
The Inprise Application Server

The Inprise Application Server
Building Enterprise Applications for the Net with EJB, CORBA, and XML

Dr. Andreas Vogel, Chief Scientist

Inprise Corporation

Summary

This paper introduces the Inprise Application Server. To understand Application Servers in general and the Inprise Application Server in particular, we will explore the problem of space and how application servers provide solutions to these problems. As new Java and Internet technology specifications pop by the month, we will go through existing and emerging standards and investigate if and how they apply to application servers. Finally, we will have a detailed look at the Inprise Application Server, how it solves the problems stated earlier, and what technology and which unique and superior features it contains.
Table of Contents

1Summary

Table of Contents
2
Problem
4
Solution
5
Understanding Application Server Technology Standards
6
Server-side Objects and Components
6
CORBA
6
Java Remote Method Invocation
8
Enterprise JavaBeans
8
CORBA Components
11
Transactions
11
X/Open DTP
12
OTS
12
Java and Distributed Transaction
14
Modeling
14
Access
15
Discovery Mechanisms
15
CORBA Naming
15
CORBA Trading
16
LDAP and X.500
16
JNDI
17
Data Formats
17
XML
17
OMG Interface Definition Language
18
Enterprise JavaBeans
19
Protocols
19
IIOP and RMI over IIOP
19
SSL
19
Simple Mail Transfer Protocol
20
Notification Mechanism for Internet Users
20
Loosely Coupled Systems
21
Messaging, Events and Notifications
21
Programmatic Access
21
Presentation
22
HTML Browser
23
XML/XSL
23
Desktop Clients and Applets
26
Java Two Platform, Enterprise Edition
27
The Inprise Application Server
28
Inprise Application Server Platform
28
Design and Implementation Highlights of Inprise Application Server
30
CORBA - VisiBroker
30
Services
31
Customization
31
Connection Management
31
Thread Management
32
Scalability
32
Clustering
32
Enterprise JavaBeans Container
33
Architecture
33
Features
34
EJB1.1 Compliance
34
Stateless Container
34
Caching Architecture
34
Complete and Scalable Entity Bean Support
34
Security
35
Web and Servlet Engine
35
Transactions
35
Security and Firewalls
35
SSL
36
Visibroker Security Service
36
Firewalls
36
Types of Firewalls
37
Client-side Firewalls
38
Server-side Firewalls
38
Legacy and ERP System Integration
39
IDL Wrapping
39
Transactional Integration
39
Direct Mainframe access
39
Development - JBuilder
40
CORBA
40
EJB
40
Dynamic HTML Clients
40
Java Applets and Applications
41
Non-Java Desktop Clients
41
XML and XSL
42
Deployment and Management
42
Deployment
42
Fault Tolerance
42
Managing Distributed Transactions
42
Performance Monitoring
43
Conclusion
43
Acknowledgements
43
Further Reading
44

Problem

Today's biggest challenges for Enterprise IT departments are:
Triplenet accessibility of services. 
Internet. Today there is almost no enterprise that can afford not to have an Internet presence. Typically, enterprise Web sites go through three phases. Initial Web presence is mostly concerned with providing advertising and informational material of a static nature. In the second phase, the Web presence is about providing dynamic information services; for example, browsing a catalog or a library, or searching for flight connections. Finally, in the third phase, Web sites provide transactional services. These services are provided by the enterprise’s core information systems, which are typically isolated legacy systems. Providing Internet access to those systems creates the additional challenge of system integration as Internet access demands a unified and integrated view on a multitude of applications. In summary, the third-phase Internet access requires secure and transactional access to one or multiple enterprise systems in a high-performing and reliable manner.

Extranet. While Internet access targets the end consumer for products and services, Extranet access describes the contractual defined access for other enterprises. Typically, these corporate users are power users of the provider's systems and demand full-featured access with multi-level access control through sophisticated user interfaces.

Intranet. Finally, employees of the provider company need to have access to the same systems; for example, for call centers, customer representatives at branches, sales representatives in the field, etc.

The specific challenge of the Triplenet access is to provide access to the three different types of nets without multiplying the integration work.

Integration of heterogeneous applications and systems. The integration of heterogeneous systems and applications is forced through mergers and acquisitions, and through market requirements specifically caused by the need to provide Triplenet access. The heterogeneity of the system is multifaceted. There is difference in the operating systems, in the program languages, in the access and network protocol, in the data representation, and so forth. System integration must deal with the bridging between all these differences in a high-performing, secure, and reliant way.

Time-to-market. Specifically, the ubiquitous Internet and the possibility to directly compare different offerings by a click of the mouse puts enormous competitive pressure on enterprises and their IT departments.
Solution

A whole new class of products has emerged to address these problems: the application server. Different application servers are based on different technology and address different aspects of the wide problem space described earlier. Many application servers are based on distributed object and component technology.

The most widely used and deployed distributed object technology is the Common Object Request Broker Architecture (CORBA®). CORBA is an open industry standard, developed and maintained by the Object Management Group (OMG), providing an object-based middleware spanning over heterogeneous platforms. Implementations of CORBA, called Object Request Brokers (ORBs™), are provided by a number of competing vendors. Implementations of CORBA have proven to be an effective mechanism for system integration and for providing Internet access. A large number of today's application servers are based on a CORBA backbone.

The Internet Inter-ORB Protocol (IIOP™) is defined as part of the CORBA standard. IIOP enables different applications to communicate with each other through a standard protocol but with application-specific interfaces.

In addition to the core CORBA specification, the OMG has developed and published a number of specifications for horizontal and vertical services. One of the horizontal services is the Object Transaction Service (OTS). This service allows you to coordinate distributed transactions across multiple databases and transactional legacy systems. As with all services, the interfaces of OTS are mapped to a number of programming languages. Sun has adopted the Java™ mapping of OTS as part of the Java platform. The service is known as Java Transaction Service (JTS).

In 1998, Sun published the first version of its Enterprise JavaBean (EJB) specification, which is a Java-based component-oriented framework for developing, deploying, and managing distributed, transactional applications. With the maturing of the EJB specification—in mid-1999, the version 1.1 of the EJB specification has been published— the EJB server is taking shape as the application server.

CORBA and its services, and EJB, both address the problem space described earlier. Although the two specifications have been developed independently by different groups of people, it turns out that the two technologies are complementary. In fact, EJB servers can be implemented on top of CORBA, IIOP, and OTS/JTS.

Access to the business logic provided by an application server can be provided in variety of forms, including:
· HTML dynamically generated by servlets or Java Server Pages (JSP)

· Applets

· Desktop applications

· CORBA, EJB, or Extensible Markup Language (XML) interfaces for business-to- business transactions

· XML and Extensible Style Language(XSL) for customizable user interfaces
The middle tier usually encapsulates the business logic and provides the access to various backend systems. Backend systems include relational and object databases, application software packages (SAP, Baan, PeopleSoft, etc), and legacy systems. The access to backend systems, other than relational databases where we have Java's JDBC and X/Open's Distributed Transaction Processing (DTP) specification, is not governed by open standards.

Understanding Application Server Technology Standards

Technology for the Internet changes rapidly. Sticking with open standards is the best to ensure the future of your applications. However, there are quite a few standards existing and emerging. In this part of the paper, we review the various open standards for distributed computing on the Internet and how they make sense in the application server context. We start with the server-side object and component model and the transaction management. Then we look at the mechanisms to access the server components. Finally, we review how data and functionality can be presented to the user.

Server-side Objects and Components

Distributed systems are complex, and skilled programmers are rare and expensive. Object middleware and server-side component technology are trying to simplify the development of distributed applications. The main idea is to address as much of the complex issues, such as aspects of distribution, transaction management, and security into standard infrastructures supplied by system vendors.

The Object Management Group (OMG), a vendor consortium with about 800 members, started about a decade ago specifying the Common Request Broker Architecture (CORBA). CORBA is the blueprint for an object-based distributed computing infrastructure. Implementations of CORBA are known as Object Request Brokers (ORBs).

The Java Platform defined a similar programming model called Remote Method Invocation (RMI), which is solely focused on the communication among distributed Java objects, while CORBA bridges between programming languages.

In 1998, Sun Microsystems published the Enterprise JavaBeans (EJB) specification. EJB is a Java-based server-side component model. It has nothing to do with Java Beans and adds policy-driven support for transactions, persistence, and security to Java-based distributed computing.

In the same time frame, the OMG started to work on a language-neutral, server-side component model: CORBA Components. CORBA Components are shaping up as superset of EJB with a particular focus on multi-language support.

CORBA

CORBA provides a design, development, and runtime framework for cross-platform, cross-language applications. At the heart of CORBA is the Interface Definition Language (IDL). It provides a way of defining the interfaces of objects independently of the programming language in which they are implemented. It is a strongly typed declarative language with a rich set of data types for describing complex parameters. As IDL interface acts as a contract between developers of objects and the eventual users of their interfaces, it can be used a design tool for partitioning an application or system into components.

IDL also allows the user of CORBA objects to compile the interface definitions into hidden code, stubs, and skeletons, for the transmission of invocation requests across networks and machine architectures. There are standard mappings from IDL to C, C++, Java, COBOL, Ada, and Smalltalk. The generated code works in concert with the ORB runtime, typically libraries linked in each process/JVM involved.

