
November 1999, Volume 5, Number 11

Cover Art By: Darryl Dennis

ON THE COVER
6 Greater Delphi
CORBA — Dennis P. Butler
After a brief introduction to the Common Object Request Broker
Architecture, Mr Butler quickly moves on to building an assortment of
CORBA servers and clients from the ground up, even constructing a
client with JBuilder to emphasize CORBA’s language independence.

FEATURES
16 Undocumented
RTTI Gets Easier — Bill Todd
Although it remains undocumented, a new set of functions added to
TYPINFO.PAS in Delphi 5 make Delphi’s Run-time Type Information
capabilities easier to use — as Mr Todd explains.

20 DBNavigator
The Data Module Designer — Cary Jensen, Ph.D.
Delphi 5 is full of new features; one of the more important for database
developers is its Data Module Designer. Dr Jensen provides us with an
introduction and a detailed description of the new tool.

25 Sound + Vision
Extending TAPI — Robert Keith Elias and Alan C. Moore, Ph.D.
Mr Elias and Dr Moore review TAPI concepts, overview the TAPI and
Multimedia API, and explain the code needed to play .WAV files to, and
record them from, a phone line — and much more.

31 Columns & Rows
An AS/400 Skeleton Key — G. Bradley MacDonald
Delphi is the best client/server development environment extant, but the
AS/400 can prove exotic ground for even seasoned Delphi programmers.
Mr MacDonald demystifies Big Blue’s popular mini.

REVIEWS
35 Raize Components 2.1

Product Review by Ron Loewy

DEPARTMENTS
2 Delphi Tools
5 Newsline
38 File | New by Alan C. Moore, Ph.D.

1 November 1999 Delphi Informant Magazine

2 November 1999 Delphi Informant Mag

Delphi
T O O L S

New Products
and Solutions

RSW Offers e-TEST Suite 3.1

RSW Software, Inc.

announced e-TEST Suite 3.1.
e-TEST Suite automates the
testing of business-critical
Internet and intranet applica-
tions throughout the application
lifecycle.
The 3.1 release includes several

enhancements and upgrades,
including the e-Reporter module
and optimization for the
BroadVision One-To-One
family of Internet applications.

e-TEST Suite was designed
to address the unique needs of
Web application developers
and testers with an integrated,
development-through-deploy-
ment solution for Web testing.
It includes e-LOAD for
load/scalability testing,
e-TESTER for functional and
regression testing, and
e-MONITOR for monitoring
the performance and continu-
ous availability of live Web
applications. All three are pow-
ered by RSW’s Visual Script
azine

Premia Announces CodeWr
technology, which drives all facets
of testing with a common set of
scripts and requires no program-
ming.

e-TEST Suite 3.1 is optimized
for popular Web development
environments, including
NetDynamics, Microsoft ASP,
WebObjects, ColdFusion, and
the BroadVision One-To-One
ight 6.0
environment.
e-TEST Suite 3.1 also features

Visual Script extensibility and
enhanced support for JavaScript
and VBScript.

RSW Software, Inc.
Price: From US$4,995
Phone: (508) 435-8000
Web Site: http://www.rswsoftware.com
Premia Corp. announced the
release of CodeWright 6.0, a
new version of the program-
mer’s editing system. With the
addition of tools optimized for
code completion, code reuse,
and code storage management,
CodeWright 6.0 has been built
into a full-featured editing sys-
tem custom-ready to accelerate
the programmer’s role in the
development cycle.

The new release incorporates
CodeSense technology, a famil-
iar “in-place” popup window for
completing C functions. One
may invoke a list to complete a
partially typed symbol, and
when the mouse passes over a
symbol found in the CodeSense
database, its definition is dis-
played in a pop-up ToolTip. In
addition to listing functions in
the popup window, CodeSense
uses visual go-to buttons that
open the document containing
the function prototype. Long
symbol lookups run in their
own thread, allowing the user to
continue to work while lookup
is in progress. The user can spec-
ify entirely new libraries for
CodeSense to adopt, and
CodeSense never forces comple-
tion; when one wants comple-
tion, the user invokes
CodeSense.

Another new feature is
CodeFolio, which allows code
to be stored in an Explorer-
style directory within a dedicat-
ed window. When a named
code segment is dropped from
the CodeFolio window into a
target document, CodeFolio
allows macro expansion and
prompted input at the insertion
point. Entire processes (such as
a large Perl script) can also be
applied at the moment of code
placement. Moreover, when the
working folder resides on a net-
work, CodeFolio gives teams a
shared view of an intelligent,
reusable code repository.

Premia Corp.
Price: US$299 for a single-user license;
upgrades and multi-user licenses are
available.
Phone: (800) 547-9902
Web Site: http://www.premia.com

http://www.rswsoftware.com
http://www.premia.com

3 November 1999 Delphi Informant Maga

Delphi
T O O L S

New Products
and Solutions

Arsenal Launches Arsenal Word Processor Toolkit

Arsenal Inc. announced Arsenal

Word Processor (AWP) Toolkit, a
text processor control that
enables developers to build into
any application the possibility to
view, generate, edit, and print
documents in most popular for-
zine

KRFTech Announces WinDr

DBI Technologies Announce
mats and to solve a number of
development problems concern-
ing document processing.

AWP Toolkit can be used to
make an application independent
from external document process-
ing programs, establish the full
iver

s Component Toolbox OCX
program control over the work
with the text, create special edit
tools with unusual functions (e.g.
“save in compressed form” or
“notify after close automatically,”
etc.), and generate complex
reports and save them in any sup-
ported format.

A unique AWP Toolkit feature
is the tag support — you can
put any number of tags in the
document and set your own
properties and handlers.

You can choose between an
ActiveX control or a plain
COM interface in your appli-
cation.

Arsenal Inc.
Price: AWP Toolkit, US$445;
AWP Toolkit/ActiveX, US$599.
E-Mail: sales@arssoft.com
Web Site: http://www.arssoft.com
 4.0

DBI Technologies Inc.

announced Component Toolbox
OCX 4.0, a collection of 54
dynamic, 32-bit ActiveX compo-
nents for Delphi, Visual Basic,
Visual C++, Visual FoxPro,
Access, PowerBuilder, and
HTML.

Additions to Toolbox include
ctImage, a single compact compo-
nent with functionality and sup-
port for HTML environments;
ctList, which supports list item
sub-text, picture clips, checkboxes,
and automatic column sorting;
ctListBar, an OutLook-style
ListBar component that includes
horizontal and vertical presenta-
tions, mouseover events, support
for drag-and-drop, tool tips for
each item, word-wrapping, and
Image List; ctHTML, a compo-
nent for quick display of docu-
ments and application-specific
HTML browsing; and ctTree,
which includes support for multi-
ple column sorting and in-line
label editing.

DBI Technologies Inc.
Price: US$299 for a single developer license.
Phone: (204) 985-5770
Web Site: http://www.dbi-tech.com
KRFTech Ltd. announced
WinDriver, a device driver
development toolkit designed to
enable developers to create high-
performance PCI/ISA/EISA-
based device drivers.
WinDriver’s architecture enables
developers to create a hardware
access application without having
to write a kernel-mode device dri-
ver. All hardware access is done in
the application through the
WinDriver interface, while main-
taining kernel-mode performance.
WinDriver features a graphical
Wizard for hardware diagnostics
and automatic code generation.
Hardware access applications cre-
ated with WinDriver will run on
Windows 95, 98, NT3.51,
NT4.0, NT5.0, CE, Linux, and
Alpha NT.

Developers can use any Win32
compiler, including Borland
Delphi, MSDEV, Visual C/C++,
and others.

Other features include built-in
support for leading PCI bridge
vendors (PLX, AMCC, and V3);
automatic implementation of I/O,
interrupt handling, and access to
memory-mapped cards; and sup-
port for DMA, Plug-and-Play,
and multiple board handling.

KRFTech Ltd.
Price: From US$899 (Windows 95/98 or NT).
Phone: (877) 514-0537
Web Site: http://www.krftech.com

http://www.arssoft.com
http://www.dbi-tech.com
http://www.krftech.com

4 November 1999 Delphi Informant Maga

Delphi
T O O L S

New Products
and Solutions

CNS Announces Version 1.1 of The InterCom System

CNS International announced

the release of version 1.1 of The
InterCom System, the company’s
developer toolkit for building
multi-user “aware” applications.
zine

EC Releases Help & Manua
The InterCom System is intended
for developers that create multi-
user network applications, such as
database and Internet applica-
tions, games, and groupware.

Improvements
and additions have
been made in the
1.1 version to the
client components
to support a wider
range of develop-
ment tools. This
includes updates to
the ActiveX con-
trol, which is now
fully scriptable
from HTML envi-
ronments, and the
addition of a native
VCL control for
Delphi 4.
Improvements
have also been
made to the
InterCom server,
l 2.0
which is available as a service for
Windows 95/98/NT.
The InterCom System consists

of a client control, used by the
application, and the InterCom
server. The system is based on a
publisher-subscriber notification
architecture, where clients can
subscribe to “events” that the
developer defines and publish
data to those events. When data
is published to an event, all
clients subscribed to that event
are automatically notified. Clients
can also send messages directly to
other clients, which can be locat-
ed anywhere on a LAN or WAN.
The product can be used from a
host of programming environ-
ments, including Delphi, Visual
Basic, C++, HTML, and others.

CNS International
Price: US$399
Phone: 31 30 2802822
Web Site: http://www.cns.nl
EC Software released Help &
Manual 2.0, a Windows
95/98/NT4 application that
lets you create online help
files, HTML, and printed user
manuals from a single source.
Help & Manual can create
help files for all versions of
Windows, from 3.x through
NT, as well as the new HTML
Help files. The program also
supports plain HTML, rich
text, and printed formats.

Help & Manual 2.0 offers a
WYSIWYG approach to creat-
ing help files and printed man-
uals. The word-processor-style
interface allows you to use
toolbars and right-click menus
to easily create
topics and links,
enter text, and add
images. Hyperlinks
are created with a
simple drag and
drop. The program
automatically
translates your left
and right margins
into HTML tables,
and converts your
Windows
metafiles, bitmaps,
and OLE objects
to GIF images.
With Help & Manual’s abili-

ty to merge multiple help files
and convert cross-references
among separate parts into
intra-file links, different people
can work on different parts of
the help file development.
While designed as a develop-
ment tool for programmers,
Help & Manual can be used
by network administrators,
business people, and anyone
who wants to create printed
manuals or structured HTML
documents with hyperlinks.

EC Software
Price: US$229 for a single-user license;
additional licenses cost US$49 each.
Phone: +43 6212-7838
Web Site: http://www.ec-software.com

http://www.cns.nl
http://www.ec-software.com

5 November 1999 Delphi Informant Maga

News
L I N E

November 1999

HREF Tools’ WebHub Selected for Borland Web Site

Inprise Announces Commitment to Linux
Santa Rosa, CA — On July 1,
1999, Borland decided to use
HREF’s WebHub to implement
some of the crucial pieces of its
http://community.borland.com
Web site. The site provides a
forum for developers to obtain
and exchange information
regarding all aspects of
Inprise/Borland products.

WebHub was used to integrate
a diverse set of databases and
numerous types of applications
and development environments
running on multiple NT and
UNIX servers. WebHub detects
zine

Dunn Systems Receives the In
Solution of the Year Award
when users should log in and
accurately returns the user to
their desired entry point once
that has been accomplished.

The entire site was previewed
prise 1999 Partner

Delphi 5 Focuses on Interne
Development
July 21, 1999 at the Borland
conference.

HREF products are available
for online purchase at
http://www.href.com.
San Jose, CA — Inprise Corp.
announced its commitment to
support the Linux platform. The
company announced the imme-
diate availability of VisiBroker
for Linux, a new version of its
object request broker, and has
demonstrated JBuilder for Linux,
its new Java development tool.
t

In addition, Inprise is releas-
ing the complete results of its
Linux developer survey, in
which over 24,000 respondents
indicated that Linux is a criti-
cal operating system for their
customers moving forward.
The results also indicate that
the majority of developers par-
ticipating in the survey are
planning application develop-
ment and client/server database
development projects on
Linux. According to a recent
report by International Data
Corp., because applications
drive operating system sales,
having more applications avail-
able on Linux will drive Linux
in Enterprise computing.

Additional findings from the
Borland Linux Developer survey
are available at http://www.
borland.com/linux/survey.
 and Enterprise
Chicago, IL — Dunn Systems,
Inc. received the Inprise 1999
Partner Solution of the Year
Award at the Inprise Annual
User Conference Award
Ceremony held in Philadelphia
this past July. Accepting the
award from Inprise President
Dale Fuller and Borland.com
Vice President David
Intersimone was William Dunn,
President, and David Piech, Vice
President of Sales and Marketing
for Dunn Systems, Inc.

The winning application,
from 150 submitted, was a Java
Enabled Tax System (JETS)
that Dunn Systems developed
for the State of North Carolina
Department of Revenue using
JBuilder and VisiBroker. The
criteria Inprise used in judging
the applications included tech-
nology used, complexity, and
the impact of the application
on the organization.

JETS is a comprehensive
client/server application that
allows the North Carolina
Department of Revenue to
manage every facet of a taxpay-
er’s account. Users can enter
information from tax returns,
review the status of refunds and
delinquencies, and generate
reports and correspondence.

Because the state of North
Carolina now employs a single
system, multiple entries of the
same information has largely
been eliminated. JETS is also
faster than the legacy system
and sports more reliable backup
and archival features.
Dunn Systems, Inc. (Skokie, IL)

has been providing IT consulting
services to Global 2000 business-
es since 1988 and has experience
in business-to-business e-com-
merce, n-tier application develop-
ment, data warehousing, quality
assurance, and training. For more
information on Dunn Systems,
visit http://www.dunnsys.com, or
call (847) 673-0900.
Scotts Valley, CA — Today, appli-
cations need to access many sites
and data sources. Leveraging the
Internet and e-business opportu-
nities must be accomplished with
thin-client applications offering
the same functionality through
standard Web browsers. Appli-
cations must handle spikes in
usership while remaining available
and responsive. Delphi 5 delivers
these capabilities in one integrated
development environment.
Delphi 5 is built for today’s
Internet and enterprise developer.

Delphi 5 Professional features
include WebBroker and native
Internet components to devel-
op and deploy Web applica-
tions faster; Data Module
Designer, To Do Lists, and the
Control Panel Wizard for high-
er productivity; Project Browser
with Code Explorer, hyper-
links, and history lists for bet-
ter project management; frames
support and additional
Property Editors to visually
build components; enhanced
debugger with Breakpoint
ToolTips, Actions, Groups,
FPU/MMx View, drag-and-
drop support, and more; and
Import COM Servers, includ-
ing a full suite of Microsoft
Office Automation Controller
components, plus complete
support for building ActiveX
components and OLE controls.

Delphi Enterprise features
include XML and HTML 4 sup-
port for faster Web development;
InternetExpress with Web Client
Page Wizard, Borland MIDAS
Page Producer, and WebBroker for
building and deploying high-
speed Web applications;
ADOExpress to quickly access all
types of information; TeamSource
for higher development team pro-
ductivity; and Borland Translation
Suite for easier localization of
applications.

For additional information, visit
http://inprise-news.com/
Key=1436.Icn.B.EQBaP8.

http://community.borland.com
http://www.href.com
http://www.dunnsys.com
http://www.borland.com/linux/survey
http://www.borland.com/linux/survey
http://inprise-news.com/Key=1436.Icn.B.EQBaP8
http://inprise-news.com/Key=1436.Icn.B.EQBaP8

6 November 1999 Delphi Informant Mag

Greater Delphi
CORBA / Delphi 4, 5 / VisiBroker / JBuilder

By Dennis P. Butler
CORBA
Creating Clients and Servers

From the stand-alone personal computer, to heterogeneous distributed clients and
servers, and everywhere in between, the computing industry has evolved dramatically

over the past several decades. Computer professionals are constantly required to use
their skills to the utmost in their current environment, and then be able to migrate to the
next level when the current framework becomes too complicated or restricting. The evo-
lution of computing continues to point toward a common goal: simplify the work process
by better planning, faster development, and sharing of resources.
The CORBA architecture — short for Common
Object Request Broker Architecture — was
designed to accomplish this goal. The CORBA
architecture defines and implements the frame-
work for applications to communicate across
such previously unbreakable boundaries as mul-
tiple operating systems and programming lan-
guages. This capability is achieved through the
use of a common interface and information
passing mechanism implemented in different
programming languages.

There are several factors that set CORBA apart
from competitive proprietary information sharing
technologies. First of all, CORBA is an open stan-
dard; that is, the specification is constantly being
reviewed and updated by the OMG, or Object
Management Group. This group is made up of
hundreds of companies worldwide that decide
how to evolve the CORBA specification. This
process of evolution has been occurring since
1991, when CORBA 1.0 was released. Another
feature that sets CORBA apart from other tech-
nologies is that the interface is common among
languages, not the implementation of it. Other
information sharing methods rely on operating-
system-specific implementations to pass informa-
tion. While this may be useful in LAN/WAN or
intranet environments where operating systems
can be standardized, true distributed applications
that need to operate over any OS require a more
complete solution, such as CORBA. With
CORBA, the client doesn’t need to know any
details of how the object that it will obtain from a
server was implemented.

The starting point for CORBA applications is the
interface that applications share when passing
azine
information. This common interface that defines
what information is going to be passed is called
IDL, short for Interface Definition Language. IDL
is its own language, although the syntax is similar
to that of Java and C++. As its name implies, the
only purpose of this language is to define the
interface for objects that will be passed between
CORBA applications. The implementation and
use of these objects is done in the specific target
language chosen. The only stipulation here is that
the target language has facilities to map to the
CORBA architecture.

This is where Delphi comes in. CORBA devel-
opment is typically associated with C++ or Java
development. However, even non-object orient-
ed languages such as C and COBOL have map-
pings to CORBA, and thus can take advantage
of the open architecture. As we’ll see later in this
article, Delphi employs several methods to use
CORBA in an application. CORBA can be
implemented through the use of the Type
Library editor for easily creating IDL interfaces,
through MIDAS to connect to CORBA data,
and soon Delphi will gain direct facilities to
compile IDL code into Pascal source, which can
be used to implement and use the CORBA
objects. Much like the IDL2JAVA utility, this
IDL2PAS utility will be available soon to Delphi
developers to give complete control and flexibili-
ty in creating CORBA applications.

