements
	Using Multiple Update Objects
	Executing the SQL Statements
	Calling the Apply Method
	Executing an Update Statement
	Using an Update Component's Query Property
	Using TBatchMove
	Creating a Batch Move Component
	To create a batch move component
	Specifying a Batch Move Mode
	Appending records
	Updating records
	Appending and updating records
	Copying datasets
	Deleting records

	Mapping Data Types
	Executing a Batch Move
	Handling Batch Move Errors
	The Data Dictionary
	Tools for Working with the BDE

	Working with ADO components
	Working with ADO Components
	Overview of ADO Components
	Connecting to ADO Data Stores
	Connecting to a Data Store Using TADOConnection
	Accessing the Connection Object
	Fine-tuning a Connection
	Forcing Asynchronous Connections
	Controlling Timeouts
	Indicating the Types of Operations the Connection Supports
	Specifying Whether the Connection Automatically Initiates Transactions
	Accessing the Connection's Datasets
	ADO Connection Events
	Events when establishing a connection
	Events when disconnecting
	Events when managing transactions
	Other events

	Using ADO datasets
	Connecting an ADO Dataset to a Data Store
	Working with Record Sets
	Filtering Records Based On Bookmarks
	To filter on a set of bookmarks
	Fetching Records Asynchronously
	Using Batch Updates
	Opening the Dataset in Batch Update Mode
	Inspecting the Update Status of Individual Rows
	Filtering Multiple Rows Based On Update Status
	Applying the Batch Updates to Base Tables
	Canceling Batch Updates
	Loading Data from and Saving Data to Files
	Using TADODataSet
	Using Command Objects
	Specifying the Command
	Using the Execute Method
	Canceling Commands
	Retrieving Result Sets with Commands
	Handling Command Parameters

	Using unidirectional datasets
	Using Unidirectional Datasets
	Types of Unidirectional Datasets
	Connecting to the Database Server
	Setting Up TSQLConnection
	Identifying the driver
	Specifying connection parameters
	Naming a connection description
	Using the Connection Editor

	Specifying What Data to Display
	Representing the Results of a Query
	Representing the Records in a Table
	Representing a table using TSQLDataSet
	Representing a table using TSQLTable

	Representing the Results of a Stored Procedure
	Fetching the Data
	Preparing the dataset
	Fetching multiple datasets

	Executing Commands That Do Not Return Records
	Specifying the Command to Execute
	Executing the Command
	Creating and Modifying Server Metadata
	Setting Up Master/detail Linked Cursors
	Accessing Schema Information
	Fetching Metadata into a Unidirectional Dataset
	Fetching data after using the dataset for metadata

	The Structure of Metadata Datasets
	Information about tables
	Information about stored procedures
	Information about fields
	Information about indexes
	Information about stored procedure parameters
	Information about Oracle packages

	Debugging dbExpress Applications
	Using TSQLMonitor to monitor SQL commands

	To use TSQLMonitor
	Using a callback to monitor SQL commands

	Using client datasets
	Using Client Datasets: Overview
	Working with Data Using a Client Dataset
	Navigating Data in Client Datasets
	Limiting What Records Appear
	Editing Data
	Undoing Changes
	Saving Changes
	Constraining Data Values
	Specifying custom constraints

	Sorting and Indexing
	Adding a New Index
	Deleting and Switching Indexes
	Using Indexes to Group Data
	Representing Calculated Values
	Using Internally Calculated Fields in Client Datasets
	Using Maintained Aggregates
	Specifying Aggregates
	Aggregating over groups of records
	Obtaining Aggregate Values
	Copying Data from Another Dataset
	Assigning Data Directly
	Cloning a Client Dataset Cursor
	Adding Application-specific Information to the Data
	Using a Client Dataset to Cache Updates
	Overview of Using Cached Updates
	Choosing the Type of Dataset for Caching Updates
	Indicating What Records Are Modified
	Updating Records
	Applying Updates
	Intervening as Updates Are Applied
	Reconciling Update Errors
	Using a Client Dataset with a Provider
	Specifying a Provider
	Requesting Data from the Source Dataset or Document
	Incremental fetching
	Fetch-on-demand