Figure 1 illustrates a scenario involving Java and C++ components. There is the IDL specification, which defines the interface to an object. The IDL file is processed by the IDL compiler and produces stubs and skeletons in Java and C++. An instance of the stub is also known as client-side proxy. On the bottom of Figure 1, we see a Java server hosting an object implementation. The object can be accessed through the skeleton. There is a Java applet on the left acting as a client. On the right, there is a C++ application also acting as a client.

[image: image1.png]
Figure 1. CORBA Scenario with IDL Contract

The CORBA specification defines a protocol hierarchy for interoperability, which is shown in Figure 2. CORBA Protocol Hierarchy. The interoperability mandated protocols are the Internet Inter-ORB Protocol (IIOP) and the General Inter-ORB Protocol (GIOP). The GIOP defines a linear format for the transmission of CORBA requests and replies without requiring a particular network transport protocol. The IIOP is a specialization of the GIOP, which specifies the use of TCP/IP (the Internet Protocol). It defines some primitives to assist in the establishment of TCP connections. This protocol is required for compliance to CORBA 2.0 and later and is intended to provide a base-level interoperability between all ORB vendors’ products. Most ORB implementations use IIOP as the internal protocol as well. Currently, efforts are on their way to implement GIOP on other protocols than TCP/IP, including native ATM, RUDP, and multicast IP.

[image: image2.png]
Figure 2. CORBA Protocol Hierarchy

Besides the IDL and runtime infrastructure, CORBA defines a growing number of horizontal and vertical services. The horizontal services include security, transaction, naming, trading, event, and notification. The telecom and the healthcare domains have been particularly active and successful in defining common facilities for their respective industry sectors.
Java Remote Method Invocation
Java Remote Method Invocation (RMI) defines a programming model for distributed object computing in Java. RMI defines APIs that enable invocations of methods on Java objects across JVM and machine boundaries. RMI does not define a specific protocol. However, the Java Development Kit shipped a default protocol implementation: Java Remote Method Invocation Protocol (JRMP).

Alternatively, RMI can be implemented with IIOP (including object-by-value). RMI-over-IIOP is shaping up as the enterprise protocol as it natively supports the propagation of transaction and security contexts and allows the integration of legacy systems through IDL interfaces implemented in other languages.

Enterprise JavaBeans

Enterprise JavaBeans addresses the complexity of distributed systems with the divide-and-conquer approach. In EJB context, it means to divide the building of a distributed application into different tasks. These tasks can then be executed by different people with different levels and different areas of expertise. The main benefit for an application developer is that certain tasks are taken over by vendors. EJB containers provide a number of features that in the past had to be addressed by the application programmer.

The Enterprise JavaBeans specification identifies the following roles that are associated with a specific task in the development of distributed application.

Enterprise Bean Provider is typically an expert in the application domain; for example, in the financial or telecommunications industry. The bean provider implements the business task without being concerned about the distribution, transaction, security, and other nonbusiness-specific aspects of the application.

Application Assembler is also a domain expert. The application assembler composes an application from various prefabricated building blocks (that is, enterprise beans) and adds other components such as GUI clients, applets, and servlets to complete the application. While composing an application, an assembler is only concerned with the interfaces to enterprise beans, but not with their implementation.

Deployer is specialized in the installation of applications. The deployer adapts an application, composed of a number of enterprise beans, to a target operation environment by modifying the properties of the enterprise beans. The deployer’s tasks include, for example, the setting of transaction and security policies and JNDI names by setting the appropriate properties in the deployment descriptor, and the integration with enterprise management software.

EJB Server Provider is typically a vendor with expertise in distributed infrastructures and services. The server provider implements a platform, which facilitates the development of distributed applications and provides a runtime environment for them. There can also be specialized containers that wrap a certain class of legacy applications or systems.

EJB Container Provider is an expert in distributed systems, transactions, and security. A container is a runtime system for one or multiple enterprise beans. It provides the glue between enterprise beans and the EJB server. A container can be both prefabricated code as well as a tool that generates code specific for a particular enterprise bean. A container also provides tools for the deployment of an enterprise bean and hooks into the application for monitoring and management.

System Administrator is concerned with a deployed application. The administrator monitors the running application and takes appropriate actions in the case of abnormal behavior of the application. Typically, an administrator uses enterprise management tools that are connected to the application by the deployer through the hooks provided by the container.

Note that the current version of the EJB specification does not define nor exactly draw the line between the two components. In fact, people often refer to it as a single entity. The current specification also does not define APIs for the management of deployed enterprise beans.

Figure 3 illustrates the relationships between the various components that are provided by the people or vendors that fulfill the roles described earlier. A “traditional” application programmer now becomes an enterprise bean provider and application assembler, which allows her or him to focus on the business problem. The deployer defines and sets the deployment policies when installing the enterprise bean. The complexity of implementing mechanisms for executing the deployment policies is delegated to specialized vendors. Although the complexity of distributed applications cannot be reduced in total, the application programmer’s job becomes easier as much complexity is addressed by EJB server and container providers.

[image: image3.png]
Figure 3. Tasks, roles, and components.
The EJB specification achieves the aforementioned goals by introducing a number of predefined design patterns and naming conventions. This restricts the freedom in the application architecture, but allows the container and service providers to make assumptions about the application design and support them in an efficient manner.
The EJB specification takes these three design patterns and defines them as Stateless Session Bean, Stateful Session Bean, and Entity Bean.
The stateless session beans provide certain functionality through its remote methods without keeping conversational state. That means that clients cannot refer to state information provided in previous method on the same instance.

A stateful session bean can be considered an agent for a client. This session can keep state information between invocations, in fact, for its entire lifetime. Typically, the lifetime of a session is determined by the client and the server program that is hosting it. A client can remove the object once it is finished with it. The server can timeout a session object, and when the server terminates, references to the session object become invalid. Additionally, stateful session beans can be deactivated, that is, their state is stored on disk, and reactivated by the container.
Entity beans wrap a certain piece of data (typically stored in a database) and provide methods to manipulate this data. The EJB specification defines two approaches for managing the persistence of entity beans: bean-managed and container-managed. In the former case, the bean provider implements methods for finding, creating, removing, loading, and storing data. In the latter case, the EJB container takes care of these tasks. Container- managed persistence implies an object-relation mapping when relational databases are used as a storage medium.
Furthermore, the EJB container enforces transaction and security policies that are defined by the deployer in the deployment descriptor.

CORBA Components

The OMG also addresses the need for a server-side component model based on the CORBA specifications. Work on a language-neutral, server-side component model, CORBA Components, began in 1998. CORBA Components are shaping up as a superset of EJB, with a particular focus on multi-language support. The specification is expected to be completed and adopted by fall 1999.
Transactions

The concept of a transaction is possibly the most important in enterprise computing. However, the concept is quite overloaded. We consider here transactions in general, as known from most database systems, and distributed transactions in particular.

We define a transaction as a unit of work, which comprises several operations made on one or more shared system resources that are governed by ACID properties, where ACID stands for Atomicity, Consistency, Isolation, and Durability properties of a transaction. Any unit of work can be transactional only if it satisfies these properties.

Atomicity. If a transaction experiences any sort of failure, any changes that were introduced within the scope of the transaction are undone. Example: Database updates.

Consistency. If a transaction experiences any sort of failure, the system state is restored to its initial condition as though nothing changed. Example: Database referential integrity constraints.

Isolation. The changes made due to a transaction are not visible to other transactions until it completes. Transactions appear to be executed serially, even though they are performed concurrently. Example: A withdraw activity and balance activity performed by two clients on the same account.

Durability. The effect of a completed transaction is persistent and can survive a system failure. For example, if a system crashes during a commit operation of a transaction, the changes are correctly applied when the system is brought up again.
A transaction comprises the simple steps begin transaction, commit transaction, or abort transaction. The transaction is begun using the begin transaction control verb and is terminated by a commit transaction or abort transaction control verb. When the transaction is committed, the changes that were applied within the scope of the transaction are made persistent. Alternatively, a transaction is aborted, which means that the changes that were applied within the scope of the transaction are undone.

A distributed transaction is a transaction in which the transactional unit of work spans across multiple nodes in a network. Failure of the transactional work in any node will cause the transaction to abort to preserve ACID properties.
There are a number of proprietary transaction processing solutions and tools in use today to manage distributed transactions. Many of these products, such as CICS and IMS, pioneered the transaction processing technology and hold a major market share even today. The UNIX-based TP Monitors introduced in the 1980s advocated the open computing model in which the push was toward making heterogeneous systems work together. There have been several attempts to standardize the interaction between various components of transaction processing systems since then. Open Group (X/Open), Open System Interconnection (OSI), and Object Management Group (OMG) standards body organizations have published specifications to address the industry’s needs.

X/Open DTP

The Open Group (formerly X/Open and OSF) specified a Distributed Transaction Processing Model (DTP) and a number of API specifications to define the primitive functions offered by transaction processing systems. The X/Open DTP model has been widely adopted by several TP Monitor and database vendors. OTS, JTS, and EJB specifications use the X/Open DTP model as their basis for providing transactional application frameworks.

The X/Open DTP model, as shown in Figure 4, identifies a transaction processing system with three basic components: Application Program (AP), Transaction Manager (TM), and Resource Manager (RM). Inprise’s Integrated Transaction Service (ITS) is a good example for the TM component that provides all the functions of a transaction processing system. Sybase’s SQL Server is a good example for a Resource Manager, which oversees creation and management of data. An application program interacts with a transaction manager using the TX interface. The transaction manager interacts with resource managers using the XA interface. The application program uses a native interface such as SQL or ISAM to interact with resource managers. X/Open has specified the TX and XA interfaces in great detail.