VisiBroker CORBA
VisiBroker is the ORB (Object Request Broker)
used throughout this article and in the examples.
VisiBroker is the Inprise implementation of the
CORBA standard that adds many additional fea-
tures to assist developers when creating applica-

Internet Client

VisiBroker
for Java ORB

 Java Applet

Web Server

VisiBroker
for Java ORB

 Gatekeeper
 Smart Agent

VisiBroker
for C++ ORB

 Naming Services
 C++ Objects VisiBrok

for C++

C++

Applica

Java
Applica

VisiBrok
for Java

VisiBroker
for Java ORB

 Java Object
 Event Service
 Smart Agent

Internet

Intranet/
Enterprise

Firewall
Intranet

Enterprise

Figure 1: Sample high-level CORBA implementation.

Greater Delphi

Figure 2: Creating the CORBA object interface.
tions. Support for thread management and connection management
is included, as well as many libraries and other utilities that are creat-
ed to assist the developers when developing CORBA applications.
Knowledge of the intricacies of VisiBroker isn’t required for this arti-
cle. For the examples that are used, VisiBroker additions and stan-
dard CORBA features are used together, much as they would be for
actual production situations.

Let’s take a quick look at a high-level diagram of how CORBA fits
into distributed applications (see Figure 1).

As you can see in this standard Inprise diagram, there can be many
levels of connection across boundaries such as the Internet, an
intranet, or other internal networks. This diagram introduces many
VisiBroker specific items such as the Gatekeeper, Smart Agent,
Naming Services, and Event Service. All we need to grasp at this
point from the diagram is that one or more IDL interfaces for
CORBA objects has been generated, and instances of those server
object implementations are being passed to various clients. As shown
in the diagram, clients can include the Internet Client running a
Java applet, or the C++ application running on the corporate
intranet. This article will show how Delphi can be used in this net-
work to also take advantage of the CORBA architecture.

Before we get started with Delphi, lets take a quick look at how
applications communicate with CORBA. This information will be
relevant later in the article when using Delphi to implement this
technology. We will start here with a very simple example of how a
basic CORBA application can be started between two machines:

First, the ORB Smart Agent (osagent) must be run on a
machine on the network. The osagent will keep track of all serv-
er object implementations that have been registered with it, as
well as keeping track of other osagents.
Next, the server application must be run. This will register its
object(s) with the osagent to let it know that it has object imple-
mentation(s) available for client applications.
A client application is started. When the client application
requires a server object, it will issue a UDP broadcast to find
the closest osagent to search for that implementation. The
osagent will find the object implementation that the client is
looking for, thus allowing a connection to be established
between the client and server. The client can now access the
server object directly.
7 November 1999 Delphi Informant Magazine
Now that we know the steps that take place in a basic
CORBA application, we’ll apply them to Delphi to see how
they’re accomplished. For this first example, we’ll create an
online auction demonstration, where the server will keep
track of a particular product, and clients will bid against
each other to try to buy the product. For each successful
bid, the client application will notify that the bid was suc-
cessful, and will update the screen to show the high bid
amount. Further bids by other clients will now have to out-
bid that new highest amount to win the product (which, of
course, is a copy of Delphi 5 Enterprise Edition).

Example 1: The Online Auction
Our first step in this example is to create the CORBA
object for our server, and create the server that will imple-
ment this object. As I mentioned earlier, the CORBA
objects are defined by IDL. Delphi developers don’t need
to know IDL to create their object; instead, this can be
done through the use of the Type Library editor. This
handy utility allows visual creation of objects and their

interfaces. This utility can also be used later to export to IDL for use
in other implementations of the object.

To create the server and its object, start a new Delphi application
and save the form and project. You may want to shrink the dimen-
sions of the form, as this will be your server application running on
your machine. For this example, I have named the files Cserver.dpr
and Cmain.pas. From the main menu of Delphi, select File | New,
then select the CORBA Object item on the Multitier page. The
CORBA Object Wizard will be displayed (see Figure 2).

As you can see, the object to be defined is named OnlineAuction, will
be a shared instance, and will be single-threaded. The information
required by this dialog is described in more detail below.

Class Name. Enter the base name of the object that implements the
CORBA interface for your object. Filling in the class name will do two
things; it will create a class of this name with a “T” prepended, and cre-
ate an interface for the class using this name with an “I” prepended.

Instancing. Use the Instancing combo box to indicate how your
CORBA server application creates instances of the CORBA object.
There are two possible values:

Instance-per-client — A new CORBA object instance is created
for each client connection. The instance persists as long as the
connection is open. When the client connection closes, the
instance is freed.
Shared instance — A single instance of the CORBA object han-
dles all client requests. Because the single instance is shared by
all clients, it must be stateless.

er
 ORB

tion

tion

er
 ORB

Client

 Client

Figure 3: Delphi’s Type Library editor.

Greater Delphi
Threading. Use the Threading Model combo box to indicate how
client calls invoke your remote data module’s interface. Again, there
are two possible values:

Single-threaded — Each object instance is guaranteed to receive
only one client request at a time. Instance data is safe from
thread conflicts, but global memory must be explicitly protected.
Multithreaded — Each client connection has its own dedicated
thread. However, the object may receive multiple client calls simul-
taneously, each on a separate thread. Both global memory and
instance data must be explicitly protected against thread conflicts.

In this example, the server object will be a shared instance because
we want all clients to access the same auction object, so they can bid
against each other. If we were writing an object for a banking appli-
cation, an object could be created that would contain information
specific to a banking account of the customer running the client
application. In this case, an Instance-per-client setting would be more
appropriate, since a separate object would be created for each client,
making the contents of that object private to the client.

The object is also created for single threading; since only one client
request will be processed at a time, multi-threading isn’t necessary.
Multi-threading is very useful when developing very large applica-
tions that require a higher level of flexibility in situations where the
server must be able to handle multiple requests that may be occur-
ring simultaneously. For this simple example we won’t take advan-
tage of this feature.

Click OK to create the new unit and save the file. This will create the
Pascal shell for the CORBA object interface. Instead of having to
type in the interface manually, Delphi allows us to visually create the
object interface using the Type Library editor (see Figure 3). (The
Type Library editor is available from the main menu by selecting
View | Type Library.)

The Type Library editor allows us to specify all the information we
need to define the interface of our CORBA object. For this example,
we want to create a server object for our online auction that will
hold information about the latest high bid amount and person. We
will also add a property for the product that is being bid upon. We
also want to add methods to place a new bid, and check information
about the current bid. In true object-oriented fashion, properties
cannot be modified directly, they must use accessor methods to
8 November 1999 Delphi Informant Magazine
change their values. As we’ll see, the Type Library editor
takes care of this as well.

The Type Library editor is also used to define interfaces
to COM objects; in fact, this was the original purpose of
the Type Library editor. Because of this, it has some fea-
tures that aren’t used for CORBA objects. An example of
this is the “Help” information shown in Figure 3. Also,
some of the data types that are available in the Type
Library editor may not be CORBA-compliant data
types. Developers can easily research CORBA data types
through the Delphi or VisiBroker help files.

As we can see in Figure 3, an Interface and CoClass have
been created for our CORBA object. All we are con-
cerned with is the Interface. The CoClass that has been
created is COM-specific, and can be ignored. Note that
the interface has taken our CORBA object name and
prepended it with an “I”, as mentioned earlier.

Methods and properties are added by right-clicking on the
IOnlineAuction interface, and selecting either Method or Property from
the New submenu. Add the following methods to the IOnlineAuction
interface:

PlaceBid returns an Integer, takes a Double (call it Amount) and
WideString (call it CustomerName) as parameters.
GetCurrentPrice returns a Double, no parameters.
GetCurrentUser returns a WideString, no parameters.

Add the ProductName property to the IOnlineAuction interface.

When entering the parameters for the methods in the Type Library
editor, the following information is required:

Modifier specifies the nature of the parameter, such as whether it
should be treated as an in parameter, out parameter, etc.
Name is the name of the parameter.
Type is the data type of the parameter. The list contains the list
of CORBA-compliant data types.
Default Value specifies whether the parameter will have a
default value.

For the purposes of this example, the modifier was kept blank for all
parameters because no special setting was needed for this example.
This defaults the parameter to the in setting of IDL; thus modifica-
tions made to the parameter variable once the called procedure is
completed won’t be reflected when control is returned. In fact, the
Delphi compiler will show a hint for a parameter within its method
if an attempt it made to modify the value of the parameter. There
are several types of modifiers that can be used that correspond to
IDL parameter types. The most commonly used parameters in IDL
are in, out, and inout. This means that parameter information flows
into the server, out from the server, or both. This is done with the
Type Library editor settings of blank(in), out(out), and var(inout).

When completed, the tree view for the
Type Library editor should look like Figure
4. Click on the “Refresh Interface” button
(it looks like the two-arrowed recycle sym-
bol) from the Type Library editor to syn-
chronize the source file for the CORBA
object. Note: This isn’t entirely WYSI-
WYG, as is the standard Delphi IDE; the
“Refresh Interface” button must be clicked.

Figure 4: Completed
type library tree.

Greater Delphi
Once the refresh button has been clicked, the Type Library editor
can be closed, and the source file can be saved (CSrvObj.pas in this
case). We now have our server object interface defined, and the
Pascal code shell from which we can add functionality for the
object. The Type Library editor has created some files for us, such as
the _TLB stub file that’s created based on the server application pro-
ject name. In this example, since the project was named CServer, it’s
CServer_TLB.pas. Since this file is automatically generated, no addi-
tional work is needed on it. This file sets up stub and skeleton class-
es for the server object, as well as defining several other classes that
may be used, such as the CORBA object factory class and the COM
CoClass class. The only thing we really need to know at this point is
that the CORBA shell has been created for us from how we defined
the interface in the Type Library editor, and a TLB file has been cre-
ated from which we can get our object reference for the server.

Our server source file csrvobj.pas has been filled in from the Type
Library editor with the methods and properties that were defined.
The empty shell, csrvobj.pas, is shown in Listing One. Now we
need to code the implementation of the object. We need to add a
few private variables to hold the current high-bid price, the current
high-bid customer, and the product being bid on. We also need to
initialize these private variables in the constructor for the object.
Finally, we need to implement the object with code to provide func-
tionality to the methods that have been created for us. The complet-
ed source, with comments, is shown in Listing Two.

All that was provided by Delphi was the code shell; the rest had to
be filled in to give the object interface an implementation. We now
have the server for our object. To use this server of our CORBA
object, all we need to do is add the CSrvPas unit to the uses clause
of any form of a project. When this is done, the initialization code
for the object will be fired when that form is used. Thus, the server
will be started, and an object will be created that is available for use.

CORBA Clients in Delphi
Now, our server has been set up, and should provide objects as nec-
essary for any clients looking for an instance of TOnlineAuction.
Now it’s time to create a client to access and use this object. In
CORBA, there are two ways a client can get an instance of a server
object. The first is known as early binding, or static binding. This
means the client has knowledge of what type of CORBA object it’s
going to interface with. This means that another file, known as the
stub, will be used to handle the passing of data between the client
and server — processes known as marshaling and unmarshaling,
respectively. The complexity of the marshaling process is taken care
of for us by the stub, which makes it much easier to implement.

The other way to access the server object from the client is known as
late binding, or dynamic binding. Dynamic binding is also commonly
referred to as DII, or Dynamic Invocation Interface. This means the
client has no prior knowledge of the server object, and thus knows
nothing about the structure of objects that it can access. An observation
at this point is that the client stub doesn’t get used, since the client
doesn’t have the facility to know the structure of server objects at design
time. This knowledge is what is provided by the stub to the client.

The advantage of DII is that clients can be created that may never
need to be rebuilt when a server object is changed; the client code
can remain constant through many changes to the server object that
it uses. This is done through the use of another CORBA construct
known as the Interface Repository. This holds run-time type infor-
mation about what is available to the client, and allows the client to
9 November 1999 Delphi Informant Magazine
use the available services. A drawback to this approach, as compared
to early binding, is that it is more complex, slower, and requires
more work for the developer.

In our Delphi example, it’s still relatively simple, through the use of
the type library files, and the TAny class. Since we know what server
implementation we’re looking for, we can access the methods direct-
ly using TAny. In actual production situations, the client may not
know what server objects and methods are available, and may need
to have more complicated code to accommodate this. For this arti-
cle, both early and late binding clients will be created for use with
the CORBA server we’ve created.

(There is also the capability in CORBA to provide a DSI, or
Dynamic Skeleton Interface. Like DII for the server, this allows the
CORBA servers to have no knowledge at compile time of what
objects that will be available to them. This is also done using an
Interface Repository to store information. This technique will not be
covered in this article, but it’s important to know that it’s available.)

Before we go any further, we should provide more explanation for
these new CORBA terms that we have introduced:

Client Stub and Server Skeleton. These two CORBA features
are used to convert information to be passed between the client
or server into the CORBA packet format to be sent over the
network. The stub is a layer between the client and the ORB
layer, and provides a means for the client application to send
information to the server. The stub is a layer between the server
and the ORB layer that converts the parameters and other infor-
mation sent by the client, so it can be used by the server in per-
forming the action the client requires.
Marshaling and Unmarshaling. Marshaling is the process of
converting parameter values and other information so they can
be sent over the network. Marshaling is accomplished by the
stub to send information to a server. Unmarshaling is the oppo-
site process, where the server skeleton converts information that
has been sent over the network into the parameter values, and
calls the appropriate function for the client.
Run-time Type Information. RTTI is information available at
run time about objects in a system. Delphi and CORBA both
incorporate this feature. It’s especially important when creating
functionality that will wait until run time to see what types of
objects are available for use, or for providing different types of
functionality based on what objects are being used.

Since it’s easier, the early binding client will be created first. By
using the Type Library editor, we have all the files we need for our
early biding client. The Type Library editor creates a stub file for us
in the form of
a TLB file.
When we cre-
ate the client,
we’ll need to
add this file to
the uses sec-
tion of the
form, so we
have a refer-
ence to the
structure of
the server
object. We also
need to add Figure 5: The Online Auction client.

Greater Delphi

Figure 7: The Interface Repository with CServer IDL loaded.
CorbaObj to the uses section to perform the binding necessary to
communicate across the ORB.

Figure 5 contains an image of our client. It has functionality to
refresh the bid information, enter information for a new bid, and
place the bid.

Early Binding Client
As mentioned earlier, the early binding client uses the type library file
generated by the Type Library editor to get a reference to the
CORBA object that our server will create. The client code we have to
access and use this object is shown in Listing Three. In this client, we
implement all the methods from our server object. We’re able to do
this because we know the structure of the server object through the
IOnlineAuction interface. We get the reference to the interface to the
server object when the client starts, by getting an instance from the
CORBA factory. We can then perform any operation on the object.

We must take several steps before running this client. The ORB
Smart Agent must be running on the network somewhere — on the
server machine, or on some other machine. To do this, run:

osagent -C

from the command line, or run VisiBroker Smart Agent from the
VisiBroker folder installed in the Delphi folder. The -C at the com-
mand line designates that the osagent will run in the taskbar; other-
wise it will not appear there, so it may not be apparent whether it’s
running while you’re testing. Once the ORB Smart Agent is run-
ning, start the server application.

Once the server has been started, it’s a good idea to ensure that the serv-
er objects are available for any clients. The VisiBroker utility, osfind, can
be used to do this. Run osfind from the command line on the client
machine to display a list of available objects within the subnet of the
machine. This will verify that the client has access to the necessary serv-
er objects. For complicated implementations of CORBA, the osagents
can be configured to look for server objects, or other osagents outside
the current subnet. Although this isn’t covered in this article, suffice it to
say there are facilities to allow the client to look virtually anywhere for a
server object, as long as the osagents have been set up correctly.

The final step is to run several clients. These should automatically
get a reference to the server by including the type library file that
was generated, and the client should have access to all server func-
tions. In our example, we can launch many clients from different
machines (within the same network subnet), and make successive
bids against the server.

As you can see, not much is required to create an early-binding
client to our server object in this simple example. DII is a little more
complicated, as we’ll see next.

Late Binding Client
As described earlier, the late binding client has no knowledge of the
structure of available server objects at design time, and must use a
facility called the Interface Repository to find what is available. In
this example, we’ll implement this client and describe the require-
ments, benefits, and drawbacks in using this approach.

Before we get to writing the client, there are a few requirements that
must be met. First, the interface for the object must be registered
with an interface repository. To do this, we must first have an IDL
10 November 1999 Delphi Informant Magazine
file. This can be created easily by
returning to the Type Library edi-
tor, and selecting Export to CORBA

IDL. This is done by dropping
down the last button on the right
of the toolbar (see Figure 6). In
this example, the CORBA IDL
setting must be selected. The MIDL export setting will not work
with the interface repository functionality we are going to use.

This will create the IDL file that corresponds to the server object
defined previously. The filename will be <ProjectName>.IDL wherev-
er the server application source has been saved. This IDL must then
be registered with an interface repository. The osagent and the server
should be started, before starting the interface repository. Then, start
the interface repository. At this point, we can load the IDL for our
CORBA object into the repository, so clients can see it’s available on
one of the available servers. The interface repository can be started by
running the following statement from the command line:

irep <Repository Name>

The repository name can be anything you want, and will launch the
Interface Repository application. Once it’s open, you can either select
File Load from the main menu, and select the IDL file that was export-
ed above, or run the following statement from the command line:

idl2ir <IDL File Name>

Once this has been done, we’ve registered our interface with the
Interface Repository. To verify that the interface has been registered
with the Interface Repository, click the “Lookup” button after run-
ning the above line from the command line or loading the IDL
directly. You should see something similar to Figure 7.

The only step left at this point is to create the client that will access the
Interface Repository, and use an object stored there. To start with, we’ll
use the same form layout as in the early binding example. Start a new
project in Delphi. Instead of naming it Client.dpr (as in the early bind-
ing example), name it Client_DII.dpr. Copy the client form from the
early binding example, and save it as cclient_dii.pas. Also, change the
Caption to designate that it’s the DII version of the form. Finally, rename
the form itself to TfrmDynamicCorbaClient. These changes aren’t neces-
sary, but serve to distinguish the different client implementations.

Figure 6: Selecting Export
to CORBA IDL.

Figure 8: Desktop with server, two static clients, and one dynamic

Greater Delphi

Java CORBA client.
Since we aren’t going to use the stub that was generated for us,
remove the reference to Cserver_TLB in the uses clause of the client
that was carried over from the early-binding example. The code is
slightly different since we don’t have the client stub to give us a
direct reference to the interface. We use the TAny class, a CORBA
interface type for DII, to get a reference from the interface repository
for our server object. In this case, we’ll get an instance of the object
factory, which will get a reference to the server object. This is done
to mimic the process of the non-DII client shown earlier.