	Getting Parameters from the Application Server
	Passing Parameters to the Source Dataset
	Sending Query or Stored Procedure Parameters
	Limiting Records with Parameters
	Handling Constraints from the Server
	Refreshing Records
	Communicating with Providers Using Custom Events
	Overriding the Dataset On the Application Server
	Using a Client Dataset with File-based Data
	Creating a New Dataset
	Loading Data from a File or Stream
	Merging Changes into Data
	Saving Data to a File or Stream
	Using a Simple Dataset
	When to Use TSimpleDataSet
	Setting Up a Simple Dataset
	To use TSimpleDataSet:

	Using provider components
	Using Provider Components
	Determining the Source of Data
	Using a dataset as the source of the data
	Using an XML document as the source of the data

	Communicating with the Client Dataset
	Choosing How to Apply Updates Using a Dataset Provider
	Controlling What Information Is Included in Data Packets
	Specifying What Fields Appear in Data Packets
	Setting Options That Influence the Data Packets
	Adding Custom Information to Data Packets
	Responding to Client Data Requests
	Responding to Client Update Requests
	Editing Delta Packets Before Updating the Database
	Influencing How Updates Are Applied
	Screening Individual Updates
	Resolving Update Errors On the Provider
	Applying Updates to Datasets That do Not Represent a Single Table
	Responding to Client-generated Events
	Handling Server Constraints

	Creating multi-tiered applications
	Creating Multi-tiered Applications: Overview
	Advantages of the Multi-tiered Database Model
	Understanding Multi-tiered Database Applications
	Overview of a Three-tiered Application
	The Structure of the Client Application
	The Structure of the Application Server
	The contents of the remote data module

	Using Transactional Data Modules
	Pooling Remote Data Modules
	Choosing a Connection Protocol
	Using DCOM Connections
	Using Socket Connections
	Using Web Connections
	Using SOAP Connections
	Building a Multi-tiered Application
	To create a multi-tiered database application
	Creating the Application Server
	To create an application server
	Setting Up the Remote Data Module
	Configuring TRemoteDataModule
	Configuring TMTSDataModule
	Configuring TSOAPDataModule
	Extending the Interface of the Application Server
	Adding callbacks to the application server's interface
	Extending a transactional application server's interface

	Managing Transactions in Multi-tiered Applications
	Supporting Master/detail Relationships
	Supporting State Information in Remote Data Modules
	Using Multiple Remote Data Modules
	Registering the Application Server
	Creating the Client Application
	To create a multi-tiered client application
	Connecting to the Application Server
	Specifying a Connection Using DCOM
	Specifying a Connection Using Sockets
	To add your own encryption
	Specifying a Connection Using HTTP
	Specifying a Connection Using SOAP
	Brokering Connections
	Managing Server Connections
	Connecting to the Server
	Dropping or Changing a Server Connection
	Calling Server Interfaces
	Using early binding with DCOM
	Using dispatch interfaces with TCP/IP or HTTP
	Calling the interface of a SOAP-based server

	Connecting to an Application Server That Uses Multiple Data Modules
	To use a single shared connection
	Writing Web-based Client Applications
	Distributing a Client Application as an ActiveX Control
	Creating an Active Form for the Client Application
	To create an Active Form for the Client Application
	Building Web Applications Using InternetExpress
	Building an InternetExpress Application
	To build a Web application using InternetExpress
	Using the Javascript Libraries
	Granting Permission to Access and Launch the Application Server
	To configure your application server
	Using an XML Broker
	Fetching XML data packets
	Applying updates from XML delta packets

	Creating Web Pages with an InternetExpress Page Producer
	Using the Web Page Editor
	Setting Web Item Properties
	Customizing the InternetExpress Page Producer Template

	Using XML in database applications
	Using XML in Database Applications
	Defining Transformations
	Mapping Between XML Nodes and Data Packet Fields
	Using XMLMapper
	Loading an XML schema or data packet
	Defining mappings
	Generating transformation files

	To generate a transformation file
	Converting XML Documents into Data Packets
	Specifying the source XML document
	Specifying the transformation
	Obtaining the resulting data packet
	Converting user-defined nodes

	Using an XML Document as the Source for a Provider
	Using an XML Document as the Client of a Provider
	Fetching an XML document from a provider
	Applying updates from an XML document to a provider

	Writing Internet Applications
	Creating Internet server applications
	Creating Internet Applications: Overview
	About Web Broker and WebSnap
	Terminology and Standards
	Parts of a Uniform Resource Locator
	URI vs. URL