[image: image4.png]
Figure 4. X/Open DTP model.

The X/Open DTP Reference Model has not sufficiently addressed the interoperability issues across different TP domains. X/Open later published another specification by adding another component called the Communications Resource Manager (CRM) to the X/Open DTP Reference Model to specify how the basic DTP components communicate with each other across different TP domains.

OTS

The Object Transaction Service provides an object-oriented framework for distributed transaction processing. It defines CORBA IDL interfaces that facilitate multiple distributed objects that are located anywhere on the network to participate in a global transaction. These interfaces specify the transactional primitives to provide the functions that are necessary for any distributed transaction processing system. The specification does not impose any requirements on the language, number of objects in the transaction, the topology of the application, or how the application is distributed across the network. The OTS is a unique piece of middleware that allows objects and their procedural counterparts to coexist in a distributed transaction. OTS conforms to the X/Open DTP Reference Model and defines the integration of transactional subsystems using X/Open APIs. OTS supports both flat and nested transaction models.

Figure 5 illustrates OMG’s representation of a distributed transaction processing model. A client begins a transaction by initiating a request to an object defined by OTS. OTS associates the client thread with the transaction’s context. Transaction context uniquely identifies the transaction. Once the transaction context is established, the client issues requests to transactional and non-transactional objects that are implicitly associated with the client’s transaction. Transactional objects are associated with persistent objects, and any changes applied to these persistent objects will survive failures and conform to ACID properties. The changes that are applied to non-transactional objects may not survive a failure even though they are made within the scope of a transaction. The client ends the transaction by sending another request to the object defined by OTS. The changes that were applied within the scope of this transaction are made permanent if there were no failures. If there were failures, the changes are rolled back.

[image: image5.png]
Figure 5. Object Transaction Service entities.

The scenario just described uses the implicit propagation of the transaction context. This means that along with the client’s request, the transaction context is automatically propagated to the recipient object so that any work performed by the object is associated with the same transaction. OTS is flexible and offers a variation of this scheme called explicit propagation, whereby a client can explicitly pass the transaction context as a parameter in its request.

The following section briefly defines the transaction service entities: transactional client, transactional server, and the recoverable server.

Transactional client begins and ends a transaction.

Transactional server hosts transactional objects, which are not involved in the completion (e.g., commit request) of a transaction but may force the rollback of a transaction. The changes that were made to these objects within the scope of the transaction are not persistent and hence will not survive a failure. A middle-tier server, which houses the business logic, is an example of the transactional server.

Recoverable server hosts recoverable objects and resources, which are involved with the completion of a transaction. A recoverable object is also a transactional object and is directly associated with the recoverable data. A recoverable object implements an object called Resource and registers it with the transaction service to participate in the transaction service protocols such as two-phase commit. Typically, you, as an application programmer, would not implement a resource. Resource implementations are typically provided by the OTS vendor.

Java and Distributed Transaction

Java is not only a programming language, but also a platform. As a consequence of this approach, Java addresses key features of programming in a wider sense, including distributed transactions. Sun Microsystems has defined, in conjunction with leading software companies and end users, a number of specifications related to the distributed transaction domain.

Java Transaction Service. The Java Transaction Service (JTS) is the IDL/Java mapping applied to OTS. The service is provided in the packages org.omg.CosTransactions and org.omg.CosTSPortability. We have already covered JTS in the OTS section above.

Java Transaction API. The Java Transaction API (JTA) is a high-level application-oriented and Java-specific transaction API. JTA is provided by the package javax.transaction. The package contains an interface definition UserTransaction and a number of exception classes, which are thrown by the methods defined in the interface. The interface defines basic transaction primitives:

void begin() creates a new transaction and associates it with the current thread.

void commit() completes the transaction associated with the current thread.

int getStatus() obtains the status of the transaction associated with the current thread.

void rollback() rolls back the transaction associated with the current thread.

void setRollbackOnly() modifies the transaction associated with the current thread so that the transaction must be rolled back.

void setTransactionOut() modifies the time-out value (in seconds) of the transaction associated with the current thread.

JDBC-2. JDBC-2 adds, among other features, two-phase commit capabilities based on the X/Open XA specification to the JDBC specification.

Enterprise JavaBeans. Enterprise JavaBeans defines a Java component model for the server side, which includes distributed transaction processing.

Modeling

There is only a single standard for a modeling language—the Unified Modeling Language (UML). The UML stems the modeling languages found in the Booch, OOSE/Jacobson, OMT, and other methods. UML is an OMG standard.

UML provides a language to express many aspects of the software development, including business modeling, requirements management, analysis and design, programming and testing. UML can be used for specifying, visualizing, constructing, documenting, and software systems.

Ongoing standardization efforts are focused on improving the use of UML for specifying distributed objects and server-side components through UML profiles. The profiles are expected to contain a set of "standard elements" and "well-formedness rules" beyond those defined in the base UML specification.

Access

Data and associated functionality is provided and processed through the Application Server's components, EJBs, or CORBA objects. On the one hand, users access data and functionality directly through various types of client applications such as Web browsers or desktop applications. On the other hand, there is the need for programmatic access; that is, one program communicates with another program. This is often referred to as business-to-business interactions. The client access requires some sort of user-friendly presentation of the data and functionality, usually through a multimedia presentation, including graphical elements and audio. For the programmatic interaction, the focus is on standardized interfaces and protocols; presentation does not matter.

Discovery Mechanisms

Before an object or components can be accessed, a client must obtain a remote object reference. There are a number of standard specifications that have been developed in different contexts, which address the object discovery.

CORBA Naming

The Naming Service provides a mapping between a name and an object reference. Storing such a mapping in the Naming Service is known as binding an object, and removing this entry is called unbinding. Obtaining an object reference that is bound to a name is known as resolving the name.
Names can be hierarchically structured by using contexts. Contexts are similar to directories in file systems and they can contain name bindings as well as subcontexts.

The use of object references alone to identify objects has two problems for human users, because first, object references are opaque data types, and second, their string form is a long sequence of numbers. When a service is restarted, its objects typically have new object references. However, in most cases clients want to use the service repeatedly without needing to be aware that the service has been restarted.

[image: image6.png]
Figure 6. CORBA Naming Service

The Naming Service solves these problems by providing an extra layer of abstraction for the identification of objects. It provides readable object identifiers for the human user—Users can assign names that look like structured file names—A persistent identification mechanism. Objects can bind themselves under the same name regardless of their object reference.

The typical use of the Naming Service involves object implementations binding to the Naming Service when they come into existence and unbinding before they terminate. Clients resolve names to objects, on which they subsequently invoke operations. Figure 6 illustrates this typical usage scenario.

CORBA Trading

Traders are repositories of object references that are described by an interface type and a set of property values. Such a description of an interface is known as a service offer. Each service offer has a service type, which is a combination of the interface type of the object being advertised and a list of properties that a service offer of this service type should provide values for.

An exporter is a service or some third party acting as an agent for the service, which places a service offer into a trader. That service offer can then be matched by the trader to some client’s criteria.

[image: image7.png]
Figure 7. CORBA Object Trading Service

A client that queries a trader to discover a service is called an importer. An importer provides the trader with a specification of a service type and a constraint expression over the properties of offers of that type. The constraint expression describes the importer’s requirements. Figure 7 shows objects and clients using a trader service.

LDAP and X.500

The International Telecommunications Union, the telecommunications industry's international standards body, had defined the specification of The Directory, also known as the X.500 recommendation. The Lightweight Directory Assistance Protocol (LDAP) was originally intended to provide a front-end to X.500 directories. However, LDAP soon took over the X.500 space by providing LDAP servers.

Although LDAP and X.500 were originally focused on information about people, they can be used for locating any kind of resources. LDAP can be used to store any kind of information; its main concept is an entry. An entry has a distinguished name and a collection of attributes. Attributes are name-value pairs and can be mandatory or optional. The LDAP database organizes its entries in a tree-like hierarchy. The tree hierarchy starts with the root, the next level is country, followed by organizations, organization units, and common names. The functionality provided by LDAP is, as in any naming service, about managing entries and searching for entries.

JNDI

The Java Naming and Directory Interface (JNDI) is part of the Java Platform. The interface provides methods for the standard naming and directory functionality to Java applications: register and look-up objects, create, delete, link, and list contexts. JNDI does not prescribe a particular implementation.

[image: image8.png]
Figure 8. JNDI and Underlying Services

As shown in Figure 8, it can be implemented over a variety of name services and directories. This is facilitated by the JNDI architecture, which consists of an API (Application Programming Interface) and an SPI (Service Provider Interface). Java applications use the JNDI API to access a variety of naming and directory services. The JNDI SPI enables a variety of naming and directory services to be plugged in transparently, allowing the Java application using the JNDI API to access their services.

Data Formats

XML

Extensible Markup Language (XML) is a subset of the Standard Generalized Markup Language (SGML) which is defined by ISO 8879. The main goal of XML is to provide a standardized format for structured documents for the World Wide Web. The XML specification addresses two issues: namely, the definition of document types and the description of document instances. XML is only focused on structure and contents; the specification does not address the presentation of documents.