Aside from additional coding needed to get references to our server
object through the object factory, the code for the late binding client
remains largely identical to the early binding client. The code for the
second client is shown in Listing Four. The server, and the early and
late binding clients running at the same time, is shown in Figure 8.

To review, here are the steps that were taken to run the server and
two types of clients on the same machine:

Start the ORB Smart Agent (osagent -C)
Start the Server (CServer.exe)
Run the Interface Repository (irep inprisepso)
Load the interface into the Interface Repository
(idl2ir CServer.idl)
Run the early binding client (Client.exe)
Run the late binding client (Client_DII.exe)

In this example, we’ve shown how to implement both
types of CORBA clients through Delphi. This is fine in
our small example, but in real-world environments, the
value of CORBA is that the clients or servers can be
written in any language with the common IDL inter-
face. The next section will review how to share this IDL
information with other languages, based on what we
have already created in Delphi.

Clients in Other Languages
When we created the dynamic binding client, we needed
to export the IDL for our server object so the interface
repository would have a reference to what objects were
available. This IDL file can also be used by any other
CORBA-compliant language to provide an interface to Figure 9:
11 November 1999 Delphi Informant Magazine
our server object. Tools such as JBuilder and C++Builder
can be used to provide additional clients or servers based on
this IDL file. In this example, we’ll use JBuilder because it’s
a wholesale departure from the Delphi/C++Builder IDE.

In JBuilder, create a new application with a single frame.
In the project manager, add the CServer.idl file we saved
above. The file will appear in your JBuilder project’s file
list. Right-click on the IDL file and select Build. This
runs the IDL file through the IDL2JAVA precompiler.
The IDL2JAVA precompiler converts the IDL file to
Java stub classes. The generated Java files can be used to
create CORBA servers to implement these objects or
CORBA clients to access the objects.

Design the frame so that it looks similar to the Delphi
client that was designed earlier. Figure 9 shows what was
done for our Java client.

The code for the early binding Java client will be similar
to the Delphi client; we’ll have variables for the object
factory, and a server object that will be obtained from

that factory. The code for the client is shown in Listing Five.

As you can see, we’ve declared the object factory and interface in our
source file. In the constructor for the frame, there’s a different method
performed here than in Delphi to attach to the ORB and obtain an
object reference. All that needs to be known is that the Java applica-
tion is getting a reference to the server object through the use of auto-
matically-generated Helper files. By doing this, an object reference is
obtained, and is used in the same manner as the Delphi client. Helper
files and other CORBA files are generated from the IDL2JAVA utility,
which was run when the CServer.idl file was compiled. JBuilder uses
this method to create the stub and skeleton files, as compared to using
the Type Library editor in Delphi.

Once an object reference has been obtained, the code for the frame
itself is similar to the Delphi application. The Delphi CORBA server
has no knowledge of what language is being used for requests; Delphi
and Java clients make virtually identical calls to the server object

 client.

Greater Delphi
through their stub files. Our Java client could have been running on a
UNIX machine located on a different continent from our Delphi
server. As long as the CORBA subnet or osagents were configured
correctly, these separate processes could talk to each other just as easily
as if they were on the same machine. This simple Java/Delphi exam-
ple provides a mere glimpse of the full potential of CORBA.

Conclusion
There’s no doubt that CORBA will continue to gain momentum in
enterprise computing due to its tremendous assets: flexibility, lan-
guage independence, and a wide range of capabilities for virtually
every distributed need. Delphi combines these assets with RAD
development to make CORBA programming easier and faster for
the developer, without sacrificing CORBA’s capabilities. As we saw
in these simple examples, Delphi is an ideal platform for setting up
CORBA clients and servers for many types of applications.

Inprise developers also have advanced CORBA capabilities available
through the use of the MIDAS technology. MIDAS allows users to cre-
ate complicated queries easily through Delphi, and pass query results
back from remote datasets using CORBA as the transportation format.
This technology is especially powerful, because developers don’t need to
create complicated objects to hold query output; MIDAS automates
this task, creating stub and skeleton classes automatically. The MIDAS
technology is available in several Inprise development tools and will
continue to play a key part in RAD CORBA development.

Going forward, Delphi developers can expect to see more CORBA
support in new releases of Delphi. The IDL2PAS utility, when
released, will give Delphi developers access to all CORBA features
and will not limit implementations to the framework that Delphi
has provided. This will provide the best of both worlds: RAD devel-
opment for standard CORBA tasks as covered in this article, and
granular CORBA development for more specific and complicated
implementations through IDL2PAS.

Delphi has long been regarded as the best Windows development
tool. With the merging of CORBA technology to Delphi, this repu-
tation will only grow as Delphi’s capabilities now reach across previ-
ously unbreakable boundaries, such as multiple operating systems
and languages. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\NOV\DI9911DB.

Dennis P. Butler is a Senior Consultant for Inprise Corp., based out of the Professional
Services Organization office in Marlboro, MA. He has presented numerous talks at
Inprise Developer Conferences in both the US and Canada, and has written a variety
of articles for various technical magazines, including CBuilderMag.com. He can be
reached at dbutler@inprise.com, or (508) 481-1400.
Begin Listing One — csrvobj.pas shell
unit csrvobj;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
ComObj, StdVcl, CorbaObj, CServer_TLB;

type
TOnlineAuction = class(TCorbaImplementation,
12 November 1999 Delphi Informant Magazine
IOnlineAuction)
protected

function Get_ProductName: WideString; safecall;
function GetCurrentPrice: Double; safecall;
function GetCurrentUser: WideString; safecall;
function PlaceBid(Amount: Double;

const CustomerName: WideString): Integer; safecall;
procedure Set_ProductName(const Value: WideString);

safecall;
end;

implementation

uses
CorbInit;

function TOnlineAuction.Get_ProductName: WideString;
begin

end;

function TOnlineAuction.GetCurrentPrice: Double;
begin

end;

function TOnlineAuction.GetCurrentUser: WideString;
begin

end;

function TOnlineAuction.PlaceBid(Amount: Double;
const CustomerName: WideString): Integer;

begin

end;

procedure TOnlineAuction.Set_ProductName(
const Value: WideString);

begin

end;

initialization
TCorbaObjectFactory.Create('OnlineAuctionFactory',

'OnlineAuction', 'IDL:CServer/OnlineAuctionFactory:1.0',
IOnlineAuction, TOnlineAuction, iSingleInstance,
tmSingleThread);

end.

End Listing One
Begin Listing Two — Implemented csrvobj.pas
unit csrvobj;

interface

// Note the included units for ComObj, CorbaObj,
// and Cserver_TLB.
uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,
ComObj, StdVcl, CorbaObj, CServer_TLB;

// Class is defined as a CORBA class that implements
// the IOnlineAuction interface.
type

TOnlineAuction = class(TCorbaImplementation,
IOnlineAuction)

private
// Private variables to hold object information
// about auction.
FProductName : WideString;
FCurrentPrice : Double;
FCurrentCustomer : WideString;

public
// Override create to initialize private variables.
constructor Create(Controller: IObject;

1

Greater Delphi
AFactory: TCorbaFactory); override;
protected

// Accessor methods for FProductName property.
function Get_ProductName: WideString; safecall;
procedure Set_ProductName(const Value: WideString);

safecall;
// Function to get the current price for the
// auction product.
function GetCurrentPrice: Double; safecall;
// Function to get the current customer for the
// auction product.
function GetCurrentUser: WideString; safecall;
// Function to place a new bid.
function PlaceBid(Amount: Double;

const CustomerName: WideString): Integer; safecall;
end;

implementation

// Included with Delphi to initialize CORBA object.
uses

CorbInit;

// Overridden create for our object.
constructor TOnlineAuction.Create(Controller: IObject;

AFactory: TCorbaFactory);
begin

inherited;
// Initialize our private variables.
FProductName := '<NA>';
FCurrentCustomer := '<NA>';
FCurrentPrice := 0;

end;

// Method to get the property value for the current
// auction product.
function TOnlineAuction.Get_ProductName: WideString;
begin

Result := FProductName;
end;

// Method to set the property value for the current
// auction product.
procedure TOnlineAuction.Set_ProductName(

const Value: WideString);
begin

FProductName := Value;
end;

// Method to get the current price of the high bid.
function TOnlineAuction.GetCurrentPrice: Double;
begin

Result := FCurrentPrice;
end;

// Method to get the current customer name of the high bid.
function TOnlineAuction.GetCurrentUser: WideString;
begin

Result := FCurrentCustomer;
end;

// Method to place a new bid: Take parameters for amount of
// bid and customer who is placing the bid.
function TOnlineAuction.PlaceBid(Amount: Double;

const CustomerName: WideString): Integer;
begin

if Amount > FCurrentPrice then
begin

FCurrentPrice := Amount;
FCurrentCustomer := CustomerName;
Result := 1;

end
else

Result := 0;
end;

// Code provided by Delphi to call the generated CORBA
// object factory to get an object reference for the
// server. Note parameters match what we defined in the
3 November 1999 Delphi Informant Magazine
// CORBA object wizard. Since it's in the initialization
// section, the code will run whenever this unit is
// included in the uses section of another unit and the
// server will be started.
initialization

TCorbaObjectFactory.Create('OnlineAuctionFactory',
'OnlineAuction', 'IDL:CServer/OnlineAuctionFactory:1.0',
IOnlineAuction, TOnlineAuction, iSingleInstance,
tmSingleThread);

end.

End Listing Two
Begin Listing Three — Implemented cclient.pas
unit cclient;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, CorbaObj, CServer_TLB, StdCtrls, Mask,
Buttons;

type
TfrmStaticCorbaClient = class(TForm)

lblCurrentProduct: TLabel;
lblBidPrice: TLabel;
lblProduct: TLabel;
lblCurrentHighBidPrice: TLabel;
lblPrice: TLabel;
btnRefresh: TBitBtn;
edtBidPrice: TEdit;
lblCustomerName: TLabel;
edtUserName: TEdit;
btnMakeBid: TBitBtn;
lblCurrentHighBidUser: TLabel;
lblUser: TLabel;
lblBidStatus: TLabel;
lblPlaceNewBid: TLabel;
procedure FormCreate(Sender: TObject);
procedure btnRefreshClick(Sender: TObject);
procedure btnMakeBidClick(Sender: TObject);

public
// Our interface to the server object.
AuctionInterface : IOnlineAuction;

end;

var
frmStaticCorbaClient: TfrmStaticCorbaClient;

implementation

{$R *.DFM}

// On create, we immediately establish connection to server
// using interface defined in type library stub and do
// client initializations.
procedure TfrmStaticCorbaClient.FormCreate(Sender: TObject);
begin

// Call factory to get reference to the server object.
AuctionInterface :=

TOnlineAuctionCorbaFactory.CreateInstance('');
// Set the product name; resets it for each client. This
// wouldn't be done in production, but it's done here to
// demonstrate use of accessor methods created by Type
// Library editor for object properties.
AuctionInterface.Set_ProductName(

'Delphi 5 Enterprise Edition');
// Refresh with server to get latest information.
btnRefresh.Click;

end;

// Refreshes information from server. This example doesn't
// implement server callbacks, so refreshes must be
// done manually.
procedure TfrmStaticCorbaClient.btnRefreshClick(

Sender: TObject);

Greater Delphi
begin
// Update price and customer name information for
// current product.
lblPrice.Caption := FloatToStrF(

AuctionInterface.GetCurrentPrice, ffCurrency, 18, 2);
lblUser.Caption := AuctionInterface.GetCurrentUser;
lblProduct.Caption := AuctionInterface.Get_ProductName;

end;

// Call object to place a new bid against the server.
procedure TfrmStaticCorbaClient.btnMakeBidClick(

Sender: TObject);
begin

// Do some client-side data checking to save speed.
if edtUserName.Text = '' then

begin
ShowMessage('You must enter a user name first.');
Exit;

end;
// Validate floating point value.
try

StrToFloat(edtBidPrice.Text);
except

ShowMessage('Invalid amount entered.');
end;
// Place Bid.
case AuctionInterface.PlaceBid(

StrToFloat(edtBidPrice.Text), edtUserName.Text) of
0 : ShowMessage('Bid amount insufficient.');
1 : ShowMessage('Bid successful!');

end;
// Refresh information.
btnRefresh.Click;

end;

end.

End Listing Three
Begin Listing Four — Implemented cclient_dii.pas
unit cclient_dii;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, CorbaObj, StdCtrls, Mask, Buttons;

type
TfrmDynamicCorbaClient = class(TForm)

lblCurrentProduct: TLabel;
lblBidPrice: TLabel;
lblProduct: TLabel;
lblCurrentHighBidPrice: TLabel;
lblPrice: TLabel;
btnRefresh: TBitBtn;
edtBidPrice: TEdit;
lblCustomerName: TLabel;
edtUserName: TEdit;
btnMakeBid: TBitBtn;
lblCurrentHighBidUser: TLabel;
lblUser: TLabel;
lblBidStatus: TLabel;
lblPlaceNewBid: TLabel;
procedure FormCreate(Sender: TObject);
procedure btnRefreshClick(Sender: TObject);
procedure btnMakeBidClick(Sender: TObject);

public
// Servers declared as type TAny; special type for
// CORBA interfaces using DII.
AuctionFactory,
AuctionServer : TAny;

end;

var
frmDynamicCorbaClient: TfrmDynamicCorbaClient;
14 November 1999 Delphi Informant Magazine
implementation

{ $R *.DFM }

procedure TfrmDynamicCorbaClient.FormCreate(
Sender: TObject);

begin
try

// Bind to ORB instance for object factory.
AuctionFactory :=

ORB.Bind('IDL:CServer/OnlineAuctionFactory:1.0');
// Create reference to server object from factory.
AuctionServer := AuctionFactory.CreateInstance('');

except
ShowMessage('Failed to connect to server.');
raise;

end;
// Refresh information on screen.
btnRefresh.Click;

end;

procedure TfrmDynamicCorbaClient.btnRefreshClick(
Sender: TObject);

begin
// Update price and customer name information for
// current product.
lblPrice.Caption := FloatToStrF(

AuctionServer.GetCurrentPrice, ffCurrency, 18, 2);
lblUser.Caption := AuctionServer.GetCurrentUser;
lblProduct.Caption := AuctionServer.Get_ProductName;

end;

procedure TfrmDynamicCorbaClient.btnMakeBidClick(
Sender: TObject);

var
rlBidPrice : Double;
sBidUser : WideString;

begin
// Do some client-side data checking to save speed.
if edtUserName.Text = '' then

begin
ShowMessage('You must enter a user name first.');
Exit;

end;
// Validate floating point value.
try

StrToFloat(edtBidPrice.Text);
except

ShowMessage('Invalid amount entered.');
end;
// Place Bid; use local variables as intermediaries
// to calls.
sBidUser := edtUserName.Text;
rlBidPrice := StrToFloat(edtBidPrice.Text);
case AuctionServer.PlaceBid(rlBidPrice, sBidUser) of

0 : ShowMessage('Bid amount insufficient.');
1 : ShowMessage('Bid successful!');

end;
// Refresh information.
btnRefresh.Click;

end;

end.

End Listing Four
Begin Listing Five — CorbaClient package
// Title: Corba Java Client
// Version: 1.0
// Copyright: Copyright (c) 1999
// Author: Dennis Butler
// Company: Inprise Corporation
// Description: CORBA Client for Delphi Server
package CorbaClient;

import java.util.*;
import java.awt.*;

1

Greater Delphi
import com.sun.java.swing.*;
import borland.jbcl.layout.*;
import java.awt.event.*;
import borland.jbcl.control.*;

public class Frame1 extends DecoratedFrame {
public static void main(String[] args) {

Frame1 frame1 = new Frame1();
frame1.show();

}

// CORBA Object Factory and Object Interface.
CServer.OnlineAuctionFactory pOnlineAuctionFactory;
CServer.IOnlineAuction pOnlineAuction;

Double rlTotal = new Double(0.00);
XYLayout xYLayout1 = new XYLayout();
JLabel jLabel1 = new JLabel();
JLabel jLabel2 = new JLabel();
JLabel jLabel3 = new JLabel();
JLabel jLabel4 = new JLabel();
JLabel jlblCurrentBid = new JLabel();
JLabel jlblCurrentProduct = new JLabel();
JLabel jlblCurrentUser = new JLabel();
JButton jButton1 = new JButton();
JLabel jLabel5 = new JLabel();
JLabel jLabel6 = new JLabel();
JLabel jLabel7 = new JLabel();
JTextField jtfUserName = new JTextField();
JTextField jtfBidPrice = new JTextField();
JButton jButton2 = new JButton();

public Frame1() {
try {

// Initialize the ORB.
System.out.println("Initializing the ORB");
org.omg.CORBA.ORB orb =

org.omg.CORBA.ORB.init((String[]) null, null);

// Bind to OnlineAuctionFactory object.
System.out.println(

"Binding to OnlineAuctionFactory object");
pOnlineAuctionFactory =

CServer.OnlineAuctionFactoryHelper.bind(
orb, "OnlineAuction");

// Get an instance of OnlineAuction.
System.out.println(

"Getting an instance of OnlineAuction");
pOnlineAuction =

pOnlineAuctionFactory.CreateInstance(
"NewOnlineAuction");

}
catch(org.omg.CORBA.SystemException e) {

System.err.println("System Exception");
System.err.println(e);

}

try {
jbInit();

}
catch (Exception e) {

e.printStackTrace();
}

}

private void jbInit() throws Exception {
xYLayout1.setHeight(311);
xYLayout1.setWidth(400);
jLabel1.setText("Current High Bid Price");
jLabel4.setForeground(Color.blue);
jlblCurrentProduct.setText("< NA >");
jlblCurrentUser.setText("< NA >");
jButton1.setText("Refresh");
jButton1.addMouseListener(

new java.awt.event.MouseAdapter() {
public void mouseClicked(MouseEvent e) {
5 November 1999 Delphi Informant Magazine
jButton1_mouseClicked(e);
}