	HTTP Request Header Information
	HTTP Server Activity
	Composing Client Requests
	Serving Client Requests
	Responding to Client Requests
	Types of Web Server Applications
	ISAPI and NSAPI
	CGI stand-alone
	Apache
	Web App Debugger
	Converting Web server application target types

	To convert your Web Broker application target type
	To convert a WebSnap application's target type
	Debugging Server Applications
	Using the Web Application Debugger
	Launching your application with the Web Application Debugger

	To launch your application with the Web Application Debugger
	Converting your application to another type of Web server application

	Debugging Web Applications That Are DLLs
	User rights necessary for DLL debugging

	To obtain these rights

	Using Web Broker
	Using Web Broker
	Creating Web Server Applications with Web Broker
	To create a new Web server application using the Web Broker architecture:
	The Web Module
	The Web Application Object
	The Structure of a Web Broker Application
	The Web Dispatcher
	Adding Actions to the Dispatcher
	Dispatching Request Messages
	Action Items
	Determining When Action Items Fire
	The Target URL
	The Request Method Type
	Enabling and Disabling Action Items
	Choosing a Default Action Item
	Responding to Request Messages with Action Items
	Sending the response
	Using multiple action items

	Accessing Client Request Information
	Properties That Contain Request Header Information
	Properties That Identify the Target
	Properties That Describe the Web Client
	Properties That Identify the Purpose of the Request
	Properties That Describe the Expected Response
	Properties That Describe the Content
	The Content of HTTP Request Messages
	Creating HTTP Response Messages
	Filling in the Response Header
	Indicating the Response Status
	Indicating the Need for Client Action
	Describing the Server Application
	Describing the Content
	Setting the Response Content
	Sending the Response
	Generating the Content of Response Messages
	Using Page Producer Components
	HTML Templates
	Using Predefined HTML-transparent Tag Names
	Specifying the HTML Template
	Converting HTML-transparent Tags
	Using Page Producers from an Action Item
	Chaining Page Producers Together
	Using Database Information in Responses
	Adding a Session to the Web Module
	Representing a Dataset in HTML
	Using Dataset Page Producers
	Using Table Producers
	Specifying the Table Attributes
	Specifying the Row Attributes
	Specifying the Columns
	Embedding Tables in HTML Documents
	Using TDataSetTableProducer
	Using TQueryTableProducer

	Using WebSnap
	Creating Web Server Applications Using WebSnap
	Fundamental WebSnap Components
	Web Modules
	Web Application Module Types
	Web Page Modules
	Page producer component
	Page name
	Producer template

	Web Data Modules
	Structure of a Web data module unit

	Adapters
	Fields
	Actions
	Errors
	Records

	Page Producers
	Creating Web Server Applications with WebSnap
	To create a new Web server application using the WebSnap architecture:
	Selecting a Server Type
	Specifying Application Module Components
	Selecting Web Application Module Options
	Advanced HTML Design
	Manipulating server-side script in HTML files

	To modify a Web page module to use a regular page producer
	Login Support
	Adding Login Support
	Using the Sessions Service
	Login Pages
	To add these fields:
	To add a Login button:
	Setting Pages to Require Logins
	To require logins after a Web page module has been created:
	User Access Rights
	Dynamically displaying fields as edit or text boxes
	Hiding fields and their contents
	Preventing page access

	Server-side Scripting in WebSnap
	Active scripting
	Script engine
	Script blocks
	Creating script
	Wizard templates
	TAdapterPageProducer
	Editing and viewing script
	Including script in a page

	Script Objects
	Dispatching Requests and Responses
	Dispatcher Components
	Adapter Dispatcher Operation
	Using adapter components to generate content

	Receiving Adapter Requests and Generating Responses
	Action requests
	Generating action responses
	Image request
	Image response

	Dispatching Action Items
	Page dispatcher operation

	Using IntraWeb
	Creating Web Server Applications Using IntraWeb
	You can use IntraWeb in any of the following modes:
	Using IntraWeb Components
	Getting Started with IntraWeb
	The tutorial includes the following steps:
	Creating a New IntraWeb Application
	To create the new project:
	Editing the Main Form
	To create the Web user interface for your application:
	Writing an Event Handler for the Button
	You will now write an event handler that will display a greeting when the user clicks OK.
	Running the Completed Application
	To test the IntraWeb application:
	Using IntraWeb with Web Broker and WebSnap
	To create Web pages using IntraWeb tools, use the following steps:

	Working with XML documents
	Working with XML Documents
	Using the Document Object Model
	Working with XML Components
	Using TXMLDocument
	The following steps describe how to use TXMLDocument to work directly with an XML document:
	Working with XML Nodes
	Working with a node's value
	Working with a node's attributes
	Adding and deleting child nodes

	Abstracting XML Documents with the Data Binding Wizard
	Using the XML Data Binding Wizard
	To use the Data Binding wizard:
	Using Code That the XML Data Binding Wizard Generates
	To work with an XML document, use the following steps:

	Using Web Services
	Using Web Services
	Understanding Invokable Interfaces
	Using Nonscalar Types in Invokable Interfaces
	Registering Nonscalar Types
	Using Remotable Objects
	Representing attachments
	Managing the lifetime of remotable objects

	Remotable Object Example
	Writing Servers that Support Web Services
	Building a Web Service server

	Use the following steps to build a server application that implements a Web Service:
	Using the SOAP Application Wizard
	Adding New Web Services
	Editing the generated code
	Using a different base class

	Using the WSDL Importer
	Browsing for Business Services
	Understanding UDDI
	Using the UDDI browser

	Defining and Using SOAP Headers
	Defining header classes
	Sending and receiving headers
	Handling scalar-type headers
	Communicating the structure of your headers to other applications

	Creating Custom Exception Classes for Web Services
	Generating WSDL Documents for a Web Service Application
	Writing Clients for Web Services
	Importing WSDL Documents
	Calling Invokable Interfaces
	Obtaining an invokable interface from the generated function
	Using a remote interfaced object

	Processing Headers in Client Applications

	Working with sockets
	Working with Sockets
	Implementing Services
	Understanding Service Protocols
	Communicating with applications

	Services and Ports
	Types of Socket Connections
	Client Connections
	Listening Connections
	Server Connections
	Describing Sockets
	Describing the Host
	Choosing between a host name and an IP address

	Using Ports
	Using Socket Components
	Getting Information About the Connection
	Using Client Sockets
	Specifying the Desired Server
	Forming the Connection
	Getting Information About the Connection
	Closing the Connection
	Using Server Sockets
	Specifying the Port
	Listening for Client Requests
	Connecting to Clients
	Closing Server Connections
	Responding to Socket Events
	Error Events
	Client Events
	Server Events
	Events when listening
	Events with client connections

	Reading and Writing Over Socket Connections
	Non-blocking Connections
	Reading and Writing Events
	Blocking Connections

	Developing COM-based Applications
	COM basics
	Overview of COM Technologies
	COM as a specification and implementation
	COM extensions

	Parts of a COM Application
	COM Interfaces
	The Fundamental COM Interface, IUnknown
	COM Interface Pointers
	COM Servers
	CoClasses and Class Factories
	In-process, Out-of-process, and Remote Servers
	The Marshaling Mechanism
	Automation Servers
	COM Clients
	COM Extensions
	Automation Servers
	Active Server Pages
	ActiveX Controls
	Active Documents
	Type Libraries
	The content of type libraries
	Creating type libraries
	When to use type libraries
	Accessing type libraries
	Benefits of using type libraries
	Using type library tools

	Implementing COM Objects with Wizards
	Code Generated by Wizards

	Working with type libraries
	Working with Type Libraries: Overview
	Type Library Editor
	Parts of the Type Library Editor
	Toolbar
	Object List Pane
	Status Bar
	Pages of Type Information
	Type Library Elements
	Interfaces
	Dispinterfaces
	CoClasses
	Type definitions
	Modules

	Using the Type Library Editor
	Valid Types
	SafeArrays
	Using Object Pascal or IDL Syntax
	Attribute specifications
	Interface syntax
	Dispatch interface syntax
	CoClass syntax
	Enum syntax
	Alias syntax
	Record syntax
	Union syntax
	Module syntax

	Creating a New Type Library
	To create a new type library
	Opening an Existing Type Library
	To open a type library that is not currently part of your project,
	Adding an Interface to the Type Library
	To add an interface
	Modifying an Interface Using the Type Library
	Adding Properties and Methods to the Type Library
	To add properties or methods to an interface or dispinterface
	Adding a CoClass to the Type Library
	Adding an Interface to a CoClass
	Adding an Enumeration to the Type Library
	To add enumerations to a type library
	Adding an Alias to the Type Library
	To add an alias to a type library
	Adding a Record or Union to the Type Library
	To add a record or union to a type library
	Adding a Module to the Type Library
	To add a module to a type library
	Saving and Registering Type Library Information
	Apply Updates Dialog
	Saving a Type Library
	Refreshing the Type Library
	Registering the Type Library
	Exporting an IDL File
	Deploying Type Libraries