XML allows defining the structure of documents in terms of tags. The definition of such tags and their relationships is called a Document Type Description (DTD). A DTD defines an abstract syntax tree where each node is a tag. For example, there is a DTD for credit reports. The credit report tag is the root tag. It contains children—for example, for the customer, a list of credit cards, a list of mortgages, and a list of consumer credits. Each child is defined as a tag, which again can contain tags.
An XML document instance contains the data in a structured format. The format is defined by a certain DTD. For example, Andreas' credit report contains data information about himself inside the customer tag, lists his credit cards, mortgages, and other credits inside the appropriate tags.

The advantage of an XML document is that its contents can be easily understood by a program, as each piece of information in the document is contained by a tag.

OMG Interface Definition Language
OMG Interface Definition Language (IDL) is a declarative language for defining the interfaces of CORBA objects. It is a language-independent way in which implementers and users of objects can be assured of type-safe invocation of operations, even though the only other information that needs to pass between them is an object reference.

IDL is used by ORB-specific IDL compilers to generate stub and/or skeleton code that converts in-memory data structures in one programming language into network streams and then unpacks them on another machine into equivalent data structures in another (or the same) language, makes a method call, and then transmits the results in the opposite direction.
The syntax of IDL is drawn from C, but it contains different and unambiguous keywords. There are no programming statements, as its only purpose is to define interface signatures. To do this, a number of constructs are supported:

· Constants—to assist with type declarations.

· Data type declarations—to use for parameter typing:

· simple datatypes: integer types, float and double, character, etc

· composed datatypes: structure, union, enumeration, etc

· template datatypes: array, sequence, etc.

· Value type declarations—combining data and behavior, to use for parameter typing.

· Attributes—which get and set a value of a particular type.

· Operations—which take parameters and return values.

· Interfaces—which group data type, attribute, and operation declarations.

· Modules—for name space separation.

All of the declarations made in IDL can be made available through the Interface Repository (IR), one of the intrinsic CORBA services.
Enterprise JavaBeans
The EJB specification defines home and remote interfaces for enterprise beans. Home interfaces are discovered via JNDI. Methods on the home interface return references to remote interfaces associated with a particular enterprise bean instance. The remote interfaces provide access to the enterprise beans functionality. Parameters can be of arbitrary Java types.

Protocols

There are a number of different standard protocols, which allow accessing information provided through an application server. The most common ones are the Hypertext Transfer Protocol (HTTP), CORBA's IIOP, and RMI-over-IIOP and the Simple Mail Transfer Protocol (SMTP).

IIOP and RMI over IIOP

IIOP stands for CORBA's Internet Inter-ORB Protocol. It enables the access to application level objects, which expose interfaces in OMG IDL. IIOP is specified to very efficiently marshal and send data. It supports the propagation of security and transaction context. OMG's IIOP firewall specifications enable IIOP traffic to get through firewalls in a secure and controlled manner.

OMG has defined the reverse mapping from Java to IDL and introduced object-by-value. The latter specification enhances the "classic" IIOP specification. Together, these specifications enable the implementation of Java RMI over IIOP.

SSL

Secure Socket Layer (SSL) is a security protocol that sits directly on top of the TCP/IP transport protocol. It has become popular in the context of the Web as the underlying protocol for Secure HTTP (SHTTP). The OMG recognized this popularity and issued an RFP soliciting a specification for IIOP over SSL as an appendix to the CORBA Security specification.

SSL is a protocol on top of TCP/IP, which adds security capabilities. The SSL API is an extension to the TCP/IP socket API. SSL’s security capabilities include encryption of the messages sent through an SSL communication channel, authentication of the server based on digital certificates and signatures, and optional authentication of the client. Note that we use the terms client and server differently in this context. In SSL the client is the program that initiates an SSL connection and the server is the program that accepts the connection. The client and server participating in an SSL connection are also known as peers.
SSL authentication is based on public key cryptography. Public key technology uses a pair of asymmetric keys for encryption and decryption. This means that a message encrypted with one key can only be decrypted using the other key of the pair. If you keep the private key secret and distribute the public key, anyone can encrypt messages using the public key that only you can decrypt (using your private key). Furthermore, messages that are encrypted with the private key can only be decrypted with the corresponding public key. Assuming that the other party obtained your public key from a trusted place, this provides proof that the message was from you. If two parties exchange a public key, they can establish a two-way encrypted communication.

Authentication means establishing that the identity of a party is what it claims to be. In SSL this is based on digital certificates. A digital certificate is issued by a certificate authority. The certificate contains the name of the certificate authority, the name of the party who owns the certificate (and which is identified by it), the public key of this party, and time stamps. All this data is signed by the certificate authority, which means that the certificate cannot be modified without this being noticed. Security is always based on trust. In order to establish an identity, you have to trust someone. If you don’t trust a particular certificate authority, you can obtain its certificate and authenticate it with an authority that you do trust.

Obtaining a certificate, however, is only the first step in establishing the identity of your peer. The only information that a certificate gives you is that a name and a public key belong together. Given that the name and the public key are public knowledge, anyone can obtain this information and fake an identity. What you need to prove is that whoever presents the certificate also has the private key corresponding to the public one contained by the certificate. Digital signatures are used to prove this. The mechanism behind the digital signature involves creating a random message and encrypting it with the private key. If the server wishes to authenticate itself with the client who holds its certificate, the server sends the message in clear text as well as the encrypted message to the client. The client can compare the clear text message with the result of decrypting the encrypted message using the public key it obtained from the certificate. If they match, the client knows that the public and private key of the server match and has finally established the identity of the server.

SSL also provides data integrity using a message authentication code (MAC). This allows you to detect if someone in the transmission path has corrupted the message. MAC encryption is based on the private key and a part of the message itself.

Although asymmetric encryption technology can be used for encrypting the data once the SSL connection is established, a symmetric encryption mechanism is typically used. Symmetric algorithms are less computationally complex than asymmetric ones. Symmetric mechanisms work by having the two parties share a secret code that is used to encrypt and decrypt messages going in either direction. Once the server is authenticated, it can send the client a secret code encrypted with the client’s public key and, at that point, both parties use this secret code for encrypting messages.

SSL is based on certificates defined in the ISO standard X.509. There are various options for the encryption mechanism and MAC algorithm. SSL contains a handshake protocol to establish the algorithms used for a particular session.

Simple Mail Transfer Protocol
The Simple Mail Transfer Protocol (SMTP) protocol has a very specific purpose; namely, to facilitate e-mail. If you look under its hood, you find that it has some interesting properties, specifically, its store-and-forward characteristics. That makes it attractive for certain tasks in the context of an application server.

Notification Mechanism for Internet Users
If the client is a generic Web browser using HTTP and HTML, the communication model is based on HTTP requests issued by the browser. The Web server cannot notify a client or push information into the browser. However, there is often an application need for sending notifications to the user, typically when a user has initiated a long-lasting business transaction—for example, applying for a mortgage.

The mail protocol is a way to get around this limitation of the HTTP communication model. It also solves the problem of not-continuously logged-on clients through its intrinsic store-and-forward feature.

Loosely Coupled Systems

When programs choose to use XML as the data format for exchanging information, a variety of protocols can be used. The mail protocol is quite suitable for loosely coupled systems where the requester does expect an immediate response. Using the mail protocol, specifically its store-and-forward mechanism, lowers the availability requirements of the target system. If the target system is not up, the mail protocol automatically tries to resend messages.

Messaging, Events and Notifications

There is much debate about synchronous vs. asynchronous communication. It is important to apply the comparison to the same abstraction level to come to useful results. For example, TCP and UDP can be compared. Both protocols are implemented on top of IP. While UDP is asynchronous--datagrams are just sent, TCP is synchronous protocol, as the arrival of each package is confirmed.

Java RMI and CORBA, both use a synchronous remote procedure call model. This does not prevent you from using an asynchronous communication model at the application level. For many applications an event-driven programming model is most appropriate. Typical examples are financial applications processing updates in stock prices or exchange rates or the switching of telephone calls.

You can easily achieve this effect by terminating a synchronous RPC by putting the received data in a queue and having a pool of worker threads, which process the data. That mechanism provides guaranteed delivery (the event is either delivered or an exception is raised). If the sender is supposed to receive a response to its event, the callback pattern can be used. That means it provides a remote interface and makes the reference to this interface available. The response can be delivered by making an invocation on this interface.

Another feature often associated with the term messaging is store-and-forward. That means, that in the case where an event cannot be delivered to the target object, the infrastructure persists the event and retries (according to some policy) to deliver the event.

The Java and the CORBA platforms have set standards for asynchronous communication on the application level. These are the
Java Messaging Service,
CORBA Messaging, CORBA
 Event Service, and
CORBA Notification Service.
The messaging services are focused on the store-and-forward feature and are particularly useful for wrapping legacy queuing mechanisms. The CORBA Event Service de-couples event producers from the consumers and provides multicasting. The CORBA Notification Service extends this model by adding store-and-forward capabilities and event filtering and so provides features that make the service usable for enterprise applications.
Programmatic Access

So far, we have discussed the data formats and protocols that enable the access to server components. There are two different paradigms for accessing these components. On the one hand, there are GUI client applications that enable interaction with a human user. On the other hand, there are other programs that interact with server-side components.

In this section, we focus on the program-to-program interaction. This is often also referred to as business-to-business interactions. Components can either directly expose their API in forms of IDL or EJB remote and home interface

Alternatively, the access format can be defined in form of an XML DTD. That approach is particular appealing as a migration path from a paper-based business-to-business commerce to an electronic one. The process of taking a paper form, say a purchase order form, and describing it as an XML DTD using a graphical XML DTD editor is straightforward. Now business transactions are conducted by exchanging XML document instances as shown in Figure 9.