});
jLabel5.setForeground(Color.blue);
jLabel6.setText("Auction User Name");
jLabel7.setText("Bid Price");
jButton2.setText("Place Bid");
jButton2.setText("Place Bid");
jButton2.addMouseListener(

new java.awt.event.MouseAdapter() {
public void mouseClicked(MouseEvent e) {

jButton2_mouseClicked(e);
}

});
jLabel5.setText("Place New Bid");
jlblCurrentBid.setText("< NA >");
jLabel4.setText("Current Bid Status");
jLabel3.setText("Current High Bid User Name");
jLabel2.setText("Current Product");
this.setLayout(xYLayout1);
this.add(jLabel1, new XYConstraints(57, 50, -1, -1));
this.add(jLabel2, new XYConstraints(93, 31, -1, -1));
this.add(jLabel3, new XYConstraints(21, 68, -1, -1));
this.add(jLabel4, new XYConstraints(6, 3, -1, -1));
this.add(jlblCurrentBid,

new XYConstraints(207, 51, 183, -1));
this.add(jlblCurrentProduct,

new XYConstraints(207, 31, 182, -1));
this.add(jlblCurrentUser,

new XYConstraints(207, 70, 176, -1));
this.add(jButton1,

new XYConstraints(138, 100, 102, 30));
this.add(jLabel5, new XYConstraints(8, 146, -1, -1));
this.add(jLabel6, new XYConstraints(72, 182, -1, -1));
this.add(jLabel7, new XYConstraints(130, 206, -1, -1));
this.add(jtfUserName,

new XYConstraints(188, 182, 145, -1));
this.add(jtfBidPrice,

new XYConstraints(188, 205, 85, -1));
this.add(jButton2,

new XYConstraints(139, 230, 105, 35));
}

// Place new bid button.
void jButton2_mouseClicked(MouseEvent e) {

Double rlTotal = new Double(jtfBidPrice.getText());

if (pOnlineAuction.PlaceBid(
rlTotal.doubleValue(),
jtfUserName.getText())==0) {

Message m = new Message(this, "Sorry",
"Bid Amount Insufficient");

m.show();
}
else {
Message m2 = new Message(this, "Success",

"Bid Successful");
m2.show();

}
}

// Refresh button.
void jButton1_mouseClicked(MouseEvent e) {

Double rlTotal =
new Double(pOnlineAuction.GetCurrentPrice());

// Update price and customer name information
// for current product.
jlblCurrentBid.setText(rlTotal.toString());
jlblCurrentUser.setText(

pOnlineAuction.GetCurrentUser());
jlblCurrentProduct.setText(

pOnlineAuction.Get_ProductName());
}

}

End Listing Five

16 November 1999 Delphi Informant Maga

Undocumented
RTTI / Delphi 5

By Bill Todd

procedure TSca
var

I: Integer;
begin

{ Scan the f
for I := 0 t

{ If the c
if IsPubli

{ Set Re
SetVaria

end;

Figure 1: Setti
on a form.
RTTI Gets Easier
Delphi 5 Run-time Type Information

R un-time Type Information (RTTI) is the information the compiler stores about the
published properties of objects in your application. And it is very useful stuff. For

example, RTTI is the mechanism the Object Inspector uses to determine the properties
an object instance has, their data types, and current values.
RTTI has remained a mystery to many Delphi
programmers for two reasons:

RTTI has never been documented. The only
information on RTTI is the source code for the
TYPINFO.PAS unit, much of which is in
assembler; this is the only reference in Delphi 5.
The RTTI functions make extensive use of
pointers to Pascal records and arrays of
records. The Pascal language hides the use of
pointers almost completely, so many
Pascal/Delphi programmers aren’t comfortable
working with them.

A new set of functions was added to
TYPINFO.PAS in Delphi 5 to make RTTI easi-
er to use. This article will explore the new
“easy” RTTI functions, and ways in which you
can use them.

The single most useful thing about RTTI is that
it gives you access to an object instance’s prop-
erties without having to know anything about
the object. For example, suppose you want to
iterate through all the components on a form
and change their color. Your first inclination
might be to try this:
zine

nCompForm.ReadOnlyBtnClick(Sender: TObject);

orm's Components property. }
o Pred(ComponentCount) do
omponent has a property named ReadOnly.}
shedProp(Components[I], 'ReadOnly') then
adOnly to True.}
ntProp(Components[I], 'ReadOnly', True);

ng the ReadOnly property of all components
for I := 0 to Pred(Form1.ComponentCount) do

Form1.Components[I].Color := clRed;

Unfortunately, this won’t work. The data type of
the form’s Components property is TComponent,
and TComponent doesn’t have a Color property.
With some properties you could solve the problem
by casting Form1.Components[I] to the ancestor
class where the property was introduced. This
works if every component in which you are inter-
ested inherits the property you want to set from a
common ancestor. Unfortunately, this is not the
case with Color.

The solution is to use RTTI to determine if the
object has the property and to change the value of
the property if it exists. The example in Figure 1
uses RTTI to set the ReadOnly property of every
component on the form to True. This code is the
OnClick event handler for the ReadOnly button on
the Scan Components form of the sample applica-
tion that accompanies this article (see end of arti-
cle for download details).

This code iterates through the form’s Components
array. The IsPublishedProp function is called for
each component to determine if it has the
ReadOnly property. IsPublishedProp takes two para-
meters: The first is the object instance you want to
interrogate; the second is the name of the proper-
ty. If the object has the property, IsPublishedProp
returns True; otherwise it returns False.

If the component has the ReadOnly property, a
call to SetVariantProp is used to set its value to
True. SetVariantProp takes three parameters:
The first is the object instance whose property
you wish to set; the second is the name of the
property; the third is the value.

Figure 2: The RTTI property information functions.

Function Description

IsPublishedProp Returns True if the object has the prop
GetPropInfo Returns a record that contains all info

tion about the property.
IsStoredProp Returns True if the property is stored i

DFM file.
PropIsType Returns True if the specified property i

the specified type.
PropType Returns the type of the specified prop
GetObjectPropClass Returns the class of the object referre

by an object reference property.

Figure 3: The edit box contains the value of the VisibleButtons prop

Undocumented
If you open the TYPINFO.PAS unit in Delphi 5’s \Source\VCL
folder and scan its interface section, you will come to this comment:

// Easy access methods.

Following this comment are the prototypes for the new RTTI
functions added in Delphi 5. These functions can be separated
into two categories. The first group provides information about the
published members of an object instance. The second group of
functions gets and sets the values of properties of varying types.
Figure 2 lists the information functions.

The types used by PropIsType and PropType are not standard
Pascal data types. PropIsType takes three parameters. The first is
the object instance to interrogate, the second is the name of the
property, and the third is a value of type TTypeKind, which speci-
fies the type of property you are testing. PropType takes two para-
meters, an object reference and the name of a property, and
returns a value of type TTypeKind. TTypeKind is an enumerated
type declared in TYPINFO.PAS as:

type
TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration,

tkFloat, tkString, tkSet, tkClass, tkMethod, tkWChar,
tkLString, tkWString, tkVariant, tkArray, tkRecord,
tkInterface, tkInt64, tkDynArray);

If you declare a variable named TKind of type TTypeKind, you can
call PropType as follows:

TKind := PropType(Button1, 'Caption');

and TKind will be set to tkString. If you need the name of the enu-
merated type as a string, another RTTI function, GetEnumName,
will do the job. After calling:

S := GetEnumName(TypeInfo(TTypeKind), Ord(TKind));
17 November 1999 Delphi Informant Magazine
S will be set to the string tkString. This works with any
enumerated data type and is the way the Object Inspector
loads the enumeration names in its combo boxes.

The inverse function, GetEnumValue, is also declared in
TYPINFO.PAS so you can convert from the name of an
enumeration member to its ordinal value. For example, if
I is of type Integer, then:

I := GetEnumValue(TypeInfo(TTypeKind), S);

would set I to 5 because tkString is the sixth member of
the enumeration. To assign the ordinal value to a vari-
able of the enumeration type, simply cast it to the enu-
meration type:

TKind := TTypeKind(I);

This ability to freely convert between strings and enumer-
ated types means you can use enumerated types internally
in your program to make it faster and smaller, allow the
use of case statements, and convert the enumeration
members to strings for output.

The remaining new RTTI functions exist in pairs consist-
ing of a method to get and a method to set the value of

each of the following property types:
Ordinal
Enumerated
Set
Object
String
Float
Variant
Method
Int64

The syntax of all these functions is the same. The “get” functions
take two parameters, an object instance and a property name, and
return the value of the property. The “set” procedures take three
parameters. The first is the object instance, the second is the
property name, and the third is the value to assign to the proper-
ty. There are also two functions, GetPropValue and SetPropValue,
that work with properties of any type compatible with a variant.
GetPropValue returns the property value as a variant and
SetPropValue takes a variant as its third parameter, which supplies
the value to be assigned to the property.

The use of most of these functions is intuitive, but there are some
exceptions. First, although there are many Boolean properties in
the VCL, there are no functions to get and set Boolean properties.
You can handle Boolean properties using GetVariantProp and
SetVariantProp, as shown in Figure 1. Another alternative is to use
GetOrdinalProp and SetOrdinalProp and use 0 to represent False or
-1 to represent True.

GetSetProp and SetSetProp are also a bit different. When you call
GetSetProp to return the value of a set property, the returned value is
a string. Figure 3 shows a form from the sample application that dis-
plays the value returned for the VisibleButtons property of a
DBNavigator component. Note that the value shown in the edit box
is a comma-separated list of the members of the set. The GetSetProp
function also takes a third parameter named Brackets. If Brackets is

erty.
rma-

n the

s of

erty.
d to

erty.

procedure TPropTypeForm.CallTestBtnClick(Sender: TObject);
var

TheMethod: TMethod;
begin

TheMethod := GetMethodProp(TestBtn, 'OnClick');
if Assigned(TheMethod.Code) then

TNotifyEvent(TheMethod)(Sender)
else

ShowMessage('No event handler.');
end

Figure 4: Calling an event handler using RTTI.

Undocumented

procedure TPropListForm.PropListBtnClick(Sender: TObject);
var

Props: PPropList;
I: Integer;

begin
{ Allocate memory to hold the property list

array of records. }
Props := AllocMem(SizeOf(Props^));
try

{ Get the list of properties. }
GetPropList(PropertyList.ClassInfo,

tkProperties, Props);
{ Loop through the list of properties and add the name

and type of each property to the listbox. }
I := 0;
while (Props^[I]<>nil) and (I < High(Props^)) do begin

PropertyList.Items.Add(Props^[I].Name +
StringOfChar(' ', 16 - Length(Props^[I].Name)) +
Props^[I].PropType^.Name);

Inc(I);
end;

finally
{ Free the memory that holds the property list array. }
FreeMem(Props);

end; // try
end;

Figure 5: Listing all the published properties of an object.
True, the comma-separated list returned by the function will be
enclosed in brackets. SetSetProp takes the same comma-separated list
format for its Value parameter, and builds the set value from the
comma-delimited list of set member names.

GetMethodProp and SetMethodProp work with properties whose type
is a pointer to a method. All events in VCL components are proper-
ties that store method pointers, so event properties are the place to
use these two functions.

The form in Figure 3 contains a button labeled Test Button, which
has an OnClick event handler that shows a message to demon-
strate that the event handler has been called. The code in Figure 4
is the OnClick event handler of the Call Test Button OnClick button.

The prototype for GetMethodProp shows that it returns a value of
type TMethod, which is declared in the SysUtils unit as follows:

type
...
TMethod = record

Code, Data: Pointer;
end;

TMethod is a Pascal record that contains a method pointer. A
method pointer consists of two 32-bit memory addresses. The
first, Code, contains the address of the code for the method. The
18 November 1999 Delphi Informant Magazine
second, Data, contains the address of the object instance that
contains the data.

Figure 4 shows that this value can be used to call the method by
casting it to the appropriate type. In this case, because Test

Button’s OnClick event handler is of type TNotifyEvent, the
TMethod type returned by GetMethodProp is cast to
TNotifyEvent. A TNotifyEvent method requires one parameter,
Sender, of type TObject. In this example the Sender parameter
passed to the event handler in Figure 4 is passed along to the Test

Button’s event handler. Although casting the method pointer and
calling the method it points to in a single statement produces
this odd-looking code:

TNotifyEvent(TheMethod)(Sender)

it is a valid Pascal statement. The if statement checks the Code field
of the TMethod record to see if it’s nil. You can test Code or Data.
Both will be nil if no event handler is assigned to the OnClick event
of Test Button.

It’s unlikely you’ll ever need to use the GetPropInfo function.
However, there is a case where it’s useful to understand a little about
the TPropInfo record it returns. This requires a look at a part of
RTTI that wasn’t simplified in Delphi 5.

GetPropInfo actually returns a value of type PPropInfo that is
declared as follows:

type
PPropInfo = ^TPropInfo;

This declares PPropInfo as a pointer to a variable of type TPropInfo,
which is declared as:

type
...
TPropInfo = packed record

PropType: PPTypeInfo;
GetProc: Pointer;
SetProc: Pointer;
StoredProc: Pointer;
Index: Integer;
Default: Longint;
NameIndex: SmallInt;
Name: ShortString;

end;

There are two members of this record you may find useful. The first
is Name, which contains the name of the property, and the second is
PropType. PropType is of type PPTypeInfo and is declared as:

PPTypeInfo = ^PTypeInfo;
PTypeInfo = ^TTypeInfo;
TTypeInfo = record

Kind: TTypeKind;
Name: ShortString;

end;

PPTypeInfo is a pointer to type PTypeInfo. PTypeInfo, in turn, is a
pointer to type TTypeInfo, which is a record with two members,
Kind and Name. Kind is of type TTypeKind, an enumerated type
described earlier. Name is the type name as a string. Understanding
these types is necessary if you want to scan all the properties of an
object and determine their name and type.

Figure 6: The List Properties form.

Undocumented
You can get information about all the properties of an object by
calling the RTTI function GetPropList. GetPropList takes three
parameters. The first is the pointer to the RTTI information
returned by calling the object’s ClassInfo method, and the second
is a set parameter of type TTypeKinds. TTypeKinds is declared as a
set of TTypeKind, the enumerated type described earlier in this
article. The members of this set determine the types of properties
you want returned. The third parameter is PropList of type
PPropList, where PPropList is declared as follows:

PPropList = ^TPropList;
TPropList = array[0..16379] of PPropInfo;

Therefore, PPropList is a pointer to type TPropList and TProplist is a
16,380-member array of type PPropInfo. Figure 5 shows the OnClick
event handler of the List Properties button on the PropListForm in the
sample application.

Since the property list array is quite large, it’s dynamically allo-
cated at the beginning of the procedure and freed at the end.
The first statement in Figure 5 calls AllocMem to allocate a block
of memory for the array. Note that the amount of memory
requested is SizeOf(Props^) where Props is of type PPropList. This
can be read as, “size of whatever it is that the pointer Props
points to.” Since Props is of type PPropList and PPropList is a
pointer to TPropList, SizeOf(Props^) is equivalent to
SizeOf(TPropList).

The next statement is the call to GetPropList. This function gets
the list of properties for a listbox on the form named PropertyList,
so the first parameter is the ClassInfo method of PropertyList. The
second parameter, tkProperties, is a set declared in TYPINFO.PAS
that includes all property kinds except tkMethod and tkUnknown.
By using tkProperties we will get all the properties except the event
properties. The third parameter, Props, is the pointer to the
TPropList array.

The while loop iterates through the array and adds the name and
type of each property to the listbox. The while loop runs until an
element of the array is found whose value is nil, or until the
highest element in the array is reached. The test for a nil element
19 November 1999 Delphi Informant Magazine
works because the memory for the array was allocated
by calling AllocMem. AllocMem not only allocates the
requested block of memory, but also initializes each
byte to nil.

The call to PropertyList.Items.Add adds the name of the
property and the property type to the listbox. The name
is referenced by Props^[I].Name. When working with
pointers, the trailing caret can be read as “points to,” so
this notation identifies the name field of element I of the
array to which Props points.

The reference to the name of the property’s type,
Props^[I].PropType^.Name, can be read as “the Name
field in the record pointed to by the PropType field in
element I of the array pointed to by Props.” (For more
information about using pointers, see the Delphi
Language Reference.)

Figure 6 shows the List Properties form from the sam-
ple application with the properties of the listbox dis-
played in the left listbox and the events in the right

listbox. The code for the List Events button is identical to the
code in Figure 5 except that tkMethod is used for the second
parameter in the call to GetPropList.

Conclusion
RTTI is a vital tool if you want to write reusable code. Using
RTTI it’s easy to write a procedure that takes a data module as
its parameter and will set the ReadOnly property of all of the
datasets in the data module to True. You can also write a security
system that allows different rights to be defined for different
components on a form or data module. When your application
creates a form, it can call a routine that takes the form as a para-
meter, looks up the user’s rights for the components on that
form, and sets the component’s ReadOnly or Visible property
based on the user’s rights. The uses of RTTI are endless. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\NOV\DI9911BT.

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is a Contributing Editor of Delphi
Informant, a co-author of four database-programming books, an author of over
60 articles, and a member of Team Borland, providing technical support on the
Borland Internet newsgroups. He is a frequent speaker at Borland developer con-
ferences in the US and Europe. Bill is also a nationally known trainer and has
taught Paradox and Delphi programming classes across the country and overseas.
He was an instructor on the 1995, 1996, and 1997 Borland/Softbite Delphi
World Tours. He can be reached at bill@dbginc.com, or (602) 802-0178.

20 November 1999 Delphi Informant Mag

DBNavigator
Delphi 5 / Database Design

By Cary Jensen, Ph.D.

Figure 1: Delphi 5’s new D
The Data Module Designer
Delphi 5’s Gift to Database Programmers

A Delphi data module is a container used to share components among multiple
forms. The most common type of component to share is a data set, allowing you to

define database-related properties, such as constraints and event handlers, in a single
location. This simplifies your application’s design and maintenance. When database
changes need to be made, often only the data module needs to be updated. The
changes, however, affect all forms that use the data module.
Until recently, such component sharing was the pri-
mary reason for using data modules. With the
release of Delphi 5, however, they’re far more valu-
able. This is because Delphi 5 provides you with
the Data Module Designer. In addition to the shar-
ing already described, the Data Module Designer
adds three new capabilities: two different visual rep-
resentations of the relationships between your com-
ponents, partial automation of property definitions,
and the ability to comment and print your data
module design for documentation purposes.

Overview
The Data Module Designer, shown in Figure 1, is
a replacement for the form-like designer displayed
azine

ata Module Designer.
by previous versions of Delphi. The new designer
is a two-pane, non-modal window. The left pane
displays the Tree view, which depicts the various
components that have been placed into the data
module. The right pane contains a tabbed inter-
face, providing access to two additional views of
the data module’s components: the Components
page and the Data Diagram.