	Creating COM clients
	Creating COM Clients
	Importing Type Library Information
	Code Generated When You Import Type Library Information
	Controlling an Imported Object
	Using Component Wrappers
	ActiveX wrappers
	Automation object wrappers

	Writing Client Code Based On Type Library Definitions
	Connecting to a Server
	Controlling an Automation Server Using a Dual Interface
	Controlling an Automation Server Using a Dispatch Interface
	To call the methods of a dispatch interface,
	Handling Events in an Automation Controller
	Handling Automation events programmatically
	Handling COM+ events

	Creating Clients for Servers That Do Not Have a Type Library
	To use TOleContainer
	Using .NET Assemblies with Delphi
	Requirements for COM Interoperability
	.NET Components and Type Libraries
	Accessing User-defined .NET Components

	Creating simple COM servers
	Creating Simple COM Servers: Overview
	Overview of creating a COM object

	It involves these steps:
	Designing a COM Object
	Using the COM Object Wizard
	To bring up the COM object wizard
	Using the Automation Object Wizard
	To display the Automation wizard:
	COM Object Instancing Types
	Choosing a Threading Model
	Writing an object that supports the free threading model
	Writing an object that supports the apartment threading model
	Writing an object that supports the neutral threading model

	Defining a COM Object's Interface
	Adding a property to the object's interface

	To add a property to your object's interface
	Adding a method to the object's interface

	To expose a method via your object's interface
	Exposing events to clients

	In order for an object to generate events, you need to do the following:
	Managing Events in Your Automation Object
	Automation Interfaces
	Dual Interfaces
	Dispatch Interfaces
	Custom Interfaces
	Marshaling Data
	Automation compatible types
	Type restrictions for automatic marshaling
	Custom marshaling

	Registering a COM Object
	Registering an in-process server
	Registering an out-of-process server

	Testing and Debugging the Application
	To test and debug your COM server application,

	Creating an Active Server Page
	Creating Active Server Pages: Overview
	Creating an Active Server Object
	To display the Active Server Object wizard:
	Using the ASP Intrinsics
	Application
	Request
	Response
	Session
	Server

	Creating ASPs for In-process or Out-of-process Servers
	Registering an Active Server Object
	Registering an in-process server
	Registering an out-of-process server

	Testing and Debugging the Active Server Page Application
	To test and debug an Active Server Object,

	Using ActiveX controls
	Elements of an ActiveX Control
	VCL control
	ActiveX wrapper
	Type library
	Property page

	Designing an ActiveX Control
	Generating an ActiveX Control Based On a VCL Form
	To start the ActiveForm wizard,
	Licensing ActiveX Controls
	Customizing the ActiveX Control's Interface
	Adding Additional Properties, Methods, and Events
	How Delphi Adds Properties
	How Delphi Adds Events
	Enabling Simple Data Binding with the Type Library
	Use the type library to enable simple data binding,
	Creating a Property Page for an ActiveX Control
	The process of creating a property page is similar to creating a form, you
	Creating a New Property Page
	To create a new property page,
	Adding Controls to a Property Page
	Associating Property Page Controls with ActiveX Control Properties
	Updating the Property Page
	Updating the Object
	Connecting a Property Page to an ActiveX Control
	To connect a property page to an ActiveX control,

	Component Writer's Guide
	Introduction to component creation
	Overview of Component Creation
	Class library
	Components and Classes
	Creating Components
	Modifying Existing Controls
	Creating Original Controls
	Creating Graphic Controls
	Subclassing Windows Controls
	Creating Nonvisual Components
	What Goes into a Component?
	Removing Dependencies
	Setting Properties, Methods, and Events
	Properties
	Methods
	Events

	Encapsulating Graphics
	Registering Components
	Creating a New Component
	To create a component, follow these steps:
	There are several basic steps that you perform whenever you create a new component. These steps are described below; other examples in this document assume that you know how to perform them.
	Creating a Component with the Component Wizard
	To add a new component with the Component Wizard
	Creating a Unit File
	To create a new unit for a component:
	To open an existing unit:
	Deriving the Component
	Declaring A New Constructor (C++)
	Registering the Component
	To register a component:
	Making Source Files Available
	Testing Uninstalled Components
	To test an uninstalled component,
	Testing Installed Components
	Test an installed component using a second running instance of the IDE:

	Object-oriented programming for component writers
	Object-oriented Programming for Component Writers: Overview
	Defining New Classes
	Deriving New Classes
	Changing Class Defaults to Avoid Repetition
	Adding New Capabilities to a Class
	Declaring a New Component Class
	Ancestors, Descendants, and Class Hierarchies
	Controlling Access
	Hiding Implementation Details
	Defining the Component Writer's Interface
	Defining the Runtime Interface
	Defining the Design-time Interface
	Dispatching Methods
	Regular Methods (C++)
	Static Methods
	Virtual Methods
	Overriding Methods
	Dynamic Methods
	Abstract Class Members
	Classes and Pointers

	Creating properties
	Creating Properties: Overview
	Why Create Properties?
	Types of Properties
	Publishing Inherited Properties
	Defining Properties
	Property Declarations
	Internal Data Storage
	Direct Access
	Access Methods (properties)
	The Read Method
	The Write Method
	Default Property Values
	Specifying No Default Value
	Creating Array Properties
	Creating Properties for Subcomponents
	Creating Properties for Interfaces
	Storing and Loading Properties
	Using the Store-and-load Mechanism
	Specifying Default Values
	Determining What to Store
	Initializing After Loading
	Storing and Loading Unpublished Properties
	Creating Methods to Store and Load Property Values
	Overriding the DefineProperties Method

	Creating events
	Creating Events: Overview
	What Are Events?
	Events Are closures (C++)
	Events Are Method Pointers
	Calling the Click-event Handler
	Events Are Properties
	Event Types Are Method-pointer Types
	Event Handler Types Are Procedures
	Event Handlers Have A Return Type of void (C++)
	Event Types Are closure Types (C++)
	Event Handlers Are Optional
	Implementing the Standard Events
	Identifying Standard Events
	Standard events for all controls
	Standard events for standard controls

	Making Events Visible
	Changing the Standard Event Handling
	Defining Your Own Events
	Triggering the Event
	Two Kinds of Events
	Defining the Handler Type
	Simple notifications
	Event-specific handlers
	Returning information from the handler

	Declaring the Event
	Event names start with "On"

	Calling the Event
	Empty Handlers Must Be Valid
	Users Can Override Default Handling

	Creating methods
	Creating Methods: Overview
	Avoiding Interdependencies
	Naming Methods
	Protecting Methods
	Methods That Should Be Public
	Methods That Should Be Protected
	Abstract Methods
	Making Methods Virtual
	Declaring Methods
	Example of Declaring Methods
	C++
	Delphi

	Using graphics in components
	Using Graphics in Components: Overview
	Overview of Graphics
	Using the Canvas
	Working with Pictures
	Using a Picture, Graphic, or Canvas
	Loading and Storing Graphics
	Handling Palettes
	Specifying a Palette for a Control
	Responding to Palette Changes
	Off-screen Bitmaps
	Creating and Managing Off-screen Bitmaps
	Copying Bitmapped Images
	Responding to Changes

	Handling messages
	Handling Messages and System Notifications: Overview
	Understanding the message-handling system
	What's in a Windows Message?
	Dispatching Messages
	Tracing the flow of messages

	Changing Message Handling
	Overriding the Handler Method
	Using Message Parameters
	Trapping Messages
	The WndProc Method
	Creating New Message Handlers
	Defining Your Own Messages
	Declaring a Message Identifier
	Declaring a Message-structure Type
	To declare a message-record type, follow these conventions:
	Declaring a New Message-handling Method
	To declare a message-handling method, do the following:
	Sending Messages
	Broadcasting a Message to All Controls in a Form
	Calling a Control's Message Handler Directly
	Sending a Message Using the Windows Message Queue
	Sending a Message That Does Not Execute Immediately
	Responding to Signals
	Assigning Custom Signal Handlers
	Then for each method you want to assign to the hook object as a signal handler, do the following:
	Responding to System Events
	Commonly Used Events
	Overriding the EventFilter Method
	Generating Qt Events