[image: image9.png]
Figure 9. XML for Business-to-business Transactions

The exchange requires a protocol and XML does not prescribe a specific one. There are three good candidates: HTTP, SMTP, and IIOP. HTTP is ubiquitous. SMTP is good for loosely coupled business relationships due to its store-and-forward capabilities. IIOP can support XML as a native data type and provide high-performance, interactive access.

Presentation

There are a number of ways the data and functionality provided by the middle-tier objects and components can be presented to a human user. The Web browser is the interface for the Internet user. The presentation can vary from plain HTML, to HTML enriched with JavaScript or applets, to fully fledged applets. Alternatively, clients, specifically for extranet and intranet access, are often implemented as desktop applications using Java or other programming languages.

HTML clients provide immediate access (no chunky applets need to be down-loaded). However, the limited set of GUI elements and stateless nature of HTML pages restrict the sophistication of the navigation, specifically for power users. Applets provide with Swing the state-of-art GUI capabilities such as tree navigation, menu bars, and tabbed panels. Once downloaded, they provide higher performance through local processing capabilities and a lighter network traffic.
A whole new class of clients is emerging from networking enabled Personal Digital Assistants (PDA). So far they only provide a limited set of standard applications (calendar, notes, address book etc.), and communication capabilities have been mostly reduced to periodic synchronization with a corresponding PC system. However, increased CPU power, memory, and communication capabilities make them a platform to run any kind of client application.
HTML Browser

The basic model for dynamic HTML clients is that they send an HTTP request (via an HTTP post or get) to the Web Server. The request contains a parameter list in the form of name value pairs. The server can obtain additional information from the browser via a cookie. The request is passed directly or indirectly to a server-side component or object for processing. Eventually, the Web server returns an HTML page back to the browser for display.

The first generation of Web dynamic applications used the Common Gateway Interface (CGI). The CGI spawns off a new process for each incoming HTTP request, which is a quite inefficient use of resources and puts severe performance and scalability constraints on Web applications. The problem was addressed by proprietary APIs such as Netscape's NSAPI, which use lightweight threads instead of heavyweight processes.

This approach has been taken further and has been integrated in the Java platform with the Java Servlet API and Java Server Pages (JSP). A servlet is a Java program, which is installed on the back end of a Web server. HTTP requests, which are associated with a URL pointing to a servlet, result in the invocation of a method on the servlet interface and typically result in the production of an HTML or other document to be returned to the browser. A servlet extends the HTTP Servlet base class. The base class deals with interfacing the Web server and understands HTTP. The derived class provides the application; typically, the parameters of HTTP request are evaluated, and a database query is made or a server-side component invoked.

Java Server Pages (JSP) provide an HTML-oriented way for describing this functionality. Java Beans, scripting, or Java code can be embedded in an HTML document. The static HTML is framed for the new page to be returned, and the beans or code deal with the dynamic content creation. Eventually, a JSP is compiled into a servlet

XML/XSL

So far we have considered the case that results from invoking server-side components that are directly converted into HTML. That means that the servlet programmer determines the presentation of the data. It is often desirable to de-couple the presentation from the data; just ask your graphic designer.

The Extensible Style Language (XSL) provides a standard way for de-coupling data from presentation. XSL is complimentary to XML. While XML contains the data in a structured format, XSL defines its presentation; for example, in HTML, PDF, or Java/Swing.

XSL defines the presentation of an XML document instance by defining a mapping from a DTD to a target presentation language. There are many target languages. The most obvious examples are formats for text/hypertext documents such as HTML, PDF, PostScript, RTF, TROFF, etc. However, target languages could also be of a different nature; for example, a set of GUI objects such as Java Swing or Microsoft COM components.

For each node of the abstract syntax tree defined by the DTD, XSL defines a parameterized output rule. A concrete XML is mapped to the target language by standard compiler technology using a front end and a back end of a compiler. The front end parses an XML document instance as a concrete syntax tree (corresponding to the abstract syntax tree defined by the DTD). The back end of the compiler traverses the tree and applies the rules defined in the XSL definition.

[image: image10.png]
Figure 10. XSL in the Browser
XSL mappings can be defined using XSL Authoring tools. For each XML DTD there must be at least a one XSL definition. The power of XSL is that there can be variety of XSL definitions customized for corporations and personal users.

The rendering of an XML document can be done directly in the browser as shown in Figure 10. The latest generation of Web browsers already supports XSL. For displaying an XML document instance, the browser needs an XSL definition for the instance's DTD. The browser can receive the XSL definition independently or embedded in an XML document instance.

Alternatively, the presentation, typically an HTML page, can be created at the Web server as shown in Figure 11.

[image: image11.png]
Figure 11. XSL in the Web Server

XSL is not bound to HTML as the presentation language. Other languages include postscript, PDF, RTF. The XSL mappings can be further extended to define the presentation in terms of Java/Swing components, as shown in Figure 12 or as audio output.

[image: image12.png]
Figure 12. XSL for Java/Swing Clients

Desktop Clients and Applets

Desktop clients implemented in Java or other languages provide state-of-the-art GUI capabilities, which make them specifically attractive for Extranet and Intranet applications. These capabilities can be combined with the browser approach by implementing the desktop as a Java applet. Figure 13 illustrates the different kind of applications and applet clients.

[image: image13.png]
Figure 13. Client Applications and Applets using IIOP

The applications and signed applets can directly communicate with the server-side components, Enterprise Java Beans, or CORBA objects. The access protocol for EJB is not defined; only RMI interfaces are required. RMI over IIOP is shaping up as the enterprise level protocol. IIOP is of course the standard protocol for accessing CORBA objects.

Applet are constrained by the applet sandboxing if they are not signed. The sandboxing restricts network connection to the host from where they have been downloaded. As server-side components reside typically on a host different from the Web server, an IIOP gateway solves the problem when it is installed on the Web server. It acts as a proxy and forwards IIOP requests to the server-side components.

Java Two Platform, Enterprise Edition

The Java Two Platform Enterprise Edition (J2EE) is defining the blueprint of the Java Application Server. While many of the technology pieces have been defined in separated and often isolated specifications, the J2EE puts them together.

J2EE is a work in progress. Version 1.0 is expected by the end of 1999.
J2EE will define the required components and how they integrate. It also aims to define a unified application model. The J2EE components are expected to be defined by Java standards, IETF standards (HTML, HTTP, SMTP, and XML) and CORBA standards (IIOP and IDL). The specification is also expected to address an application deployment model and end-to-end security and transaction.
The Inprise Application Server

The Inprise Application Server (IAS) addresses the development, deployment and management of distributed applications for the Internet, extranets and intranets. It implements the appropriate open standards; specifically, it is based on the Java platform, CORBA, and Enterprise JavaBeans.

The Inprise Application Server has three components: the IAS platform, integrated development tools, and a deployment and management infrastructure with corresponding tools.

Inprise Application Server Platform

The Inprise Application Server is using open technology standards wherever available and applicable. The Inprise Application Server platform is targeted to comply with the J2EE specification. Its infrastructure is built on top of the CORBA backbone. The Enterprise JavaBeans Container is layered on top of the CORBA infrastructure. Access to the server is provided directly through RMI over IIOP or through HTTP via the integrated Java Web Server.
The commitment to open standards makes the Inprise Application Server future-proof. It allows for plug-in-play of components. For example, the Java Web Server can be easily substituted by another Web server as long as it supports the servlet. API or JNDI can be implemented by LDAP and can be used instead of the default CORBA Naming Service
The Inprise Application Server can be configured in various ways, depending on the performance and scalability needs of the application. There are three typical configurations.

[image: image14.png]
Figure 14. Lightweight and Compact IAS Configurations

The lightweight configuration combines the Java Web Server with the Servlet/JSP engine, which directly accesses a database via JDBC as shown in Figure 14. This model does not offer a middle-tier. This configuration should be only used for applications that directly provide database access and do not have any substantial business logic.

The compact configuration combines the Java Web Server with the Servlet/JSP engine and integrated EJB/CORBA server, as shown in Figure 14. In this configuration, the core EJB services (the Container, the Transaction Manager, the Naming Service, and the Session State Service) are all run together with the Java Web Server and the servlet engine in the same Java virtual machine.

The compact configuration is useful during development, since it reduces the complexity of starting and stopping the application server. Furthermore, this single-process mode has very good performance, since what would normally be inter-process communication are instead local method invocations. For example, calls to the Transaction Manager are now local method calls, instead of RPCs to the Inprise Transaction Service.

The scalability of the compact configuration is essentially limited to the capabilities of a single machine. There are often security requirements, which require a firewall between the Web server and the server providing the business logic. These cannot be satisfied with this configuration.

[image: image15.png]
Figure 15. Enterprise IAS Configuration

The enterprise configuration has two entities, the Java Web Server with the Servlet/JSP engine and the EJB/CORBA server, as shown in Figure 15. The figure also illustrates a typical firewall configuration: the Web server is protected by an outer firewall and then there is another inner firewall in front of the EJB/CORBA server.