The Tree View
By default, the initial view of the Data Module
Designer includes the Tree view and the
Components page. The contents of the Tree view
are similar to that displayed by the Code Explorer
in Delphi 4 and 5. There are, however, some
important differences. First, the Tree view is dis-
played while the designer is active, while the Code
Explorer is associated with the Code Editor.

The second difference is that the Tree view under-
stands the relationship between data access com-
ponents. This information is used to define the
contents of the various nodes of the tree. For
example, the Tree view knows that each data set
component is associated with a single database.
Consequently, a given data set will appear as a
node under its associated database. Furthermore,
because databases themselves can be associated
with one — and only one — session, the database
node appears under the appropriate session node.

There is a third difference between the Tree view
and the Code Explorer. This difference is derived
in part from the fact that the Tree view is associat-
ed with a designer and not the Code Editor.

Figure 2: The expanded Fields node for a query.

DBNavigator
Specifically, the
Tree view is a drop
site, meaning you
can drop compo-
nents directly into
the Tree view.
Components
dropped into the
Tree view appear in
the Components
page automatically.

The capability to
drop components
into the Tree view
is more than a
convenience. It’s
an extremely use-
ful technique
because it permits
the Data Module
Designer to set
basic properties of
the components
you drop. These
properties are
identified based
on the node onto
which you drop
the component.
For example, if
you drop a new
data set onto the
node for a data-

base, the Database property of the data set will be automatically
set to that database, and the SessionName property will be set to
that database’s session. This feature alone will not only speed the
configuration of your data access components, but will also
reduce the number of configuration errors.

Figure 3: The Object Inspector displaying
the properties of a TField selected in the
Tree view.
21 November 1999 Delphi Informant Magazine
Using the Tree view to configure properties
isn’t limited solely to dropping new com-
ponents. Existing components can be
dragged from one node to another, thereby
causing their properties to be updated. For
example, imagine that you have two data-
base components on your data module:
one whose DatabaseName is IBSERVER
and which connects to an InterBase server,
and another whose DatabaseName is
LOCALDATA and which is used to point
to a local directory. If you now place a new
Query component into the LOCALDATA
node, but meant to place it into the
IBSERVER node, you can simply drag the
query from LOCALDATA to IBSERVER,
which causes the DatabaseName property
of the query to change from the old value
to that of the new node. Likewise, the
SessionName property will also be updated,
but only if the two database components
use different sessions (which is unlikely).

Data Set Nodes
Data set nodes in the Tree view also have subnodes. Nodes for Table
components have subnodes for FieldDef, TField, and IndexDef defi-
nitions. ClientDataSet nodes include all Table nodes plus nodes for
Aggregates and Params. Nodes for Query and StoredProc compo-
nents have TField and Params nodes. All data sets have a
Constraints node.

When the appropriate property of a specific data set is defined, the
corresponding node can be expanded. The expanded property node
provides you with direct access to the associated object within the
Object Inspector. For example, in Figure 2, the Fields node of the
query named CustSalesQuery has been expanded. The expanded
node provides you with access to each TField object created for this
query using the Fields Editor. If you select one of these TField
objects, its properties are displayed in the Object Inspector. Figure 3
shows the Object Inspector when the EmpFullName field has been
selected. This field is a lookup field.

You can also right-click a data set’s subnodes in the Tree view to dis-
play a limited popup menu. This menu permits you to do basic
things with the selected node, such as add an item. Or, if the right-
clicked item is a leaf, such as a specific Constraint, the menu allows
you to easily remove the item.

The glyphs used by the nodes in the Tree view can convey informa-
tion about the associated object. For example, a component whose
definition is incomplete is enclosed by a red circle. This is shown in
Figure 4, which is how a Tree view looks after a single Table has
been dropped onto it, but before any properties, such as
DatabaseName or TableName have been set.

In some cases, a glyph appears “grayed out.” Although IDE users often
associate this state with a disabled object, in the Tree view it means that
a default object is being used. For example, if you’re using the default
session, the session node’s name will be “Default,” and its glyph will
appear grayed out. You’ll see this effect for both the session and the
database (Alias) in Figure 4. However, if you refer back to Figure 1 or 2,
you’ll see that only the default session is used, in which case the glyph
for the session is grayed out, but the glyph for the database is not.

Figure 4: A red circle around a node indicates the object’s config
not complete.

DBNavigator
The Components Page
The Components page is displayed in the right pane of the Data
Module Designer when the Components tab is selected. This
default view provides the same capabilities available to data mod-
ules in previous versions of Delphi. Specifically, you can drop
new components into the Components page. Alternatively,
double-clicking the icon for a component in the Component
palette causes an instance of that component to be placed in the
center of the Components page.

Like the previous designer, the Components page also permits you
to right-click a component. Doing so displays that component’s
popup menu, which will include any defined component editors.
Finally, the Components page permits you to select one or more
components. You can then use the Object Inspector to change the
value of properties for the selected component(s).

You will normally find it more efficient to drop your compo-
nents into the Tree view rather than the Components page.
22 November 1999 Delphi Informant Magazine

Figure 5: A Data Diagram containing a variety of data access compo
However, components dropped into the Tree view
will be positioned in the center of the Component
Tree (the same position as components that are
placed when you double-click in the Component
palette), so the most common use of the Components
page is to reorganize the position of components,
providing a more ordered display for components
dropped into the Tree view.

The Data Diagram
While the Tree view provides a tremendous amount of
functionality, as far as configuring data access compo-
nents is concerned, it’s the Data Diagram that is likely
to generate the most interest from the majority of
Delphi developers. The Data Diagram provides you
with two complementary capabilities. First, it permits
you to visually link associated data access components.
For example, if you have a master-detail relationship,
the association between the two data sets can be creat-
ed by selecting the Master-Detail tool from the Data

Diagram palette, and then dragging a line between the detail data
set and the master data set’s data source.

The second capability provided by the Data Diagram is that it pro-
vides you with the option of creating a visual representation of the
relationship between data access components. This visual representa-
tion can either be used to select objects in order to configure them,
or it can be printed as documentation. Figure 5 shows a Data
Diagram for a data module. (The project shown in Figure 5, named
Frames, is available for download; see end of article for details.)

As mentioned, the Data Diagram doesn’t necessarily contain all
the components you’ve placed on your data module. For exam-
ple, you may want to place all data sets and data sources on the
Data Diagram, but leave out database, session, dialog box, and
other components. Data diagrams can quickly get very compli-
cated. In most cases, placing only the essential components in
the data diagram keeps it from getting cluttered with unneces-
sary information.

You place a component in the Data
Diagram by dragging its glyph from the
Tree view and dropping it on the Data
Diagram page of the data module. If the
component you place into the data dia-
gram has already been associated via one
or more properties, with a component
already in the data diagram, a line is
drawn connecting the two components.
If you have not yet associated a compo-
nent that you added to a data diagram
with another component already in the
data diagram, you can use the Object
Inspector or the Data Diagram toolbar to
create the association.

The color and shape of a line that connects
two components indicates the type of asso-
ciation. For example, when one object ref-
erences another object, this is represented
by a solid black line anchored by an arrow.
This arrow indicates the direction of the
association. You can see this type of associ-

uration is

nents and comments.

Figure 6: A simple diagram.

Figure 7: You can produce cleaner diagrams by adjusting line p
and labels.

Figure 8: The Data Diagram Toolbar.

DBNavigator
ation in Figure 5, where the data source named
AllCustQueryDS references the query AllCustQuery. The
name of the property, which is DataSet in this case, appears
alongside the referencing line.

Other types of associations include lookups (a green line
with an “eye” glyph), master-detail (a dark blue line with
“table” glyphs), and alludes (a gray line with a terminal
arrow). Alludes are only used to associate a comment
block with an object. Lookup and master-detail associa-

tions are used to identify lookup field references and master-
detail data set references, respectively.

As mentioned earlier, a line gets drawn to represent a relation-
ship that is defined either by configuring properties, or by using
the Data Diagram toolbar. Initially, this line is drawn pretty
much directly from one object to another. However, after
defining only a few such relationships, the lines can quickly
form a tangled mess. Fortunately, the Data Diagram Designer
permits you to easily change these lines. For example, consider
23 November 1999 Delphi Informant Magazine
the simple diagram shown in Figure 6. This diagram
contains only two relationships, one between a data
source, and one between two queries (master-detail).
(Note as well the labels that name the relationships
being depicted.)

There are two types of changes you can make that will
affect the reference lines that appear. The first is that
you can move a component to a new location. At ini-
tial design, you will do this repeatedly, placing com-
ponents in relative proximity to the components they
reference. Moving a component produces an automat-
ic re-draw of its lines.

The second change involves manipulating the connect-
ing lines directly. By clicking your mouse somewhere
on a reference line, you automatically add a new point
to that line. That point can then be dragged to a new
location. Although this creates a more complicated
polyline (a line with multiple points), you can drag
two or more of these points so the resulting line
doesn’t obscure or intercept other lines.

The labels can also be moved. To change the location
of a reference label, click the label to select it, then
drag it to a new location. Consider Figure 7. This is
the same diagram as shown in Figure 6. However,
some of the components have been moved, and both
the lines and the labels have been modified. The lines
have had points added, and the points have been
moved to produce nice, clean lines. Likewise, the ref-
erence labels have been moved so they continue to
label the line they reference.

Sometimes you might find that you want to remove a
relationship between two objects. To do this, right-
click the reference line and select Remove relationship

from the displayed popup menu. The line connecting
the two objects will be deleted, and the appropriate
properties will be reset.

The Data Diagram Toolbar
The Data Diagram toolbar, shown in Figure 8, contains several tool-
bar buttons that you use to customize and configure the data dia-
gram. The first button is the Selection tool. You use this tool to de-
select one of the other tool buttons.

The second button is the Property tool. You use it to define a prop-
erty relationship between two objects. To use this tool, first select
the Property button. Next, begin a drag operation from an object
with a property (such as DataSource for a Query), and drag and then
release the mouse when your pointer is positioned over an object of
the appropriate property type (a TDataSource instance in this case).

The third button is the Master-Detail tool. Use this tool to drag
a line from a detail table (or query) to the master table (or query)
data source.

The fourth button is the Lookup tool. Use this tool to drag a line
from one data set (the one you want to define a lookup field for)
to another data set (the one that contains the field you want to
look up). Complete the displayed New Lookup Field dialog box
to create the lookup field.

oints

Figure 9: The Print Tree View dialog box.

Figure 10: The Print Data Model dialog box.

DBNavigator
The last two buttons, the Comment Block and Comment Allude
tools, are used to create comments and then point them to one
or more objects on the data diagram. To place a comment block,
select the Comment Block tool, then drag a rectangle in the data
diagram. Next, click the comment block until a cursor appears.
After typing your comment, click on any other object to com-
plete your comment. Pressing E while entering a comment
deletes any changes.

If your comment block text describes a specific object, you’ll gener-
ally want to add a comment allude to connect the comment with
the object(s) it references. To place a comment allude, click the
Comment Allude tool, then drag a line from the comment block to
the object you want to allude. Repeat this process if you want to
allude the comment block to additional objects.

Other Features of the Data Diagram
In addition to dropping data access components into the Data
Diagram, this feature provides you with convenient access to a num-
ber of tools. To access these tools, right-click one of the objects in
the Data Diagram to display a popup menu. The menu contains
features available for that object. For example, if you right-click a
Table in the Data Diagram, you can invoke the Fields Editor, SQL
Builder, etc. Likewise, right-clicking a Database gives you ready
access to the Database Editor.

The right-click menu also permits you to remove an object from the
diagram. To remove an item from the diagram, but not from the
data module, right-click the object and select Remove from diagram

from the displayed popup menu.

The Data Diagram also gives you a fair amount of control over
the display characteristics of the objects that appear within it.
For example, you can control the color of data set headers, the
color and type of lines, and the color and style of fonts used for
labels. Adjusting these visual features can be useful when you
24 November 1999 Delphi Informant Magazine
want to adopt a consistent and meaningful pattern for identify-
ing objects. For example, you may want to make all lookup
tables use one color of header. To adjust the visual characteristics
of an object, right-click it and select from its displayed popup
menu. Data access components, reference lines, and labels can all
be adjusted in this same manner.

A Documentation Asset
The new Data Module Designer also provides you with a new
tool for documenting your applications. The Tree view and the
Data Diagram can both be printed. Printing the Tree view per-
mits you to document some or all components on the data mod-
ule. To print the Tree view, right-click in the Tree view area and
select Print. The Tree view responds by displaying the Print Tree
View dialog box shown in Figure 9. Notice that this dialog box
permits you to print either the entire Tree view, or only the select
component and its child nodes.

Printing the Data Diagram permits you to document the relation-
ships you’ve defined visually (typically a subset of the components
appearing in the Tree view). To print the Data Diagram, right-
click anywhere within the Data Diagram and select Print from the
displayed popup menu. This displays the Print Data Model dialog
box, shown in Figure 10. Select how you want the diagram to be
printed and click OK.

One final note about the Data Diagram is in order. In most
cases, you’ll want to limit the size of your data diagram. Large
data diagrams can easily become congested, reducing their use-
fulness. For this reason, you might find it necessary to use more
data modules than in previous versions of Delphi, keeping each
data module relatively simple.

Conclusion
Delphi 5’s Data Module Designer provides you with a wealth of
new features to make the configuration of your data access compo-
nents more efficient. It also provides you with several new means of
documenting your data access components. Together, these capabili-
ties of the Data Module Designer serve as one of many compelling
reasons to upgrade to Delphi 5. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\NOV\DI9911CJ.

Cary Jensen is president of Jensen Data Systems, Inc., a Houston-based database
development company. He is co-author of 17 books, including Oracle JDeveloper
[Oracle Press, 1998], JBuilder Essentials [Osborne/McGraw-Hill, 1998], and
Delphi in Depth [Osborne/McGraw-Hill, 1996]. He is a Contributing Editor of
Delphi Informant, and is an internationally respected trainer of Delphi and Java.
For information about Jensen Data Systems consulting or training services, visit
http://idt.net/~jdsi, or e-mail Cary at cjensen@compuserve.com.

http://idt.net/~jdsi

25 November 1999 Delphi Informant Mag

Sound + Vision
TAPI / Wave API / Delphi 4, 5

By Robert Keith Elias and Alan C. Moore, Ph.D.
Extending TAPI
Playing and Recording Sounds during Telephony Calls

L ast summer, Delphi Informant presented a three-part series of articles demonstrating
much of the basic functionality provided by TAPI, the Windows Telephony API. In this

article, we’ll demonstrate how to build a program in Delphi 4 using TAPI and the
Multimedia API to play and record telephone messages to and from files. We’ll also
show how to capture digital-tone key presses after a call has been placed or received.
As a foundation, the example program we’ll develop
here uses the work that Major Ken Kyler and Dr
Alan Moore developed in the series of articles last
summer. We’ll begin by briefly reviewing essential
TAPI concepts. We’ll then provide an overview of
the TAPI and Multimedia API functions that we’ll
use to implement this new functionality.

After that review, we’ll provide a detailed explana-
tion of the code needed to play .WAV files to,
and record them from, a phone line, and capture
digital-tone key presses. We’ll conclude by provid-
ing important information you need to know:
additional software you’ll need to use this func-
tionality, some of the limitations and failings of
TAPI, and where you can find more information.

TAPI Basics
As in the previous series of articles, we’ll make
extensive use of the TAPI.pas conversion produced
by Project JEDI (http://www.delphi-jedi.org). We’ll
also use the Multimedia APIs (mainly the Wave
API) included in mmsystem.pas. One could easily
be intimidated by either of these large collections of
structures and functions. Fortunately, we can ignore
most of TAPI’s 125 functions, and most of those in
mmsystem.pas, and still accomplish quite a lot.

However, we do need to know what we’re doing.
First we need to understand the difference
between lines, phones, calls, addresses, and IDs.

Lines. A line device generally refers to a modem or
a similar piece of hardware connected to a tele-
phone line. TAPI doesn’t communicate directly
with a line/modem. Instead it uses a TSP
(Telephone Service Provider). A TSP is just a fancy
azine
name for a driver, written by the modem/equip-
ment supplier, to communicate with TAPI.

Many TAPI functions are designed to talk to TSPs
that communicate with sophisticated telephone
equipment. Such TSPs are needed for large offices
where, for example, dozens of calls may arrive at
nearly the same time on a single line. People who
work with such systems must be able to manage
call conferencing and call transferring, among
other tasks. Unfortunately, the TAPI documenta-
tion rarely states the context within which a func-
tion is intended to operate. As we’ll discuss later,
TAPI has certain limitations along with the func-
tionality we’ll be using here.

Phones. Another TAPI device is the phone. You
might assume that “phone” is synonymous with
“handset.” That would be a mistake. In TAPI, the
phone is the speaker and microphone attached to
your computer. You use phone devices to redirect
caller output to the speaker and to redirect input
from the user (via the microphone) to the tele-
phone line. If you’re not interested in using the
speakers, you can ignore those functions that take
the form phoneXxxxx.

Calls. The key event in the TAPI universe is the
call. It begins at the precise moment when
Windows sends a message to your application
telling you it has picked up the line. This is done
through a callback routine. Callback routines are
used throughout the Windows API to provide a
means for Windows to send information back to a
calling application. Our application uses three
callback routines: one for playing sounds, one for
recording sounds, and the one used by TAPI.

http://www.delphi-jedi.org

Segment Explanation

RIFFxxxx RIFF identifier; xxxx is the size of the file
minus 8 bytes.

Wavefmtxxxx Wave identifier; fmt subchunk beginning;
size of format section (about 50 bytes).

..... The format section (about 50 bytes).

..... Optional extended format information.
factxxxx xxxx usually equals 4 bytes (number of

bytes of fact data).
.... Total number of samples in the file.
dataxxxx Size of the Wave audio data.
..... The Wave audio data (most of the file).
..... Optional ID garbage at the end of the file.

Figure 1: The structure of a Wave RIFF file.

t Name Data Type Represents

tTag Word The format of data in a .WAV file.
els Word The number of channels (i.e. mono

[1], stereo [2], etc.).
sPerSec DWord The number of samples written

(or read) per second.
esPerSec DWord The number of bytes written (or

read) per second.
lign Word The minimum size (in bytes) of a

readable data block.
Sample Word The number of bits per sample of

mono data.
Word The size in bytes of extended

compression info.