	Making components available at design time
	Making Components Available at Design Time: Overview
	Registering Components
	Declaring the Register Procedure
	Writing the Register Procedure
	Specifying the Components
	Specifying the Palette Page
	Using the RegisterComponents Function
	Providing Help for Your Component
	Creating the Help File
	Creating the Entries
	Making Component Help Context-sensitive
	Adding Property Editors
	Deriving a Property-editor Class
	Setting the Property Value
	Editing the Property as a Whole
	Within your implementation of the Edit method, follow these steps:
	Specifying Editor Attributes
	Registering the Property Editor
	Property Categories
	Registering One Property at a Time
	Registering Multiple Properties at Once
	Specifying Property Categories
	Using the IsPropertyInCategory Function
	Adding Component Editors
	Adding Items to the Context Menu
	Specifying Menu Items
	Implementing Commands
	Changing the Double-click Behavior
	Adding Clipboard Formats
	Registering the Component Editor
	Compiling Components into Packages
	Troubleshooting Custom Components (C++)

	Modifying an existing component
	Modifying an Existing Component: Overview
	Creating and Registering the Component
	Modifying the Component Object
	Overriding the Constructor
	Specifying the New Default Property Value

	Creating a graphic component
	Creating a Graphic Component
	Creating and Registering the Component
	For this example, follow the general procedure for creating a component, with these specifics:
	Publishing Inherited Properties
	Adding Graphic Capabilities
	Determining What to Draw
	Declaring the Property Type
	Declaring the Property
	Writing the Implementation Method
	Overriding the Constructor and Destructor
	Changing default property values

	In this example, the shape control sets its size to a square 65 pixels on each side.
	Publishing the Pen and Brush
	Declaring the Class Fields
	Declaring the Access Properties
	Initializing Owned Classes
	Because you have added a pen and a brush to the shape control, you need to initialize them in the shape control's constructor and destroy them in the control's destructor:
	Setting Owned Classes' Properties
	Drawing the Component Image
	Overriding the Paint method requires two steps:
	Refining the Shape Drawing

	Customizing a grid
	Customizing a Grid: Overview
	Creating and registering the component
	For this example, follow the general procedure for creating a component, with these specifics:
	Publishing Inherited Properties
	Changing Initial Values
	Resizing the Cells
	Filling in the Cells
	Tracking the Date
	Storing the Internal Date
	Adding the internal date to the calendar requires three steps:
	Accessing the Day, Month, and Year
	To provide design-time access to the day, month, and year, you do the following:
	Generating the Day Numbers
	To fill in the days in the proper cells, you do the following:
	Selecting the Current Day
	Navigating Months and Years
	Navigating Days
	Moving the Selection
	Providing an OnChange Event
	Add an OnChange event to TSampleCalendar.
	Excluding Blank Cells

	Making a control data aware
	Making a Control Data Aware
	Creating a Data Browsing Control
	Creating and registering the component
	Making the Control Read-only
	Adding the ReadOnly property
	To add the ReadOnly property, follow these steps:
	Allowing Needed Updates
	Adding the Data Link
	Establishing a data link as an owned class requires these three steps:
	Declaring the Class Field
	Declaring the Access Properties for a Data-aware Control
	Initializing the Data Link
	Responding to Data Changes
	Creating a Data Editing Control
	Changing the Default Value of FReadOnly
	Handling Mouse-down and Key-down Messages
	Responding to Mouse-down Messages
	Responding to Key-down Messages
	To override KeyDown, follow these steps:
	Updating the Field Data Link Class
	To reflect a change made to the value in the calendar in the field value:
	Modifying the Change Method
	These are the steps to follow:
	Updating the Dataset
	To update the dataset within a message handler, follow these steps:
	To update the dataset when the user exits the control, follow these steps:

	Making a dialog box a component
	Making a Dialog Box a Component: Overview
	Defining the Component Interface
	Creating and Registering the Component
	Creating the Component Interface
	Including the Form Unit
	Adding Interface Properties
	Adding the Execute Method
	Testing the Component
	For example, if you created an About dialog box, made it a component, and added it to the Tool palette, you can test it with the following steps:

	Extending the IDE
	Extending the IDE
	Overview of the Tools API
	Writing a Wizard Class
	Implementing the Wizard Interfaces
	Installing the Wizard Package
	Obtaining Tools API Services
	Using Native IDE Objects
	Adding an Image to the Image List
	Adding an Action to the Action List
	Deleting Toolbar Buttons
	Debugging a Wizard
	Interface Version Numbers
	Working with Files and Editors
	Using Module Interfaces
	Using Editor Interfaces
	Creating Forms and Projects
	Notifying a Wizard of IDE Events

	Index