The enterprise configuration provides high scalability as there can be any number of each type of server. That means that new hardware for Web and business logic servers can be plugged in as needed. Figure 16 illustrates the common configuration of a high-performance Web site. Typically incoming traffic is received by a special router, such as the Cisco Director, which load-balances HTTP requests between the available Web servers. The requests are then send via IIOP to the EJB/CORBA components for processing. The selection of the target component is determined by application logic and load-balancing criteria.

[image: image16.png]
Figure 16. High Performance Site

In the enterprise configuration, each core component (the EJB Container, the Naming Service, the Transaction Service, and the Session State Service) can be run in a separate address space. In this mode, instead of managing transactions in Java, transactions are managed by the Integrated Transaction Service (ITS), which is a C++ process tuned for extremely low transaction latency and high transaction throughput. Similarly, one can run the Naming Service either as a stand-alone Java process, or as a C++ server, which will provide improved JNDI performance. The use of ITS also allows transactional legacy integration, which is discussed in detail below.

Design and Implementation Highlights of Inprise Application Server

CORBA - VisiBroker
The Inprise Application Server is built on top of a CORBA backbone: VisiBroker 4 for Java and C++. The currently supported CORBA version is 2.3. The OMG has yet to finalize the CORBA 3 specification. VisiBroker 4 implements the following key features: the Portable Object Adapter (POA), RMI over IIOP, Object-by-value in Java and C++, and IIOP Firewall.

Both VisiBroker for Java and C++ are:
· providing maturity—both products are now in the fourth generation;

· high-performance ORBs, as shown by a number of independently conducted studies;

· leading IIOP interoperability—VisiBroker has been the first ORB to implement IIOP and has been often referred to as an IIOP reference implementation;

· widely deployed directly by end users in mission-critical applications, and as the underlying infrastructure of a number of application servers, including Sun Microsystem's NetDynamics and Oracle 8i;
· manageable ORBs—the ORB itself and applications running on top of it can be configured, managed, and operated through the Inprise Application Server Management Console.

Services

VisiBroker comes with a large number of integrated and stand-alone services, including implementations of the following OMG-specified CORBA services: Object Transaction Service, Security Service, Naming Service, Object Trading Service, Event Service, Notification Service, and Property Service.

Customization

VisiBroker is designed to allow for easy customization of the ORB infrastructure. It includes API for plugging in different transports, interceptors for the customization of servers, and object wrapper for customizing object implementations.

Connection Management

In a distributed system, one of the most important resources to manage efficiently is TCP connections. When a client first sends a message to a server-side object, typically it establishes a TCP connection to that server. Every call from that client to the same server-side object is sent over the same TCP connection. Now what happens when the client wants to call a different object in the same server process? The client could establish a new TCP connection, and send requests to the new object on this new connection. This would be a terrible use of TCP connections (although some implementations of remote method invocation do exactly this!).

Instead, what one should do to preserve TCP connections is to multiplex messages over the connection; that is, use the same TCP connections for calls on both objects. Typically, this is implemented by having the client acquire a lock on the TCP connection for the duration of the RPC.

It may seem hard to believe, but the simplistic, dead-lock-prone form of connection multiplexing outlined above is considered state-of-the-art by most middleware vendors. To the best of our knowledge, VisiBroker is the only middleware product that provides connection multiplexing, and that avoids dead-lock in such cases, by using sophisticated locking and complex multiplexing algorithms.
Thread Management

As we stated previously, connection multiplexing is only a piece of the puzzle. Advanced connection multiplexing requires advanced thread management, including thread pooling. And full application scalability requires connection management and connection pooling, meaning the ability to tear down connections on an LRU basis, and reestablish them as needed, or the ability to avoid tearing down connections too soon. The overall VisiBroker scalability and performance comes from the synergy of these various complex algorithms.

However, complexity comes at a cost. In general, it is difficult (or in many cases practically impossible) to prove that a complex algorithm is correct. In distributed systems, getting algorithms correct is even harder, due to differences in TCP implementations, differences in virtual machines, differences in hardware, operating systems, threading implementations, etc. All of these variables add up to make it a monumental task to get complex distributed algorithms right.

Our experience is that the only proof of correctness is that they work, and that they work in every imaginable configuration. To this end, the key to VisiBroker quality is that it is embedded in many of the most successful application servers on the market, including products such as Sun's NetDynamics server, Oracle's Oracle8i, and GemStone's GemStone/J. In all of these products, VisiBroker is the heart of their communications and is run in heavy stress conditions, both as part of each vendors' internal tests—and, more importantly, in actual customer environments.

Scalability

Fully replicating the complete Inprise Application Server is certainly the simplest way to enhance the performance of an EJB application. However, for complex applications, custom deployment may be more appropriate. For example, it may make sense to partition some number of CORBA objects or Enterprise JavaBeans into one container, and another set of objects into another container. This type of partitioning makes sense because one object calling another object within a single container will have much better performance than an object calling another object in a different container, due to the fact that co-located objects communicate using direct method invocations, whereas remote objects communicate using the ORB; e.g., via remote method invocations. Unlike other application servers, the Inprise Application Server has no restrictions on partitioning; any number of objects can go into any number of containers, running on any number of machines. Security credentials and the transactional context will be propagated by the IIOP engine, and distributed two-phase commit transactions will be managed by ITS.
Clustering

Clustering is an Inprise Application Server technology for providing load balancing and high availability. Clustering is an extension to the CORBA Naming service and applies when using it directly or through JNDI.

A cluster is an entry in a naming service context, which defines a group of load-balanced and fault-tolerant object references. All references have to be of the same type. Containers register objects intended for load balancing and fault-tolerance in a cluster using an extension of the Naming Service API.

A client resolves a name in the usual manner and obtains an object reference. The selection of the reference is determined by the cluster, either through a default policy (round-robin) or through a custom policy. A custom policy is supplied by implementing an interface defined as extension to the standard naming service.

In case an invocation to an object reference fails, the client's stub catches the system exception and obtains another reference from the Naming service cluster, establishes a connection to replica, and executes the call.

Enterprise JavaBeans Container
The EJB container of the Inprise Application Server complies with the EJB 1.1 specification. The Inprise EJB container is implemented on top of VisiBroker. Although EJB is a new technology, the implementation of the Inprise EJB server on top of VisiBroker provides a mature and proven high-performance, scalable, and robust infrastructure. All the key features discussed above: connection management, thread management, etc., become immediately available for the Inprise EJB implementation.

Furthermore, this layering provides the use of accepted industry standards such as IIOP, OTS, and XA and so provides a safe migration path and ensures interoperability with other EJB and CORBA servers.

The current version, 1.1, of the EJB specification only represents the first milestone on the EJB roadmap. More features and design patterns are to come, to complete the EJB specification. In the meantime, a combined CORBA/EJB platform allows you to use CORBA objects wherever EJB design patterns have yet to be defined. Examples of such features are singleton servers and event-driven communication models.

Architecture

The IEJBS comprises four modules.

The EJB Container implements the EJB state-machines, for all of the Enterprise Java bean-types, including:

· stateless session beans

· stateful session beans

· bean-managed entity beans

· container-managed entity beans

The Transaction Manager provides transaction management, including distributed two-phase-commit support. This service complies with both the latest JTS specification from SUN, and the OTS specification from the OMG.

The Naming Service provides distributed naming support. This service complies with both SUN's JNDI specification, and the OMG's CORBA Naming specification.

The Session State Service provides a high-performance persistent store for session bean states.

Features
EJB1.1 Compliance
The principal feature of the EJB Container is that it is a complete implementation of the EJB specification, version 1.1, including all optional functionality. Other vendors' products may make similar claims, but it is important to look past the marketing hype and examine the actual Container state-machines, to see what portions of the EJB specification are actually implemented. The Inprise EJB Container supports all four types of Enterprise JavaBeans, including stateless and stateful session beans, and entity beans with both container-managed and bean-managed persistence.

Any reasonable EJB container will support stateless session beans in much the same way, which is to use a ready pool. Each client invocation acquires an enterprise bean instance from the ready pool when a call comes in to the container, the bean is associated with the client only for the duration of the call, and is returned to the ready pool after the invocation completes. What differentiates the Inprise EJB Container implementation is its ability to scale to support very large numbers of concurrent clients. This is achieved by layering the EJB container over VisiBroker and its connection management, as explained above.
Stateless Container
A second feature of the Inprise EJB Container implementation for stateless session beans is that the container is itself stateless with respect to clients. This means that the server does not allocate any memory for each new session bean. Thus, the server can support an arbitrary number of stateless session beans. Other implementations may well allocate some amount of memory for each client's session bean. Depending on how much memory is allocated, this will eventually limit the number of session beans the container can support.

Caching Architecture
The Inprise EJB Container supports stateful session beans using a high-performance caching architecture. There are two basic pools of objects, those in the ready pool and those in the passive pool. Beans transition from the ready pool to the passive pool on an LRU basis, after a configurable timeout. Transitioning a bean to the passive pool stores the Bean's state in the Session State Server. This service provides a high-performance, all-Java storage implementation. The Session State Server implements a garbage collection algorithm, which removes unused session beans after another configurable timeout. The Session State Server can either run in the same process as the EJB Container, or it can run out of process, on a separate box, to provide improved performance. In fact, the Session State Service is pluggable, meaning that the end user can replace the all-Java version with a custom implementation; for example, one could implement a backing store, which uses a commercial database to store session state, allowing for a highly available implementation.