Elements of the fmt chunk.

Sound + Vision
Most calls are initiated with the lineAnswer or lineMakeCall func-
tion. These and similar functions are asynchronous. This means that
when the function is called successfully, it immediately returns with
a positive number (1, 2, etc.). However, the function isn’t really
complete until a confirming message is sent back via the callback
routine with the same positive number in the dwParam1 argument,
and zero in the dwParam2 argument.

Addresses and IDs. An address consists of a string of characters (let-
ters, digits, and control characters) that provide a path to a phone or
other device. That other device could be a modem or a computer.
While addresses are often just phone numbers, they can also provide
a path to a network or Internet address.

IDs are simply handles to devices. In the case of TAPI, we’re usually
most interested in the handle to the logical line we get by calling the
lineGetID function. As complex as TAPI can be, at least we don’t
have to work directly with the COM port.

The TAPI and Wave API Link
Before we investigate the multimedia API, we need to investigate the
link between TAPI and the Multimedia API, particularly the Wave
API. That link is tenuous. Despite its complexity, no existing version
of TAPI includes routines for playing or recording .WAV or other
sound files. The next Windows NT incarnation, Windows 2000,
may include further sound playing and recording functionality with-
in TAPI. At least we’ve heard such rumors. Now, however, TAPI sim-
ply provides a handle, called a device ID, toward which an applica-
tion can direct the input and output of .WAV files using Wave API
functions. We use TAPI’s lineGetID function to get this device ID.

The Wave API
In the March, 1999 issue of Delphi Informant, Dr Moore provided
an overview of the multimedia APIs in his “File | New” column. We
won’t repeat that here but, rather, point out that the Wave API is a
sub-API, consisting mainly of functions and related structures that
begin with the prefix “Wave.” To work with this API, we need to
understand the structure of .WAV files.

Most sounds played in the Windows environment are produced by
.WAV files, of which there are various types. For most of this discus-
sion, we’ll consider only simple uncompressed PCM (Pulse Code
Modulation) .WAV files. There are at least 30 compressed formats,
which we’ll briefly discuss later. A simplified format of a complete
PCM .WAV file is shown in Figure 1. .WAV files are actually a sub-
category of RIFF (Resource Interchange File Format) files.
In Figure 1, you’ll notice that the first four characters are
RIFF, which identifies them as a RIFF file.

All RIFF files consist of chunks — specially structured
groups of data that often contain subchunks. The first
chunk in a RIFF file is called the RIFF chunk. In the case
of Waveform audio RIFF files, the RIFF chunk contains
two subchunks: the fmt chunk, which provides informa-
tion about a Wave form’s structure, and the data chunk,
which contains the audio data itself. In Figure 1, xxxx rep-
resents DWORD/LongWord size values, and the four
periods represent data in the files. Identifiers, such as
RIFF and Wave appear in the file exactly as shown.

The fact chunk is optional in a simple PCM .WAV file. As
shown, every .WAV file of this type begins with a header
section that is typically about 100 bytes long. The chunks

Elemen

wForma
nChann

nSample

nAvgByt

nBlockA

wBitsPer

cbSize

Figure 2:
26 November 1999 Delphi Informant Magazine
used in the specific .WAV file type are RIFF, fmt, fact, and data.
Other possible chunk types in multimedia files include cue and
playlist. Except for RIFF and data, these chunks can be in any order.

Why do we need to know this? If we want to record or play a
.WAV file using the low-level multimedia input/output func-
tions, we’ll need to correctly write or read the elements of the
header file. The xxxx parts simply indicate the size of their
respective chunks in numbers of bytes, making it possible to
write or read the precise number of bytes in our audio data.
Once we’ve correctly filled in the header chunks, we just feed
them to the multimedia input/output functions, and the data is
automatically written to, or read from, memory. We’ll explore
the details when we describe the code.

Let’s take a closer look at some of the chunks, particularly the fmt
and fact chunks. The fact chunk can be calculated from the fmt
chunk, so we’ll deal with that first. Figure 2 shows the name, type,
and use of each field in the fmt chunk.

If you’ve worked with electronic sound, you’ve probably encoun-
tered the word “sample.” A sample contains an elemental unit of
sound. The sample size is given in wBitsPerSample. For uncom-
pressed (PCM) data, the size is usually 8, 16, 24, or 32 bits wide.
The wider the size, the higher quality the sound. Because we’re
using a telephone line, we can use low-quality resolution.
Therefore, we’ll work with either 8 or 16 bits in wBitsPerSample.
When using a compression algorithm, this value is usually smaller.

Sound + Vision
The sample rate, which indicates how many samples are fed to the
speaker each second, is given in nSamplesPerSec. This is typically
described in Hertz (Hz); thus 8,000 Hz is 8,000 nSamplesPerSecond.
Common audio sampling rates are 8,000, 11,025, 22,050, and 44,100
Hz. Again, because analog telephone lines function at 3,100 Hz, noth-
ing above 8,000 Hz will produce noticeably improved performance.

Once we know wBitsPerSample and nSamplesPerSec, nAvgBytesPerSec
and nBlockAlign are easy to calculate (at least for a simple PCM file):

nAvgBytesPerSec = nSamplesPerSec * wBitsPerSample/8
nBlockAlign = nChannels * wBitsPerSample/8

The only meaningful piece of information in the fact chunk is
dwFileSize, a count of the samples in the .WAV file. It’s easy to cal-
culate from the above information:

dwFileSize = (Total play time in seconds) * nSamplesPerSec

Figure 3 shows actual numbers for two identical files of 10.286 sec-
onds each using different Wave formats: the first an uncompressed
PCM file, and the second a compressed IMA ADPCM file. The PCM
file is 164,696 bytes, and the ADPCM file is 41,788 bytes. (The same
file compressed using DSP Group TrueSpeech is 11,066 bytes.)

The first thing you’ll notice is that nAvgBytesPerSec and nBlockAlign
can’t be calculated from the formulas we’ve given. In fact, we were
unable to determine how to calculate these values from the pub-
lished documentation.

It gets even more interesting. According to the documentation that
comes with Unimodem/V (the Microsoft TSP for voice modems),
the supported formats are: IMA ADPCM at 4,800 Hz, 7,200 Hz, or
8,000 Hz; and Rockwell ADPCM. However, this was not confirmed
by our experience. Even though the IMA ADPCM is explicitly said
to be supported, we were able to record (input from the modem)
only in the uncompressed PCM format and only at 8,000 Hz with
wBitsPerSample set to 16.

We should point out that PCM is very costly in memory and disk
usage. In principle, it’s possible to convert PCM files to one of the
compressed formats; however, it would first be necessary to convert
the msacm.h header file into a Pascal format (another task for
Project JEDI, or an ambitious developer).

On the other hand, we were able to play (output to the modem) any
.WAV file for which we had an installed CODEC, provided that
27 November 1999 Delphi Informant Magazine

Field PCM file IMA ADPCM

fmt 18 20
wFormatTag Wave_FORMAT_PCM (1) Wave_FORMA
nChannels 1 1
nSamplesPerSec 8000 8000
nAvgBytesPerSec 16000 4055
nBlockAlign 2 256
wBitsPerSample 16 4
cbSize 0 2
fact 4 4
dwFileSize 82294 82294
Actual file size 164,696 bytes 41,788 bytes

Figure 3: Comparison of PCM and IMA ADPCM files.
nSamplesPerSec was 8 kHz. For example, we were able to play the
Female Operator.wav file that comes with some versions of Windows
95. This file is encoded at 8,000 Hz using the TrueSpeech compres-
sion format. IMA ADPCM and TrueSpeech are two of the five audio
compression formats that come with Windows 95. To see the codecs
currently installed on your system, look in the Windows registry at:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\
MediaResources\acm

or in Control Panel via multimedia/Advanced/Audio
Compression Codecs.

Writing the Code
Having discussed the basic issues, we’re almost ready to delve into
the code. To test the code, you’ll need a modem that can handle
voice as well as data (most of the newer ones do), Unimodem/V, and
TAPI 1.4 or TAPI2.x at a minimum. Note that Unimodem/V comes
with Windows 98. You can perform the following test to determine
whether Unimodem/V has been successfully installed on your
machine. Look under Multimedia in Control Panel and ensure you
see the following two lines:

Voice Modem Wave #00 Line
Voice Modem Wave #00 Handset

You may also want to study Microsoft’s TAPI documentation, and
the WaveForm documentation. As we mentioned earlier, the TAPI
code for our application is based on code first published in Delphi
Informant in the summer of 1998. We took the liberty of making
certain changes to that code, and added quite a bit of new code.

First we changed the variable names to match those in the Microsoft
API documentation, which makes the code easier to follow. We
appended a record instance prefix — rTAPI — to these names to
make it easy to distinguish these variables from those used for play-
ing sounds. The latter have a prefix of either rWvR (record Wave)
and rWvP (play Wave). See Glbvars.pas for the full declaration of
these structures (available for download; see end of article for
details). We’ve also included many comments in the code.

We’ve included routines for dialing out and answering calls. Being able
to record conversations after dialing out may seem useless. However, it
eliminates the need for someone to call you to test the play and record
functions if you only have one telephone line. Because the modem can-
not distinguish between digit tones generated by the local handset and
a remote handset, you could implement code to play or record mes-
sages by pressing the keypad on either a remote or the local telephone.

However, the present version doesn’t include
this functionality. Now let’s investigate the
code for playing a sound.

Using Wave API to Play a Sound
The waveOutWrite function plays Wave
data to the phone line through the
modem. However, the task is hardly trivial.
Of course we could use the PlaySound or
sndPlaySound functions to play .WAV files,
but they don’t work in this context because
they always play to the speaker by default.
The waveOutWrite function provides the
format translation and redirection capabili-
ties we need. Thus, the modem will receive
the sound data.

file

T_IMA_ADPCM (17)

lineGetID(// Get a physical device ID.
rTapi.hLine, // Handle to line from lineOpen.
0, // Subaddress of rTapi.hLine.
// From lineMakeCall (rTapi.hCall replaced by 0 here).
myZeroHC,
// Use information from rTapi.hLine (not rTapi.hCall).
LINECALLSELECT_LINE,
// Pointer to VARSTRING structure where information
// is returned.
lpVarString(Port),
// "device class" (COM, Wave/out etc).
szDeviceClass);

Figure 4: Finding a modem port to send Wave data.

type
PWaveHdr = ^TWaveHdr;
{$EXTERNALSYM wavehdr_tag}
wavehdr_tag = record

lpData: PChar; // Pointer to locked data buffer.
dwBufferLength: DWORD; // Length of data buffer.
dwBytesRecorded: DWORD; // Used for input only.
dwUser: DWORD; // For client's use.
dwFlags: DWORD; // Assorted flags (see defines).
dwLoops: DWORD; // Loop control counter.
lpNext: PWaveHdr; // Reserved for driver.
reserved: DWORD; // Reserved for driver.

end;

Figure 5: WAVEHDR structure (record) as defined in mmsystem.pas.

Sound + Vision
Nine steps are needed to play a .WAV file to a modem line. We have
numbered these steps in the code in the playWav.pas file (this file is
available for download; see end of article for details):
1) Get the COM port handle where output will be sent.
2) Open the .WAV file.
3) Locate the format information in the .WAV file’s header and

copy that information into a WAVEFORMATEX structure.
4) Prepare and lock a memory buffer for the Wave data.
5) Copy the Wave data into a memory buffer.
6) Prepare a WAVEHDR structure to describe the memory buffer

in which the Wave data is held.
7) Load the Wave conversion drivers and prepare a callback routine.
8) Play the .WAV file.
9) Clean up everything.

Let’s discuss the details. The first step, getting the COM port han-
dle, will be familiar to readers who followed the earlier series of arti-
cles. For this step, we use the TAPI function, lineGetID. If you want
to send a message to the line, use this function with a format like:

lineGetID(,,,,'wave/out');

If you want to record from the line, you use:

lineGetID(,,,,'wave/in');

The Wave API will use this handle (a number like 0, 1, 2, etc.) to
find the modem port to which Wave data will be sent. This infor-
mation is sent in a predefined TAPI structure called a VARSTRING
via lineGetID (see Figure 4).

In the second step, open the .WAV file. This time we’ll use the
mmioOpen function, one of the multimedia input/output functions.
This special-purpose function is especially useful for accessing multi-
media data. With the file open, we need to locate the format infor-
mation in the header. For this we’ll use the mmioDescend function
twice, followed by GetMem. The latter allocates memory for the
rWvP.lpWaveFormat field based on the size of the chunk.

Then we deal with the data in the WAVE subchunk. We collect the
value in the DWORD xxxx, which immediately follows the
WAVEfmt marker. This gives us the size of the format section,
which begins right after this xxxx. We place an implicit pointer
here for the mmioRead operation in the next step. In that step we
copy the format information into a WAVEFORMATEX structure.
We use the mmioRead function to place the .WAV file format infor-
mation into a predefined WAVEFORMATEX structure pointed to
by our variable, lpWaveFormat. The WAVEFORMATEX structure
is identical to the fmt structure just given. Now we can access the
bits per sample as lpWaveFormat^.wBitsPerSample.

You might be wondering if we could have just copied this information
straight from the header using regular Delphi streaming methods (or
block read and block write), rather than using the multimedia input/out-
put functions described here. Of course we could, but that would involve
writing even more code. These multimedia functions are designed for
working with this kind of data and save us some additional work.

Next we prepare and lock a memory buffer for the Wave data. For
this operation we again use mmioDescend and GetMem. This time
we collect the value in the DWORD xxxx, which immediately fol-
lows the data marker. This is the size of the data section, which
constitutes most of the file. This data begins right after the xxxx,
28 November 1999 Delphi Informant Magazine
where again an implicit pointer is placed for the mmioRead opera-
tion that we undertake in the next step.

Now we copy the Wave data into a memory buffer. We use mmioRead
to place the .WAV file data information into a memory buffer pointed
to by our variable, lpWaveData, which was returned by GetMem.
Because .WAV files for telephones are usually quite small, this may be
practical; however, for most operations, it’s common practice to use at
least two buffers (double buffering) so that waveOutWrite can play the
contents of one buffer while data is being loaded into the other.

At this point, we can close the .WAV file because everything we
need is already in memory. We prepare a WAVEHDR structure that
describes the memory buffer where Wave data is held. For this we
first use GetMem to provide a block of memory for the WAVEHDR
structure and a pointer to it that we’ll name lpWaveHdr. A
WAVEHDR structure has the format shown in Figure 5.

We copy our pointer to the Wave data, lpWaveData, into our structure
at lpWaveHdr^.lpData, and the buffer length into
lpWaveHdr^.dwBufferLength. We use the information in this structure in
the waveOutPrepareHeader and waveOutWrite functions. Conveniently,
waveOutWrite also updates this structure as it plays the .WAV file.

In the next step, we need to load the Wave conversion drivers and
prepare the callback routine. The waveOutOpen function performs
these two steps. Most voice modems come with drivers to convert
.WAV files to voice signals. A few can even take the Wave output
directly without special drivers.

To check for this functionality, waveOutOpen is usually called once for
a test with the WAVE_FORMAT_QUERY flag set, and with the
WAVE_MAPPED flag not set. If waveOutOpen returns an error, it’s
called again with WAVE_MAPPED set. Otherwise, WAVE_MAPPED
isn’t set. If WAVE_MAPPED is set, more resources are used and the
operation will be slower. The waveOutOpen function also defines the
address of a callback routine. Windows sends messages to this callback
routine when playing has started, stopped, or paused. There are three
possible messages the Wave API can send to this callback routine:

Sound + Vision
1) WOM_OPEN is sent when waveOutOpen is called.
2) WOM_DONE is sent when waveOutWrite is finished playing

data, or waveOutReset is called.
3) WOM_CLOSE is sent when waveOutClose has completed a close.

Finally, we’re ready to play the .WAV file. To play a block of Wave
data, we first call waveOutPrepareHeader. If we’re swapping blocks to
save memory (double buffering), we must call this function for each
block before we call waveOutWrite. We use the waveOutWrite func-
tion to play the .WAV file to the phone line.

Finally, we need to clean things up. After our application receives
the WOM_DONE message, our code calls the various cleanup
functions, freeing resources. If an error has occurred, the file is
closed, waveOutUnprepareHeader is called, and allocated memory
resources are freed depending on the flags set when the finally clause
is reached in the try..finally block.

Recording Sounds with the Wave API
As with the process of playing sound, recording sound also involves
a number of steps. (Due to space constraints, the file discussed
here, recordWv.pas, is not listed in this article. However, it is avail-
able for download; see end of article for details.) Again, to make
the process easy to follow, we’ve included abundant comments in
the code and have numbered the steps:
1) Get the COM port handle where modem input will be received.
2) Use waveInOpen to determine if the Wave API supports the

Wave format on the selected port.
3) Use waveInOpen to open the line device for recording, and

inform the Wave API that we want all messages sent to the
main winproc callback routine.

4) Allocate the memory buffer in which the Wave data will be stored.
5) Use waveInPrepareHeader to tell the Wave API the address of

the WAVEHDR structure; we can use this structure to
exchange messages with the Wave API. We also put the address
of the memory allocated for the Wave data in this structure.

6) Use waveInAddBuffer to prepare everything for recording.
7) Call waveInStart to begin recording from the line.
8) Wait for a WIM_DATA callback message to inform us that playing

has completed or has been stopped; on error, clean up everything.
9) Save the data to a file:

a) create the file where the Wave data will be saved;
b) use the information from the WAVEHDR structure to update

the Wave header file, then write the header to the file; and
c) write the Wave data to the file.

10) Clean up everything (step 8 again, but not because of error).

As before, we begin by getting a handle to the COM port. This step
is identical to the one we used for playing, except now lineGetID
receives a wave/in message instead of a wave/out message.

Next, we need to determine if the Wave format and port are okay.
You’ll recall that when we were playing a .WAV file, we began by
opening it and examining the contents of the tWAVEFORMATEX
header structure. Once we have that information, we can then use:

waveOutOpen(,,,,WAVE_FORMAT_QUERY)

to determine if the format was okay.

We have predefined the tWAVEFORMATEX structure in a record
named cnrRecordedMsgFormat. This time, we can use waveInOpen to
find out immediately if there is a problem with our proposed data
29 November 1999 Delphi Informant Magazine
format. Remember, a tWAVEFORMATEX structure includes
nSamplesPerSec set to 8,000 Hz and wBitsPerSample set to 16 bits
for a standard uncompressed PCM Wave format.