Complete and Scalable Entity Bean Support
Vendors most differentiate in their support for entity beans. The Inprise Application Server provides the most complete, scalable support for entity beans currently available. The key issues for entity beans are support for persistence and transactions.
The EJB specification addresses persistence of entity beans in two ways: bean-managed and container-managed persistence. Bean-managed persistence means that the bean provider implements methods for creation, deletion, loading, and storing database entries associated with an entity bean. Container-managed persistence means that the container implements these methods for you.
As relational databases are used in the majority of enterprise application, container-managed persistence for entity beans usually requires the container to implement an object-relational mapping. The Inprise Application Server addresses the object-relational in the dual way. First there is an out-of-the-box solution that is integrated in the container. Secondly, there is an integration API that allows the user to plug in an object-relational mapping tool such as TopLink.
Transactions, bean-managed as well as container-managed, are implemented by the Inprise Integrated Transaction Service (ITS). ITS comes in two flavors, a lightweight implementation of JTS, optimized for intra-container transactions, and the fully featured OTS implementation for inter-container transactions and transactional legacy integration. Details are explained below.
Security
The EJB specification addresses a number of security concerns. Specifically, it is addressing access control. The Inprise EJB container fully implements EJB security on top of the more powerful and feature-rich VisiBroker Security, which complies with the CORBA Security, level 2 specification. The details of VisiBroker security are explained below.

Web and Servlet Engine

The Inprise Application Server has an integrated Web server component, the Java Web Server. As explained earlier, there are three different configuration options for the Inprise Application Server. The Java Web Server can be substituted by the Web server of choice. The only impact is the loss of integrated manageability of the Web server through the Inprise Application Server console.

Similarly, but not recommended, the Servlet engine can be substituted by a different Web server back end; for example, by the NSAPI. C/C++ APIs can be easily supported using VisiBroker for C++. Its object-by-values support enables even communication with Enterprise JavaBeans. When substituting the Java Web Server's Servlet engine, there is again a loss of otherwise integrated manageability. When using different APIs, the JBuilder servlet support is lost.

Transactions

Inprise's Integrated Transaction Service (ITS) implements the Java Transaction Service (JTS) and the CORBA Object Transaction Service (OTS). It also supports the X/Open Distributed Transaction Processing specification; specifically, it allows the integration of XA-compliant resources such as Oracle and Sybase databases or legacy transaction monitors—for example, CICS, IMS, and Tuxedo.

Security and Firewalls

Security has a number of aspects. Typically, the following security features are required by enterprise applications:
· Securing of the communication channels against eavesdropping and corruption.

· Authentication—identification of persons and objects.

· Authorization —controlling access to resources based on the identity of the requester.

The Inprise Application Server provides these features through an integrated security service, which is based on SSL (see above) and the CORBA Security Service, Level 2, the VisiBroker Security Service.
Additionally, there is a need to protect corporate network against hacker attacks. However, when deploying Internet and extranet application, controlled access to corporate networks must be provided. The software to do this is commonly known as firewall. The Inprise Application Server provides special firewall software for IIOP and can accommodate to work with all types of firewall products.

SSL

The Inprise Application Server supports SSL with native HTTPS (Java Web Server), IIOP tunneling through HTTPs (Gatekeeper), and IIOP over SSL. As explained above, SSL provides server authentication, privacy of the communication, and optional client authentication. Authentication is provided through X.509 certificates.

The application programmer is largely unaware of SSL. Switching on SSL (HTTPS or IIOP-over-SSL) is essentially a configuration option. There are native Java and C++ implementations of SSL for the corresponding VisiBroker versions. The Inprise SSL solution eases the bootstrapping, and it provides out-of-the-box understanding of various certificate formats and lets you determine different quality of service, such as encryption algorithms and key lengths.
Visibroker Security Service

The VisiBroker Security Service is based on SSL and the CORBA Security Specification (Level 2). SSL provides the securing of the communication channels and the identification of servers. Managing X.509 certificates for a large number of clients still requires quite some administration. Hence, many end users stay with the traditional user ID/password method for identifying clients. The VisiBroker Security Server takes this into account by supporting identities based on X.509 certificates as well as on user ID/password.

Access control is based on the comparison of the privileges of a principal; i.e., an authenticated identity, against the requirements of a target object—a naïve way of defining access control as a direct mapping between principals and target objects. For any enterprise application, that means something like thousands of users multiplied with hundreds of objects. Such an access control list would be very hard to administer. The CORBA Security Specification introduces varied abstraction mechanisms that make the task of administering access control manageable.

The VisiBroker Security Service provides an out-of-the-box authorization solution that can access control lists and a GUI tool for administering them. However, security often requires the integration of existing security solutions, specifically access control mechanism. Interfaces are provided, specifically for the Access Decision Object, to enable the integration of legacy security subsystems. Implementation of the interfaces are determined via environment properties and are dynamically loaded.

Firewalls

Firewalls restrict network traffic to and from certain network segments. The restrictions can be based on the origin or destination of the traffic, the type of protocol, or they can be application-specific.

Types of Firewalls

Firewalls operate using different mechanisms. The most common mechanisms are the filtering of packets based on their origin and/or destination, filtering based on the protocol, and filtering for a specific application.

[image: image17.png]
Figure 18. Filtering Firewalls

Filtering firewalls filter packets based on their origin and destination are closely coupled with routers. To implement a particular policy, the firewall sets restrictions on the router. The origin and destination of IP packets can be described in terms of the IP addresses of individual hosts and/or subnets, or in terms of port numbers. Figure 18 illustrates the mechanism of a filtering firewall. Typically, such firewalls allow policies stated in rules such as these:

· Allow all kinds of packets, but only to this IP address and this port.

· Allow incoming traffic only from the specified IP subnets.

[image: image18.png]
Figure 19. Gateway Firewalls

Gateway firewalls are typically based on a multi-homed bastion host as shown in Figure 19. A dual-homed machine is one that has two network cards with separate IP addresses. Typically, one address—the external one—is accessible from the Internet; the other address—the internal one—is connected to the protected intranet. Such a configuration physically blocks the Internet traffic directed to IP addresses in the protected domain.

The only way to access machines on the protected subnet is to run a gateway on the bastion host, which forwards incoming traffic to the internal machines. These gateways can be protocol-specific or application-specific. Typically, gateway firewall products come with HTTP (Web), FTP (file transfer), NNTP (news), and SMTP (e-mail) gateways.

Client-side Firewalls

A client-side firewall is typically put into place by a company to restrict employee access to the Internet and to protect the company’s intranet from outside attacks. Internet service providers also have firewalls in place in some cases. These usually restrict the Internet access of their subscribers to certain protocols; for example, HTTP and NNTP.

Controlled firewalls appear in intranet and extranet deployments. It means that the deployer of an application can have control over the client-side firewall. This is not the case for Internet deployments.

Controlled firewalls can be made permeable for IIOP traffic. Destination IP addresses and port numbers can be enabled on filtering firewalls, and IIOP gateways can be installed on bastion machines with gateway firewalls. Most gateway firewalls can also operate in filtering mode.

The only assumption that can be made for an Internet deployment is that HTTP traffic is enabled. A common technique for overcoming this problem is HTTP tunneling. HTTP tunneling means that an IIOP request is enclosed into an HTTP envelope and sent via the HTTP protocol. The receiving HTTP server must be able to understand these special HTTP requests. It takes the IIOP request out of the HTTP envelope and makes the real IIOP request on the target objects. Figure 12.5 illustrates the idea behind HTTP tunneling. In this way, any client that can load a CORBA applet using HTTP can make invocations using HTTP calls to the same machine.

Server-side Firewalls

On the server side, the variety of firewall configurations is even larger, but solutions are more easily achievable since the application provider usually has control over the policies enforced by server-side firewalls. We identify several server-side firewall scenarios below.

Filtering firewalls constrain traffic based on origin and target IP addresses and ports. To enable invocation using IIOP, you have to allow traffic through the firewall that is destined for any port on any host that the applications’ servers are listening on.

If the clients to the applications are applets, the scenario becomes very simple. In most cases, applets require an IIOP gateway (to overcome applet sandbox restrictions), which is the single point of access.

The VisiBroker Gatekeeper provides such an IIOP gateway. A GUI administration tool allows configuration of ports. If there is no IIOP gateway available, or the firewall is placed between the gateway and the servers, the same mechanism applies. You have to make sure that your servers always start on the same port. This port is a property of the object adapter/container and can be configured through the IAS Console.

Gateway firewalls physically block all traffic unless a protocol-specific or application-specific gateway is installed on the bastion host, which forwards the traffic. A GIOP gateway is specified as part of the OMG Firewall standard and is implemented by the VisiBroker Gatekeeper. GIOP gateways are also supplied by firewalls vendors such as TIS with its Gauntlet Firewall.

Often gateway firewalls support IP masking. That means the IP addresses of internal machines are not visible outside the intranet. The firewall reroutes IP traffic based on mapping between an external port to a pair of internal IP address and port. To enable IIOP traffic, object references need to be produced, which contain the external address information. That again is a property of the object adapter/container and can be set through the IAS console. VisiBroker implements the latest IIOP specification, which allows for multiple profiles—that is, multiple address information, in object references. That means that object references can be used inside and outside of such a firewall.

Finally, there is an issue with callbacks—that is, the server is sending notifications to the client using IIOP. Typically, client-side firewalls do accept TCP/IP connection requests. This problem has also been addressed by the OMG firewall specification and is implemented by the VisiBroker and the EJB server.

Legacy and ERP System Integration

Very few applications are built from scratch. Most have to integrate data and functionality of existing systems or from pre-packaged enterprise applications such as SAP, PeopleSoft, Oracle Financials, etc. This applies in particular for the problem space solved by application servers. The Inprise Application Server provides a number of ways to integrate legacy and ERP systems.

IDL Wrapping

CORBA was designed with a strong focus on system integration. The idea is to wrap existing applications into IDL interfaces. This enables access to these systems across language, distribution, and platform boundaries. This technique has been successfully applied in many projects. As the Inprise EJB Container is implemented on top of VisiBroker and IIOP, the access to wrapped objects is straightforward.

Transactional Integration

Often the simple access to code is not sufficient. Instead, transaction (in the sense of distributed transactions as discussed above) is required. Inprise's Integrated Transaction Service provides exactly this service. It provides out-of-the-box integration to major databases and a variety of transactional back ends based on the XA interfaces. As the Inprise Enterprise JavaBeans Container is implemented on top of VisiBroker and IIOP and uses ITS for distributed transaction coordination, the integration of ITS-controlled XA resources is straightforward.

Direct Mainframe access

Both VisiBroker for Java and C++ are available for MVS mainframes. That allows direct access to mainframe resources from CORBA objects and Enterprise JavaBeans deployed in the Inprise container.

Development - JBuilder

JBuilder is the leading integrated Java integrated development tool (IDE) and the development tool component of the Inprise Application Server. The full range of Java development supports the latest Java and Swing versions and provides unique features such as Codeinsight and data sets.

Here we want to focus on the integrated supports for the Inprise Application Server—and that is in the area of server-side components (CORBA and EJB), dynamic HTML clients (servlets and JSP), and Java Swing application and applet clients and how they can be assembled into an integrated application.

CORBA

JBuilder natively understands OMG IDL files, provides syntax highlighting, structural analysis of IDL files, and built-in make rules for compiling IDL files with the integrated VisiBroker idl2java compiler. It also features a number of wizards to generate servers and clients.

EJB

There are many rules and naming conventions to be observed when developing Enterprise JavaBeans. JBuilder makes the development process easy by providing wizards for the generation of the remote and home interface and implementation class.

JBuilder for Application Server comes with a lightweight built-in version of the Inprise EJB container. This allows you to write, run, and debug your EJB code without leaving the IDE.

The deployment wizard provides a graphical interface to easily create deployment descriptors for your enterprise beans. It also packages up your application in an EJB jar file. This jar file can then be picked up by the Application Server console (see below) for deployment in your test, staging, or production EJB server.

Dynamic HTML Clients

Developing HTML clients has two challenges. First, HTML clients are jointly developed by graphical designers and programmers. Typically, the designers are responsible for layout, color scheme and fonts, graphics, navigation model, etc., while the programmers handle the integration with the server-side components for providing dynamic contents.

Second, an HTML interface to a non-trivial application is usually comprised by tens or even more individual, dynamically created HTML pages. In fact these pages are connected through a state machine. Figure 22 shows such an HTML state machine using a very simple example. HTML pages (static or dynamically created) defines the states, and the transitions are defined by components that get invoked when an HTTP request is sent. The components are represented by servlets (could generated from JSPs) that receive an HTTP request, make the invocation on the server-side component, and create the new HTML page.

[image: image19.png]
Figure 22. HTML State Machine

JBuilder addresses both issues. It supports the first issue, the separation of design work from integration work, in the following way. The HTML client wizard starts from an HTML page. It parses the page and lets the programmer select which parts of the page are substituted with dynamic content; for example, the table on the right-hand side. A bean called the page producer handles this.

Now, there is a Java Bean for each HTML graphical and structural element, such as table, drop-down menu, form, etc. These beans follow the model view controller pattern. That means these beans are the view, the presentation produced by an createHtml() method, and each bean needs a corresponding model that contains the data to be presented. The viewer beans can be structured recursively; for example, a table can contain sub-tables and/or drop-down menus.

The second issue is addressed by a tool that lets you graphically control and manipulate the HTML state machine. It displays the state machine similar to the one shown in Figure 22. When double-clicking the states and transitions, it produces the corresponding HTML pages and page producer (and subordinate viewer) beans, respectively.

Java Applets and Applications

JBuilder has a special focus on building graphical user interfaces. The code generated by the tools and wizard is based on open Java API, specifically the Swing widget set and Java Beans. Graphical interfaces can be built in a what-you-see-is-what-you-get and drag-and-drop fashion.

Non-Java Desktop Clients

Non-Java desktop clients for the applications on an IAS infrastructure can be implemented with Inprise/Borland developments. Both C++ and Delphi feature integrated CORBA and IIOP support with their RAD features. They provide the best way to build native Windows clients for application servers.

XML and XSL

As explained in the technology overview, XML DTDs and Java or IDL datatypes are just similar syntactical representations of similar things; namely, datatypes used for interfacing a system or component. Hence, Java or IDL types can be easily generated from XML DTDs and vice versa.

So the results of a method invocation on a server-side component can be described as an XML document instance. The Inprise Application Server provides cross-compiling facilities between XML DTD and IDL and Java interfaces. The XML can be used for loosely coupled business-to-business interactions. Furthermore, XSL definitions allow for customized presentation of content, according to user profiles. The rendering of XML-defined content into a presentable format such as HTML, can be done on the server side or the client side.

Deployment and Management

The Application Server Console is the interface for deploying, managing, and operating components and related services. The console is a graphical tool for a sophisticated management infrastructure.

Deployment

The Application Server Console allows you to easily and seamlessly assemble and deploy your CORBA and EJB applications. You can deploy and control Enterprise JavaBeans, CORBA object implementations and components, services, and applications. The console lets you view components by browsing naming, location, and directory services; interface repositories; and implementation repositories. It also allows you to view and edit the deployment properties of EJB containers, CORBA servers, and their object adapters and EJB component and CORBA objects.

Fault Tolerance
Fault tolerance is addressed through the infrastructure of the Inprise Application Server and by the integrated IAS management. The combination CORBA objects, IIOP, fault-tolerant OSAgents, and Naming Services with Clustering provide a high level of automatic fail-over. Additionally, IAS Interceptor technology can be used to implement custom fail-over policies.

The integrated IAS management has two components. There is an infrastructure of agents and repositories, which monitors container, components, and objects. The infrastructure also allows you to execute tasks; for example, changing properties on the container or object adapter or gracefully shutting down objects.
The other part is the management console, which allows you to graphically build fault-tolerant configurations of your system and to specify the fail-over rules.
Managing Distributed Transactions
Distributed transactions are a centerpiece for enterprise applications. The IAS management console allows you to control ITS infrastructure as well as the object involved in transactions and individual transaction.
Performance Monitoring
Performance monitoring is a key management issue for Internet deployments as they have an unpredictable load. Performance monitoring allows for load prediction and enables you to proactively scale up your deployment configuration. The IAS performance monitoring allows you to collect various types of performance data, which is stored in a repository and displayed in the management console. The presentation can be customized.
Conclusion

The Inprise Application Server provides tools and an infrastructure for developing, deploying, and managing applications for the Internet, extranets, and intranets. The infrastructure is based on open standards and provides the latest Enterprise JavaBeans environment on top of a mature, scalable, and high-performance CORBA platform. Access to the application is available through HTTP via the integrated Java Web Server, natively through (RMI-over-)IIOP, and via XML. IAS provides an ideal environment for the integration of legacy and ERP systems through its multi-platform, multi-language CORBA support, the Integrated Transaction Service, direct access to mainframes, and an EJB abstraction layer for ERP systems. Security concerns are addressed by the VisiBroker Security Services providing CORBA level 2 features, including privacy, authentication, and access control. IAS works together with different types of firewalls.

The tools, primarily JBuilder and C++ Builder and Delphi for native Windows clients, provide integration with the infrastructure's technology, specifically for VisiBroker, Enterprise JavaBeans, Servlets, JSPs, and XML. JBuilder provides complete code-run-debug for CORBA and EJB application development in its integrated environment.

The Inprise Application Server is a highly manageable environment. All administration and operation is provided through a unified console.

The Inprise Application Server makes you productive when developing applications; makes your servers fast, scalable and secure; and makes the operation efficient. Thank you for considering the Inprise Application Server.

Acknowledgements
Many people from within and outside of Inprise have contributed to this white paper. Specifically, I would like to acknowledge Edwin Desouza, Dave Curtis, Keith Duddy, Dana Kaufman, Nigel Menendez, Andre Srinivasan, Madhavan Rangarao, and Jonathan Weedon.
Further Reading
Andreas Vogel and Madhavan Rangaro, Programming with Enterprise JavaBeans, JTS, and OTS, John Wiley & Sons, New York, 1999, ISBN: 0-471-31972-4

Andreas Vogel, Bhaskar Vasudevan, Maira Benjamin and Ted Villalba, C++ Programming with CORBA , John Wiley & Sons, New York, 1999, ISBN: 0-471-28306-1

Andreas Vogel and Keith Duddy, Java Programming With CORBA, 2nd Edition , John Wiley & Sons, New York, 1998, ISBN: 0-471-24765-0
Copyright © 1999 Inprise Corporation. All rights reserved. All Inprise and Borland product names are trademarks or registered trademarks of Inprise Corporation. CORBA, IIOP, and ORB are trademarks or registered trademarks of Object Management Group in the U.S. and other countries. Java is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and other countries.

44
Andreas Vogel