Now we’re ready to open the line and establish our callback routine.
If waveInOpen returns successfully in step 2, we need to call it again
to do some real work. First we need a handle to the Wave API,
which we’ll use for subsequent calls to other Wave API functions.
We’ll store this handle in rWvR.hWaveRDevice. We’ll also provide a
pointer to our tWAVEFORMATEX structure for other purposes.

We also supply the CALLBACK_WINDOW flag to tell the Wave
API that we want all messages sent to the program’s main callback
routine, located in the DefaultHandler procedure at the beginning of
the main unit. The three possible messages that the Wave API can
send to this callback routine are:
1) WIM_OPEN, sent when waveInOpen is called;
2) WIM_DATA, sent when the buffer is full or waveInReset is

called; or
3) WIM_CLOSE, sent when waveInClose is called to close the

operation.

The one that is most useful for us is WIM_DATA. When the
DefaultHandler receives a WIM_DATA message, we call routines to
save the .WAV file and perform the required clean up.

It’s worth mentioning that during early versions of this program, we
attempted to use a specialized callback routine (like the one used for
the TAPI functions) by specifying the CALLBACK_FUNCTION
flag. However, the program tends to hang if any but a limited number
of functions, such as PostMessage, are called from within this function,
so we decided to use the main callback routine to simplify things.

In the next step, we allocate memory for the Wave data. Having ver-
ified that the modem port and the Wave format are okay, we now
allocate 60 seconds of memory using the following formula:

cn60SecMemSize:
DWORD = DWORD(60) // 60 seconds msg storage time.
* DWORD(8000) // nSamplesPerSec (8kHz).
* DWORD(16) // wBitsPerSample.
div DWORD(8); // bits in word.

This adds up to 960,000 bytes, hardly an insignificant amount. If
memory is an issue, it’s possible to use the technique of double
buffering, switching back and forth between two much smaller
blocks of memory. While the Waveform audio device is processing
one memory buffer, the application can process the other.

Next, we need to set up the message-exchanging structure with the
Wave API. If we were switching back and forth between blocks of
memory, we would need a WAVEHDR structure for each buffer
and use it for much of the communication between the Wave API
and our application (see Figure 6).

For our simplified application, we’ll be putting just the address of the
memory location into which the Wave data will be written. We put
the address into lpData, and the total size of the available memory in
dwBufferLength. After we’re finished recording, we’ll retrieve the
amount of data actually recorded from dwBytesRecorded. This is neces-
sary because recording can end early under a variety of circumstances.
The function, waveInPrepareHeader, takes care of informing the Wave
API about our WAVEHDR structure after we’ve put data into it.

cnrRWaveHdr: WAVEHDR = (// Wave header for data/file.
lpData : nil; // Pointer to locked data buffer.
dwBufferLength : 0; // Length of data buffer.
dwBytesRecorded : 0; // # of bytes recorded.
dwUser : 0; // Put anything you want in here.
dwFlags : 0; // Flags describing buffer state.
dwLoops : 0; // Loop control counter.
lpNext : nil; // Reserved for driver.
reserved : 0); // Reserved for driver.

Figure 6: A WAVEHDR structure for each buffer to use for much of
the communication between the Wave API and our application.

Sound + Vision
Recording
Before recording, we must make final preparations. Once the
waveInPrepareHeader function has informed the Wave API about the
WAVEHDR structure, the waveInAddBuffer function must actually
set it up in preparation for playing. If we’re using double buffering, we
must prepare separate WAVEHDR structures for each memory buffer
and set up each with waveInPrepareHeader. When a particular buffer
has been filled, its associated dwFlags is set to WHDR_DONE so that
the buffer can be saved and then set up again.

The waveInPrepareHeader and waveInAddBuffer functions are always
used together; the former to prepare the data buffer headers, and the
latter to actually place the data buffer on the input queue to be
recorded. For large files, these data blocks can be re-used once the
application has recorded the material in them. However, a detailed
discussion of this process is beyond the scope of this article.

Finally, we are ready to begin recording from the line. The
waveInStart function begins recording sound data coming from the
phone line to a memory buffer. At this point, we must wait for a
WIM_DATA completion message. Once the memory buffer is full,
a WIM_DATA message is sent to the application’s main callback
routine, the DefaultHandler. In our case, we use this message as a
trigger to call the ShutDownRecording function. If there are no
errors, the first thing it does is call the SaveMessageTooFile routine.

Now we’re ready to save the data to a file, a process of three steps.
First we create a file with the name msg#.wav. If we record more
than one message while the application is open, the first one is
named msg1.wav and the second msg2.wav. The resulting Waves can
easily be played simply by creating shortcuts, and then clicking on
them. If you rename one or the other to Greeting.wav, it can also be
played back over the telephone line.

Next, we update our custom Wave header record named
cnrRiffWaveHeader (the one with the RIFF, fmt, fact, and data
chucks), filling it with information returned to us from the
WAVEHDR structure in dwBytesRecorded. This quantity is essen-
tial to calculating the correct values for the Wave header.

Once these values have been calculated, the header is saved to the open
file. Finally, we write the Wave data to the file. Here again,
dwBytesRecorded comes in handy. We close the file and proceed to clean
everything up. The primary cleanup steps (apart from freeing memory)
consist of executing two functions, waveInUnprepareHeader and
waveInClose. You need to call waveInUnprepareHeader before you free
memory for its associated buffer. The waveInClose function simply closes
the Waveform input device and marks all pending buffers as done.

TAPI Problems and Limitations
As convenient and helpful as TAPI can be, it does have its problems
and limitations. As already mentioned, TAPI uses TSPs (drivers) to
30 November 1999 Delphi Informant Magazine
communicate with modems. The most generally annoying character-
istic of TAPI is that on inexpensive standard modems (anything
under US$300), a call’s progress cannot be monitored. Specifically,
you can’t tell when someone has answered an outgoing call, or when
the line is hung up on the other end. It may be possible to do this
by recording line activity with Wave functions and examining the
noise level. However, we don’t think that would be a trivial task.

Another problem that’s commonly reported is that digit detection
seems to be disabled after a .WAV file finishes playing on certain
modems. The program we have created may not have this problem
because we reinitialize TAPI every time a call is completed (instead
of reusing the line handles and TAPI instances). While this might
eliminate certain problems, we consider it extremely inelegant. Also,
it might cause problems if we’re working with multiple lines or mul-
tiple applications sharing the same line.

A further limitation is that with standard modems, you can’t collect
information from the line before a call is open. Therefore, there is
no obvious way of detecting that someone is dialing out on a line
connected to the modem unless a user opens a call first from within
the application. There is also no method for knowing if an incoming
call is a voice, fax, or data call before the call is picked up. In fact,
even determining this after the call has been picked up presents an
interesting challenge. Finally, because Unimodem/V isn’t supported
on Windows NT below version 5.0 (Windows 2000), there is no
support for voice in that environment.

Conclusion
We are at the end of a rather long journey that has enabled us to add
sound playing and recording capabilities to our TAPI applications.
Along the way, we have learned more about the various Windows APIs
and how they work together. As far as exploring the Wave API, we have
only scratched the surface — just enough to get the job done. In an
upcoming article, Dr Moore will explore this API in more detail, and
will explain other facets of it. He will also devote an upcoming “File |
New” column to multimedia and communications resources.

We used a number of online sources while preparing this article.
One such site contains much information on programming with
sound; visit http://www.wotsit.org, or the Usenet newsgroup at
news:comp.os.ms-windows.programmer.multimedia. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\NOV\DI9911RE.

Robert Keith Elias is an independent developer, consultant, and practicing Broccolist
based in Quebec, Canada. He specializes in Windows programming with Borland
Delphi and Web site development. He can be reached at kelias@CLIC.NET.

Alan Moore is a Professor of Music at Kentucky State University, specializing in music
composition and music theory. He has been developing education-related applica-
tions with the Borland languages for more than 10 years. He has published a num-
ber of articles in various technical journals. Using Delphi, he specializes in writing
custom components and implementing multimedia capabilities in applications, par-
ticularly sound and music. You can reach Alan on the Internet at acmdoc@aol.com.

http://www.wotsit.org

31 November 1999 Delphi Informant Mag

Columns & Rows
AS/400 / SQL / Delphi Client/Server, Enterprise Editions

By G. Bradley MacDonald
An AS/400 Skeleton Key
Approaching Client/Server Applications on the AS/400

A n important part of developing any database application is database optimization.
This is especially true of client/server applications. For example, you may know

what SQL statement you passed to the server, but you don’t necessarily know what the
server did with the statement. Did it use an index? Did it have to rebuild the access
plan? Did it have to do any extra work you’re not aware of? If so, why? These are the
sorts of questions developers must be able to answer to produce applications that will
work well in their environment.
azine
The AS/400 is being used increasingly as a back-end database server for client/server applica-
tions. However, while many Delphi and PC application developers have experi-

ence using SQL with databases such as Oracle, Sybase, and Microsoft
SQL Server, they don’t usually have experience developing with the

AS/400. At the same time, a lot of AS/400 shops have terminal-
based systems they use to run their business. These systems

use the native file system on the AS/400, and don’t usually
use SQL to access their files, so they don’t have a lot of

experience accessing the AS/400 files via SQL. While
this situation may appear to be a stumbling block to

developing client/server applications with the
AS/400, it doesn’t need to be.

The AS/400 native file system and DB2/400 are
built into the operating system. In fact, they’re near-
ly one and the same. This allows you to use operat-
ing system commands to view and analyze native
files and SQL tables and views alike. This means you
aren’t solely dependent on SQL statements to deal
with your data, and gives developers another set of
tools to debug and analyze their applications. It also

means that developers using client/server tools such as
Delphi can work with AS/400 developers — who are

familiar with the various debugging methods on the
AS/400 — to create better applications.

To begin, we’ll review some OS/400 commands that will be useful
to Delphi developers working with the AS/400. Then, we’ll discuss

how you can see exactly what the AS/400 is doing with the SQL com-
mands sent to it by your application. Finally, we’ll show you how to

retrieve the full descriptions of the SQL codes the AS/400 returns to
your application. (Note: Some screen captures in this article were edited
to hide system information about the test machine for this article.)

Figure 1: Selected OS/400 commands.

Command Description
FormatDSPPFM Displays the contents of a file in a fixed column format. This is an easy, quick way to view
(Display Physical the data in a file. Format:
File Information) DSPPFM FILE(library/file)

DSPFD (Display File Displays information about the file itself. It contains all the information about the file, such
Description) as initial size, extents, etc. When used to view a table or view that was created using SQL

statements, it shows the full SQL statement used to create the file. It contains no field
information. Format:
DSPFD FILE(library/file)

DSPFFD (Display Displays all the field information, such as field name, field type, field size, start position,
File Field Description) end position, etc. Format:

DSPFFD FILE(library/file)

STRDBG (Start Debug) Starts a debugging session on an OS/400 job. This can be either the current job or a service
job. While this command has parameters, when using it with a client/server application
and the STRSRVJOB command, they’re not usually required.

STRSRVJOB (Start Starts an AS/400 service job. From this service job you can monitor and debug other
Service Job) OS/400 jobs, such as client/server connections from Delphi. Sometimes used to debug

AS/400 batch jobs. Format:
STRSRVJOB JOB(job/user/number)

DSPJOBLOG (Display Shows the user what has transpired during the running of the job. It logs all commands,
Job Log) errors, and informational messages. It’s a handy source of information about what your job

has done. It can be as brief or as detailed as you want, depending on how you set up the
AS/400 job. Format:
DSPJOBLOG JOB(job/user/number)

WRKACTJOB (Work Shows the user what jobs are active on the system. It’s a good way to get the job number
with Active Jobs) for your client/server connection to the AS/400.
STRSQL (Start SQL) Starts the interactive SQL command processor. It provides a full screen for entering SQL

statements. This utility is useful for trying SQL statements directly on the AS/400 before trying
to run them from your client/server application. A nice feature of this screen is the ability to
prompt the SQL statement. By typing in a SQL statement, such as SELECT, then pressing
4, you can build your statement by filling in the fields provided, making it especially
handy if you can’t remember the syntax for a complicated SQL statement.

he Work with Active Jobs screen.

Columns & Rows
Common Commands
The commands shown in Figure 1 can be entered on
any OS/400 command line. These commands are pri-
marily concerned with debugging, and displaying file
information, file content, and job information. We
won’t get into the details of the commands, but we’ll
review them so you have a starting point from which
to learn more. We’ve simplified the example calls to the
commands, as most have many parameters. The exam-
ples/formats I use should work in most cases, but may
need to be customized for your particular situation.

Tracing an AS/400 Client/Server Connection
One of the issues facing any client/server development
environment is to know what is happening on the server
side when the client side issues a SQL statement or system
command. Because DB2/400 is part of the operating system, you are
able to use OS/400 commands to watch exactly what the client/server
job is doing on the AS/400. The one catch is that you must do it from
an AS/400 terminal session.

To use the following technique, you must have the authority to run
four OS/400 commands:

STRSRVJOB (Start Service Job)
ENDSRVJOB (End Service Job)

Figure 2: T
32 November 1999 Delphi Informant Magazine
STRDBG (Start Debug)
ENDDBG (End Debug)

If you don’t have authority to run these commands, contact your
AS/400 administrator and ask them to grant you *USE authority
for them. Also, if the job on the AS/400 is run under a specific
user profile, you may require *USE authority to that profile.
Although this is possible, for security reasons it would better to
change the job on the AS/400 to run under the user profile of

33 November 1999 Delphi Informant Magazine

Figure 4: Message logging parameters.

Columns & Rows

Figure 5: The STRSRVJOB command.

Figure 6: An example of the information provided about a query.

Figure 7: Detail information from the item in Figure 6.

Figure 8: Additional detail information from the item in Figure 6.

Figure 3: An AS/400 job number.
the person running the client/server job. Delphi/400
and EasyComm/400 — two of the more popular ways
of connecting Delphi to the AS/400 — are capable of
doing this.

Determining the Job Number
Every connection to the AS/400 starts a job on the
AS/400. Whether the connection is a terminal emula-
tion program or a client/server application, they all
require a job on the AS/400 to communicate with it.
This is the job we’ll trace. The basic process is to start
the Delphi job and sign on to the AS/400. At this
point, the job has been initiated on the AS/400, and
you should start the trace process on the AS/400.

This process takes a few moments to set up, so your
Delphi client/server application must not be allowed to
complete before you finish the setup of the trace. If the
Delphi job ends before you are able to display the trace,
you’ll lose the information you’re trying to gather. The eas-
iest way to do this is to place one break point just after the
logon is completed, and another just before the program
terminates. This will give you all the time you need to set
up the trace and run the program. The break point at the
end of the program ensures the job won’t terminate before
you get a chance to log the information you require.

To trace a job on the AS/400, you must know its job
number. The job number consists of three parts: Job,
User, and Number. To find the job number, use the
WRKACTJOB command (see Figure 2).

You may need some assistance from your AS/400 system
administrator to determine the subsystem in which your
job is running. By default, the Delphi/400 jobs run in
the CO400TCP or CO400SNA subsystems, depending
on which communication protocol is being used
(TCP/IP or SNA) to communicate with the AS/400.
The EasyComm/400 jobs all run in the EASYCOM
subsystem. Then enter a 5 beside the job and hit
R; you’ll see the full job number at the top of the
resulting screen (see Figure 3).

To see the information you want, you may have to
change the job itself. On the Work with Active Jobs
screen, you can enter a 2 in the options field beside the
job you want to change, then hit R. You’ll also
want to change the Message Logging fields, as shown in
Figure 4. These fields tell OS/400 how much detail to
keep track of for that job.

Start the Service Job
You now have the job number of the job you want to
trace. However, because you are using a terminal session to
monitor the client/server job, it has a job of its own. This
means that you must use a service job to monitor the
other job. The command to do this is STRSRVJOB. Enter
STRSRVJOB on the command line, select 4 to prompt
the command, then enter the job information in the fields
provided (see Figure 5).

Putting the Job in Debug Mode
Once the STRSRVJOB command has completed, you’ll be

Figure 9: The DSPMSGD command prompted with 4.

Figure 10: Detailed information provided by DSPMSGD.

Columns & Rows
back at the command line. At this point, you must enter the
STRDBG command and hit R to place the service job in
debug mode. The debug command will cause the AS/400 to log
more information to the job log than it normally would. It’s in this
extra information that we’ll see the trace information for the SQL
work done by the DB2/400 server on the AS/400.

Displaying the Job Log
At this point, you are able to enter the DSPJOBLOG (Display
Job Log) command to view the job details. This command must
be prompted, using 4, and the job number must be entered in
the fields provided. You are also able to choose whether to dis-
play the information on the screen or print it in a report. I
almost always send the information to a spool file so I can review
it later and perform searches on it.

When looking at the information on the screen, the first thing you
should do is to hit 0. This will display all messages that have
occurred since the beginning of the job. Note that in Figure 6 the
screen capture shows that the job fetches some records from the
server, closes the cursor, prepares a new SQL statement, opens a
new cursor, and then fetches more records. It also tells you that it
considered all access paths (Indexes) and that it chose the access
path of file MASSU1. This is important information. What if you
thought the query would be using a different index? This could
severely impact the performance of your SQL statement.

The next question you want to ask is why it chose that index over
others. To see the details of that particular item, move the cursor
down to that line and hit 1. This will display a screen similar to
that shown in Figure 7. The details tell you why each index was not
used to complete the query. The second part of the screen, which
cannot be seen in the screen capture, explains what each of the rea-
son codes mean.

Figure 8 is the detail of the next message from Figure 6, and it tells
you why that particular index was chosen for the query. This type of
detail is available where appropriate, and can be of great help in
telling exactly what the AS/400 has done with the SQL statement
your application sent to it.
34 November 1999 Delphi Informant Magazine
Ending the Tracing Process
After you have the trace, you need to end the tracing
process. First you must enter ENDDBG; then enter
ENDSRVJOB. In other words, the debug mode and the
service job must be ended.

Displaying DB2/400 SQL Error Messages
When your program generates a SQL statement with
which the DB2/400 engine on the AS/400 has a prob-
lem, the AS/400 passes back a SQL code to your pro-
gram. An example would be SQL -100. Delphi pro-
grammers are left wondering what SQL -100 means.
While many of the SQL messages the AS/400 produces
are standard, there are a few that are particular to the
AS/400. The trick is determining what the SQL return
codes mean.

The easiest way to do this is to use an AS/400 terminal
session to run the DSPMSGD command. This com-
mand will display the message description of any mes-
sage on the AS/400 that resides in a message file. This is
the common method for AS/400 developers to look up
error messages generated by their programs.

All SQL messages reside in their own message file called
QSQLMSG. Enter DSPMSGD on a command line and hit 4 to
prompt it (see Figure 9). You must fill in the first field (Lower
Value) with the SQL code returned to your program. A lot of
the return codes are only three characters long, but this field
requires the characters “SQL” plus a four-digit number. To
make up the fourth character, you must put a zero (0) in front
of the three-digit code. Also, all negative return codes should
be entered as positive, as there is no way to enter negative num-
bers in the field.

Figure 10 shows the details about the SQL -100 code that was
passed to the application.

Conclusion
The AS/400 provides some powerful trace utilities for
client/server applications. Unfortunately, they aren’t well known
to either the Delphi or AS/400 communities. The goal of this
article is to provide client/server developers with some basic tools
and a starting point for them to learn more about developing
applications for the AS/400. To keep the article brief, I have not
gone into a lot of detail. However, I hope it has given you
enough information to get you started tracing and debugging
your client/server applications that use the AS/400 as the data-
base server. ∆

G. Bradley MacDonald is a consultant who specializes in connecting Delphi to the
AS/400. He has written various articles dealing with Delphi and the AS/400, as
well as a technical White Paper for Inprise on Delphi/400. Mr MacDonald can be
reached via e-mail at BradleyMacDonald@BC.Sympatico.CA.

35 November 1999 Delphi Informant Mag

New & Used

By Ron Loewy

Figure 1: The T
Raize Components 2.1
80 Well-thought-out UI Controls

N ormally, I’m not a big fan of large component sets. I prefer third-party solutions
with a small number of components to master. You could say I like my solutions

focused. Although I did purchase some of the large component collections for my work
in the past, I did it for a specific control or two and found I didn’t use the suite for any-
thing other than the component that initially caught my attention.
Raize Components 2.1 (RC2) from Raize Software
Solutions, Inc. is a large set of user-interface compo-
nents. I’m a big fan of another Raize product,
CodeSite, which suits my preference for simple
operation and a minimal learning curve. My favor-
able experience with that tool prompted me to try
the new component collection, despite the fact that
more than 80 new glyphs were added to my
Component palette.

Installation
Raize went the extra mile with the installation pro-
gram for this product. It prompts you for a user
name and company, the serial number supplied by
Raize, and the Delphi version(s). My computer has
Delphi 3 and Delphi 4 installed, but I opted to
install the components for Delphi 4 only.

The installation program copies the required pack-
ages to disk, registers the components with Delphi,
updates your library path (I wish more third-party
tools would do that), and even combines its Help
azine

RzLabel component editor.
file with Delphi’s Help system. It’s a rare occasion
when a component installation process requires
nothing more than activating the setup program.

Four new tabs were added to the Component palette:
The Raize tab includes a set of user-interface
components I consider as Raize Software’s
replacement for the Standard, Additional,
and Win32 tabs that ship with Delphi. These
are the components we’re always using, only
with some interesting features, which I’ll
briefly cover later.
The Raize List tab includes a collection of
list boxes, combo boxes, tree components,
and list views with enhanced functionality
or specific uses, such as color and font list
boxes, and a tree that can have checkboxes
associated with its nodes.
The Raize Data tab includes a collection of
data-aware, user-interface controls (akin to the
standard Data Controls tab of Delphi).
The Raize Misc tab is a collection of gadgets
that don’t fit anywhere else. These include spin-
ners, gradient forms, balloon hints, and more.

The “Standard” Visual Controls
The controls provided on the Raize tab are a direct
replacement for many of the standard components
that ship with Delphi. The TRzLabel component,
for example, is the replacement for the standard
TLabel. The Raize version provides additional dis-
play properties, such as the text rotation angle,
custom borders, and text styles.

When you place an RC2 component on a form, you
can usually activate a custom component editor by
using the context menu. In the TRzLabel case, this

New & Used
editor is available as Edit Label at the top of the popup menu. This
opens a component editor that provides immediate feedback for the
different custom settings available for the component (see Figure 1).

In addition to this nice feature, other commonly used options for a
component are usually also available from the popup menu and save
you the time to search for the required property in the long list of
properties that are displayed in the property editor. For example, the
TRzPanel component has an Align Client option in the popup menu
— definitely one of the more common things I do with panels.

It’s obvious that Raize Software took the time to fix some of the com-
mon annoyances of Delphi’s standard components: How often do
you place a TPanel on a form and immediately proceed to clear its
Caption property? The TRzPanel component comes with a blank cap-
tion by default — not a huge improvement by itself, but definitely
an indication of the attention to detail that is part of this library.

Most of the controls provide custom frame options. If you want
your applications to look different from the standard Windows but-
tons and edit boxes on a gray background, these framing options
make it easy to create forms that look like regular printed forms,
checks, or other real-life data entry paper sources we’re used to. You
can define many frame styles or define which of the frame sides will
be displayed (if only the bottom side of the frame is visible, for
example, a paper form look is easily imitated).

If your form contains many edit controls that need to share a cus-
tom frame option, it’s a hassle to change them at design time (and
even worse at run time). Fortunately, the TRzFrameControler com-
ponent can be used to iterate through all the components on the
form and set the frame attributes property. Thus, you can easily
change between a classic Windows look and your custom frame
look, based on user preferences.

The standard components include button components that can be
linked to a drop-down menu, list and combo boxes with the frame
options (and other display properties), progress bar, track bar, and
other replacements to the standard Delphi components that I won’t
mention here because of space limitations.

Other notable components are the TRzSplitter, which creates splits by
defining a container with two sections (vertical or horizontal), instead
of the standard Delphi method of dropping panels with a splitter
between them. This solution makes it easy to create custom splitter
areas, and each part of the two parts in the splitter container is used to
host other components. You can easily drop another splitter on one of
the splitter parts and cascade your splitter to create complicated frames.

The TRzToolbar component makes the design of toolbars easy and
fun. A set of common glyphs is available from the component edi-
tor, so you don’t have to hunt for images for your buttons. The
WrapControls property can be used to wrap the toolbar buttons
automatically as the user changes its size. A set of standard toolbar
controls (button, button with drop-down menu, or spacer) are
included to make toolbar construction easy. Another advantage is
that this control doesn’t require a Microsoft DLL, as the standard
TCoolbar component does.

The status bar replacement (TRzStatusBar) provides standard sta-
tus bar panes that are always a pain to implement. The available
resources, the state of the keys, a progress bar, and other options
are available. Again, this is not the kind of component that will
36 November 1999 Delphi Informant Magazine
make or break the collection, but it is a nice replacement for the
standard Delphi-supplied component.

List Controls
The Raize List tab includes several general-purpose list, combo box,
and tree view controls that provide additional visual properties, such
as checkboxes associated with the items (TRzCheckList,
TRzCheckTree), or the ability to have multiple columns for every
item (TRzTabbedListBox). TRzEditListBox allows the editing of items
by the user at run time.

Descendants of the TreeView and ListView controls implement
the custom frame options that allow you to integrate these com-
ponents in your form with its special look. In addition to these
general-purpose controls, some special common-case controls are
available, e.g. color and font combo boxes, a file system combo
box, list boxes, and a directory selection dialog box.

Data Controls
The data components included with RC2 are either simple exten-
sions to the regular Delphi DB Controls with the Raize frame and
display options (e.g. TRzDBLabel, TRzDBEdit, TRzDBMemo, etc.)
or database versions of controls included in the “standard” Raize tab,
such as TRzDBStatusPane, which can be used as a data-aware pane
in the status bar component described earlier.

As most of the components in this package, these can get their frame
settings from the frame controller mentioned previously, and —
when appropriate — provide easy-to-use visual component editors.

The “Other” Controls
The Component palette tab labeled Raize Misc hosts all the compo-
nents that didn’t seem to fit in the other groups. This is a collection of
mostly visual gadgets that range from fun and (for most applications)
useless, to professional, essential code that can save you a lot of time.

These are some of the components that caught my eye:
TRzLauncher launches an external application. This is basically a
replacement to the WinExec Windows API call, but with the
option to wait for the spawned process to finish, which isn’t a
simple thing to do properly (you
must dig into the Windows API).
TRzButtonEdit is a combination of
an edit box with a built-in button,
like the one that appears in the
Object Inspector for properties that
activate a property editor. I wish I’d
had this component when I was
implementing a property inspector
for one of my applications.
TRzDialogButtons is a panel with
standard dialog box buttons (OK,
Cancel, etc.) that automatically aligns
to the bottom of your dialog box
and allows you to add/remove stan-
dard buttons as Boolean properties
of the component. It’s not an Earth-
shattering component, but it is a real
time saver. The only problem with
this component is that it doesn’t
offer the Borland glyphs for
TBitBtn, bkOK, bkCancel, and
bkHelp as an option.

Sometimes small improvements
in things we use every day are
more important than a revolu-
tionary change in something we
use infrequently. Raize
Components 2.1 definitely quali-
fies as such a tool. It has no sin-
gle, must-have component, but
features many components that I
use all the time. I just wish I’d
had it when I started my current
development project.

Raize Software Solutions, Inc.
2111 Templar Drive
Naperville, IL 60565

Phone: (630) 717-7217
Web Site: http://www.raize.com
Price: US$249

http://www.raize.com

Figure 2: The demonstration program in action.

New & Used
TRzBMPButton is a button created from a set of bitmaps you pro-
vide for states such as Up, Up and Focused, Down, Disabled, etc.
TRzAnimator animates a group of images in an image list —
great for small animations that don’t require the use of an AVI
or MPEG file.
TRzMeter displays a set of values in several formats — yet
another example of a component that’s not going to make or
break your application, but the cool graphic options make it
nice to have.

Documentation, Samples, Support
Attention to detail is one of the things that differentiates this package
from others on the market. The Help file is complete, providing all
the reference information you would want about the components.

The better products provide good samples that demonstrate the
capabilities of the components and provide you with a head start for
development. RC2 doesn’t disappoint in this regard. Its sample
37 November 1999 Delphi Informant Magazine
application (all the source is included) is an impressive
and educational showcase of the various components
(see Figure 2).

If you can’t figure out how to use the components
from the provided component editors, Help files, and
sample program, you might be in the wrong profes-
sion. But when questions do arise, Raize Software
provides Internet newsgroups, and questions are
answered quickly.

So What’s Missing?
Raize Software should consider adding grid compo-
nents to future releases (standard and data-aware). I
would not expect a do-it-all, cook-and-sing grid like
some of the tools available on the market, but a sim-
ple descendant of the Delphi grid with some of the
frame and display capabilities that are RC2’s claim to

fame would be nice. If the resident wizard would also allow you
to use the Raize components as the in-place editors, I would be
in UI heaven.

Conclusion
If you can’t guess that I like this package, I obviously failed in the
task of writing this review. It’s different from most third-party tools I
use; it has no component that — for me — makes it a must-have,
but it features many components that I use all the time. I just wish I
had it when I started my current development project. ∆

Ron Loewy is a software developer for HyperAct, Inc. He is the lead developer of
eAuthor Help, HyperAct’s HTML Help authoring tool. For more information about
HyperAct and eAuthor Help, contact HyperAct at (515) 987-2910 or visit
http://www.hyperact.com.

http://www.hyperact.com

File | New
Directions / Commentary
Inprise/Borland Conference 1999

This was my fourth Inprise/Borland Conference, and it was the most enjoyable so far. Among other things, a confer-
ence can be a barometer of the company sponsoring it — of its direction, priorities, and health. After I highlight

some of the more memorable events at the conference, I will attempt to “read the tea leaves” and discuss possible indi-
cators of the future for Inprise/Borland.
Again this year, I had an opportunity to meet and exchange ideas
with readers and friends. Spending a lot of time in the vendor area, I
was able to learn about advancements in some of my favorite com-
ponent libraries, including Digital Metaphors’ ReportBuilder,
SkyLine Tools’ ImageLib Corporate Suite, and the unsurpassed
Raize Components. Of course, I spent a good deal of time at the
Eagle Software booth, receiving my annual CodeRush tutorial. In
the process, I discovered the many keyboard templates I should have
been using the past year. At the TurboPower booth, I learned the
venerable company was finally getting ready to release the profiler I
had been bugging them to develop for years.

At the core of each year’s conference are excellent tutorials, techno-
logical presentations, vendor showcases, and birds-of-a-feather ses-
sions. One highpoint for me this year was a birds-of-a-feather session
that Mark Miller asked me to moderate entitled “Can Borland’s
Third-Party Vendors Survive?” This standing-room-only session was
as provocative as we had hoped it would be, and gave me the oppor-
tunity to return to issues related to developer ethics I’ve discussed
previously in this column.

The panel members were a group of Delphi all-stars: Mark Miller,
President of Eagle-Software; Ray Konopka, President of Raize Software
Solutions; Julian Bucknall, who manages all of the developers at
TurboPower; and Marco Cantù, best-selling author of several outstand-
ing Delphi books. As moderator I was prepared to broach three topics
related to vendor survivability: software piracy, project management,
and human resource management. Because we were under severe time
constraints, we did not get beyond the first topic. Nevertheless, atten-
dees had the opportunity to gain a much greater understanding of
some of the problems that face the makers of the tools we use — prob-
lems that could potentially drive some vendors out of the business.

New leadership. Usually I am not too interested in the various
industry keynotes. However, one of the delightful experiences this
year was Larry Constantine’s “On Becoming a Leader: Advice for
Tomorrow’s Development Managers.” This masterful presentation
included proven pointers for anyone intent on making a positive
impact on their working environment.

Interestingly, Inprise’s new President, Dale Fuller, seems to under-
stand and embody many, if not most, of the enlightened manage-
ment approaches that Constantine recommends. The latter’s recom-
mendations include listening and questioning, instead of talking, as
an important key to effective leadership. He also suggests letting
others lead meetings and learning from within the group.

The opening keynote was more like the “opening scam.” Dale hid
himself in the middle of the audience, and when David I. acted con-
38 November 1999 Delphi Informant Magazine
fused about the CEO’s whereabouts, he “decided” to take questions
from the audience. Continuing the scam, Dale stood up with a
question that would have been more typical from a disgruntled
Borland customer than from its CEO.

His involvement in the remainder of the conference was also marked
more by a listening-and-learning approach, than by a behind-the-
scenes directing approach. He was everywhere, as accessible as any-
one else from Inprise/Borland. I had an opportunity to speak with
him personally in my favorite haunt, the vendor area, and found
him to be very open and receptive to my suggestions.

Borland developers with whom I spoke indicated that his approach
back at the company is similar. The ivory tower has been replaced
by a cubicle in the midst of hectic research and development. In the
opinion of this writer, at least, Borland has returned to its roots and
is not only acknowledging the importance of its developer base, but
is taking increasingly meaningful steps to support that developer
base. This is how Borland became the great development company
it was in the 1980s. I remember those days. Like most of you, I
hope that they are returning.

If my perceptions are accurate, and if this company continues on this
path of rediscovery, then I predict its future will be bright and we have
much to look forward to. Of course, all of us have a role to play as well.
As Ben Riga stated in his inspiring showcase of Delphi 5, a most power-
ful tool in marketing Delphi is word of mouth. I am aware of many of
you out there who are Delphi evangelists (like my friend from Project
JEDI, Shiv Kumar). Developers like Shiv are willing to take time off
from their busy schedules and lead their ignorant brethren from the
thick dark forest of inferior development tools, to the sunny valley of
Delphi. We need more of them. In this coming year, let’s work together
to make the resurrection of this company a reality. Together — in our
user groups, with our business partners, with Project JEDI, and in our
Internet discussions — we can do it. ∆

— Alan C. Moore, Ph.D.

Note: This is an abridged version of this column. The complete col-
umn is available on the Delphi Informant Web site at
http://www.DelphiMag.com.

Alan Moore is a Professor of Music at Kentucky State University, specializing
in music composition and music theory. He has been developing education-
related applications with the Borland languages for more than 10 years. He
has published a number of articles in various technical journals. Using
Delphi, he specializes in writing custom components and implementing
multimedia capabilities in applications, particularly sound and music. You
can reach Alan on the Internet at acmdoc@aol.com.

http://www.DelphiMag.com

	Table of Contents
	Delphi Tools
	RSW Offers e-TEST Suite 3.1
	Premia Announces CodeWright 6.0
	Arsenal Launches Arsenal Word Processor Toolkit
	DBI Technologies Announces Component Toolbox OCX 4.0
	KRFTech Announces WinDriver
	CNS Announces Version 1.1 of The InterCom System
	EC Releases Help & Manual 2.0

	Delphi News
	HREF Tools’ WebHub Selected for Borland Web Site
	Inprise Announces Commitment to Linux
	Dunn Systems Receives the Inprise 1999 Partner Solution of the Year Award
	Delphi 5 Focuses on Internet and Enterprise

	Greater Delphi
	VisiBroker CORBA
	Example 1: The Online Auction
	CORBA Clients in Delphi
	Early Binding Client
	Late Binding Client
	Clients in Other Languages
	Conclusion
	Begin Listing One — csrvobj.pas shell
	Begin Listing Two — Implemented csrvobj.pas
	Begin Listing Three — Implemented cclient.pas
	Begin Listing Four — Implemented cclient_dii.pas
	Begin Listing Five — CorbaClient package

	Undocumented
	Conclusion

	DBNavigator
	Overview
	The Tree View
	Data Set Nodes
	The Components Page
	The Data Diagram
	The Data Diagram Toolbar
	Other Features of the Data Diagram
	A Documentation Asset
	Conclusion

	Sound + Vision
	TAPI Basics
	The TAPI and Wave API Link
	The Wave API
	Writing the Code
	Using Wave API to Play a Sound
	Recording Sounds with the Wave API
	Recording
	TAPI Problems and Limitations
	Conclusion

	Columns & Rows
	Common Commands
	Tracing an AS/400 Client/Server Connection
	Determining the Job Number
	Start the Service Job
	Putting the Job in Debug Mode
	Displaying the Job Log
	Ending the Tracing Process
	Displaying DB2/400 SQL Error Messages
	Conclusion

	New & Used
	Installation
	The “Standard” Visual Controls
	List Controls
	Data Controls
	The “Other” Controls
	Documentation, Samples, Support
	So What’s Missing?
	Conclusion

	File I New

